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Abstract

We discuss the development of a special class of complex systems, brain imag-
ing meta-analysis systems and the role of databases in brain research. We
further present the design and development of a subsystem, the workflow man-
agement system, following an evolutionary process with systematized reuse of
database concepts to provide for cost-efficient development. The development
effort includes a formal description and a graphical language for workflows.
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Chapter 1

Introduction

This thesis addresses the problem of constructing complex systems to meet
the demands of:

e Reuse of design, components and subsystems
e Specification of an evolutionary development process

e Providing functionality to manage complexity

More specifically, we focus on constructing systems for management and
analysis of brain imaging experiments. The 3D raster volumes typically deliv-
ered by brain imaging devices are large, approximately half a million voxels
of real valued intensity values per scan. One brain imaging study may consist
of more than 1000 scans of brains and it is estimated that 1500 new studies
are performed each year. Moreover, the analysis of data is rather complex,
as described in section 2.3.2 and also heterogeneously performed at different
laboratories and techniques are still evolving.

As the number of published studies steadily increase, the need to be able
to compare results from related studies becomes more and more pressing. But
how can one compare results obtained from different laboratories using differ-
ent experimental designs, imaging devices, analysis methods and file formats?
A natural solution is to structure and collect them in a database, in a format
as close to the source as possible.

The homogeneously processed raster data, together with careful experi-
ment and processing descriptions will open up new possibilities for brain imag-
ing research in allowing for meaningful meta-analysis i.e. inter-experimental
analysis of data. We will here show how to pave the way for a new approach
to studying the human brain, by a piecemeal growth of an environment suc-
cessively more capable of aiding the single researcher in formulating new hy-
potheses about how the human brain functions.
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1.1 Overview of the Thesis

Chapter 2 will introduce the reader to the field of brain imaging: basic facts
about the brain, how functional experiments are designed and analyzed, and
also how databases are used for meta-analysis of brain imaging studies. The
next chapter deals with strategies for development of complex systems, such as
brain imaging meta-analysis systems and aims at combining an evolutionary
viewpoint on software engineering with reuse-oriented concepts, especially me-
diator technology. Chapters 4 and 6 deal with the theory and implementation
of a workflow management system that is responsible for automating process-
ing of experimental data and storing information about how the process was
conducted in order to be able to compare results after the analysis. Chapter 5
introduces some tools used during developement of the meta-analysis system,
most prominently the mediator system AMOS II, but also a rasterdata man-
agement system called RasDaMan and an elegant framework for development
of drawing applications with semantical properties, named JHotDraw, used to
create a graphical language for the workflow management system.

1.2 Brain Research Projects and Background

The work described in this thesis has been performed during three different
projects.

e FCHBD: The European Computerized Human Brain Database aims at
collecting functional and anatomical brain imaging data in processed
format [RZ96] [Fre99] [FRS99].

e BINS: The Brain Imaging Neuroinformatics System collects and pro-
cesses raw functional imaging data [FS01] [FSRO1].

e NeuroGenerator: The NeuroGenerator project aims at collecting, pro-
cessing and distributing processed databases of functional brain imaging

studies [R*02b] [FS01] [FSRO1].

Compared to the, in the brain imaging community, well known BrainMap
database [LFDM94]|, consisting of centre-of-gravity coordinates for activations
reported in literature, the ECHBD system contains full raster volumes of result
images and visual query functionality allowing a more quantitative approach
to analysis of result images.

However, the heterogeneity of result data obtained at different laboratories
prompted the construction of a database for raw data, to allow for a uniform
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processing of all data sets and make end results more comparable. The fM-
RIDC database [H*01] also collects raw data, but has not yet advertised any
processing enviroment for obtaining homogeneous result data and at present
merely allows scientists to request raw data to be sent on CDs.

The BINS and NeuroGenerator systems are presently collecting raw data
from partners in Europe and Japan and will offer Internet access to homo-
geneously processed result data as well as allow partners and contributors to
download and/or request via mail whole databases of processed data and soft-
ware. The name NeuroGenerator indicates a database generator, with access
to super-computer facilities at the centre for parallel computers (PDC) at the
Royal Institute of Technology in Stockholm.

In the sequence of architectures as presented in Fig. 3.12 we are currently
moving from architecture (c) to (d), by interfacing the RasDaMan system
described in section 5.2 to the AMOS II mediator system.

The graphical user interface to the workflow system described in section
6.5 is in a very early stage and the interfacing to the workflow database (WF-
Server) is rather straightforward but will provide increased interaction with
the workflow and clear and lucid feedback about the status of the workflow.

1.3 Scientific Contribution

The scientific contributions of this thesis is in methodology for development
of complex systems for meta-analysis of brain imaging data. The focus is on
a strictly organized reuse of concepts and components, described in chapter
3 building on [FS01] [FSRO1], in which my contribution is roughly half and
a third, respectively. The methodolgy is exemplified in chapters 4 and 6 by
the development of a workflow management system for brain imaging meta-
analysis, where the rapid development process resulting from reuse of database
concepts such as object-orientation, active rules and transaction management
led to a cost-effective development. The complexity of the task of construction
of the meta-analysis system for brain imaging data needs a strictly defined
methodology for its successful outcome, as does all system construction of
complex systems. The main contribution of this thesis is in the systematiza-
tion of reuse and evolutionary development to form a methodology applicable
in a decentralized organization.

Properly extended and modified, it should also prove valuable and produc-
tive in a broder context than the development of systems for research, such
as information system development, or any type of system that is complex
enough, being constructed in organizations that are to some degree decentral-
ized.
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These results were obtained, first during the work on the ECHBD system,
presented in [Fre99] and [FRS99] of which my contribution was 100% and
roughly a third, respectively, and then during the work on the BINS and Neu-
roGenerator systems, accounted for in [FS01] [FSR01] and also in [RSL*01]
where my contribution is roughly 10%

Other contributions, not previously described, are in the development of a
workflow system for research purposes, where earlier projects such as the work-
flow system described in [AT98] building on the ZOO environment [ILGP96]
and the system described in [CT94b] have pointed out the value of reuse of
database concepts for scientific workflows, an approach that is carried over
to this system. However, they fail to mention the special requirements of a
workflow management system for research purposes. Obviously, the ability
to trace the lineage of processsed data is of fundamental importance if any
subsequent comparisons of data are to be made, something pointed out and
formalized in the Petri Net framework of section 4.4. Other requirements are
pointed out in section 4.4.3 and the implementations are described in chapter
6.



Chapter 2

Databases for Brain Research

This chapter will start by introducing some basic terminology and known
facts about the brain. We then proceed to discuss the role of databases in
brain research and introduce the important concept of meta-analysis, the key
purpose of using large scale databases in brain research.

2.1 The Human Brain - Concepts, Terminol-
ogy and Basic Facts

Introductions to the field of brain research can be found in [KSJ99] (neuro-
science in general), [FFF*97] (brain imaging), [Rol93] (neurobiological foun-
dations of brain imaging). The physiological background to brain imaging is
outlined in chapter 2 of [Led01]. An ambitious attempt at systematizing neu-
ral science, focusing on general principles for neuronal systems can be found
in [She98], while [CS96] deals with computational aspects of the brain.

The human brain is an organ with average volume 1400cm® and weight
1300 — 1400g. Its surface, the cerebral cortex, appears wrinkled with bulges
called gyri and furrows called sulci. It is believed that this 1.5 — 3.5 mm
thick, folded sheet of highly packed neurons is responsible for much of the
computational processes the mind is capable of, and it is also the part of the
brain that is more developed in humans than in other species. There are about
10! neurons in the central nervous system (the brain, the cerebellum and the
brain stem), of which the brain consists of approximately 2 x 10'° neurons
and each neuron makes on average about 10000 synapses (connections) onto
other neurons.

To describe locations in the brain, we will use the following terminology
(Fig 2.1):

e rostral or anterior: forwards, towards the face

5
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e caudal or posterior: backwards, towards the neck
e dorsal or superior: upwards
e ventral or inferior: downwards

For displaying images in 2D, we may want to section the brain, in one of
three possible ways, by fixing one of the three (Cartesian) coordinates accord-
ing to Fig. 2.1:

e coronal: fix the z coordinate
e horizontal: fix the y coordinate

e sagittal: fix the x coordinate

dorsal/superior

anterior/rostral

ventral/inferior

Figure 2.1. Directions and the three slicing planes

Further, the brain is divided into two morphologically relatively symmet-
rical halves, hemispheres, connected in the mid-sagittal plane through the
corpus callosum (Fig. 2.2).

Some of the prominent landmarks and cortical areas are depicted in Fig.
2.3. First of all, the brain is divided into lobes: frontal, parietal, temporal
(left and right) and occipital. The central sulcus marks the border between
the frontal and parietal lobes. The gyrus posterior to the central sulcus, the
postcentral gyrus, is the primary sensory cortex, while the gyrus anterior to
the central sulcus, the precentral gyrus, is the primary motor cortex. In the
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Corpus Callossum

Thalamus

Cerebellum

Figure 2.2. A sagittal slice at the midline of the brain, where the corpus
callosum connects the two hemispheres

occipital lobe one finds the visual cortex and inferior to the occipital lobe is
the cerebellum.

All of these areas and landmarks, except three, are anatomically defined.
The motor, sensory and visual cortex are believed to be conglomerates of
functionally homogeneous areas, cortical fields. Other examples of cortical
fields are located within the olfactory cortex, processing smell, or the in the
hippocampus, believed to play an important role in the forming of new memo-
ries. Damage to the hippocampus may lead to so-called anterograde amnesia,’
where the ability to form new memories is lost.

Other than the cortical field hypothesis, there has been postulated a num-
ber of potential governing hypotheses regarding the way the brain represents
information.

An example is the so-called “Grandmother cell hypothesis”, stating that
each object perceived by the brain is retained in one specific neuron (thus,
for example, your grandmother would be kept in a single neuron). Despite
the obvious problems of this theory, perhaps most notably the number of cells
needed for long-term storage, there are signs that this type of coding is actually
employed in certain regions of the brain. What can be said with certainty
about this problem is that it is likely that different coding mechanisms are

Lwhich anybody who has seen the film Memento(2000) by Christopher Nolan will rec-
ognize
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SensoryCortex

Motor Cortex

Parietal Lobe

Frontal Lobe Visual Cortex

Temporal Lobe

Figure 2.3. The cortical lobes and some functional areas

employed in different parts of the brain. Examples of this can be found in
section 2.1.1.

2.1.1 The Brain as a Computational Network

Two closely related problems in brain research is how the brain represents and
processes information. That representation and processing are closely related
can be seen from a simple example from the visual cortex:

Consider the visual cortex, sub-divided into a number of areas [FvE91]
such as V1, V2, etc. The classic Hubel and Wiesel studies [HW68] showed
that in primate primary visual cortex (a.k.a. V1), neurons tend to respond
strongly to specifically oriented edges in visual input. Further, neurons re-
sponding to similar orientations tend to be spatially close, organized in verti-
cal columns. This representation is often referred to as orientation preference
of V1 cells. Other examples of cerebral representation are topographical map-
ping of somatosensory areas (sensory input from neighbouring points on the
skin tend to give responses in neighbouring neurons in somatosensory cortex)
[DKH'02], frequency coding for hearing and the combinatorial odor mapping
of the olfactory system [MS00] believed to be the basis for smell processing in
mammals.

The orientation preference coding in V1 is just one example of several
specialized regions for processing of visual input. It is believed that vision
is implemented in the brain as several processing streams, together forming
an integral conception of the surrounding world in the mind. Felleman and
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van Essen demonstrate such processing streams in [FvE91], where the general
idea is that visual input enters through the retina, is sent to a sort of “relay
station”, the thalamus, and then through different routes in the purposefully
sub-divided visual cortex (e.g. V1, V2,...). Regions appearing later in the
processing streams generally perform more complex and specialized functions,
such as segregation of overlapping shapes [LAG*02]. Examples of visual pro-
cessing streams are depicted in Fig. 2.4. This conforms to the neural network
concept of a feed-forward net, which is a rather over-simplified model of the
extremely complex recurrent visual processing in the brain.

Thalamus

Dorsal stream
V1-V2-2V3-+V5-V6

Ventral stream
V1-V2-+V4

‘_

Retinal input

Figure 2.4. Global networks: the so-called “what” (ventral) and “where”
(dorsal) visual processing streams

From the visual processing streams described above, it would seem nat-
ural to think of neural processing as occurring within distributed networks.
Our visual conception of the surrounding world may thus be formed by inter-
connecting several specialized neural sub-systems, or cortical fields. We refer
to these functional networks as global networks to emphasize that their con-
stituents are also networks, local networks. This idea is put forth in [She98],
where the editor stresses the importance of integrating knowledge from the
many levels of neuroscientific work being done.

The local networks, then, consist of neurons, axons and dendrites. A sim-
plified and crude description of the function of a neuron is that it sums up
input from incoming dendrites and, if the input exceeds a threshold, emits a
so-called “spike”, through the outgoing axon. An interface from axon to den-
drite is called a synapse, where pre-synaptic electrical signals are converted
to chemical molecules which diffuse to a post-synaptic site where depolariza-
tion or hyperpolarization occur, which will have either an excitatory or an
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inhibitory effect on the target neuron. In reality, synapses are extremely com-
plicated relay junctions, where among other things, long-term memories may
be formed through repeated stimulation, and thereby strengthening, of this
connection [SK91].

Local networks are formed by combining excitatory and inhibitory synaptic
actions in structures that to some degree can be approximated by simple
boolean circuits, see Fig. 2.5. In [She98] it is shown how local circuits similar
to that in Fig. 2.5 implement neural functions like direction selectivity in the
retina and rhythm generation in the motor cortex.

Hé@ eQ—

ﬂ@ §Q_

Figure 2.5. A simple local circuit. Note the effect of the inhibitory inter-
neuron (i), regulating excitation in the upper right excitatory (e) neuron.

In essence, then, we have found that the brain is made up of networks on
several levels?. As we will see next, contemporary brain imaging techniques
are too coarse in spatial resolution to be used for mapping local networks, but
may reveal features of the global networks.

2.2 Studying Brain Function Using Imaging
Techniques

Brain imaging research focuses on improving our understanding of brain func-
tion, by measuring changes in physiological variables during experiments where
the subject performs a set of pre-specified tasks.

We focus on the function of the normal (healthy) human brain, which is
often studied using one of the following broadly defined methods:

o Invasive methods: These methods are quantitative and generally more
accurate than e.g. PET and fMRI, but can only be performed on animals
and the transfer of results is often non-trivial. Examples are measure-
ments on electric current and optical imaging.

2we could go on to describe intra-cellular mechanisms, or synaptic function, but that is
not the focus here
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e Studying lesion/impairment effects: Either a study of an impaired hu-
man brain, or of a lesioned (in general non-human) brain, utilizing a
contrapositive proof strategy. Lesion studies on animals require transfer
of results from non-human to human brain.

e Non-invasive imaging techniques: Directly observing changes of a brain
activation dependent variable in human or non-human brains during
pre-specified external conditions. A typical deficiency of this class of
methods are inherent limitations in precision of contemporary imaging
techniques.

e Meta-analysis: Can be defined as inter-experimental analysis of data,
for example testing reproducibility of activations across similar studies.

The data dealt with in the BINS and NeuroGenerator projects are mainly
the following:

e (Cytoarchitecture: microstructural data from post-mortem brains con-
taining quantitative measurements of the density of nerve cells.

e Anatomical data: a 3D MRI [SB92] scan of each subject’s brain
o Functional data:

— Positron Emission Tomography (PET): a method by which positron
emitting radioactive isotopes are incorporated into tracer molecules
which are injected into the blood stream. The PET scanner then
measures the concentration of the tracer molecules reaching the
brain. For a more comprehensive description, see [Rol93]. With
PET, one can measure e.g. the regional cerebral blood flow (rCBF),
which, since the depolarisation of neurons is related to the rCBF,
can be used to locate neuronal activity changes in the brain.

— functional Magnetic Resonance Imaging (fMRI): fMRI is a method
by which the radio signals from nuclear spins are recorded at Lar-
mor frequency. By changing the magnetic field gradients around
the brain, one can get 3D images of the spin signals from protons
and other nuclei. When neurons are working hard, the deoxyhe-
moglobin concentration decreases locally and thus reduces distur-
bances of the proton signals. The MR signal is stronger from such
regions. For a full description of the principles of fMRI, see [MB99].

In the case of fMRI and PET, there is currently a spatial resolution of
approximately one millimeter. 1mm? cortical tissue contains approximately
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44000 neurons. The restrictions this limitation of resolution puts on brain
imaging research are of course severe. For example, we will not be able to
observe the inner workings of local networks as described in section 2.1.1 with
these methods.

Other than the spatial resolution of imaging methods, there are a number
of difficult problems for brain imaging resarch to deal with, some of which
may be dealt with using databases:

o Inter-individual structural variability: To be able to compare results ob-
tained from different brains, a transformation to a standard anatomical
format is applied for measurements on each brain, see section 2.3.2.
Thus, inter-individual structural variance should be small compared
to the voxel-size used for subsequent statistical analysis. The inter-
individual structural variance can rather easily be estimated using a
database of anatomical data.

e Neural representation: There are many indications [Rol02] supporting
a cortical field hypothesis, that neighbouring neurons tend to work to-
gether and thus become “active” simultaneously. But what if this is not
true in general? How could one ever disprove the cortical field hypoth-
esis? It is difficult to envisage for example a statistical test which could
be used to assess this hypothesis.

o [nter-individual homogeneity of functional organization: Even if brains
appear similar in structure, it may still be the case that some of their
functions are differently implemented [Str02]. It is not impossible to
imagine functions of the brain that could be encoded radically differently
in different humans, such as the ability to perform arithmetic etc.

e Bloodfiow (PET) or blood oxygenation (fMRI) as indicator of brain ac-
tiwity: In chapter 2 of [Led01], it is argued that adherence between the
commonly used activation indicator variables for PET and fMRI and ac-
tual brain activation is stable and rather stable, respectively. However,
in the case of fMRI, the chain between measured variable and activa-
tion is rather lenghty and some concerns about linearity, assumed in
subsequent statistical analysis, can be raised.

2.3 Experimental Design and Data Processing
in Brain Imaging

This section will give a brief description of the structure of imaging data intro-
duced in section 2.2. We will focus on PET experiments because the analysis
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methods have a higher degree of maturity. One of the main differences be-
tween PET and fMRI studies are that measurements in fMRI are collected
much faster and thus we have also a temporal dimension to address in the
analysis. More specifically, the assumption that images obtained at two dif-
ferent, but neighboring points of time are independent, is not valid anymore.

2.3.1 Baseline PET Experimental Designs

The principle behind baseline experimental designs is depicted in Fig. 2.6
and summarized in table 2.3.1. The activity in the brain is measured under a
relatively long period of time (approx. 1 minute) and then averaged to account
for effects from variability of brain activity and intensity of radioactivity. After
a pause, during which the brain returns to rest state, a new image is registered,
while a new condition is imposed on the brain.

PR T

I 1
subject 1 subject 2 subject 3

> scans

Figure 2.6. An example of a baseline experimental setup for PET imaging,
with I =3, J=3, K =2

An experiment consists of I subjects, subject to J experimental conditions,
which are each presented to the subject and repeated K times (repetitions).
Additionally, each subject is scanned once by an MR scanner to obtain an
anatomical image. During a baseline setup of experimental conditions, as in
Fig. 2.6 one commonly measures change in bloodflow (as described in section
2.2) which results in N = IJK functional images. Below, we also consider
the I anatomical images and one standard brain.

One now needs to decide upon a set of explanatory variables,

V ={v;,ve,...,vp}, as in classical hypothesis testing. Explanatory variables
can be a partitioning of conditions, subjects, or some measured covariate (such
as response times), or any function thereof. In the experiment of Fig. 2.6 we
decide to simply use conditions as explanatory variables, together with the
mean of activation, u. Thus: V = {u, ¢, co, rest}.

To summarize the layout of the experiment, we now relate /N images to our
M explanatory variables in a design matrix. The design matrix X correspond-
ing to the experiment of Fig. 2.6 will, with the aforementioned explanatory
variables, look like:
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Experiment “ExperimentName”

Description ~ “...”
Subjects S1, S2,+ . ,ST
Conditions ¢y, ¢g, ..., CJ
Repetitions 1,..., K

I anatomical images

N = IJK functional images

One design matrix (NxM) relates N functional
images to M explanatory variables.

Finally, n contrast vectors (Mx1) describe
null-hypotheses to be assessed (see below)

Table 2.1. Summary of experimental design and statistical modelling

(100 1)
1100
1010
1001
1010
1100
1100
1101
X=|1010
1001
1010
1001
1100
1100
1001
1010
\101 0

The usual method of analysis is to employ, for each voxel value y, a linear
model [Gra76] as suggested in [FFF197]:

y=Xb+e

We estimate [ by the method of least squares:

B=(X"X)"X"Y
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We here employ a generalized inverse of a matrix A, denoted A~, for which
it holds that AA~A = A. We may now wish to test a hypothesis, H,, involving
the contrast between explanatory variables, defined by a contrast vector, c.

HO:CTB—CTB:O

For example, to test the difference between condition 1 and rest, we define:

The hypothesis Hy can be assessed if we assume e € N (0, o) by comparing

'3 —c'p here 52 ele
where 6° = —————
V62T (XTX) ¢’ N — rank(X)

with a Student-t distribution [Gra76]. Depending on the outcome of the
comparison, we either accept or reject the hypothesis. The key assumption
thus made is that all measurements on a voxel can be regarded as uncorre-
lated with common variance, a simplification that is somewhat justified by the
relatively long intervals between measurements.

Another problem, subsequent to the univariate hypothesis testing described
above, is how to set the threshold for rejection of the null-hypothesis.

A common threshold used is to, for each voxel, reject the null-hypothesis
at a 0.05 significance level, i.e. the probability of falsely rejecting H, is at
most 5%. But, if testing e.g. 500000 voxels, we will on average falsely reject
H, for as many as 25000 voxels.

Moreover, the voxels can not be regarded as uncorrelated, for many rea-
sons, and the standard Bonferroni correction of the significance level to
0.05/500000 will most certainly be too restrictive. One such cause of correla-
tions is that, according to the cortical field hypothesis, the intensity values of
neighboring voxels within a cortical field should be correlated within a scan
where this cortical field is involved in the neural computation.

To adjust for these correlations we may choose to follow [Led00], [FFF*+97]
or [GLNO1], a process described below in text and figures as “clustering”.
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2.3.2 Image Processing: From Raw Image Data to Sta-
tistical Cluster Images
The images scanned according to section 2.3.1 are raw, unprocessed data3.

We may now wish to statistically analyze the data in the manner outlined in
section 2.3.1, a process containing several steps, Fig. 2.7.

¥

I
I
v
v
v
v
v
[
PETImage
Transform. DefField Warp (transfg GLM = PETI"_‘E’-:_’E —| Clustering
2 (t-statistic)
{10 {240} {1}

"
! | TemporaryDatabase

=
=

I
| ExperimentDatabase

Figure 2.7. The PET processing chain for a single experiment with 10 sub-
jects, 3 conditions and 8 repetitions. Numbers in parentheses are number of
instances

The very much hypothetical example of Fig. 2.7 is made up of ten subjects,
three conditions and eight repetitions of each condition. That is, each subject
is scanned 3 X 8 = 24 times in the PET scanner and the anatomy of the
brain is scanned once in an MR scanner. In total for this experiment, we get
10 x 24 = 240 PET images and 10 MR images. We only test the hypothesis
specified by one contrast. Below, we will briefly review a typical statistical
analysis of this experiment, focusing on conceptual stages of the analysis,
referring to the data flow in Fig. 2.7 as a processing chain.

o Segmentation: The scanned anatomical images contain portions depict-
ing soft tissue and bone, which we do not want to influence subsequent
steps in the processing chain. A step where these portions are removed
from the image can be either manual or based on automatic image anal-
ysis. The automatic algorithm described in [UL02] used in the Neuro-
Generator/BINS projects takes approximately 45 minutes to complete
using a single node of the parallel computer, for each anatomical image.

e Transformation: To be able to compare images from different subjects,
we compute a transformation from each segmented anatomical image
into the standard brain, a median brain chosen from a population of

3Except from a reconstruction stage performed within the scanner
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young males. A number of different image processing algorithms exist
for this purpose. A typical requirement on this transformation is that
it should preserve topological relations in the image. We currently uti-
lize the AIR package [WCMO2]| for this purpose, which takes roughly 5
minutes per segmented anatomical image to complete.

o Warping: This stage of the processing chain simply applies the previ-
ously computed transformation to each functional image. Completes in
rouoghly half a minute per functional image.

e General Linear Model (GLM): This is the procedure described in section
2.3.1, to perform a voxel-wise least-squares estimation and subsequent
hypothesis testing. The end-result is an image of uni-variate Student
t-distributed voxels. This step is performed once per experiment and
the simple matrix operations takes less than a minute to perform.

e Clustering: To account for correlations within the image, a method of
thresholding voxel values is employed. The basis for this algorithm is
either theoretical results obtained from random field theory [AdI91] as
in [FFF*97], or based on distribution-free tests [Hol96], Monte-Carlo
simulations [Led00] or the false-discovery rate [BH95] [GLNO1]. In the
BINS/NeuroGenerator projects we have initially chosen to use the com-
putationally intensive Monte-Carlo method, running 4500 simulations,
lasting for seven hours. If several contrasts are specified, the results of
simulations can be reused.

These are the main conceptual steps of the processing chain. When actu-
ally executed, some further steps are neccessary. More details on executing
the processing chain and its input and output data can be found in section
6.1.

2.4 Databases for Brain Imaging Meta-analysis

Given the rather complex experimental designs and analysis depicted in previ-
ous sections, how can the brain imaging community be helped by databases?
Which problems can be addressed by using databases, and which can not?

2.4.1 Problem Solving Environments

One of the main ideas behind BINS, NeuroGenerator and, before that, ECHBD
is data sharing between research groups and also the sharing of a common piece
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of software for accessing the data. This, in turn, leads to a form of distributed
collaboration between groups and, hopefully, higher productivity.

The data-centric system for brain imaging research we thus seek shares a
number of characteristics with Problem Solving Environments (PSEs) [WRL00]
[THF*97] [PMHJ98] [GHR94] [RB96].

In [WRL*00], key aspects of a PSE are identified as:

e intelligence: to ensure the PSE is easy to use and computationally effi-
cient

e collaborative tools: to allow effective collaborative work on complex prob-
lems

e visualization: to support data analysis and navigation, as well as provide
visual support for runtime monitoring and steering of applications.

For users working with brain image meta-analysis it is important to be
able to:

o Access large sets of well-structured raw data: The data is structured in a
common format with descriptive data, organized according to a database
schema.

e Access tools to process data into a homogeneous statistical format: This is
the processing chain described in section 2.3.2. The fact that all data are
homogeneously processed will make end-results comparable to a much
higher degree than if processing had occurred at different laboratories,
using different implementations of various algorithms.

e Monitor processing of data: The workflow system described in chapter 6
enables monitoring of data processing as well as automatic paralleliza-
tion on a supercomputer.

e Visualize image data and corresponding descriptive data.
o Add own algorithms to the present set of state-of-the-art processing tools.

e Access tools for post-processing: The ECHBD project [RZ96] [FRS99]
[Fre99] for example, offers visual search and boolean operators on cluster
images and cytoarchitectural maps. Since all users have access to the
same functionality and the same data, all post-processing results can be
reproduced at all user sites.
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e Contribute to the set of open-source post-processing tools: The Neuro-
Generator desktop, currently under development, will offer an open ar-
chitecture [SF02] to encourage users to write their own applications for
the processed data.

To facilitate development of these solutions we have in this work used the
following key technologies:

e (Object-oriented database technology: To model the complex data struc-
tures and computational processes on data, object-orientation is needed.
Because efficient management of large sets of data is important, we use
the data-centric approach of database technology.

o Mediator technology: As we will see in section 3.2.2, the mediator ap-
proach provides an efficient evolutionary path for system architecture
when data sets grow and system requirements change.

e Active database technology: The management of image processing can
benefit from a state-transition paradigm as offered by for example Event-
Condition-Action (ECA) rules, as will be presented in chapter 6.

The experience gathered from development of the NeuroGenerator/BINS
environment shows that re-use of known concepts from database technology as
listed above can be utilized in a system development process characterized by
rapid prototyping and iterative system refinement. Section 3.4.1 will display
the evolutionary process from a use-case perspective, while chapter 6 will
describe the development of a workflow system that manages the previously
defined processing chain.

2.4.2 Meta-analysis and Data Mining

Meta-analysis can be defined as analysis across sets of results originating from
more than one experimental study. It is generally associated with testing a
hypothesis (e.g. consistency of activation patterns), while data mining on the
other hand can be used to perform more assumption-free searches for patterns,
such as finding hidden variables in studies by use of correlations.

Early attempts at meta-analysis within the field of brain imaging research
were often made by carefully reviewing relevant literature, grouping studies
based on their experimental design (conditions used, scanners involved and
contrasts computed). A direct comparison of published results often show
inconsistencies in findings. Reasons for this can be several:

e Different scanner types and/or settings
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e Different image processing algorithms and/or implementations

e Different parameter settings in image processing algorithms

o Different standard brains

e Hidden variables in experimental designs, not documented in literature

e Systematic inter-subject differences in morphological structure and func-
tional brain activation

e Incomplete understanding of dependency between scanner-measured neu-
ral variable and neural activity

The BINS and NeuroGenerator projects aim to overcome many of these
issues by carefully documenting experimental designs and using consistent
methods for processing image data.

Examples of meta-analysis and data mining on brain images are appearing
in the literature, for example in schizophrenia studies [W196] [HM92] [W*00]
[ZPHJ00], reproducibility of brain activation [CSAK99] [PLGL00] [NH02] or
connectivity [STO1].

2.4.3 Brain Imaging Meta-analysis Database Systems

Over the past decade there have been numerous attempts at creating databases
for management of brain imaging experiment [LFDM94] [RZ96] [C*94a] [LDBo|
[HDJM*00] [A196] [D*97] [CKKE97] [MDH99] [HT01] [RSL*01]. A detailed
description of all projects and databases is clearly beyond the scope of this
thesis. This section will instead highlight some important features of database
systems for brain imaging meta-analysis.

The most basic need suggesting the use of databases is that of comparing
results across laboratories, a goal which can to some degree be fulfilled by a
simple file-sharing utility. However, the ultimate goal will always be to obtain
a better understanding of the function of the brain. To support this goal, the
database should offer more than purely experimental image data, so that the
user of the system may obtain more information from the collection of exper-
imental results than each experiment in isolation. To be able to extract this
information from a database available of experimental results, the database
system should offer tools for:

e Data access: How should users access the database? For smaller datasets,
such as those basing activation data on centre of gravity coordinates,
bandwidth is not a problem, but when accessing several full 3D vol-
umes over the Internet, bandwidth restrictions may cause a problem.
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Mirror-sites and distributed systems may help to overcome this problem
by introducing redundancy, perhaps in the form of multicast sessions
[FJL*97]. In the NeuroGenerator project, raw data suppliers will be
offered whole processed databases for download or sent by CD, DVD,
tape etc.

Further issues in this category are which types of data to allow access
to: e.g. processed or raw data, and which types of imaging devices to
support for in the database. Two types have been mentioned here so
far: PET and fMRI, but other types exist (EEG, MEG, Spect, ...). Raw
data collections are magnitudes of order larger than the corresponding
processed data and will put higher demands on a system for managing
and distributing them.

e Searching the space of experimental data: The body of conducted exper-
iments is huge, estimated to consist of roughly 10000 subjects and 100
TB of data and also growing with 1500 new imaging studies per year
[OfHBMO1]. Obviously, the experiments will have to be carefully cata-
logued, indexed and made searchable, both with respect to descriptive
data, meta-data, and the content of images.

One of the earliest established databases, BrainMap [LFDM94], provides
activation data in the form of centre-of-gravity coordinates, searchable in
so-called Talairach space, and linked to published papers. The ECHBD
system [RZ96] [Fre99] [FRS99] provides full rasterdata volumes in the
form of thresholded statistical images, linked with structured descrip-
tions of the experiments with pointers to literature.

e Meta-analysis, data mining and modelling: To support meta-analysis,
the data should be as homogeneous as possible with respect to acquisi-
tion and pre-processing. One may however argue that total homogeneity
of data is impossible and the best we can settle for is to provide traceabil-
ity of processed data, a lineage, as defined in section 4.4.3. To allow for
advanced usages of the database, the system needs to be powerful in ex-
pression and also extensible, because one will not know in advance what
functionality eventually will be required. An extensible query language
meets many of the requirements, but may also impose high cognitive
demands on users.

e FExchange formats: There will be many co-existing databases, of which,
some will specialize in the types of data they provide or what function-
ality they offer. Others will connect to or even be integrated with other
databases. It may thus be valuable to agree upon an exchange format for
data between databases, using XML or other meta-modelling languages.
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The ability to “check out” an experiment available from a database in
an exchangeable transfer format will certainly appeal to many users.

e Advanced visualization: Most contemporary imaging techniques deliver
3D scans of the brain and in some cases (e.g. fMRI) even time-series
of 3D scans. The database system should aid the researcher in learning
about patterns in the multi-dimensional activation space, such as the
global networks (section 2.1.1). In the Genesis projects, efforts were
made to utilize virtual reality for visualization [LDBo].

In additions to these issues, there are more mundane problems to be tackled
like data ownership, submission procedures, formats of data, data security and
guaranteeing the privacy of experimental subjects. Also a critical issue, both
mundane and advanced, is quality control of data, which will involve both
manual inspection, submission procedures and data mining efforts [NH02].

Yet another issue is the integration of multi-disciplinary data [GLMOO],
such as genome data, imaging data and direct recordings from cellular and
molecular structures, as well as how to manage a comparison with non-human
correlates [STO1].



Chapter 3

Evolutionary Strategies for
System Development

A contemporary textbook on software engineering [Som01] states that there
are four different software process models:

e Waterfall model: The classical step-wise development process from spec-
ification to operational system. Its inflexible nature and long startup
time makes it rather risky to use in practise.

e FEvolutionary development: The focus is on rapid prototyping and early
user involvement. FEither based on successive growth of the system,
or on a succession of throw-away prototypes. Basing development on
successive growth is attractive, but the evolutionary growth does not
necessarily produce the best end-result, especially for larger projects.

e Formal systems development: Development based on formal require-
ments specification.

e Reuse oriented development: Formally not so different from the water-
fall model, but focus is on finding COTS (“Commercial-Off-The-Shelf”)
components and/or develop own components. May lead to compromises
when implementing requirements.

Disregarding the formal systems development option for now, either
evolutionary- or reuse-oriented development seem to be the most attractive
options. Below, we combine the two approaches into a controlled evolutionary
process, using middleware, specifically mediator technology to provide an in-
variant interface between different evolutionary stages. The control part of the
process is designed so that end-results do not become unnecessarily complex,
to make sure the resulting process is low-cost and low-risk.

23
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We will promote the use of this reuse-oriented evolutionary system devel-
opment, process for architectural analysis of large and complex systems by way
of an example; the construction of a brain imaging meta-analysis system.

3.1 Evolutionary Software Process Models

The process of construction of large software systems can be divided into three
different but closely related classes of activities:

e Project Management: The organizational and administrative tasks that
control other activities.

e Architectural Design: The high-level design of the system: requirements
specification and use-case analysis, leading to, for example, decisions
about type of software reuse (sections 3.2.2 and 3.2).

e Software Development: Design, development and integration of compo-
nents of the system.

In [Tha02] basically the same view is expressed, but from a more organiza-
tional point of view. A software process model basically belongs to the project
management level (but remember that activity on different levels are closely
related) and focuses on how to “...determine the order of the stages involved
in software development and evolution and to establish the transition criteria
from one stage to the next.” [Boe88].

That this activity is important is evident from the oft-cited “software’s
chronic crisis” [Gib94]: many software development projects fail to meet the
schedule or do not deliver a fully satisfactory end-product. It may seem that
if an instance of a software process model is reasonable and if its stages are
followed, the end-product will be satisfactory. Either things are not that
simple, or software process models in general are not good enough.

An evolution of process models is sketched by Boehm in [Boe88|, starting
with the naive code-and-fix model, all too commonly resulting in “spaghetti
code” followed by the waterfall model, criticized for being too document-
driven. Its successor, the evolutionary development model, is generally suit-
able for vaguely defined systems, where the prototyping stages help identify
requirements, but may lead to an evolutionary “cul-de-sac”. Boehm refers to
the formal systems development model as the transform model, and argues
that its application domain may prove to be very limited, a common concern
about this model', and introduces the risk-driven spiral model as a mixture
of a waterfall and an evolutionary model, but based on a risk analysis of each

L .but today the pendulum may have swung
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stage.

More recent research tends to focus on tailor-making and parameterizing pro-
cess models for specific project instances, specifying process model patterns or
pattern systems for process models [BFG93] [GKF00], automating portions of
development [G796] or returning to a more formal approach [All197] [LKA*95].
Also of great interest is to find a framework within which one can compare,
simulate and model development processes [DI01] [BWO1].

The process model specified in section 3.4 aims at development of especially
complex systems for loosely co-operating sub-projects according to a combined
evolutionary and reuse-oriented paradigm.

3.2 Evolutionary Development Using Component-
based and Mediator Technology

This section and the next will discuss two different views on reuse-oriented
development. Reuse in software development can occur at many levels. Here,
we focus on:

e Design reuse: Guidelines for structuring solutions, such as patterns or
pattern systems.

e (Code reuse: Actual reuse of class-libraries and components.

o Systems reuse: To build a system from reuse of other sub-systems, such
as a database manager.

The type of reuse we will discuss in this section belongs to the second
and third level, i.e. components and systems reuse by use of brokers and/or
mediators, while section 3.2.2 will focus on the first and second levels.

The component object model and mediator database systems provide ba-
sically the same functionality: a homogeneous view over a heterogeneous set
of components. We briefly define the two concepts and note some of their dif-
ferences before concentrating on uses of mediator technology in evolutionary
system development.

3.2.1 Component Object Models and Mediator Tech-
nology
Component object models like CORBA [Vin97] and COM/DCOM/COM+

focus on achieving (distributed) object interoperability by adding a communi-
cation layer that all requests go through. This layer is in CORBA terminology
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called the ORB, or Object Request Broker. Redrawn from [Vin97], Fig. 3.1
captures the idea behind CORBA object communication and the role of the
ORB.

The main idea is to support reuse of compiled objects through a message-
passing architecture for inter-process communication.

Application Objects

Domain Objects Common Services

WY 7

[ Object Request Broker }
4

Object Services

Figure 3.1. The CORBA architecture

All communication between objects will thus go through the ORB, costing
some overhead in communication, but on the positive side, change in one
component’s interface will not require changing other referring components.

Comparing this approach with the common communication pattern medi-
ator, we note that mediator “is-a” broker [LLM98]. In the words of [GHJV95]
“A mediator serves as an intermediary that keeps objects in a group from
referring to each other explicitly”. This is important because of the reuse
possibilities it enables: since components do not refer explicitly to each other,
change in one of the N components does not implicate change in any of the
other N — 1 components in contrast to the worst-case, when all components
refer to each other and all N — 1 components will have to be updated.

Use of the mediator pattern is the standard way of achieving interop-
erability between non-homogeneous distributed database systems. Fig. 3.2
describes the typical architecture of a wrapper/mediator system [Wie92] for
multidatabases. Relevant parts of a query issued to the mediator is sent to
each wrapper and there rewritten according to pre-specified rules. Partial re-
sults are sent back to the mediator which combines them and presents the end
result in a unified way to applications.

Comparing the mediator of database technology with the broker concept of
distributed systems, the basic goal is the same: creating a homogeneous view
over heterogeneous components. There is, however, a major difference in the
granularity of message-passing objects. In the distributed system world, all
communicating objects go through the ORB, while database mediators only
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Figure 3.2. The wrapper/mediator approach

have to mitigate between heterogeneous datasources, such as whole database
systems.

Nevertheless, the mediator approach allows distributed databases to work
on different operative systems, using different database management systems,
different data models (relational, object-oriented, ...), different database schemas,
and so on.

As we will see from examples later on, the databases may be e.g. specialized
raster data management systems [FSRO1], ordinary filesystems, XML docu-
ments [LRKO0O0] or standard relational database management systems [FR97].

Assume that we have a system for cataloging brain imaging experiments,
stored in a relational database that can perform basic queries on descriptive
data for each experiment and point to catalogs on disk where image data is
stored, as in Fig. 3.3.

imet Filesystem

Figure 3.3. A simple database of experiments

We now face the task of creating a new system that will make us able to
query both descriptive data and image data simultaneously, for example to
phrase the query Q = “Give me all images that have a pixel value greater
than x and where all subjects involved were left-handed”.

Can we reuse the old system, and, if so, how do we add the image capa-
bilities needed? Yes, by the use of a mediator, according to Fig. 3.4.
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Figure 3.4. An image database system

This is the “don’t scrap it - wrap it” approach [RS97] for reuse of legacy
systems. We will be able to reuse the old system, but with added total sys-
tem complexity compared to a top-down solution. On the other hand, this
complexity is visible to neither end-users nor application programmers!

3.2.2 Mediator Technology in Evolutionary Develop-
ment

According to section 3.2, mediator technology provides interoperability be-
tween databases.

Let us go back to the example from the previous section of an image
database system, only now we do not already have a (legacy) system for
cataloging experimental descriptions, but we still want to develop a system
capable of answering the query Q previously defined.

Is it still a good idea to first build a system like that in Fig. 3.3 and then
move to the system of Fig. 3.47

Normally, the answer would be “no”, because of the added complexity of
the system. A better solution would be to extend the database with a new
type [SM95], capable of modelling images, by the use of type-extensions (called
datablades in Informix, cartridges in Oracle). However, these type-extensions
are generally not easy to implement and usually require a deep knowledge of
the base DBMS to be extended.

On the other hand, by using a pre-existing specialized DBMS such as the
RasDaMan DBMS (see section 5.2) for managing image data, we will benefit
from reuse of:

e Data types: The relevant data types are already present in the specialized
DBMS and can be modelled in the data model of the enclosing mediator
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system, delegating all the operations to the specialized image DBMS
subsystem.

o Query language constructs: When extending the query language of the
mediator system with primitives for image operations, the constructs
offered by the image DBMS can be reused.

o Optimuzation techniques: In the RasDaMan system, a special storage
model (see section 5.2.1) provides optimization of subimage retrieval -
the system fetches from disk only those parts of the image that are
requested. Other query optimization techniques such as query transfor-
mation, and indexing structures of the image DBMS can also be reused.

The specialized image DBMS will probably not be good at modelling ordi-
nary relational or object-oriented data, and the end-solution will by necessity
involve an integration of two separate data sources. In the ECHBD project
[Fre99] [FRS99], the responsibility of system integration was put on the ap-
plication programmer, leading to a solution with poor future extensibility.

An alternative solution is to store the images as BLOBs (Binary Large
OBjects), with no semantics attached, and interpret the data in the application
layer. However, this does not allow us to utilize query optimization of the
image part of the query, which in some cases would lead to severe restrictions
on the queries we are able to submit to the system.

So, what are the positive effects of using a solution such as that in Fig.
3.47 As stated above, we reuse all the strengths of the pre-existing specialized
DBMS instead of having to re-develop all domain technology already available.
The wrapper-mediator architecture also allows an evolutionary development
process:

e [evel one: The bare-bones system with no image functionality, corre-
sponding to Fig. 3.3.

o level two: Full functionality - the image DBMS manages image data.

o [evel three: Full functionality and good performance - the indexing and
optimization techniques of the sub-system are utilized.

Thus, as a side-effect of this developmental strategy, we can first test con-
cepts by rapidly prototyping the system of Fig. 3.3 and then gradually incre-
ment functionality and performance, thus employing an evolutionary approach
to the system development.
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3.3 Reuse-oriented Development using Patterns
and Frameworks

The object-oriented movement of the eighties is generally considered a big step
forward in reuse-oriented development. This notion of progress is tightly linked
to the advent of inheritance, i.e. hierarchical specialization of behaviour. It
can be said that object-orientation helps developers in thinking about and
structuring many real-world applications, a very important advance in soft-
ware engineering.

In [Kre92], software reuse is said to involve the following concepts:

e abstracting
e selecting

e specializing
e integrating

Of these general concepts, all were attainable before the advent of object-
orientation, although, most notably, a more powerful specialization mecha-
nism was provided for through inheritance. It can be argued, however, that
composition can provide the same functionality as inheritance; in practice at
least this author tends to use composition more frequently for specialization
of behaviour.

Pattern technology draws upon ideas from object-orientation to describe
frequently occurring problem-solution pairs, the classical “Smalltalk”-example
being that of a model-view-controller pattern for creating (graphical) user
interfaces [KP88] [GR83]. In [BMR'96] patterns are hierarchically classified
into architectural patterns (e.g. model-view-controller), design patterns (e.g.
singleton) and idioms (language-specific low-level patterns).

Below, we give two perspectives on system development using patterns,
the first being the concretization of the design reuse of patterns into actual
code reuse in the form of frameworks, the second being organization of pattern
systems.

3.3.1 Patterns and Frameworks

The invention of patterns is frequently attributed to the architect Christo-
pher Alexander [AIST77] [Ale79] who realized that in architecture there exist
recurring situations that share a problem - solution couple.

This observation proved to be as true in software engineering as it is in
architecture, and the ideas of Cristopher Alexander commingled effortlessly
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into the object-orientation movement in the eighties. The Smalltalk language
incorporated these ideas, for example in its extensive use of the model-view-
controller pattern [GR83] [KP88]. By providing a supplementary layer of
abstraction to the ideas already in swing at that time, pattern technology
could be argued to constitute the very pinnacle of object-orientation.

In the nineties the pattern concept had rooted firmly in software engineer-
ing and patterns were identified, formalized, classified [GHJV93] [Zim94] and
nicely cataloged [GHIJV95] [BMR196].

A framework can be described as in [Joh92]: “...a reusable design of a
program or a part of a program expressed as a set of classes”. For example,
the JHotDraw framework, described in section 5.3, provides an object-oriented
framework for GUI development in Java for applications involving drawing
and graphical languages. It uses several known patterns, such as model-view-
controller, composite, factory, state, strategy and prototype (see [GHIJV95]
for a description of the patterns). The use of patterns in frameworks can be
viewed as a concretization of the design reuse of patterns to actual code reuse
by incorporating design concepts in class libraries.

The components of a framework can be partitioned into two categories
[Pre95):

e Hot spots: Customizable features, such as presentation of objects on
screen in a drawing application framework, that are predicted to vary
widely between uses of the framework. Increasing the number of hot
spots allows for a more flexible reuse of the framework.

e Frozen spots: The fixed features that mark the domain of the frame-
work, such as the model-view-controller pattern of a GUI development
framework. Finding the correct frozen spots ensures a more sound reuse
of the framework and is pedagogically important for communicating the
domain area to application programmers.

Another difficult issue in developing frameworks is balancing white-box
(inheritance) against black-box reuse (composition) [FS97], where, again, the
former provides a more flexible reuse while the latter makes the framework
simpler to use.

The idea of basing the architecture of a framework on patterns has two
clear advantages:

o Patterns offer effective and flexible reuse of code: The high abstraction
level of patterns enables expeditious development, while selection and
specialization of existing patterns provide necessary flexibility.

o The theory behind the framework is easily accessible: As argued in [Joh92],
documentation in the form of patterns will effortlessly amalgamate the
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theory of using the framework with already known concepts from pattern
technology.

In 6.5, the design of a workflow monitoring tool, using the JHotDraw
framework, is described.

3.3.2 Pattern Systems and System Development

The explosion of work published on patterns during the last decade resulted
not only in single patterns and catalogs of patterns for software engineering,
but also in thinking in terms of pattern systems for solving problems. In
[BMR196] a pattern system is defined as a collection of patterns with de-
scriptions of relations between them. One may regard a pattern system as
a language for discourse on domain-specific issues, though pattern systems
are, as noted in [BMR"96], rarely complete, in the sense of, for example a
context-free language.

Examples of pattern systems can be found in various areas, such as software
architecture [CS95] [BMR*96], framework development [RJ96] and workflow
management [vd ABtHK00]. We will here concentrate on patterns for software
architecture in the domain of complex information systems, specifically brain
imaging meta-analysis systems, but the discussion should be valid for a larger
class of applications.

This section presents a selection of architectural patterns and comments on
the usage of these for information systems and, more specifically, for building
database-centric brain research environments. Experiences from working with
system-architectural issues in this field during the projects ECHBD, BINS
and NeuroGenerator, related in [Fre99] [FRS99] [FS01] [FSR01] [RSL*01], are
characterized below in terms of pattern systems.

In [BMR"96], software engineering patterns are divided into three cate-
gories (Fig. 3.5):

o Architectural patterns: These patterns affect the overall system archi-
tecture, for example the model-view-controller (MVC) pattern in an
interactive system. Expresses fundamental structures of whole systems.

e Design patterns: Solves recurring problems faced by (application) pro-
grammers, such as having one and only one instance of an object, which
is solved by the Singleton pattern. Design patterns frequently constitute
building blocks for architectural patterns.

e [dioms: Language-dependent solutions to lower-level problems that ap-
plication programmers use without bothering about how they are imple-
mented, such as maintaining a count of instances of equivalent objects.
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Figure 3.5. The model-view-controller pattern described as a hierarchy of
patterns

As can be seen in Fig. 3.5, this hierarchy of patterns help structuring
such relatively complex concepts as an MVC interactive system by recursively
describing patterns at one level in terms of subordinate patterns. In Fig 3.5 we
do not take into account all idiom-level concepts needed for implementation
of the design patterns.

Two simple patterns are briefly explained below as a reference for a discus-
sion of development of a Workflow Management System (WFMS) (see chap-
ter 4). For more information on particular design patterns, see [GHJV95] or
[BMR96].

e Composite: The Composite pattern enables a hierarchical division of
a components constituents. Using the object-oriented concept of over-
loading, a composite object can be manipulated in the same way as
the simple objects it contains. The operation performed by a compos-
ite object is merely a for-loop over the simple objects’ operations. In
Fig. 3.6 this pattern is described according to [GHJV95], an abstract
baseclass Component defines the interface common to both subclasses
Simple and Composite. A composite object consists of one or more com-
ponents, each component either simple or composite. An example usage,
later (section 6.3) described more thoroughly, is in the workflow setting.
A computational proxy represents a workflow process and can be either
simple or composite, i.e. containing other computational proxies.
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Figure 3.6. The Composite pattern

o Type-Object: Type-Object, depicted in Fig. 3.7, is a pattern that en-
ables run-time creation of classes, thus de-coupling instances from types
[Joh96]. Each type is an instance which can be created at run-time.
This pattern is useful for dynamic and adaptive behaviour of systems.
It is used in the workflow management system described in section 6.3
for providing blueprints for types of workflow processes. In combination
with the strategy pattern [GHJV95], each type of workflow process may
e.g. implement a different scheduling strategy.

Component

get Type

Type-Object

Figure 3.7. The Type-Object pattern

It is probably not meaningful to describe one design, in terms of patterns,
of a WFMS, but rather discuss designs by the aid of a system of patterns,
involving for example the Composite and Type-Object patterns. But even so,
there are ways to implement a WEMS that cannot be described only through
patterns. In section 6, we will present an implementation focusing on reuse of
database management concepts such as Event-Condition-Action (ECA) rules.
It does however utilize the composite and type-object patterns for modelling
workflow processes, so the pattern system is not as clear-cut as in Fig. 3.5.

Similar to Fig. 3.5, a system of patterns/components for development of
image meta-analysis systems may be defined as in Fig. 3.8. The three levels
depicted in Fig. 3.8 are design patterns, architectural patterns and compo-
nents, of which the latter provides a concretizatization of different subsystems,
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frameworks, API:s or systems such as DBMSs. The hierarchical composition
of the levels of the pattern system are only partially ordered, as noted above,
since the workflow system may be implemented by reuse of DBMS compo-

nents.
Medi at or Syst er_rl

|DBMS._| | VENS |

Components

f

Medi at or]

Architectural Patterns

*

[wrapper] [Composite |

TypeORect

Design Patterns

Strategy | [ Subscriber |

Figure 3.8. A component/pattern system for design of image meta-analysis
systems

3.4 An Evolutionary Process for Development
of Brain Imaging Meta-analysis Systems

The functional system architecture depicted in Fig. 3.9 can be seen as a
requirements specification of the system, from which some initial requirements
can be identified as:

e Raw data storage facility for PET and fMRI experiment data
e Processing facility to transform raw data into statistical data

e An environment for meta-analysis of experiment data
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With this picture in mind, and the background to brain imaging research
from chapter 2, how do we go about building this system?

In this section, we will present a process model sketch applicable to this
problem instance. The task of completing the process model to a more general
setting will be left as future work.

Meta-Analysis

TR E SRR N

Raw Data Storage and Processing

PET/fIMRI

e

% ::&a @ ﬁ
Statistical Data

Figure 3.9. The functional system architecture

In this process, we first define a set of pertinent use-cases [JCJv92], suc-
cessively more demanding in terms of functionality and performance of the
system. A subsequent analysis phase is used to identify reuse of three differ-
ent kinds:

e Subsystems identification
e Database extensions

e Architectural patterns
The database extensions are divided into:

e cxplorative level: some model extension aspects may be explored and
resolved entirely on the query language level [OR96]

e functional level: by addition of specialized ADTs for specific domains (e
g image data, spatial data, matrix data) the core database model may be
extended to new application domains, such as Finite Element Analysis
[OR96] and Spatial Analysis [Ouk01].
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e performance level: when the domain model has become linguistically
and functionally well integrated, efficient access paths in the form of
domain specific indices and optimization rules may be introduced to
obtain scalable query evaluation performance [SM95].

In the process we also develop a design on a lower level, in terms of:
e Schema development
e Database partitioning

The result of each analysis phase is a set of design artifacts that can be
transformed into an architecture. By prototyping these architectures, changes
will be inferred upon the original sequence of architectures. Also, a structural
analysis of the evolutionary path is necessary, to ensure that the sequence
of resulting architectural designs is “sound”, i.e. not overly complex for the
use-cases defined.

This approach may be regarded as a modification of the evolutionary devel-
opment, process for especially large and complex systems. Because the system
is so complex, we desire an incremental transfer of knowledge from end-users
to system designers. This is incurred by the use-cases and the prototyping
and analysis phases.

Another important aspect to consider when choosing a development pro-
cess is the organizational structure of the project. In [Cop99] it is noted that
“The structure of the organization that builds the software is homomorphic
to the structure of the software”. We argue that the combined reuse-oriented
evolutionary process is ideally suited for a project team consisting of loosely
co-operating sub-teams, due to the loose coupling of software modules. In
the present case, several field specialists with different personal goals (such as
writing doctoral theses) work together to compose a system for brain imaging
meta-analysis.

Note that this introduction contains a meta-modelling phase of the process
model, i.e. the definition of what reuse and design artifacts to focus on. For
another class of systems, we would probably define different kinds of reuse
and design artifacts. The complete process model is depicted as a Petri Net
(see section 4.4) in Fig. 3.10.

3.4.1 Use-case-based Evolutionary Architectural Anal-
ysis
By modelling typical use cases in steps satisfying increasingly higher demands

on performance, scalability and system expressiveness, an evolution path is
established for the system.
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Figure 3.10. The process model depicted as a Petri Net

The use cases can be found in Fig. 3.11 and the corresponding architec-
tural solutions for each step are described in Fig. 3.12. The labels KI and
PDC below denote the neuroscientific research laboratory at the Karolinska
Institute and the supercomputing center at the Royal Institute of Technology,
respectively, located a few kilometers apart and connected by a high-speed
data link.

(a) Local execution of one processing module: The privileged user browses
through databases and selects a process to execute, and its indata

Analysis:
e define basic databases: EXPERIMENTDATABASE and PROGRAM-
DATABASE

e Explorative Level extensibility: Query language provides at least
preliminary user interface

e Functional Level extensibility: Extend DBMS with functions for:

(i) invoking programs on indata images
(ii) notifying the user when program terminates
e Schema development: Define base classes Provider, Experiment,

Subject, Condition, Repetition and Image for data, and PCModule
for programs (or, processing chain modules).

(b) Whole processing chain execution: The privileged user designs a process-
ing chain from raw data to some refined format, which is then executed
and stored in the database.
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Figure 3.11. A set of increasingly more demanding use cases

Analysis:

o Functional Level extensibility: Complex processing creates a re-
quirement for workflow management, which is kept internal to the
AMOS IT DBMS by use of Event-Condition-Action (ECA) rules.
A computational proxy [C*94b] is introduced as a new datatype
with foreign functions to manipulate execution of its correspond-
ing PCModule. A visual language is desirable to aid users while
defining workflows.

e Databases to be defined:
— WORKFLOWDATABASE for workflow data

— TEMPORARYDATABASE for temporary image objects
— HOMOGENEOUSDATABASE for end results
e Schema development: Add classes Analyst, Workflow, CompProxy
and DataSource for workflow management.

(c) Same as (b), but processing at PDC node is monitored from KI node:
Example query, issued by the user to the HOMOGENEOUSDATABASE:
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Q1 := "Find all images in which the subimage corresponding to the
[x0:x1,y0:y1,20:21] interval has a voxel value greater than x”.

Analysis:

e the shared supercomputing environment with vastly increased com-
putational power and storage capacity needs to be remotely moni-
tored and controlled through the EASY scheduling system.

e apply the mediator design pattern (here: multidatabase nodes KI
and PDC)

o Functional Level extensibility: define type extensions using foreign
functions to perform simple raster data queries.

e schema development: the database schema needs to be mirrored in
a relational DB2 database for persistent storage. An ODBC trans-
lator provides mediated access to this data. Subimage relations are
modelled by the function subimage between VoxelSet and Image.

(d) Same as (c) but with larger database and more demanding meta-analysis
queries Example query, issued by the user to the HOMOGENEOUSDATABASE:

Query Q2 := " Find the number of statistically significant clusters, for
each voxel, that contains this voxel”.

Analysis:

e add raster data package with secondary memory storage, special
storage structures and access paths for better scaling properties,
and data compression for faster data transfer; either by adding this
to the previously defined (in ¢) Performance Level extension or by
providing mediated access to a separate specialized DBMS

e schema development: define subclass to VoxelSet, ConnComp, to
be able to represent an arbitrarily shaped region of the brain

3.4.2 Architectural Consequences

A set of architectures resulting from the analyses outlined above is summarized
in Fig. 3.12. Schema development is summarized in Figs. 6.2 and 6.3. An
issue suggested by these architectures is whether three different DBMSs are
really needed, or in general, how can we be sure that the evolutionary design
process leads to a sound architecture? Like in biology, evolutionary software
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design is usually expressed as modification of existing structures, while more
thorough redesign is rare.

One might consider two alternative designs, using for database manage-
ment

e cither a single relational DBMS (DB2)

e or a specialized raster data DBMS (RasDaMan) and a relational DBMS
(DB2) for metadata

The first of these alternatives is feasible, but content-based retrieval (e.g.
query Q1) on this large amount of image data will presumably not be scal-
able. The second alternative, however, does not provide a common query
language thus putting the demanding task of data integration on the applica-
tion programmer, as in [Fre99] [FRS99].

Thus, the best solution depends largely on the size and complexity of the
databases. The BINS project stops at level (c) of Fig. 3.12, while NeuroGen-
erator builds on results from the previous project and promises more effective
solutions on several levels [RSLT01]. In order to realize these solutions, Neu-
roGenerator has been set up to provide the expertise necessary for managing
the resulting design complexity. The label EASY used in Fig. 3.12 denotes
the supercomputer job scheduler interface at PDC.
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BINS/NG databases may be partitioned into the following categories:

e EXPERIMENTDATABASE contains a catalog of experiments, subjects,
raw image data, and image metadata.

e PROGRAMDATABASE is a set of (mainly image) processing modules sub-
ject to software version control. Programs are stored at the PDC node
in a DB2 database as BLOBs.

o WORKFLOWDATABASE manages the workflow control data as shown in
Fig. 6.3 Intermediate data are stored in the file system.

e HOMOGENEOUSDATABASE contains the processed database, consisting
of processed images, their pedigrees and other metadata

e TEMPORARYDATABASE is used for view materialization of sub-workflows,
optimization of subsequent analyses, and sample tests of process output
quality. It is also in itself the target for meta-analysis.



Chapter 4

Workflow Management for
Brain Image Meta-analysis

In section 2.3.2, a typical so-called processing chain for statistical analysis
of PET image data was presented. Given that the example is a standard
procedure for analyzing only one PET experiment!, and still involves some
500 raw, intermediate and end-result images, we will most likely need a tool
to manage image data and processes on image data.

We will in this chapter introduce the concepts of workflow management,
WFM, and workflow management systems, WFMS, and argue that a WFMS
is well suited as a tool to manage processing chains.

In [GHS95], a workflow is defined as “a collection of tasks organized to
accomplish some business process”. That the restriction to business processes
is unnecessary is exemplified in [AT98|, taken from soil sciences. Workflow
management, WFM, is then the management of this collection of tasks and
data. A brief overview of what a system for workflow management, a WFMS,
can offer is provided in section 4.1, followed by discussions on how to represent
and specify processes (section 4.2), organize transactions (section 4.3) and
analyze properties such as correctness of workflows (4.4) and also briefly note
some special requirements of scientific workflows in section 4.4.3

4.1 Motivation

The processing chain in Fig. 2.7 is depicted as a directed bipartite graph,
consisting of data, processes on data and relations in the form of input and
output data from processes to data.

LfMRI experiments are approximately an order of magnitude larger in size

43
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We are going to call the programs implementing processes on data process-
ing modules, while the process instances will be referred to as computational
proxies [CT94b].

For executing a processing chain on a single experiment instance, some
Unix shell scripts were developed (see section 6.1), purposefully encapsulating
existing software for a processing module, i.e. a single step of the processing
chain. The user starts a shell script, waits until it has terminated, and starts
the next script in the processing chain. These shell scripts are simple to start
and are automatic in the sense that the user does not have to interactively
drive the processing of one script, but there are still a number of difficulties
for the user to face:

e No automatic parallelization: The processing chain is in many cases triv-
ially parallelizable, meaning that the execution of one script on N brain
images can be performed in parallel on N different nodes, independently
of each other. This distribution of tasks on nodes should be taken care
of by the system.

o Keeping track of the order of processing is difficult: One PET experiment
may involve running six or more processing modules hundreds of times
in a causally determined order: each processing module needs its input
data to have been generated before it can start. The user has to keep
track of this order.

e No automatic error handling: The scripts implementing processing mod-
ules can leave a log-file as a trace of its activities, but if something goes
wrong, the user will have to keep track of how to undo the compromised
processing and where to re-start processing.

e Reuse of previous processing chains and intermediary data s difficult:
The user will have to manually keep track of which of previously cal-
culated intermediary data or processing chain structures that can be
reused.

e Monitoring the status of the processing chain is difficult: To know what
steps of the processing chain have been completed and estimate when
the whole chain will be completed is, without proper tools, potentially
complicated.

The Workflow Management System (WFMS) is implemented in order to
automate these aspects of running the processing chains. Basing the archi-
tecture of the WFMS on a DBMS has the additional advantage of allowing



4.1. Motivation 45

querying of all data regarding the status of a processing chain, previously
executed processing chains, and so on.

To meet these and other demands on functionality, a WFMS supports
some, or all of the following concepts:

e Automated processing: An important goal in the NeuroGenerator/BINS
projects has been the automatization of processing chains. Thus, each
participating processing module has been reengineered to run unsuper-
vised [Hal]. For each execution of a processing module, the WFMS will
check that the previous executions of processing modules on which this
execution depends, are finished - and commence execution. The con-
straints this puts on the system is implemented and checked by so-called
active rules, see section 6.3.1.

o Traceability: When saving the workflow needed to create an object, its
history, or lineage, can be traced back to the data and processes that
created it, which is especially valuable in scientific workflow management
systems, see section 4.4.3.

o Workflow specification in a graphical language: To specify dependen-
cies, and thus the order of execution of processing chains, the WFMS
will need a language for describing the dependencies and selecting the
processing modules and data involved. A natural description to use for
this purpose is a form of a graph, see section 4.4. To depict this descrip-
tion graphically provides intuitive user interaction, see section 6.5.

o Concurrency and parallelization management: When executing a pro-
cessing chain in a parallel computer system, as described in chapter 6,
we want to be able to run several processing modules that are not de-
pendent on each other concurrently, distributed on the parallel nodes
of the system. By specifying dependencies in the workflow, for example
by the use of Petri Nets, as in section 4.4, all processing that is not
inter-dependent can be performed concurrently. The implementation of
the concurrent processing is described in section 6.4.

o Workflow analysis tools: When specifying a processing chain, the user is
responsible for constructing it in a correct way. Some of these correctness
criteria can be formalized and automated, as described in section 4.4.

e Transactional model: Execution of processing modules may sometimes
fail, for reasons such as software bugs or hardware failures. When this
occurs, we need a mechanism to take action accordingly, for example to
abort execution, erase any partial results that are not guaranteed to be
uncompromised, and rerun aborted executions.
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Different processing constructs: In [vdABtHKO00] several processing con-
structs are discussed. The processing chains of BINS/NeuroGenerator
contain to date not very advanced constructs, for example there is no
iterative processing. However, such constructs may become of interest
later, for example in a hierarchical processing chain, where workflow
management totally replaces scripting languages. Thus, the use of the
Composite pattern in modelling workflows in section 6.3 seems natural,
and furthermore, it is important to be able to extend the workflow model
with new processing constructs, such as iteration.

Monitoring of processing: The current status of processing should be
possible to query in either textual or graphical form. This is currently
possible through the AMOSQL interface described in section 6.4.1, but
will benefit from interfacing the WFServer to the GUI described in sec-
tion 6.5.

Reuse of processing structures and intermediate data: When designing
processing chains similar in structure to old processing chains, it should
be possible to reuse previously saved structures and edit them. Fur-
ther, previously calculated intermediate data that costs several hours of
processing to recalculate should be possible to reuse, when appropriate.

Dynamic (run-time) modification of processing: It may prove to be use-
ful to dynamically be able to change the course of action in a running
processing chain.

Adapting to change: It has been recognized [vdA99] that a serious short-
coming in many contemporary workflow systems is in adapting to change
in the form of ad-hoc change and evolutionary change of workflow pro-
cesses.

4.2 Modelling Image Processing

In this section we deal with the definition of a workflow model, for structuring
image processing in an image meta-analysis environment, using for example
an object-oriented model or a database schema.

In reviewing commercial WFMSs, Georgakopoulos and Hornick [GHS95]

describe a workflow model as consisting of the following entities:

o Workflows: A partial or total ordering of tasks.

e Tasks: A partial or total ordering of operations, descriptions for human

actions or other tasks. In our system, we do not yet take into account
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human actions, but focus on automatically executing steps of the pro-
cessing chain. Note the recursive definition in that a task may consist
of tasks.

Manipulated objects: In the case of image processing, the majority of
manipulated objects are images.

Roles: A human skill or a service provided by some system that is re-
quired to perform a task.

Agents: Humans or systems enacting roles.

In [KS94], the related concept of workflow specification is described as:

Task structure: A description of the structure for carrying out a task,
such as a two-phase commit (2PC) transaction, common in database
systems, or a non-transactional structure. We discuss task structures
further in section 4.3.

Typed inputs and outputs of task types.

Relations between input and output among task types: Output of one
task may provide input data to another task.

Preconditions for transitions occuring within one task: Together with
relations among input and output, preconditions specify the ordering of
tasks, ie. a task can be performed when its preconditions are satisfied,
which may involve the production of another tasks output.

In section 2.3.2 we defined a basic processing chain that transforms raw
PET image data into statistical cluster images. Many possible processing
chains exist, and in view of the previous definitions of workflow models and
workflow specifications, we introduce the following concepts for managing pro-
cessing chains:

e Processing module: A program implementing one step of the processing

chain.

e Computational prozy: The term is borrowed from [CT94b] and reflects

the task carried out by a processing module.

e Data n wnitial, intermediary and final form: Input and output data

from processing modules.

e Relations between processing modules and input and output data: Two

mappings from the set of processing modules to the set of data: input
data and output data.
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e Resource: Actors involved in running the processing chain tend to be
non-human, such as the scheduler of the parallel computer system.

e Transactional structure: The course of action to take, for example when
an operation performed in a task fails.

When structuring these concepts, we may for example choose to employ
either an object-oriented model [AT98] [CT94b] [Man01], or a more formal
approach based on Petri Nets [vdA94] [vdA98]. Of the object-oriented ap-
proaches mentioned above, [CT94b] seems to use the most traditional ap-
proach, based on a object persistency environment, while [A798] uses a clever
transformation of some workflow constructs onto the meta-model, the schema,
of the underlying DBMS and argues that implementation efforts may be re-
duced by reuse of database concepts.

The Object Management Group (OMG) specifies a WFMS reference archi-
tecture [OMGO02|, critized in [MJ98] for not using the descriptive power of
patterns. It was argued that the object-oriented modelling suffered from this,
for example in the failure to recognize the ability to use a Type-Object pattern
[Joh96]. This line of thought led to the introduction of an extensible WFMS
MicroWorkflow [Man01], building on the aforementioned design patterns and
the architectural pattern Microkernel [BMR196] for adaptive systems. In
[Man01], the core functionality of the WFMS is obtained by a combination
of design patterns such as Type-Object and Composite with a special pattern
language, similar to [vd ABtHKO00)].

In comparison to the OMG reference architecture, Petri Net based models
focuses on analysis of workflow, outlined in section 4.4. The strengths of a
more formal theory as described in [vdA94] are mainly the unambiguity of
workflow specifications and a well-defined theory for analysis and simulation.

In section 6.3, we describe an implementation of a workflow model using
object-oriented concepts, long-running transactions (see section 4.3.2) that
also resembles a Petri Net model in its graph structure. The analysis tech-
niques of Petri Net models may be used through an external GUI, as described
in section 6.5.

A third category of approaches to workflow management is represented in
[KS95], where the focus of modelling processes is on a strong transactional
model, a concept which will be dealt with in the next section.
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4.3 Transactional Models

When executing a processing chain, a constituent task may for some reason fail
(due to program malfunction, insufficient disk-space, etc.). To handle this and
other possible failures in processing, we need to specify appropriate courses of
action to take before starting the execution. These courses of action were in
section 4.2 referred to as the task structure. When specifying task structures,
we may be satisfied with a non-transactional structure, or employ models of
various degrees of expressibility for the transactional structure. An excellent
overview of advanced transactional models can be found in [EIm92].

4.3.1 Transaction Management

In short, the classic ACID? properties of ordinary (short-lived) database trans-
actions ensure execution and failure atomicity.

e FExecution Atomicity: To maintain execution atomicity of database trans-
actions involves the isolation of transactions and the consistency of the
database. Other transactions cannot read intermediate results from a
transaction that has not yet committed, because using these intermedi-
ate results may produce inconsistency in the database.

o Failure Atomicity: Failure atomicity is often desired when dealing with
aborted transactions. Either a transaction is fully committed, or not at
all. If partial transactions are allowed, then again, we risk the consis-
tency of the database.

To maintain execution and failure atomicity through a transaction guar-
antees a sufficiently consistent behaviour for many simple transaction types,
such as ATM applications. The advantages are rather obvious, the system
gurantees that either the whole transaction is completed, or the whole trans-
action is aborted, with no partial results or pending inconsistencies in the
database.

In the case of image processing as described in section 2.3.2 and depicted in
the example of Fig. 4.1, this may be implemented as a traditional transaction
for each task (depicted as a box in Fig. 4.1). Consider the example of a
software bug, rendering output data from a image processing program to be
zero-length. Assuming that we can catch the software failure®, we may remove
the compromised results and later try to redo the transaction.

2 Atomicity, Consistency, Isolation and Durability
3e.g. by reading the exit signal from the process
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However, this is rather inefficient, since the traditional transactional model
thus employed will not operate concurrently on independent transactions,
thus, the obvious parallelism present in Fig. 4.1 would not be exploited.

Std brains
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Figure 4.1. Transactional view of workflow. The processing chain is exe-
cuted on an experiment consisting of three subjects, two conditions and four
repetitions.

4.3.2 Long-running Transactions

One of the preconditions for the transactional model described in section 4.3.1
to work well is that the transactions are quick, usually on the order of seconds,
maximally. Another precondition is that the task structure can be described
by a flat transactional structure. For applications such as image processing,
transactions may involve rather computation-demanding operations. PET
image processing in the BINS and NeuroGenerator systems are initially based
on the processing modules of table 4.1, from [Hal]. Processing ranges from
seconds to several hours and, as can be seen from Fig. 4.1, transactions could
benefit from some additional structure.

In a Saga transactional model [GMS87], forward transactions 71, 7o, ..., T,
are coupled with compensating transactions oy, 09, . . ., 0,, so that it is ensured
that either the sequence 7,75, ..., 7y O 71, T, - - -, Ty Ok, Ok 1, - - - , 02,071 ,foOr
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proc. module duration input data output data parameters
imagemodel 7 hours set of PET images cluster image

design matrix t-image
contrast vector o-image
debone 45 mins anat. MR image mask image
segm. std. brain
unsegm. std. brain
air_trans 5 mins anat. MR image def. field
mask image
segm. std. brain
air_warp 30 secs  PET image tr. PET image
def. field
mask image
im_mask 30 secs  set of PET images null-val. mask
subsample 10 secs  PET/MR image sub. PET/MR factor
convert 10 secs ~ Raw scanner image internal format

Table 4.1. Summary of processing modules

some k such that 1 < k£ < m are performed. Further, it is possible to organize
sagas hierarchically. A saga may thus contain a sub-saga, and recursively a
sub-saga may consist of further sub-sagas.

This structuring tool may thus help us managing the relatively complex pro-
cessing present in the PET processing chain. One may discern three levels of

processing:

e (Conceptual level: This level corresponds to the conceptual description of
processing, e.g. the transformation to standard anatomical format and
the statistical analysis in Fig. 2.7.

e Process level: The process level corresponds to the processing modules
of Fig. 2.7, where each module has a well-specified task to accomplish.

o Algorithmical level: Each processing module in Fig. 2.7 and table 4.1
consist in reality of scripted calls to up to 40 different specialized pro-
grams. Instead of managing the processing modules, we may detail
transactional structure to the level of single program executions, thereby
allowing, among other things, smaller atoms of transaction.

The compensating transactions for each forward transaction depicted in
Fig. 4.1 are thus capable of undoing the forward transactions, for example
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clearing a working directory. If a sub-saga is aborted and its compensations
are executed, the parent saga may use forward recovery, if possible, to execute
its other constituent sub-sagas. If forward recovery is not possible, due to
transaction dependence on the aborted sub-saga, backward recovery takes
place through execution of compensations.

For saga transaction management to be applicable, the task structure
should contain largely independent sub-transactions and forward transactions
should be compensatable. If sub-transactions are dependent on each other,
there is no guarantee that they will be executed in the proper order. A possible
saga structure for the example of Fig. 4.1 can be found in section 6.3.

Further extensions of the transactional model can be found in [Elm92| or
[KS94] [KS95] [DHLIO0].

4.4 Petri Net based Analysis of Workflows

In [vdA98] a construct called WF Net (or, Workflow Net) is constructed from
a Petri Net. We will follow this approach in section 4.4.2, but start out with
the appropriate definitions from graph theory below.

4.4.1 Some Elementary Definitions from Graph Theory

A graph G = (V,E) is a set of vertices, V = {vy,vq,...,v,}, and edges,
E = {ey,ey,...,e,}, between vertices (e; = (v; <> vy ). Such a graph is called
undirected.

If the graph is directed, all edges are associated with a direction, i.e. e; =
(vj = vg) Jor e; = (vj ¢ V).

A path in a graph is a sequence of vertices {v1, v, ..., vy} such that each
adjacent pair of vertices in the list are connected by an edge. A cycle in a
graph is a path {vy,vs,...,v,}, where v,, = vy, i.e. the path leads back to
the first node of the sequence.

Since cycles in graphs often provide extra difficulties in theory and algo-
rithms on graphs, an important concept is the Directed Acyclic Graph, DAG.
This graph has directed edges and no cycles.

Another common concept, or class of graphs, is the bipartite graph. A
graph is bipartite if its vertices V' can be partitioned into two disjoint subsets
Vi and V; such that each edge in E connects a vertex from V; to one from V5
and V = V; UV, Examples of the four graphs mentioned so far can be found
in Fig. 4.2.

A final useful definition is that of a strongly connected graph, in which for
a directed graph G = (V, E), each pair of vertices {v;,v;} has a path from v;
to v;.
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Figure 4.2. (a) Simple undirected graph (b) directed graph (c) directed
graph with a cycle (d) bipartite graph

4.4.2 Modelling Workflows as Petri Nets

When modelling a workflow, we need to take into account processes, input
and output data, states and transitions between states. Obviously, a static
graph structure is not sufficient so we extend the graph definition to include
states and transitions. As a first step we consider so-called Petri Nets.

The theory of Petri Nets is rich and diverse with numerous extensions,
since its powerful modelling capabilities have made it a popular tool in many
applications. We will only scratch the surface of this theory to provide some
more substance to the problem at hand, namely the modelling of processes and
workflows of processes. There are interesting results that may be applied to
the workflow in BINS, such as verifying “soundness” of workflows and with the
proper extension of time, perhaps optimization of execution can be addressed
in this general framework. We will in this section follow [vdA98] for obtaining
a means to model and analyze workflows for image meta-analysis by the use
of Petri Nets.

Definition 4.1. A Petri Net PN is the tuple (P, T, F'), where P denotes a
set of vertices, or in Petri Net terminology, places and T is another set of

vertices, called transitions. Further, PNT = (), and the edges are defined as
FC(PxT)U(TxP)andVteT,dpe P: (p,t) € F.
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Petri Nets are commonly visualized using circles for places and squares for
transitions with arcs between them in the form of a bipartite graph.

Figure 4.3. An example Petri Net

So far, this is just a directed bipartite graph, where P and 7' define the
two partitions of vertices and F' are the directed edges between the partitions.
Let us add some more definitions.

Definition 4.2. A preset ev of a vertex v € P U T is the set of vertices
{v'|(v',v) € F} and the postset ve of v is similarily defined as the set {v'|(v,v') €
F}

We are now ready to define the entity WorkFlow Net, or WF' Net.
Definition 4.3. A Petri Net PN is a WF Net if and only if:

e PN has an input place 7 € P for which e7 = () and an output place o € P
for which oe = ()

e For PN’ = (P,T Ut, F'"), with F' = F U {(o,t),(t,i)}, PN’ is strongly
connected. We will refer to PN’ as the extended WF Net.

Figure 4.4. A WorkFlow Net
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Definition 4.4. We define a state, M, by adding zero or more tokens to each
place p € P. Thus, M is a function:
M:P—N
with the partial ordering:
M, < My, & M (p) < My(p) Vp€ P

Let us further shorten the notation for two special cases: We define the
initial state I so that M(i) =1 <> M = I and similarly for the end state O:
M(o)=1<M=0

The tokens change during execution according to a firing rule:
Definition 4.5. An enabled transition may fire according to:

e FEnabled transition: A transition ¢ is enabled iff each input place p of ¢
contains at least one token, M(p) > 1 Vp € ot

e Firing transition: When an enabled transition ¢ fires, ¢t consumes a token

from each input place of ¢ and produces a token in each output place of
t, M(p) = M(p) —1 Vp € ot and M(q) = M(q) —1 Vq € te.

Some notation: given a Petri Net (P, T, F') and states My, My, ... M,:

o M, BN M,: Transition ¢ is enabled in state M; and fires, producing state
M.

e M, — Ms: There exists a transition ¢ such that M; N M,
e My 5 M,: The sequence of transitions 7 = tity...%,_1 results in
t t tn—l
Ml#MQA — Mn
e M, 5 M,: There exists some 7 = t1ts...t, 1 for which M; = M,,. We
say that M, is reachable from M;.
Further definitions of interest are liveness and boundedness of Petri Nets:

Definition 4.6. The liveness and boundedness of a Petri Net are important
concepts concerning the dynamics of the net:

e Live: A Petri Net PN with initial state M, is live iff for every reachable
state M; and every transition ¢, there is a reachable state M; enabling
transition .
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e Bounded: A Petri Net PN with initial state M is bounded iff dn € N
such that Vp € P and all reachable states M : M(p) < n.

As a simple illustration of a firing sequence, consider Fig. 4.5, where
segmentation, transformation and warping of a functional image (cf. Fig.
4.1) is depicted as the sequence of states M 2N M, N M, N M;. For a
description of the graphical presentation format, we refer to section 6.5.

When considering parallel tasks, for example by adding another PET image
to the transformation, we have to keep track of which tokens are “compatible”
with other tokens. If MR images mr; and mry have been segmented, the
resulting mask image mask; can only be used for transformation of mr;. The
solution is to add a color to each token in order to avoid mixing entities. Aalst
indicates how to do this in [vdA98]. Another solution is to model that scenario
as in Fig. 4.1, where all transitions are duplicated for each separate processing.
This can be compared with the terms processing module and computational
proxy, as introduced in section 4.1.

In [vdA98| it is stated that there are three types of analysis, using Petri Net
models of workflow:

e Validation: By interactive simulation testing whether the workflow will
behave as expected.

o Verification: Assessing the correctness of the workflow. For example if
the number of tokens are mismatched, or if transitions are misplaced,
tokens may get lost in the Petri Net.

e Performance analysis: We will in chapter 6 look at the interfacing of
the workflow system to the supercomputer scheduler. To find an effi-
cient scheduling strategy for workflows, it may be of interest to add the
notion of time to Petri Nets [Bow96] and do either simulations or formal
analysis.

As an example of correctness verification, we will define the soundness
property for Workflow Nets.

Definition 4.7. A WF-net PN = (P, T, F) is sound if and only if:

e For each state M, reachable from I, there exists a sequence of transitions
leading from M to O:

VM: IS5 M=M-50
e State O 1s the only state reachable from state I with at least one token

m O:
VM: TSMAM>0=M=0
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e There are no dead transitions in PN :

VteT MM I35 M=M%5M

Theorem 4.8. A WF-net PN is sound iff the extended WF Net is live and
bounded.

Proof. Can be found in [vdA97]. O

It would be of interest to find an algorithm to check the soundness property
for any possible workflow. It turns out that if we restrict ourselves to so-called
free-choice Petri Nets, then there are algorithms [vdA97] to check soundness
in polynomial time.

In Fig. 4.6 we see an example of how the concept of soundness may help
in verification of workflows. Both workflows fulfill the static criteria of both
number and types of input and output. The Petri Net of Fig. 4.6 (b) might
be due to a point-and-click error during interactive specification.

4.4.3 Meta-analysis Workflows

The management of workflows in scientific processing and meta-analysis has
not been discussed much. Using the ZOO framework [ILGP96], an object-
oriented workflow management system was described in [AT98], with focus on
reuse of database concepts in workflow managment. In [C*94b] the concept
of computational proxy was introduced.

The scientific use of workflow technology poses special challenges not present,
in business applications, which is the usual area of application for workflow sys-
tems. Examples of challenges especially interesting for the BINS /NeuroGenerator
project are:

e Data mining and knowledge discovery: It is clearly possible to automat-
ically generate a large number of analyses in the linear model of section
2.3.1 to find untested hypotheses that may yield new results.

e Lineage of results: To be able to trace how an image was generated is
very important. For example a too coarse subsampling during the pro-
cessing chain will seriously impair the quality of end-results, something
that can be traced afterwards in a debug process where suspicious results
can be checked by inspection of the lineage.

o Efficiency in processing: If we have already computed a processing chain
in a previous workflow, that is partially contained in a new workflow,
we may save time by reusing results from the previous workflow.
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As an example of reuse of previous workflows, consider the layout of the
processing chain in Fig. 2.7 and assume that we have recently performed an
analysis involving a set of subjects S; = {si,$2,...,s,} and the associated
n anatomical and ncr functional images, ¢ being the number of conditions
applied, and r the number of repetitions. We then test a hypothesis in terms
of the elements of a contrast vector vy, using a design matrix X; as described
in section 2.3.1.

We now wish to test a new hypothesis, given another contrast ¢, from a set
of subjects Sy, containing a subset Sj; such that Si; C Sy, S;1 C S, |Si1| =
m,m < n. The resulting processing chain for PET images corresponding to
subjects Sy will contain the processing chain of Fig. 4.6 (a) for each subject
S € 511.

Let the time required to complete segmentation of one anatomical image
be ts, and for transformation and warping ¢, and t,, respectively. The total
time taken to complete the processing chain for Si; is thus

tiot(S11) = mts + mity, + mrcty,

Given the running times of processing of table 4.1 and if m = 6 and we
choose an experiment with n = 10, r = 8 and ¢ = 3 as in Fig. 2.7, t;,; = 372
minutes. Usually, processing will be performed on several experiments, so the
total time saved during processing of e.g. 100 experiments is 37200 minutes.

Now, given a WF Net PN = (P, T, F), and a set of previously computed
workflows, how do we decide whether or not a place p € P has already been
created?

Definition 4.9. The lineage of a place p € P, lin(p)pn, is the WF Net
PN' = (P, T', F'), a subgraph of PN, containing all vertices v € PUT on a
path from i to ep, and all edges e € F, where e = (v; = v;), v;,v; € PUT.

If a place pin a WF Net PN needs to be computed and is found to have the
same lineage as a previously computed place p' in a WF Net PN; = (P, T;, F}),
we say that we can reuse p’ instead of calculating p.

To decide whether or not there exists such a p’ in the set of previously
computed WF Nets W = {PN;, PN,,..., PNy}, we need to visit at most
SN |P UT;| vertices, that is, we may need to visit all vertices in the is the
worst case. This could easily be improved by labelling vertices in a suitable
manner, but since we traverse the graph in a sequential order when processing
workflows, this will not be a problem.

As neat as this mechanism may seem for improving efficiency, the real ad-
vantage of being able to query an object’s lineage is the traceability achieved.
If an object (image) is suspected to be corrupt, its entire history can be investi-
gated to find the source of the error, and correct it. Even more fundamentally,
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to be able to compare aggregated objects from different processing chains, the
lineage of the objects should be considered: which standard brain was used in
the transformation, which thresholds were set for the hypothesis testing and
SO on.
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Figure 4.5. The firing sequence for a subset of the processing chain
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(b)

Figure 4.6. A sound workflow (a) and an unsound modification (b)
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Chapter 5

Components and Frameworks
For System Development

This chapter describes the tools that were used during the development of
brain imaging meta-analysis systems:

o The ECHBD system: Built on top of the RasDaMan raster management
system (section 5.2), which in turn uses the O, object-oriented DBMS
[Deu92| for storage of so-called BLOBs (Binary Large OBjects).

e The BINS/NG systems:

— The software architecture: builds on the mediator capabilities of the
AMOS II mediator system (section 5.1) which is extended by use
of the RasDaMan raster manager. As underlying DBMS, providing
persistance and data security, the DB2 system was used.

— The workflow management system: also uses the AMOS II system
for active rules and object-oriented modelling.

— The workflow specification GUI: uses the JHotDraw framework
(section 5.3).

In the reuse categorization of chapter 3, usage of the AMOS II system and
the RasDaMan raster manager belongs to the third category, system reuse,
while the use of the JHotDraw framework belongs to both of the first two
categories, design reuse and code-reuse.

63
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5.1 The AMOS II Object-relational Database
Management System

The AMOS IT DBMS is a lightweight, main-memory, object-relational DBMS.
It supports multi-database transparent communication (mediation) as well as
the more basic client-server model of communication. The query language
AMOSQL can be extended with so-called “foreign functions” in C, Java or
Lisp. For more information on the AMOS II system, see [R702a], [Jos99],
[Ors96], [Sk594].

In [SM95], an object-relational DBMS (ORDBMS) is defined as capable of
managing complex data and offering a query language. The former require-
ment separates ORDBMS from relational database systems, while the latter
provides a distinction from object repositories such as ObjectStore.

For examples in this section, refer to the database schemas of Figs. 6.2
and 6.3.

5.1.1 AMOS II Data Model

The basic entities of the object-relational AMOS II type-system are shown in
Fig 5.1. Notable in this hierarchy is the type Function. In contrast to, for
example, Java, the AMOS II object model models functions (object methods
in UML) as objects themselves!

Object

N
l I I I l I

Type | | Function | | Literal | | Collection | | UserObject || Rule || Saga

Figure 5.1. The AMOS II type system: A simplified one-level hierarchy

The data model of AMOS II is built from the functional DAPLEX model
[Shi81] and Fig. 5.1 shows some of the basic entities in this model.

Here, the leftmost node is characteristically called Type, not Class, since
a Type does not encompass methods on its instances (cf. Abstract Data
Type, ADT). Subtypes of Type are Stored Type, Derived Type and Mapped
Type, of which ordinary user-defined and built-in types are always stored -
indicating a local storage, in contrast to the distributed derived types and
mapped types, described in [Jos99]. An attribute, method or association to
another Type, or Literal, is via an instance of Function. Literals are special
(simple) objects, separated from Types by their fixed extent and the fact that



5.1. The AMOS II Object-relational Database Management System 65

they are not associated with OIDs. Integers, Reals, Charstrings and Booleans
are all examples of subtypes of Literal. A Collection is either a Vector or a
multiset, Bag, that can contain any descendant of Object. All user-defined
objects inherit from UserObject. Sagas and Rules are used for long-running
transactions and ECA rules, respectively, and will be defined below.

The creation of a user-defined type, becoming a descendant of UserObject,
along with some attributes, is described in example 5.1:

Ezxample 5.1. Creation of a user-defined type.

CREATE TYPE Subject PROPERTIES(righthanded integer);

5.1.2 The AMOSQL Query Language

The AMOSQL query language originates from the OSQL [L191] query lan-
guage, resembling SQL99. It supports declarative queries of the form
SELECT...FROM. . .WHERE as well as function definitions, overloading, foreign
functions, multi-database integrative queries, ECA rules, long-running trans-
actions and more [R*02a].

The declarative queries consist of the keywords SELECT, FROM and WHERE
together with names of Types, Literals and Functions. An example query that
finds lefthanded subjects, with a corresponding cluster image that overlaps at
least 70% with cytoarchitectural area 17 is phrased in example 5.2:

Exzample 5.2. A declarative AMOSQL query.

SELECT s

FROM Subject s, ClusterImage cl

WHERE righthanded(s) = 0 AND
is_subject_of (s, cl) AND
image_overlap(cl, :al7) > 0.7;

The identifier :a17 with a colon prefix is a globally defined AMOSQL
variable, defined similar to example 5.3:

Ezample 5.3. A global declaration

DECLARE Contrast :contr;
CREATE Contrast :contr;
SET contr = ...;

The datatypes Subject and ClusterImage are defined in the database schema
of Fig. 6.2. The functions righthanded and is_subject_of can easily be de-
fined, the former a stored and the latter a derived function. The function
image_overlap may be implemented as a foreign function, if cluster images
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are stored on external files, blobs in a relational system, or in RasDaMan
(5.2).

Functions can be either derived, stored, procedural or foreign. A derived
function is nothing but a conserved query while a stored function is typi-
cally used to store an attribute with a type. A procedure supports more
general constructs than the declarative derived function and the foreign func-
tion even allows calculations to be performed in an external language such
as C, Java or Lisp. In example 5.4 below, we define the derived function
is_subject_of(...)

Example 5.4. A derived AMOSQL function.

CREATE FUNCTION is_subject_of(Subject s, ClusterImage cl)
-> boolean AS
SELECT subj(exp(cl)) = s;

5.1.3 Mediation Capabilities

The AMOS II mediator system is capable of integration of data from hetero-
geneous datasources by the use of object-oriented views over imported types
[Jos99].

The datasources may be e.g. specialized raster data management sys-
tems [FSRO1], ordinary filesystems, XML documents [LRKO00] or standard
relational database management systems [FR97]. To perform data integra-
tion between an AMOS II database and a relational database, there exists
an OBDC translator for AMOS II, that is capable of translating between
AMOSQL and SQL. For other datasources, a translator has to be constructed

Assume we have stored image data in a DB2 relational database as blobs,
while the experiment descriptions, the metadata, are stored in an AMOS II
database. To integrate image data with metadata, we may for example store
a unique identifier (id) at both datasources and then perform a join over two
relations:

Example 5.5. A query accessing relational data.

/* set up ODBC connection to DB2 datasource and call it ’db2’ */
/* then import relational table ClusterImage@db2 */

SELECT dbim
FROM ClusterImage@db2 dbim, ClusterImage im
WHERE id(im) = id(dbim) AND exp(im) = :exp;
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In example 5.5 we fetch all ClusterImages from the DB2 database resulting
from an experiment stored in the global AMOS variable :exp.

Into a translator may also be added optimization techniques based on
capabilities of the translated datasource such as specialized index structures
and optimization techniques. A translator for the RasDaMan system (see
section 5.2) is being developed under the NeuroGenerator project.

5.1.4 Event-Condition-Action Rules in AMOS II

The Event-Condition-Action (ECA) rules of AMOS II [Sk694] are similar to
triggers in SQL-99, providing an automatic constraint checking mechanism
with corresponding actions.

A rule is also an object as shown in Fig. 5.1 and consists of:

e An event: either updated, added or removed
e A condition of the form: when <predicate-expression>

e An action to be taken if the condition is met

Ezample 5.6. A rule to check if a process terminated with improper exit signal
(see section 6.3.2)

CREATE RULE notify_rule(CompProxy cp) AS
ON UPDATED (completed(cp))

WHEN completed(cp) = -1

DO notify_administrator(cp);

5.1.5 Long-Running Transactions in AMOS II

In AMOS 11, it is possible to define a long-running transaction in the Saga
[GMS87] framework. A Saga is defined as a set of transactions and a set of
compensating transactions to be performed if the original transactions cannot
be performed (i.e. if they are aborted). This is further described in section
4.3.2. In AMOS I1, a Saga object can be created by the code snippet as below:

SET :s = create_saga();
Saga :s BEGIN
<specify forward transactions>
END;
COMPENSATION BEGIN
<specify compensating transactions>
END;



68 Chapter 5. Components and Frameworks For System Development

The global variable “:s” now holds the Saga object, and to commit/abort
this Saga, either of the following commands are issued:

commit_saga(:s);

or
abort_saga(:s);

It is further possible to construct hierarchical transactional structures
through the use of subsagas.

5.2 The RasDaMan Database Management Sys-
tem

RasDaMan [BFRW97b] [BFRW97a] offers database management for Multidi-
mensional Discrete Data (MDD), for example 3D brain images. The architec-
ture is client-server oriented, with a server responsible for storage management
and query processing and C++ or Java client libraries that communicate with
the server using Remote Process Communication (RPC). The storage model
is specialized for fast retrieval of subimages and the query language is built
on an array algebra for manipulation and querying of array data of arbitrary
dimension [Bau99|.

5.2.1 Storage Model

The RasDaMan system uses an underlying base DBMS for its persistent stor-
age of MDD:s in so-called BLOBs, objects with no semantical descriptions in
the base DBMS, but modelled so that RasDaMan can interpret them.

The structure used for storage of data is designed to optimize access times
of subimages, which is achieved by so-called tiling of subimages onto disk
pages, thereby reducing the number of pages to read in order to access a
subimage.

The tile-based storage (as opposed to conventional linear storage models)
allows for fast subimage retrieval and is generalized to perform well for any
number of dimensions. The sizes of the tiles can be preset by the user, and
also tiles of different sizes and shapes can be used.
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5.2.2 Query Language

RasQL is RasDaMans own query language for queries on MDD:s, optimizable
both semantically and physically (i.e., queries can be rewritten based on an
optimal algebraic execution order as well as with respect to the storage ar-
chitecture). The physical optimization is achieved by keeping an index of the
tiles of the images. The query language is reminiscent of SQL, as can be seen
in example 5.7:

Example 5.7. ”Extract all subimages defined by a certain subvolume, from
the collection Clusterlmage which contain at least one voxel with a value > v
within this subvolume”

SELECT cl[xmin,xmax:ymin,ymax:zmin,zmax]
FROM ClusterImage AS cl
WHERE some_cells(cl[xmin,xmax:ymin,ymax:zmin,zmax]) > v

5.2.3 Integration with underlying DBMS

RasDaMan stores and manages raster data and nothing else. Descriptive
metadata have to be stored in a separate database in the underlying DBMS,
not using RasDaMan. To be able to connect a raster data object with these
metadata, its unique object identifier (OID) is needed. This OID is given to
an image during insertion into the database, and must be propagated to the
metadata before it is stored in the separate database for subsequent integration
of metadata and rasterdata.

5.3 The JHotDraw Pattern Based Framework

The JHotDraw framework was originally developed for the Smalltalk language
[Joh92], perhaps most known for its extensive usage of patterns (see section
3.3.1). The domain of applicability of the framework is the creation of tools
for manipulation of semantically described graphical symbols, such as a UML
editor or a Petri Net analysis tool. Its current incarnation in Java [JHo02]
uses the same MVC architecture as the previous Smalltalk version, see Fig.
3.5.

The user manipulates a set of instances of subclasses to Figure, all of
which is connected to a corresponding data model. All instances of Figure are
contained in a Drawing, which has a view defined in the class DrawingView.
User interaction is managed by DrawWindow.

The JHotDraw framework then corresponds to a model-view-controller in
which the composite model, Drawing, contains several instances of Figure that
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are in turn associated to display-independent information maintained in some
class. Figures are in turn composable, in that an instance of the subclass
CompositeFigure may contain other instances of Figure, delegating behaviour
to its constituents, which corresponds to the Composite pattern, described in
section 3.3.2.

Other patterns involved in the JHotDraw framework are Strategy and
State, the former separating algorithms from the types the algorithm is defined
for and the latter defines dynamic behaviour by adding a dimension of state
to a context. Strategy is used for layout of Figures and State is used for e.g.
popup menus.

To summarize, the JHotDraw framework provides reuse in terms of (cf.
section 3.3.1):

o Black-box reuse: The behaviour of components of a CompositeFigure is
completely defined by the components; the application programmer may
not change component behaviour, other than by changing components
and therefore knowledge of their implementation is superfluous.

o White-box reuse: A Figure may be subclassed, involving overloading of
methods and addition to the data model. The programmer will need to
understand the interface of the superclass he/she is specializing but not
necessarily details on how the superclass implements the interface.

e Frozen spots: The MVC architecture requires adherence to the priciple
of separation of presentation, model and control of the system. More-
over, to be able to use JHotDraw as a framework, one has to work by
subclassing Figure and supplying a corresponding model.

e Hot spots: Extending the set of descendents of Figure, addition of
State:s, usage of and addition to the set of Strategy:s and so on.
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Development of a Workflow
System for Meta-analysis

For the Neurogenerator and BINS projects mentioned in section 1.2, one of the
major tasks are processing raw image data from neuroimaging experiments.
The complexity of this task was described in chapter 2 and some of the solu-
tions were hinted in 4. The actual implementation of a system to satisfy these
demands are described below. Focus has been on reuse of database concepts
such as active rules (section 6.3.1) and transactional models (section 6.3.2) to
speed up development and keep down costs.

6.1 Managing Processing Chains

The processing chain previously described (section 2.3.2) for transformation
of raw PET image data into statisical cluster images is made up of processing
modules as listed below. The list of processing modules are according to
[Hal], from a forthcoming publication. There are some differences between
this list of actual programs and the conceptual sketch described in section
2.3.2, for example the two separate processing stages GLM and clustering
are performed by one program, and has not been reengineered into the more
conceptually appealing two-step approach of section 2.3.2. Another difference
is practicalities such as possible speed-enhancements by subsampling images
to the effective scanner resultion instead of using an oversampled default voxel
size.

The below set of processing modules will form a running example of the
processing chain for PET image data, depicted conceptually in Fig. 2.7 and
the actual implmentation in described in Fig. 6.6. Note that this is not
the only possible processing chain but merely an initial example of how to
process PET imaging data by the current state-of-the-art algorithms. Methods

71
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and implementations can be expected to change in the future and the new
possibilities for meta-analysis will benefit greatly from this flexible modelling.
This is examplified by description of addition of a new processing module in
section 6.3.3.

e Segmentation: The segmentation of bone and tissue other than brain
substance from the image to be transformed [UL02].
Input data:

— A standard brain, segmented
— A standard brain, unsegmented

— An anatomical image
Output data:
— A segmentation mask

e Transformation: The calculation of a transformation from the individual
brain to a standard brain space [WCM92]
Input data:

— A standard brain, segmented
— An anatomical image

— A segmentation mask
Output data:

— A deformation field, describing the transformation

— A transformed anatomical image

e Warping: The application of a previously calculated deformation field
to functional images.
Input data:

— A deformation field

— A functional image
Qutput data:
— A transformed functional image

o Subsampling: For speeding up execution of other processing modules,
we may wish to subsample images.
Input data:
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— A functional/anatomical image
Output data:
— A subsampled functional/anatomical image
Parameter:
— A subsample factor
Masking: Calculating a mask for removing so-called null-values from
images prior to the statistical analysis:
Input data:
— A set of functional images
Output data:

— A null-value mask

Conversion: Convert from scanner format into internal image format.
Input data:

— A functional/anatomical image (scanner-specific)
Output data:
— A functional/anatomical image (internal format)
Statistical Analysis: A linear model with subsequent statistical inference

resulting in a cluster image of activations [Led00].
Input data:

Contrast vector(s)

A designmatrix

A set of functional images

— A null-value mask
Output data:

— Three cluster images corresponding to p-values: 0.05, 0.01 and
0.005
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In Fig. 6.6 the full PET processing chain is depicted, using the programs
listed above. While the conceptual stages of processing were described in
section 2.3.2 we are here concerned with the integration of the processing
chain modules with the workflow management system. Some additions and
differences from the conceptual description are, according to [Hal:

e Conversion: A conversion module is added for converting scanner-specific
raw data into internal format.

o Subsampling: The functional images are supersampled to match the
resolution of the anatomical images. Therefore, subsequent to warping,
the functional images are subsampled to their original resolution to speed
up the Monte-Carlo simulations of the statistical analysis.

e Mask for statistical analysis: The functional scanner may not be able to
deliver a value for the activation-dependent variable in a certain voxel,
resulting in so-called NaN'! values. The location of all NaN values are
removed from statistical analysis by creating a mask that is sent to the
module for statistical analysis.

o Statistical analysis: The statistical analysis processing module combines
the general linear model and subsequent cluster analysis.

6.2 Architectural Overview

The workflow system is built on top of the object-oriented, main memory
active mediator system (DBMS) AMOS II, see section 5.1. This approach
demands a powerful modelling capability of the mediator system, such as the
object-relational model of AMOS II. As discussed in [A198], this approach
has some advantages, especially for reducing implementation efforts through
re-use of facilities such as Event-Condition-Action (ECA) rules and transac-
tion managment. On the other hand, it may produce difficulties in re-use of
database-oblivious concepts, such as a C++ API for Petri Nets.

The system is interfaced to an IBM parallel computer centre in Stockholm,
the Center for Parallel Computers (PDC), offering 178 parallel nodes equipped
with a large common secondary storage and automatic migrability to tape
stations. To interface the workflow system with this architecture, a client-
server computational model was employed, in which the central Workflow
Managment System (WFMS) server distributes the accumulated jobs onto
client nodes according to a cost-based model of different jobs. Details on this
are presented in 6.4.

!The familiar “Not a Number” symbol
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The architecture can, from a client-server perspective, be said to consist
of a server part, WFServer, and several light-weight clients distributed on the
processing nodes of the parallel computer. Both the server and the clients are
implemented to run within AMOS II, thereby utilizing built-in communication
layers, support for long-running transactions and ECA rules present in the
AMOS 1T DBMS.

The server can be described by a five-layer architecture as in Fig. 6.2. The
communication layer listens to incoming requests from clients through the
TCP/IP layer of AMOS II. The workflow logic is basically to check if there
are any computations that can be performed (has all its indata present), and
if so, schedules it to be performed on a client. This checking is performed by
automatically querying the representation layer through ECA rules. If some-
thing goes wrong in the client execution, exit signals from the external UNIX
process is registrered and sent to the server, which takes action according to
the transaction layer, using so-called Sagas that are implemented in AMOS
II. The representation layer maintains an object-oriented view of the process-
ing chain; its objects and connections are represented as a bipartite graph as
described in section 6.3.

A prototypical graphical user interface (GUT) is being implemented in Java,
using the JHotDraw framework (see section 5.3) and the same client-server
mechanism as described above to connect to the WFServer.

WF GUI

WF Analysis ommunication Layel | ghared
Secondary|

T Memory
ommunication Laye

/;A[E%La%

Communication Layer

ommunication Layé

Scheduler

Workflow Logic

2NN

. ommunication Lay
Transaction Layer

Representation Layer

Figure 6.1. The workflow client-server architecture

To provide robust handling of client crashes and for special processing
requirements, a transactional model is employed. More on this can be found
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in 6.3.2.

6.3 Workflow Model Implementation

The workflow model is implemented in an object-oriented fashion, somewhat
similar to a Petri Net model, as described in section 4.4, but also borrows
from the long-running transactional model of section 4.3.

To discuss the workflow management system we start by displaying a much
simplified version of the database schema in Fig. 6.2. All attributes and class
methods were omitted for simplicity.

ex

| Scanner |_| Experiment

spbj
Clusterlmage
%I I [ condition ond Subject |
[Functimage| [Structimage ] : =~

[ imageMask | DefField |

[ PETImage || iMRIImage | [ MRImage || Cytolmage |

| I |
[ DeadSubject | [ AliveSubject |

A
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L IContrast]| [DesignMatrix |
t { | {
E ] | i

Figure 6.2. A simplified class diagram of experiments

The database schema for the workflow system can be found in Fig. 6.3.
The workflow model is simple, building on a couple of patterns, 3.3.2:

e Type-Object: A program is modeled by the class PCModule. All in-
stances of this program running on a parallel node, is modeled by
a CompProxy. In the same manner, a DataSource represents in- or
outdata to a CompProxy. DataSource is coupled to the baseclass of
AMOSII, called Object. Many DataSources, but not all, will be coupled
to subclasses of Image, presented in the schema describing experiment
data, 6.2.
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7

e Composite: A CompProxy is either composite (un-ordered multiset),
sequential (ordered multiset), or simple. A SimpleCP represents the last
category by linking to a PCModule, containing information on how to
run this program. Note that the class Workflow is defined as a subclass
of a CompositeCP.

Scheduler
clients_di spatched: integer
di spat chd i ent () Obiject
schedul e_j ob(s: ConpPr oxy) Saga J
get _primed_j obs()
kransact representative
i ndat a DataSource
Parameter CompProxy iscreated: Bool ean
attribute: charstring i sexecuted: Boolean |outdata | path: charstring
val ue: charstring par ams ready: Bool ean filenane: charstring
desc: charstring schedul ed: integer
conpl et ed: integer
X i nvoke()
chain | Irt_invoke()
undo()
Workflow
start: date chai n
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+subpat h:

vect or <Type>
+out dat a_types: vector<Type>
charstring

signal _verifies()

Figure 6.3. The workflow schema

The Scheduler manages the contact with the supercomputer scheduler,
stores submitted CompProxy:s until a certain total execution cost is reached.
The execution cost for each CompProxy is modeled in the PCModule and
when CompProxys of a certain total cost is reached, then the corresponding
jobs are scheduled on the supercomputer.

Stored by each CompProxy is also a Saga object, which enables transaction
management during workflow.
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The Signature class models input and output and remembers which oper-
ative system level signal that is expected from a PCModule. If that signal is
not received, compensations (see section 6.3.2) will fire and clean up after the
faulty operation.

6.3.1 Active Rules for Triggering Events in Workflows

A common model for supporting dynamic behaviour in databases is to use
Event-Condition-Action (ECA) rules [DHW94]. ECA rules makes it possible
to specify constraints on the contents of the database, (e.g. to place a condition
on an attribute of an object, in the event of an update of that attribute) and
matching actions to take when the conditions are met.

In [GD93], the task of detecting events in a database system was solved us-
ing Petri Nets. We are going to use the opposite approach and follow [DHL90]
in using ECA rules to implement a Petri Net-like structure for managing work-
flows.

The active rules in AMOS II, described in section 5.1.4 are used by the
WFServer to detect the event of an update of the workflow structure, namely
when a DataSource is created, and the condition that all input data to a
CompProxy is present. This should be compared with definiton 4.5, the firing
rule for a Petri Net. Using the simple ECA rule below, we implement the
appropriate firing rule for our workflow structure:

create rule execute_cp(CompProxy cp) as
from DataSource ds
on updated(created(ds))
when ds = indata(cp) and ready(cp) = 1 and
scheduled(cp) = 0 and completed(cp) '= -1
do lrt_invoke(cp);

Take the example of Fig. 6.6, where we start out with scanner-specific
images that already exist when the workflow is defined. To initiate process-
ing we set the attribute created of each scanner-specific image to 1. The
update event is now caught by the ECA rule, which tests that all input
data are present through the function ready, that this process has not al-
ready been scheduled and also that the process has not already been aborted
(completed = -1).

The action part of this rule-instance now executes the
1rt_invoke (CompProxy cp) function, that starts up a process under the Saga
transactional framework as described in section 5.1.5. The process is started as
described in section 6.4 and upon successful termination updates the database
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by setting the attribute created of all output data from the CompProxy to
1, which may enable segmentation of the converted images.

We may add more rules to this simple rule that takes care of the initiation
of processing. For example, if a process has aborted, then depending of the
way the process terminated, we either automatically re-submit the processing
or notify the administrator. An automatic re-submit would be suitable if the
alloted time on the supercomputer is out and the processing can continue from
where it was stopped in a subsequent re-submission of the processing.

The number of rules in a workflow system should probably be kept small,
since the increased complexity of state transitions that rules infer may lead to
anomalies such as infinite loops.

6.3.2 Transactional Model

In section 6.3.1, the rule-execution revealed many of the possible states of the
transactional model depicted in Fig. 6.4 (a). We may not always want to exe-
cute a process within a transaction and then we employ the non-transactional
model of Fig. 6.4 (b). In the figure, italicized words denote state transitions
while normal font indicate states (we borrow the notation from [KS95]) and,
further, underlined transitions denote controllable transitions. That is, if a
process is terminated abnormally on the operative system-level, in the Saga
transactional model, the appropriate compensations (see section 5.1.5) are
programmed to be executed. The other controlled transition of Fig. 6.4 (a),
also present in (b), is the reset of states to be performed before a new trans-
action can be initiated. This stage may be necessary to perform manually.

The compensating transactions {0y, 09, ..., 0, } should be designed to per-
form the inverse of the forward tramnsactions {71, 7s,...,7,}, for example to
clean the working directory for intermediate results, if any.

6.3.3 Interfacing Existing Analysis Programs to the WFMS

The WEFMS executes external programs by issuing operative system-level calls
from the WFClients of Fig. 6.2. To be able to automate this, all executables
have to be wrapped in a script assuring that the invocation of the executable
is on the form:

<executable> -i <indata_list> -o <outdata_list> -p <parameter_list>

where indata_list, outdata_list and parameter_list are blankspace de-
limited lists of indata, outdata and parameters, respectively.

An example of a modified processing chain could be to stop after the
warped PET images, the end-result of Fig. 4.6 (a) and add a correlation
module operating on a set of warped PET images.



80 Chapter 6. Development of a Workflow System for Meta-analysis
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Figure 6.4. The Saga transactional model (a) and the non-transactional
model (b) employed in the WFMS

To add a new correlation module operating on a set of warped PET data
one needs to:

e Wrap the existing executable: Add a script correlation.s that is exe-
cuted by the following sequence:

correlation.s -i pet_1.vff pet_2.vff ... pet_n.vff -o corr.vff
The script calls the original correlation executable and produces the
output data corr.vff?.

e Create a PCModule in the WFMS: An AMOSQL constructor
insert_pcmodule( ... ) is called with appropriate input data.

e (reate an AMOSQL function for creation of CompProxy objects: The
PCModule can be used on its own, but providing a function that pro-
duces CompProxy:s corresponding to this PCModule is handy.

2vff is the suffix of the internal file format
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e Plug in the new type of CompProxy to the appropriate place in a work-
flow: See Fig. 6.7. The AMOSQL code needed to produce this will be
very similar to that described in section 6.4.1, remove the last lines in-
serting CompProxy:s for the mask and the statistical analysis and place
the correlation module before the preceeding END to be executed for
functional images corresponding to each subject.

6.4 Distributing Image Processing: A Simple
Client-Server Approach

The method employed for distributing processes across the parallel computer
is based on the client-server communication between instances of AMOS II
databases. The Workflow Server maintains a full database, containing the
raw, unprocessed data as well as a representation of the processing chain (see
section 2.3.2) and its intermediate data as described in section 6.3 When an
ECA rule is triggered, as described in section 6.3, and thus a process is ready
to start, it is put in a processing queue.

Each process has a cost associated with it, based on prior knowledge of
the time it takes to finish, and when a certain total cost has been reached in a
queue, the scheduler of the parallel computer® receives a request to start a job
on a certain kind of node, see table 6.4 with an allowed CPU time somewhat
higher than the total cost of the processes currently in the queue.

Type MHz RAM (MB) # of processors # of nodes
T 160 256 1 122

W 160 512 1 8

Z 160 1024 1 2

M 332 1024 4 21

N 222 4096 8 7

H 222 16384 8 1

Table 6.1. Types of parallel computer nodes in the IBM Strindberg computer

This job starts up an empty AMOS II database on the alloted processing
node, which immediately connects to the workflow server, identifies itself and
asks for the processes in its processing queue. When a process finishes, the
database at the server is updated and when all processes are finished, the
workflow client terminates. The updates to the server database might trigger
new processes as described in section 6.3.1 and thus new processes are queued.

3not to be confused with the WFMS class Scheduler of Fig. 6.3
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The processing chain currently work on files, not database objects, which
removes the problem of distribution of data, since the parallel computer system
is equipped with a fast secondary memory shared between all the nodes.

Comparing this with the evolutionary development devised in section 3.4,
we note that in the final stage of the architecture we will need an automatic
database population program for images that should go into the specialized
raster database management system RasDaMan (section 5.2), a program that
could be added to the processing chain of Fig. 6.6.

6.4.1 AMOSQL Interface for Managing Workflows

The WFMS is implemented in the AMOSQL language with some extensions
in the form of Java foreign functions as described in section 5.1.1.

For each PCModule that may be executed in a workflow there is an
AMOSQL function that inserts a CompProxy of that type at the correct
place in the processing chain. These functions can then combined in the be-
low AMOSQL pseudo-code database procedure for specifying a workflow for
one PET experiment, (cf. Fig. 6.6):

CREATE FUNCTION insert_workflow(PETExperiment exp) -> Workflow wf
AS BEGIN
FOR EACH MRImage mr, FunctionalSubject fs
WHERE mr = anatomical_image(fs) AND fs = subjects(exp)
BEGIN
/* Conversion of anatomical images */

/* Segmentation of anatomical images */
/* Transformation of anatomical images */

FOR EACH PETImage pet

WHERE pet = functional_images(sessions(fs)) AND
fs = subjects(exp)

BEGIN
/* Conversion of anatomical images */

/* warping of PET images */
/* subsampling of PET images */

END;
END;
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/* Generate mask for imagemodel */
/* Run image_model (statistical analysis) */

END;

Once the workflow has been specified, either through AMOSQL as sketched
above, or with the help of a graphical user interface, see section 6.5, the
workflow may be initiated, paused, and resumed through purposefully defined
AMOSQL functions. When a process is triggered as described in section 6.3.1,
the following function is executed:

CREATE FUNCTION 1lrt_invoke(CompProxy cp) -> CompProxy AS BEGIN
DECLARE Saga s;

SET s = transact(cp);

Saga s BEGIN
invoke(cp) ;

END;

COMPENSATION BEGIN
undo (cp) ;

END;

RESULT cp;
END;

The function invoke (CompProxy cp) called from within the Saga sched-
ules the CompProxy and sets the state acordingly, see figure 6.4.

For each PCModule, wherever possible, there is a compensating undo-
function that is executed if, during execution of the corresponding Comp-
Proxy, an unsuccessful exit signal* of the operative system-level process is
encountered.

6.5 A Graphical Language for Workflow Spec-
ification
Workflow interaction can be accomplished through the AMOSQL interface to

the WEMS, but a graphical user interface (GUI) will provide a more intu-
itive interaction at least for new users. Further, the definition of a graphical

4often a signal # 0
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Figure 6.5. Graphical language constructs in the WFMS GUI

language for workflow specification will add to a consistent description of
workflow dynamics and provides a nice environment for incorporation of Petri
Net based analysis, as described in section 4.4. Last but not least, the use
of the JHotDraw environment for constructing the GUI provides an excellent
example of reuse of frameworks building on patterns.

6.5.1 Workflow Constructs

The workflow constructs so far present in the WFMS are depicted in Fig. 6.5
and are based on the needs of the processing chain as described in section
6.1. Since the processing chain is massively parallel in structure, the con-
struct of Fig. 6.5(f) proved especially valuable, as can be seen in Fig. 6.6
where the PET processing chain depicted conceptually in Fig. 2.7 is inserted
into the WFMS GUI. The workflow contains 3 conditions and 8 repetitions
for which the functional images are converted and subsampled in parallel.
Moreover, the number of subjects are 10 and thus conversion of anatomical
images, segmentation and transformation are performed in parallel as well as
the aforementioned 3 x 8 instances of conversion, warping and subsampling
of functional images, resulting in e.g. 240 conversions of functional images to
internal format.
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1Selection Tool

Figure 6.6. The full PET processing chain for 10 subjects and 8 x 3 functional
images

6.5.2 GUI Implementation

The WEMS GUI is being constructed using the JHotDraw framework defined
in section 5.3 and the AMOS II Java API for connecting to the WFServer as
depicted in Fig. 6.2. The lower part of Fig. 6.8 shows the JHotDraw classes
reused in the implementation and the upper part are the WF GUI classes. The
main idea of building on the JHotDraw framework is that all user interaction
and presentation can be reused directly through the inheritance of LineCon-
nection, EllipseFigure, RectangleFigure and Graphical CompositeFigure from
the main GUI presentation classes ArcConnection, PlaceFigure, Transition-
Figure and CompTransFigure, respectively.

Of these, PlaceFigure and TransitionFigure share a number of features
that were put into the PNFigure interface. Their presentation-independent
data are maintained by the abstract superclass PN Vertex.

The WorkflowFactory connects the WEMS GUI to the WEFServer through
usage of the Java callin package of AMOS II (see section 5.1), using the class
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;Selection Tool

Figure 6.7. A modified processing chain using a (hypothetical) correlation
module

Connection for opening a client connection to the WFServer. By calling the
class Signature (see Fig. 6.3), keeping track of datatypes and cardinality of
input and output data corresponding to a PCModule, in the WFMS database,
constraints on how to connect the processing chain can be enforced. The
Petri Net analysis methods described in section 4.4 are plugged in via the
AnalysisStrategy class and can be used to e.g. verify that a workflow is sound.

At present the WorkflowFactory and the AnalysisStrategy classes are not
implemented, but they are still included in the UML diagram of Fig. 6.8 to
indicate how these concepts can be plugged in to the system. A connection to
the WFMS will aong other things enable the user to monitor and manipulate
the status of running workflows, to for example obtain estimates on when the
workflow will be finished or pause and resume workflows.
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Chapter 7

Conclusions

We relate experiences in designing and developing meta-analysis systems for
brain research. The methodology for system construction described in section
3.4 is new and we present a novel view on how to design a workflow environ-
ment for brain imaging meta-analysis in chapters 4 and 6 as an example of
the methodology. The development of the workflow system was cost-effective
due to the reuse of database concepts as described in chapter 6.

Although databases for managing brain imaging experiments are already
manifold, as presented in chapter 2, the aspects related in this thesis, such as
evolutionary development and image processing management for the domain
of brain imaging research, have not been previously discussed. We believe that
the system being designed will help participating researchers in formulating
new hypotheses about brain function, as discussed in section 2.4.2. We also
believe that other systems for brain imaging experiments, as well as other
complex systems, may benefit from the ideas about evolutionary development
and workflow management related in chapters 3 and 4, 6, respectively.

In the field of scientific workflow management, we believe the concept of
traceability have not been given a formal definition as in section 4.4.3

Future work includes a more formal definition of the methodology de-
scribed in section 3.4 and research on applicability outside the domain of
construction of systems for brain imaging research and the organizational as-
pects of the methodology (such as defining types of organizations that may
profit from the decentralized approach). In the field of workflow management,
the benefits of a Petri Net based analysis for scientific workflows and the us-
ages of workflow management in data mining and meta-analysis should be
investigated.

For the BINS and NeuroGenerator projects, the most interesting issues are
related to aiding researchers in formulating new hypotheses on brain function,
such as providing tools for meta-analysis and data mining.
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