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1 Introduction

1.1 Secure Transmission of Information

Whether we always acknowledge it or not, our daily lives are often very
dependent on secure communication of information. Things like credit card
payments at Tesco’s, online shopping at Amazon, and mobile phone calls to
our Mom all require a way to keep the information confidential and correct.
So to get a general idea of what cryptography is, it is good to put it into
context of general secure transmission of information. There exist three
conventional ways to transfer messages securely between two persons:

1. Absolutely secure channel to which no-one else has access to guarantee
confidentiality. However, this is usually not achievable in any real-life
applications.

2. Steganography tries to hide the fact that a message was even sent in
the first place. This is usually implemented by embedding a secret
message (for example a piece of text) in a non-suspicious segment of
data (for example an image file).

3. Cryptography works by transforming (or encrypting) the input-message
into such an obscure form that it is (ideally) only reconstructable by
the intended recipient.

We will concentrate on the last of these three ways with the aim of providing
a brief account of the history of cryptography, a more detailed overview of
the different modern methods available, a quick look at the future directions,
and a couple of case studies to provide some examples about the applications
of cryptography.
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2 Overview of Historical Events

There is no doubt that spontaneous desire for the concealment of informa-
tion has existed ever since the early days of human existence. Then it is
not surprising that the first accounts of simple substitution ciphers go back
thousands of years. However, over the years much has changed. The never
ending battle between the codemaker and the codebreaker has enabled the
disciplines of cryptography and cryptanalysis evolve into truly complex fields
of mathematical study.

The history of cryptography can be roughly divided into three separate time
eras: classical ciphers of the early days, rotor machines of the World Wars,
and modern algorithms of the Computer Age. The following will provide an
outline of some of the notable events in this race towards the perfect cipher.

2.1 The Classical Era

20th Century BC - First Known Occurence of Cryptography in History

The first accounts of cryptography trace back
some 4000 years to the town of Menet Khufu
in Egypt. This is the resting place for the
tomb of the nobleman Khnumhotep II. The
hieroglyphic inscriptions on the tomb were
done with a variety of unusual symbols to
obscure the meaning of the text.

Figure 1: The hieroglyphic text of Khnumhotep II (http://www.xramp.com).

1st Century BC - First Known Military Substitution Cipher

The Caesar Shift Cipher is a simple trans-
position cipher which works by shifting each
letter of the plaintext by three places further
down the alphabet. The cipher is named af-
ter Julius Caesar, who used it to communi-
cate with his generals. This makes it the first
documented substitution cipher used for mil-
itary purposes. This is a very elementary ci-
pher that offers no real protection anymore.

Figure 2: Illustration of Julius Caesar (http://www.senmerv.com).
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9th Century - Discovery of Cryptanalysis by Frequency Analysis

The earliest known description of frequency
analysis comes from a 9th century Arabic sci-
entist. The manuscript essentially points out
how certain letters of the alphabet occur with
different probabilities in our language usage.
This was a break-through in cracking simple
monoalphabetic substitution ciphers.

Figure 3: Excerpt of the Arabic manuscript (http://www.simonsingh.net).

16th Century - Vigenère Cipher Emerges as a Polyalphabetic Cipher

Origins of the cipher can be traced to the
works of L.Alberti in the 15th century and
further works of J.Trithemius and G.Porta.
The fully coherent cipher system was pub-
lished by Blaise de Vigenère in 1586. Es-
sentially it uses a series of different Caesar
ciphers based on a mutually known keyword.
The choice of shift cipher used for a given let-
ter is determined with the Vigenère square.

Figure 4: Illustration of Blaise de Vigenère (http://www.cqrsoft.com).

1854 - Statistical Analysis for Polyalphabetic Ciphers

This was originally developed by Charles
Babbage but was left unpublished due to the
fact it was used by the British to decipher en-
emy messages in the Crimean War. This was
rediscovered and published by F.Kasiski in
1863 and has since been called Kasiski Test.

Figure 5: Illustration of Charles Babbage (http://www-etsi2.ugr.es).
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2.2 The World Wars

WWI - Cryptanalysis of the Zimmermann Telegram

British cryptanalysis experts deciphered the
Zimmermann Telegram which lead the so far
neutral US to declare war on Germany. By
1918 Germany had been defeated. Another
milestone worth mentioning is the develop-
ment of the truly secure (but often too im-
practical) one time letter pad to encrypt top
secret information.

Figure 6: The Zimmermann Telegram (http://www.retro-gram.com).

WWII - Cryptography Placed at the Centre of Military Strategy

The extent of cryptanalysis research vastly
increased in the Second World War. The
prior-war works of the polish cryptanalysists
helped a great deal in Britain’s efforts to
crack German Enigma codes. The impor-
tance of US deciphering the Japanese top se-
cret diplomatic codes encoded with the Pur-
ple machine was also vital. Cryptography
was forever placed in the centre of military
and political strategy.

Figure 7: The Enigma Machine (http://web.math.hr).
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2.3 The Modern Era

1975 - DES cipher was published

1976 - ”New Directions in Cryptography” published by Whitfield Diffie

This was the first non-secret publication
on the break-through ideas of asymmetric
ciphers. The paper descriped the Diffie-
Hellman algorithm.

Figure 8: Whitfield Diffie (http://www.at-mix.de).

1977 - RSA cipher published

1991 - Pretty Good Privacy saw daylight
This cryptographic privacy and authentication program was developed by
P.Zimmermann. It is offerred as a freeware program. Gnu downloads can
be found from here (external link). See more information about PGP at the
case-studies page.

1993 - Blowfish algorithm developed by B.Schneier
It was intended as a replacement for the aging DES. The altorithm was
placed in the public domain, and thus freely available for anyone’s usage.

1998 - DES cracked by brute force

Electronic Frontier Foundation performed a
large scale project nick named Deep Crack
against the DES symmetric cipher key space.
The project amounted to $250,000 in costs,
but proved to crack a standard 52-bit DES
cryptogram in 56 hours. The system included
1856 custom DES chips and could test over
90 billion keys per second.

Figure 9: The Deep Crack chipboard (http://www.eff.org).

2001 - Rijndael cipher made the official AES algorithm
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3 Mathematical Background

3.1 Number Group Cryptography

We here deal with the case where someone chooses a simple number group,
such as Z

∗

p, to do his cryptography. We will discuss the two main math-
ematical problems that the secrecy of this type of cryptography is based
upon.

3.1.1 The Discrete Logarithm (DLOG) Problem

Definition of the DLOG Problem

Suppose that we have a cyclic group G and we also know g
and gx, where g ∈ G and x is an integer which is less than the
order of the group G. The DLOG problem is that of finding x.

We need to stress here the fact that

gx = g ⊗ g . . . ⊗ g
︸ ︷︷ ︸

x times

where ⊗ is the operation over the group G.

We will later see that this operation ⊗, is multiplication modulo a prime
number (in the case where we use simple prime-order fields such as in the
Diffie-Hellman algorithm or Elgamal or RSA), or elliptic curve addition (in
the case of elliptic curve ciphers).

One might consider the same problem over the real numbers R. Here, the
solution is very simple as a simple calculator can approximate x = logr(r

x).
Nevertheless, there exists no straight forward method such as this in the case
of multiplication in prime order fields (the elliptic curve DLOG problem is
covered seperately in the section on Elliptic Curve Cryptography), in which,
from a mathematical point of view, we are attempting to solve

logg(g
x) ≡ x(mod n) where n = |g|

There exist various methods that attempt to solve this problem, the
most naive of which is simply trying all possible x’s, starting from 0 and
moving upwards. This method will on average take n

2
group operations. On

the other hand, the best methods require O(
√

|G|) where |G| is the order of
the group G (since the group is cyclic this is also n, the order of the element
g). The reader is suggested to resort to [12] for further reading on these
methods.

9



3.1.2 The Integer factorisation (IF) Problem

”The problem of distinguishing prime numbers from composite numbers,
and of resolving the latter into their prime factors, is known to be one of the
most important and useful in arithmetic”

Gauss wrote in his Disquisitiones Arithmeticae, 1801 (as stated in [2] ).
It is known from the Fundamental Theorem of Arithmetic that every num-
ber can be expressed as a product of prime numbers in a unique way. On
this note we define the problem as follows

Definition of the IF Problem

Suppose we have an integer N . The Integer factorisation problem is
the problem of finding one or more (or all!) prime factors of N .

No solution exists to this problem that will automatically give a result. In
modern day cryptography, large numbers are chosen that are the product
of two prime numbers p and q, as in this case, the IF problem is harder to
solve. The best algorithm is the general number field sieve (GNFS) in which

the time complexity is O(exp((64

9
n)

1

3 (log(b))
2

3 )) which is super-polynomial,
but sub-exponential.
As an example, the German Federal Agency for Information Technology
Security (BSI) ran a super computer equipped with 80 AMD Operon proc-
cesors for several months before factorising an 193 digit (640-bits) integer
into two primes! (See [24] )

Even though there exists no method of factorising a large n-bit number in
polynomial time, in 1994, Peter Schor established an algorithm that would
work on a large quantum computer, that would take only O((log(n))3) time
on O(log(n)) space.
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3.2 Elliptic Curve Cryptography

Apart from standard groups such as Z
∗

p one can use groups generated by
elliptic curves. We by introducing the maths behind elliptic curves.

3.2.1 Mathematical Foundations

An elliptic curve in the context related to cryptography is defined as the
following function

Definition of an Elliptic Curve

ε : y2 = x3 + ax + b where x, a, b ∈ F

In the previous, F is a field. Having chosen F = R and for example a = −6
and b = 6 we get the following graph

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6
y2=x3−6 x+6

Figure 10: An Elliptic Curve Over R

Nevertheless, the application of elliptic curves in cryptography is only
usefull when F is a field of the form Zp when p is a prime number. This relies
on the fact that when this condition holds and furthermore 4a3 + 27b2 6= 0 ,
it can be proven that the elements (x, y) together with the point ∅ form a
group E under addition. Addition in this group is to be defined geometrically
in the following section.
However, as with Z

∗

p, the multiplicative group of order p−2 where p is prime,

we need to stress the meaning of ak where a is an element of our group and
k ∈ Z, as this will be used in further sections. In Z

∗

p this is defined as

ak = a ∗ . . . ∗ a
︸ ︷︷ ︸

k times

(1)

whereas, in E it is
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ak = a + . . . + a
︸ ︷︷ ︸

k times

= k ∗ a (2)

3.2.2 Addition in E

We describe the case where F = R. Given points P and Q, it is easily proven
that the line through P and Q , call it lPQ, cuts our elliptic curve ε at ex-
actly one more point, which for now we will call −R. This is obvious should
one consider the fact that lPQ is a linear equation, and the elliptic curve ε
is a cubic in x, hence it has 3 roots (Remember: since P and Q are points
on the curve and they are solutions of the system between lPQ and ε then
this implies that R is a real root and not a complex one, as they go in pairs).

Definition of Addition in E

If P and Q ∈ E then P +Q = R where R ∈ E is as defined previously.

An example of addition is given in the figure below.

Figure 11: Addition in the Elliptic Curve Group E over R

Image courtesy of the certicom.com tutorial, see [1] ¿]

3.2.3 The Elliptic Curve Discrete Logarithm (ECDLOG) Prob-
lem

This is in some ways similar to the normal DLOG problem, but proves itself
more complex to solve. We can define this problem as follows

Definition of the ECDLOG Problem

The ECDLOG problem involves finding x ∈ Z if A and B = xA are
given, where A, B ∈ E, are points of an elliptic curve.
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Solving this problem is not as simple as one might think. We will spare the
reader from explaining in detail complex brute force methods (i.e. trying
different x’s chosen randomly) or in the case of supersingular elliptic curves
(i.e curves of the form y2 = x3 + ax with some further rescrictions about a)
the method of imbedding the group E into the finite multiplicative group of
a field Fqk and then solving the DLOG problem on Fqk (See [4] for further
reading).
Nevertheless we provide an example of an elliptic curve which makes one’s
life hard when trying to solve the ECDLOG problem on it.

According to the National Institution of Standards and Technology (NIST
P-192) A choice of:

p = 6277101735386680763835789423207666416083908700390324961279

in the following elliptic curve

y2 = x3−3x+2455155546008943817740293915197451784769108058161191238065 over Zp

respresents a good safe choice. To brute force a key based on this elliptic
curve one would need to perform between 3 ∗ 1057 and 6 ∗ 1057 elliptic curve
additions! (Numbers courtesy of http://www.certicom.com)

13



4 Symmetric-key Cryptography

Since the beggining of cryptographic schemes and up until the creation of
public-key cryptography in 1976, any form of cipher, was a symmetric-key
one. They are based on the fact that there is one key, or method, with
which plaintext or ciphertext is encrypted or decrypted. It has been since
the beginning obvious though, that this key must not be publicly known.
Therefor, maintaining the secrecy of the key gave birth to the Key distribu-
tion Problem described in a glossary.

Considering an encrypting function Ee and also a decrypting function
Dd where e and d are keys, symmetric-key cryptography requires that one
can computer e from d with little or no computation. Typically in the past
though, we have had cases where e = d such as the Vigenere Cipher. Alter-
natively, the Caesar Cipher had e = 3 = −d. Consider the following figure,
in which c is the ciphertext and m is the plaintext. Adversary plays the role
of Eve the evesdropper.

Figure 12: A two party encrypted communication scheme
Courtesy of the Handbook of Applied Cryptography [6]

Symmetric-key ciphers are split into categories, such as Permutation
Ciphers, where the ciphertext can be a letter permutation of the plain-
text. Also, Transposition Ciphers and Substitution Ciphers where
the ciphertext characters represent a shift, or a substritution of the plain-
text characters. There exist other, but also combinations of the above.

Since the birth of public-key cryptography though, the distribution of
the key is almost no issue at all (see intro on public-key cryptography for
details), and so nowadays, the main focus of symmetric cryptography is
efficiency and difficulty to be cracked, should one not have the key in his
possesion.

In the following sections we review some of the main symmetric-key cryp-
tography schemes: the Data Encryption Standard (DES), the Advanced
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Encryption Standard (AES), and Blowfish.

4.1 The Data Encryption Standard

The Data Encryption Standard (DES) represents the first modern sym-
metric cipher. Developed in the US in the late 1970’s, it is today hardly
usable on its own, since with current computers it can be cracked by brute
force. Nevertheless, some still use triple-DES, which as implied by the name,
is a three-key DES encryption. The DES algorithm is based on the Feistel
Network.

DES uses 56-bit keys, which allegedly was the result of IBM being co-
erced to downgrade their original 128-bit keys, so that the NSA could read
information encrypted with DES. DES is a block cipher and uses input and
output blocks of 64-bits.

4.1.1 The Algorithm

The algorithm for encryption and decryption is described below.

The DES Algorithm

1. Apply the permutation IP (see below) to the 64-bit plaintext or
ciphertext m. Split m = (L0, R0). Henceforth the Li, Ri are
32-bits long.

2. for i = 1 until 16
Li = Ri−1

Ri = Li−1 XOR f(Ri−1, ki)
end

3. Finally, the block (L16, R16) is passed through IP−1 and hence the
result is c = IP−1(L16, R16).

The f function first expands Ri−1 from 32 to 48 bits by applying the ex-
pansion permutation E (see below) and then performs the XOR operation
between the expanded Ri−1 and ki, which is a 48-bit substring of our 56-bit
key k. This ki is generated by the key scheduling algorithm, which splits k
into two 28-bit pieces and applies rotations to generate a 48-bit substring.
Continuing from the XOR operation, our function f then splits this result
into eight 6-bit blocks and permutes each of those using 8 known permuta-
tions called S-boxes (see below). The S-boxes have as input a 6-bit block and
as output – a 4-bit block. Hence, the result of the f function is 8 ∗ 4 = 32
bits.

4.1.2 Remarks on the algorithm

• The permutations E, IP and the 8 S-boxes are publicly know permu-
tations which can be found at [21]
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• The main part of the algorithm is when the key ki is XOR’ed (in
step 2) with part of the ciphertext. This provides the essential crypto-
security.

• Other points to notice are the different permutations which make it
difficult for an attacker to reverse the process without knowing the
key.

4.1.3 Security of DES

The main problem with the DES encryption cipher is that it uses a key of
short length. This makes it prone to brute force attacks – attacks where the
attacker tries every possible key in the 56-bit range. During the 80’s and
90’s special chip-boards were developed at very high prices that could crack
a DES encrypted ciphertext in approximately a day. Nowadays, it would
not take long for someone to do this on a home computer.

4.2 Blowfish

Blowfish is the product of Bruce Schneier, a major cryptographer of our
time. It was developed in 1993 as a potential replacement for DES. Unfor-
tunately, this never happened, as Twofish and AES are considered better
replacements due to the fact that they use bigger blocks. Nevertheless, it
is unpatented and fully in the public domain. It has been applied in many
secure software packages that are used today.

Blowfish is a symmetric block cipher that uses 64-bit blocks. Its keys can
be of length between 32 and 448 bits. Like DES, Blowfish is based on the
Feistel Network scheme, and, also like DES, it uses 16 rounds.

4.2.1 Algorithm

The algorithm for encryption and decryption is outlined below.
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The Blowfish Algorithm

1. Initialise the Pi ∀i = 1..18 which are generated by the key in a
specific (known) way.

2. Split the text m into two 32-bit halves, (m1, m2).

3. for i = 1 to 16
m1 = m1 XOR Pi

m2 = f(m1) XOR m2

swap(m1, m2)
end for

swap(m1, m2)
m2 = m2 XOR P17

m1 = m1 XOR P18

c = (m1, m2)

The f function is defined as follows:
Split m1 into four 8-bit pieces (a, b, c, d), then

f = ((((S1a + S2b)mod232) XOR S3c) + S4d)mod232

where the Si are the S-boxes, generated by the key k, in contrast to DES
where the S-boxes are known.

4.2.2 Remarks on the algorithm

• The block m is 64-bits long

• The key k has size L ∈ [32, 448]

• The swap function simply swaps the values of m1 and m2

• Notice how similar it is to the DES algorithm. This structure is derived
from the Feistel Network scheme.

4.2.3 Security of Blowfish

No official way of cryptanalysing Blowfish exists. Despite this, Chloe in
the TV series 24 mentions in one episode of season 4 that the NSA has
in its hands a proprietary algorithm that cracks Blowfish in no time at all!
Although this is highly unlikely, it should not be ruled out (remember, the
NSA does spend alot of time on stuff like this!).

Nevertheless, John Kelsey managed to crack 3-round Blowfish, but could
not extend his method it to the neccessary 16 rounds.

4.3 The Advanced Encryption Standard

In 2000 the Rijndael cipher was chosen as the new Advanced Encryption
Standard (AES) after a competition. Another notable candidate for AES
was Twofish, an evolved version of Blowfish.
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Interestingly, AES using 192 or 256-bit keys was approved by the NSA
for TOP SECRET U.S. Government information. This is the first time that
a publicly available cipher has been approved for such use.

The Rijndael cipher was developed by two Belgian cryptographers, Dae-
men and Rijmen. It uses keys of either 128, 192, or 256 bits. This is a
major improvement on DES which uses 56-bit keys. Rijndael is based on
a substitution-permutation network in contrast to DES being a Feistel net-
work.

4.3.1 Algorithm

The algorithm for encryption and decryption is outlined below.

The AES Algorithm

1. InputBlock is split up into bytes depending on its size L (see
below), ex for L = 128 into 16 bytes, m0, m1, ..., mn and the same
is done to InputKey which is of the same size, k0, k1, ..., kn.

2. According to the key size, a specific number of rounds of the fol-
lowing function are performed (for example, when L = 128 we
have 10 rounds).
Round(S, RoundKey) Where S is initialy InputBlock and
RoundKey is derived from InputKey via key scheduling.

3. Round(S, RoundKey) =
SubBytes(S);
ShiftRows(S);
MixColumns(S);
AddRoundKey(S, RoundKey);

We include a brief description of the operations each of these internal
functions perform

Subbytes(S) Performs yi = Ax−1 + b where x is every byte of S, A is an
S-box and b is known dependant on the size of A (and subsequently
on the size of mi).

ShiftRows(S) This is the simplest operation of the four which simply shifts
the elements of the matrix whose elements are the bytes of S by a given
number of positions.
For example, with L = 128, ShiftRows(S) would look like this







s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3







→







s0,0 s0,1 s0,2 s0,3

s1,1 s1,2 s1,3 s1,0

s2,2 s2,3 s2,0 s2,1

s3,3 s3,0 s3,1 s3,2
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MixColumns(S) Works by manipulating the columns of the state S (re-
member they look like the above). It forms a polynomial with co-
efficients the byte values of the columns. This polynomial is then
multiplied with a fixed polynomial c(x) modulo x4 − 1. Modulo arith-
metic ensures the result to be a polynomial of degree 3. The resulting
polynomials’s coefficients will be the column of the new state S′. We
work through all the columns of S in a similar fashion to form S′.

AddRoundKey(S, RoundKey) This function performs the XOR oper-
ation between the elements of S and the elements of RoundKey.

For further information consult [5] and [15] .

4.3.2 Remarks on the algorithm

• InputBlock and InputKey are of the same size L and can be 128,192,
or 256 bits long.

• In each round, the state S is updated by the four internal functions.

• Note that all operations in the Round function are reversible. To
decrypt text one clearly needs to follow the sequence:
AddRoundKey(S, RoundKey)−1;
MixColumns(S)−1;
ShiftRows(S)−1;
SubBytes(S)−1;

• Most of these operations are trivial computationaly. This is another
advantage of the Rijndael cipher – encrypting and decrypting text
while knowing the key can be done fast.

4.3.3 Security of AES

AES can be attacked using the Timing Analysis Attack. This occurs
when Malice (the malicious Alice) runs the SubBytes method on different
data and observes the time it takes for each execution. In doing this, Malice
can potentially decide whether the operation was done on bit 1 or 0! This
attack method can be prevented by using the “table-lookup” method, which
relies on keeping 256 (28) pairs of bytes (x, x−1), thus making looking up a
value when encrypting or decrypting very easy. In this way all conversions
take approximately the same time, giving no useful information to Malice
[5] .

4.4 Modes of Operating on Block Ciphers

When dealing with block ciphers, one needs to consider whether each block
will be encrypted on its own, or whether the encryption of one block will
depend on the encryption of the rest in some way. Here we present the most
popular block cipher operation modes.
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4.4.1 Notation

Pi: a block of plaintext

Ci: a block of ciphertext

E(Pi): a function that encrypts block Pi

D(Ci): a function that decrypts block Ci

IV : the initial vector, a vector that is used in different modes and is not
secret; it is distributed with the ciphertext and should be random for
better results

LSBn(k): gives the n least significant bits of k (i.e., the rightmost n bits)

MSBn(k): gives the n most significant bits of k (i.e., the leftmost n bits)

‖ operator: the padding operator, e.g., 01 ‖ 00 = 0100

4.4.2 Electronic Code Book (ECB)

The simplest way of applying a cipher to a set of blocks is to apply the
cipher to each block seperately. In other words:

ECB Algorithm

• ECB Encryption Ci = E(Pi) i = 1, . . . , m

• ECB Decryption Pi = D(Ci) i = 1, . . . , m

However, ECB is hardly the safest mode. This is well illustrated in the
following image sequence.

Figure 13: Plaintext image, ciphertext image with ECB, ciphertext image
with another mode

Images courtesy of wikipedia and Larry Ewing and The GIMP
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4.4.3 Cipher Block Chaining (CBC)

In CBC, each block depends on the encryption of the previous block. We
set C0 to be an initial vector (IV ) that will be distributed along with the
ciphertext. This IV does not need to be secret, but it should be randomly
chosen. The algorithm is as follows:

CBC Algorithm

• CBC Encryption
C0 = IV
Ci = E(Pi XOR Ci−1), i = 1, . . . , m

• CBC Decryption
C0 = IV
Pi = D(Ci) XOR Ci−1, i = 1, . . . , m

Hence, when Alice needs to encrypt blocks Pi, she chooses an IV , applies
the algorithm and then sends the Ci and IV (the IV need not be encrypted
in any way) to Bob, who can apply CBC Decryption.

A drawback of CBC was observed by Lars Ramklide Knudsen who showed
that

Ci = Cj =⇒ Ci−1(XOR)Cj−1 = Pi(XOR)Pj

Attacks using this equation can be limited if a random IV is chosen to limit
the values for which Ci = Cj , i 6= j.

4.4.4 Cipher Feedback Mode (CFB)

In CFB, each ciphertext Ci with i ∈ (0, . . . , m) is used to encrypt the next
block Pi+1. The way it is used though is quite different from CBC. Assume
IV is of length n and that we have m plaintext messages Pi of size s. No-
tice how E is used in both the encryption and the decryption process. The
algorithm is as follows
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CFB Algorithm

• CFB Encryption
I1 = IV
for i=1 to i=m

if i ≥ 2
Ii = LSBn−s(Ii−1) ‖ Ci−1

end if
Oi = E(Ii)
Ci = Pi XOR MSBs(Oi)

end for

• CFB Decryption
I1 = IV
for i=1 to i=m

if i ≥ 2
Ii = LSBn−s(Ii−1) ‖ Ci−1

end if
Oi = E(Ii)
Pi = Ci XOR MSBs(Oi)

end for

4.4.5 Other Modes of Operation

Information about other modes can be found by consulting the bibliography
(See [5] ). Other modes of interest include Output Feedback Mode (OFB),
Counter Mode (CTR).
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5 Public-key Cryptography

Until the invention of public-key cryptography in the 1970s, one fundamental
concept underlay all of cryptography – the parties that wished to commu-
nicate in private had to agree on a shared secret key. The key could be
used to both encrypt and decrypt the message. The security of information
transferred in this way depended as much on keeping the encryption algo-
rithm secret as on keeping the key secret. Consequently, one of the main
cryptographic problems was secure key distribution.

Public-key (asymmetric) cryptography avoids this problem by using sep-
arate keys for encryption and decryption. Each party has a key pair: a public
key e and a corresponding private key d. The public key is published and
thus viewable by anyone. Alice’s public key, for example, can be used by any-
one to encrypt a message m to her. Thus the encrypted message c = Ee(m)
where Ee is the encryption transformation with key e. The message can be
decrypted using Alice’s private key only, which is not known to anyone else:
m = Dd(c) where Dd is the corresponding decryption transformation.

Figure 14: Public-key cryptography
Courtesy of the Handbook of Applied Cryptography [6]

The security of a public-key scheme relies on the property that given the
encryption key e, it is computationally unfeasible to deduce the decryption
key d. However, the key asymmetry does not automatically solve the key-
distribution problem since the encryption key may not be authentic. The
public encryption key is transmitted over an insecure channel, and so it is
possible for a third party to intercept and replace it with another key, thus
performing the so-called impersonation attack. This can be solved by signing
one’s public key using one’s private key. This works since the encryption
and decryption transformations satisfy Dd(Ee(m)) = Ee(Dd(m)) = m.

The main advantage of public-key encryption systems lies in the fact that
ensuring the authenticity of public keys is easier than ensuring secret keys are
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distributed securely. However, such encryption is also usually much slower
than a comparable symmetric-key scheme and consequently is primarily used
for the safe transport of a secret key used to encrypt the bulk of the data
using a symmetric algorithm.

In the following sections we review some of the main public-key cryptog-
raphy schemes: the Diffie-Hellman key exchange, RSA, and ElGamal.

5.1 Diffie-Hellman key exchange

The Diffie-Hellman key exchange protocol was the first cryptographic algo-
rithm to implement the notion of public-key cryptography. The scheme was
first published by Whitfield Diffie and Martin Hellman in 1976 and relies on
the difficulty of solving the Discrete Logarithm problem (DLOG) in a finite
abelian group of large prime order. The Diffie-Hellman key exchange is a
non-authenticated protocol since it does not provide authentication of the
parties involved. Nevertheless, it is used in TLS (Transport Layer Security),
a protocol which provides secure communication on the internet.

5.1.1 The Algorithm

Suppose Alice and Bob want to agree on a shared secret key.
They first establish the domain parameters (shared information): they

pick a finite abelian group Gp, where p is prime, such that p− 1 is divisible
by another smaller prime q, at least 160 bits long. Then they choose a
generator g for Gq.

Alice picks a non-zero integer a from Zp−1, computes ga = ga mod p and
sends ga to Bob.

Bob picks a non-zero integer b from Zp−1, computes gb = gb mod p and
sends ga to Alice.

Alice then computes k = ga
b mod p, and Bob computes gb

a mod p, which
also equals k since gab = gba = k. And so a shared key has been established.

5.1.2 Elliptic Curve version

This is a modification of the Diffie-Hellman key exchange, which uses an
elliptic curve group E as the finite abelian group instead of Z

∗

p.
First, Alice and Bob meet and choose a field Fq (where q = pr where p

is prime and r can be any possitive integer). They then decide on a good
elliptic curve (for example, NIST P-192 given in the section below). They
now have to choose a random point B, called a base, which is an element of
E. B is not kept secret.

Alice then chooses a large integer a < q which she keeps secret. She
publishes aB. Similarly, Bob chooses an integer b and publishes bB.

Alice now needs to calculate abB, and Bob calculates baB. Since abB =
baB = k, a shared key has been established.

5.1.3 Security of Diffie-Hellman

As described, the Diffie-Hellman protocol is vulnerable to a man-in-the-
middle attack since there is no authentication of the parties. Thus an eaves-
dropper may establish two separate keys with Alice and Bob and then pre-
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tend to be either of them to the other. However, once that is amended, the
protocol is quite secure since to find the key, the eavesdropper would have
to solve the DLOG problem which is still considered hard to do.

The elliptic curve version of the protocol is much more secure than the
standard one. A 160-bit key in the elliptic version provides as much security
as a 1024-bit key in the normal version. The same methods that are used
to cryptanalyse the standard version apply; however, they are less efficient
here.

5.2 RSA

RSA was the first fully developed public-key encryption algorithm. It is
easier to understand and implement compared with other public-key algo-
rithms and hence is also the most popular. It was published in 1977 by Ron
Rivest, Adi Shamir and Len Adleman at MIT whose last initials gave the
algorithm its name. The security of the algorithm relies on the difficulty of
factorising large integers quickly (the integers can be anything between 100
and 200 digits long or even more).

RSA is quite common in practice; however, it is not usually used to
encrypt entire messages as it is too slow. In hardware, RSA is about 1000
times slower than DES (a symmetric cipher formerly used as an encryption
standard). It is more often used to encrypt the session key for a symmetric
cipher, which is then used to encrypt the message, or to digitally sign a
message or file. The algorithm is currently used in the GNU Privacy Guard
software and a range of proprietary solutions offered by the RSA security
company.

5.2.1 The Algorithm

Suppose Bertha wants to send a message to Arthur. She must first know
Arthur’s public key.

Arthur picks two large primes p and q which he keeps secret and com-
putes N = pq. Arthur then chooses an encryption exponent e (not secret),
such that e and (p−1)(q−1) are coprime, that is, gcd(e, (p−1)(q−1)) = 1.
Arthur publishes his public key as the tuple (N, e). He also chooses d, such
that ed = 1 mod (p − 1)(q − 1), using the extended Euclidean algorithm.
His private key is the triple (d, p, q).

To encrypt her message, Bertha looks up Arthur’s public key and encodes
her message m, as a non-zero element of ZN . She can encrypt the message
by computing c = me mod N .

Arthur decrypts the message by computing cd mod N .

5.2.2 Security of RSA

The security of the algorithm is assumed to rely solely on the difficulty of
the integer factorisation problem; however, it has never been mathemati-
cally proven that m cannot be calculated without factorising N . Neverthe-
less, RSA has been cryptanalysed for quite a some time now without finding
such way to sidestep the integer factorisation. It seems that RSA will re-
main secure until a fast method of factoring large integers is discovered. In
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recent years new mathematical techniques have been developed that reduce
the time needed to factor integers significantly, but they still stop short of
being a feasible threat. Further, quantum-computer algorithms have been
proposed which could factor integers in polynomial time. However, quantum
computers are still only a distant possibility.

On a more practical note, there are some attacks that work against the
implementation of RSA, such as chosen ciphertext attacks. In chosen ci-
phertext attacks, the attacker can choose to have any piece of ciphertext
decrypted with the unknown key. For instance, in one such attack the
eavesdropper Eve persuades Arthur to sign a specially constructed number
y with her private key. y = rec mod N where c is the encrypted message
Eve wants read, and r is any number less than N . When Arthur signs y
with her private key d, he send back to Eve u = yd mod N = (rec)d mod N .
Since Eve knows r, she can also compute its inverse mod N . Premultiply-
ing the number Arthur sent back by that inverse, she gets r−1u mod N =
r−1(rec)d mod N = (r−1r)cd mod N = cd mod N = m.

Another attack is possible if the RSA algorithm is implemented with
a low value for e. This significantly speeds up signature verification and
encryption but can be insecure. If e(e + 1)/2 linearly dependent messages
are encrypted using different public keys but the same value of e, it is possible
to crack the system. This problem can be solved by padding out messages
with random numbers to ensure that me mod N 6= me.

Other attacks may be possible if RSA is implemented by giving everyone
the same value for N or if d is less than one-quarter the size of N and e < N .

5.3 ElGamal

The ElGamal cryptographic algorithm, like the Diffie-Hellman key exchange,
is based on the difficulty of solving the Discrete Logarithm problem (DLOG)
in a finite abelian group of large prime order. It was invented by the
Egyptian-American cryptographer Taher Elgamal and first published in the
paper “A public-key cryptosystem and a signature scheme based on discrete
logarithms” (1985).

In contrast to RSA, ElGamal is a probabilistic encryption algorithm,
which means that when encrypting the same message several times, different
ciphertexts will be output. Although this is usually considered a property
of public-key encryption schemes, symmetric-key encryption algorithms can
have a similar property (e.g., block ciphers used in CBC mode).

A variation of the algorithm (the ElGamal signature scheme) has been
used as the basis for the Digital Signature Algorithm (DSA), adopted as a
digital signature standard by the American National Institute of Standards
and Technology (NIST). The ElGamal algorithm is currently used in GNU
Privacy Guard software and recent versions of PGP.

5.3.1 The Algorithm

Suppose Anita wants to send a secret message to Buckley.
They first agree on some shared information: Buckley chooses a finite

abelian group Gp, where p is prime, such that p − 1 is divisible by another
smaller prime q, of size at least 160 bits. Buckley finds a generator of Gq,
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which he labels g. He then calculates h = gx mod p and shares hir public
key triple (p, q, h) with Anita. Buckley’s private key is x, and is chosen
to be an element of Gp−1. (Anita creates her public key using the same
information, except that she chooses her own secret key, say y, and thus has
a different value for h.)

Next, Anita needs to encode her message m as a non-zero element of
Gp. (If the message is too long to be represented as one element of Gp, it is
split into parts, and each is encrypted separately.) Having done that, Anita
makes up a random session key k and uses Buckley’s public key to compute
c1 = gk and c2 = mhk. The encrypted message is then (c1, c2), which Anita
can now send to Buckley.

Buckley can decrypt the message by computing c2/cx
1 using his private

key. This works since

c2

cx
1

=
mhk

gxk
=

mgxk

gxk
= m.

5.3.2 Elliptic Curve version

Anita and Buckley choose a finite field Fq and an elliptic curve ε over Fq

whose points together with ∅, the point at infinity, form a group under
addition. Then they both choose private keys a and b and a base point
B ∈ E. Finally, they publish aB and bB.

Suppose that Buckley needs to send a message m to Anita. He chooses
a random integer k and sends the tuple T = (kB, m + k(aB)) (notice how
Anita’s public key aB is used here).

Anita now knows T and a, her private key. She then multiplies the
first element of T with a and subtracts this from the second element of T
to obtain the message. In other words, she computes m + k(aB) − a(kB),
which equals m.

5.3.3 Security of ElGamal

For an appropriately chosen Gq, the cipher is believed to be secure against a
chosen plaintext attack. However, as described, it is susceptible to a chosen
ciphertext attack, since given a message m, encoded as (c1, c2), we can easily
calculate (c1, κc2), which is the message κm.

There are further implementation weaknesses. In practice, in order to
increase efficiency, the generator g used may be of order much less than p.
If this is the case, and the message m being encrypted is not in the group
generated by g, < g >, an interception attack is possible. This is because
under such circumstances ElGamal is transformed from a probabilistic to a
deterministic encryption scheme.
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6 Case Studies

6.1 Secure Shell (SSH)

Secure Shell is a common network tool that enableds a user to establish a
secure link from a local machine to a remote server. It uses asymmetric
public-key methods for authentication of the user and symmetric cryptog-
raphy for the transmission of data.

Like many good things today, SSH was pioneered in Finland. The first
version was originally developed by Tatu Ylönen in 1995. At the time he
worked as a research associate at the Helsinki University of Technology.

The original implementation was released as a freeware in July 1995. In
just under six months the SSH user base had grown to 20,000 users in fifty
different countries. Towards the end of the year, Ylönen went to establish a
firm of the same name (which distributes these days a proprietary version
of SSH). SSH1 is already slightly outdated in term of security levels and has
since been replaced by the much more secure SSH2. Some algorithms that
SSH2 can use are AES, Arcfour, Blowfish, DES, 3-DES, IDEA, and RSA.

Nowadays there exists numerous different SSH-softwares in the market. To
make all these different vendors work together, the Internet Engineering
Task Force (IETF) has created a standard for SSH to which everyone has
agreed to conform to. The SSH-client program is now a standard tool in
any Linux distribution. The binary can be called with ssh command. For
Windows operating systems a popular freeware program is the PuTTY.

Figure 15: Example of a Secure Shell login session.
http://www.fluxbbs.org/images/linux-ssh.eps

6.2 Vigenere applet

We have written a small applet that simulates an algorithm similar to the
well know Vigenere Cipher. Originally, the vigenere cipher took a message
plaintext with lower case characters only, that is the 26 characters of the
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english alphabet. It also took a key word which was used to encrypt the
plaintext. At the time, mid sixteenth century, this cipher was considered
quite hard to break. Nevertheless it has been broken many times throughout
history and clearly today presents no security at all infront of computers.

Our algorithm takes a plaintext string and a key string and recursively
adds the ASCII value of the i-th character of the key to the i-th character
of the plaintext (modulo so that the ciphertext is still in the ASCII ta-
ble!). If the algorithm runs out of key string characters, it recurses from
the beggining of the key. For example the string ”abc” with the key ”bc”
becomes ”bdd” in the vigenere cipher, whereas, in a similar manner, it be-
comes ”EGG” in our applet, as we have included more values of the ASCII
table (such as upper-case, numbers and special chars).

Here is an image of the applet in action

You can find the applet at
www.doc.ic.ac.uk/˜jik04/crypto

under casestudies, but also the actual code for the applet at
www.doc.ic.ac.uk/˜jik04/crypto/vigenere applet/vg.java.
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7 Glossary

Asymmetric-Key Cryptography Is basically public-key cryptography.

Block Cipher This is a chiper that splits the plaintext into blocks (of say
32-bits for example) and then encrypts each block by itself, or uses
some algorithm that makes the encryption of block i dependant on
blocks i-1 or something equivalent (See implementation of ECB, CBC,
OFB, CFB, CTR).

Cipher This is the algorithm the encrypts/decrypts plaintext/ciphertext.

CipherText This is the result of encrypting plaintext.

Discrete Logarithm Problem Given an element of a group, find the
power n of the generator g such that g to power n is our element.

Elliptic Curve Cryptography Is based on the group E rather than Z
∗

p,
and proves to provide a harder to solved Discrete logarithm Problem.

Feistel Network A cipher developed by IBM. Many ciphers were based on
this scheme. Notably, so was the Data Encryption Standard (DES ).

Integer Factorisation Problem Given a large number calculate its prime
factors.

Key Is the heart of the encryption algorithm as it provides the neccessary
level of secrecy. Keys can be any length, but nowadays it is recom-
mended that they are over 128-bits so that they are harder to crack.

Key Distribution Problem This is related to symmetric ciphers. In this,
one must give the key to the other person in secret, as the key is the
only thing that lies between the encrypted and the decrypted text.

Key Scheduling Algorithm Is used in ciphers where the encryption/decryption
is done in rounds. It simply splits the key in such a way so that it is
usable in the rounds.

Monoalphabetic substitution cipher Here the key relies on one alpha-
betic character, an example is the Ceasar cipher.

One time letter pad (OTLP) Is a cipher developed in 1917 that uses
a randomly generated key which is the same size as the plaintext.
This method is unbreakable if the key is truly random, but the Key
Distribution Problem still remains.

Plaintext The readable unencrypted text.

Public Key Cryptography The user here has two keys, one of which he
keeps private and the other he makes available to his friends or anyone.
For the encryption of plaintext, one uses the public key. Whereas for
the initial user to decrypt ciphertext which was encrypted using his
public key, he has to use his private key. Public key cryptography
solves the Key Distribution Problem.
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Polyalphabetic substitution cipher Here the key relies on more than
one characters, an example is the Vigenere cipher.

Symmetric-Key Cryptography Here, the encryption key is the decryp-
tion key (or they are related in some way). This implies that one
needs to be carefull when distributing the key (See Key Distribution
Problem.).
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