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Preface to the Fourth Edition

Since the appearance of our book, Fundamentals of Semiconductors:
Physics and Materials Properties, one of the questions we are asked
most frequently is this: “is there a solution manual to this book?” In preparing
the questions at the end of each chapter we have already tried to guide the
readers to derive the answers by themselves using a step-by-step approach.
Clearly this strategy did not work for everyone. We recognize that many of
the questions in this book are quite challenging and often require reading of
research papers to solve them. In response to readers demand we have de-
cided to provide solutions to some of the problems in this new edition. Since
working through problems is an important and necessary part of the learning
process in physics we will not give the solutions to all the problems. Instead,
we hope to use the solutions to a number of selected problems in each chap-
ter as an additional study help to the readers. We like to use these solutions
to provide more in depth discussions to topics which may be too specialized
for a typical course on semiconductor physics. By leaving enough unsolved
problems and adding a few new ones there are still plenty of opportunities for
both the instructors to choose problems for assignments and for students to
test their understanding of the text. We like to point out that, even if the solu-
tion can be found in this manual, there is usually more than one way to solve
a given problem. Conscientious students should always ask whether there is a
better way to solve a problem than the one we have provided in this manual.

This new addition also allows us to update and expand some topics and
references. Finally, we hope to have taken care of the few errors still remain-
ing in the third edition. We like to use this opportunity to thank the readers
who have identified them to us. Their support has been invaluable in our ef-
fort to improve this book.

A Russian translation of our book has appeared in 2003. It joins previ-
ous translations of the book into Japanese and Chinese, making this book
available to a truly international readership. Last, but not least, the home-
page of the book has been given a ”face lift”. Readers are encouraged to
visit the new website at: http://pauline.berkeley.edu/Book/Fundamentals.html
to discover new information and materials which have been added.

Peter Y. Yu and M. Cardona
Berkeley, CA and Stuttgart, Germany

March 2010





Preface to the Third Edition

The support for our book has remained high and compliments from readers
and colleagues have been most heart-warming. We would like to thank all of
you, especially the many students who have continued to send us their com-
ments and suggestions. We are also pleased to report that a Japanese transla-
tion appeared in 1999 (more details can be obtained from a link on our Web
site: http://pauline.berkeley.edu/textbook). Chinesea) and Russian translations
are in preparation.

Semiconductor physics and material science have continued to prosper and
to break new ground. For example, in the years since the publication of the
first edition of this book, the large band gap semiconductor GaN and related
alloys, such as the GaInN and AlGaN systems, have all become important ma-
terials for light emitting diodes (LED) and laser diodes. The large scale pro-
duction of bright and energy-efficient white-light LED may one day change
the way we light our homes and workplaces. This development may even im-
pact our environment by decreasing the amount of fossil fuel used to produce
electricity. In response to this huge rise in interest in the nitrides we have
added, in appropriate places throughout the book, new information on GaN
and its alloys. New techniques, such as Raman scattering of x-rays, have given
detailed information about the vibrational spectra of the nitrides, available
only as thin films or as very small single crystals. An example of the progress
in semiconductor physics is our understanding of the class of deep defect cen-
ters known as the DX centers. During the preparation of the first edition, the
physics behind these centers was not universally accepted and not all its pre-
dicted properties had been verified experimentally. In the intervening years
additional experiments have verified all the remaining theoretical predictions
so that these deep centers are now regarded as some of the best understood
defects. It is now time to introduce readers to the rich physics behind this
important class of defects.

The progress in semiconductor physics has been so fast that one problem
we face in this new edition is how to balance the new information with the old
material. In order to include the new information we had either to expand the
size of the book, while increasing its price, or to replace some of the existing
material by new sections. We find either approach undesirable. Thus we have
come up with the following solution, taking advantage of the Internet in this

a The Chinese version was published in 2002 by Lanzhou University Press (see
www.onbook.com.cn)
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new information age. We assume that most of our readers, possibly all, are
“internet-literate” so that they can download information from our Web site.
Throughout this new edition we have added the address of Web pages where
additional information can be obtained, be this new problems or appendices
on new topics. With this solution we have been able to add new information
while keeping the size of the book more or less unchanged. We are sure the
owners of the older editions will also welcome this solution since they can
update their copies at almost no cost.

Errors seem to decay exponentially with time. We thought that in the sec-
ond edition we had already fixed most of the errors in the original edition.
Unfortunately, we have become keenly aware of the truth contained in this
timeless saying: “to err is human”. It is true that the number of errors discov-
ered by ourselves or reported to us by readers has dropped off greatly since
the publication of the second edition. However, many serious errors still re-
mained, such as those in Table 2.25. In addition to correcting these errors in
this new edition, we have also made small changes throughout the book to
improve the clarity of our discussions on difficult issues.

Another improvement we have made in this new edition is to add many
more material parameters and a Periodic Table revealing the most common
elements used for the growth of semiconductors. We hope this book will be
not only a handy source for information on topics in semiconductor physics
but also a handbook for looking up material parameters for a wide range of
semiconductors. We have made the book easier to use for many readers who
are more familiar with the SI system of units. Whenever an equation is dif-
ferent when expressed in the cgs and SI units, we have indicated in red the
difference. In most cases this involves the multiplication of the cgs unit equa-
tion by (4Â0)�1 where Â0 is the permittivity of free space, or the omission of
a factor of (1/c) where c is the speed of light.

Last but not least, we are delighted to report that the Nobel Prize in
Physics for the year 2000 has been awarded to two semiconductor physicists,
Zhores I. Alferov and Herbert Kroemer (“for developing semiconductor het-
erostructures used in high-speed- and opto-electronics”) and a semiconductor
device engineer, Jack S. Kilby (“for his part in the invention of the integrated
circuit”).

Stuttgart and Berkeley, Peter Y. Yu
January 2001 Manuel Cardona



Preface to the Second Edition

We have so far received many comments and feedback on our book from all
quarters including students, instructors and, of course, many friends. We are
most grateful to them not only for their compliments but also for their valu-
able criticism. We also received many requests for an instructor manual and
solutions to the problems at the end of each chapter. We realize that semicon-
ductor physics has continued to evolve since the publication of this book and
there is a need to continue to update its content. To keep our readers informed
of the latest developments we have created a Web Page for this book. Its ad-
dress (as of the writing of this preface) is: http://pauline.berkeley.edu/textbook.
At this point this Web Page displays the following information:

1) Content, outline and an excerpt of the book.
2) Reviews of the book in various magazines and journals.
3) Errata to both first and second printing (most have been corrected in

the second edition as of this date).
4) Solutions to selected problems.
5) Additional supplementary problems.

The solutions in item (4) are usually incomplete. They are supposed to serve
as helpful hints and guides only. The idea is that there will be enough left
for the students to do to complete the problem. We hope that these solutions
will satisfy the need of both instructors and students. We shall continue to add
new materials to the Web Page. For example, a list of more recent references
is planned. The readers are urged to visit this Web Page regularly to find out
the latest information. Of course, they will be welcomed to use this Web Page
to contact us.

While the present printing of this book was being prepared, the 1998 Inter-
national Conference on the Physics of Semiconductors (ICPS) was being held
in Jerusalem (Israel). It was the 24th in a biannual series that started in 1950
in Reading (U.K.), shortly after the discovery of the transistor by Shockley,
Bardeen and Brattain in 1948. The ICPS conferences are sponsored by the In-
ternational Union of Pure and Applied Physics (IUPAP). The proceedings of
the ICPS’s are an excellent historical record of the progress in the field and
the key discoveries that have propelled it. Many of those proceedings appear
in our list of references and, for easy identification, we have highlighted in
red the corresponding entries at the end of the book. A complete list of all
conferences held before 1974, as well as references to their proceedings, can
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be found in the volume devoted to the 1974 conference which was held in
Stuttgart [M. H. Pilkuhn, editor (Teubner, Stuttgart, 1974) p. 1351]. The next
ICPS is scheduled to take place in Osaka, Japan from Sept. 18 to 22 in the
year 2000.

The Jerusalem ICPS had an attendance of nearly 800 researchers from 42
different countries. The subjects covered there represent the center of the cur-
rent interests in a rapidly moving field. Some of them are already introduced
in this volume but several are still rapidly developing and do not yet lend
themselves to discussion in a general textbook. We mention a few keywords:

Fractional quantum Hall effect and composite fermions.
Mesoscopic effects, including weak localization.
Microcavities, quantum dots, and quantum dot lasers.
III–V nitrides and laser applications.
Transport and optical processes with femtosecond resolution.
Fullerites, C60-based nanotubes.
Device physics: CMOS devices and their future.

Students interested in any of these subjects that are not covered here, will
have to wait for the proceedings of the 24th ICPS. Several of these topics are
also likely to find a place in the next edition of this book.

In the present edition we have corrected all errors known to us at this
time and added a few references to publications which will help to clarify the
subjects under discussion.

Stuttgart and Berkeley, Peter Y. Yu
November 1998 Manuel Cardona
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I, who one day was sand but am today a crystal
by virtue of a great fire
and submitted myself to the demanding rigor
of the abrasive cut,
today I have the power
to conjure the hot flame.
Likewise the poet, anxiety and word:
sand, fire, crystal, strophe, rhythm.
– woe is the poem that does not light a flame

David Jou, 1983
(translated from the Catalan original)

The evolution of this volume can be traced to the year 1970 when one of us
(MC) gave a course on the optical properties of solids at Brown University
while the other (PYY) took it as a student. Subsequently the lecture notes
were expanded into a one-semester course on semiconductor physics offered
at the Physics Department of the University of California at Berkeley. The
composition of the students in this course is typically about 50 % from the
Physics Department, whereas the rest are mostly from two departments in the
School of Engineering (Electrical Engineering and Computer Science; Mate-
rials Science and Mineral Engineering). Since the background of the students
was rather diverse, the prerequisites for this graduate-level course were kept
to a minimum, namely, undergraduate quantum mechanics, electricity and
magnetism and solid-state physics. The Physics Department already offers a
two-semester graduate-level course on condensed matter physics, therefore it
was decided to de-emphasize theoretical techniques and to concentrate on
phenomenology. Since many of the students in the class were either growing
or using semiconductors in device research, particular emphasis was placed on
the relation between physical principles and device applications. However, to
avoid competing with several existing courses on solid state electronics, discus-
sions of device design and performance were kept to a minimum. This course
has been reasonably successful in “walking this tight-rope”, as shown by the
fact that it is offered at semi-regular intervals (about every two years) as a
result of demands by the students.

One problem encountered in teaching this course was the lack of an ad-
equate textbook. Although semiconductor physics is covered to some extent
in all advanced textbooks on condensed matter physics, the treatment rarely
provides the level of detail satisfactory to research students. Well-established
books on semiconductor physics are often found to be too theoretical by ex-
perimentalists and engineers. As a result, an extensive list of reading materials
initially replaced the textbook. Moreover, semiconductor physics being a ma-
ture field, most of the existing treatises concentrate on the large amount of
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well-established topics and thus do not cover many of the exciting new devel-
opments. Soon the students took action to duplicate the lecture notes, which
developed into a “course reader” sold by the Physics Department at cost. This
volume is approximately “version 4.0” (in software jargon) of these lecture
notes.

The emphasis of this course at Berkeley has always been on simple phys-
ical arguments, sometimes at the expense of rigor and elegance in mathemat-
ics. Unfortunately, to keep the promise of using only undergraduate physics
and mathematics course materials requires compromise in handling special
graduate-level topics such as group theory, second quantization, Green’s func-
tions and Feynman diagrams, etc. In particular, the use of group theory nota-
tions, so pervasive in semiconductor physics literature, is almost unavoidable.
The solution adopted during the course was to give the students a “five-minute
crash course” on these topics when needed. This approach has been carried
over to this book. We are fully aware of its shortcomings. This is not too seri-
ous a problem in a class since the instructor can adjust the depth of the sup-
plementary materials to satisfy the need of the students. A book lacks such
flexibility. The readers are, therefore, urged to skip these “crash courses”, es-
pecially if they are already familiar with them, and consult the references for
further details according to their background.

The choice of topics in this book is influenced by several other factors.
Most of the heavier emphasis on optical properties reflects the expertise of the
authors. Since there are already excellent books emphasizing transport prop-
erties, such as the one by K. H. Seeger, our book will hopefully help to fill
a void. One feature that sets this book apart from others on the market is
that the materials science aspects of semiconductors are given a more impor-
tant role. The growth techniques and defect properties of semiconductors are
represented early on in the book rather than mentioned in an appendix. This
approach recognizes the significance of new growth techniques in the devel-
opment of semiconductor physics. Most of the physics students who took the
course at Berkeley had little or no training in materials science and hence a
brief introduction was found desirable. There were some feelings among those
physics students that this course was an easier way to learn about materials
science! Although the course offered at Berkeley lasted only one semester,
the syllabus has since been expanded in the process of our writing this book.
As a result it is highly unlikely that the volume can now be covered in one
semester. However, some more specialized topics can be omitted without loss
of continuity, such as high field transport and hot electron effects, dynamic
effective ionic charge, donor–acceptor pair transitions, resonant Raman and
Brillouin scattering, and a few more.

Homework assignment for the course at Berkeley posed a “problem” (ex-
cuse our pun). No teaching assistant was allocated by the department to help
with grading of the problem sets. Since the enrollment was typically over thirty
students, this represented a considerable burden on the instructor. As a “so-
lution” we provide the students with the answers to most of the questions.
Furthermore, many of the questions “lead the student by the hand” through
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the calculation. Others have hints or references where further details can be
found. In this way the students can grade their own solutions. Some of the
material not covered in the main text is given in the form of “problems” to be
worked out by the student.

In the process of writing this book, and also in teaching the course, we
have received generous assistance from our friends and colleagues. We are es-
pecially indebted to: Elias Burstein; Marvin Cohen; Leo Esaki; Eugene Haller;
Conyers Herring; Charles Kittel; Neville Smith; Jan Tauc; and Klaus von Klitz-
ing for sharing their memories of some of the most important developments in
the history of semiconductor physics. Their notes have enriched this book by
telling us their “side of the story”. Hopefully, future students will be inspired
by their examples to expand further the frontiers of this rich and productive
field. We are also grateful to Dung-Hai Lee for his enlightening explanation
of the Quantum Hall Effect.

We have also been fortunate in receiving help from the over one hundred
students who have taken the course at Berkeley. Their frank (and anonymous)
comments on the questionnaires they filled out at the end of the course have
made this book more “user-friendly”. Their suggestions have also influenced
the choice of topics. Many postdoctoral fellows and visitors, too numerous to
name, have greatly improved the quality of this book by pointing out errors
and other weaknesses. Their interest in this book has convinced us to continue
in spite of many other demands on our time. The unusually high quality of the
printing and the color graphics in this book should be credited to the follow-
ing people: H. Lotsch, P. Treiber, and C.-D. Bachem of Springer-Verlag,
Pauline Yu and Chia-Hua Yu of Berkeley, Sabine Birtel and Tobias Ruf of
Stuttgart. Last but not the least, we appreciate the support of our families.
Their understanding and encouragement have sustained us through many dif-
ficult and challenging moments. PYY acknowledges support from the John S.
Guggenheim Memorial Foundation in the form of a fellowship.

Stuttgart and Berkeley, Peter Y. Yu
October 1995 Manuel Cardona
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A SEMI-CONDUCTOR
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In textbooks on solid-state physics, a semiconductor is usually defined rather
loosely as a material with electrical resistivity lying in the range of 10�2 �
109 ø cm.1 Alternatively, it can be defined as a material whose energy gap (to
be defined more precisely in Chap. 2) for electronic excitations lies between
zero and about 4 electron volts (eV). Materials with zero bandgap are met-
als or semimetals, while those with an energy gap larger than 3 eV are more
frequently known as insulators. There are exceptions to these definitions. For
example, terms such as semiconducting diamond (whose energy gap is about
6 eV) and semi-insulating GaAs (with a 1.5 eV energy gap) are frequently
used. GaN, which is receiving a lot of attention as optoelectronic material in
the blue region, has a gap of 3.5 eV.

The best-known semiconductor is undoubtedly silicon (Si). However, there
are many semiconductors besides silicon. In fact, many minerals found in na-
ture, such as zinc-blende (ZnS) cuprite (Cu2O) and galena (PbS), to name just
a few, are semiconductors. Including the semiconductors synthesized in labo-
ratories, the family of semiconductors forms one of the most versatile class of
materials known to man.

Semiconductors occur in many different chemical compositions with a
large variety of crystal structures. They can be elemental semiconductors,
such as Si, carbon in the form of C60 or nanotubes and selenium (Se) or
binary compounds such as gallium arsenide (GaAs). Many organic com-
pounds, e. g. polyacetylene (CH)n, are semiconductors. Some semiconductors
exhibit magnetic (Cd1�xMnxTe) or ferroelectric (SbSI) behavior. Others be-
come superconductors when doped with sufficient carriers (GeTe and SrTiO3).
Many of the recently discovered high-Tc superconductors have nonmetallic
phases which are semiconductors. For example, La2CuO4 is a semiconductor
(gap � 2 eV) but becomes a superconductor when alloyed with Sr to form
(La1�xSrx)2CuO4.

1 ø cm is a “hybrid” SI and cgs resistivity unit commonly used in science and engineer-
ing. The SI unit for resistivity should be ø m

P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, Graduate Texts in Physics, 4th ed., 
DOI 10.1007/978-3-642-00710-1_1, © Springer-Verlag Berlin Heidelberg 2010 



2 1. Introduction

1.1 A Survey of Semiconductors

The following is a brief survey of several types of the better-known semicon-
ductors.

1.1.1 Elemental Semiconductors

The best-known semiconductor is of course the element Si. Together with ger-
manium (Ge), it is the prototype of a large class of semiconductors with sim-
ilar crystal structures. The crystal structure of Si and Ge is the same as that
of diamond and ·-tin (a zero-gap semiconductor also known as “gray” tin). In
this structure each atom is surrounded by four nearest neighbor atoms (each
atom is said to be four-fold coordinated), forming a tetrahedron. These tetra-
hedrally bonded semiconductors form the mainstay of the electronics industry
and the cornerstone of modern technology. Most of this book will be devoted
to the study of the properties of these tetrahedrally bonded semiconductors.
Some elements from the groups V and VI of the periodical table, such as
phosphorus (P), sulfur (S), selenium (Se) and tellurium (Te), are also semi-
conductors. The atoms in these crystals can be three-fold (P), two-fold (S, Se,
Te) or four-fold coordinated. As a result, these elements can exist in several
different crystal structures and they are also good glass-formers. For example,
Se has been grown with monoclinic and trigonal crystal structures or as a glass
(which can also be considered to be a polymer).

1.1.2 Binary Compounds

Compounds formed from elements of the groups III and V of the periodic
table (such as GaAs) have properties very similar to their group IV counter-
parts. In going from the group IV elements to the III–V compounds, the bond-
ing becomes partly ionic due to transfer of electronic charge from the group
III atom to the group V atom. The ionicity causes significant changes in the
semiconductor properties. It increases the Coulomb interaction between the
ions and also the energy of the fundamental gap in the electronic band struc-
ture. The ionicity becomes even larger and more important in the II–VI com-
pounds such as ZnS. As a result, most of the II–VI compound semiconductors
have bandgaps larger than 1 eV. The exceptions are compounds containing
the heavy element mercury (Hg). Mercury telluride (HgTe) is actually a zero-
bandgap semiconductor (or a semimetal) similar to gray tin. While the large
bandgap II–VI compound semiconductors have potential applications for dis-
plays and lasers, the smaller bandgap II–VI semiconductors are important ma-
terials for the fabrication of infrared detectors. The I–VII compounds (e. g.,
CuCl) tend to have even larger bandgaps (�3 eV) as a result of their higher
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ionicity. Many of them are regarded as insulators rather than semiconductors.
Also, the increase in the cohesive energy of the crystal due to the Coulomb
interaction between the ions favors the rock-salt structure containing six-fold
coordinated atoms rather than tetrahedral bonds. Binary compounds formed
from group IV and VI elements, such as lead sulfide (PbS), PbTe and tin sul-
fide (SnS), are also semiconductors. The large ionicity of these compounds also
favors six-fold coordinated ions. They are similar to the mercury chalcogenides
in that they have very small bandgaps in spite of their large ionicity. These
small bandgap IV–VI semiconductors are also important as infrared detectors.
GaN, a large bandgap III–V compound, and the mixed crystals Ga1�xInxN are
being used for blue light emitting diodes and lasers [1.1].

1.1.3 Oxides

Although most oxides are good insulators, some, such as CuO and Cu2O, are
well-known semiconductors. Since cuprous oxide (Cu2O) occurs as a mineral
(cuprite), it is a classic semiconductor whose properties have been studied ex-
tensively. In general, oxide semiconductors are not well understood with re-
gard to their growth processes, so they have limited potential for applications
at present. One exception is the II–VI compound zinc oxide (ZnO), which has
found application as a transducer and as an ingredient of adhesive tapes and
sticking plasters. However, this situation has changed with the discovery of su-
perconductivity in many oxides of copper.

The first member of these so-called high-Tc superconductors, discovered
by Müller and Bednorz2, is based on the semiconductor lanthanum copper
oxide (La2CuO4), which has a bandgap of about 2 eV. Carriers in the form
of holes are introduced into La2CuO4 when trivalent lanthanum (La) is re-
placed by divalent barium (Ba) or strontium (Sr) or when an excess of oxygen
is present. When sufficient carriers are present the semiconductor transforms
into a superconducting metal. So far the highest superconducting transition
temperature at ambient pressure (Tc � 135 K) found in this family of mate-
rials belongs to HgBaCa2Cu3O8�‰. HgBaCa2Cu3O8�‰ reaches a Tc � 164 K
under high pressure [1.2]. At the time this third edition went into print this
record had not yet been broken.

1.1.4 Layered Semiconductors

Semiconducting compounds such as lead iodide (PbI2), molybdenum disulfide
(MoS2) and gallium selenide (GaSe) are characterized by their layered crys-
tal structures. The bonding within the layers is typically covalent and much
stronger than the van der Waals forces between the layers. These layered semi-
conductors have been of interest because the behavior of electrons in the lay-
ers is quasi-two-dimensional. Also, the interaction between layers can be mod-

2 For this discovery, Bednorz and Müller received the Physics Nobel Prize in 1987.



4 1. Introduction

ified by incorporating foreign atoms between the layers in a process known as
intercalation.

1.1.5 Organic Semiconductors

Many organic compounds such as polyacetylene [(CH2)n] and polydiacetylene
are semiconductors. Although organic semiconductors are not yet used in any
electronic devices, they hold great promise for future applications. The advan-
tage of organic over inorganic semiconductors is that they can be easily tai-
lored to the applications. For example, compounds containing conjugate bonds
such as –C=C–C= have large optical nonlinearities and therefore may have im-
portant applications in opto-electronics. The bandgaps of these compounds can
be changed more easily than those of inorganic semiconductors to suit the ap-
plication by changing their chemical formulas. Recently new forms of carbon,
such as C60 (fullerene), have been found to be semiconductors. One form of
carbon consists of sheets of graphite rolled into a tube of some nanometers
in diameter known as nanotubes [1.3,4]. These carbon nanotubes and their
“cousin”, BN nanotubes, hold great promise as nanoscale electronic circuit
elements. They can be metals or semiconductors depending on their pitch.

1.1.6 Magnetic Semiconductors

Many compounds containing magnetic ions such as europium (Eu) and man-
ganese (Mn), have interesting semiconducting and magnetic properties. Ex-
amples of these magnetic semiconductors include EuS and alloys such as
Cd1�xMnxTe. Depending on the amount of the magnetic ion in these alloys,
the latter compounds exhibit different magnetic properties such as ferromag-
netism and antiferromagnetism. The magnetic alloy semiconductors containing
lower concentrations of magnetic ions are known as dilute magnetic semicon-
ductors. These alloys have recently attracted much attention because of their
potential applications. Their Faraday rotations can be up to six orders of mag-
nitude larger than those of nonmagnetic semiconductors. As a result, these
materials can be used as optical modulators, based on their large magneto-
optical effects. The perovskites of the type Mn0.7Ca0.3O3 undergo metal–semi-
conductor transitions which depend strongly on magnetic field, giving rise to
the phenomenon of collossal magneto-resistance (CMR) [1.5].

1.1.7 Other Miscellaneous Semiconductors

There are many semiconductors that do not fall into the above categories. For
example, SbSI is a semiconductor that exhibits ferroelectricity at low temper-
atures. Compounds with the general formula I–III–VI2 and II–IV–V2 (such as
AgGaS2, interesting for its nonlinear optical properties, CuInSe2, useful for
solar cells, and ZnSiP2) crystallize in the chalcopyrite structure. The bonding
in these compounds is also tetrahedral and they can be considered as analogs
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of the group III–V and II–VI semiconductors with the zinc-blende structure.
Compounds formed from the group V and VI elements with formulas such
as As2Se3 are semiconductors in both the crystalline and glassy states. Many
of these semiconductors have interesting properties but they have not yet re-
ceived much attention due to their limited applications. Their existence shows
that the field of semiconductor physics still has plenty of room for growth and
expansion.

1.2 Growth Techniques

One reason why semiconductors have become the choice material for the
electronics industry is the existence of highly sophisticated growth techniques.
Their industrial applications have, in turn, led to an increased sophistication
of these techniques. For example, Ge single crystals are nowadays amongst
the purest elemental materials available as a result of years of perfecting their
growth techniques (see Appendix by E.E. Haller in p. 555). It is now possible
to prepare almost isotopically pure Ge crystals (natural Ge contains five dif-
ferent isotopes). Nearly perfect single crystals of Si can be grown in the form
of ingots over twelve inches (30 cm) in diameter. Isotopically pure 28Si crystals
have been shown to have considerably higher thermal conductivity than their
natural Si counterparts [1.6]. Dislocation densities in these crystals can be as
low as 1000 cm�3, while impurity concentrations can be less than one part per
trillion (1012).

More recent developments in crystal growth techniques have made semi-
conductors even more versatile. Techniques such as Molecular Beam Epitaxy
(MBE) and Metal-Organic Chemical Vapor Deposition (MOCVD) allow crys-
tals to be deposited on a substrate one monolayer at a time with great pre-
cision. These techniques have made it possible to synthesize artificial crystal
structures known as superlattices and quantum wells (Chap. 9). A recent ad-
vance in fabricating low-dimensional nanostructures takes advantage of either
alignment of atoms with the substrate or strain between substrate and epi-
layer to induce the structure to self-organize into superlattices or quantum
dots. Although a detailed discussion of all the growth techniques is beyond
the scope of this book, a short survey of the most common techniques will
provide background information necessary for every semiconductor physicist.
The references given for this chapter provide further background material for
the interested reader.

1.2.1 Czochralski Method

The Czochralski method is the most important method for growing bulk crys-
tals of semiconductors, including Si. The method involves melting the raw ma-
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Heater

Inert Gas (Ar)

2–50 rpm
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Si single
crystal

SiO2
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Susceptor
(graphite)

Si melt

Fig. 1.1. Schematic diagram
of a Czochralski furnace for
growing Si single crystals

terial in a crucible. A seed crystal is placed in contact with the top, cooler
region of the melt and rotated slowly while being gradually pulled from the
melt. Additional material is solidified from the melt onto the seed. The most
significant development in the Czochralski technique [1.7] (shown schemati-
cally in Fig. 1.1) is the discovery of the Dash technique [1.8,9] for growing
dislocation-free single crystals of Si even when starting with a dislocated seed.
Typical growth speed is a few millimeters per minute, and the rotation ensures
that the resultant crystals are cylindrical. Silicon ingots grown by this method
now have diameters greater than 30 cm.

The crucible material and gas surrounding the melt tend to contribute
to the background impurities in the crystals. For example, the most com-
mon impurities in bulk Si are carbon (from the graphite crucible) and oxy-
gen. Bulk GaAs and indium phosphide (InP) crystals are commonly grown by
the Czochralski method but with the melt isolated from the air by a layer of
molten boron oxide to prevent the volatile anion vapor from escaping. This
method of growing crystals containing a volatile constituent is known as the
Liquid-Encapsulated Czochralski (LEC) Method. As expected, LEC-grown
GaAs often contains boron as a contaminant.

1.2.2 Bridgman Method

In the Bridgman method a seed crystal is usually kept in contact with a melt,
as in the Czochralski method. However, a temperature gradient is created
along the length of the crucible so that the temperature around the seed crys-
tal is below the melting point. The crucible can be positioned either horizon-
tally or vertically to control convection flow. As the seed crystal grows, the
temperature profile is translated along the crucible by controlling the heaters
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along the furnace or by slowly moving the ampoule containing the seed crystal
within the furnace.

1.2.3 Chemical Vapor Deposition

Both the Czochralski and Bridgman techniques are used to grow bulk single
crystals. It is less expensive to grow a thin layer of perfect crystal than a large
perfect bulk crystal. In most applications devices are fabricated out of a thin
layer grown on top of a bulk crystal. The thickness of this layer is about 1 Ìm
or less. Economically, it makes sense to use a different technique to grow a
thin high quality layer on a lower quality bulk substrate. To ensure that this
thin top layer has high crystalline quality, the crystal structure of the thin layer
should be similar, if not identical, to the substrate and their lattice parameters
as close to each other as possible to minimize strain. In such cases the atoms
forming the thin layer will tend to build a single crystal with the same crystal-
lographic orientation as the substrate. The resultant film is said to be deposited
epitaxially on the substrate. The deposition of a film on a bulk single crystal of
the same chemical composition (for example, a Si film deposited on a bulk Si
crystal) is known as homo-epitaxy. When the film is deposited on a substrate
of similar structure but different chemical composition (such as a GaAs film
on a Si substrate), the growth process is known as hetero-epitaxy.

Epitaxial films can be grown from solid, liquid or gas phases. In general,
it is easier to precisely control the growth rate in gas phase epitaxy by con-
trolling the amount of gas flow. In Chemical Vapor Deposition (CVD) gases
containing the required chemical elements are made to react in the vicinity of
the substrate. The semiconductor produced as a result of the reaction is de-
posited as a thin film on a substrate inside the reactor. The temperature of the
substrate is usually an important factor in determining the epitaxy and hence
the quality of the resultant film. The most common reaction for producing a
Si film in this way is given by

SiH4
(silane)

+ 2H2↑Si

substrate
↓

heat
. (1.1)

Highly pure Si can be produced in this way because the reaction by-product
H2 is a gas and can be easily removed. Another advantage of this technique
is that dopants, such as P and As, can be introduced very precisely in the
form of gases such as phosphine (PH3) and arsine (AsH3). III–V compound
semiconductors can also be grown by CVD by using gaseous metal-organic
compounds like trimethyl gallium [Ga(CH3)3] as sources. For example, GaAs
films can be grown by the reaction

Ga(CH3)3 � AsH3 → 3CH4↑� GaAs. (1.2)
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Fig. 1.2. (a) Schematic diagram of a MOCVD apparatus [1.10]. (b) Details of two-
flow MOCVD machine introduced by Nakamura and co-workers for growing GaN.
(c) Schematic diagram of the gas flows near the substrate surface [1.11]

This method of growing epitaxial films from metal-organic gases is known as
Metal-Organic Chemical Vapor Deposition (MOCVD), and a suitable growth
apparatus is shown schematically in Fig. 1.2a. A recent modification intro-
duced for growing GaN is shown in Fig. 1.2b. Figure 1.2c shows the details
of interaction between the two gas flows near the substrate [1.11].

1.2.4 Molecular Beam Epitaxy

In CVD the gases are let into the reactor at relatively high pressure (typi-
cally higher than 1 torr). As a result, the reactor may contain a high concen-
tration of contaminants in the form of residual gases. This problem can be
avoided by growing the sample under UltraHigh Vacuum (UHV) conditions.
(Pressures below 10�7 torr are considered high vacuum, and a base pressure
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Fig. 1.3. Schematic diagram of an effusion (Knudsen) cell [1.10]

around 10�11 torr is UHV. See Sect. 8.1 for further discussion of UHV condi-
tions and the definition of torr.) The reactants can be introduced in the form
of molecular beams. A molecular beam is created by heating a source mate-
rial until it vaporizes in a cell with a very small orifice. Such a cell is known
as an effusion (or Knudsen) cell and is shown schematically in Fig. 1.3. As
the vapor escapes from the cell through the small nozzle, its molecules (or
atoms) form a well-collimated beam, since the UHV environment outside the
cell allows the escaping molecules (or atoms) to travel ballistically for meters
without collision. Typically several molecular beams containing the necessary
elements for forming the semiconductor and for doping the sample are aimed
at the substrate, where the film grows epitaxially. Hence this growth technique
is known as Molecular Beam Epitaxy (MBE).

Figure 1.4 shows the construction of a typical MBE system. In principle,
it is difficult to control the concentration of reactants arriving at the sub-
strate, and hence the crystal stoichiometry, in MBE growth. The technique
works because its UHV environment makes it possible to utilize electrons and
ions as probes to monitor the surface and film quality during growth. The
ion-based probe is usually mass spectrometry. Some of the electron based
techniques are Auger Electron Spectroscopy (AES), Low Energy-Electron
Diffraction (LEED), Reflection High-Energy Electron Diffraction (RHEED),
and X-ray and Ultraviolet Photoemission Spectroscopy (XPS and UPS). These
techniques will be discussed in more detail in Chap. 8. The one most com-
monly used in MBE systems is RHEED.

A typical RHEED system consists of an electron gun producing a high-
energy (10–15 keV) beam aimed at a very large angle of incidence (grazing
incidence) to the substrate surface (see Fig. 1.4). The reflected electron diffrac-
tion pattern is displayed on a phosphor screen (labeled RHEED screen in
Fig. 1.4) on the opposite side. This diffraction pattern can be used to establish
the surface geometry and morphology. In addition, the intensity of the zeroth-
order diffraction beam (or specular beam) has been found to show damped
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Fig. 1.4. Schematic diagram of a typical MBE system [1.10]
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Fig. 1.5. Oscillations in the intensity of the specularly reflected electron beam in the
RHEED pattern during the growth of a GaAs or AlAs film on a GaAs(001) substrate.
One period of oscillation corresponds precisely to the growth of a single layer of GaAs
or AlAs [1.10]
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oscillations (known as RHEED oscillations) that allow the film growth rate
to be monitored in situ. Figure 1.5 shows an example of RHEED oscillations
measured during the growth of a GaAs/AlAs quantum well. Quantum wells
are synthetic structures containing a very thin layer (thickness less than 10 nm)
of semiconductor sandwiched between two thin layers of another semiconduc-
tor with a larger bandgap (see Chap. 9 for further discussion). Each oscillation
in Fig. 1.5 corresponds to the growth of a single molecular layer of GaAs or
AlAs.

To understand how such perfectly stoichiometric layers can be grown, we
note that the Ga or Al atoms attach to a GaAs substrate much more readily
than the As atoms. Since arsenic is quite volatile at elevated temperatures,
any arsenic atoms not reacted with Ga or Al atoms on the substrate will not
be deposited on a heated substrate. By controlling the molecular beams with
shutters and monitoring the growth via RHEED oscillations, it is possible to
grow a thin film literally one monolayer at a time.

The MBE technique is used for the growth of high-quality quantum wells.
The only drawback of this technique in commercial applications is its slow
throughput and high cost (a typical MBE system costs a least US $ 500 000).
As a result, the MBE technique is utilized to study the conditions for growing
high-quality films in the laboratory but large-scale commercial production of
the films uses the MOCVD method.

1.2.5 Fabrication of Self-Organized Quantum Dots
by the Stranski–Krastanow Growth Method

The epitaxial growth of a thin film A on a substrate B can occur in one
of three main growth modes: (1) monolayer or two-dimensional growth; (2)
three-dimensional growth or Volmer–Weber mode and (3) Stranski–
Krastanow mode [1.12]. In mode (1) the atoms of A are attracted to the sub-
strate more strongly than to each other. As a result the atoms first aggregate
to form monolayer islands which then expand and coalesce to form the first
monolayer. In mode (2) the atoms of A are attracted more strongly to each
other than to the substrate. Thus they will first aggregate to form islands and
as deposition continues these islands will grow and finally form a continuous
film. In case of mode (3) the atoms of A will first grow two-dimensionally to
form either a single monolayer or a small number of monolayers thin film.
However, when growth proceeds further the additional atoms of A start to
form three-dimensional islands on top of the thin film as in the Volmer–Weber
mode. The continuous thin film is often referred to as the wetting layer.

One important factor which controls the growth of an epitaxial film is the
lattice mismatch between the epitaxial layer A and the substrate B. Let us as-
sume that the lattice mismatch between A and B is not too large, say only
around 1% of their lattice constants. There are at least two possible ways for
a thin film of A to grow on B. The first possibility is for atoms of A to line
up on top of the corresponding atoms of B and to take on the lattice con-
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stant of B. In this case the film A is strained but pseudomorphic (a pseudo-
morph is an altered crystal form whose outward appearance is the same of
another crystal species). In the second possibility the atoms of A retain their
bulk lattice constant and therefore are out of registry with the substrate atoms.
To minimize this mismatch between the two kinds of atoms, the thin film A
will develop a kind of lattice defect known as a dislocation (see also Chap. 4)
[1.13]. For example, if the lattice constant of A is smaller than B then the mis-
match can be compensated by periodically inserting an extra plane of atoms
of A into the film A to bring its atoms into alignment with the substrate atoms
again. This kind of dislocation is known as a misfit dislocation. Since the lattice
mismatch between A and B occurs in two directions lying within the surface,
these dislocations form a two-dimensional network. The competition between
these two growth modes for lattice-mismatched systems was studied by Frank
and van der Merwe in 1949 [1.14]. The trade-off is between the strain energy
in the strained pseudomorphic film and the energy required to form misfit dis-
locations in the unstrained film. The strain energy increases with the volume
of the film while the dislocation energy depends only on the area of the film.
As a result pseudomorphic growth dominates when the film thickness is small.
However, as the film thickness increases it will become energetically more fa-
vorable for dislocations to form. One may expect this “cross-over” to occur at
some critical layer thickness. The calculation of this critical thickness [1.13] is
beyond the scope of this book.

The above consideration may suggest that the Stranski–Krastanow growth
mode is undesirable for achieving an epitaxial film of uniform thickness. Re-
cently it was found that this growth mode is a convenient and inexpensive way
to produce nanometer structures known as quantum dots [1.15]. In this case
the lattice constant of the epi-layer A has to be larger than that of the sub-
strate B. The atoms of A can relax the tensile strain by “buckling” to form
islands. The principle behind this island formation is similar to the buckling
of a bi-metallic bar with increase in temperature, an effect used in making
temperature sensors and thermostats. Since these quantum dots are formed
spontaneously and can also be formed coherently, their formation is an exam-
ple of a phenomenon in crystal growth known as self-organization. Figure 1.6
shows a plane-view transmission electro-microscope (TEM) image of a single
sheet of InAs (film A with lattice constant 6.06 Å) quantum dots grown on
GaAs substrate (B with lattice constant 5.64 Å).

Figure 1.7 shows the cross-sectional TEM image of a 25 layers thick stack
of InGaAs quantum dots (the thicker part of the dark regions) grown on a
GaAs substrate. Notice that the quantum dots are connected within the layers
by thin dark regions representing the wetting layers. The various layers are
separated by GaAs represented by the lighter regions. The quantum dots in
Fig. 1.7 are aligned on top of each other to form arrays by the tensile strain
which is transmitted through the thin GaAs layers. The coherence is gradu-
ally lost as the layers get farther from the substrate. In addition to quantum
dot arrays, monolayer superlattices, such as GaP/InP, can also be grown
by self-organization.
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Fig. 1.6. A plane-view transmission electro-
microscope (TEM) image of a single sheet of
InAs quantum dots grown on a [100]-oriented
GaAs substrate. Reproduced from [1.15]

Fig. 1.7. A cross-sectional TEM image
of a 25-layer thick stack of InGaAs
quantum dots (the thicker dark regions)
grown on GaAs substrate (lighter area
near the bottom of the picture). The
lighter regions surrounding the InGaAs
layers are also GaAs. Reproduced from
[1.15]

1.2.6 Liquid Phase Epitaxy

Semiconductor films can also be grown epitaxially on a substrate from the liq-
uid phase. This Liquid Phase Epitaxy (LPE) growth technique has been very
successful in growing GaAs laser diodes. Usually a group III metal, such as Ga
or In, is utilized as the solvent for As. When the solvent is cooled in contact
with a GaAs substrate it becomes supersaturated with As and nucleation of
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Fig. 1.8. Setup for LPE crystal growth

GaAs starts on the substrate. By using a slider containing several different so-
lutes (as shown in Fig. 1.8), successive epitaxial layers (or epilayers in short)
of different compositions and/or different dopants can be grown. The advan-
tage of LPE is that the equipment required is inexpensive and easy to set up.
However, it is difficult to achieve the level of control over the growth condi-
tions possible with the MBE technique.

In summary, different techniques are employed to grow bulk single crystals
and thin epilayers of semiconductors. The Czochralski or Bridgman techniques
are used to grow bulk crystals. When feasible, the LPE method is prefered for
growing thin films because of its low cost and fast growth rate. When epilay-
ers of thickness less than 100 nm are required, it is necessary to utilize the
MOCVD or MBE techniques.

In recent years optical mirror furnaces have become very popular for the
growth of oxide semiconductors [1.16].

S UMMARY

In this chapter we have introduced the wide class of materials referred to
as semiconductors and we have mentioned the large range of structural and
physical properties they can have. Most of the semiconductors used in sci-
ence and modern technology are single crystals, with a very high degree
of perfection and purity. They are grown as bulk three-dimensional crystals
or as thin, two-dimensional epitaxial layers on bulk crystals which serve as
substrates. Among the techniques for growing bulk crystals that we have
briefly discussed are the Czochralski and Bridgman methods. Epitaxial tech-
niques for growing two-dimensional samples introduced in this chapter in-
clude chemical vapor deposition, molecular beam epitaxy, and liquid phase
epitaxy.
grown with epitaxial techniques.

Self-organized two-dimensional lattices of quantum dots can also be
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The property which distinguishes semiconductors from other materials con-
cerns the behavior of their electrons, in particular the existence of gaps in
their electronic excitation spectra. The microscopic behavior of electrons in a
solid is most conveniently specified in terms of the electronic band structure.
The purpose of this chapter is to study the band structure of the most com-
mon semiconductors, namely, Si, Ge, and related III–V compounds. We will
begin with a quick introduction to the quantum mechanics of electrons in a
crystalline solid.

The properties of electrons in a solid containing 1023 atoms/cm3 are very
complicated. To simplify the formidable task of solving the wave equations for
the electrons, it is necessary to utilize the translational and rotational symme-
tries of the solid. Group theory is the tool that facilitates this task. However,
not everyone working with semiconductors has a training in group theory, so
in this chapter we will discuss some basic concepts and notations of group the-
ory. Our approach is to introduce the ideas and results of group theory when
applied to semiconductors without presenting the rigorous proofs. We will put
particular emphasis on notations that are often found in books and research
articles on semiconductors. In a sense, band structure diagrams are like maps
and the group theory notations are like symbols on the map. Once the mean-
ing of these symbols is understood, the band structure diagrams can be used
to find the way in exploring the electronic properties of semiconductors.

We will also examine several popular methods of band structure compu-
tation for semiconductors. All band structure computation techniques involve
approximations which tend to emphasize some aspects of the electronic prop-
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erties in semiconductors while, at the same time, de-emphasizing other aspects.
Therefore, our purpose in studying the different computational methods is to
understand their advantages and limitations. In so doing we will gain insight
into the many different facets of electronic properties in semiconductors.

We note also that within the past two decades, highly sophisticated tech-
niques labeled “ab initio” have been developed successfully to calculate many
properties of solids, including semiconductors. These techniques involve very
few assumptions and often no adjustable parameters. They have been applied
to calculate the total energy of crystals including all the interactions between
the electrons and with the nuclei. By minimization of this energy as a function
of atomic spacing, equilibrium lattice constants have been predicted. Other
properties such as the elastic constants and vibrational frequencies can also
be calculated. Extensions of these techniques to calculate excited-state prop-
erties have led to predictions of optical and photoemission spectra in good
agreement with experimental results. It is beyond the scope of the present
book to go into these powerful techniques. Interested readers can consult ar-
ticles in [2.1].

2.1 Quantum Mechanics

The Hamiltonian describing a perfect crystal can be written as

� �
∑

i

p2
i

2mi
�

∑
j

P2
j

2Mj
�

1
2

∑
j′, j

′ ZjZj′e2

4Â0|Rj � Rj′ |

�
∑

j, i

Zje2

4Â0|ri � Rj|
�

1
2

∑
i, i′

′ e2

4Â0|ri � ri′ |
(2.1)

in the cgs system of units. (As mentioned in the preface to this edition, we
have printed in red symbols which must be added to the cgs expression to
convert them into Si units. Â0 represents the permittivity of vacuum). In this
expression ri denotes the position of the ith electron, Rj is the position of
the jth nucleus, Zj is the atomic number of the nucleus, pi and Pj are the
momentum operators of the electrons and nuclei, respectively, and �e is the
electronic charge.

∑′ means that the summation is only over pairs of indices
which are not identical.

Obviously, the many-particle Hamiltonian in (2.1) cannot be solved with-
out a large number of simplifications. The first approximation is to separate
electrons into two groups: valence electrons and core electrons. The core elec-
trons are those in the filled orbitals, e. g. the 1s2, 2s2, and 2p6 electrons in the
case of Si. These core electrons are mostly localized around the nuclei, so they
can be “lumped” together with the nuclei to form the so-called ion cores. As a
result of this approximation the indices j and j′ in (2.1) will, from now on, de-
note the ion cores while the electron indices i and i′ will label only the valence
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electrons. These are electrons in incompletely filled shells and in the case of Si
include the 3s and 3p electrons.

The next approximation invoked is the Born–Oppenheimer or adiabatic
approximation. The ions are much heavier than the electrons, so they move
much more slowly. The frequencies of ionic vibrations in solids are typically
less than 1013 s�1. To estimate the electron response time, we note that the
energy required to excite electrons in a semiconductor is given by its funda-
mental bandgap, which, in most semiconductors, is of the order of 1 eV. There-
fore, the frequencies of electronic motion in semiconductors are of the order
of 1015 s�1 (a table containing the conversion factor from eV to various other
units can be found in the inside cover of this book). As a result, electrons can
respond to ionic motion almost instantaneously or, in other words, to the elec-
trons the ions are essentially stationary. On the other hand, ions cannot follow
the motion of the electrons and they see only a time-averaged adiabatic elec-
tronic potential. With the Born-Oppenheimer approximation the Hamiltonian
in (2.1) can be expressed as the sum of three terms:

� � �ions(Rj) � �e(ri, Rj0) � �e�ion(ri, ‰Rj), (2.2)

where �ion(Rj) is the Hamiltonian describing the ionic motion under the in-
fluence of the ionic potentials plus the time-averaged adiabatic electronic po-
tentials. �e(ri, Rj0) is the Hamiltonian for the electrons with the ions frozen in
their equilibrium positions Rj0, and �e�ion(ri, ‰Rj) describes the change in the
electronic energy as a result of the displacements ‰Rj of the ions from their
equilibrium positions. �e�ion is known as the electron–phonon interaction and
is responsible for electrical resistance in reasonably pure semiconductors at
room temperature. The vibrational properties of the ion cores and electron-
phonon interactions will be discussed in the next chapter. In this chapter we
will be mainly interested in the electronic Hamiltonian �e.

The electronic Hamiltonian �e is given by

�e �
∑
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2mi
�

1
2

∑
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′ e2

4Â0|ri � ri′ |
�

∑
i, j

Zje2

4Â0|ri � Rj0|
. (2.3)

Diagonalizing this Hamiltonian when there are �1023 electrons/cm3 in a semi-
conductor is a formidable job. We will make a very drastic approximation
known as the mean-field approximation. Without going into the justifications,
which are discussed in many standard textbooks on solid-state physics, we will
assume that every electron experiences the same average potential V(r). Thus
the Schrödinger equations describing the motion of each electron will be iden-
tical and given by

�1eºn(r) �

(
p2

2m
� V(r)

)
ºn(r) � Enºn(r), (2.4)

where �1e, ºn(r) and En denote, respectively, the one-electron Hamiltonian,
and the wavefunction and energy of an electron in an eigenstate labeled by n.
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We should remember that each eigenstate can only accommodate up to two
electrons of opposite spin (Pauli’s exclusion principle).

The calculation of the electronic energies En involves two steps. The first
step is the determination of the one-electron potential V(r). Later in this chap-
ter we will discuss the various ways to calculate or determine V(r). In one
method V(r) can be calculated from first principles with the atomic numbers
and positions as the only input parameters. In simpler, so-called semi-empirical
approaches, the potential is expressed in terms of parameters which are de-
termined by fitting experimental results. After the potential is known, it takes
still a complicated calculation to solve (2.4). It is often convenient to utilize
the symmetry of the crystal to simplify this calculation. Here by “symmetry”
we mean geometrical transformations which leave the crystal unchanged.

2.2 Translational Symmetry and Brillouin Zones

The most important symmetry of a crystal is its invariance under specific trans-
lations. In addition to such translational symmetry most crystals possess some
rotational and reflection symmetries. It turns out that most semiconductors
have high degrees of rotational symmetry which are very useful in reducing
the complexity of calculating their energy band structures. In this and the next
sections we will study the use of symmetry to simplify the classification of elec-
tronic states. Readers familiar with the application of group theory to solids
can omit these two sections.

When a particle moves in a periodic potential its wavefunctions can be ex-
pressed in a form known as Bloch functions. To understand what Bloch func-
tions are, we will assume that (2.4) is one-dimensional and V(x) is a periodic
function with the translational period equal to R. We will define a translation
operator TR as an operator whose effect on any function f (x) is given by

TRf (x) � f (x � R). (2.5)

Next we introduce a function ºk(x) defined by

ºk(x) � exp (ikx)uk(x), (2.6)

where uk(x) is a periodic function with the same periodicity as V, that is,
uk(x � nR) � uk(x) for all integers n. When ºk(x) so defined is multiplied
by exp [�iˆt], it represents a plane wave whose amplitude is modulated by
the periodic function uk(x). ºk(x) is known as a Bloch function. By definition,
when x changes to x � R, ºk(x) must change in the following way

TRºk(x) � ºk(x � R) � exp (ikR)ºk(x). (2.7)

It follows from (2.7) that ºk(x) is an eigenfunction of TR with the eigen-
value exp (ikR). Since the Hamiltonian �1e is invariant under translation by
R, �1e commutes with TR. Thus it follows from quantum mechanics that the
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eigenfunctions of �1e can be expressed also as eigenfunctions of TR. We there-
fore conclude that an eigenfunction º(x) of �1e can be expressed as a sum of
Bloch functions:

º(x) �
∑

k

Akºk(x) �
∑

k

Akexp (ikx)uk(x), (2.8)

where the Ak are constants. Thus the one-electron wavefunctions can be in-
dexed by constants k, which are the wave vectors of the plane waves forming
the “backbone” of the Bloch function. A plot of the electron energies in (2.4)
versus k is known as the electronic band structure of the crystal.

The band structure plot in which k is allowed to vary over all possible
values is known as the extended zone scheme. From (2.6) we see that the
choice of k in indexing a wave function is not unique. Both k and k � (2n/R),
where n is any integer, will satisfy (2.6). This is a consequence of the trans-
lation symmetry of the crystal. Thus another way of choosing k is to replace
k by k′ � k � (2n/R), where n is an integer chosen to limit k′ to the inter-
val [�/R, /R]. The region of k-space defined by [�/R, /R] is known as the
first Brillouin zone. A more general definition of Brillouin zones in three di-
mensions will be given later and can also be found in standard textbooks [2.2].
The band structure plot resulting from restricting the wave vector k to the first
Brillouin zone is known as the reduced zone scheme. In this scheme the wave
functions are indexed by an integer n (known as the band index) and a wave
vector k restricted to the first Brillouin zone.

In Fig. 2.1 the band structure of a “nearly free” electron (i. e., V → 0)
moving in a one-dimensional lattice with lattice constant a is shown in both
schemes for comparison. Band structures are plotted more compactly in the
reduced zone scheme. In addition, when electrons make a transition from one
state to another under the influence of a translationally invariant operator, k
is conserved in the process within the reduced zone scheme (the proof of this
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Fig. 2.1. The band structure of a free particle shown in (a) the extended zone scheme and
(b) the reduced zone scheme
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statement will be presented when matrix elements of operators in crystals are
discussed, Sect. 2.3), whereas in the extended zone scheme k is conserved only
to a multiple of (i. e. modulo) 2/R. Hence, the reduced zone scheme is almost
invariably used in the literature.

The above results, obtained in one dimension, can be easily generalized
to three dimensions. The translational symmetries of the crystal are now ex-
pressed in terms of a set of primitive lattice vectors: a1, a2, and a3. We can
imagine that a crystal is formed by taking a minimal set of atoms (known as a
basis set) and then translating this set by multiples of the primitive lattice vec-
tors and their linear combinations. In this book we will be mostly concerned
with the diamond and zinc-blende crystal structures, which are shown in Fig.
2.2a. In both crystal structures the basis set consists of two atoms. The ba-
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Fig. 2.2. (a) The crystal structure of diamond and zinc-blende (ZnS). (b) the fcc lattice
showing a set of primitive lattice vectors. (c) The reciprocal lattice of the fcc lattice shown
with the first Brillouin zone. Special high-symmetry points are denoted by °, X, and L,
while high-symmetry lines joining some of these points are labeled as § and ¢
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sis set in diamond consists of two carbon atoms while in zinc-blende the two
atoms are zinc and sulfur. The lattice of points formed by translating a point
by multiples of the primitive lattice vectors and their linear combinations is
known as the direct lattice. Such lattices for the diamond and zinc-blende
structures, which are basically the same, are said to be face-centered cubic
(fcc) see Fig. 2.2b with a set of primitive lattice vectors. In general, the choice
of primitive lattice vectors for a given direct lattice is not unique. The primi-
tive lattice vectors shown in Fig. 2.2b are

a1 � (0, a/2, a/2),

a2 � (a/2, 0, a/2),

and

a3 � (a/2, a/2, 0),

where a is the length of the side of the smallest cube in the fcc lattice. This
smallest cube in the direct lattice is also known as the unit cube or the crys-
tallographic unit cell.

For a given direct lattice we can define a reciprocal lattice in terms of
three primitive reciprocal lattice vectors: b1, b2, and b3, which are related to
the direct lattice vectors a1, a2, and a3 by

bi � 2
(aj × ak)

(a1 × a2) · a3
, (2.9)

where i, j, and k represent a cyclic permutation of the three indices 1, 2, and 3
and (a1×a2)·a3 is the volume of the primitive cell. The set of points generated
by translating a point by multiples of the reciprocal lattice vectors is known as
the reciprocal lattice. The reason for defining a reciprocal lattice in this way is
to represent the wave vector k as a point in reciprocal lattice space. The first
Brillouin zone in three dimensions can be defined as the smallest polyhedron
confined by planes perpendicularly bisecting the reciprocal lattice vectors. It is
easy to see that the region [�/R, /R] fits the definition of the first Brillouin
zone in one dimension.

Since the reciprocal lattice vectors are obtained from the direct lattice vec-
tors via (2.9), the symmetry of the Brillouin zone is determined by the sym-
metry of the crystal lattice. The reciprocal lattice corresponding to a fcc lattice
is shown in Fig. 2.2c. These reciprocal lattice points are said to form a body-
centered cubic (bcc) lattice. The primitive reciprocal lattice vectors b1, b2, and
b3 as calculated from (2.9) are

b1 � (2/a) (�1, 1, 1),

b2 � (2/a) (1, �1, 1),

and

b3 � (2/a) (1, 1, �1).
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[Incidentally, note that all the reciprocal lattice vectors of the fcc lattice have
the form (2/a)(i, j, k), where i, j, and k have to be either all odd or all even].
The first Brillouin zone of the fcc structure is also indicated in Fig. 2.2c. The
symmetry of this Brillouin zone can be best visualized by constructing a model
out of cardboard. A template for this purpose can be found in Fig. 2.27.

In Fig. 2.2c we have labeled some of the high-symmetry points of this Bril-
louin zone using letters such as X and °. We will conform to the convention
of denoting high symmetry points and lines inside the Brillouin zone by Greek
letters and points on the surfaces of the Brillouin zone by Roman letters. The
center of the Brillouin zone is always denoted by °. The three high-symmetry
directions [100], [110], and [111] in the Brillouin zone of the fcc lattice are
denoted by:

[100] direction : °̇ ¢ Ẋ

[111] direction : °̇ § L̇

[110] direction : °̇ ™ K̇

The Brillouin zone of the fcc lattice is highly symmetrical. A careful examina-
tion of this Brillouin zone shows that it is unchanged by various rotations, such
as a 90˚ rotation about axes parallel to the edges of the body-centered cube
in Fig. 2.2c. In addition it is invariant under reflection through certain planes
containing the center of the cube. These operations are known as symmetry
operations of the Brillouin zone. The symmetry of the Brillouin zone results
from the symmetry of the direct lattice and hence it is related to the symme-
try of the crystal. This symmetry has at least two important consequences for
the electron band structure. First, if two wave vectors k and k′ in the Bril-
louin zone can be transformed into each other under a symmetry operation of
the Brillouin zone, then the electronic energies at these wave vectors must be
identical. Points and axes in reciprocal lattice space which transform into each
other under symmetry operations are said to be equivalent. For example, in
the Brillouin zone shown in Fig. 2.2c there are eight hexagonal faces contain-
ing the point labeled L in the center. These eight faces including the L points
are equivalent and can be transformed into one another through rotations by
90˚. Therefore it is necessary to calculate the energies of the electron at only
one of the eight equivalent hexagonal faces containing the L point. The second
and perhaps more important consequence of the crystal symmetry is that wave
functions can be expressed in a form such that they have definite transforma-
tion properties under symmetry operations of the crystal. Such wave functions
are said to be symmetrized. A well-known example of symmetrized wave func-
tions is provided by the standard wave functions of electrons in atoms, which
are usually symmetrized according to their transformation properties under
rotations and are classified as s, p, d, f , etc. For example, an s wave func-
tion is unchanged by any rotation. The p wave functions are triply degenerate
and transform under rotation like the three components of a vector. The d
wave functions transform like the five components of a symmetric and trace-
less second-rank tensor. By classifying the wave functions in this way, some



2.3 A Pedestrian’s Guide to Group Theory 25

matrix elements of operators can be shown to vanish, i. e., selection rules can
be deduced. Similarly, wave functions in crystals can be classified according
to their transformation properties under symmetry operations of the crystal
and selection rules can be deduced for operators acting on these wave func-
tions. The mathematical tool for doing this is group theory. Many excellent
textbooks have been written on group theory (see the reference list). It is de-
sirable, but not necessary, to have a good knowledge of group theory in order
to study semiconductor physics. Some elementary notions of group theory are
sufficient to understand the material covered in this book. The next section
contains an introduction to group theoretical concepts and notations. Students
familiar with group theory can omit this section.

2.3 A Pedestrian’s Guide to Group Theory

Since the purpose of this section is to introduce group theory terminology and
notations, no effort will be made to prove many of the statements and theo-
rems mentioned in it. At most we shall illustrate our statements with examples
and refer the reader to books on group theory for rigorous proofs.

2.3.1 Definitions and Notations

The first step in studying the symmetry properties of any crystal is to deter-
mine its symmetry operations. For example: a square is unchanged under re-
flection about its two diagonals, or under rotation by 90˚ about an axis perpen-
dicular to the square and passing through its center. One can generate other
symmetry operations for a square which are combinations of these operations.
One may say that it is possible to find an infinite number of symmetry oper-
ations for this square. However, many of these symmetry operations can be
shown to consist of sequences of a few basic symmetry operations. The math-
ematical tool for systematically analyzing the symmetry operations of any ob-
ject is group theory.

A group G is defined as a set of elements {a, b, c, . . .} for which an oper-
ation ab (which we will refer to as multiplication) between any two elements
a and b of the group is defined. This operation must have these four proper-
ties:

• Closure: The result of the operation ab on any two elements a and b in G
must also belong to G.

• Associativity: for all elements a, b, and c in G (ab)c � a(bc).
• Identity: G must contain an element e known as the identity or unit ele-

ment such that ae � a for all elements a in G.
• Inverse element: for every element a in G there exists a corresponding

element a�1 such that a�1a � e. Element a�1 is known as the inverse of a.
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Notice that the order in which one multiplies two elements a and b is im-
portant since ab is not necessarily equal to ba in general. If ab � ba for all
elements in G, multiplication is commutative and G is said to be Abelian.

One can easily find many examples of groups. In particular, the set of sym-
metry operations of a crystal or a molecule can be shown to form a group. As
an illustration, we will consider the molecule methane: CH4. The structure of
this molecule is shown in Fig. 2.3. It consists of a carbon atom surrounded by
four hydrogen atoms forming the four corners of a regular tetrahedron.

To simplify the description of the symmetry operations of the methane
molecule, we will introduce the Schönflies notation:

C2: rotation by 180˚ (called a two-fold rotation);
C3: rotation by 120˚ (called a three-fold rotation);
C4: rotation by 90˚ (called a four-fold rotation);
C6: rotation by 60˚ (called a six-fold rotation);
Û: reflection about a plane;
i: inversion;
Sn: rotation Cn followed by a reflection through a plane perpendicular to the

rotation axis;
E: the identity operation.

For brevity, all the above operations are often denoted as rotations. To distin-
guish between a conventional rotation (such as C3) from reflections (such as
Û) or rotations followed by reflections (such as S4) the latter two are referred
to as improper rotations. Notice that the inversion is equal to S2. This is not
the only way to represent symmetry operations. An equally popular system is
the international notation. The conversion between these two systems can be
found in books on group theory [Ref. 2.3, p. 85].
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Fig. 2.3. A methane
molecule (CH4) displaying
the bonds (red lines) and
the coordinate axes (black
arrows). The [001] axis is
perpendicular to the
paper
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To specify a symmetry operation completely, it is also necessary to define
the axis of rotation or the plane of reflection. In specifying planes of reflection
we will use the notation (kln) to represent a plane that contains the origin and
is perpendicular to the vector (k, l, n). (Readers familiar with crystallography
will recognize that this notation is an “imitation” of the Miller indices for de-
noting lattice planes in cubic crystals). The corresponding simplified notation
for the axis containing this vector is [kln]. In Fig. 2.3 we have first chosen
the origin at the carbon atom for convenience. Using the coordinate system
shown in Fig. 2.3, the four carbon–hydrogen bonds are oriented along the
[111], [111], [111], and [111] directions. We will now state without proof (the
reader can check these results easily by constructing a balls-and-sticks model
of the methane molecule) that the following operations are symmetry opera-
tions of the methane molecule:

E: the identity;
C2: two-fold rotation about one of the three mutually perpendicular [100],

[010] and [001] axes (three C2 operations in total);
C3: rotation by 120˚ in clockwise direction about one of the four C–H bonds

(four operations in total);
C�1

3 : rotation by 120˚, counterclockwise, about one of the four C–H bonds
(four operations in total);

Û: reflection with respect to one of these six planes: (110), (110), (101),
(101), (011), (011);

S4: a four-fold clockwise rotation about one of the [100], [010], and [001]
axes followed by a reflection on the plane perpendicular to the rotation
axis (three operations in total);

S�1
4 : a four-fold counterclockwise rotation about one of the [100], [010], and

[001] axes followed by a reflection on a plane perpendicular to the rota-
tion axis (three operations in total).

It can be shown easily that the operations C2 and Û are both the inverse
of themselves. The inverse element of C3 is C�1

3 , provided the axis of rotation
is the same in the two operations. Similarly, the inverse element of S4 is S�1

4 ,
provided the rotation axes remain the same. If we now define the multiplica-
tion of two symmetry elements a and b as a symmetry operation c � ab con-
sisting of first applying the operation b to the CH4 molecule followed by the
operation a, it can be shown easily that the 24 symmetry operations of CH4
defined above form a group known as Td. Such groups of symmetry operations
of a molecule are known as point groups. As the name implies, point groups
consist of symmetry operations in which at least one point remains fixed and
unchanged in space. Point groups contain two kinds of symmetry operations:
proper and improper rotations.

An infinite crystal is different from a molecule in that it has translational
symmetry. Although in real life crystals never extend to infinity, the problems
associated with the finite nature of a crystal can be circumvented by apply-
ing the so-called periodic (or Born–von Kármán) boundary conditions to the
crystal. Equivalently, one can imagine that the entire space is filled with repli-
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cas of the finite crystal. It should be no surprise that the set of all symmetry
operations of such an infinite crystal also forms a group. Such groups, which
contain both translational and rotational symmetry operations, are known as
space groups. There are 230 non-equivalent space groups in three dimensions.

Besides their translational invariance, crystals also possess rotational sym-
metries. Space groups can be divided into two types, depending on whether
or not the rotational parts of their symmetry operations are also symmetry
operations. Let us first consider the purely translational operations of an in-
finite crystal. It can be shown that these translational symmetry operations
form a group (to be denoted by T). T is known as subgroup of the space
group G of the crystal. Let us now denote by R the set of all symmetry op-
erations of G which involve either pure rotations (both proper and improper)
only or rotations accompanied by a translation not belonging to T. We will
denote the elements of R as ·, ‚, Ù, etc. Such a subset of G is known as a
complex. In general R is not a group. For example, if G contains a screw axis
or glide plane (these will be defined later, see Fig. 2.4) then R will not form
a group and the space group G is said to be nonsymmorphic. If no screw axis
or glide planes are present, R is a group (and therefore a subgroup of G):
the space group G is then said to be symmorphic. The symmetry properties of
symmorphic groups are simpler to analyze since both translational and rota-
tional operations in such space groups form subgroups. In particular, it can be
shown that the rotational symmetry operations of a symmorphic space group
form point groups similar to those for molecules. However, there are restric-
tions on the rotational symmetry of a crystal as a result of its translational
symmetry. For example, a crystal cannot be invariant under rotation by 72˚
(known as a five-fold rotation). However, a molecule can have this rotational
symmetry. Point groups which are compatible with a lattice with translational
symmetry are called crystallographic point groups. It can be shown that there
are 32 distinct crystallographic point groups in three-dimensional space (see,
e. g. [2.4]).

Of a total of 230 space groups there are only 73 symmorphic space groups.
Thus the simpler, symmorphic space groups are more often the exception
rather than the norm. We will now consider how to analyze the rotational
symmetries of nonsymmorphic space groups. By definition, a nonsymmorphic
space group must contain at least one symmetry operation that involves both
translation and rotation such that the rotational operation is not a symmetry
operation of G by itself. There are two possibilities for such an operation: the
rotation can be either proper or improper. The axis for a proper rotation is
called a screw axis while the plane that corresponds to a twofold improper
rotation is known as a glide plane. In the case of a screw axis, the crystal is
invariant under a rotation about this axis plus a translation along the axis. The
crystal is invariant under reflection in a glide plane followed by a translation
parallel to the glide plane.

Two simple examples of screw axes for a one-dimensional crystal are
shown in Figs. 2.4a and b. From Fig. 2.4b it is clear that a simple three-fold
rotation about the vertical axis is not a symmetry operation of this hypothet-
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Fig. 2.4. Examples of (a) a diad screw axis, (b) a triad screw axis and (c) a glide plane.
The crystals in (a) and (c) are assumed to be three dimensional, although only one layer
of atoms is shown for the purpose of illustration. If they are two dimensional, the glide
operation in (c) becomes equivalent to that of the diad screw in (a). � and ⊗ represent
arrow pointing towards and away from the reader, respectively. Screw axis such as in (b)
are found in the crystal structure of semiconductors like Se and Te [2.5]

ical crystal. However, if the crystal is translated by an amount (c/3) along the
vertical axis after the three-fold rotation then the crystal is unchanged. the
vertical axis is known in this case as a triad screw axis. An example of a diad
screw axis is shown in Fig. 2.4a. A glide plane is shown in Fig. 2.4c. The plane
labeled A–B in the figure is not a reflection plane. But if after a reflection in
the A–B plane we translate the crystal by the amount (a/2) parallel to the A–
B plane, the crystal will remain unchanged. This symmetry operation is known
as a glide and the A–B plane is a glide plane. Now suppose R is the set of
all pure rotational operations of G plus the glide reflection shown in Fig. 2.4c
(which we will denote as m). R defined in this way is not a group since mm is
a pure translation and therefore not an element of R.

To study the rotational symmetries of a space group independent of
whether it is symmorphic or nonsymmorphic, we will introduce the concept
of a factor group. Let G be the space group and T its subgroup consisting of
all purely translational symmetry operations. Let C � {·, ‚, . . .} be the com-
plex of all the elements of G not in T. Unlike the elements of the set R de-
fined earlier, the translation operations in the elements of C can belong to T.
Next we form the sets T·, T‚, etc. The set T· consisting of operations formed
by the product of a translation in T and an operation · not in T is known as
a right coset of T. As may be expected, the set ·T is called a left coset of T.

Let us first consider the case when G is a symmorphic group. For a sym-
morphic group we can decompose any symmetry operation · in C into the
product of a translation ·t and a rotation ·r : · � ·t·r. Since multiplication is
not necessarily commutative, we may worry about the order in which the two
operations ·t and ·r occur. It can be shown that T has the property that the
right coset Tx is equal to the left coset xT for every element x in G. A sub-
group with this property is known as an invariant subgroup. When we multi-
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ply · by another translation operation to form an element of the coset T· the
resultant operation consists of a new translation but multiplied by the same
rotation ·r. This suggests that we can establish a correspondence between the
set of cosets {T·, T‚, . . .} and the set of rotational operations R � {·r, ‚r, . . .}.
When G is symmorphic the set R is a subgroup of G so the set {T·, T‚, . . .}
also forms a group. [In order that this set of cosets form a group, we have to
define the product of two cosets (T·)(T‚) as T·‚]. This group is known as the
factor group of G with respect to T and is usually denoted by G/T. In estab-
lishing the factor group G/T we have mapped all the elements of a coset T·
into a single rotational operation ·r. Such a mapping of many elements in one
set into a single element in another set is known as homomorphism. On the
other hand, the mapping between the factor group G/T and the subgroup R
of G is one-to-one, and this kind of correspondence is known as isomorphism.

This isomorphism between the factor group G/T and the point group R of
a symmorphic space group can be extended to a nonsymmorphic space group.
The main difference between the two cases is that while the rotational oper-
ations ·r, ‚r, etc. are also elements in a symmorphic space group, this is not
necessarily true for all rotations in a nonsymmorphic group. If · is a glide or
screw then ·r is not an element in G. We will still refer to the group R as
the point group of a nonsymmorphic space group because R contains all the
information about the rotational symmetries of the space group G. However,
special care must be exercised in studying the point groups of nonsymmorphic
space groups since they contain elements which are not in the space group.

We will next study the symmetry operations of the zinc-blende and dia-
mond crystal structures as examples of a symmorphic and a nonsymmorphic
space group, respectively.

2.3.2 Symmetry Operations of the Diamond and Zinc-Blende Structures

Figure 2.2a shows the structures of the diamond and zinc-blende crystals. As
pointed out in the previous section, both crystal structures consist of a fcc lat-
tice. Associated with every lattice site there are two atoms which are displaced
relative to each other by one quarter of the body diagonal along the [111] di-
rection. The volume defined by the primitive lattice vectors and containing
these two atoms forms a unit, known as the primitive cell, which is repeated
at each lattice site. One simple way to construct these crystal structures is to
start with two fcc sublattices, each containing only one atom located on every
lattice site. Then one sublattice is displaced by one quarter of the body di-
agonal along the [111] direction with respect to the remaining sublattice. In
the resulting crystal structure each atom is surrounded by four nearest neigh-
bors forming a tetrahedron. The space group of the zinc-blende structure is
symmorphic and is denoted by T2

d (or F43m in international notation). Its
translational symmetry operations are defined in terms of the three primitive
lattice vectors shown in Fig. 2.2b. Its point group has 24 elements. These 24
elements are identical to the elements of the point group of a tetrahedron
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(or the methane molecule discussed in the last section and shown in Fig. 2.3)
which is denoted by Td.

The point group symmetry operations of the zinc-blende crystal are de-
fined with respect to the three mutually perpendicular crystallographic axes
with the origin placed at one of the two atoms in the primitive unit cell. With
this choice of coordinates, the 24 operations are enumerated below (they are
essentially identical to those of the methane molecule):

E: identity
eight C3 operations: clockwise and counterclockwise rotations of 120˚ about

the [111], [111], [111], and [111] axes, respectively;
three C2 operations: rotations of 180˚ about the [100], [010], and [001] axes,

respectively;
six S4 operations: clockwise and counterclockwise improper rotations of

90˚ about the [100], [010], and [001] axes, respectively;
six Û operations: reflections with respect to the (110), (110), (101), (101),

(011), and (011) planes, respectively.

The diamond structure is the same as the zinc-blende structure except that
the two atoms in the primitive unit cell are identical. If we choose the origin
at the midpoint of these two identical atoms, we find that the crystal structure
is invariant under inversion with respect to this origin. However, for the pur-
pose of studying the point group operations, it is more convenient to choose
the origin at an atom, as in the case of the zinc-blende structure. The crystal is
no longer invariant under inversion with respect to this new choice of origin,
but is unchanged under inversion plus a translation by the vector (a/4)[1, 1, 1],
where a is the length of the unit cube. This can be visualized by drawing the
carbon atoms in the diamond structure along the [111] direction as shown in
Fig. 2.5. The space group of the diamond structure is nonsymmorphic: it con-
tains three glide planes. For example, the plane defined by x � (a/8) is a glide
plane since diamond is invariant under a translation by (a/4)[0, 1, 1] followed
by a reflection on this plane. In place of the three glide planes defined by x �
(a/8), y � (a/8), and z � (a/8), it is possible to use the “glide-like” operations:

T(1/4, 1/4, 1/4)Ûx: reflection on the x � 0 plane followed by a translation
of the crystal by the vector a(1/4, 1/4, 1/4);

T(1/4, 1/4, 1/4)Ûy: reflection on the y � 0 plane followed by a translation
of the crystal by the vector a(1/4, 1/4, 1/4); and

a

[111]

a
4 3

3

Fig. 2.5. Arrangement of atoms along the [111] direction of the diamond crystal. Notice
that the crystal is invariant under inversion either with respect to the midpoint between
the atoms or with respect to one of the atoms followed by an appropriate translation
along the [111] axis
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F

Ca

Fig. 2.6. Schematic crystal structure of CaF2

(fluorite)

T(1/4, 1/4, 1/4)Ûz: reflection on the z � 0 plane followed by a translation
of the crystal by the vector a(1/4, 1/4, 1/4).

The factor group of the diamond lattice is isomorphic to the point group gen-
erated from the group Td by adding the inversion operation. This point group
has 48 elements and is denoted as Oh. While Td is the point group of a tetra-
hedron, Oh is the point group of a cube. The space group of the diamond
crystal is denoted by O7

h (or Fd3m in international notation).
The CaF2 (fluorite) structure shown in Fig. 2.6 is related to the diamond

structure. This is the crystal structure of a family of semiconductors with the
formula Mg2X, where X � Ge, Si, and Sn. The lattice of CaF2 is fcc as in dia-
mond, but CaF2 has three sublattices. The two fluorine sublattices are symmet-
rically displaced by one quarter of the body diagonal from the Ca sublattices,
so there is inversion symmetry about each Ca atom. The space group of CaF2
is symmorphic and its point group is also Oh, like diamond. This space group
is denoted by O5

h (or Fm3m). It is clear that there is a one-to-one correspon-
dence between the elements of the point group of CaF2 and those of the fac-
tor group of diamond.

2.3.3 Representations and Character Tables

The effect of a symmetry operation, such as a rotation, on a coordinate system
(x, y, z) can be represented by a transformation matrix. For example, under a
four-fold rotation about the x axis the axes x, y, and z are transformed into
x′, y′, and z′ with x′ � x, y′ � z and z′ � �y. This transformation can be
represented by the matrix M:

M �

⎛⎝ 1 0 0
0 0 1
0 �1 0

⎞⎠ .

Similarly a three-fold rotation about the [111] axis will transform the axes x,
y, and z into x′ � z, y′ � x, and z′ � y. This transformation can be represented
by ⎛⎝ 0 0 1

1 0 0
0 1 0

⎞⎠ .
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In the rest of this chapter we will use the abbreviated notation (xyz) → (xzy)
to denote the transformation matrix for the four-fold rotation and (xyz) →
(zxy) for the three-fold rotation. All the symmetry operations in a point group
can be represented by transformation matrices similar to M. It is easy to prove
that the set of such transformation matrices corresponding to a group of sym-
metry operations is also a group. This group of matrices is said to form a rep-
resentation of the group. There are actually an infinite number of such groups
of matrices for a given group. The correspondence between a group and its
representation is not, in general, an isomorphism but rather a homomorphism.
A representation of a group G is defined as any group of matrices onto which
G is homomorphic. Since representations of a group are not unique, we will
be interested only in those of their properties that are common to all the rep-
resentations of this group.

One way to generate a representation for a group is to choose some func-
tion f (x, y, z) and then generate a set of functions {fi} by applying the symme-
try operations Oi of the group to f (x, y, z) so that fi � Oi[f ].1 By definition a
group has to satisfy the closure requirement. This means that when the opera-
tion O is applied to fi the resultant function O[fi] can be expressed as a linear
combination of the functions fi:

O[fi] �
∑

j

fjaji . (2.10a)

The coefficients aji form a square matrix, which will be referred to as a trans-
formation matrix. The set of transformation matrices of the form {aji} cor-
responding to all the operations in the group now forms a representation of
the group. The functions {fi} used to generate this representation are said to
form a set of basis functions for this representation. Clearly the choice of basis
functions for generating a given representation is not unique.

If one uses the above method to generate a representation, then the di-
mension of the resulting transformation matrices will always be equal to the
number of elements in the group (known as the order of a group). Some of
the matrices will, however, be equal. Also many of the elements in these ma-
trices will be zero. If the matrices in a given representation for all the opera-
tions in a group can be expressed in the following block form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0
· 0 0 . . . 0

0 0 . . . 0
0 0 0 ‚ 0 . . . 0
0 0 0 Á . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
0 0 0 0 0 . . . Ù

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.10b)

1 In our applications {fi} will usually be a set of degenerate eigenfunctions corresponding
to a given eigenvalue.
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where ·, ‚, . . ., Ù are square matrices, obviously the symmetry operations in
this group can also be represented by the smaller matrices · and ‚, etc. While
the matrices ·i and ‚i for an operation i may not necessarily have the same
dimension, the matrices ·i for all the operations i in the group must have
the same dimension. A representation of the form of (2.10b) is said to be re-
ducible otherwise the representation may be irreducible. As pointed out ear-
lier, the choice of matrices to form a representation for a given group is not
unique. Given one set of transformation matrices {Ai}, we can generate an-
other set {A′

i} by a similarity transformation: A′
i � TAiT�1, where T is an

arbitrary nonsingular matrix with the same dimensionality as Ai. The trans-
formed set of matrices {A′

i} will also form a representation. The two sets of
matrices {Ai} and {A′

i} are then said to be equivalent. Often the matrices of
a representation may not appear to have the form given by (2.10b) and hence
be regarded as irreducible. However, if by applying similarity transformation
it is possible to express these matrices in the form of (2.10b) then this repre-
sentation is also called reducible. Otherwise it is called irreducible.

Two axes of rotation or two reflection planes which transform into each
other under a symmetry operation of a point group are said to be equivalent.
It can be shown that the matrices of a representation which correspond to
such equivalent rotations have identical traces (the trace of a matrix is the sum
of the diagonal elements). Although the choice of irreducible representations
for a group is not unique, the set of traces of these irreducible representations
is unique since unitary transformations preserve the trace. This suggests that
the set of all equivalent irreducible representations of a given group can be
specified uniquely by their traces. For this reason the traces of the matrices in
a representation are called its characters. The representations obviously con-
tain more information than their characters; however, to utilize the symmetry
of a given group it often suffices to determine the number of inequivalent irre-
ducible representations and their characters.

The determination of the characters of an irreducible representation is
simplified by these properties of a group:

• Elements in a group can be grouped into classes. A set of elements T in
a group is said to form a class if for any element a in the group, aT � Ta.
In a given representation all the elements in a class have the same charac-
ter.

• The number of inequivalent irreducible representations of a group is equal
to the number of classes.

These two properties suggest that if the elements of a group can be divided
into j classes the characters of its j irreducible representations can be tabu-
lated to form a table with j columns and j rows, which is known as a character
table. Assume that a group has N elements and these elements are divided
into j classes denoted by C1, C2, . . . , Cj. The number of elements in each class
will be denoted by N1, N2, . . . , Nj. The identity operation E forms a class with
only one element and, by convention, it is labeled C1. This group also has
j inequivalent irreducible representations (from now on the set of irreducible
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Table 2.1. The character table of a group

R1 ¯1(E) ¯1(2) · · ¯1(j)
R2 ¯2(E) ¯2(2) · · ¯2(j)
· · · · · ·
· · · · · ·

Rj ¯j(E) ¯j(2) · · ¯j(j)

Classes

Representations {E} {N2C2} · · {NjCj}

·
·
·
·
·

·

representations of a group will be understood to contain only inequivalent
ones), which will be denoted by R1, R2, . . . , Rj. The character of Ck in Ri will
be denoted by ¯i(k). Since the identity operation E leaves any basis function
invariant, its representations always consist of unit matrices (that is, diagonal
matrices with unity as the diagonal elements). As a result, the character ¯i(E)
is equal to the dimension of the representation Ri. Thus the character table of
this group will have the form of Table 2.1.

In principle, the character table for the point group of a crystal can be
calculated from the transformation matrices using a suitable set of basis func-
tions. In practice, the character table can be obtained, in most cases, by in-
spection using the following two orthogonality relations:∑

k

¯i(Ck)∗¯j(Ck)Nk � h‰ij (2.11)

∑
i

¯i(Ck)∗¯i(Cl) � (h/Nl)‰kl (2.12),

where ∗ denotes the complex conjugate of a character, h is the order of the
group, Nk is the number of elements of class Ck, and ‰ij is the Kronecker
delta.

As an illustration of the procedure used to obtain character tables we will
consider two examples.

EXAMPLE 1 Character Table of the Point Group Td

As we showed in Sect. 2.3.1, the point group Td consists of 24 elements rep-
resenting the proper and improper rotational symmetry operations of a tetra-
hedral methane molecule. In Sect. 2.3.2 we showed that this group is also the
point group of the zinc-blende crystal. The 24 elements of this group can be
divided into five classes

{E}, {8C3}, {3C2}, {6S4} and {6Û}
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by noting that:

• rotations by the same angle with respect to equivalent axes belong to the
same class and

• reflections on equivalent planes also belong to the same class.

Since the number of irreducible representations is equal to the number of
classes, Td has five irreducible representations, which are usually denoted by
A1, A2, E, T1 and T2. Notice that the capital letter E has been used in the
literature to denote a large number of entities varying from energy, electric
field, the identity operation in group theory to an irreducible representation
in the Td group! To avoid confusion we will always specify what E stands for.

The next step is to construct the 5×5 character table using (2.11) and
(2.12). First, we note again that the character of the class containing the iden-
tity operation {E} is equal to the dimension of the representation. Substituting
this result into (2.12) we find∑

i

|¯i(E)|2 � h. (2.13)

Since the number of classes is usually small, this equation can often be solved
by inspection. For Td it is easily shown that the only possible combination
of five squares which add up to 24 is: 2 × 12 � 22 � 2 × 32. This result
means that the group Td has two irreducible representations of dimension one
(denoted by A1 and A2), one irreducible representation of dimension two (de-
noted by E), and two irreducible representations of dimension three (denoted
by T1 and T2). Next we note that a scalar will be invariant under all opera-
tions, so there is always a trivial identity representation whose characters are
all unity. By convention this representation is labeled by the subscript 1, A1 in
the present case. So without much effort we have already determined one row
and one column of the character table for Td (Table 2.2).

The remaining characters can also be determined by inspection with the
application of (2.12). For the classes other than {E} the characters can be
either positive or negative. The sign can be determined by inspection with
some practice. For example, for the class {6Û} the only combination of sums
of squares satisfying (2.12) is 4 × 12 � 02 � 24/6 � 4. Applying (2.12) to the
characters of {E} and {6Û} it can be easily seen that A2(6Û) � � 1, E(6Û) � 0

Table 2.2. Determining the character table for the Td group by inspection

A1 1 1 1 1 1
A2 1 · · · ·
E 2 · · · ·
T1 3 · · · ·
T2 3 · · · ·

{E} {3C2} {6S4} {6Û} {8C3}
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Table 2.3. Character table and basis functions of the Td group

A1 1 1 1 1 1 xyz
A2 1 1 �1 �1 1 x4(y2 � z2) � y4(z2 � x2) � z4(x2 � y2)
E 2 2 0 0 �1 {(x2 � y2), z2 � 1

2 (x2 � y2)}
T1 3 �1 1 �1 0 {x(y2 � z2), y(z2 � x2), z(x2 � y2)}
T2 3 �1 �1 1 0 {x, y, z}

{E} {3C2} {6S4} {6Û} {8C3} Basis functions

while the two remaining characters for T1 and T2 contain 1 and �1. The final
result for the character table of Td is given in Table 2.3.

It is instructive to examine some possible basis functions for the irre-
ducible representations of Td. One choice of basis functions for the A1 rep-
resentation is a constant, as we have mentioned earlier. Another possibility
would be the function xyz, which is also invariant under all symmetry oper-
ations of Td. A2 is very similar to A1 except that under the operations S4
and Û the character of A2 is �1 rather than 1. This implies that the basis
function for A2 must change sign under interchange of any two coordinate
axes, such as interchanging x and y. One choice of basis function for A2 is
x4(y2 �z2)�y4(z2 �x2)�z4(x2 �y2). Similarly, the three-dimensional represen-
tations T1 and T2 differ only in the sign of their characters under interchange
of any two coordinates. It can be shown that the three components x, y, and
z of a vector transform as T2. A corresponding set of basis functions for the
T1 representation would be x(y2 � z2), y(z2 � x2), and z(x2 � y2). The reader
should verify these results by calculating the characters directly from the basis
functions (Problem 2.2).

At the beginning of this chapter we pointed out the importance of nota-
tion in group theory. The notation we have used so far to label the irreducible
representations of the Td group: A1, E, T1, etc. is more commonly found in
literature on molecular physics. We now introduce another notation used fre-
quently in articles on semiconductor physics. The wave functions of a crystal
with wave vector k at the center of the Brillouin zone (° point) always trans-
form in the way specified by the irreducible representations of the point group of
the crystal. Hence the Bloch functions at ° of a zinc-blende crystal can be clas-
sified according to these irreducible representations. In semiconductor physics
literature it is customary to use ° plus a subscript i to label these irreducible
representations of Td. Unfortunately there are two different conventions in
the choice of the subscript i for labeling the same irreducible representation.
One of these conventions is due to Koster (more commonly used in recent re-
search articles) while the other was proposed by Bouckaert, Smoluchowski and
Wigner (BSW) and tends to be found in older articles. The correspondence be-
tween the different notations for the Td point group is shown in Table 2.4.
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Table 2.4. Commonly used notations for the irreducible representations of the Td point
group

°1 °1 A1

°2 °2 A2

°3 °12 E
°4 °15 T2

°5 °25 T1

Koster notationa BSW notation Molecular notation

a Note that °4 and °5 are sometimes reversed in the literature. We recommend the stu-
dent to check it whenever he encounters this notation [2.4].

EXAMPLE 2 Character Table of Oh

We mentioned earlier in this section that the factor group of the diamond
structure is Oh and that it is isomorphic to the point group derived from the
Td group by including the inversion operation i. It has therefore 48 elements:
the 24 symmetry operations of Td plus those of Td followed by i. These include
all 48 symmetry operations of a cube. From the properties of the group Td,
one can deduce that Oh has ten classes:

{E}: identity;
{3C2}: C2 rotation about each of the three equivalent [100] axes;
{6S4}: two four-fold improper rotations about each of the three equivalent

[100] axes;
{6Ûd}: reflection on each of the six equivalent (110) planes;
{8C3}: two C3 rotations about each of the four equivalent [111] axes;
{i}: inversion;
{3Ûh}: reflection on each of the three equivalent (100) planes;
{6C4}: two C4 rotations about each of the three equivalent [100] axes;
{6C′

2}: C2 rotation about each of the six equivalent [110] axes;
{8S6}: two three-fold improper rotations about each of the four equivalent

[111] axes.

The first five classes are the same as those of Td while the remaining five are
obtained from the first five by multiplication with the inversion.

Correspondingly, there are ten irreducible representations. Five of them
correspond to even transformations under those operations obtained from the
Td group operation followed by inversion, while the other five correspond to
odd ones. Similarly, the basis functions of the irreducible representations of Oh

are either even or odd under those operations. In the terminology of quantum
mechanics, these basis functions are said to have even or odd parity. The char-
acters for the Oh group are listed in Table 2.5, while a set of basis functions for
its irreducible representations is given in Table 2.6. Table 2.5 has been purpos-
edly presented in a way to show the similarity between the “unprimed” rep-
resentations in the Oh group and those of the Td group. For example, a scalar
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Table 2.5. Character table of the Oh group presented in a way to highlight the similarity
with Table 2.3 for the Td group. BSW notation

°1 1 1 1 1 1 1 1 1 1 1
°2 1 1 �1 �1 1 1 1 �1 �1 1
°12 2 2 0 0 �1 2 2 0 0 �1
°25 3 �1 1 �1 0 �3 1 �1 1 0
°15 3 �1 �1 1 0 �3 1 1 �1 0
° ′1 1 1 �1 �1 1 �1 �1 1 1 1
° ′2 1 1 1 1 1 �1 �1 �1 �1 �1
° ′12 2 2 0 0 �1 �2 �2 0 0 1
° ′25 3 �1 �1 1 0 3 �1 �1 1 0
° ′15 3 �1 1 �1 0 3 �1 1 �1 0

{E} {C2} {S4} {Ûd} {C3} {i} {Ûh} {C4} {C ′
2} {S6}

Table 2.6. Basis functions for the irreducible representations of the Oh group

°1 : 1
°2 : x4(y2 � z2) � y4(z2 � x2) � z4(x2 � y2)
°12 : {[z2 � (x2 � y2)/2], x2 � y2}
°25 : {x(y2 � z2), y(z2 � x2), z(x2 � y2)}
°15 : {x, y, z}
° ′1 : xzy[x4(y2 � z2) � y4(z2 � x2) � z4(x2 � y2)]
° ′2 : xyz
° ′12 : {xyz[z2 � (x2 � y2)/2], xyz(x2 � y2)}
° ′25 : {xy, yz, zx}
° ′15 : {yz(y2 � z2), zx(z2 � x2), xy(x2 � y2)}

Representation Basis functions

still belongs to the °1 representation while a vector belongs to the °15 repre-
sentation in the Oh group. However, the relation between the “primed” and
“unprimed” representations is not so clear. For example, a pseudo-scalar be-
longs to the °2′ representation, while a pseudo-vector belongs to the °15′ rep-
resentation. Furthermore, some of the primed representations, e. g. °15′ and
°25′ , are even while others are odd under inversion.

When Table 2.5 is rearranged into Table 2.7, the correlations between the
first five representations and the remaining five become clear. Note that some-
times a hybrid of the K and BSW notations is used: the primes are omitted
and replaced by �, � superscripts to denote the parity. The student will find
this notation in Chaps. 6 and 7.
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Table 2.7. Character table of the Oh group rearranged to show the relationship between
the even and odd parity representations. Both the Koster (K) and BSW notations are given
[2.6]

°�
1 °1 1 1 1 1 1 1 1 1 1 1

°�
2 °2 1 1 �1 �1 1 1 1 �1 �1 1

°�
3 °12 2 2 0 0 �1 2 2 0 0 �1

°�
4 ° ′15 3 �1 1 �1 0 3 �1 1 �1 0

°�
5 ° ′25 3 �1 �1 1 0 3 �1 �1 1 0

°�
1 ° ′1 1 1 1 1 1 �1 �1 �1 �1 �1

°�
2 ° ′2 1 1 �1 �1 1 �1 �1 1 1 �1

°�
3 ° ′12 2 2 0 0 �1 �2 �2 0 0 1

°�
4 °15 3 �1 1 �1 0 �3 1 �1 1 0

°�
5 °25 3 �1 �1 1 0 �3 1 1 �1 0

K BSW {E} {C2} {C4} {C ′
2} {C3} {i} {Ûh} {S4} {Ûd} {S6}

2.3.4 Some Applications of Character Tables

We will now describe some of the applications of character tables. Further
applications will be found throughout this book.

a) Decomposition of Representation into Irreducible Components

A problem one often faces is this: when given a group G and a representation
Ù, how does one determine whether Ù is reducible? If Ù is reducible then how
can it be decomposed into its irreducible components? These questions can
be answered with the help of the character table of G. Suppose ¯Ù(i) is the
character of the given representation Ù corresponding to the class {i}. If Ù is
an irreducible representation, the set of characters ¯Ù(i) must be equal to the
characters of one of the irreducible representations of G. If this is not the case
then Ù is reducible. Suppose Ù is reducible into two irreducible representations
· and ‚ and ¯·(i) and ¯‚(i) are the characters of · and ‚, respectively. By
definition ¯·(i) and ¯‚(i) must satisfy

¯Ù(i) � ¯·(i) � ¯‚(i) (2.14)

for all classes {i} in the group G. The representation Ù is said to be the direct
sum of the two irreducible representations · and ‚. The direct sum will be
represented by the symbol ⊕ as in Ù � · ⊕ ‚.

When the dimension of a reducible representation is not very large, it can
often be reduced into a direct sum of irreducible representations by inspec-
tion. As an example, let us consider the group Td with its character table given
in Table 2.3 and a second-rank tensor {Tij} with components Txx, Txy, Txz, Tyx,
Tyy, Tyz, Tzx, Tzy, and Tzz. Using these components as basis functions we can
generate a nine-dimensional representation of Td, which we will denote as ° .
Obviously ° must be reducible since no irreducible representation in Td has
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dimensions larger than three. The way to decompose ° into irreducible rep-
resentations of Td is to first determine the characters of ° for all the classes
in Td. In principle this can be accomplished by applying the symmetry opera-
tions of Td to the nine basis functions to produce the 9 × 9 matrices forming
the representation ° . A simpler and more direct approach is possible for this
second-rank tensor. We note that a vector with three components x, y, and z
forms a set of basis functions for the three-dimensional irreducible represen-
tation T2 of Td. Therefore, the 3 × 3 transformation matrices of a vector form
a T2 representation. By taking the matrix product of two such 3 × 3 transfor-
mation matrices we obtain a set of 9 × 9 matrices forming a representation
for ° . This suggests that the characters of ° are equal to the squares of the
characters for T2:

{E} {3C2} {6S4} {6Û} {8C3}
¯° : 9 1 1 1 0

When the matrices of a representation Ù are equal to the matrix product of
the matrices of two representations · and ‚, Ù is said to be the direct product
of · and ‚. Direct products are represented by the symbol ⊗ as in

° � T2 ⊗ T2. (2.15)

After determining the characters of ° , the next step is to find the irre-
ducible representations of Td whose characters will add up to those of ° . The
systematic way of doing this is to apply the orthogonality relation (2.11). It is
left as an exercise (Problem 2.3) to show that

T2 ⊗ T2 � T1 ⊕ T2 ⊕ E ⊕ A1 (2.16)

With practice this result can also be derived quickly by inspection. In the
present example, one starts by writing down various combinations of repre-
sentations with total dimensions equal to nine. Next one eliminates those com-
binations whose characters for the other classes do not add up to ¯° . Very
soon it is found that the only direct sum with characters equal to that of °
for all five classes of Td is the one in (2.16). Once we realize that ° can be
decomposed into the direct sum of these four irreducible representations, we
can use the basis functions for these representations given in Table 2.3 as a
guide to deduce the correct linear combinations of the nine components of
the second-rank tensor which transform according to these four irreducible
representations:

A1 : Txx � Tyy � Tzz

E : {Txx � Tyy, Tzz � (Txx � Tyy)/2}
T1 : {(Txy � Tyx)/2, (Tzx � Txz)/2, (Tyz � Tzy)/2}
T2 : {(Txy � Tyx)/2, (Txz � Tzx)/2, (Tyz � Tzy)/2}.

b) Symmetrization of Long Wavelength Vibrations
in Zinc-Blende and Diamond Crystals

The process we have described above is known as the symmetrization of the
nine components of the second-rank tensor. This method can also be applied
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to symmetrize wave functions. When a Hamiltonian is invariant under the
symmetry operations of a group, its wave functions can be symmetrized so
as to belong to irreducible representations of this group. Just as atomic wave
functions are labeled s, p, and d according to their symmetry under rotation,
it is convenient to label the electronic and vibrational wave functions of a
crystal at the point k in reciprocal space by the irreducible representations of
the group of symmetry operations appropriate for k. We will now explain this
statement with an example drawn from the vibrational modes of zinc-blende
and diamond crystals.

Although we will not discuss lattice vibrations in semiconductors until the
next chapter, it is easier to demonstrate their symmetry properties than those
of electrons. First, we can argue that vibrations of atoms in a crystal can be
described by waves based on its translational symmetry, just as its electrons
can be described by Bloch functions. For example, sound is a form of such
vibration. Thus atomic motions in a crystal can be characterized by their dis-
placement vectors (in real space) plus their wave vectors k (in reciprocal lat-
tice space). The symmetry of a vibration is therefore determined by the effects
of symmetry operations of the crystal on both vectors. Due to the discrete lo-
cation of atoms in a crystal, a wave with wave vector equal to k or k plus
a reciprocal lattice vector are indistinguishable (this point will be discussed
further in Chap. 3). Thus an operation which transforms k into another wave
vector k′ differing from k by a reciprocal lattice vector also belongs to the
group of symmetry operations of k. This group is known as the group of the
wave vector k. In particular, the group of the ° point or zone center is always
the same as the point group of the crystal.

A long wavelength (that is, k near the Brillouin zone center) vibration in
a crystal involves nearly uniform displacements of identical atoms in different
unit cells. For a zinc-blende crystal with two atoms per primitive unit cell, a
zone-center vibrational mode can be specified by two vectors representing the
displacements of these two atoms. We have already pointed out that the three
components of a vector transform under the symmetry operations of Td ac-
cording to the T2, also called °4 representation (see Tables 2.3 and 2.4). To
discuss properties in the zinc-blende crystal we will switch to the Koster no-
tation. For brevity we will refer to the vector as “belonging” to the °4 rep-
resentation. Two vectors, one associated with each atom in the primitive cell,
give rise to a six-dimensional representation. Since irreducible representations
in Td have at most three dimensions, this representation is reducible. To re-
duce it one can calculate its characters by applying the symmetry operations
of Td to the two vectors. An alternative method is to consider the two atoms
as the basis of a two-dimensional representation R. The characters of R are
obtained by counting the number of atoms which are unchanged by the sym-
metry operations of Td (since each atom satisfying this condition contributes
one unity diagonal element to the representation matrix). The two atoms in
the zinc-blende lattice are not interchanged by the operations of Td, therefore
all the characters of R are simply two. Thus R is reducible to two °1 repre-
sentations. The representations of the two displacement vectors in the unit cell
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of the zinc-blende crystal are equal to the direct product of R and °4, which
is equal to 2°4. These two °4 representations correspond to the acoustic and
optical phonon modes (see Chap. 3 for further details). In the acoustic mode
the two atoms in the primitive cell move in phase while in the optical mode
they move 180˚ out of phase.

As pointed out in Sect. 2.3.2, the factor group of the diamond crystal is iso-
morphic to the point group Oh. We should remember that the origin has been
chosen to be one of the carbon atoms. The space group operation which cor-
responds to inversion in Oh is inversion about the origin plus a translation by
(a/4)(1, 1, 1) (for brevity this operation will be denoted here by i′). From Table
2.6 one finds that a vector belongs to the °15 representation of the Oh point
group. As in the case of the zinc-blende crystal, we can obtain the characters of
the six-dimensional representation by determining the characters of R and then
calculating the direct product of R and °15. The characters of R now depend on
whether the symmetry operations include i′. For all symmetry operations which
already exist for the zinc-blende structure and therefore do not involve i′, the
characters are equal to two, as in the zinc-blende crystal. For all other opera-
tions, the two atoms inside the primitive unit cell are interchanged by i′, so their
characters are zero. By inspection of Table 2.5 one concludes that R reduces to
°1⊕°2′ . Thus the displacement vectors of the two atoms in the primitive unit cell
of diamond transform as °15 and °25′ . The displacement vectors of the acoustic
phonon change sign (the parity is said to be odd) under i′ and therefore have
symmetry °15. On the other hand the optical phonon parity is even and has sym-
metry °25′ . The effects of i′ on the long-wavelength acoustic and optical phonons
propagating along the body diagonal of the diamond crystal are shown in Fig. 2.7.

c) Symmetrization of Nearly Free Electron Wave Functions
in Zinc-Blende Crystals

As an example of application of character tables in symmetrizing electronic
wave functions, we will consider a nearly free electron in a zinc-blende crystal.
By nearly free we mean that the electron is moving inside a crystal with a
vanishingly small periodic potential of Td symmetry, so that its energy E and
wave function º are essentially those of a free particle:

º(x, y, z) � exp [i(kxx � kyy � kzz)] (2.17)

and

E � �2k2/2m. (2.18)

However, because of the periodic lattice, its wave vector k can be restricted to
the first Brillouin zone in the reduced zone scheme.

We will assume that the crystal has the zinc-blende structure and that
k � (2/a)(1, 1, 1), where a is the length of an edge of the unit cube in the
zinc-blende lattice. By applying the C3 symmetry operations of zinc-blende we
can show that all the eight points (2/a)(±1,±1,±1) in the Brillouin zone are
equivalent. Furthermore, from the definition of the primitive reciprocal lat-
tice vectors given in Sect. 2.2 all eight points differ from the zone center by
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Fig. 2.7. Schematic diagrams of the transformation of (a) the acoustic phonon and (b) the
zone-center optical phonon in diamond under inversion plus translation by (a/4)(1, 1, 1)
where a is the size of the unit cube of diamond

a primitive reciprocal lattice vector. Hence all eight points will map onto the
zone center in the reduced zone scheme. The group of the wave vector k �
(2/a)(1, 1, 1) is therefore Td. To simplify the notation we will represent the
electronic wave functions exp [i(kxx � kyy � kzz)] as {kxkykz}. The eight wave
functions {111}, {111}, {111}, {111}, {111}, {111}, {111} and {111} are degen-
erate but the degeneracy will be lifted by perturbations such as a nonzero
crystal potential. Our goal now is to form symmetrized linear combinations
of these eight wave functions with the aid of the character table of Td in
Table 2.3.

We note first that these eight wave functions form the basis functions of an
eight-dimensional representation. Obviously this representation is reducible.
Unlike the cases given in (a) and (b), there are no shortcuts in determining
the characters of this eight-dimensional representation. Since characters are
the sums of the diagonal elements, they can be deduced by determining the
number of wave functions unchanged by the symmetry operations. The char-
acters calculated in this way are given in Table 2.8.
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Table 2.8. Characters of the representations formed by the nearly free electron wave
functions with wave vectors equal to (2/a)(1, 1, 1) and (2/a)(2, 0, 0) in a zinc-blende
crystal

E xyz 8 6
3C2 xyz 0 2
6S4 xzy 0 0
6Û yxz 4 2
8C3 yzx 2 0

Class Transformation Characters

[111] [200]

Table 2.9. Symmetrized nearly free electron wave functions in a zinc-blende crystal with
wave vectors equal to (2/a)(±1,±1,±1)

°1 (1/
√

8)({111} � {111} � {111} � {111} � {111} � {111} � {111}
� {111}) � (

√
8) cos (2x/a) cos (2y/a) cos (2z/a)

°1 (
√

8) sin (2x/a) sin (2y/a) sin (2z/a)

°4 (
√

8){sin (2x/a) sin (2y/a) cos (2z/a);
sin (2x/a) cos (2y/a) sin (2z/a);
cos (2x/a) sin (2y/a) sin (2z/a)}

°4 (
√

8){sin (2x/a) cos (2y/a) cos (2z/a);
cos (2x/a) sin (2y/a) cos (2z/a);
cos (2x/a) cos (2y/a) sin (2z/a)}.

Representation Wave function

By using the orthogonality relations or the method of “inspection”, we
found from Table 2.3 (using Table 2.4 to convert to the Koster notation)
that the only combination of irreducible representations giving rise to the
set of characters in Table 2.8 is the direct sum 2°1 ⊕ 2°4. Thus the eight
{(±)1(±)1(±)1} free electron wave functions can be expressed as two wave
functions belonging to the one-dimensional °1 representation and two wave
functions belonging to the three-dimensional °4 representation. The proper
linear combinations of wave functions which transform according to these ir-
reducible representations can be obtained systematically by using projection
operators (see any one of the references on group theory for further details).
In many simple cases this can be done by inspection also. The proper linear
combinations of the [111] wave functions can be shown to be (see Problem
2.4) those in Table 2.9.

Similarly one can show that the six degenerate {(±)200}, {0(±)20} and
{00(±)2} wave functions form a six-dimensional representation whose charac-
ters are given in Table 2.8. Using these characters one can decompose this six-
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Table 2.10. Symmetrized nearly free electron wave functions in a zinc-blende crystal
with wave vectors equal to (2/a)(±2, 0, 0), (2/a)(0,±2, 0), and (2/a)(0, 0,±2)

°1 cos (4x/a) � cos (4y/a) � cos (4z/a)

°3 cos (4y/a) � cos (4z/a);
cos (4x/a) � (1/2)[cos (4y/a) � cos (4z/a)]

°4 sin (4x/a); sin (4y/a); sin (4z/a)

Representation Wave function

dimensional representation into the direct sum °1 ⊕ °3 ⊕ °4. The symmetrized
wave functions are given in Table 2.10, while the proof is left as an exercise
(Problem 2.4).

d) Selection Rules

In atomic physics one learns that optical transitions obey selection rules such
as: in an electric-dipole transition the orbital angular momentum can change
only by ±1. These selection rules result from restrictions imposed on matrix
elements of the electric-dipole operator [see (6.29,30)] by the rotational sym-
metry of the atomic potential. One may expect similar selection rules to result
from the symmetry of potentials in crystals. To see how such selection rules
can be derived, we will consider the following example.

Let p be the electron momentum operator and æ1 be a wave function in a
zinc-blende-type crystal with the point group Td. Since p is a vector its three
components px, py, and pz belong to the irreducible representation T2 (°15 or
°4 according to Table 2.4). Let us assume that æ1 is a triply degenerate wave
function belonging to T2 also. Operating with p on æ1 results in a set of nine
wave functions, which we will label æ3. These nine wave functions generate a
nine-dimensional reducible representation which can be reduced to the direct
sum T1 ⊕ T2 ⊕ E ⊕ A1 as shown in (2.16). Next we form the matrix element
M � 〈æ2|p|æ1〉� 〈æ2|æ3〉 between æ3 and another wave function æ2. Suppose
æ2 belongs to an irreducible representation B which is not one of the irre-
ducible representations in the direct sum T1 ⊕ T2 ⊕ E ⊕ A1 of the wave func-
tion æ3. From the orthogonality of the basis functions for different irreducible
representations one concludes that the matrix element M is zero. In general,
it can be proved that the matrix element between an operator p and two wave
functions æ1 and æ2 can differ from zero only when the direct product of the
representations of p and æ1 contains an irreducible representation of æ2. This
important group theoretical result is known as the matrix-element theorem.

When applied to atoms the matrix-element theorem leads to the familiar se-
lection rules for electric-dipole transitions. For instance, if æ1 and æ2 are atomic
wave functions they will have definite parities under inversion, and the parity
of their direct product is simply the product of their parities. The electric-dipole
operator has odd parity so its matrix element is zero between two states of the
same parity according to the matrix-element theorem. If æ1 and æ2 both have
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s symmetry then their direct product also has s symmetry. Since the dipole op-
erator has p-symmetry its matrix element between two s states is zero. On the
other hand if one of these two wave functions has p symmetry its direct product
will contain a component with p symmetry, and the electric-dipole transition will
be nonzero. Thus, application of the matrix-element theorem leads to selection
rules for optical transitions in systems with spherical symmetry.

Using the matrix-element theorem we can also obtain very general selec-
tion rules for optical transitions in zinc-blende-type and diamond-type crystals.
In Chap. 6 we will show that electric-dipole transitions in a crystal are deter-
mined by the matrix element of the electron momentum operator p. In a zinc-
blende-type crystal p belongs to the °4 irreducible representations. To derive
the selection rules for optical transitions involving zone-center wave functions
we need to know the direct product between °4 and all the irreducible repre-
sentations of Td. The results are summarized in Table 2.11.

From this table we can easily determine whether or not electric-dipole tran-
sitions between any two bands at the zone center of the zinc-blende crystal are
allowed. For example, dipole transitions from a °4 valence band to conduction
bands with °1, °3, °4, and °5 symmetries are all allowed. Using Table 2.11 one
can derive selection rules for optical excitation of phonons by photons in the
infrared (to be discussed further in Chap. 6). The ground state of the crystal
with no phonons should have °1 symmetry. In zinc-blende crystals only °4 opti-
cal phonons can be directly excited by an infrared photon via an electric-dipole
transition. Such phonons are said to be infrared-active. On the other hand the
°25′ optical phonon of the diamond structure is not infrared-active because of
the parity selection rule (Ge, Si, and diamond are highly transparent in the in-
frared!). The ionic momentum operator has symmetry °15 for the Oh group and
odd parity under the operation i′ of the diamond crystal. Hence electric-dipole
transitions can only connect states with opposite parity.

Selection rules for higher order optical processes, such as Raman scatter-
ing can also be obtained from Table 2.11. As will be shown in Chap. 7, Ra-
man scattering involves the excitation of a phonon via two optical transitions.
If both optical transitions are of the electric-dipole type in a zinc-blende crys-
tal, the excited phonon must belong to one of the irreducible representations
of the direct product °4 ⊗ °4 � °4 ⊕ °5 ⊕ °3 ⊕ °1. Phonons which can be ex-
cited optically in Raman scattering are said to be Raman-active. Thus the °4
optical phonon in the zinc-blende crystal is Raman-active in addition to being

Table 2.11. Direct products of the °4 representation with all the representations of Td

°4 ⊗ °1 °4

°4 ⊗ °2 °5

°4 ⊗ °3 °4 ⊕ °5

°4 ⊗ °4 °4 ⊕ °5 ⊕ °3 ⊕ °1

°4 ⊗ °5 °4 ⊕ °5 ⊕ °3 ⊕ °2

Direct product Direct sum
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infrared-active. Similarly, the symmetries of Raman-active phonons in crystals
with the Oh point group can be shown to be °25′ , °12, and °1 (see Chap. 7
for further details). Hence the °25′ optical phonon of the diamond structure,
while not infrared-active, is Raman-active. In crystals with inversion symmetry
(said to be centrosymmetric), an infrared-active phonon must be odd while
a Raman-active phonon must be even under inversion, therefore a phonon
cannot be both infrared-active and Raman-active in such crystals.

2.4 Empty Lattice or Nearly Free Electron Energy Bands

We now apply the group theoretical notations to the electron energy band
structure of the diamond- and zinc-blende-type semiconductors. Since the elec-
trons move in the presence of a crystal potential, their wave functions can
be symmetrized to reflect the crystal symmetry, i. e., written in a form such
that they belong to irreducible representations of the space group of the crys-
tal. However, in order to highlight the symmetry properties of the electron
wave function, we will assume that the crystal potential is vanishingly small.
In this empty lattice or nearly free electron model, the energy and wave func-
tions of the electron are those of a free particle as given by (2.18) and (2.17),
respectively. The electron energy band is simply a parabola when plotted in
the extended zone scheme. This parabola looks much more complicated when
replotted in the reduced zone scheme. It looks especially intimidating when
the wave functions are labeled according to the irreducible representations of
the point group of the crystal. Such complications have resulted from using
the crystal symmetry which was supposed to simplify the problem! The sim-
plification, however, occurs when we consider the band structure of electrons
in a non-empty lattice in the remaining sections of this chapter. In this section
we will use group theory to analyze the symmetry properties of nearly free
electron band structures in both zinc-blende- and diamond-type crystals.

2.4.1 Nearly Free Electron Band Structure in a Zinc-Blende Crystal

Figure 2.8 shows the energy band of a nearly free electron plotted in the re-
duced zone scheme for wave vectors along the [111] and [100] directions only.
To analyze this band diagram we will consider the symmetry and wave func-
tions at a few special high-symmetry points in reciprocal space.

k � (0, 0, 0)

As pointed out in Sect. 2.3.4, the group of the k vector at the ° point is al-
ways isomorphic to the point group of the lattice. Since the wave function is a
constant for k � 0, it has the symmetry °1.
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Fig. 2.8. Band structure of nearly free electrons in a zinc-blende-type crystal in the re-
duced zone scheme. The numbers in square brackets denote corresponding reciprocal lat-
tice vectors in the extended zone scheme in units of (2/a), a being the size of the unit
cube. Note: To conform to notations used in the literature, we will use � instead of ⊕ to
represent the direct sum of two representations in all figures

k � (b, b, b), b 
� (/a)

In the eight equivalent [111] directions the bands are labeled §, according to
the Brillouin zone notations in Fig. 2.2c. The wave functions for k 
� 0 are
classified according to the group of the wave vector k. The group of a wave
vector along the [111] direction inside the Brillouin zone is C3v and contains
six elements divided into three classes:

{E}: identity;
{C3, C�1

3 }: two three-fold rotations about the [111] direction;
{m1, m2, m3}: three reflections in the three equivalent (110) planes containing

the [111] axis.

The characters and basis functions for the irreducible representations of § are
summarized in Table 2.12.

The free-electron wave function given by exp [(i˙/a)(x � y � z)], where
0 � ˙ � 1, is invariant under all the symmetry operations of the group of §
so it belongs to the §1 representation. We can also obtain this symmetry of
the electron wave function by using the so-called compatibility relations. The
symmetry of the endpoints of an axis in the Brillouin zone is higher than or
equal to that of a point on the axis. Therefore the group of a point on an axis
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Table 2.12. Characters and basis functions of the irreducible representations of the group
of (C3v) in a zinc-blende-type crystal§

§1 1 1 1 1 or x � y � z
§2 1 1 �1 xy(x � y) � yz(y � z) � zx(z � x)

§3 2 �1 0 {(x � y); (z � [x � y])}

{E} {2C3} {3m} Basis functions

1
2

2
3

is either equal to or constitutes a subgroup of the group of the endpoints. In
the latter case, a representation belonging to the group of the endpoints of an
axis can be reduced to irreducible representations of the group of the axis. The
procedure for this reduction is the same as that described in Sect. 2.3.4. The
difference is that only symmetry operations common to both groups need be
considered now. When a representation of the group of an axis is contained in
a representation of one of the group’s endpoints, the two representations are
said to be compatible. For points lying on the [111] axis of a zinc-blende-type
crystal, the group of § is a subgroup of ° but is identical to the group of L.
From the character tables for ° and § it is clear that °1 is compatible with
§1 only. Thus when the band starts out at the zone center with symmetry °1,
the symmetry of the band along the [111] direction must be §1. This case illus-
trates a rather trivial application of the compatibility relations. Compatibility
relations provide very useful consistency checks on band-structure calculations.
Further applications of the compatibility relations can be found in Problem 2.6
at the end of this chapter.

k � (/a)(1, 1, 1)

In the zinc-blende structure the symmetry operations in the group of the L
point are identical to those of the § axis. So the §1 representation is compat-
ible with the L1 representation only. For free electrons the wave function is
doubly degenerate at (/a)(1, 1, 1) since (/a)(1, 1, 1) and (�/a)(1, 1, 1) differ
by (2/a)(1, 1, 1), a reciprocal lattice vector of the zinc-blende structure. Using
the compatibility relations one can show that the next higher energy band
along the § axis also has §1 symmetry.

k � (2/a)(1, 1, 1)

The point k � (2/a)(1, 1, 1) is equivalent to ° since it differs from ° by a
reciprocal lattice vector. As shown in Sect. 2.3.4, the eight degenerate wave
functions of the form exp [(i2/a)(±x ± y ± z)] can be symmetrized into
two wave functions with °1 symmetry and two sets of three wave functions
with °4 symmetry. The symmetries of the higher energy bands in the [111]
direction are given in Fig. 2.8. They can be deduced using Table 2.12 and
checked by the compatibility relations. The reader is urged to verify this as
an exercise.
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Table 2.13. Symmetry operations and classes of the group of (C2v) in the zinc-blende
structure

¢

{E} xyz
{C2

4} xyz
{md} xyz
{md} xzy

Class Symmetry operations

′

Table 2.14. Characters of the irreducible representations of the group of (C2v)¢

¢1 1 1 1 1
¢2 1 1 �1 �1
¢3 1 �1 1 �1
¢4 1 �1 �1 1

{E} {C2
4} {md} {md}′

k � (c, 0, 0), c 
� (2/a)

Wave vectors in the [100] and equivalent directions are denoted by ¢.
The group of ¢ (C2v) contains four elements divided into the four classes
listed in Table 2.13. The irreducible representations and characters of the
group of ¢ are summarized in Table 2.14. The symmetry of the wave func-
tion in the [100] direction is ¢1 since this is the only representation compat-
ible with °1. The ¢ axis ends at the X point on the surface of the Brillouin
zone.

k � (2/a)(1, 0, 0)

The group of X contains twice as many symmetry operations as the group
of ¢ since the wave vectors (2/a)(1, 0, 0) and (2/a)(�1, 0, 0) differ by the
reciprocal lattice vector (2/a)(2, 0, 0). The eight elements of the group of X
(D2d) are divided into five classes:

{E}: identity;
{C2

4(x)}: two-fold rotation about the x axis;
{2C2

4(y, z)}: two-fold rotations about the y and z axes;
{2S4}: two four-fold improper rotations about the x axis;
{2md}: two mirror reflections on the [011] and [011] planes.

The irreducible representations of the group of X and their characters are
given in Table 2.15. The wave functions at the X point with k � (2/a)(±1, 0, 0)
are doubly degenerate in the nearly-free electron model. From the compatibility
relations it can be found that these wave functions belong to either the X1 or
X3 representations.
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Table 2.15. Characters of the irreducible representations of the group of X (D2d) in the
zinc-blende structure

X1 1 1 1 1 1
X2 1 1 1 �1 �1
X3 1 1 �1 �1 1
X4 1 1 1 1 1
X5 2 �2 0 0 0

{E} {C2
4(x)} {2C2

4(y, z)} {2S4} {2md}

� �

k � (2/a)(0, 0, 2)

The points k � (2/a)(±2, 0, 0), (2/a)(0,±2, 0), and (2/a)(0, 0,±2) differ
from the zone center by reciprocal lattice vectors. As already shown in ex-
ample (c) in Sect. 2.3.4, the six degenerate wave functions

exp [±i4x/a]; exp [±i4y/a]; and exp [±i4z/a]

can be symmetrized to transform like the °1, °3, and °4 irreducible represen-
tations.

2.4.2 Nearly Free Electron Energy Bands in Diamond Crystals

Obviously, the band structure of a free electron is the same whether it is in
a zinc-blende or a diamond crystal. Therefore, in order to obtain the sym-
metrized wave functions specific to the diamond structure, we have to assume
first that the diamond crystal potential is nonzero and symmetrize the elec-
tron wave functions accordingly. Afterwards the crystal potential is made to
approach zero. The band structure of nearly free electrons in a diamond-type
crystal obtained in this way is shown in Fig. 2.9. It serves as an important
guide to the band structure of Si (shown in Fig. 2.10 for comparison) calcu-
lated by more sophisticated techniques to be discussed later in this chapter.

The symmetries of the bands in diamond are very similar to those of zinc-
blende because both crystals have a fcc lattice and tetrahedral symmetry. How-
ever, there are also important differences resulting from the existence of glide
planes in the diamond structure as discussed in Sect. 2.3.2. We pointed out in
that section that, if we choose the origin at one of the carbon atoms in dia-
mond, the crystal is invariant under all the symmetry operations of the point
group Td plus three “glide-like” operations: T(1/4, 1/4, 1/4)Ûx, T(1/4, 1/4, 1/4)Ûy,
and T(1/4, 1/4, 1/4)Ûz (for brevity, we will now denote these three operations
as TÛx, TÛy, and TÛz, respectively). However, the factor group of the space
group of diamond is isomorphic to the point group Oh. In symmetrizing the
electronic wave functions in the diamond structure, one has to consider the
effect of TÛx on the Bloch functions. In this subsection we shall pay special
attention to the electron wave functions at the points °, L, and X of the Bril-
louin zone of the diamond crystal.
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Fig. 2.9. Band structure of nearly free electrons for a diamond-type crystal in the reduced
zone scheme
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k � (0, 0, 0)

From (2.8) the Bloch functions at the zone center can be written as u(r),
where u has the periodicity of the lattice. We define C as a set formed from
the group Td plus all the operations obtained by multiplying each element of
Td by TÛx. C defined this way is not a group because operations involving the
glide, such as (TÛx)2 � T(0, 1/2, 1/2) are not a member of C [for brevity, we
will denote the operation T(0, 1/2, 1/2) by Q]. Let us now generate a set {Cu}
consisting of 48 functions by applying the operations of C to u(r). For any two
symmetry operations, a and b of C we define the operation multiplication be-
tween the corresponding two elements au and bu in {Cu} as (au)(bu) � (ab)u.
The set of operations in {Cu}, defined by their effect on the function u, can
be easily shown to form a group. In particular, Qu(r) � u(r) because u(r)
has the translational symmetry of the crystal and hence Qu is now an element
of {Cu}. In this group, it is convenient to introduce the element i′u where
i′ � T(1/4, 1/4, 1/4)i was introduced in Sect. 2.3.4 (i is the inversion operation
with respect to the origin). As pointed out in Sect. 2.3.4, the diamond crystal
is not invariant under inversion with respect to one of the carbon atoms; it is
however invariant under the combined operation of inversion followed by the
translation T(1/4, 1/4, 1/4). One can show that the 48 operations in {Cu} are
isomorphic to the Oh group. The character table of the group of wave func-
tions of ° is given in Table 2.16. It can be compared with the character table
for the Oh group (Table 2.5). Note that the classes are listed in different orders
in Tables 2.5 and 2.16. In Table 2.16 the five classes of symmetry operations in
the point group Td are listed first. The remaining five classes are obtained by
multiplying the Td operations by i′.

The effects of i′ on the symmetry of wave functions at different high-
symmetry points of the diamond crystal are not the same. For example, points
along § are not invariant under i′, so their symmetries are the same as in
the zinc-blende crystal. On the other hand, the L point is invariant under i′,
therefore the wave functions at L have definite parity under i′.

Table 2.16. Characters of the irreducible representations of the group of ° in the diamond
structure. The notation is that of Koster (BSW notation in parentheses)

°�
1 (°1) 1 1 1 1 1 1 1 1 1 1

°�
2 (°2) 1 1 �1 �1 1 1 1 �1 �1 1

°�
3 (°12) 2 2 0 0 �1 2 2 0 0 �1

°�
4 (°15′ ) 3 �1 1 �1 0 3 �1 1 �1 0

°�
5 (°25′ ) 3 �1 �1 1 0 3 �1 �1 1 0

°�
1 (° ′1) 1 1 �1 �1 1 �1 �1 1 1 �1

°�
2 (° ′2) 1 1 1 1 1 �1 �1 �1 �1 �1

°�
3 (° ′12 ) 2 2 0 0 �1 �2 �2 0 0 1

°�
4 (°15) 3 �1 �1 1 0 �3 1 1 �1 0

°�
5 (°25) 3 �1 1 �1 0 �3 1 �1 1 0

{E} {C2} {S4} {Ûd} {C3} {i′} {i′C2} {i′S4} {i′Ûd} {i′C3}
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k � (/a)(1, 1, 1)

The group of the L point in the diamond structure is isomorphic to the group
of L in the fcc Bravais lattice (that is, a crystal formed by putting only one
atom at each lattice point of a fcc lattice). The characters and basis functions
for the irreducible representations in the group of L (D3d) are shown in Table
2.17.

k � (2/a)(1, 1, 1)

It has been pointed out already in the case of the zinc-blende crystal that
k � (2/a)(1, 1, 1) is equivalent to °. This is, of course, also true for the dia-
mond crystal. From the eight symmetrized wave functions for the zinc-blende
crystal given in Table 2.9 it can be shown readily that, for the diamond crys-
tal, the eight equivalent (111) wave functions are symmetrized to transform
according to the irreducible representations in Table 2.18.

The symmetry of the wave functions in the diamond structure along the
[001] directions are quite different from those of zinc-blende. We will first con-
sider the X point since it presents an especially interesting case.

Table 2.17. Characters and basis functions for the irreducible representations of the group
of L in the diamond structure

L1 1 1 1 1 1 1 1
L2 1 1 �1 1 1 1 xy(x2 � y2) � yz(y2 � z2) � zx(z2 � x2)
L3 2 �1 0 2 �1 0 {z2 � 1/2(x2 � y2); (x2 � y2)}
L ′1 1 1 1 �1 �1 �1 (x � y)(y � z)(z � x)
L ′2 1 1 �1 �1 �1

�

1 x � y � z
L ′3 2 �1 0 �2 1 0 {(x � z); (y � 1/2[x � z])}

{E} {2C3} {3C2} {i′} {2i′C3} {3i′C2} Basis functions

Table 2.18. Symmetrized nearly free electron wave functions in the diamond crystal with

coincide with an atomic site.
wave vectors equal to . The origin of coordinates has been taken to(2/a)(±1, ±1, ±1)

°�
1 1 cos (2(° x/a))

2'(° )

25'(° )

15(° )

cos (2y/a) cos (2z/a)
�sin (2x/a) sin (2y/a) sin (2z/a)

°2 cos (2x/a) cos (2y/a) cos (2z/a)
�sin (2x/a) sin (2y/a) sin (2z/a)

°�
5 sin (2x/a) cos (2y/a) cos (2z/a)

�cos (2x/a) sin (2y/a) sin (2z/a); plus two cyclic permutations

°�
4 sin (2x/a) cos (2y/a) cos (2z /a)

�cos (2x/a) sin (2y/a) sin (2z/a); plus two cyclic permutations

Representation Wave function

�
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k � (2/a)(0, 0, 1)

A very special property of the wave functions at the X point of the diamond
structure is that all relevant irreducible representations of the group of the X
point are doubly degenerate, but they do not have definite parity under i′.
To understand this peculiar property, let us first enumerate all the symmetry
operations of the group of the X point. We will start with the eight symmetry
operations of the group of the point (2/a)(0, 0, 1) in the Brillouin zone of the
zinc-blende structure:

{E, C2
4(z), 2C2

4(x, y), 2S4, 2md}.

Next we will consider the combined effect of these operations and the opera-
tion TÛz on a wave function at the X point:

ˇ � exp (i2z/a)u(r). (2.19)

At first we may expect that we can construct a group for the X point by taking
the above eight elements and adding to them their products with the operation
TÛz. This should result in a set of sixteen elements. It turns out that these
sixteen elements do not form a group because translation and rotation do not
necessarily commute. For example, consider the combined effect of C2

4(x)TÛz

on a vector (x, y, z):

(x, y, z)
Ûz→ (x, y, z)

T(1/4,1/4,1/4)→ (x � 1/4a, y � 1/4a, �z � 1/4a)

C2
4(x)→ (x � 1/4a, �y � 1/4a, z � 1/4a).

If we interchange the order of C2
4(x) and TÛz we find that

[TÛzC2
4(x)](x, y, z) � (x � 1/4a, �y � 1/4a, z � 1/4a), (2.20a)

so the operation C2
4 does not commute with TÛz. In particular,

[TÛzC2
4(x)]ˇ � T(0, 1/2, 1/2)[C2

4]TÛzˇ � Q[C2
4]TÛzˇ. (2.20b)

In order that the set {Eˇ, C2
4(z)ˇ, . . . , 2mdˇ, TÛzˇ, . . . , TÛz2mdˇ} forms a

group, the operation Q has to be included also. Taking the 16 operations men-
tioned above and their products with Q, a group with 32 elements is obtained.
This group can be divided into 14 classes:

C1 � {E}
C2 � {C2

4(x), C2
4(y), QC2

4(x), QC2
4(y)}

C3 � {C2
4(z)}

C4 � {QTÛzÛx, TÛzÛy}
C5 � {TÛzS4, TÛzS�1

4 , QTÛzS4, QTÛzS�1
4 }

C6 � {TÛz, QTÛz}
C7 � {TÛzC2

4(x), TÛzC2
4(y), QTÛzC2

4(x), QTÛzC2
4(y)}

C8 � {TÛzC2
4(z), QTÛzC2

4(z)}
C9 � {Ûx, Ûy}
C10 � {S4, S�1

4 , QS4, QS�1
4 }

C11 � {QÛx, QÛy}
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C12 � {QTÛzÛy, TÛzÛx}
C13 � {QC2

4(z)}
C14 � {Q}

The characters of the corresponding 14 irreducible representations are
given in Table 2.19. However, not all of these representations are acceptable
for wave functions at the X point of the Brillouin zone in the diamond crys-
tal. Since (a/2)(0, 1, 1) is a lattice vector of the fcc lattice the operation Q will
leave the periodic part of the X-point wave function invariant. The sinusoidal
envelope exp (i2z/a) of the Bloch function changes sign under the transla-
tion Q, so overall the X-point wave functions must be odd under Q. Of the
14 irreducible representations only four are odd under the translation Q (or
C14). These are labeled X1, X2, X3, and X4 in Table 2.19. The interesting point
is that these four representations are all doubly degenerate. This degeneracy
results from the glide reflection and the fact that the two atoms in the unit
cell of the diamond structure are identical. The degeneracy in the X1 and X2
states is lifted in the zinc-blende structure, where the two atoms in the primi-
tive cell are different (see Problem 2.8). Some examples of symmetrized wave
functions at the X point are

k � (2/a)(0, 0, 1):
X1 : {cos (2z/a); sin (2z/a)}

k � (2/a)(±1,±1, 0):
X1 : {cos (2x/a) cos (2y/a); sin (2x/a)sin (2y/a)}
X4 : {sin (2x/a) cos (2y/a); cos (2x/a)sin (2y/a)}

k � (Í/a)(0, 0, 1) where 0 � Í � 2.

Table 2.19. Irreducible representations and characters of the group of symmetry opera-
tions on the wave functions at the X point (2/a)(0, 0, 1) of the Brillouin zone of the
diamond structure [Ref. 2.7, p. 162]

C1 4C2 C3 2C4 4C5 2C6 4C7 2C8 2C9 4C10 2C11 2C12 C13 C14

M1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M2 1 1 1 �1 �1 1 1 1 �1 �1 �1 �1 1 1
M3 1 �1 1 �1 1 1 �1 1 �1 1 �1 �1 1 1
M4 1 �1 1 1 �1 1 �1 1 1 �1 1 1 1 1
M5 2 0 �2 0 0 2 0 �2 0 0 0 0 �2 2
M′

1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 1 1 1
M′

2 1 1 1 �1 �1 �1 �1 �1 1 1 1 �1 1 1
M′

3 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 1
M′

4 1 �1 1 1 �1 �1 1 �1 �1 1 �1 1 1 1
M′

5 2 0 �2 0 0 �2 0 2 0 0 0 0 �2 2
X1 2 0 2 0 0 0 0 0 2 0 �2 0 �2 �2
X2 2 0 2 0 0 0 0 0 �2 0 2 0 �2 �2
X3 2 0 �2 2 0 0 0 0 0 0 0 �2 2 �2
X4 2 0 �2 �2 0 0 0 0 0 0 0 2a 2 �2

a An error in [2.7] has been corrected.



58 2. Electronic Band Structures

We will denote the Bloch function along the ¢ direction as „ � exp (iÍz/a)u(r)
as in (2.19). It is invariant under the following space group operations of the
diamond structure:

{E, Ûx, C2
x(z), Ûy, TÛzC2

4(x), TÛzS4, TÛzC2
4(y), TÛzS�1

4 },

which can be divided into 5 classes:

C1 � {E}
C2 � {C2

4(z)}
C3 � {TÛzS4, TÛzS�1

4 }
C4 � {Ûx, Ûy}
C5 � {TÛzC2

4(x), TÛzC2
4(y)}

The representations generated by these operations acting on „ are isomor-
phic with the group of ¢ for a cubic lattice. The corresponding characters are
shown in Table 2.20.

Table 2.20. Irreducible representations and characters of the group of symmetry opera-
tions on the wave functions at the ¢ point of the Brillouin zone of the diamond structure
[Ref. 2.7, p. 158]

¢1 1 1 1 1 1
¢2 1 1 �1 1 �1
¢ ′2 1 1 �1 �1 1
¢ ′1 1 1 1 �1 �1
¢5 2 �2 0 0 0

C1 C2 2C3 2C4 2C5

2.5 Band Structure Calculations by Pseudopotential Methods

In Fig. 2.10 we have shown the electronic band structure of Si. It has been
calculated with a sophisticated method known as the pseudopotential tech-
nique, which will be discussed in this section. Comparing these results with
the nearly free electron band structure in Fig. 2.9 we notice that there are
many similarities between the two. The nearly free electron band structure is
basically a parabola redrawn in the reduced zone scheme. In the other case
the band structure is computed by large-scale numerical calculations using su-
percomputers. The question is now: why do the two band structures, obtained
by completely different methods, look so similar qualitatively? The answer to
this question lies in the concept of pseudopotentials.

The electronic configuration of a Si atom is 1s22s22p63s23p2. When Si
atoms form a crystal we can divide their electrons into core electrons and va-
lence electrons as pointed out in Sect. 2.1. In crystalline Si the 1s, 2s, and 2p
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orbitals are completely occupied and form the core shells. The outer 3s and
3p shells are only partially filled. Electrons in these shells are called valence
electrons because they are involved in bonding with neighboring Si atoms.
The crystal structure of Si at ambient pressure is similar to that of diamond.
The tetrahedral arrangement of bonds between a Si atom and its four nearest
neighbors can be understood if one of the electrons in the 3s shell is “pro-
moted” to the 3p shell so that the four valence electrons form hybridized
sp3 orbitals. This sp3 hybridization is well known from the bonding of car-
bon atoms and is responsible for the tetrahedral structure found in many or-
ganic molecules. But carbon atoms are more versatile than silicon atoms in
that they can form double and triple bonds also. As a result, carbon atoms are
crucial to all known forms of life while silicon atoms are important only to the
highest form of life, namely human beings. It is these valence electrons in the
outermost shells of a Si atom that are nearly free. These electrons are not af-
fected by the full nuclear charge as a result of screening of the nucleus by the
filled core shells. In the core region the valence electron wave functions must
be orthogonal to those of the core. Thus the true wave functions may have
strong spatial oscillations near the core, which make it difficult to solve the
wave equation. One way to overcome this difficulty is to divide the wave func-
tions into a smooth part (the pseudo-wave function) and an oscillatory part.
The kinetic energy from the latter provides an “effective repulsion” for the
valence electrons near the core (alternatively one can regard the valence elec-
trons as being expelled from the core due to Pauli’s exclusion principle). Thus
we can approximate the strong true potential by a weaker “effective poten-
tial” or pseudopotential for the valence electrons. Since the “smooth” parts
of the valence electron wave functions have little weight in the core region,
they are not very sensitive to the shape of the pseudopotential there. Figure
2.11 shows qualitatively how the pseudopotential in Si varies with distance
r from the nucleus. At large values of r the pseudopotential approaches the
unscreened Coulomb potential of the Si4� ion. This concept of replacing the
true potential with a pseudopotential can be justified mathematically. It can

V(r)

~ 1/2 -Bond length

Core
region

Ion potential ~ –1/r

r

Fig. 2.11. Schematic plot of the atomic
pseudopotential of Si in real space [Ref. 2.8,
p. 17]. The solid curve in which V(r) → 0 in
the core region is said to be a “soft core”
pseudopotential. The broken curve in which
V(r) → constant is a “hard core” pseudopo-
tential
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be shown to reproduce correctly both the conduction and valence band states
while eliminating the cumbersome, and in many cases irrelevant, core states
[Ref. 2.8, p. 16].

Using the pseudopotential concept, the one-electron Schrödinger equation
(2.4) can be replaced by the pseudo-wave-equation

[
p2

2m
� V(ri)

]
„k(ri) � Ek„k(ri), (2.21)

where „ is the pseudo-wave-function. This function is a good approximation
to the true wave function outside the core region and therefore can be used
to calculate the physical properties of the semiconductors which are dependent
on the valence and conduction electrons only. Since pseudopotentials are weak
perturbations on the free-electron band structure, a good starting point for
diagonalizing (2.21) is to expand „k as a sum of plane waves:

„k �
∑

g

ag|k � g〉, (2.22)

where the vectors g are the reciprocal lattice vectors and |k 〉 represents a
plane wave with wave vector k. The coefficients ag and the eigenvalues Ek
can be determined by solving the secular equation

det || [(�2k2/2m) � Ek]‰k, k�g � 〈k |V(r) |k � g〉 ||� 0, (2.23)

The matrix elements of the pseudopotential V(r) are given by

〈k |V(r) |k � g〉�

[
1
N

∑
R

exp (�ig · R)

]
1
ø

∫
ø

V(r)exp [�ig · r]dr, (2.24)

where R is a direct lattice vector and ø the volume of a primitive cell. As a
result of summation over all the lattice vectors inside the bracket, the pseu-
dopotential matrix element is zero unless g is a reciprocal lattice vector. In
other words, the matrix elements of the pseudopotential are determined by
Fourier components of the pseudopotential (Vg) defined by

Vg �
1
ø

∫
ø

V(r)exp [�ig · r]dr, (2.25)

where g is a reciprocal lattice vector.
If there is only one atom per primitive cell these Fourier components of

the pseudopotential are known as the pseudopotential form factors. When
there are several different atoms in the primitive cell, it is convenient to de-
fine for each kind of atom a pseudopotential form factor and a structure fac-
tor which depends only on the positions of one particular kind of atom in the
primitive cell. For example, let there be two kinds of atoms · and ‚ in the
crystal and let their positions inside the primitive cell be denoted by r·i and
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r‚i. The structure factor Sg· of atom · is defined as

Sg· �
1

N·

∑
i

exp (�ig · r·i), (2.26)

where N· is the number of · atoms in the primitive cell. The structure factor
of atom ‚ is defined similarly. The pseudopotential form factor Vg· for atom
· can be defined as in (2.25) except that V is now the potential of one · atom
and the integration is performed over ø·, which is the volume corresponding
to one · atom. The pseudopotential V(r) can be expressed in terms of the
structure and form factors by

V(r) �
∑

g

(Vg·Sg· � Vg‚Sg‚) exp (ig · r). (2.27)

From (2.24) we conclude that the pseudopotential mixes the free-electron
states whose k’s differ by a reciprocal lattice vector. If these states are de-
generate, the degeneracy may be split by the pseudopotential provided the
corresponding form factor is nonzero. For example, consider the free-electron
states with k � (2/a)(±1,±1,±1) at the ° point in the diamond structure.
The k’s of these eight-fold degenerate states differ by reciprocal lattice vec-
tors (2/a)(2, 0, 0), (2/a)(2, 2, 0), and (2/a)(2, 2, 2). These eight states are de-
generate when the electron is free. With the introduction of the pseudopo-
tential, they become coupled and their degeneracy is partly lifted, producing
energy gaps (compare Figs. 2.9 and 2.10). When an energy gap opens up at
the Fermi level (highest occupied energy level) a semiconductor is obtained.
This opening of energy gaps in the nearly-free-electron band structure by the
pseudopotential form factors can be explained by Bragg reflection of the free-
electron plane waves by the crystal potential with the formation of standing
waves. When the pseudopotential form factors are small, their effect on the
band structure is weak so the actual band structure is not too different from
the free-electron band structure. This is the reason why the nearly free elec-
tron bands drawn in the reduced zone scheme are a good starting point for
understanding the band structure of most semiconductors.

2.5.1 Pseudopotential Form Factors
in Zinc-Blende- and Diamond-Type Semiconductors

The main reason why pseudopotentials are so useful is because only a small
number of these form factors are sufficient for calculating a band structure.
In semiconductors with the diamond structure, such as Si and Ge, just three
pseudopotential form factors are sufficient. In semiconductors with the zinc-
blende structure the number of required pseudopotential form factors doubles
to six. To show this we first note that there are two atoms a and b in the
unit cell. We will denote the atomic pseudopotentials of these two atoms by
Va(r � ra) and Vb(r � rb), where ra and rb are the positions of the two atoms
in the unit cell. Substituting these potentials into (2.25) we obtain the Fourier
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components of the crystal pseudopotential

Vg �
1
ø

∫
[Va(r � ra) � Vb(r � rb)] exp [�ig · r]dr (2.28)

�
1
ø

∫
[Va(r) exp (�ig · ra) � Vb(r) exp (�ig · rb)]

× exp [�ig · r]dr. (2.29)

Without loss of generality we can take the midpoint between the two
atoms in the unit cell as the origin, so that ra � (a/8)(1, 1, 1) � s and rb �
(�a/8)(1, 1, 1) � �s. We can now write

Va(r) exp (�ig · ra) � Vb(r) exp (�ig · rb) � (Va � Vb) cos (g · s)

� i(Va � Vb) sin (g · s). (2.30)

Next we define the symmetric and antisymmetric components of the pseudo-
potential form factor by

Vs
g �

1
ø

∫
(Va � Vb) exp (�ig · r)dr (2.31)

and

Va
g �

1
ø

∫
(Va � Vb) exp (�ig · r)dr. (2.32)

Substituting the results in (2.30–32) back into (2.29) we arrive at

Vg � Vs
g cos (g · s) � iVa

g sin (g · s). (2.33)

By symmetrizing the pseudopotential form factors in this way, it is clear
that the antisymmetric form factors Va

g vanish in the diamond structure. The
factor cos (g · s) is just the structure factor of diamond defined in (2.26). In
the III–V semiconductor, where the difference in the potentials of the anion
and cation is small, Va

g is expected to be smaller than Vs
g and furthermore Vs

g
should be almost the same as in their neighboring group–IV semiconductors.
For example, consider the pseudopotential form factors in Ge and the III–V
semiconductor GaAs formed from its neighbors in the periodic table. In the
diamond and zinc-blende structures, the reciprocal lattice vectors in order of
increasing magnitude are (in units of 2/a):

g0 � (0, 0, 0);
g3 � (1, 1, 1), (1, �1, 1), . . . , (�1, �1, �1);
g4 � (2, 0, 0), (�2, 0, 0), . . . , ( 0, 0, �2);
g8 � (2, 2, 0), (2, �2, 0), . . . , ( 0, �2, �2);
g11 � (3, 1, 1), (�3, 1, 1), . . . , (�3, �1, �1).

We can neglect pseudopotential form factors with g2 � 11(2/a)2 because typ-
ically Vg decreases as g�2 for large g. Figure 2.12 shows a schematic plot of
a pseudopotential as a function of the magnitude of g (g is assumed to be
spherically symmetrical as in the case of a free atom).
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V(q)

~(1/2 Bond length)–1

V(r) ~ ∫ V(q) eiqrdq

~-1
   q2

V(q = g) for typical g's
–2/3 EF

Screened ion limit
for metals

q

Fig. 2.12. Schematic plot of
a pseudopotential form factor
in reciprocal space [Ref. 2.8,
p. 21]

The pseudopotential form factor V0 corresponding to g0 is a constant po-
tential, which merely shifts the entire energy scale: it can therefore be set
equal to zero or any other convenient value (see Fig. 2.12). The pseudopo-
tential form factors for all the equivalent reciprocal lattice vectors with the
form (±1,±1,±1) and magnitude 3(2/a) are equal by symmetry and will be
denoted by V3. The structure factor corresponding to g4 is zero because
cos (g · s) � 0 for g � (2/a)(2, 0, 0). Thus we conclude that there are only three
important pseudopotential form factors for Ge: Vs

3, Vs
8 and Vs

11. In GaAs,
Va

8 vanishes because sin (g · s) � 0, so only six pseudopotential form fac-
tors are required: Vs

3, Vs
8, Vs

11, Va
3 , Va

4 , and Va
11. The pseudopotential form

factors of Ge, GaAs, and a few other semiconductors are listed in Table
2.21. One should keep in mind that the sign of the antisymmetric form fac-
tors depends on whether the anion or cation is designated as atom a. The
sign of the antisymmetric form factors in Table 2.21 are all positive because
the cation has been chosen to be atom a and the anion (which has a more
negative atomic pseudopotential) to be atom b. Note also that the magni-
tude of the form factor Vs

3 is the largest and furthermore it is negative in
sign, as shown schematically in Fig. 2.12. In the III–V and II–VI compounds,
Vs

3 is comparable to the corresponding Vs
3 in the group-IV semiconductors

Si �0.211 0.04 0.08 0 0 0
Ge �0.269 0.038 0.035 0 0 0
GaAs �0.252 0 0.08 0.068 0.066 0.012
GaP �0.249 0.017 0.083 0.081 0.055 0.003
InAs �0.27 0.02 0.041 0.078 0.038 0.036
InSb �0.25 0.01 0.044 0.049 0.038 0.01
ZnSe �0.23 0.01 0.06 0.18 0.12 0.03
CdTe �0.245 �0.015 0.073 0.089 0.084 0.006

V s
3 V s

8 V s
11 V a

3 V a
4 V a

11

i

Table 2.21. Pseudopotential form factors of several group-IV, III–V and II–VI semicon-
ductors (in units of Rydbergs = 13.6 eV) [2.9,10]. Note that the sign of V a depends on the
positions chosen for the anion and the cation (see text).
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and always larger than Va
3 in magnitude. Nevertheless, as the ionicity increases

in going from the III–V semiconductors to the II–VI semiconductors, the anti-
symmetric pseudopotential form factors become larger. Some band structures
of diamond- and zinc-blende-type semiconductors calculated by the pseudopo-
tential method are shown in Figs. 2.13–15. These band structure calculations
include the effect of spin–orbit coupling, which will be discussed in Sect. 2.6.
As a result of this coupling, the irreducible representations of the electron
wave functions must include the effects of symmetry operations on the spin
wave function. (For example, a rotation by 2 will change the sign of the
wave function of a spin-1/2 particle). The notations used in Figs. 2.13–15, in-
cluding this feature, are known as the double group notations and will be dis-
cussed in Sect. 2.6.

The effect of ionicity on the band structures of the compound semicon-
ductors can be seen by comparing the band structure of Ge with those of
GaAs and ZnSe as shown in Figs. 2.13–15. Some of the differences in the three
band structures result from spin–orbit coupling. Otherwise most of these dif-
ferences can be explained by the increase in the antisymmetric components of
the pseudopotential form factors as the ionicity increases along the sequence
Ge, GaAs, ZnSe. One consequence of this increase in ionicity is that the en-
ergy gap between the top of the valence band and the bottom of the conduc-
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Fig. 2.13. Electronic band structure of Ge calculated by the pseudopotential technique.
The energy at the top of the filled valence bands has been taken to be zero. Note that,
unlike in Fig. 2.10, the double group symmetry notation is used [Ref. 2.8, p. 92]
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Fig. 2.15. Electronic band structure of ZnSe calculated by the pseudopotential technique.
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tion band at ° increases monotonically in going from Ge to ZnSe. Another
consequence is that some of the doubly degenerate states in Ge at the X point
of the Brillouin zone are split in the III–V and II–VI compounds, as pointed
out in Sect. 2.4.2. For example, the lowest energy X1 conduction band state in
Ge is split into two spin doublets of X6 and X7 symmetry (X1 and X3 without
spin–orbit coupling) in GaAs and ZnSe. The explicit dependence of this split-
ting on the antisymmetric pseudopotential form factors is calculated in Prob-
lem 2.8.

2.5.2 Empirical and Self-Consistent Pseudopotential Methods

There are two approaches to calculating pseudopotential form factors. Since
the number of relevant pseudopotential form factors is small, they can be de-
termined by fitting a small number of experimental data, such as the position
of peaks in optical reflectivity spectra (Chap. 6) or features in the photoelec-
tron spectra (Chap. 8). This approach is known as the Empirical Pseudopoten-
tial Method (EPM). The flow diagram for calculating the band structure with
the EPM is as follows:

Vg
↓

V(r) �
∑

g

Vg exp (�ig · r)

↓
H � (p2/2m) � V(r)
Solve H„k(r) � Ek„k(r) to obtain „k(r) and Ek

↓
Calculate reflectivity, density of states, etc., and compare with
experiments

↓
Alter Vg if agreement between theory and experiment is not
satisfactory.

The disadvantage of the EPM is that it requires experimental inputs. How-
ever, this is not a major disadvantage since atomic pseudopotential form fac-
tors are often “transferable” in the sense that once they are determined in
one compound they can be used (sometimes after suitable interpolation) in
other compounds containing the same atom. For example, the atomic pseu-
dopotential form factors for Ga determined empirically from GaAs can be
used to calculate the band structure of other Ga compounds such as GaSb
and GaP. With the availability of high-speed computers, however, it is pos-
sible to determine the pseudopotential form factors from first principles with-
out any experimental input. These first-principles pseudopotential methods are
known as self-consistent or ab initio pseudopotential methods. These meth-
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ods use atomic pseudopotentials and a model for the crystal structure (from
which an ionic potential Vion can be constructed) as the starting point of the
calculation. After the wave functions have been obtained the contribution of
the valence electrons to the potential is calculated. It is then used to evaluate
the total one-electron potential, which is compared with the starting potential.
Self-consistency is achieved when the calculated one-electron potential agrees
with the starting potential. The flow diagram for such a calculation is shown
below. The exchange and correlation term Vxc, which takes into account
the many-body effects, is usually calculated with approximations such as the
Local Density Approximation (LDA)2. In this approximation, Vxc is assumed
to be a function of the local charge density only. The LDA gives good re-
sults for the ground state properties such as the cohesive energies and charge
density of the valence electrons. However, it gives poor results for the exci-
tation energies. For instance, it typically underestimates the fundamental en-
ergy gap by about 1 eV. Thus it predicts semiconductors like Ge to be semi-
metals. The band structures shown in Figs. 2.10 and 2.13–15 have been calcu-
lated with the EPM since this method gives better overall agreement with ex-
periments. This shortcoming of the LDA can be overcome by many-body tech-
niques such as the quasiparticle approach [2.13].

Choose V(r)
↓

Solve (H � V)„ � E„
↓

Calculate charge density Ú � „∗„
↓

Solve ∇2VHartree � 4Ú
↓

Calculate Vxc � f [Ú(r)]
↓

Vsc � VHartree � Vxc

↓
Model structure Vion → V � Vsc � Vion

4
1
Â0

(    )

In recent years the ab initio pseudopotential method has been refined so as
to be able to handle semicore electrons such as the 3d electrons of the copper
halides. The pseudopotentials used are very smooth near the core (ultrasoft
pseudopotentials) and reduce the number of plane waves required for the ex-
pansion of the wavefunctions to converge. The method is particularly useful
for CuCl and diamond [2.14].

2 For his development of the local density functional method of calculating electronic
structures W. Kohn was awarded the Nobel prize for Chemistry in 1998 [2.11, 12].
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2.6 The k·p Method of Band-Structure Calculations

The pseudopotential method is not the only method of band structure cal-
culation which requires a small number of input parameters obtainable from
experimental results. In the empirical pseudopotential method the inputs are
usually energy gaps. In optical experiments one typically determines both en-
ergy gaps and oscillator strengths of the transitions. Thus it can be an advan-
tage if the optical matrix elements can also be used as inputs in the band struc-
ture calculation. In the k·p method the band structure over the entire Brillouin
zone can be extrapolated from the zone center energy gaps and optical ma-
trix elements. The k · p method is, therefore, particularly convenient for inter-
preting optical spectra. In addition, using this method one can obtain analytic
expressions for band dispersion and effective masses around high-symmetry
points.

The k · p method can be derived from the one-electron Schrödinger equa-
tion given in (2.4). Using the Bloch theorem the solutions of (2.4) are ex-
pressed, in the reduced zone scheme, as

ºnk � exp (ik · r)unk(r), (2.34)

where n is the band index, k lies within the first Brillouin zone, and unk has
the periodicity of the lattice. When ºnk is substituted into (2.4) we obtain an
equation in unk of the form3

(
p2

2m
�

�k · p
m

�
�2k2

2m
� V

)
unk � Enkunk. (2.35)

At k0 � (0, 0, 0), (2.35) reduces to(
p2

2m
� V

)
un0 � En0un0 (n � 1, 2, 3, . . .). (2.36)

Similar equations can also be obtained for k equal to any point k0. Equa-
tion (2.36) is much easier to solve than (2.4) since the functions un0 are pe-
riodic. The solutions of (2.36) form a complete and orthonormal set of basis
functions. Once En0 and un0 are known, we can treat the terms �k · p/m and
�2k2/(2m) as perturbations in (2.35) using either degenerate or nondegenerate
perturbation theory. This method for calculating the band dispersion is known
as the k · p method. Since the perturbation terms are proportional to k, the
method works best for small values of k [2.15]. In general, the method can be
applied to calculate the band dispersion near any point k0 by expanding (2.35)
around k0 provided the wave functions (or the matrix elements of p between
these wave functions) and the energies at k0 are known. Furthermore, by us-
ing a sufficiently large number of un0 to approximate a complete set of basis

3 Equation (2.35) is rigorously valid only if V is a local potential, i.e., it depends only on
one spatial coordinate r. This is not strictly true in the case of pseudopotential [2.8]
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functions, (2.35) can be diagonalized with the help of computers to calculate
the band structure over the entire Brillouin zone [2.16]. Only a limited num-
ber of energy gaps and matrix elements of p determined experimentally are
used as input in the calculation.

As examples of application of the k · p method we will derive the band
dispersion and effective mass for a nondegenerate band and for a three-fold
degenerate (or nearly degenerate) p-like band. The nondegenerate band case
is applicable to the conduction band minimum in direct-bandgap semiconduc-
tors with the zinc-blende and wurtzite structures (examples of the latter semi-
conductor are CdS and CdSe). The nearly degenerate band is a model for the
top valence bands in many semiconductors with the diamond, zinc-blende, or
wurtzite structures.

2.6.1 Effective Mass of a Nondegenerate Band Using the k·p Method

Let us assume that the band structure has an extremum at the energy En0
and the band is nondegenerate at this energy. Using standard nondegenerate
perturbation theory, the eigenfunctions unk and eigenvalues Enk at a neighbor-
ing point k can be expanded to second order in k in terms of the unperturbed
wave functions un0 and energies En0 by treating the terms involving k in (2.35)
as perturbations.

unk � un0 �
�

m

∑
n′ 
�n

〈un0 |k · p |un′0〉
En0 � En′0

un′0 (2.37)

and

Enk � En0 �
�2k2

2m
�

�2

m2

∑
n′ 
�n

|〈un0 |k · p |un′0〉|2
En0 � En′0

. (2.38)

The linear terms in k vanish because En0 has been assumed to be an extremum.
It is conventional to express the energy Enk, for small values of k, as

Enk � En0 �
�2k2

2m∗ , (2.39)

where m∗ is defined as the effective mass of the band. Comparing (2.38) and
(2.39) we obtain an expression for this effective mass:

1
m∗ �

1
m

�
2

m2k2

∑
n′ 
�n

|〈un0 |k · p |un′0〉|2
En0 � En′0

. (2.40)

Formula (2.40) can be used to calculate the effective mass of a nondengener-
ate band. Also it shows that an electron in a solid has a mass different from
that of a free electron because of coupling between electronic states in differ-
ent bands via the k · p term. The effect of neighboring bands on the effective
mass of a band depends on two factors.
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• A wave function un′0 can couple to un0 only if the matrix element
〈un′0 |p |un0〉 is nonzero. In Sect 2.3.4 we pointed out that, using the matrix
element theorem and group theory, it is possible to enumerate all the sym-
metries un′0 can have. For example, p has °4 symmetry in the zinc-blende
structure. If the conduction band has °1 symmetry, as in GaAs, its effective
mass will be determined only by coupling with bands having °4 symmetry.
On the other hand a valence band with °4 symmetry can be coupled via p
to bands with °1, °3, °4, and °5 symmetries.

• The energy separation En′0 � En0 between the two bands n and n′ de-
termines the relative importance of the contribution of n′ to the effective
mass of n. Furthermore, bands with energies less than En0 will contribute
a positive term to 1/m∗, making m∗ smaller than the free electron mass.
Conversely, bands with energies higher than En0 tend to increase m∗ or
even cause m∗ to become negative as in the case of the top valence bands
in the diamond- and zinc-blende-type semiconductors.

These two simple results can be used to understand the trend in the con-
duction band effective mass m∗

c in many of the group-III–V and II–VI semi-
conductors with direct bandgaps. In these semiconductors the lowest conduc-
tion band at the zone center has °1 symmetry. From the above considera-
tions, its effective mass will be determined mainly by its coupling, via the k · p
term, to the nearest bands with °4 symmetry. They include both valence and
conduction bands. As we will show in the next section, the conduction bands
in the group-IV, III–V, and II–VI semiconductors have antibonding character,
while the valence bands have bonding character. What this means is that in
the diamond-type structure the °2′ (or °�

2 ) conduction band and its nearest
°15 (or °�

4 ) conduction band both have odd parity and the momentum matrix
element between them vanishes because of the parity selection rule. In III–V
semiconductors, the antisymmetric pseudopotential breaks the inversion sym-
metry. As a result, the momentum matrix element between the °1 conduction
band and its nearest °4 conduction band in III–V semiconductors is nonzero,
but still much smaller than its momentum matrix element with the top °4 va-
lence bands [2.17]. The separation between the °1 conduction band and the °4
valence band is just the direct band gap E0, so m∗

c can be approximated by

1
m∗

c
�

1
m

�
2 |〈°1c |k · p |°4v〉|2

m2E0k2 . (2.41)

It is customary to represent the three °4 wave functions as |X〉, |Y〉, and |Z〉.
From the Td symmetry it can be shown that the only nonzero elements of
〈°1c |k · p |°4v〉 are

〈X |px |°1〉� 〈Y |py |°1〉� 〈Z |pz |°1〉� iP. (2.42)

Without loss of generality we can assume that the wave functions |X〉, |Y〉,
|Z〉, and |°1〉 are all real. Since the operator p is equal to �i�∇∇∇ the matrix
element in (2.42) is purely imaginary and P is real. With these results (2.41)
simplifies to
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m
m∗

c
≈ 1 �

2P2

mE0
. (2.43)

It turns out that the matrix element P2 is more or less constant for most
group-IV, III–V and II–VI semiconductors, with 2P2/m ≈ 20 eV. The reason
is that the values of P2 for these semiconductors are very close to those cal-
culated for nearly free electron wave functions: P � 2�/a0 (see Problem 2.9).
Since E0 is typically less than 2 eV, 2P2/(mE0) � 1 and (2.43) further simpli-
fies to

m
m∗

c
≈ 2P2

mE0
. (2.44)

In Table 2.22 we compare the values of m∗
c calculated from (2.44) with those

determined experimentally for several group-IV, III–V, and II–VI semiconduc-
tors. The values of E0 are from experiment.

Equation (2.44) can be extended to estimate the increase in m∗
c away from

the band minimum (non-parabolicity) which can be qualitatively described by
an increase in E0. See problem 6.15.

Table 2.22. Experimental values of the °1 conduction band effective masses in diamond-
and zinc-blende-type semicondutors compared with the values calculated from (2.44) us-
ing the values of E0 obtained from experiment [2.18]

Ge CdTe

E0 [eV] 0.89 1.59
m∗

c /m (exp ) 0.041 0.093
m∗

c /m ((2.44)) 0.04

GaN

3.44
0.17
0.17

GaAs

1.55
0.067
0.078

GaSb

0.81
0.047
0.04

InP

1.34
0.073
0.067

InAs

0.45
0.026
0.023

ZnS

3.80
0.20
0.16

ZnSe

2.82
0.134
0.14

ZnTe

2.39
0.124
0.12 0.08

2.6.2 Band Dispersion near a Degenerate Extremum:
Top Valence Bands in Diamond- and Zinc-Blende-Type Semiconductors

To apply the k · p method to calculate the band dispersion near a degener-
ate band extremum we consider the highest energy °25′ (°4) valence bands at
the zone center of semiconductors with the diamond (zinc-blende) structure.
As pointed out in the previous section, these valence band wave functions
are p-like, and they will be represented by the eigenstates |X〉, |Y〉, and |Z〉.
The electron spin is 1/2, so the spin states will be denoted by · and ‚ to cor-
respond to spin-up and spin-down states, respectively. In atomic physics it is
well-known that the electron spin can be coupled to the orbital angular mo-
mentum via the spin–orbit interaction. The spin–orbit coupling is a relativistic
effect (inversely proportional to c2) which scales with the atomic number of
the atom. Thus for semiconductors containing heavier elements, such as Ge,
Ga, As, and Sb, one expects the spin–orbit coupling to be significant and
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has to include it in the unperturbed Hamiltonian, in particular for states near
k � 0. The Hamiltonian for the spin–orbit interaction is given by

Hso �
�

4c2m2 (∇∇∇V × p) · ÛÛÛ, (2.45a)

where the components of ÛÛÛ are the Pauli spin matrices:

Ûx �

(
0 1
1 0

)
; Ûy �

(
0 �i
i 0

)
; Ûz �

(
1 0
0 �1

)
. (2.45b)

(In crystals with the diamond structure the “vector” ∇∇∇V × p is an example of
a pseudovector with symmetry °15′). The Hamiltonian Hso operates on the spin
wave functions so the symmetry of Hso should depend also on the symmetry
properties of the spin matrices. As is known from quantum mechanics, spin be-
haves differently than classical properties of particles such as the orbital angular
momentum. For example, a spatial wave function is invariant under a rotation
of 2 about any axis. However, under the same rotation the spin wave functions
of a spin-1/2 particle will change sign. Let us denote a rotation of 2 about a unit
vector n̂ as Ê (Problem 2.10). For a spinless particle Ê is equal to the identity
operation. For a spin-1/2 particle Ê is an additional symmetry operation in the
point group of its spin-dependent wave function. Thus, if G is the point group
of a crystal neglecting spin, then the corresponding point group including spin
effects will contain G plus ÊG and is therefore twice as large as G. Groups con-
taining symmetry operations of spin wave functions are known as double groups.
It is beyond the scope of this book to treat double groups in detail. Interested
readers should refer to references listed for this chapter at the end of the book
[Refs. 2.4, p. 103; 2.5; 2.7, p. 258].

Although many band diagrams in this book use the double group notation
(for example, Figs. 2.13–15), in most cases it is sufficient to know only the ir-
reducible representations for the double group at the zone center (° point)
of zinc-blende-type crystals. Since the single group of ° in zinc-blende-type
crystals contains 24 elements, one expects the double group to contain 48 el-
ements. However, the number of classes in a double group is not necessarily
twice that of the corresponding “single group”. The reason is that a class C
in the single group may or may not belong to the same class as ÊC in the
double group. For example, two sets of operations Ci and ÊCi belong to the
same class if the point group contains a two-fold rotation about an axis per-
pendicular to n̂i (the rotation axis of Ci). In the case of the group of ° of
a zinc-blende-type crystal, elements in {3C2} and {3ÊC2} belong to the same
class in the double group. This is also true for the elements in {6Û} and {6ÊÛ}.
As a result, the 48 elements in the double group of ° in zinc-blende-type crys-
tals are divided into eight classes. These eight classes and the eight irreducible
representations of the double group of ° are listed in Table 2.23.

Instead of using Table 2.23 to symmetrize the p-like valence band wave
functions in zinc-blende-type crystals including spin–orbit coupling, we will uti-
lize their similarity to the atomic p wave functions. We recall that, in atomic
physics, the orbital electronic wave functions are classified as s, p, d, etc., ac-
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Table 2.23. Character table of the double group of the point in zinc-blende-type semi-
conductors

{E} {3C2/ {6S4} {6Û/ {8C3} {Ê} {6ÊS4} {8ÊC3}
3ÊC2} 6ÊÛ}

°1 1 1 1 1 1 1 1 1
°2 1 1 �1 �1 1 1 �1 1
°3 2 2 0 0 �1 2 0 �1
°4 3 �1 �1 1 0 3 �1 0
°5 3 �1 1 �1 0 3 1 0
°6 2 0

√
2 0 1 �2 �

√
2 �1

°7 2 0 �
√

2 0 1 �2
√

2 �1
°8 4 0 0 0 �1 �4 0 1

°

cording to the orbital angular momentum l. The p states correspond to l � 1 and
are triply degenerate. The three degenerate states can be chosen to be eigen-
states of lz, the z component of l. The eigenvalues of lz are known as the mag-
netic quantum numbers (usually denoted as ml). For the p states ml � 1, 0, �1.
The wave functions of the orbital angular momentum operator are known as
spherical harmonics. The spherical harmonics corresponding to the l � 1 states
can be represented as (except for a trivial factor of (x2 � y2 � z2)�1/2):

| lml〉�

⎧⎨⎩ | 1 1〉 � �(x � iy)/
√

2,
| 1 0〉 � z,
| 1�1〉 � (x � iy)/

√
2.

(2.46)

The spin-orbit interaction in atomic physics is usually expressed in terms of l
and the spin s as

Hso � Ïl · s (2.47)

The constant Ï is referred to as the spin–orbit coupling. The eigenfunctions of
(2.47) are eigenstates of the total angular momentum j � l � s and its z com-
ponent jz. For l � 1 and s � 1/2 the eigenvalues of j can take on two possible
values: j � l � s � 3/2 and j � l � s � 1/2. The eigenvalues of jz (denoted by
mz) can take on the 2j � 1 values j, j � 1, . . . , �j � 1, �j. The eigenfunctions
of j and jz can be expressed as linear combinations of the eigenfunctions of
the orbital angular momentum and spin (· = spin-up, ‚ = spin-down):∣∣∣∣3/2, 3/2〉� | 1, 1〉·

3/2, 1/2〉� (1/
√

3)(| 1, 1〉‚ �
√

2 | 1, 0〉·)∣∣∣∣∣3/2, �1/2〉� (1/
√

3)(| 1, �1〉· �
√

2 | 1, 0〉‚)
3/2, �3/2〉� | 1, �1〉‚

| jmj〉�

| 1/2, 1/2〉� (1/
√

3)(| 1, 0〉· �
√

2 | 1, 1〉‚)

| 1/2, �1/2〉� (1/
√

3)(| 1, 0〉‚ �
√

2 | 1, �1〉·)

(2.48)

(2.49)
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The spin–orbit interaction in (2.47) splits the j � 3/2 states in (2.48) from the
j � 1/2 states in (2.49). This splitting ¢0 is known as the spin–orbit splitting
of the valence band at °, and in the case of the j � 3/2 and j � 1/2 states
¢0 � 3Ï/2.

Using the atomic physics results as a guideline we can similarly sym-
metrize the six electronic states |X〉·, |X〉‚, |Y〉·, |Y〉‚, |Z〉·, and |Z〉‚ in
the diamond- and zinc-blende-type semiconductors. First, we make use of the
similarity between the p-like °4 states and the atomic p states to define three
“(l � 1)-like” states in the zinc-blende-type crystals:

| 1, 1〉 � �(|X〉 � i |Y〉)
/√

2,

| 1, 0〉 � |Z〉,
| 1, �1〉 � (|X〉 � i |Y〉)

/√
2.

(2.50)

Next we define (j � 3/2)-like and (j � 1/2)-like states in the diamond- and
zinc-blende-type crystals by substituting the expressions in (2.50) into (2.48)
and (2.49). From now on we will refer to these (j � 3/2)-like and (j � 1/2)-like
states as the j � 3/2 states and j � 1/2 states in the case of semiconductors.

From the characters of the double group of ° in Table 2.23, one easily
concludes that the four-fold degenerate j � 3/2 states belong to the °8 repre-
sentation, since this is the only four-dimensional representation. The two-fold
degenerate j � 1/2 states must belong to either the °6 or °7 representations. A
way to decide between these two representations is to calculate the character
of the representation matrix generated by j � 1/2 states under an S4 operation.
Using the result of Problem 2.10 it can be shown that the j � 1/2 states belong
to the °7 representation. As in the atomic case, the °8 and °7 states are split
by the spin–orbit Hamiltonian in (2.45a). Typically, the magnitude of the spin–
orbit splitting ¢0 in a semiconductor is comparable to the ¢0 of its constituent
atoms. For example, semiconductors containing heavier atoms, such as InSb
and GaSb, have ¢0 ≈ 1 eV, which is as large as or larger than the bandgap.
When the anion and cation in the compound semiconductor have different ¢0
the anion contribution tends to be weighted more, reflecting its larger influ-
ence on the p-like valence bands. In semiconductors containing lighter atoms,
such as Si and AlP, ¢0(≈ 0.05 eV) is negligible for many purposes. The val-
ues of ¢0 in some diamond- and zinc-blende-type semiconductors are given in
Table 2.24. The values of ¢0 in Table 2.24 are all positive, and as a result the
j � 3/2 (°8) valence band has higher energy than the j � 1/2 (°7) valence band
states (Figs. 2.13–15). In some zinc-blende-type crystals, such as CuCl, where
there is a large contribution to the valence bands from the core d-electrons,
¢0 can be negative, leading to a reversal in the ordering of the °8 and °7 va-
lence bands.

In Sect. 2.3.4d it was shown that the operator p couples a state with °4
symmetry to states with °1, °3, °4, and °5 symmetries. By examining the
band structure of several semiconductors calculated by the pseudopotential
method (Figs. 2.10, 2.13–15) we find that the bands which have the above
symmetries and are close to the °4 valence bands are typically the lowest
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Sie �4.28 �0.68 24 0.044 0.54 0.50 0.15 0.15 0.23 0.24
Cb �2.5 0.2 4.6 0.013a 0.66e 0.29e

e

0.39b

Ge �13.38 �8.5 173 0.295 0.34 0.43 0.043 0.041 0.095 0.1
SiC c �2.8 �1.016 5.8 0.014 0.6 0.25 0.36
GaNd �5.05 �1.2 34 0.017 0.5e 0.13 0.2
GaPe �4.05 �0.98 16 0.08 0.57 0.51 0.18 0.16 0.25
GaAs �6.9 �4.4 43 0.341 0.53 0.73 0.08 0.08 0.15 0.17
GaSb �13.3 �8.8 230 0.75 0.8 0.98 0.05 0.04 0.15
InPe �5.15 �1.9 21 0.11 0.58 0.44 0.12 0.11 0.12 0.2

ZnSe �2.75 �1.0 7.5 0.43 1.09 0.145
ZnTe �3.8 �1.44 14.0 0.93
CdTe �4.14 �2.18 30.3 0.92

InAs �20.4 �16.6 167 0.38 0.4 0.4 0.026 0.026 0.14 0.10
InSb �36.41 �32.5 43 0.81 0.42 0.48 0.016 0.013 0.12
ZnS �2.54 �1.5 0.07

A B |C |2 ¢0 mhh/m0 mlh/m0 mso /m0

[eV] exp th exp th exp th

Table 2.24. Valence band parameters A and B in units of (�2/2m) and |C |2 in units of
(�2/2m)2. The spin–orbit splitting of the valence bands ¢0 is given in units of eV. The
averaged experimental [exp] and theoretical [th, obtained from A, B, C 2 with (2.69a,b)]
values of the effective masses of the heavy hole (hh), light hole (lh) and spin–orbit split-off
hole (so) valence bands [(2.59), p. 268] are in units of the free electron mass. [2.16, 18]

a See: J. Serrano, M. Cardona, and T. Ruf, Solid State Commun. 113, 411 (2000)
b See: M. Willatzen, M. Cardona, N. E. Christensen, Linear Muffin-tin-orbital and k · p
calculation of band structure of semiconducting diamond. Phys. Rev. B50, 18054 (1994)
c See: M. Willatzen, M. Cardona, N. E. Christensen: Relativistic electronic structure of 3C-
SiC. Phys. Rev. B51, 13150 (1995).
d See [1.1].
e The theoretical values of mhh/mo and mlh/mo in these materials are calculated with the
equations in Problem 4.4 on p. 201 since the assumption of small warping of the valence
bands is not valid for them.

conduction bands with symmetries °1 and °4. For the conduction band °1c
we have already shown that the only significant momentum matrix elements
are 〈X |px |°1〉 � 〈Y |py |°1〉 � 〈Z |pz |°1〉 � iP, see (2.42). One can also use
symmetry arguments to show that the nonzero matrix elements of p between
the °4 valence bands and the °4 conduction band states are

〈X |py |°4c(z)〉� 〈Y |pz |°4c(x)〉� 〈Z |px |°4c(y)〉� iQ,

〈X |pz |°4c(y)〉� 〈Y |px |°4c(z)〉� 〈Z |py |°4c(x)〉� iQ
(2.51)

(details of the proof are left for Problem 2.11).
The °4v valence bands together with the °1c and °4c conduction bands

now form a set of 14 unperturbed wave functions which are coupled together
by the k · p term of (2.35). The resultant 14×14 determinant can be diagonal-
ized either with the help of computers or by using approximations. Löwdin’s
perturbation method is most commonly used to obtain analytic expressions
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for the dispersion of the valence bands. In this method the 14×14 matrix is
divided into two parts: the wave functions of interest and their mutual inter-
actions are treated exactly while the interaction between this group of wave
functions and the remaining wave functions is treated by perturbation theory.
For example, in the present case the six °4v valence bands (including spin de-
generacy) are of interest and their mutual coupling via the k ·p and spin–orbit
interactions will be treated exactly. The coupling between these valence band
states and the conduction bands will be treated as a perturbation by defining
an effective matrix element between any two valence band wave function as

H′
ij � Hij �

∑
k
� the °4

valence bands

HikHkj

Ei � Ek
. (2.52)

Within this approximation the 14×14 matrix reduces to a 6×6 matrix of the
form {H′

ij}, where i and j run from 1 to 6. To simplify the notation we will
number the six °4v valence band wave functions as

º1 � | 3/2, 3/2〉
º2 � | 3/2, 1/2〉
º3 � | 3/2, �1/2〉
º4 � | 3/2, �3/2〉
º5 � | 1/2, 1/2〉
º6 � | 1/2, �1/2〉

and the doubly degenerate °1c and six-fold degenerate °4c conduction band
wave functions as º7 to º14.

The calculation of all the matrix elements H′
ij is left for Problem 2.14a.

Here we will calculate only the matrix element H′
11 as an example. According

to (2.52) the effective matrix element H′
11 is given by

H′
11 �

〈
º1

∣∣∣∣∣�2k2

2m
�

�k · p
m

∣∣∣∣∣ º1

〉

�
∑

j

∣∣∣∣∣
〈

º1

∣∣∣∣∣�2k2

2m
�

�k · p
m

∣∣∣∣∣ ºj

〉∣∣∣∣∣
2

1
(E1 � Ej)

. (2.53)

To simplify the notation again we introduce the following symbols: E0, energy
separation between °1c and the j � 3/2 valence bands; and E′

0, energy separa-
tion between °4c and the j � 3/2 valence bands. Using these symbols we can
express H′

11 as

H′
11 �

�2k2

2m
�

〈
º1

∣∣∣∣�k · p
m

∣∣∣∣ º1

〉
�

(∣∣∣∣〈º1

∣∣∣∣�k · p
m

∣∣∣∣ °1c

〉∣∣∣∣2 1
E0

)

�

(∣∣∣∣〈º1

∣∣∣∣�k · p
m

∣∣∣∣ °4c

〉∣∣∣∣2 1
E′

0

)
. (2.54)

In principle, the term �k · p/m can give rise to a term linear in k in the
band dispersion. In the diamond-type semiconductors this term vanishes ex-
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actly because of the parity selection rule. In zinc-blende-type crystals the lin-
ear k · p term can be shown to be zero within the basis used. While the k
linear term is strictly zero in diamond-type crystals because of the parity se-
lection rule, this is not true in crystals without a center of inversion symmetry.
In zinc-blende- and wurtzite-type crystals, it has been demonstrated [2.19, 20]
that both the conduction and valence bands can possess small k-linear terms.
However, these k-linear terms do not come from the k · p term alone, instead
they involve also spin-dependent terms which have been neglected here. Since
the k linear terms are relatively unimportant for the valence bands of most
semiconductors they will not be considered further here.

To simplify the notation we define

L �
��2P2

m2E0
;

M �
��2Q2

m2E′
0

;

N � L � M;

L′ �
��2P2

m2(E0 � ¢0)
;

M′ �
��2Q2

m2(E′
0 � ¢0)

.

With these definitions, the term

�

(∣∣∣∣〈º1

∣∣∣∣�k · p
m

∣∣∣∣ °1c

〉∣∣∣∣2 1
E0

)

in (2.54) can easily be shown to be equal to

�

(∣∣∣∣〈º1

∣∣∣∣�k · p
m

∣∣∣∣ °1c

〉∣∣∣∣2 1
E0

)
�

1
2

L(k2
x � k2

y) (2.55)

while

�

(∣∣∣∣〈º1

∣∣∣∣�k · p
m

∣∣∣∣ °4c

〉∣∣∣∣2 1
E′

0

)
is given by

�

(∣∣∣∣〈º1

∣∣∣∣�k · p
m

∣∣∣∣ °4c

〉∣∣∣∣2 1
E′

0

)
�

1
2

M(k2
x � k2

y � 2k2
z). (2.56)

The result is

H′
11 �

�2k2

2m
�

1
2

N(k2
x � k2

y) � Mk2
z. (2.57)
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Similarly we can show that the remaining matrix elements are

H′
12 � �

N√
3

(kxkz � ikykz)

H′
13 � �

1

2
√

3
[(L � M)(k2

x � k2
y) � 2iNkxky]

H′
14 � 0

H′
15 �

1√
2

H′
12

H′
16 � �

√
2H′

13

H′
22 �

�2k2

2m
�

1
3

(M � 2L)k2 �
1
2

(L � M)(k2
x � k2

y)

H′
23 � 0

H′
24 � H′

13

H′
25 �

1√
2

(H′
22 � H′

11)

H′
26 �

√
3
2

H′
12

H′
33 � H′

22

H′
34 � �H′

12

H′
35 � �(H′

26)∗

H′
36 � H′

25

H′
44 � H′

11

H′
45 � �

√
2(H′

13)∗

H′
46 � �(H′

15)∗

H′
55 �

�2k2

2m
�

1
3

(2M′ � L′)k2 � ¢0

H′
56 � 0

H′
66 � H′

55.

The matrix {H′
ij} is Hermitian, i. e., H′

ij � [H′
ji]

∗. This 6×6 matrix can be di-
agonalized numerically without further simplification. Readers with access to
a personal computer and a matrix diagonalization program are encouraged to
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calculate the valence band structure of GaAs by diagonalizing this 6×6 matrix
{H′

ij} (Problem 2.14b).
The matrix {H′

ij} can be diagonalized analytically with some approxima-
tions. We will now restrict k to values small enough that the matrix elements
which couple the J � 3/2 and J � 1/2 bands, such as H′

15, H′
16, and H′

25, are
negligible compared with the spin–orbit coupling. With this assumption, and
limiting the expansion of the eigenvalue to terms of the order of k2 only, the
6×6 matrix reduces to a 4×4 and a 2×2 matrix. The 2×2 matrix gives the
energy of the doubly degenerate j � 1/2 °7 band as

Eso � H′
55 �

�2k2

2m
�

1
3

(2M′ � L′)k2 � ¢0

� �¢0 �
�2k2

2m

[
1 �

2
3

(
P2

m(E0 � ¢0)
�

2Q2

m(E′
0 � ¢0)

)]
. (2.58)

Thus, within the above approximation, the constant energy surface for the
j � 1/2 split-off valence band is spherical and the band dispersion parabolic.
In analogy with the conduction band we can define an effective mass mv,so for
the split-off valence band given by

m
mv, so

� 1 �
2
3

(
P2

m(E0 � ¢0)
�

2Q2

m(E′
0 � ¢0)

)
. (2.59)

The dispersion of the j � 3/2 bands is obtained by diagonalizing the 4×4 matrix∣∣∣∣∣∣∣∣
H′

11 H′
12 H′

13 0
(H′

12)∗ H′
22 0 H′

13
(H′

13)∗ 0 H′
22 �H′

12
0 (H′

13)∗ �(H′
12)∗ H′

11

∣∣∣∣∣∣∣∣ .

The secular equation for this matrix reduces to two identical equations of the
form

(H′
11 � E)(H′

22 � E) � |H ′

12|2 � |H ′

13|2 (2.60)

and their solutions are

E± � 1
2 (H′

11 �H′
22) ± 1

2 [(H′
11 �H′

22)2 �4(H′
11H′

22 �|H ′

12|2 �|H ′

13|2)]
1
2 . (2.61)

Substituting the matrix elements H′
ij as defined earlier into (2.61) E± can be

expressed as

E± � Ak2 ± [B2k4 � C2(k2
xk2

y � k2
yk2

z � k2
zk2

x)]
1
2 , (2.62)

an equation first derived by Dresselhaus et al. [2.21]. The constants A, B, and
C in (2.62) are related to the electron momentum matrix elements and energy
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gaps by

2m
�2 A � 1 �

2
3

[(
P2

mE0

)
�

(
2Q2

mE′
0

)]
(2.63)

2m
�2 B �

2
3

[(
�P2

mE0

)
�

(
Q2

mE′
0

)]
(2.64)

(
2m
�2 C

)2

�
16P2Q2

3mE0mE′
0

. (2.65)

Equations (2.63–65) show that it is more convenient to define the constants A,
B, and C in units of �2/2m. Note that in the literature [2.17] the definitions of
A, B, and C may contain a small additional term R, which is the matrix ele-
ment of the electron momentum operator between the °4v valence band and
a higher energy °3c conduction band. Inclusion of R is particularly important
for large bandgap materials such as diamond [2.22]

The dispersion of the °8(J � 3/2) bands near the zone center is given by
(2.62); this equation has been derived after much simplification and is valid only
for energies small compared to the spin–orbit splitting. We note that both A and
B are negative since the dominant term in both (2.63) and (2.64) is 2P2/(3mE0),
which is � 1. As a result, the effective masses of these bands, and of the splitt-off
valence band in (2.59), are negative. In many cases we have to consider the prop-
erties of a semiconductor in which a few electrons are missing from an otherwise
filled valence band. Instead of working with electrons with negative masses, it is
more convenient to introduce the idea of a hole. A filled valence band with one
electron missing can be regarded as a band (known as a hole band) containing
one hole. If the energy of the missing electron in the valence band is E (assuming
that E � 0 is the top of the valence band) then the energy of the corresponding
hole is �E and is positive. With this definition the effective mass of a hole in
the valence band is opposite to that of the corresponding missing electron and
is positive also. The hole mass of the split-off valence band mso � �mv,so is
positive with this definition (Table 2.24). Since the valence band represented by
E� has a smaller dispersion and hence larger mass, it is generally referred to as
the heavy hole band, while the band represented by E� is known as the light
hole band. From now on the energies of these two hole bands will be written
as Ehh and Elh with the corresponding hole energies defined as

Ehh � � Ak2 � [B2k4 � C2(k2
xk2

y � k2
yk2

z � k2
zk2

x)]
1
2 , (2.66a)

Elh � � Ak2 � [B2k4 � C2(k2
xk2

y � k2
yk2

z � k2
zk2

x)]
1
2 . (2.66b)

Constant energy surfaces represented by (2.66a) and (2.66b) are shown in Fig.
2.16. The shapes of these constant energy surfaces are referred to as “warped”
spheres. The warping occurs along the [100] and [111] directions because of the
cubic symmetry of the zinc-blende crystal. In fact one can argue that these warped
spheres are the only possible shapes for constant energy surfaces described by
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(010)

(100)

heavy hole

light
hole

Fig. 2.16. Constant energy surfaces of the
J � 3/2(°8) bands in diamond- and zinc-
blende-type semiconductors

a second-order equation in cubic crystals. Assuming that odd-order terms in k
are either zero or negligible, the lowest order terms even in k consistent with the
cubic symmetry are k2 and [·k4 � ‚(k2

xk2
y � k2

yk2
z � k2

zk2
x)]

1
2 . If we neglect higher

order terms, the most general expression for the k dependence of the energy
of the °8(j � 3/2) component of a °4 state in a cubic crystal is of the form of
(2.62), where A, B, and C are linearly independent parameters related to the
electron momentum matrix elements. One may notice from the definitions of
the coefficients A, B, and C in (2.63–65) that C can be expressed in terms of A
and B. This is a result of neglecting in our model the coupling between the °4v
bands and higher conduction bands (such as °3c), for the inclusion of the lowest
°3c state see Problem 2.15d.

The hole band dispersions along the [100] and [111] directions are
parabolic, but the hole effective masses are different along the two directions:

k‖(100)
1

mhh
�

2
�2 (�A � B),

1
mlh

�
2
�2 (�A � B),

(2.67a)

(2.67b)

k‖(111)
1

mhh
�

2
�2

⎡⎣�A � B

(
1 �

|C |2
3B2

)1
2

⎤⎦ ,

1
mlh

�
2
�2

⎡⎣�A � B

(
1 �

|C |2
3B2

)1
2

⎤⎦ .

(2.68a)

(2.68b)

From the above expressions we see that the warping of the valence bands is
caused by the term |C |2, which is proportional to Q2. If the term B2 is much
larger than |C |2/3 warping can be neglected and we can obtain the approxi-
mate result that mlh ≈ 3m∗

c /2 and mso ≈ 3m∗
c . Note that Q2 is crucial to mhh.

If we put Q2 � 0 we obtain the incorrect result mhh � � m0 (even the sign is
wrong!). Often, for simplicity, it is expedient to assume that the valence band
masses are isotropic. In such cases average heavy and light hole masses m∗

hh
and m∗

lh can be obtained by averaging (2.67) and (2.68) over all possible direc-
tions of k (Problem 4.4):
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1
m∗

hh
�

1
�2

[
�2A � 2B

(
1 �

2 |C |2
15B2

)]
, (2.69a)

1
m∗

lh
�

1
�2

[
�2A � 2B

(
1 �

2 |C |2
15B2

)]
. (2.69b)

In Table 2.24 we have listed what we judge to be reliable values of the
constants A, B, and |C |2 for several semiconductors obtained from data in
[2.18]. In this table the three valence band effective masses calculated from
(2.67–69) using these values of A, B, and |C |2 and experimental energy gaps
are compared with the experimentally determined effective masses.

We note that the constant energy surfaces for the valence bands as de-
scribed by (2.62) have inversion symmetry: E(k) � E(�k), even though the
crystal may not have such symmetry. This is a consequence of the electron
Hamiltonian we have used being invariant under time reversal (time-reversal
symmetry). A Bloch wave traveling with wave vector k is transformed into a
Bloch wave with wave vector �k under time reversal. If the Hamiltonian is
invariant under time reversal, these two Bloch waves will have the same en-
ergy.

Finally we point out that there is an alternate equivalent approach often
used in the literature to represent the valence band dispersion in diamond-
and zinc-blende-type semiconductors. Using group theory it is possible to de-
rive an effective k · p Hamiltonian which is appropriate for the °4 valence
bands. An example of such a Hamiltonian was proposed by Luttinger [2.23]:

HL �
�2

2m

[(
Á1 �

5
2

Á2

)
∇∇∇2 � 2Á3(∇∇∇ · J)2

�2(Á3 � Á2)(∇∇∇2
xJ2

x � c. p.)
]

, (2.70)

where the parameters Á1, Á2, and Á3 are known as the Kohn–Luttinger para-
meters; J � (Jx, Jy, Jz) is an operator whose effects on the °8 valence bands are
identical to those of the angular momentum operator on the J � 3/2 atomic
states, and c. p. stands for cyclic permutations. This approach facilitates the
diagonalization of HL together with additional perturbations applied to the
crystal. In Chap. 4 we will see an application of this Hamiltonian to calculate
the energies of acceptor states. The first two terms in (2.70) have spherical
symmetry while the last represents the effect of the lower, cubic symmetry.
It is thus clear that the warping of the valence band is directly proportional
to the difference between Á2 and Á3. The Kohn–Luttinger parameters can be
shown to be related to the coefficients A, B, and C in (2.62) by

(�2/2m)Á1 � � A (2.71a)

(�2/2m)Á2 � � B/2 (2.71b)

(�2/2m)Á3 �
[
(B2/4) � (C2/12)

]1/2
(2.71c)

The proof of these results is left as an exercise (Problem 2.15).
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2.7 Tight-Binding or LCAO Approach to the Band Structure
of Semiconductors

The pseudopotential approach to calculating the band structure of semicon-
ductors discussed in Sect. 2.5 starts with the assumption that electrons are
nearly free and their wave functions can be approximated by plane waves. In
this section we will approach the problem from the other extreme. We will as-
sume that the electrons are tightly bound to their nuclei as in the atoms. Next
we will bring the atoms together. When their separations become compara-
ble to the lattice constants in solids, their wave functions will overlap. We will
approximate the electronic wave functions in the solid by linear combinations
of the atomic wave functions. This approach is known as the tight-binding ap-
proximation or Linear Combination of Atomic Orbitals (LCAO) approach.
One may ask: how can two completely opposite approaches such as the pseu-
dopotential method and the tight-binding method both be good starting points
for understanding the electronic properties of the same solid? The answer is
that in a covalently bonded semiconductor there are really two kinds of elec-
tronic states. Electrons in the conduction bands are delocalized and so can be
approximated well by nearly free electrons. The valence electrons are concen-
trated mainly in the bonds and so they retain more of their atomic charac-
ter. The valence electron wave functions should be very similar to bonding
orbitals found in molecules. In addition to being a good approximation for
calculating the valence band structure, the LCAO method has the advantage
that the band structure can be defined in terms of a small number of over-
lap parameters. Unlike the pseudopotentials, these overlap parameters have a
simple physical interpretation as representing interactions between electrons
on adjacent atoms.

2.7.1 Molecular Orbitals and Overlap Parameters

To illustrate the tight-binding approach for calculating band structures, we will
restrict ourselves again to the case of tetrahedrally bonded semiconductors.
The valence electrons in the atoms of these semiconductors are in s and p or-
bitals. These orbitals in two identical and isolated atoms are shown schemat-
ically in Figs. 2.17a, 2.18a, and 2.19a. The pz orbitals are not shown since
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s s
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σ (antibonding)
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Fig. 2.17a,b. Overlap of two s orbitals to form bonding and antibonding Û orbitals
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their properties are similar to those of the py orbitals. Figures 2.17b, 2.18b,
and 2.19b show schematically what happens to the atomic orbitals when the
two atoms are brought together along the x direction until the atomic orbitals
overlap to form a diatomic molecule. The interaction between the two atomic
orbitals produces two new orbitals. One of the resultant orbitals is symmetric
with respect to the interchange of the two atoms and is known as the bond-
ing orbital while the other orbital, which is antisymmetric, is known as the
antibonding orbital. In the case of p orbitals there are two ways for them to
overlap. When they overlap along the direction of the p orbitals, as shown in
Fig. 2.18b, they are said to form Û bonds. When they overlap in a direction
perpendicular to the p orbitals they are said to form  bonds, as shown in Fig.
2.19b.

The interaction between the atomic orbitals changes their energies. Typi-
cally the antibonding orbital energy is raised by an amount determined by the
interaction Hamiltonian H. The energy of the bonding orbital is decreased by
the same amount. The changes in orbital energies are shown schematically in
Fig. 2.20a for a homopolar molecule and in Fig. 2.20b for a heteropolar one.
In both cases V is the matrix element of the interaction Hamiltonian between
the atomic orbitals and is usually referred to as the overlap parameter. For a
homopolar molecule containing only s and p valence electrons, there are four
nonzero overlap parameters. To derive this result we will denote the atomic
orbital on one of the atoms as |·〉 and that on the second atom as |‚〉. These
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Fig. 2.20. Effect of orbital overlap on the energy levels in (a) a diatomic homopolar
molecule and (b) a diatomic heteropolar molecule. V represents the matrix element of
the interaction Hamiltonian

orbitals can be expressed as products of a radial wave function and a spheri-
cal harmonic Ylm(ı, ˇ) with the atom chosen as the origin. We will denote the
vector going from the first atom (designated as A in Fig. 2.21) to the second
atom (B) as d. For both orbitals |·〉 and |‚〉 we will choose the coordinate
axes such that the z axes are parallel to d and the azimuthal angles ˇ are the
same (see Fig. 2.21). In these coordinate systems the spherical harmonic wave
functions of the two atoms A and B are Ylm(ı, ˇ) and Yl′m′(ı′, ˇ), respectively.
The Hamiltonian H has cylindrical symmetry with respect to d and therefore
cannot depend on ˇ. Thus the matrix element 〈· |H |‚〉 is proportional to the
integral of the azimuthal wave functions exp [i(m′ � m)ˇ]. This integral van-
ishes except when m � m′. As a result of this selection rule we conclude that

z

y

x

φ θ

x'

y'

z

φ

θ'

rB

rA

A Bd

Fig. 2.21. Choice of the polar coordinate systems for the two atoms A and B in a diatomic
molecule in order that the z axis be parallel to the vector joining the two atoms A and B
and the azimuthal angle ˇ be identical for both atoms
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there are four nonzero and linearly independent overlap parameters between
the s and p electrons:

〈s |H | s〉� VssÛ; 〈s |H |pz〉� VspÛ; 〈pz |H |pz〉� VppÛ;

and 〈px |H |px〉� Vpp.

We notice that 〈px |H |py〉 � 0 and 〈py |H |py〉 � 〈px |H |px〉 as a result of
symmetry. The overlap parameters are usually labeled Û,  and ‰ for (l � 2
wave functions), depending on whether m is 0, 1, or 2 (in analogy with the s,
p, and d atomic wave functions).

The concept of bonding and antibonding orbitals introduced for molecules
can be easily extended to crystals if one assumes that the orbitals of each atom
in the crystal overlap with those of its nearest neighbors only. This is a reason-
able approximation for most solids. The results of orbital overlap in a solid is
that the bonding and antibonding orbitals are broadened into bands. Those
occupied by electrons form valence bands while the empty ones form conduc-
tion bands. Figure 2.22 shows schematically how the s and p orbitals evolve
into bands in a tetrahedral semiconductor. In this case the bonding orbitals
are filled with electrons and become the valence bands while the antibond-
ing orbitals become the conduction bands. As may be expected, the crystal
structure affects the overlap between atomic orbitals. For example, in a tetra-
hedrally coordinated solid each atom is surrounded by four nearest neighbors.
The vectors d linking the central atom to each of its nearest neighbors are
different, so it is not convenient to choose the z axis parallel to d. Instead it
is more convenient to choose the crystallographic axes as the coordinate axes.
The spherical harmonics Ylm(ı, ˇ) of the atomic orbitals are then defined with
respect to this fixed coordinate system. In calculating the overlap parameter
for any pair of neighboring atoms, one expands the spherical harmonics de-
fined with respect to d in terms of Ylm(ı, ˇ). An example of this expansion is
shown schematically in Fig. 2.23.

p

s

Conduction bands 
from the p antibonding 
orbitals

Conduction bands from 
the s antibonding 
orbitals

Valence band from p 
bonding orbitals

Valence band from s 
bonding orbitals

EF

Fig. 2.22. Evolution of the atomic s and p orbitals into valence and conduction bands in
a semiconductor. EF is the Fermi energy
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2.7.2 Band Structure of Group-IV Elements by the Tight-Binding Method

After this introduction to the interaction between atomic orbitals we are ready
to perform a quantitative calculation of the electronic band structure using
the method of Linear Combination of Atomic Orbitals (LCAO). While the
method has been utilized by many authors [Ref. 2.25, p. 75], the approach we
will describe follows that of Chadi and Cohen [2.25].

The position of an atom in the primitive cell denoted by j will be decom-
posed into rjl � Rj � rl, where Rj denotes the position of the jth primitive cell
of the Bravais lattice and rl is the position of the atom l within the primitive
cell. For the diamond and zinc-blende crystals l � 1 and 2 only. Let hl(r) de-
note the Hamiltonian for the isolated atom l with its nucleus chosen as the ori-
gin. The Hamiltonian for the atom located at rjl will be denoted by hl(r � rjl).
The wave equation for hl is given by

hlˇml(r � rjl) � Emlˇml(r � rjl), (2.72)

where Eml and ˇml are the eigenvalues and eigenfunctions of the state indexed
by m. The atomic orbitals ˇml(r � rjl) are known as Löwdin orbitals. They are
different from the usual atomic wave functions in that they have been con-
structed in such a way that wave functions centered at different atoms are
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orthogonal to each other. Next we assume that the Hamiltonian for the crys-
tal � is equal to the sum of the atomic Hamiltonians and a term �int which
describes the interaction between the different atoms. We further assume the
interaction between the atoms to be weak so that � can be diagonalized by
perturbation theory. In this approximation the unperturbed Hamiltonian �0 is
simply

�0 �
∑

j, l

hl(r � rjl) (2.73)

and we can construct the unperturbed wave functions as linear combinations
of the atomic wave functions. Because of the translational symmetry of the
crystal, these unperturbed wave functions can be expressed in the form of
Bloch functions:

ºmlk �
1√
N

∑
j

exp (irjl · k)ˇml(r � rjl), (2.74)

where N is the number of primitive unit cells in the crystal. The eigenfunctions
æk of � can then be written as linear combinations of ºmlk:

æk �
∑
m, l

Cmlºmlk. (2.75)

To calculate the eigenfunctions and eigenvalues of �, we operate on æk with
the Hamiltonian � � �0 � �int. From the orthogonality of the Bloch functions
we obtain a set of linear equations in Cml:∑

m, l

(
Hml, m′l′ � Ek‰mm′‰ll′

)
Cm′l′(k) � 0, (2.76)

where Hml, m′l′ stands for the matrix element 〈ºmlk |� |ºm′l′k〉 and Ek are the
eigenvalues of H. To simplify the solution of (2.76) we introduce the following
approximations.

• We include only the s2 and p6 electrons in the outermost partially filled
atomic shells. We neglect spin–orbit coupling (although it can be included
easily). The two atomic orbitals of s symmetry for the two atoms in the
unit cell will be denoted by S1 and S2, respectively. Correspondingly, the
atomic orbitals with p symmetry will be denoted by: X1, X2, Y1, Y2, Z1
and Z2, respectively. In the following equations the index m will represent
the s, px, py, and pz orbitals.

• When we substitute the wave functions ºmlk defined in (2.74) into (2.76)
we obtain

Hml, m′l′(k) �

N∑
j

N∑
j′

exp [i(rj′l′ � rjl) · k]
N

× 〈ˇml | (r � rjl) |H |ˇm′l′(r � rj′l′)〉 (2.77)

�

N∑
j

exp [i(Rj � rl′ � rl) · k]

× 〈ˇml(r � rjl) |H |ˇm′l′(r � rjl′)〉. (2.78)
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Instead of summing j over all the unit cells in the crystal, we will sum over the
nearest neighbors only. In the diamond and zinc-blende crystals this means j
will be summed over the atom itself plus four nearest neighbors. These atoms
will be denoted as j � 1, 2, 3, 4, 5. If needed, one can easily include second
neighbor or even further interactions.

Within the above approximation the collection of matrix elements of the
form in (2.77) constitutes an 8×8 matrix (note that the dimensions of the ma-
trix depend only on the number of basis functions, not the number of neigh-
bors included). Applying symmetry arguments allows the number of nonzero
and linearly independent matrix elements of �int to be greatly reduced. As an
example, we will consider the matrix element Hs1, s2. From (2.78) this matrix
element is given by

Hs1, s2 � [exp (ik · d1) � exp (ik · d2) � exp (ik · d3) � exp (ik · d4)]

× 〈S1 |�int |S2〉, (2.79)

where we have assumed that atom 1 is located at the origin and d· (· � 1 to
4) are the positions of its four nearest neighbors, with

d1 � (1, 1, 1)(a/4);

d2 � (1, �1, �1)(a/4);

d3 � (�1, 1, �1)(a/4);

and

d4 � (�1, �1, 1)(a/4).

The matrix element 〈S1 |�int |S2〉 is basically the same overlap parameter
VssÛ as we have defined for molecules. The other matrix elements Hs1, px2,
and Hpx1, px2, etc., can also be expressed in terms of the overlap parame-
ters VspÛ, VppÛ, and Vpp. For example Hs1, px2 can be shown to contain four
terms involving the four phase factors exp (ik · d·) and the matrix element
〈S1 |�int |X2〉. However, for each nearest neighbor 〈S1 |�int |X2〉 has to be
decomposed into Û and  components as shown in Fig. 2.23. This decompo-
sition introduces a factor of cos £ � ± (1/

√
3). The � or � sign depends

on whether the s orbital lies in the direction of the positive or negative lobe
of the px orbital. As a result, it is convenient to introduce a new set of four
overlap parameters appropriate for the diamond lattice:

Vss � 4VssÛ, (2.80a)

Vsp � 4VspÛ/
√

3, (2.80b)

Vxx � (4VppÛ/3) � (8Vpp/3), (2.80c)

Vxy � (4VppÛ/3) � (4Vpp/3), (2.80d)

With this notation the matrix element 〈S1(r) |�int |X2(r � d1)〉 is given
by (VspÛ)/

√
3 � Vsp/4. The remaining three matrix elements are related to

〈S1(r) |�int |X2(r � d1)〉 by symmetry. For example, a two-fold rotation about
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the y axis will transform (x, y, z) into (�x, y, �z), so d1 is transformed into
d3. The s-symmetry wave function |S1〉 is unchanged while the p-symmetry
wave function |X2〉 is transformed into � |X2〉 under this rotation. As a re-
sult, 〈S1(r) |�int |X2(r �d3)〉� �〈S1(r) |�int |X2(r �d1)〉. By applying similar
symmetry operations we can show that∑

·

exp [i(d· · k)]〈S1(r) |�int |X2(r � d·)〉� 1
4 Vsp{exp [i(d1 · k)]

� exp [i(d2 · k)] � exp [id3 · k)] � exp [i(d4 · k)]} (2.81)

In the zinc-blende structure, because the atoms 1 and 2 are different,
〈S1 |�int |X2〉 is, in principle, different from 〈S2 |�int |X1〉. They are, how-
ever, often assumed to be equal [Ref. 2.24, p. 77]. The case of the zinc-blende
crystal is left as an exercise in Problem 2.16. Here we will restrict ourselves to
the case of the diamond structure.

The 8×8 matrix for the eight s and p bands can be expressed as in Ta-
ble 2.25. Es and Ep represent the energies 〈S1 |�0 |S1〉 and 〈X1 |H0 |X1〉, re-
spectively. The four parameters g1 to g4 arise from summing over the factor
exp [i(k · d·)] as in (2.81). They are defined by

g1 � (1/4){exp [i(d1 · k)] � exp [i(d2 · k)] � exp [i(d3 · k)] � exp [i(d4 · k)]},

g2 � (1/4){exp [i(d1 · k)] � exp [i(d2 · k)] � exp [i(d3 · k)] � exp [i(d4 · k)]},

g3 � (1/4){exp [i(d1 · k)] � exp [i(d2 · k)] � exp [i(d3 · k)] � exp [i(d4 · k)]},

g4 � (1/4){exp [i(d1 · k)] � exp [i(d2 · k)] � exp [i(d3 · k)] � exp [i(d4 · k)]}.

If k � (2/a)(k1, k2, k3) the gj’s can also be expressed as

g1 � cos (k1/2) cos (k2/2) cos (k3/2)

� i sin (k1/2) sin (k2/2) sin (k3/2),. (2.82a)

g2 � �cos (k1/2) sin (k2/2) sin (k3/2)

� i sin (k1/2) cos (k2/2) cos (k3/2),. (2.82b)

S1 Es � Ek Vssg1 0 0 0 Vspg2 Vspg3 Vspg4

S2 Vssg∗1 Es � Ek �Vspg∗2 �Vspg∗3 �Vspg∗4 0 0 0
X1 0 �Vspg2 Ep � Ek 0 0 Vxxg1 Vxyg4 Vxyg3

Y1 0 �Vspg3 0 Ep � Ek 0 Vxyg4 Vxxg1 Vxyg2

Z1 0 �Vspg4 0 0 Ep � Ek Vxyg3 Vxyg2 Vxxg1

X2 Vspg∗2 0 Vxxg∗1 Vxyg∗4 Vxyg∗3 Ep � Ek 0 0
Y2 Vspg∗3 0 Vxyg∗4 Vxxg∗1 Vxyg∗2 0 Ep � Ek 0
Z2 Vspg∗4 0 Vxyg∗3 Vxyg∗2 Vxxg∗1 0 0 Ep � Ek

S1 S2 X 1 Y1 Z1 X 2 Y2 Z2

Table 2.25. Matrix for the eight s and p bands in the diamond structure within the tight
binding approximation



2.7 Tight-Binding or LCAO Approach to the Band Structure of Semiconductors 91

g3 � �sin (k1/2) cos (k2/2) sin (k3/2)

� i cos (k1/2) sin (k2/2) cos (k3/2),. (2.82c)

g4 � �sin (k1/2) sin (k2/2) cos (k3/2)

� i cos (k1/2) cos (k2/2) sin (k3/2),.
(2.82d)

The valence and lowest conduction band energies of the diamond-type
crystals can be obtained by diagonalizing the 8×8 matrix of Table 2.25, pro-
vided the four parameters Vss, Vsp, Vxx, and Vxy are known. These four pa-
rameters can be determined by comparing the calculated band structure with a
first principles or empirical band structure calculation. For example Chadi and
Cohen [2.25] obtained the tight-binding parameters for C, Si, and Ge by com-
parison with empirical pseudopotential calculations. Their results are shown in
Table 2.26. Note that the signs of Vss etc. are, in part, arbitrary and are de-
termined by the choice of the relative phases of the two overlaping atomic
orbitals. The signs in Table 2.26 correspond to the choices shown in Figs. 2.17a
and 2.23. The magnitudes of the interaction parameters decrease in the se-
quence C to Ge. We will show later that this trend can be understood from the
increase in the lattice constant along this sequence. When the second-nearest
neighbor interactions are included, only Vxx decreases somewhat. Since Vxx is
the smallest interaction, the overall band structure is not significantly affected.

Table 2.26. Tight-binding interaction parameters (in eV) for C, Si, and Ge obtained by
Chadi and Cohen [2.25] when only nearest-neighbor interactions are included

C 7.40 �15.2 10.25 3.0 8.3
Si 7.20 �8.13 5.88 3.17 7.51
Ge 8.41 �6.78 5.31 2.62 6.82

Ep � Es Vss Vsp Vxx Vxy

To gain some insight into the band structure obtained with the tight-
binding approach, we will calculate the band energies at the k � 0 point. From
(2.82a–d) we find g2 � g3 � g4 � 0 and g1 � 1 at k � 0. Thus the 8×8 ma-
trix simplifies into a 2×2 matrix for the s electrons and three identical 2×2
matrices for the p levels:∣∣∣∣ Es � E(0) Vss

Vss Es � E(0)

∣∣∣∣ (2.83a)

and∣∣∣∣ Ep � E(0) Vxx

Vxx Ep � E(0)

∣∣∣∣ . (2.83b)

These two matrices can be easily diagonalized to yield four energies:

Es±(0) � Es ± |Vss | (2.84a)
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and

Ep±(0) � Ep ± |Vxx | (2.84b)

As a result of the overlap of the atomic orbitals the two s and p levels of
the two atoms inside the primitive cell are split by an amount equal to 2 |Vss |
and 2 |Vxx |, respectively. The level Es� is raised in energy and its wave func-
tion is antisymmetric with respect to the interchange of the two atoms. This
state corresponds to the antibonding s state in a diatomic molecule. The level
Es� corresponds to the bonding s state. From Table 2.5 we expect the anti-
symmetric antibonding state to have °2′ symmetry and the symmetric bonding
state to have °1 symmetry. Using a similar analogy, the triply degenerate anti-
symmetric °15 conduction band states correspond to the antibonding p orbitals
while the symmetric °25′ valence band states are identified with the bonding p
orbitals.

In Fig. 2.24 the valence band structure of Si calculated by the tight-binding
method is compared with that obtained by the empirical pseudopotential
method. Figure 2.24 also compares the valence band density of states obtained
by the two methods (We will define density of states of a band in Sect. 4.3.1
and also in Chap. 8, where this concept will be utilized). In this tight-binding
calculation one second-nearest-neighbor interaction has been included in ad-
dition to the nearest-neighbor interactions. The agreement between the two
methods is quite good for the valence bands. Figure 2.25 shows a comparison
between the band structure of Ge calculated by the tight-binding method, the
empirical pseudopotential method, and the nearly free electron model. While
the valence bands are well reproduced by the tight-binding method with the
simple sp3 base used here, this is not true for the conduction bands since the
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conduction band electrons are more delocalized. The accuracy of the conduc-
tion bands in the tight-binding calculations can be improved by introducting
additional overlap parameters. However, there is another shortcoming in the
tight-binding model presented here. There are only four conduction bands in
this model because we have included only four s and p orbitals. To correct
this problem additional orbitals and overlap parameters are required; unfortu-
nately they destroy the simplicity of this model.

2.7.3 Overlap Parameters and Nearest-Neighbor Distances

So far we have shown that the advantage of the tight-binding approach is that
the valence band structures of semiconductors can be calculated in terms of a
small number of atomic energies and overlap parameters. Now we will demon-
strate that these overlap parameters in different semiconductors can be ex-
pressed as a simple function of the nearest-neighbor distance multiplied by a
geometric factor. These results combined make the tight-binding method very
powerful for predicting the properties of many compounds (not just semicon-
ductors) with only a small number of parameters [Ref. 2.24, p. 49].

One may expect some relationship between the overlap parameters and
the interatomic distance based on the following simple argument. Figures 2.20
and 2.22 show that the atomic energy levels broaden into bands due to over-
lap of the atomic orbitals. The width of the band is essentially 2V, where V
is the relevant overlap parameter. At the same time the electron wave func-
tions become delocalized over a distance given by the nearest-neighbor sep-
aration (i. e., the bond length) d as a result of this overlap. Using the uncer-
tainty principle the momentum of the delocalized electron is estimated to be
(�/d), so the electron kinetic energy is given by �22/(2md2). This result sug-
gests that the overlap parameters depend on d as d�2. This simple heuristic
argument can be made more rigorous by comparing the band structures cal-
culated by the tight-binding method and by the nearly free electron model.
As an example, we will consider the lowest energy valence band in a crystal
with the simple cubic structure. This band can be identified with the bonding s
orbitals and its dispersion along the [100] direction can be shown to be given
by Es � 4VssÛ � 2VssÛ cos kx (Problem 2.16). Thus the width of this band is
equal to 4VssÛ. On the other hand the nearly free electron model gives the
band width as �22/(2md2). Equating the band widths obtained by these two
different methods we get

4VssÛ �
�22

2md2 . (2.85)

In general, all four overlap parameters for the s and p orbitals can be
expressed in the form

Vll′m � Ùll′m
�2

md2 (2.86)
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where Ùll′m is a factor which depends on the crystal symmetry. From (2.85) we
see that ÙssÛ � 2/8 in crystals with the simple cubic structure. Table 2.27 lists
the values of Ùll′m for the simple cubic and diamond lattices.

For the diamond and zinc-blende crystals, Harrison [2.26] has treated the
factors Ùll′m as adjustable parameters in fitting the energy bands of Si and Ge.
He found excellent agreement between the calculated values and the adjusted
values for three of the parameters. The only exception is Ùpp, where the fitted
value of �0.81 is somewhat lower than the calculated one.

ÙssÛ �2/8 � �1.23 �92/64 � �1.39

ÙspÛ (/2)[(2/4) � 1]1/2 � 1.90 (92/32)[1 � (16/32)]1/2 � 1.88

ÙppÛ 2/8 � 3.70 212/64 � 3.24

Ùpp �2/8 � �1.23 �32/32 � �0.93

Simple cubic Diamond and zinc–blende

3

Adjusted values

1.40�

1.84

3.24

0.81�

Table 2.27. The geometric factor Ù relating the overlap parameters for the s and p bands
to the free electron band width �2/(md 2) as shown in (2.86). The last column represents the
adjusted values obtained by fitting the energy bands of Si and Ge [Ref. 2.24, p. 49]

Table 2.27 together with (2.86) and the lattice constants are all that is
needed to calculate the overlap parameters for computing the valence bands
and the lowest conduction bands in many zinc-blende- and diamond-type
semiconductors. Even without any detailed calculations,. we can understand
qualitatively the symmetries of the conduction and valence bands at the Bril-
louin zone center of the three group-IV elements Si, Ge, and gray tin (or ·-
Sn). The lattice constant increases from Si to ·-Sn. This results in a decrease in
the overlap parameters |Vss | and |Vxx | (the variation from C to Ge is shown
in Table 2.26). The decrease is larger for |Vss | than for |Vxx |. As a result,
the ordering of the s and p orbitals changes from Si to ·-Sn in the manner
shown in Fig. 2.26. The Fermi level is located by filling the bands with the
eight valence electrons available. In this way it is easily seen that the lowest
conduction band at zone center in Si is p-like while the corresponding band in
Ge is s-like. In this scheme ·-Sn turns out to be a semi-metal because of the
lower energies of the bands derived from the s orbitals. It was first shown by
Herman [2.27] that relativistic effects are responsible for this in gray tin (and
also in HgTe and HgSe. Note, however, that the s-p reversal for HgSe has
recently been the object of controversy; see [2.28]).
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Fig. 2.26. Evolution of s and p atomic orbitals into the conduction and valence bands
at zone center within the tight-binding approximation for Si, Ge, and ·-Sn. The band
ordering for diamond is similar to that of Si.

PROBLEMS

2.1 Template of an fcc Brillouin Zone
Construct a model of the Brillouin zone of the fcc lattice by pasting a copy of
the template shown in Fig. 2.27 on cardboard and cutting along the solid lines.
Score along the broken lines. Tape the edges together.

2.2 Group Theory Exercises
a) Verify the character table of the Td point group as given in Table 2.3.
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L

U
X

Z
W

K

Fig. 2.27. Template for constructing a model of the Brillouin zone of the fcc lattice. Paste
this sheet on thin cardboard and cut along solid lines. Score along broken lines and tape
the joints

b) By applying the symmetry operations of Td to the basis functions in Table
2.3 show that the functions transform according to their respective irreducible
representations.

2.3 Group Theory Exercises
a) By using the character table of Td show that T2 ⊗ T2 � T1 ⊕ T2 ⊕
E ⊕ A1.

b) Verify that the symmetrized linear combinations of the matrix elements of
a second-rank tensor given in Sect. 2.3.4 transform according to the irreducible
representations T1, T2, E, and A1.

2.4 Symmetrized Wave Functions: Transformation Properties
Verify that the symmetrized wave functions in Tables 2.9 and 2.10 transform
according to their respective irreducible representations.
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2.5 Characters of C3v and C2v Point Groups
Deduce by inspection the characters for the C3v and C2v point groups in Ta-
bles 2.12 and 2.14, respectively.

2.6 Compatibility Relations
Use Tables 2.3, 2.4, 2.12 and 2.14 to verify the following compatibility rela-
tions:
°1 ¢1 §1
°2 ¢2 §2
°3 ¢1 ⊕ ¢2 §3
°4 ¢1 ⊕ ¢3 ⊕ ¢4 §1 ⊕ §3
°5 ¢2 ⊕ ¢3 ⊕ ¢4 §2 ⊕ §3.

2.7 Representations of Nonsymmorphic Groups
a) Using Tables 2.15 and 2.19 show that the doubly degenerate X1 and X2
states in the diamond crystal split into the X1 ⊕ X3 and X2 ⊕ X4 states, re-
spectively, when the diamond crystal (nonsymmorphic) is transformed into a
zinc-blende crystal (symmorphic) by making the two atoms in the primitive
cell different. Under the same transformation the X3 and X4 states remain
doubly degenerate and become the X5 state in the zinc-blende crystal.

b) Some Insight into the Doubly Degenerate Wavefunctions at the X point of
the Brillouin Zone in the Diamond Structure.
Within the free electron approximation, the wave functions at the X point of
the Brillouin Zone can be written as: exp [ik · r] where k � (2/a)(±1, 0, 0),
(2/a)(0,±1, 0), or (2/a)(0, 0,±1). Let us consider the wave functions
„1 � sin [(2/a)x] and „2 � cos [(2/a)x].

Assume that the crystal structure of diamond simply has inversion symme-
try I: (x, y, z) → (�x, �y, �z); then by applying this symmetry operation to „1
we obtain �„1. Since the crystal is invariant under I we expect „1 and I„1
to have the same energy. We find that this is trivially satisfied since „1 and
I„1 are linearly dependent. Thus we cannot conclude that the states „1 and
„2 should be degenerate.

Now we take into account that the inversion operation in the diamond lat-
tice is not simply I but rather I′: (x, y, z) → (�x � (a/4), �y � (a/4), �z � (a/4)).
Applying I′ to „1 we find that: I′„1 � sin [(2/a)(�x � (a/4)] �
sin [(2/a)(�x) � (/2)] � �cos [(2/a)(�x)] � �cos [(2/a)x] � �„2. Since
„1 and „2 are not linearly independent we have to conclude that „1 and „2
are degenerate from the fact that the crystal is invariant under I′. Similarly
one can show that all the other plane wave states at the X point are doubly
degenerate because of this symmetry operation I′.

2.8 Pseudopotential Band Structure Calculation by Hand
The purpose of this exercise is to show how pseudopotentials lift degeneracies
in the nearly-free-electron band structure and open up energy gaps. Since the
pseudopotentials are weak enough to be treated by perturbation theory, rather
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accurate band energies can be evaluated with a pocket calculator without re-
sorting to a large computer.

We will consider only the six lowest energy wave functions at the X point
of a zinc-blende-type semiconductor. In the nearly-free-electron model, the
electron wave functions are given by exp (ik · r), where k � (2/a)(±1, 0, 0)
and (2/a)(0,±1,±1). For brevity these six wave functions will be denoted by
| 100〉, | 100〉, | 011〉, | 011〉, | 011〉, and | 01 1〉.
a) Show that these six wave functions can be symmetrized according to the
following irreducible representations:

„1 � (1/
√

2)[| 011〉 � | 01 1〉] and „2 � (1/
√

2)[| 011〉 � | 01 1〉] ↔ X5
„3 � (1/2){[| 011〉 � | 01 1〉] � i[| 011〉 � | 011〉]} ↔ X3
„4 � (1/2){[| 011〉 � | 01 1〉] � i[| 011〉 � | 011〉]} ↔ X1
„5 � (1/2){[| 100〉 � | 1 00〉] � i[| 100〉 � | 100〉]} ↔ X1
„6 � (1/2){[| 100〉 � | 1 00〉] � i[| 100〉 � | 100〉]} ↔ X3

It should be noted that the pseudopotential form factors in Table 2.21 have
been defined with the origin chosen to be the midpoint between the two atoms
in the primitive cell. In order to conform with this coordinate system, the sym-
metry operations for the group of X have to be defined differently from those
in Sect. 2.3.2. Taking the axes and planes of the point group to intersect at the
midpoint some of the symmetry operations must involve a translation.

b) Calculate the matrix elements of the pseudopotential between these wave
functions. This task can be greatly simplified by using the matrix element the-
orem. Since the pseudopotential V has the full symmetry of the crystal, it has
°1 symmetry. The only states that are coupled by V are then the X3 states „3
and „6 and the X1 states „4 and „5. Show that the resulting 6×6 matrix {Vij}
is ∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

�vs
8 0 0 0 0 0

0 �vs
8 0 0 0 0

0 0 vs
8 � 2va

4 0 0 i
√

2(�va
3 � vs

3)
0 0 0 vs

8 � 2va
4 i

√
2(�va

3 � vs
3) 0

0 0 0 �i
√

2(�va
3 � vs

3) �va
4 0

0 0 �i
√

2(�va
3 � vs

3) 0 0 �va
4

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
c) Diagonalize the secular determinant∣∣∣∣∣

(
�2k2

2m
� E

)
‰ij � Vij

∣∣∣∣∣ � 0

by reducing it to three 2×2 determinants. Show that the resultant energy levels
are

E(X5) �
42�2

ma2 � vs
8,
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E(X1) �
1
2

(
62�2

ma2 � vs
8 � 3va

4

)

± 1
2

⎡⎣(
22�2

ma2 � vs
8 � va

4

)2

� 8(va
3 � vs

3)2

⎤⎦1/2

,

E(X3) �
1
2

(
62�2

ma2 � vs
8 � 3va

4

)

± 1
2

⎡⎣(
22�2

ma2 � vs
8 � va

4

)2

� 8(va
3 � vs

3)2

⎤⎦1/2

.

d) Calculate the energies of the X1, X3, and X5 levels in GaAs by substituting
into the expression in (c) the pseudopotential form factors for GaAs. Take the
lattice parameter a to be 5.642 Å. In Fig. 2.28 these results are compared with
the nearly free electron energies and with the energies obtained by the EPM.

e) If you want to improve on the present calculation, what are the plane wave
states and pseudopotential form factors you should include?

Note: Often in the literature, the origin of the coordinates adopted by the au-
thors is not specified.4 The symmetry of the band structure at the X point
of the zinc-blende-type crystal depends on the choice of origin and this has

Free electron
model

Empirical pseudopotential
model

Pseudopotential
by hand

X1, X3, X5

X1, X3

4.72 eV

1.0eV

4.3eV

4.3eV

4.7eV

X1

X3

X5

X3

X1

}
} Conduction

band

Valence
band

4.6eV

5.6eV

2.74eV

0.74eV
X3

X1

X5

X3

X1

Fig. 2.28. The lowest energy bands at the X point of GaAs computed by the nearly free
electron model, the EPM, and the perturbation approach of Problem 2.8. The X1–X3

notation corresponds to ˘a
j � 0, i. e., to placing the cation at (a/4)(111) and the anion at

the origin.

4 We assume, implicitly, that the origin is also the common point of the point group axes
which specify the symmetry.
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caused considerable confusion, see [2.29]. For example, if the origin is chosen
at the anion the conduction band with the X1 symmetry is mainly composed
of the anion s wave function and cation p wave function. On the other hand,
the X3 conduction band state is made up of the cation s wave function and
the anion p wave function. In all zinc-blende-type semiconductors with the
exception of GaSb [2.30, 31] the X1 state has lower energy than the X3 state.
If the origin is chosen at the cation, the signs of ˘a

j and, correspondingly, the
roles of X1 and X3 are reversed.

2.9 Wave Functions of the L-Point of Zinc-Blende
Using the symmetrized k � (2/a)(1, 1, 1) wave functions in the nearly free
electron model for zinc-blende-type crystals:

°1:
√

8 cos (2x/a) cos (2y/a) cos (2z/a);
°4(x):

√
8 sin (2x/a) cos (2y/a) cos (2z/a),

and similar wave functions for °4(y) and °4(z) in Table 2.9,

show that the matrix elements of the momentum operator p between the °1
and °4 functions are given by

|〈°1 |px |°4(x)〉|2 � |〈°1 |py |°4(y)〉|2 � |〈°1 |pz |°4(z)〉|2 � (2�/a)2

while all the other matrix elements of pi such as |〈°1 |px |°4(y)〉|2 are equal
to 0.

2.10 Double Group Representations
In many quantum mechanics textbooks one can find the following result. The
effect of a rotation by an infinitesimal amount ‰ı with respect to an axis de-
fined by the unit vector n̂ on an orbital wave function f (r) can be obtained
by applying the operator exp [�i‰£n · l/�] to f (r). For a spin s � 1/2 particle
the corresponding operator on the spin wave functions due to rotation by an
angle £ is given by exp [�i£n̂ · ÛÛÛ/2]. Using this operator,. show that:

a) The effect of a 2 rotation on the wave functions · and ‚ of a spin
1/2 particle is to change the sign of · and ‚, and hence the corresponding
trace of Ê is �2;

b) the traces corresponding to the symmetry operations in Table 2.23 within
the basis · and ‚ are

2 0
√

2 0 1 �2 �
√

2 �1

{E} {3C2} {6S4} {6Û} {8C3} {Ê} {6ÊS4} {8ÊC3}
{3ÊC2} {6ÊÛ}

c) The Double Group at the X Point of the Zinc-Blende Structure
As an additional exercise on the calculation of double group character table,
we shall consider the X point of the zinc-blende structure.
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The first step is to decide what are the classes in the double group. In this
case we need only to compare the single group and double group classes at
the zone center since the classes of X form a subset of these classes. It should
not be difficult to see that there are now 7 classes:

{E}, {C2
4(x), ÊC2

4(x)}, {2C2
4(y, z), 2ÊC2

4(y, z)}, {2S4}, {2md}, {Ê} and {ÊS4}.

Using the results of Problem 2.10 one can show that the characters of these
operations on the two spin wavefunctions are:

E C2
4(x), ÊC2

4(x) 2C2
4(y, z), 2ÊC2

4(y, z) 2S4 2md Ê ÊS4

2 0 0
√

2 0 �2 �
√

2

Using this result we can show that the character table for the double group of
the X point in the zinc-blende crystal is:

E C2
4(x), ÊC2

4(x) 2C2
4(y, z), 2ÊC2

4(y, z) 2S4 2md Ê ÊS4

X1 1 1 1 1 1 1 1
X2 1 1 1 �1 �1 1 �1
X3 1 1 �1 �1 1 1 �1
X4 1 1 �1 1 �1 1 1
X5 2 �2 0 0 0 2 0
X6 2 0 0

√
2 0 �2 �

√
2

X7 2 0 0 �
√

2 0 �2
√

2

Using these characters the reader should show that the X1, X3, and X5 rep-
resentations in the zinc-blende structure (see Problem 2.10) go over to the
X6 ⊗ X1 � X6, X6 ⊗ X3 � X7 and X6 ⊗ X5 � X6 ⊕ X7 representations in the
double group (see, for example, the band structure of GaAs in Fig. 2.14).

2.11 The Structure Factor of Bond Charges in Si
The intensity of x-ray scattering peaks from a crystal depends on the structure
factor S of the crystal.

The structure factor of the Si crystal (face centered cubic or fcc lattice), in
particular, is discussed in many standard textbooks on solid state physics, such
as Kittel’s “Introduction to Solid State Physics” (Chap. 2 in 6th Edition). The
basis of the fcc structure is usually taken to be the cubic unit cell with four
atoms per unit cube. These four atoms can be chosen to have the locations
at (0, 0, 0); (0, 1/2, 1/2); (1/2, 0, 1/2) and (1/2, 1/2, 0) [in units of the size of the
cube: a]. The structure factor Sfcc(hkl) for a wave vector (h, k, l) in reciprocal
space then vanishes if the integers h, k and l contain a mixture of even and
odd numbers. In the case of the Si crystal there are now 8 atoms per unit cube
since there are two interpenetrating fcc sublattices displaced from each other
by the distance (1/4, 1/4, 1/4). As a result, the structure factor of the Si crystal
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SSi(hkl) is given by:

SSi(hkl) � Sfcc(hkl)[1 � exp (i/2)(k � k � l)].

This implies that SSi(hkl) will be zero if the sum (h � k � l) is equal to 2
times an odd integer. When combining the above two conditions one obtains
the result that SSi(hkl) will be non-zero only if (1) (k, k, l) contains only even
numbers and (2) the sum (h � k � l) is equal to 4 times an integer. See, for ex-
ample, Kittel’s “Introduction to Solid State Physics” (Chap. 2 in 6th Edition),
Problem 5 at the end of Chap. 2. Based on this result one expects that the
diffraction spot corresponding to (2, 2, 2) in the x-ray diffraction pattern of Si
will have zero intensity since h � k � l � 6.

It has been known since 1959 that the so-called forbidden (2, 2, 2) diffrac-
tion spot in diamond has non-zero intensity (see Ref. [3.23] or Kittel’s “Intro-
duction to Solid State Physics”, p. 73 in 3rd Edition). It is now well established
that the presence of this forbidden (2, 2, 2) diffraction spot can be explained
by the existence of bond charges located approximately mid-way between the
atoms in diamond or silicon. What is the structure factor of the bond charges
in the Si crystal if one assumes that they are located exactly mid-way between
two Si atoms?

2.12 Matrix Elements of p
a) Show that all matrix elements of p between the °4 valence bands and
the °4 conduction bands of zinc-blende-type semiconductors of the form
〈X |px |°4c(z)〉, 〈Z |py |°4c(z)〉, or 〈X |py |°4c(y)〉, where at least two of the
labels x, y, or z are identical, vanish as a result of the requirement that the
crystal is invariant under rotation by 180˚ with respect to one of the three
equivalent [100] axes.

b) As a result of (a), the only nonzero matrix elements of p are of the form
〈X |py |°4c(z)〉. Using the three-fold rotational symmetries of the zinc-blende
crystal, show that

〈X |py |°4c(z)〉� 〈Y |pz |°4c(x)〉� 〈Z |px |°4c(y)〉

and

〈X |pz |°4c(y)〉� 〈Y |px |°4c(z)〉� 〈Z |py |°4c(x)〉.

c) Finally, use the reflection symmetry with respect to the (110) planes to show
that

〈X |py |°4c(z)〉� 〈Y |px |°4c(z)〉.

2.13 Linear Terms in k
Show that the k linear term due to the k · p interaction is zero in the zinc-
blende crystal at the °-point.
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2.14 k · p Method
a) Use (2.52) to calculate the elements of the 6×6 matrix {H′

ij}.

b) Use a computer and a matrix diagonalization program to calculate the va-
lence band structure of GaAs from these parameters for GaAs:
P2/(m0) � 13 eV; Q2/(m0) � 6 eV; E0 � 1.519 eV; E′

0 � 4.488 eV; ¢ � 0.34 eV
and ¢′

0 � 0.171 eV.

2.15 Valence Bands; k · p Hamiltonian
a) Calculate the 4×4 matrix obtained by taking matrix elements of the Lut-
tinger Hamiltonian in (2.70) between the Jz � ± 3/2 and ±1/2 states of the
J � 3/2 manifold.

b) Diagonalize this 4×4 matrix to obtain two sets of doubly degenerate levels
with energies

E± �
�2

2m
{Á1k2 ± [4Á2

2k4 � 12(Á2
3 � Á2

2)(k2
xk2

y � k2
yk2

z � k2
zk2

x)]1/2}.

c) By comparing the results in (b) with (2.66) derive (2.71).

d) Calculate the contributions of the lowest °�
3 conduction band term to Á1,

Á2, and Á3. Show that it is not negligible for silicon and diamond [2.22].

2.16 Energy Bands of a Semiconductor in the Tight-Binding Model
a) Derive the 8×8 matrix for the s and p band energies in a zinc-blende-type
semiconductor using the tight-binding model.

b) Show that at k � 0 the energies of the s and p bands are given by

Es±(0) � 1
2 (Es1 � Es2) ± 1

2 [(Es1 � Es2)2 � 4 |Vss |2]1/2

and

Ep±(0) � 1
2 (Ep1 � Ep2) ± 1

2 [(Ep1 � Ep2)2 � 4 |Vxx |2]1/2

instead of (2.84a) and (2.84b). Es1 and Es2 are the atomic s level energies
〈S1 |�0 |S1〉 and 〈S2 |�0 |S2〉, respectively, while Ep1 and Ep2 are the corre-
sponding energies for the atomic p levels.

2.17 Tight Binding Overlap Integrals
Evaluate the geometric factors Ùll′m in Table 2.27.

2.18 Tight Binding Hamiltonian
Given two p orbitals, one located at the origin and the other at the point
d(cos £x, cos £y, cos £z), where d is the distance between the two p orbitals
and cos £x, cos £y, and cos £z are the directional cosines of the second p or-
bital, show that the overlap parameters Vxx and Vxy are given by

Vxx � VppÛ cos 2£x � Vpp sin 2£x,

Vxy � [VppÛ � Vpp] cos £x cos £y.

2.19 Conduction and Light Hole Bands in Small Band Gap Semiconductors
Write down the 2 × 2 Hamiltonian matrix which describes the conduction and
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the light hole band of a narrow gap semiconductor such as InSb. Diagonal-
ize it and discuss the similarity of the resulting expression with the relativistic
energy of free electrons and positrons [4.28]. Use that expression to estimate
non-parabolicity effects on the conduction band mass.

Comments on the Equivalence of the Brillouin Zone Edge Points U and K 3
In these figures the zone-edge points U and K are indicated to be equivalent.
This is true strictly only for Bloch waves indexed by these points which lie on the
Brillouin Zone (BZ) surface but not for for waves with wave vector along the
lines joining them to X nor to °. This is easily seen from the fcc lattice template
in Fig. 2.27. Both U and K lie on the hexagonal Brillouin zone face along the
[111] direction. However, the line X-U is in general not equivalent to the line X-
K. For the endpoints U and K which lie on the BZ boundary their Bloch waves
become equivalent in the diamond lattice as a result of the three-fold rotation
and the “inversion symmetry” operations of the lattice. Also only the line °-K
is along the [110] or ™ direction so the label for the horizontal axis °-™-U,K in
these figures refers to K only. In the zincblende structure without the “inversion
symmetry” U and K are no longer equivalent as can be seen from Fig. 2.14
and 2.15. In Figures 3.2, 3.10 and 3.11 this problem is avoided by not labeling
the symmetry points indicated by a broken vertical line in these figures. This
symmetry point is really K as we can conclude from the above discussion. We
are grateful to Dr. L.C. Andreani of the University of Pavia, Italy for pointing
out this ambiguity to us.

2.20 Parity of the s-like Electron Wavefunctions at the L point of Si and Ge
In discussing the valence and conduction band structures of diamond-type
semiconductors based on the tight-binding approximation, we point out that
the valence bands are formed from the bonding orbitals while the conduction
bands are formed from the anti-bonding orbitals. Furthermore, we note that
the bonding orbitals have even parity under inversion in order that the elec-
tron charge density be higher at the center of the bond. On the other hand,
the antibonding orbitals have odd parity under inversion. This result explains
why the valence bands at the zone center of Si (see Fig. 2.10) and Ge (see
Fig. 2.13) have even parity while the conduction bands at the zone center have
odd parity. This is not true at the L point of the Brillouin zone. [It should be
noted that along many high symmetry directions, such as ¢ and §, inversion
is not a symmetry operation since k and �k are not identical. However, at the
L point k and �k are the same in the reduced zone scheme and hence parity
is a good quantum number.].

The lowest energy valence band state at the L-point (which arises from
the bonding s-orbital) has odd parity (L�

6 in Ge and L2′ in Si) while the lowest
energy conduction band (which arises mainly from the anti-bonding s-orbital)
has even parity (L�

6 in Ge and L1 in Si) under the special inversion operator
I′ of the diamond lattice.
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(a) Calculate the energy and wave functions of these bands at the L point di-
rectly by using the nearly-free electron model (use reasonable approximations
to simplify the problem as far as possible) and check the parity of the resulting
wave functions under the “inversion” operation I′.

(b) Repeat your calculation by using the tight-binding model and check again
the parity of the resulting wave functions under the operation I′.

(c) Why does the odd parity state have lower energy rather than the even par-
ity state at the L point? Does this result somehow violate the “compatibility
relation” in changing a bonding state at k � 0 into an anti-bonding state at
the L point?

SUMMARY

A semiconductor sample contains a very large number of atoms. Hence a
quantitative quantum mechanical calculation of its physical properties con-
stitutes a rather formidable task. This task can be enormously simplified by
bringing into play the symmetry properties of the crystal lattice, i. e., by us-
ing group theory. We have shown how wave functions of electrons and vibra-
tional modes (phonons) can be classified according to their behavior under
symmetry operations. These classifications involve irreducible representations
of the group of symmetry operations. The translational symmetry of crystals
led us to Bloch’s theorem and the introduction of Bloch functions for the
electrons. We have learnt that their eigenfunctions can be indexed by wave
vectors (Bloch vectors) which can be confined to a portion of the reciprocal
space called the first Brillouin zone. Similarly, their energy eigenvalues can
be represented as functions of wave vectors inside the first Brillouin zone,
the so-called electron energy bands. We have reviewed the following main
methods for calculating energy bands of semiconductors: the empirical pseu-
dopotential method, the tight-binding or linear combination of atomic orbitals
(LCAO) method and the k·p method. We have performed simplified versions
of these calculations in order to illustrate the main features of the energy
bands in diamond- and zinc-blende-type semiconductors.
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We will start the discussion of the vibrational properties of semiconductors
by reviewing the theory of the dynamics of a crystalline lattice. The Hamilto-
nian describing a perfect crystal has already been given in (2.1). We note that
the electrons have been separated into two groups. The core electrons are as-
sumed to move rigidly with the nucleus to form what has been referred to as
the ion. The valence electrons interact with these ions via the pseudopoten-
tials. The part of the Hamiltonian in (2.1) which involves the nuclear motions
is given by

Hion(R1, . . . , Rn)�
∑

j

P2
j

2Mj
�

∑
j, j′

′ 1
2

ZjZj′e2

4Â0|Rj � Rj′ |
�

∑
i, j

Zje2

4Â0|ri � Rj|
, (3.1)

where Rj, Pj, Zj and Mj are, respectively, the nuclear positions, momentum,
charge, and mass, ri is the position of the electron and

∑′ means summation
over pairs of indices j and j′ where j is not equal to j′.

The appearance of the electronic coordinates in this Hamiltonian makes it
difficult to solve for the nuclear motion since electronic motion is coupled to
ionic motion. As pointed out already in Sect. 2.1, one way to separate the two
is by introducing the Born–Oppenheimer or adiabatic approximation. In this
approximation the electrons are assumed to follow the ionic motion adiabat-
ically. As a result we can solve the electronic part of the Hamiltonian H in
(2.1) to obtain the energies of the electrons as functions of the ion positions.
On the other hand, the ions cannot follow the electronic motion and there-
fore they see only a time-averaged adiabatic electronic potential. Hence the
Hamiltonian for the ions can be written as

Hion �
∑

j

P2
j

2Mj
� Ee(R1, . . . , Rn), (3.2)
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where Ee(R1, . . . , Rn), which represents the total energy of the valence elec-
trons with ions held stationary at positions R1, . . . , Rn, is treated as the inter-
action between ions via the electrons. With the help of supercomputers, it is
now possible to calculate Ee(R1, . . . , Rn) and then solve ab initio for the mo-
tion of the ions.

Since much of the work on lattice dynamics was carried out before su-
percomputers were available, these early investigations had to rely on a phe-
nomenological approach. In this approach typically an equation of motion for
the ions is obtained by expanding Hion as a function of their displacements
‰Rj from their equilibrium positions Rj0:

Hion � H0(R10, . . . , Rn0) � H′(‰R10, . . . , ‰Rn0). (3.3)

In (3.3), H0(R10, . . . , Rn0) is the Hamiltonian of the crystal with all the nuclei
at their equilibrium positions and H′(‰R10, . . . , ‰Rn0) is the change in Hion due
to displacements of the nuclei by small amounts ‰R10, . . . , ‰Rn0 from the equi-
librium positions. To diagonalize H′, one expands Hion around R10, . . . , Rn0.
Since the Rj0 are the equilibrium positions of the ions, the first-order terms in
‰Rj vanish. In addition, when all the ‰Rj are identical, the crystal is uniformly
displaced and not distorted. Thus the lowest order terms in the expansion of
Hion relevant to the vibration of the crystal are second order in ‰(Rj � Rk).
If we keep only the terms quadratic in H′, the motions of the nuclei are de-
scribed by a collection of simple harmonic ocillators, and hence this approach
is known as the harmonic approximation. We will restrict our treatment of the
lattice dynamics of semiconductors to the harmonic approximation only. One
important limitation of this approach is that we cannot explain some phenom-
ena, for example, thermal expansion. In particular, it is now well established
that the coefficient of linear expansion in many diamond- and zinc-blende-type
semiconductors changes sign twice when their temperature is increased from
liquid helium temperature to room temperature [3.1].

To simplify the notations we will denote the displacement from equilib-
rium of the ion k in the unit cell l by ukl. Within the harmonic approximation
H′ can be expressed as

H′(ukl) �
1
2

Mk

(
dukl

dt

)2

�
1
2

∑
k′l′

ukl · º(kl, k′l ′) · uk′l′ . (3.4)

In this equation H′(ukl) represents the change in the ion Hamiltonian induced
by a displacement of the ion (kl) while all the other atoms are kept in their
equilibrium position. The matrix º(kl, k′l ′) contains the force constants de-
scribing the interaction between the ions denoted by (kl) amd (k′l ′). For ex-
ample, the force on ion (kl) due to the displacement uk′l ′ of the (k′l ′) ion is
given by �º(kl, k′l ′) ·uk′l ′ . The force constants contain two parts. The first part
is the direct ion–ion interaction due to their Coulomb repulsion, the second is
an indirect interaction mediated by the valence electrons. The motion of one
ion causes the electron distribution to change. This rearrangement of the elec-
trons produces a force on the neighboring ions. In Sect. 3.2 we will consider
the various models for calculating the force constants. At this point we will
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summarize the procedures for obtaining the phonon dispersion curves assum-
ing the force constants are known.

The determination of the lattice dynamics described by the Hamiltonian
in (3.4) can be carried out in two steps. First we will treat the Hamiltonian
classically and solve the equation of motion. In this classical approximation
(3.4) describes the energy of a collection of particles executing small-ampli-
tude oscillations. As is well known in classical physics, these oscillations can
be expressed in terms of normal modes which are independent of each other
[3.2]. In the second step we quantize the energies of these normal modes. Each
quantum of lattice vibration is called a phonon. The procedures for determin-
ing the quantized energy levels of one-dimensional simple harmonic oscillators
can be found in most quantum mechanics textbooks, so we will not repeat
them here. Instead we will concentrate on the determination of the normal
modes of vibrations described by (3.4).

Since º(kl, k′l ′) possesses translational symmetry, we expect that the
atomic displacements which diagonalize (3.4) can be expressed in terms of
plane waves similar to the Bloch functions for electrons in a crystal [as de-
fined by (2.6) in Sect. 2.2]. If ukl is the displacement of the kth ion in the lth
unit cell specified by the lattice vector Rl, it can be related to the displace-
ment uk0 of a corresponding ion in the unit cell located at the origin by a
Bloch wave of the form

ukl(q, ˆ) � uk0 exp i(q · Rl � ˆt), (3.5)

where q and ˆ are, respectively, the wave vector and frequency of the wave.
There is, however, one important difference between phonon and electron
Bloch waves. While an electron can be anywhere in the crystal, ion positions,
in the classical approximation, are discrete. Since the Rl in (3.5) are lattice
vectors, two waves whose wave vectors differ by a reciprocal lattice vector are
equivalent. In terms of Brillouin zones introduced in Sect. 2.2, this result can
be stated as: the phonon frequencies in the first Brillouin zone are identical to
those in the other Brillouin zones. Thus the frequency versus wave vector plots
for lattice vibrations in crystals (or phonon dispersion curves) are always pre-
sented in the reduced zone scheme. Another important consequence of (3.5)
is that the degrees of freedom or the number of independent waves is equal
to three times the number of atoms in the crystal. By substituting (3.5) for ukl

into (3.4) and using the resultant expression in the classical Hamilton equation
[3.2] we obtain the equation for uk0:

Mkˆ2uk0 �
∑
k′, m

º(km, k′0) exp(�iq · Rm)uk′0. (3.6)

Introducing a mass-modified Fourier transform of º as

Dkk′(q) �
∑

m

º(mk, 0k′) (MkMk′)�1/2 exp
[

� iq · Rm
]
, (3.7)

(3.6) can be written as∑
k′

[
Dkk′(q) � ˆ2‰kk′

]
uk′0 � 0. (3.8)
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Dkk′(q) is known as the dynamical matrix. The vibrational frequencies ˆ are
found by solving the secular equation

|Dkk′(q) � ˆ2‰kk′ | � 0. (3.9)

The vibrational amplitudes uk0 are obtained by substituting the solutions of
(3.9) into (3.8). Readers should refer to textbooks on linear algebra or classi-
cal mechanics for further details of procedures for diagonalizing the matrix in
(3.8). The main differences between the above classical treatment and a quan-
tum mechanical calculation are: (1) in the quantum case the energy levels of
a vibrational mode of frequency ˆ are quantized as [n � (1/2)] �ˆ and (2) the
creation and annihilation operators for a quantum of vibration (or phonon)
are expressed in terms of the vibration amplitudes uk0.

The organization of the rest of this chapter is as follows: in the next sec-
tion we discuss qualitative features of phonon dispersion curves in diamond-
and zinc-blende-type semiconductors, in Sect. 3.2 we study models for com-
puting these dispersion curves from (3.9), while the last section concentrates
on interactions between electrons and phonons.

Within the harmonic approximation (3.4) the phonons have an infinite life-
time. Inclusion of higher order, anharmonic terms results in a finite lifetime
which can be calculated by ab initio techniques [3.3].

3.1 Phonon Dispersion Curves of Semiconductors

Phonon dispersion curves in crystals along high-symmetry directions of the
Brillouin zone can be measured quite precisely by inelastic neutron scattering1

and more recently by high resolution inelastic x-ray scattering. Figures 3.1–
3.3 show the dispersion curves of Si, GaAs, and GaN. These results can
be regarded as representatives of semiconductors with the diamond-, zinc-
blende-, and wurtzite-type lattices, respectively. In the diamond- and zinc-
blende-type lattices there are two atoms per primitive unit cell, and hence
there are six phonon branches. These are divided into three acoustic phonon
branches (the three lower energy curves) and three optical phonon curves.
Along high-symmetry directions (such as the [100] and [111] directions in Si
and GaAs) the phonons can be classified as transverse or longitudinal accord-
ing to whether their displacements are perpendicular or parallel to the direc-
tion of the wave vector q.

In a solid the long wavelength transverse acoustic (abbreviated as TA)
phonons are shear sound waves while the longitudinal acoustic (LA) phonons
correspond to compressional sound waves. The velocities of these sound waves
are determined by the shear and bulk elastic moduli, respectively. Since it is

1 B.N. Brockhouse and C.G. Shull were awarded the Nobel Prize in 1994 for their de-
velopment of neutron scattering spectroscopy, Brockhouse and Iyengar first measured the
phonon dispersion in Ge by inelastic neutron scattering [Phys. Rev. 111, 747 (1958)].
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usually easier to shear than to compress a crystal, the TA phonons travel with
lower velocities than the LA phonons. Two special features of the TA phonons
in the diamond- and zinc-blende-type semiconductors are: (1) their dispersion
curves are relatively flat near the zone edge; and (2) their energies are much
lower than the LA phonon energy near the zone edge. We will later show that
these features are related to the covalent nature of bonds in these crystals.

In Si the transverse optical (TO) phonons and the longitudinal optical
(LO) phonons are degenerate at the zone center. In GaAs and other zinc-
blende-type semiconductors, the LO phonon has higher energy than the TO
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phonons near the zone center. Exactly at the zone center, the TO and LO phonons
in the zinc-blende crystals must also be degenerate because of the cubic sym-
metry of the zinc-blende structure. This degeneracy and dispersion of the zone-
center optical phonons in zinc-blende crystals will be taken up again in Sect.
6.4 when we study the interaction between the TO phonons and infrared radi-
ation. At wave vectors near but not exactly at the zone center, the LO phonon
frequency in GaAs and other zinc-blende crystals is higher than that of the TO
phonons. The reason lies in the partially ionic nature of the bonding in zinc-
blende crystals. For example, in GaAs the As atoms contribute more electrons
to the bond than the Ga atoms. As a result, the electrons in the covalent bond
spend, on average, somewhat more time near the As atoms than near the Ga
atoms, so the As atoms are slightly negatively charged while the Ga atoms are
slightly positively charged. Let us assume that a long-wavelength TO phonon
propagating along the [111] direction is excited. The positive and negative ions
lie on separate planes perpendicular to the [111] axis. In a TO mode the planes
of positive and negative ions essentially slide pass each other. The situation is
similar to sliding the two plates of a parallel-plate capacitor relative to each
other while keeping their separation constant. The energy of the capacitor is not
changed by such motion. On the other hand, the energy of the charged capaci-
tor is increased when the two plates are pulled apart because there is an addi-
tional restoring force due to the Coulomb attraction between the positively and
negatively charged plates. Similarly, an additional Coulombic restoring force is
present in long-wavelength LO phonon modes but not in the TO phonon modes.

The analogy between the optical phonons and the displacements of the
capacitor plates is shown in Fig. 3.4. This additional restoring force (F) aris-
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ing from the displacement of the ions increases the frequencies of the long-
wavelength LO phonons above those of the corresponding TO phonons. In
Sect. 6.4.4 we shall show explicitly that there is a longitudinal electric field
which depends on the atomic displacements in a LO phonon but not in a TO
phonon. This longitudinal electric field results in an additional interaction be-
tween LO phonons and electrons (Sect. 3.3.5).

In Si the two atoms in the unit cell are identical so the bonding is purely
covalent and the two atoms do not carry charge. As a result there is no addi-
tional restoring force associated with LO phonons and the zone-center optical
phonons are degenerate.2

Vibrational modes in a crystal can be symmetrized according to the space
group symmetry of the crystal just like the electronic states. A phonon mode
is defined by the displacements of the atoms inside the unit cell. Thus the
symmetry of the phonon must belong to the direct product of the representa-
tion of a vector and the respresentation generated by a permutation of the
positions of equivalent atoms in the unit cell. The symmetry of the long-
wavelength phonons in Si and GaAs has already been considered in Sect.
2.3.2a. An example of how to determine the symmetries of long-wavelength
phonons in another cubic crystal, Cu2O with six atoms per primitive unit cell,
can be found in Problem 3.1. The corresponding phonons in a non-cubic crys-
tal structure, such as the wurtzite structure, can be found in Problem 3.7b.

2 Note, however, that if more than two atoms of the same kind are present within each
primitive cell, infrared active modes and LO–TO splittings are possible. See the case of
selenium and tellurium [3.8]



114 3. Vibrational Properties of Semiconductors, and Electron-Phonon Interactions

3.2 Models for Calculating Phonon Dispersion Curves
of Semiconductors

To calculate the phonon dispersion curves from (3.9) it is necessary to know
the force constants. In most calculations these force constants are obtained
by first modeling the interactions between ions in terms of a number of pa-
rameters and then fitting some experimental quantities, such as sound velocity,
zone-center phonon frequencies, bulk modulus, etc., by adjusting these param-
eters. Even after the force constants are known, numerical computations are
necessary in solving (3.9) to obtain the phonon frequencies. Hence we can
discuss only qualitatively the features of various models proposed for semi-
conductors.

3.2.1 Force Constant Models

The Born–von Kármán model [Ref. 3.9, p. 55] represents the first attempt to
calculate the phonon dispersion in semiconductors such as diamond and Si.
The atoms are assumed to be hard spheres connected by springs. The spring
constants º(kl, k′l ′) are determined by fitting experimental results. Born [3.10]
tried to fit the experimental results for C and Si with only two spring con-
stants: · and ‚ which determine the restoring force on each atom due to its
own displacement and the displacements of its nearest neighbors. This simple
model was applied by Hsieh [3.11] to calculate the phonon dispersion in Si.
The calculated curve failed to fit the experimental dispersion curve at short
wavelengths. The Si lattice turned out to be unstable under shear stress in
this simple model. The flattening of the TA phonon dispersion near the zone
edge cannot be explained without introducing long-range interatomic interac-
tions. Herman [3.12] showed later that by extending interactions to the fifth-
nearest neighbors and by using as many as 15 force constants, a good fit to
the phonon dispersion curves of Ge could be achieved. This model is not
easy to understand from a physical point of view since some of the distant-
neighbor force constants were found to be larger than their nearer-neighbor
ones.

3.2.2 Shell Model

One can argue that a model in which the atoms are regarded as point masses
connected by springs will be a poor approximation for semiconductors. After
all, the valence electrons in covalent semiconductors such as Ge and Si are
not rigidly attached to the ions. In a model proposed by Cochran [3.13] each
atom is assumed to consist of a rigid ion core surrounded by a shell of valence
electrons (shown schematically in Fig. 3.5) that can move relative to the cores.
This is the basis of the shell model.
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Fig. 3.5. Typical interactions be-
tween two deformable atoms in the
shell model

In the shell model the interactions between the two atoms inside the unit
cell of Si are represented schematically by springs, as shown in Fig. 3.5. One
important feature introduced by the shell model is that long-range Coulomb
interaction between atoms can be included. This is achieved by assigning
charges to the shells so that dipole moments are produced when the shells
are displaced relative to the ions. By using the interaction between the in-
duced dipoles to simulate the long-range interaction, the short-range interac-
tion can be limited to the nearest neighbors. With the shell model Cochran
[3.13] was able to fit the phonon dispersion in Ge with five adjustable param-
eters. Dolling and Cowley [3.14] were able to fit the phonon dispersion curves
of Si using an 11-parameter shell model. In this model the short-range interac-
tions have been extended to the next-nearest neighbors. Similar 11-parameter
shell models have been successfully used to fit the phonon dispersion curves
even in III–V compounds. With 14-parameters the agreement between the-
ory and experiment is quite good. The main criticism of the shell model is
that the valence electron distributions in the diamond- and zinc-blende-type
semiconductors are quite different from spherical shells. As a result, the pa-
rameters determined from the shell model have no obvious physical meaning
and have limited applications beyond fitting the phonon dispersion curves.
Phillips [3.15] has pointed out that the most serious problems of the shell
model appear when applying it to covalent solids. The shell model artificially
divides the valence charges between the two atoms involved in the cova-
lent bond. In reality the valence electrons are “time-shared” between the two
atoms in that they all spend part of their time on each atom.

3.2.3 Bond Models

It is well known that valence electrons in diamond- and zinc-blende-type semi-
conductors form highly directed bonds. These valence electrons are important
for explaining cohesion in these semiconductors so they must also play an im-
portant role in determining the vibrational frequencies. The vibrational prop-
erties of molecules formed from covalent bonds have been extensively stud-
ied by chemists. These vibrational modes are usually analyzed in terms of va-
lence force fields for stretching the bonds and for changing the angles between
bonds (bond bending). The force constants can be determined in a straightfor-
ward manner from these valence force fields since the displacements of the
ions are related to the bond coordinates. One advantage of this approach is
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that the force constants for bond stretching and bond bending are often char-
acteristics of the bonds and can be transferred from one molecule to another
containing the same bonds.

To see what kind of parameters are involved in this valence force field
method (VFFM) of calculating lattice dynamics let us consider a crystal with
two atoms, A and B, per unit cell. The potential energy of the valence bonds
about the equilibrium positions can be expanded phenomenologically in terms
of the valence bond coordinates as

V �
1
2

⎡⎣∑
i, j

Û(‰rij)2 �
∑
i,k

Ì(‰rik)2 �
∑
BAB

k£r2
0(‰£ijk)2

�
∑
ABA

k′
£r2

0(‰£jkl)2 �
∑
BAB

kr£r0(‰£ijk)(‰rij)

�
∑
ABA

k′
r£r0(‰£jkl)(‰rjk) � . . .

]
. (3.10)

The first two terms in (3.10) correspond to bond stretching forces: j and k de-
note, respectively, the nearest and next-nearest neighbors of an atom i. The
remaining terms give rise to bond bending forces. The bond motions for these
terms are shown in Fig. 3.6. This method of calculating phonon dispersion
works best when only a small number of valence force fields are sufficient
to explain the phonon dispersion. In ionic crystals it is necessary to introduce
additional long-range forces due to Coulomb interactions in order to repro-
duce the LO–TO phonon splittings near the zone center.

Musgrave and Pople [3.16] first applied this method to study the lattice
dynamics of diamond. They included only two kinds of valence force fields in
the potential energy: bond stretching and bond bending about a common apex
atom. The model requires five parameters, which translates into six force con-
stants involving the nearest and next-nearest neighbors. The model does not
reproduce well the elastic constants nor the zone-center optical phonon fre-
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Fig. 3.6. Bond-bending configurations for a crystal with two atoms, A and B, per unit cell
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quencies. Subsequent work showed that better results could be achieved by
introducing additional parameters involving the change of two bond angles
with a common bond. In ionic crystals the number of adjustable parameters
is increased to eight to include the Coulomb interactions. Thus the number
of adjustable parameters in the VFFM necessary for a good fit to the experi-
mental results is comparable to that of the shell model, and there is no major
advantage of one method over the other. The phonon dispersion curve in a
wurtzite-type semiconductor, CdS, has been calculated by Nusimovici and Bir-
man [3.17] using the VFFM with eight adjustable parameters. Since the ex-
perimental phonon dispersion curves of CdS were not known at that time,3

these parameters were adjusted to fit the experimental zone center optical
phonon energies. A simplified version of the VFFM has been introduced by
Keating [3.22]. There are only two parameters, · and ‚, in this model for cova-
lent semiconductors, with an additional charge parameter for ionic compounds.
The Keating parameter · is equivalent to the bond-stretching term Û in (3.10)
while ‚ is equivalent to the bond-bending term k£. Because of its simplic-
ity and the clear physical meaning of its parameters, the Keating model has
been widely used to study the elastic and static properties of covalent semicon-
ductors [3.23a, 24]. The phonon dispersion curves calculated from the Keating
model show reasonably good agreement with experimental results except for
the problematic TA branch. If the parameters · and ‚ are determined from
the elastic constants, the zone-edge (X-point) TA phonon energies tend to be
too high and cannot reproduce the flat dispersion in the experimental curves
(see Fig. 3.1).

3.2.4 Bond Charge Models

To understand the motivation for the bond charge model, let us return to the
Hamiltonian for the ions given in (3.2). The force constants can be obtained,
in principle, by differentiating the total energy Ee with respect to the ion coor-
dinates (this is known as the frozen phonon approximation) [3.21]. However,
this approach is very computation intensive and requires the use of supercom-
puters. On the other hand, with some insight and approximations, phonon dis-
persion curves of diamond- and zinc-blende-type semiconductors can be cal-
culated without supercomputers.

The most difficult part of this calculation is how to handle the Coulomb
interaction between ions and electrons. This interaction causes the effective
charge of an ion seen by other ions to be reduced, an effect known as screen-
ing. A simple way to introduce screening effects is to calculate the dielectric
function Â (for a definition see Sect. 6.1) and then divide the ionic potential by
Â. There are several approaches to approximating the screening of the ions by
the valence electrons. One obvious simplification is to assume that the valence
electrons are free so that the dielectric function of the semiconductor can be

3 Neutron scattering cannot be performed on compounds containing 113Cd because of its
very large thermal neutron absorption cross section. Phonon dispersion curves in isotopically
enriched 114CdS [3.18], 114CdTe [3.19], and 116CdSe [3.20] have however been reported.
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replaced by that of a metal. Using this approach, Martin [3.23b] found that
the Coulomb repulsion between the ions is very strongly screened: the silicon
lattice becomes unstable against a long-wavelength shear distortion. The TA
modes have imaginary energies as a result. One way to avoid this problem is
to localize some of the valence electrons so that not all of them can contribute
to the screening of the ions. To handle these localized valence electrons Martin
used the idea of bond charges introduced by Phillips [3.15]. X-ray scattering
measurements had already suggested that there was a pile-up of charges along
bonds in Si and diamond crystals which could not be explained by a spherical
charge distribution such as in a shell model. This pile-up of charge in the co-
valent bond is known as the bond charge and is well known in the formation
of covalent molecules. Experimentally, Göttlicher and Wolfel [3.25] observed a
diffraction peak in the X-ray spectra of diamond corresponding to the (2,2,2)
reciprocal lattice vector. This diffraction peak is forbidden by Bragg’s diffrac-
tion law in a crystal with the diamond structure (see Problem 2.11). Those au-
thors noted that this forbidden diffraction peak could be explained by assum-
ing that approximately 0.4 of an electronic charge was located at the middle of
each bond. More recently, the distribution of the bond charge in Si has been
mapped out by Yang and Coppens [3.26] also using X-ray diffraction. Their ex-
perimental results are shown in Fig. 3.7a and are in excellent agreement with
the theoretical charge distribution in Fig. 3.7b calculated by Chelikowsky and
Cohen [3.27].

Martin [3.23b] introduced the bond charges into the lattice dynamics cal-
culation of semiconductors in a very simple phenomenological manner. He
assumed that bond charges of magnitude Zbe are located exactly midway be-
tween two adjacent atoms. As a first approximation he postulated that Zbe
was given by

Zbe � �
2e
Â

, (3.11)

where 2e represents the two electrons involved in the covalent bond and the
dielectric constant Â results from the screening of the bond charge by the re-
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Fig. 3.7. Valence charge distribution in Si showing the constant charge density contours
(a) determined experimentally from X-ray diffraction [3.26] and (b) calculated with the
empirical pseudopotential method [3.27]. The numbers in the figure are in units of elec-
trons per unit cell volume
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Fig. 3.8. Schematic diagram of
the bond charge model pro-
posed by Martin [3.23b] for Si.
Zb represents the bond charge

maining valence electrons. For simplicity Â was assumed to be given by the
dielectric constant for small wave vectors and at low frequencies (see Sect.
6.1 for further discussion of the wavevector and frequency dependence of Â).
For diamond, at least, this approximation worked rather well. The dielectric
constant of diamond is equal to 5.7, so Zbe is equal to 0.35e in reasonable
agreement with the value of 0.4e needed to fit the phonon dispersion curves
[3.25]. This simple model for the Si crystal is shown schematically in Fig. 3.8.
Each Si ion has a charge of �4e. The four valence electrons from each Si
atom are divided into localized bond charges and nearly free electrons. Each
Si atom contributes four Zb/2 electron to the four bonds it forms with its four
nearest neighbors. These bond charges are localized, and therefore do not con-
tribute to screening of the Si ions. The remaining (4 � 2Zb) valence electrons
from each Si atom are assumed to be free and can screen the ions. The forces
which determine the phonon frequencies are:

• Coulomb repulsion between the bond charges;
• Coulomb attraction between the bond charges and the ions;
• Coulomb repulsion between the ions;
• a non-Coulombic force between the ions to be approximated by a spring.

Using this approach Martin was able to calculate the phonon dispersions and
elastic constants of Si with no other adjustable parameters.

A further refinement of the bond charge models of Phillips and Martin
was the adiabatic bond charge model (ABCM) proposed by Weber [3.5]. This
model combines the features found in the bond charge model, in the shell
model and in the Keating model. The ABCM uses the bond charge model of
Martin as its starting point. A conceptual improvement in the ABCM is to
treat the bond charges not as rigidly located in the middle of the bonds, as
Martin did, but instead to allow the bond charges to follow the motion of the
ions adiabatically as in the shell model. As a result of their Coulomb attrac-
tion to the ions, the bond charges are unstable against any small perturbation
which moves them closer to one ion than to another. To stabilize the bond
charges, Weber introduced two additional types of forces: (1) short range re-
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Fig. 3.9. Schematic diagram of the adiabatic
bond charge model of Weber [3.5]. See text
for explanations of the symbols

pulsive forces between the bond charges and the ions and (2) bond-bending
forces as in the Keating model. The various interactions between nearest-
neighbor ions and bond charges in the ABCM are shown schematically in Fig.
3.9. There are four adjustable parameters in the model:

• ˇ′′
i�i, the potential of central forces between ions;

• ˇ′′
i�bc, the potential of central forces between ions and bond charges;

• Z2/Â, representing the Coulomb interaction between the bond charges;
• ‚, the bond-bending parameter in the Keating model.

Some of these parameters can be determined from the elastic constants or
long-wavelength phonon dispersion curves while others have to be deduced
from the zone-edge phonon energies. The phonon dispersion curves of the
group-IV elements calculated with the ABCM are in good agreement with
experiment. As an example, Figs. 3.1, 3.10 and 3.11 show, respectively, compar-
isons between the experimental results and the calculated phonon dispersion
curves in Si, ·-Sn (or gray tin), and diamond. The phonon dispersion curves of
diamond pose a special problem for the ABCM since, unlike the other group-
IV elements, the zone-edge TA phonon energies in diamond are quite high.
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Fig. 3.10. Phonon dispersion curves of ·-Sn. The solid lines were calculated with the
ABCM of Weber; the broken lines are calculated by a valence force field model while
the solid circles are experimental points. (From [3.5])
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ABCM of Weber while the circles represent experimental points. (From [3.5])

In addition, there are features in the optical phonon branches which cannot
be reproduced by a four-parameter ABCM. To obtain a satisfactory fit to the
experimental data in diamond, Weber introduced, in an ad hoc manner, an
additional adjustable parameter in the bond-bending term. A comparison be-
tween the experimental phonon dispersion curves in diamond and the results
calculated from this five-parameter ACBM is shown in Fig. 3.11. A minor but
interesting feature which is not obvious in this figure is that the maximum en-
ergy of the optical phonon branch occurs along the [100] direction instead of
at ° as in Si and Ge. A more recent comparison between experimental lattice
dynamical results and a first-principles calculation can be found in [3.28].

3.3 Electron–Phonon Interactions

In Sect. 2.1 we pointed out that, within the Born–Oppenheimer approxi-
mation, we can decompose the Hamiltonian of a crystal into three terms:
Hion(Rj), He(ri, Rj0), and He�ion(ri, ‰Rj). The first two terms deal separately
with the motions of the ions and the electrons. In Chap. 2 and in Sect. 3.2
we discussed how to solve those two Hamiltonians to obtain, respectively, the
electronic band structure and the phonon dispersion curves. We will now con-
sider the third term, which describes the interaction between the electron and
the ionic motion, i.e., the electron–phonon interaction. Within the spirit of
the Born–Oppenheimer approximation we will assume that the electrons can
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respond instantaneously to the ionic motion so that the electron–phonon in-
teraction Hamiltonian can be expressed as a Taylor series expansion of the
electronic Hamiltonian He(ri, Rj):

He�ion(ri, ‰Rj) �
∑

j

(
�He

�Rj

)∣∣∣∣
Rj0

· ‰Rj � . . . . (3.12)

Usually the electronic Hamiltonian He(ri, Rj) is not known, and therefore
approximations are needed to calculate the electron–phonon interaction. For
simplicity, we shall consider in detail mostly the long-wavelength phonons in
diamond- and zinc-blende-type crystals with two atoms per unit cell. As dis-
cussed in Sect. 3.1 there are four kinds of long-wavelength (i.e., k near °)
phonons: TA, LA, TO, and LO phonons. Their interactions with electrons will
be treated separately. Interaction between electrons and large wave-vector
phonons will be discussed at the end of this section.

3.3.1 Strain Tensor and Deformation Potentials

Let us assume that the electronic energies of a non-degenerate band Enk
(where n is the band index and k the wave vector) are known so that the
expectation value of (�He/�Rj) can be approximated by(

�He

�Rj

)∣∣∣∣
Rj0

· ‰Rj ≈
(

�Enk

�Rj

)∣∣∣∣
Rj0

· ‰Rj. (3.13)

The constant (�Enk/�Rj) represents simply the shift of the electronic band en-
ergy caused by a static displacement of the atoms. In the case of the long-
wavelength acoustic phonons, the atomic displacements can correspond to a
deformation of the crystal (deformation potential theorem). Such deforma-
tions will change the electronic energies at different points in the Brillouin
zone; the parameters which describe these changes in the electronic energies
induced by static distortions of the lattice are known as deformation poten-
tials. Thus the coefficient �Enk/�Rj is related to the deformation potentials of
the crystal. We shall now express the electron–phonon interactions in a semi-
conductor explicitly in terms of deformation potentials.

Within the limit of zero wave vector or infinite wavelength, an acoustic
phonon becomes a uniform translation of the crystal. Obviously such transla-
tions will not alter the electronic band structure, hence, if all ‰Rj’s are identi-
cal, the change in Enk is zero. Thus we have to assume that an acoustic phonon
has a nonzero but small wave vector in order to couple to electrons and con-
sider the gradient of the atomic displacements:

dij �
�(‰Ri)

�Rj
. (3.14)

dij is a second-rank tensor which can be decomposed into the sum of a sym-
metric tensor eij and an antisymmetric one fij:
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eij �
1
2

(
�‰Ri

�Rj
�

�‰Rj

�Ri

)
(3.15a)

and

fij �
1
2

(
�‰Ri

�Rj
�

�‰Rj

�Ri

)
. (3.15b)

The antisymmetric tensor fij describes a rotation of the crystal and does not
change the electron energies. However, the symmetric tensor eij describes a
strain induced in the crystal by the atomic displacements and is known as
the strain tensor. Such strains in a crystal can shift the electronic energies.
This suggests that we can derive the electron–phonon interactions for long-
wavelength acoustic phonons by expanding He(ri, Rj) in terms of the strain
tensor eij.

As a symmetric second-rank tensor, eij contains six independent elements.
One can interpret these elements as corresponding to different ways in which
the crystal can be deformed. One question which arises is: how many linearly
independent deformation potentials are needed to describe all the possible
changes in the energy of a given electronic state induced by strain? This ques-
tion can be answered in general by applying group theory. The answer de-
pends on the space group of the crystal, and the wave vector and symmetry
(in terms of the irreducible representations of the group of the wave vector)
of the particular electronic state being considered. As an illustration of the
principles involved, we will discuss the specific cases of electrons and acoustic
phonons in diamond- and zinc-blende-type crystals.

Since electron and phonon properties are invariant under symmetry oper-
ations of a crystal, we expect the electron–phonon interaction to remain un-
changed also. Thus the first step is to symmetrize the strain tensor and the
electronic state in terms of the irreducible representations of the crystal. The
symmetrization of electron states has already been discussed in Chap. 2. To
symmetrize the strain tensor, we note that a second-rank tensor can be con-
structed from the tensor product of two vectors. A vector has °4 symmetry
in zinc-blende crystals, so a second-rank tensor can be decomposed into these
irreducible representations (see also Problem 2.3):

°4 ⊗ °4 � °1 ⊕ °3 ⊕ °4 ⊕ °5. (3.16)

To decompose the symmetric tensor eij according to the irreducible repre-
sentations in (3.16), we can either use projection operators, as described in
any of the references on group theory given for Chap. 2, or use the method
of inspection. From the form of the basis functions for the Td group given in
Table 2.3 (see Sect. 2.3.3) we can guess that the three diagonal elements of
a second-rank tensor transform as °1 ⊕ °3 while the six off-diagonal elements
transform as °4⊕°5. If we form symmetric and antisymmetric combinations of
the off-diagonal elements, the symmetric combination belongs to a representa-
tion which has a character equal to 1 under the symmetry operation involving
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the reflection Û [under this reflection about the (110) plane xy → yx, xz → yz,
and yz → xz], while the antisymmetric combination leads to the character of
�1 under the same operation. From Table 2.3 we see that the off-diagonal el-
ements of a symmetric tensor (like the strain tensor) should belong to the °4
representation while those of an antisymmetric tensor (like the one describing
a rotation, a pseudovector) belong to the °5 representation. Thus the elements
of the (symmetric) strain tensor can be combined into these irreducible repre-
sentations:

°1 : e11 � e22 � e33;

°3 : e11 � e22, e33 � (e11 � e22)
/

2; and

°4 : e12, e23, e31.

Given any strain tensor eij in matrix form we can always decompose it into
the sum of three matrices:

[eij(°1)] �
1
3

⎡⎣ e11 � e22 � e33 0 0
0 e11 � e22 � e33 0
0 0 e11 � e22 � e33

⎤⎦ ,

[eij(°3)] �
1
3

⎡⎣ 2e11 � (e22 � e33) 0 0
0 2e22 � (e33 � e11) 0
0 0 2e33 � (e11 � e22)

⎤⎦ ,

[eij(°4)] �

⎡⎣ 0 e12 e13
e12 0 e23
e13 e23 0

⎤⎦ .

Note that the matrix with °1 symmetry has a nonzero trace while the other
two matrices are traceless. Using the definition of the strain tensor compo-
nents in (3.15a), it can be shown that the trace (e11 � e22 � e33) of the strain
tensor is equal to the fractional volume change (‰V/V) or volume dilation as-
sociated with a strain pattern. On the other hand, a traceless strain matrix
describes a shear of the medium. In a zinc-blende crystal, eij(°3) corresponds
to the shear component of the strain produced by a uniaxial stress applied
along a [100] direction of the crystal while eij(°4) corresponds to a [111] uni-
axial stress. The proof of these results is left for Problem 3.2 at the end of this
chapter.

Let us consider a long wavelength acoustic vibration described by a plane
wave with frequency ˆ and wave vector q:

‰R � ‰R0 sin(q · r � ˆt). (3.17)

The strain tensor eij associated with this phonon, according to the definition in
(3.15a), is given by

eij � 1
2 [qi‰R0j � qj‰R0i] cos(q · r � ˆt). (3.18)

In a longitudinal mode, the displacement ‰R is parallel to the direction of
propagation q. Thus the nonzero strain tensor components for LA phonons
are simply (in the limit of both q and ˆ approaching zero)
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eii � qi‰R0i. (3.19)

The strain tensor associated with a long-wavelength LA is therefore a diag-
onal tensor. An examination of the trace of this tensor shows that the LA
phonon always produces an oscillatory dilation (‰V/V) with amplitude equal
to q · ‰R0 plus a shear. This is consistent with our expectation that an acoustic
wave causes periodic expansion and compression of a medium. A small uni-
form expansion of the crystal by ‰V will shift the energy of an electronic band
extremum Enk by an amount

‰Enk � ank(‰V/V), (3.20)

where ank is known as the volume deformation potential of the energy level
Enk. In principle, this deformation potential can be determined by measur-
ing the shift in Enk induced by hydrostatic pressure. In practice, there are
very few experimental techniques capable of measuring the volume deforma-
tion potential directly. Often optical measurements on samples under hydro-
static pressure are applied to determine the volume deformation potentials. In
these optical experiments, usually only energy differences between two band
extrema are measured. As a result, only relative volume deformation poten-
tials between two band extrema are derived from such optical experiments
while absolute ones are required in (3.20).

For non-degenerate bands, we can neglect the effect of the shear strain as-
sociated with LA and write down the electron–LA phonon interaction Hamil-
tonian He�LA for small phonon wave vectors q as

He�LA � ank(q · ‰R), (3.21)

where ‰R can be expressed in terms of phonon creation and annihilation
operators c�

q and cq by using the standard result obtained from quantum me-
chanics [Ref. 3.29, p. 107]

‰R �
∑

q

(
�

2NVÚˆ

)1/2

eq
{

c�
q exp[i(q · rj � ˆt)]

� cq exp[�i(q · rj � ˆt)]
}

,

(3.22)

where N is the number of unit cells in the crystal, V and Ú are, respectively,
the volume of the primitive cell and the density, and eq is the phonon polariza-
tion unit vector. The Hamiltonian He�LA in (3.21) is valid for a nondegenerate
band extremum such as the °1 conduction band minimum in GaAs and other
zinc-blende semiconductors. The values of the volume deformation potentials
a(°1c) for the conduction band and the relative volume deformation potentials
a(°1c) � a(°15v) in these semiconductors are listed in Table 3.1.

As pointed out earlier, only the relative volume deformation potentials
a(°1c) � a(°15v) between the conduction and valence bands are measured in
an optical experiment under hydrostatic stress. In cases where the absolute
deformation potentials for the conduction band are known [3.31] one finds
that the °1 conduction band deformation potential is typically about ten times
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Table 3.1. Deformation potentials for the conduction and valence band extrema in di-
amond and zinc-blende semiconductors (in eV). a denotes the volume deformation po-
tential for the lowest energy °1c conduction band minimum or the highest energy °15v
valence band maximum (zinc-blende notation). b and d are the shear deformation poten-
tials for the °15v valence band maximum. •d and •u denote deformation potentials at
zone boundaries. Most of the data are taken from [3.30]

Si ≈ 5a 8.77a �10 �2.2 �5.1
Ge �12.3b 16.3b �12 �2.3 �5.0
GaP 13 �9.3 �1.8 �4.5
GaAs 6.5a 14.5b �8.6 �9 �2.0 �5.4
GaSb �8.3 �1.8 �4.6
InP �7 �6.4 �2.0 �5.0
InAs �6.0 �1.8 �3.6
InSb �7.7 �2.0 �5.0
ZnS �4.0 �0.62 �3.7
ZnSe �5.4 �1.2 �4.3
ZnTe �5.8 �1.8 �4.6
CdTe �3.4 �1.2 �5.4

a[100] valleys;

tigation of L-valley spliting in GaAs. Solid State Commun. 61, 799–805 (1987)

b[111] valleys, D.N. Mirlin, V.F. Sapega, I.Ya. Karlik, R. Katilius: Hot luminescence inves-

•d •u a(°1c) a(°1c � a(°15v)) b d

larger than that of the °15 (or °25′) valence bands. The relative volume deformation
potentials of the conduction and valence bands at the zone center in diamond-
and zinc-blende-type semiconductors can be calculated quite easily within the
tight-binding approximation. This is left as an exercise (Problem 3.9). How-
ever, the calculation of the absolute deformation potentials is not trivial [3.32].

One thing to notice about He�LA is the explicit and implicit dependence of
its matrix element on q. From (3.22) the LA phonon displacement ‰R is pro-
portional to ˆ� 1

2 . Since ˆ is linear with q for acoustic phonons (in the limit of
long wavelength) and He�LA depends on q · ‰R in (3.21), He�LA varies explic-
itly with q as q

1
2 . On the other hand, in (3.22) ‰R is expressed in terms of the

phonon creation and annihilation operators, whose matrix elements depend
on the phonon occupation number. The probability that a phonon state with
energy �ˆ is excited at a temperature T is known as its occupation number.
Phonons are bosons and their phonon occupation number Nph(�ˆ) is given by
the Bose–Einstein distribution function

Nph(�ˆ) � {exp[�ˆ/(kBT)] � 1}�1,

where kB is the Boltzmann constant. The magnitudes squared of the matrix
elements of the phonon creation and annihilation operators are Nph(�ˆ) � 1
and Nph(�ˆ), respectively. For kBT � �ˆ, Nph(�ˆ) ≈ kBT/(�ˆ) � 1. As a
result, the phonon occupation term in the matrix element (squared) of He�LA
depends on q as q�1. Hence, the explicit and implicit dependences of the ma-
trix element (squared) of He�LA on q cancel each other. These results will
be used in Chap. 5 in calculating the mobility of electrons as a function of
temperature.
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3.3.2 Electron–Acoustic-Phonon Interaction at Degenerate Bands

In the previous section we concentrated on LA phonons because they al-
ways produce a change in the volume of the crystal which affects all energy
bands. One can easily prove this based on the matrix-element theorem (see
Sect. 2.3.4). A volume dilation does not change the symmetry of the crystal
so the Hamiltonian in (3.21) must belong to the identity representation. When
acting on an electronic band at the zone center (i. e., °), He�LA must con-
tain a term belonging to the °1 representation. If the electron symmetry is
°i, then °i ⊗ °1 � °i and therefore the matrix element of 〈°i |He�LA |°i 〉
is nonzero. Compared to their dilation component the shear components of
LA phonons are usually less important. On the other hand transverse acoustic
(TA) phonons contain only shear waves. To first order, a shear strain does not
affect the energy of a nondegenerate band in a cubic crystal. Shear strains,
however, lower the symmetry of a cubic crystal. As a result, the most impor-
tant effect of a shear strain on a cubic crystal is to lift some of the degener-
acy of energy bands at high symmetry points of the Brillouin zone. Again the
matrix-element theorem can be applied to predict whether a particular shear
strain of symmetry, say °s, will split the degeneracy of a state of symmetry
°i. In this section we will consider the effect of strain and acoustic phonons
on two important cases of degenerate bands in diamond- and zinc-blende-type
semiconductors. These are the degenerate heavy and light hole bands and the
degenerate conduction band minima in Si and Ge.

a) Degenerate Heavy and Light Hole Bands at °°

In the previous section we showed that any strain tensor in a zinc-blende crys-
tal can be decomposed into three separate irreducible tensors transforming as
°1, °3, and °4. This result suggests that we require three deformation poten-
tials to describe the effect of a general strain on a general band extremum
at °. In the case of the degenerate °15 valence bands, it is convenient to re-
gard these six (including spin) bands as transforming like the eigenstates of
a J � 3/2 and a J � 1/2 angular momentum operator (see Sect. 2.6.2). The
hole–strain interaction Hamiltonian can be derived by symmetrizing the an-
gular momentum operator J through multiplication by the appropriate com-
ponents of the strain tensor (method of invariants). The procedure for doing
this can be derived from group theory and has been described in detail by
Kane [3.33] and by Pikus and Bir [3.34, 35]. The Pikus and Bir effective strain
Hamiltonian for the J � 3/2 valence bands in the zinc-blende semiconductors
is given by (see also the discussion in Problem 3.8)

HPB �a(exx � eyy � ezz) � b
[
(J2

x� J2/3)exx � c.p.
]

�
2d√

3

(
1
2

(JxJy � JyJx)exy � c.p.
)

,
(3.23)

where a, b, and d are the three deformation potentials corresponding to
strain tensors with symmetries °1, °3, and °4, respectively, and c.p. stands for
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cyclic permutation. It is no coincidence that HPB is very similar to the Kohn–
Luttinger Hamiltonian in (2.70). After all, both of them have been deduced
based on the symmetry of the zinc-blende crystal, and the strain tensor eij has
the same symmetry as kikj or ∇i∇j.

The deformation potentials b and d determine the splitting of the four-fold
degenerate J � 3/2 valence bands at ° under [100] and [111] uniaxial stress,
respectively. Although (3.23) has been derived for a static uniform strain, it is
reasonable to assume that this Hamiltonian and the deformation potentials are
valid also for long-wavelength acoustic phonons. By applying static uniaxial
stress to the diamond- and zinc-blende-type semiconductors listed in Table 3.1,
their shear deformation potentials can be determined. In particular, it can be
shown (see Problem 3.8) that the splittings ‰E of the J � 3/2 valence bands
under a uniaxial compressive stress of magnitude X along the [100] or [111]
directions are given by

‰E �

{
2b(S11 � S12)X, [100] stress,
(1/

√
3)dS44X, [111] stress,

(3.24a)
(3.24b)

where S11, S12 and S44 are components of the fourth-rank compliance tensor
Sijkl, which relates the strain tensor eij to the stress tensor Xkl. The definitions
of the stress tensor and of the compliance tensor can be found in Problem 3.2.
The shear deformation potentials (in the absence of spin–orbit interaction) can
be calculated within the tight-binding approximation as shown in Problems
3.10–13.

b) Degenerate Conduction Band Minima along ¢ in Si and at L in Ge

The second example of the interaction between phonons and degenerate elec-
tron bands is that of the degenerate conduction band minima in Si and Ge. In
general, we expect that a shear strain will deform a crystal and lift some of the
degeneracies in the conduction band as in the case of the degenerate valence
bands discussed in the previous section. For example, Fig. 2.10 shows that
the lowest conduction band minimum in Si occurs at a point [kx0, 0, 0] along
the [100] direction of the Brillouin zone. The symmetry of that band in the
group of the wave vector k along the [100] direction is ¢1. While this state is
nondegenerate for a given k, there are five other k vectors (in the [100], [010],
[010], [001] and [001] directions) which are equivalent to the [100] wave vector
by symmetry, so that the ¢1 conduction band minimum is six-fold degenerate
as a result of degeneracy in reciprocal space. A uniaxial stress applied along
the [100] direction will make the [100] and [100] directions different from the
remaining four equivalent directions. Thus, from symmetry arguments one ex-
pects that a [100]-oriented uniaxial stress will split the six equivalent conduc-
tion band minima in Si into a doublet and a quadruplet. On the other hand
a uniaxial stress applied along the [111] direction will affect all six minima in
the same way and leave the degeneracy unchanged.

To derive the strain Hamiltonian we have to consider the symmetries of
the strain tensor, and the wave function of the band and of the equivalent
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wave vectors k. For example, in the case of Si, the wave function of the con-
duction band has symmetry ¢1 while the six equivalent k vectors form a six-
fold reducible representation. If the wave function of the band for each given
k is nondegenerate, the form of the strain Hamiltonian is much simpler. Since
this is the case for the conduction band minima in both Si and Ge, this is the
only case we will consider here. Treatment of the more difficult case of de-
generate bands can be found in, for example, the article by Kane [3.33]. The
strain Hamiltonian for the nondegenerate band was first derived by Herring
and Vogt [3.37] by generalizing the definition of the volume deformation po-
tential in (3.20) into

‰Enk �

6∑
j�1

•jej, (3.25)

where the •j are the deformation potentials and the ej are the components of
the strain tensor. To simplify the notation this second-rank strain tensor has
been contracted into a six-component array (see Problem 3.3 for a discussion
of this contracted notation). In a general crystal without considering symme-
try, six deformation potentials are required to describe the strain-induced en-
ergy shift of a nondegenerate electronic state at a point k. This number is
greatly reduced by symmetry considerations. For example, the strain tensor of
a diamond crystal can be decomposed into three tensors belonging to the irre-
ducible representations °1(°�

1 ), °12(°�
3 ) and °25′(°�

5 ) (Tables 2.5 and 2.7; note
that because of the inversion symmetry of the diamond lattice, all its second-
rank tensors must be even under the inversion operation). As a result, we
need no more than three deformation potentials to describe the strain-induced
energy shift of a given nondegenerate electronic state in the diamond crystal.
The number is further reduced to two for k pointing along high symmetry di-
rections such as [100] and [111]. As pointed out in Sect. 3.3.1 and in Problem
3.4, the traceless strain tensors with °3 and °4 symmetries in the zinc-blende
crystal correspond to the shear components of the strains produced by uni-
axial stress applied along the [100] and [111] directions, respectively. Since all
the equivalent [100] valleys in Si appear symmetrical with respect to a [111]
uniaxial stress, their degeneracy cannot be split by such a stress. On the other
hand, a [100] stress will split the [100] valley from the [010] and [001] val-
leys. As a result, only two deformation potentials are required to describe the
strain effect on the [100] conduction valleys in Si. Herring and Vogt [3.37] have
expressed this result as a strain Hamiltonian of the form

HHV � •d(Tr{e}) � •u(k̂ · e · k̂), (3.26)

where Tr{e} is the trace of the strain tensor e, and k̂ is a unit vector along the
direction of one of the equivalent [100] conduction band minima in reciprocal
space. In (3.26) •u is a shear deformation potential associated with a uniaxial
strain along the [100] direction and •d � •u is the volume deformation poten-
tial (the reader is urged to verify this). Sometimes the deformation potentials
•d and •u are also denoted by E1 and E2 following the notation introduced
by Brooks [3.38].
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It is straightforward to show that the above arguments for Si can also be
applied to derive a strain Hamiltonian for the L6 conduction band minima
in Ge which occur along the four equivalent [111], [111], [111], and [111] di-
rections. In this case a [001] uniaxial stress will not split the equivalent [111]
valleys just as a [111] uniaxial strain will not split the [100] valleys. Instead a
[111] stress will split the [111] valley (which will form a singlet) from the other
three valleys, which remain degenerate (triplet). The result can be expressed
in terms of a strain Hamiltonian similar to HHV in (3.26). However, the shear
deformation potential •u is now the shear deformation potential for a [111]
uniaxial strain rather than a [100] strain (readers should check this also) and
k̂ is a unit vector along one of the equivalent [111] directions.

Table 3.2 summarizes the relationship between the deformation potentials
•j and the deformation potentials •d and •u in cubic semiconductors for k
along high-symmetry directions. For equivalent valleys along the [110] direc-
tions, we note that three deformation potentials (•d, •u, and •p) are required.
The proof of this result, which does not follow from (3.26), is left as an exer-
cise in Problem 3.14. The values of the deformation potentials for the conduc-
tion band valleys in Si and Ge are given in Table 3.1. The electron–acoustic-
phonon interaction Hamiltonians for Si and Ge are obtained by substituting
(3.18), the strain tensor associated with an acoustic phonon, into (3.26).

Table 3.2. Relation between the deformation potentials •j and the deformation potentials
•d , and•u •p in cubic semiconductors at high symmetry points [3.37]

•1 •d � •u •d � (1/3)•u •d � •u � (1/2)•p

•2 •d •d � (1/3)•u •d � •u � (1/2)•p

•3 •d •d � (1/3)•u •d � •u � •p

•4 0 (1/3)•u 0
•5 0 (1/3)•u 0
•6 0 (1/3)•u (1/2)•p

Direction of k : 100 111 110

3.3.3 Piezoelectric Electron–Acoustic-Phonon Interaction

In noncentrosymmetric crystals, a stress can induce a macroscopic electric po-
larization field E. This phenomenon is known as the piezoelectric effect [Ref.
3.39, p. 110]. This phenomenon can also be described as a strain inducing an
electric field. The induced field will be proportional to the strain provided it
is small. Since the strain tensor e has rank two and the induced electric field
is a vector (or tensor of rank one) this constant of proportionality can be ex-
pressed as a third-rank electromechanical tensor em. In a medium with dielec-
tric constant Â∞ the strain-induced field can be expressed as

E � (�4)
(em · e)

Â∞

(
1

4Â0

)
. (3.27)
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This result for a static strain can be extended to the case of an oscillating
strain field associated with long-wavelength acoustic phonons. If q and ‰R
[defined in (3.17)] are, respectively, the wave vector and atomic displacements
associated with the acoustic phonon, the strain tensor corresponding to the
acoustic phonon is iq‰R from (3.15a). Substituting this result into (3.27) we
obtain the sinusoidal macroscopic piezoelectric field induced by an acoustic
phonon:

Epe � (4)iem · q‰R
4Â0Â∞

. (3.28)

The longitudinal component of this electric field can be expressed in terms of
a scalar piezoelectric potential ˇpe

ˇpe � �q · Epe/(iq2). (3.29)

In the presence of this potential, the energy of an electron will be changed
by �| e |ˇpe, therefore the piezoelectric electron–phonon Hamiltonian can be
written as

Hpe � �| e |ˇpe � (4)
| e |

4Â0q2Â∞
q · em · (q‰R). (3.30)

The form of the electromechanical tensors in crystals with the zinc-blende
and wurtzite structure can be determined by symmetry (see Problem 3.15).
Using (3.30), explicit expressions for Hpe can be deduced for any acous-
tic phonons. As an example, the calculation of Hpe for acoustic phonons in
wurtzite crystals is left as an exercise (see Problem 3.16 and paper by Ma-
han and Hopfield [3.40]). If we compare the deformation-potential electron–
acoustic-phonon interaction in (3.21) with the piezoelectric electron–acoustic-
phonon interaction in (3.30), we notice that (3.30) contains an additional
(1/q) dependence. This extra term arises from the Coulomb interaction in the
piezoelectric electron–acoustic-phonon interaction. As a result, Hpe becomes
stronger for small q or long-wavelength acoustic phonons. This is why Hpe is
said to be a long-range interaction while the deformation potential interaction
is a short-range interaction: the Fourier transform of a function of long range
in q is of short range in r and vice versa.

The values of electromechanical tensor components in tetrahedrally co-
ordinated semiconductors can be estimated within empirical models such as
the tight-binding model. We will not discuss these calculations here and in-
terested readers should consult [3.41, 42]. Instead, we will list the values of
electromechanical tensor components for some typical semiconductors in Ta-
ble 3.3. Note that the more-ionic wurtzite semiconductors such as ZnO, CdS,
and CdSe have electromechanical tensor components that are larger and also
different in sign from those of the zinc-blende semiconductors.

3.3.4 Electron–Optical-Phonon Deformation Potential Interactions

In crystals with two or more atoms per unit cell, a long-wavelength optical
phonon involves relative displacements of atoms within the primitive unit cell.



132 3. Vibrational Properties of Semiconductors, and Electron-Phonon Interactions

Table 3.3. Values of the nonzero and linearly independent components of the electrome-
chanical tensor in some zinc-blende and wurtzite-type (labeled as W) semiconductors
[4.43, 44]. Note that the electromechanical tensor is defined in terms of the polariza-
tion. The cgs unit for polarization is statcoulomb/cm2. The corresponding SI unit is
Coulomb/m2. The unit of the electromechanical tensor components in this table is 104

statcoulomb/cm2. One statcoulomb/cm2 is equal to 1/(3 × 105) Coulomb/m2

AlSb 2.04
AlAs 6.7

GaP �3.0
GaAs 4.8
GaSb 3.78
InP 1.2
InAs 1.38
InSb 2.13
ZnS 5.1
ZnSe 1.35
ZnTe 0.81
CdTe 1.02
ZnO(W) 33 �4.8 �9.3
CdS(W) 14.7 �7.5 �6.3
CdSe(W) 10.4 �4.8 �4.14

Semiconductor (em)14 (em)33 (em)31 (em)15

Unlike acoustic phonons, a long-wavelength optical phonon does not involve a
macroscopic strain of the crystal, since there is no macroscopic distortion of the
lattice. Instead, optical phonons can be regarded as “microscopic distortions”
within the primitive unit cell. Optical phonons can change the energy of an elec-
tronic band in two ways, similar to the acoustic phonons. In nonpolar crystals
optical phonons alter the electronic energies by changing the bond lengths and/or
the bond angles. This electron–optical-phonon interaction is the analog of the de-
formation potential interaction of acoustic phonons and is known accordingly as
the deformation-potential electron–optical-phonon interaction. In polar crystals
a long-wavelength longitudinal optical (LO) phonon involves uniform displace-
ments of the charged atoms within the primitive cell. Such relative displacement
of oppositely charged atoms generates a macroscopic electric field. This electric
field can then interact with electrons in a way similar to the piezoelectric electric
field of acoustic phonons. This electron–longitudinal-optical-phonon interaction
is known as the Fröhlich interaction. In this section we will first consider the
deformation-potential interaction.

Letusdefinethedistancebetweenthetwoatomsinsidetheprimitiveunitcellof
a diamond- or zinc-blende-type semiconductor as a0 and the relative displacement
between these two atoms associated with a zone-center optical phonon as u. As in
thecaseof theacousticphonons,wewilldefineaphenomenologicalopticalphonon
deformation potential to describe the electron–optical-phonon interaction:

He�OP � Dn, k(u/a0), (3.31)

where Dn, k is now the optical phonon deformation potential for the energy
band indexed by n and k. Since this deformation potential interaction does
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not depend on the phonon wave vector it is also a short-range interaction.
In zinc-blende-type (or diamond-type) semiconductors the optical phonon dis-
placement u has symmetry °4 (°25′ for diamond structure), so the matrix ele-
ment of (3.31) between two nondegenerate s-like °1 (or °2′) conduction band
states is zero. Thus there is no deformation-potential interaction between the
lowest conduction band electrons and optical phonons in direct bandgap semi-
conductors such as GaAs and InP. The case of indirect bandgap semiconduc-
tors like Si or Ge is more complicated and will be discussed below together
with the interaction between optical phonons and the p-like valence bands in
diamond- and zinc-blende-type semiconductors.

In some crystals, macroscopic strains are symmetry compatible with dis-
placements of atoms involved in zone-center optical phonons. In such crystals
an optical phonon may be described in terms of an internal strain [3.45, 46].
For example, the optical phonons in diamond- and zinc-blende-type semicon-
ductors can be represented by a relative displacement of the two atoms within
the primitive cell along the [111] body diagonal. (Although a macroscopic
[111] shear strain will also produce such relative displacement of the atoms
within the primitive cell, this displacement is not uniquely defined by the strain
tensor, see Problem 3.11.) In such cases the quantity 2u/a0 is known as the
internal strain (see Problem 3.13) and it is possible to deduce the electron–
optical phonon interaction by considering the effect of a [111] uniaxial stress.
For example, if the spin–orbit couplings in the valence bands of diamond- and
zinc-blende-type semiconductors are neglected, the optical phonon deforma-
tion potentials for the p-like valence band (usually denoted by d0) can be
related to that of the splitting of the valence bands under a [111] uniaxial
stress. The calculation of d0 within the tight-binding approximation is left as
an exercise (Problem 3.12), see [3.30] for more details. For a more general
discussion of the calculation of the optical-phonon deformation potentials in
tetrahedrally bonded semiconductors, readers are referred to [3.47].

There are relatively few experimental techniques capable of determining the
optical-phonon deformation potentials in semiconductors. The value of d0 in Ge
and GaAs has been measured to be 36 and 41 eV, respectively, by Raman scat-
tering [3.48]. Other methods available for estimating d0 are based on the temper-
ature dependence of the hole mobilities in p-type samples and of the linewidth
of the direct optical transition from the split-off valence band to the conduc-
tion band. These measurements involve phenomena to be discussed in Chaps.
5–7. Typically one finds that d0 is of the order of 40 eV in most tetrahedrally
coordinated semiconductors (see experimental values compiled in [3.47]).

3.3.5 Fröhlich Interaction

In a polar or partly ionic crystal with two atoms per unit cell, the long-
wavelength longitudinal optical (LO) phonon can induce an oscillating macro-
scopic polarization, leading to an electric field ELO, see, e.g. [Ref. 3.9, p. 86])

ELO � �FuLO, (3.32)
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where

F � �
[
4NÌˆ2

LO(Â�1
∞ � Â�1

0 )
]1/2

(4Â0)�1/2. (3.33)

In (3.32, 33) the phonon amplitude uLO is defined as the displacement of the
positive ion relative to the negative ion, N is the number of unit cells per unit
volume of the crystal, Ì is the reduced mass of the primitive cell defined by

Ì�1 � M�1
1 � M�1

2 , (3.34)

M1 and M2 are the masses of the two atoms inside the primitive cell, ˆLO
is the LO phonon frequency, and Â∞ and Â0 are, respectively, the high- and
low-frequency dielectric constants. We will delay the derivation of (3.33) until
Chap. 6, when we study the effect of long-wavelength transverse optical (TO)
phonons on the infrared optical properties of semiconductors. This effect is
due to the fact that the TO phonons associated with the LO phonons in polar
crystals produce transverse electric dipole moments which couple to photons.

The longitudinal field in (3.32) can be expressed in terms of a scalar poten-
tial ˇLO in the same way as for the piezoelectric acoustic phonons in (3.29):

ˇLO � (F/iq)uLO. (3.35)

The interaction between an electron of charge �| e | and this macroscopic
Coulomb potential is known as the Fröhlich interaction. The Hamiltonian for
this interaction is given by the simple expression

HFr � (�e)ˇLO � (ieF/q)uLO. (3.36)

When combined with an expression for the displacement uLO analogous to
(3.22),

uLO � (�/2NÌˆLO)1/2{c�
q exp[i(q · r � ˆLOt)] � c.c.

}
, (3.37)

the Fröhlich Hamiltonian can be written as

HFr �
∑

q
(iCF/q)

{
c�

q exp[i(q · r � ˆLOt)] � c.c.
}

(3.38)

where the coefficient CF is given by

CF � e

[
2

(4Â )
�ˆLO

NV
(Â�1

∞ � Â�1
0 0)

]1/2
–1/2 . (3.39)

Notice the change in the sign of the complex conjugate terms inside the two
brackets in (3.37) and (3.38). This is necessary to ensure that the Fröhlich
Hamiltonian is Hermitian.

While the deformation potentials for optical phonons and acoustic
phonons are difficult to calculate, the Fröhlich interaction can be calculated
in terms of macroscopic parameters such as Â∞ and Â0. Note that the Fröhlich
interaction depends on the phonon wave vector as q�1. Hence it diverges, in
principle, as q decreases to zero. This is not possible in intraband electron–
LO-phonon scattering because the LO phonon frequency is nonzero even at
q � 0. Energy and momentum conservation prevents electrons from undergo-
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Table 3.4. Summary of electron–phonon interactions in Si and GaAs. DP and PZ stand
for deformation potential and piezoelectric interactions, respectively. Symbols in paren-
theses represent the commonly used notations for these interactions

TA DP (•u) DP (b, d) PZ DP (b, d), PZ
LA DP (•d, •u) DP (av, b, d) DP (ac), PZ DP (av, b, d), PZ

TO DP (d0) DP (d0)
LO DP (d0) Fröhlich DP (d0), Fröhlich

Phonon Si GaAs

Conduction Valence Conduction Valence

ing intraband scattering via q ≡ 0 optical phonons. Nevertheless, depending on
the electron band dispersion, q can be quite small, and this scattering mecha-
nism can dominate at temperatures where a significant number of LO phonons
are excited (i. e., kBT ≥ �ˆLO).

From the above discussion we see that there are many different ways
for electrons to interact with long-wavelength phonons. Table 3.4 summarizes
these different kinds of interactions in a representative polar (GaAs) and non-
polar (Si) semiconductor for electrons at either the lowest conduction band or
the top valence bands. Note that while a TA phonon involves only shear strain
and no volume dilation, an LA phonon can produce both.

3.3.6 Interaction Between Electrons and Large-Wavevector Phonons:
Intervalley Electron–Phonon Interaction

So far we have considered the interaction between electrons and zone-center
phonons. Interactions between electrons and zone-edge or near zone-edge
phonons has been found to play an important role in optical absorption at
indirect energy gaps and in phenomena involving hot electrons (Chap. 5). For
example, a zone-edge phonon can scatter an electron from a band minimum
at the zone center to a band minimum at the zone edge. This kind of electron–
phonon scattering is known as intervalley scattering. In Chap. 5 we will show
that intervalley scattering is responsible for the Gunn effect [5.33]. For indirect
bandgap semiconductors, such as Si, where the conduction band minimum oc-
curs at a point either inside the Brillouin zone or at the zone edge, there are
several equivalent conduction band valleys. In these cases electrons can be
scattered from one valley to another via a large wave-vector phonon.

There are several qualitative differences between the interaction of elec-
trons with zone-center phonons and with zone-edge phonons. Zone-edge
phonons cannot generate long-range electric fields [remember the q�1 depen-
dence in (3.35)] so they have no analog of the Fröhlich or piezoelectric in-
teraction. Intervalley electron–phonon interactions are always short-range and
usually approximately independent of phonon wave vector. Whereas the en-
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ergy difference between zone-center acoustic and optical phonon modes can
be quite large, this difference may be insignificant for zone-edge phonons. We
can express the intervalley electron-phonon Hamiltonian as

Hiv � ebq ·
�He

�R
u, (3.40)

where e, u, q, and b respresent, respectively, the phonon polarization vector,
amplitude, wave vector, and branch number. In practice, this Hamiltonian is
often expressed in terms of its matrix element between two electronic states:

Diju � 〈ni, ki |Hiv | nj, kj〉, (3.41)

with Dij known as the intervalley deformation potential. i and j denote, respec-
tively, the initial and final valleys in the scattering, n and k are the electron
band index and wave vector, respectively. The electron wave vectors ki and
kj are related to q by wave vector conservation: kj � ki � q. Notice that in
(3.41) the intervalley deformation potential has the dimension of energy per
unit length instead of energy. Table 3.5 lists intervalley deformation potentials
(in units of eV/Å) of some zinc-blende semiconductors calculated by Zollner
et al. [3.49].

Often more than one zone-edge phonon can participate in intervalley scat-
tering. Possible selection rules can be deduced from group theory. For exam-
ple, in scattering an electron from the °1c valley to the L1c valley in GaAs,
the LA and LO phonons at the L point of the Brillouin zone are allowed be-
cause they both have L1 symmetry. On the other hand, the transverse phonons
at the L point have L3 symmetry and are not allowed. Intervalley scattering
plays an important role in determining the mobility of electrons in indirect
bandgap semiconductors such as Si, in the relaxation of hot electrons in a di-
rect bandgap semiconductor like GaAs, and in the optical absorption at indi-
rect bandgaps. However, most of these phenomena involve scattering of elec-
trons by several different phonon modes so it is difficult to deduce the values
of the symmetry-allowed intervalley deformation potentials for the individual
zone-edge phonons. The determination of intervalley deformation potentials
from experiments will be made clear in Chap. 5 and 6, where these phenom-
ena are discussed.

Table 3.5. Calculated intervalley deformation potentials for the conduction bands in a few
representative zinc-blende semiconductors (in eV/A) . (From [3.49])

GaP 1.5 0 0 1.2 1.2 1.0
GaAs 0 4.1 4.7 0 4.1 0.6
GaSb 0 4.5 2.5 0 2.8 2.7
InP 2.3 0 0 3.7 1.6 3.0
InAs 3.2 0 0 2.8 2.5 1.4
InSb 0 4.9 3.3 0 4.3 1.1

°–X1 °–X3 °–L

Semiconductor LA LO LA LO LA LO

°
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PROBLEMS

3.1 Symmetry of Zone-Center Phonons in Cu2O
Figure 3.12 shows the crystal structure of cuprite (Cu2O), which was one of
the earliest minerals known to be a semiconductor. There are two molecules,
i. e., six atoms, in the unit cell. The space group is O4

h. This is a nonsym-
morphic group which is homomorphic to the point group Oh. The crystal has
inversion symmetry with respect to the copper atoms. When considering the
point group symmetry it is more convenient to take an oxygen atom as the ori-
gin. The point group symmetry is clearly tetrahedral in this case. With the oxy-
gen atom as the origin, the inversion operation has to be followed by a trans-
lation of the crystal by (a/2) [1, 1, 1], where a is the size of the unit cube. Thus
the factor group of Cu2O is isomorphic to the factor group of Si except for
the fact that the inversion operation in Si has to be followed by (a/4) [1, 1, 1].
There are ten classes in the group. Five of them do not involve the inversion
operation while the other five do. Since there are six atoms per primitive unit
cell we expect fifteen optical phonon branches and three acoustic branches.

a) The permutation of the six atoms in the primitive unit cell of Cu2O by
its symmetry operations defines a representation G. Determine the characters
of G. This can be done by counting the number of atoms which are left un-
changed by the symmetry operations of the group since each unchanged atom
will contribute one to the trace of the transformation matrix.

b) Using the character table for the irreducible representations of the group
of ° in the diamond structure (Table 2.16) show that G can be decomposed
into the direct sum of these irreducible representations: G � 2°�

1 ⊕ °�
1 ⊕

°�
5 .

c) Show, by combining G with the °�
4 representation (that of a vector), that

the 18 zone-center phonon modes in Cu2O have the symmetries °�
1 ⊕ °�

3 ⊕
3°�

4 ⊕°�
5 ⊕°�

5 . Of the three sets of triply degenerate °�
4 phonons, one set cor-

responds to the acoustic phonons while the other two are the infrared-active
optical modes. The °�

5 mode is Raman-active (see Chap. 7 for a discussion
of Raman scattering). Optical phonons which are neither infrared-active nor

O–2

Cu+

Fig. 3.12. Crystal structure of Cu2O (cuprite).
(From [3.50])
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Raman-active are said to be silent. The °�
1 and °�

3 modes in Cu2O are exam-
ples of silent modes.

3.2 Stress Tensor
In (3.15a) the strain tensor eij was defined. Strain can be induced in a solid
by the application of stress. Stress can be defined as the force per unit area
applied to a face of an elementary cube within a solid. Since both the direc-
tion of the force and orientation of the face to which the force is applied are
important, it takes nine components to specify the stress completely: F(X)x,
F(Y)x, F(Z)x, . . . , F(Z)z. Here F(X)y denotes a force F per unit area ap-
plied along the x axis to a face whose normal is along the y axis. It is under-
stood that these forces are applied in pairs so that a force F(X)y will be bal-
anced by another force �F(X)y, producing no acceleration of a solid in equi-
librium. In addition, the off-diagonal components are equal: F(X)y � F(Y)x,
F(X)z � F(Z)x, and F(Y)z � F(Z)y, so that there is also no net torque. As
a result of these restrictions the stress components form a symmetric second-
rank tensor X, known as the stress tensor, defined by Xyz � F(Y)z and so
on.

a) Show that a hydrostatic pressure P is specified by the diagonal stress tensor

X �

⎛⎝ �P 0 0
0 �P 0
0 0 �P

⎞⎠ .

Note that our sign convention for stress is that tensile stresses are positive
while compressive stresses are negative.

b) Show that a tensile uniaxial stress X applied along the [100] direction is
represented by the tensor

X �

⎛⎝ X 0 0
0 0 0
0 0 0

⎞⎠ .

c) Show that a tensile uniaxial stress X applied along the [111] direction is
represented by the tensor

X � (X/3)

⎛⎝ 1 1 1
1 1 1
1 1 1

⎞⎠ .

3.3 Elastic Compliance Tensor in Diamond- and Zinc-Blende-Type Crystals
In linear elasticity theory the strain induced in a medium is proportional to the
applied stress. The constants of proportionality can be expressed as a fourth-
rank tensor known as the compliance tensor (Sijkl), which is defined by

eij �
∑

SijklXkl.
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Using the symmetry operations of a zinc-blende crystal, show that the nonzero
and linearly independent components of the compliance tensor of a zinc-
blende crystal are

Sxxxx � Syyyy � Szzzz,

Sxxyy � Sxxzz � Syyzz � Syyxx � Szzxx � Szzyy,

Sxyxy � Syxyx � Sxzxz � Szxzx � Syzyz � Szyzy.

Since both the strain and stress tensors are symmetric tensors, each can be
described by six matrix elements rather than nine. One often finds in the lit-
erature a contracted notation in which the strain and stress tensors are rep-
resented by a six-component array [Ref. 3.39, p. 134]. For example the strain
tensor is written as

e � (e1, e2, e3, e4, e5, e6).

The numbering of 1 to 6 in this six-dimensional array is related to the 3×3
matrix by the convention

e �

⎛⎝ e1 e6/2 e5/2
e6/2 e2 e4/2
e5/2 e4/2 e3

⎞⎠ .

One advantage of this contracted notation is that fourth-rank tensors, such as
the compliance tensor, can be expressed as a 6×6 matrix. For example, Sijkl in
a zinc-blende-type crystal has the compact form⎛⎜⎜⎜⎜⎜⎝

S11 S12 S12 0 0 0
S12 S11 S12 0 0 0
S12 S12 S11 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 S44

⎞⎟⎟⎟⎟⎟⎠ .

with Smn � 2Sijkl when either m or n � 4, 5 or 6.
Smn � 4Sijkl when both m and n � 4, 5 or 6.

3.4 Strain Tensors for Hydrostatic and Uniaxial Stresses
a) A hydrostatic pressure P is applied to a zinc-blende crystal of volume V.
Show that the fractional change in volume is given by

‰V
V

� �3P(S11 � 2S12).

The negative sign implies that the volume decreases for P � 0. The bulk mod-
ulus of a medium is defined as B � �dP/d(lnV), so for a zinc-blende crystal

B � [3(S11 � 2S12)]�1.
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b) A tensile uniaxial stress X is applied along the [100] axis of a zinc-blende-
type crystal. Show that the resultant strain tensor is equal to⎛⎝ S11X 0 0

0 S12X 0
0 0 S12X

⎞⎠
and that this matrix can be expressed as the sum of a diagonal matrix and a
traceless shear strain tensor

[(S11 � 2S12)X/3]

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ � [(S11 � S12)X/3]

⎛⎝ 2 0 0
0 �1 0
0 0 �1

⎞⎠ .

Notice that the fractional change in volume of the crystal is equal to (S11 �
2S12)X under this uniaxial stress.

c) Show that the strain tensor corresponding to a tensile uniaxial stress applied
along the [111] direction of a zinc-blende-type crystal is given by

X
3

⎛⎝ S11 � 2S12 S44/2 S44/2
S44/2 S11 � 2S12 S44/2
S44/2 S44/2 S11 � 2S12

⎞⎠
Decompose this tensor into the sum of a multiple of a unit tensor and a trace-
less tensor as in part (b). Show that the fractional volume change is also equal
to (S11 � 2S12)X under a [111] stress.

d) Determine the strain tensor for a uniaxial stress applied along the [110]
direction of a zinc-blende-type crystal.

3.5 Elastic Stiffness Tensor
In Problem 3.3 the second-rank strain tensor was expressed in terms of the
stress tensor via a fourth-rank compliance tensor. Inversely, the stress tensor
can be expressed in terms of the strain tensor by another fourth-rank tensor
Cijkl known as the stiffness tensor:

Xij �
∑
k, l

Cijklekl.

Show that in zinc-blende-type crystals the stiffness tensor, when written in the
compact form introduced in Problem 3.3, is given by [Ref. 3.39, p. 140]⎛⎜⎜⎜⎜⎜⎝

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎞⎟⎟⎟⎟⎟⎠ ,

where C44 � (1/S44), C11�C12 � (S11�S12)�1, and C11�2C12 � (S11�2S12)�1.
Table 3.6 lists the stiffness constants of some semiconductors.
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Table 3.6a. Stiffness constants C11, C12, and C44 in some diamond- and zinc-blende-type
semiconductor (in 1012 dyne/cm2). [Note that stiffness constants and pressure have the
same units: dyne/cm2 (cgs units) or pascal (abbreviated as Pa in SI units). 10 dyne/cm�2

is equal to 1011 Pa or 100 GPa (Gigapascal)]. Reproduced from Madelung et al. [3.43].
The values in italics are theoretical values. See A.F. Wright, Elastic Properties of zinc-
blende and wurtzite AlN, GaN, and InN. J. Appl. Phys. 82, 2833 (1997)

C 10.76 1.25 5.76
Si 1.66 0.639 0.796
Ge 1.285 0.483 0.680
AlN 3.04 1.6 1.93
GaN 2.93 1.59 1.55
GaP 1.412 0.625 0.705
GaAs 1.181 0.532 0.594
GaSb 0.885 0.404 0.433
InN 1.87 1.25 0.86
InP 1.022 0.576 0.46
InAs 0.833 0.453 0.396
InSb 0.672 0.367 0.302
ZnS 1.046 0.653 0.461
ZnSe 0.81 0.488 0.441
ZnTe 0.713 0.407 0.312
CdTe 0.535 0.368 0.199

Semiconductor C11 C12 C44

Table 3.6b. Stiffness constants C11, C12, C13, C33, C44, and C66 in some wurtzite-type semi-
conductors (units in 1012 dynes/cm2).

AlN 1.49 3.89
GaN 1.45 3.98
InN 1.04 1.82
CdS 0.533 0.937 0.163
CdSe 0.452 0.836 0.145

Semiconductor C12 C33 C66

4.11 0.99 1.25
3.9 1.06 1.05
1.90 1.21 0.1
0.858 0.462 0.149
0.74 0.393 0.132

C11 C13 C44

3.6 Elastic Waves in Zinc-Blende-Type Crystals
Let u be the displacement induced by an elastic wave traveling in a contin-
uum. The equation governing u as a function of time t is obtained from New-
ton’s equation of motion:

Ú
�2u
�t2 � ∇ · X,

where Ú is the density of the crystal and X the stress tensor.

a) Use the results of Problem 3.5 to express the stress tensor in terms of the
strain tensor. Next, by using the definition of the strain tensor e � ∇u, show
that the wave equations governing the propagation of elastic waves in a zinc-



142 3. Vibrational Properties of Semiconductors, and Electron-Phonon Interactions

blende-type crystal are

Ú
�2ux

�t2 � C11
�2ux

�x2 � C44

(
�2ux

�y2 �
�2ux

�z2

)
� (C12 � C44)

(
�2uy

�x�y
�

�2uz

�x�z

)
,

Ú
�2uy

�t2 � C11
�2uy

�y2 � C44

(
�2uy

�x2 �
�2uy

�z2

)
� (C12 � C44)

(
�2ux

�x�y
�

�2uz

�y�z

)
,

Ú
�2uz

�t2 � C11
�2uz

�z2 � C44

(
�2uz

�x2 �
�2uz

�y2

)
� (C12 � C44)

(
�2uy

�z�y
�

�2ux

�x�z

)
,

b) Assume that a longitudinal (sound) wave propagating along the [100] axis
is represented by a solution to the above wave equations of the form ux �
u0 exp[i(kx � ˆt)] and uy � uz � 0, where k and ˆ are, respectively, the wave
vector and frequency of the acoustic wave. Show that the resultant sound wave
has a velocity ˘l � ˆ/k � (C11/Ú)1/2. Repeat this calculation for a transverse
shear wave propagating along the [100] direction by assuming a solution of
the form uy � u0 exp[i(kx � ˆt)], ux � uz � 0; and show that the transverse
wave has a velocity ˘t � (C44/Ú)1/2.

c) Repeat the calculations in (b) for waves propagating along the [111] direc-
tion and show that ˘l � [(C11 � 2C12 � 4C44)/3Ú]1/2 and ˘t � [(C11 � C12 �
C44)/3Ú]1/2.

d) For waves propagating along the [110] direction, the transverse waves po-
larized along the [001] and [110] directions have different velocities. Show that
the elastic waves have the following velocities along the [110] direction:

˘l � [(C11 � C12 � 2C44)/2Ú]1/2;
˘t � (C44/Ú)1/2 when polarized along [001] and
˘′

t � [(C11 � C12)/2Ú]1/2 when polarized along [110].

The two quantized transverse waves are referred to as the fast (usually ˘t) and
slow (usually ˘′

t) TA phonons.

e) Discuss the eigenvectors (and the corresponding symmetries) of the TA and
LA phonons propagating along [100], [111], and [110] directions of k-space.

3.7 Elastic Waves and Optical Phonons in Wurtzite-Type Crystals
The wurtzite crystal structure shown in Fig. 3.13 is a variation of the zinc-
blende structure. The bonding between nearest neighbors is also tetrahedral.
The relationship between these two structures can be visualized most easily by
viewing the zinc-blende structure along the [111] direction. In this direction
the zinc-blende structure can be considered as consisting of layers of atoms
arranged in regular hexagons stacked together. This hexagonal symmetry of
the atoms within the layers is, of course, the origin of the C3 rotational sym-
metry of the zinc-blende crystal. Within each layer the atoms are identical and
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A(Zn)

B(S)

B(Zn)

A(S)

A(Zn)

C axis

Fig. 3.13. Crystal structure
of ZnS in the wurtzite
form

the layers alternate between Zn and S. In the zinc-blende crystal the stacking
order of the Zn and S atomic layers is the sequence

A(S)A(Zn)B(S)B(Zn)C(S)C(Zn)A(S)A(Zn)B(S)B(Zn) . . .

as shown in Fig. 3.14a. If the stacking order of the layers is changed to

A(S)A(Zn)B(S)B(Zn)A(S)A(Zn)B(S)B(Zn)A(S)A(Zn) . . .

as shown in Fig. 3.14b the wurtzite structure is obtained. The arrangement
of the tetrahedra is said to be “staggered” in the zinc-blende structure and
“eclipsed” in the wurtzite structure. The reason for these descriptions becomes
clear in Fig. 3.14. The Bravais lattice of the wurtzite structure is hexagonal,
with the axis perpendicular to the hexagons usually labeled as the c axis.

A (Zn)

B (S)

B (Zn)

A (S)

C (Zn)

A (Zn)

C (S)

B (S)

A (Zn)

A (S)

B (Zn)

B (S)

A (Zn)
(a) (b)

Fig. 3.14. Arrangement of atoms (a) along the [111] direction of the zinc-blende struc-
ture, showing the “staggered” stacking sequence, and (b) along the c axis of the wurtzite
structure with the “eclipsed” geometry
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The cohesive energy of the wurtzite structure is very close to that of the zinc-
blende structure. As a result some group-II–VI semiconductors, such as ZnS and
CdS, and also GaN, can crystallize in both zinc-blende and wurtzite structures.
The space group of the wurtzite structure is C4

6˘. This group is nonsymmorphic
with a screw axis along the c axis. It is homomorphic to the point group C6˘.

As in the latter there are 12 symmetry operations which are divided into
6 classes. To enumerate these symmetry operations it is most convenient to choose
the origin in the center of one of the isosceles triangles formed by three neigh-
boring atoms, such as the point labeled O in the following figure. In this figure
the filled circles and the open circles represent the atoms in the two adjacent
planes of the hcp structure. We shall also choose as our coordinate system the x
and y axis as shown in the figure while the z-axis is along the c-axis. The reasons
for our choice will become clear when we consider the symmetry operations.

a) Show that the space group of wurtzite contains the following symmetry el-
ements divided into the following classes:

{E}: identity;
{C2}: a two-fold rotation about the c-axis followed by a translation by

the vector (0, 0, c/2). In other words this is a screw axis operation;
{C3, C�1

3 }: three-fold rotations about the c-axis;
{C6, C�1

6 }: a six-fold rotation about the c-axis followed by a translation by the
vector (0, 0, c/2). In other words this is also a screw axis operation.
Note that this operation is a symmetry operation mainly because
of our choice of the origin. This operation is not a symmetry oper-
ation if we simply choose the origin at one of the atoms;

{3Ûd}: reflection in the yz-plane plus two other reflection planes obtained
from the yz-plane by three-fold rotations about the c-axis;

{3Û′d}: reflection in the plane denoted by AA′ in the figure followed by
a translation by the vector (0, 0, c/2) plus two other glide planes
obtained from AA′ by three-fold rotations about the c-axis.

b) Using the symmetry properties of the wurtzite crystal show that its stiffness
tensor is given by (the c axis has been chosen to be the z axis)⎛⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 (C11 � C12)/2

⎞⎟⎟⎟⎟⎟⎠ .
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c) Show that the wave equations for acoustic phonons in wurtzite crystals are
given by

Ú
�2ux

�t2 � C11
�2ux

�x2 �
(C11 � C12)

2
�2ux

�y2 � C44
�2ux

�z2 �
(C11 � C12)

2
�2uy

�x�y

� (C13 � C44)
�2uz

�x�z
,

Ú
�2uy

�t2 � C11
�2uy

�y2 �
(C11 � C12)

2
�2uy

�x2 � C44
�2uy

�z2 �
(C11 � C12)

2
�2ux

�x�y

� (C13 � C44)
�2uz

�y�z
,

Ú
�2uz

�t2 � C33
�2uz

�z2 � C44

(
�2uz

�x2 �
�2uz

�y2

)
� (C13 � C44)

(
�2uy

�z�y
�

�2ux

�x�z

)
.

d) Assume a solution for an acoustic wave in the wurtzite crystal of the form

u(t) � (u1, u2, u3) exp[i(q · r � ˆt)].

Because of the hexagonal symmetry about the c axis, the y axis can be chosen,
without loss of generality, such that the wave vector q lies in the yz plane.
Show that the three components of the amplitudes satisfy the equations

Úˆ2u1 � 1
2 (C11 � C12)(q sin £)2u1 �C44(q cos £)2u1,

Úˆ2u2 � C11(q sin £)2u2 �C44(q cos £)2u2 �(C13 �C44)q2 sin £ cos £ u3,

Úˆ2u3 � C33(q cos £)2u3 �C44(q sin £)2u3 �(C13 �C44)q2 sin £ cos £ u2,

where £ is the angle between q and the c axis. Note that u1 is decoupled
from u2 and u3, so it is always possible to obtain a transverse acoustic wave
perpendicular to the plane containing q and the c axis. This TA wave is usually
referred to as TA2.

e) Show that for £ � 0˚ the longitudinal and transverse acoustic waves have
velocities ˘l � (C33/Ú)1/2 and ˘t � (C44/Ú)1/2, respectively.

f) For £ � 90˚ there are two transverse acoustic waves: one polarized along
the c axis (TA1) and one polarized along the x axis (TA2). Show that the
longitudinal wave has velocity ˘l � (C11/Ú)1/2 while the velocities for the two
transverse waves are (C44/Ú)1/2 for TA2 and [(C11 � C12)/2Ú]1/2 for TA1.

g) Assume a Bloch function has the form: æk(r) � uk(r) exp(ik ·r) where uk(r)
has the full periodicity of the lattice. By applying the symmetry operations of
wurtzite to this wave function show that the corresponding character table is
given by [see I. Rashba, Soviet Physics-Solid State, 1, 386 (1959)]:
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{E} {C2} {2C3} {2C6} {3Û ′
d} {3Ûd}

°1 1 Ë 1 Ë Ë 1
°2 1 Ë 1 �Ë �Ë �1
°3 1 �Ë 1 �Ë �Ë 1
°4 1 �Ë 1 �Ë Ë �1
°5 2 �2Ë �1 Ë 0 0
°6 2 2Ë �1 �Ë 0 0

where Ë � exp[ikzc/2] is the phase factor arising from the translation by the
vector (0, 0, c/2) in the screw and glide operations. In the particular case of
k � 0 then Ë � 1 and we find that the character table of the wurtzite structure
is identical to that of the point group C6v. In the following table we show the
correspondence between the two groups for this case:

Point Space {E} {C2} {2C3} {2C6} {3Û′
d} {3Ûd}

Group Group

A1 °1 1 1 1 1 1 1
A2 °2 1 1 1 1 �1 �1
B1 °3 1 �1 1 �1 �1 1
B2 °4 1 �1 1 �1 1 �1
E1 °5 2 �2 �1 1 0 0
E2 °6 2 2 �1 �1 0 0

h) Show that the long wavelength acoustic phonons in the wurtzite structure
have the symmetries: °1 (or A1) plus °5 (or E1). The direction of the dis-
placement of the atoms for the °1 representation is parallel to the c-axis while
the displacements are perpendicular to the c-axis for the two-fold degenerate
representation °5.

i) Show that the nine zone-center optical phonons in the wurtzite structure
belong to the irreducible representations: °1 ⊕ 2°3 ⊕ °5 ⊕ 2°6 or A1, 2B1, E1
and 2E2.

3.8 Pikus–Bir Strain Hamiltonians
There are two forms of the Pikus–Bir strain Hamiltonian [3.34, 35] for the
valence bands in the zinc-blende-type semiconductors (similar results can be
obtained for diamond-type crystals) depending on whether spin–orbit inter-
action is included or not. If spin–orbit interaction is neglected, the p-like °4
valence band wave functions labeled |X〉, |Y〉, and |Z〉 (Sect. 2.6.1) at the
zone center are degenerate. From symmetry we can show that a uniaxial stress
along the [100] direction will split the band labeled |X〉 off from the other two
bands. Thus a [100] stress will split the three bands into a singlet and a dou-
blet. If spin–orbit interaction is included and assumed to be much larger than
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any strain-induced effect, the valence bands at the zone center will be split
into a four-fold degenerate °8 (or J � 3/2) state and a doubly degenerate °7
(J � 1/2) state (Sect. 2.6.2). For a sufficiently small stress we can neglect the
effect of strain on the spin–orbit interaction. Since strain is not expected to
affect the spin degeneracy of the electrons (Kramers degeneracy) we expect
that a uniaxial stress will split the J � 3/2 states into two doublets. The strain
Hamiltonian HPB in (3.23) is valid in this limit of large spin-orbit interaction
and care should be exercised in using it to analyze experimental results. For
theoretical considerations, one may want to simplify the problem by “turning
off” the spin–orbit interaction. In this case the total angular momentum op-
erator J in (3.23) can be replaced by the orbital angular momentum operator
L. However, the deformation potentials b and d should also be changed to
b∗ and d∗ since the expression for the strain-induced splitting will be differ-
ent in the two cases. In Problems 3.11 and 3.12 we will perform theoretical
calculations of b∗ and d∗.

a) Use the results of Problem 3.4 to show that the Pikus–Bir strain Hamilto-
nian (3.23) reduces to

HPB(X) � a(S11 � 2S12)X � b(S11 � S12)X[J2
x � (J2/3)]

for a stress X applied along the [100] direction.

b) Show similarly that the strain Hamiltonian is given by

HPB(X) � a(S11 � 2S12)X � (dS44X/3
√

3)[(JxJy � JyJx) � c.p.]

for a stress X applied along the [111] axis.

c) Use the result of parts (a) and (b) to show that the four-fold degenerate
J � 3/2 valence bands will be split into two doubly degenerate bands with the
splitting ‰E given by

‰E �

{
2b(S11 � S12)X, [100] stress,

(d/
√

3)S44X, [111] stress.

d) Let us rewrite the Pikus–Bir strain Hamiltonian in the absence of spin–orbit
interaction as

HPB � a(exx � eyy � ezz) � 3b∗[(L2
x � L2/3)exx � c.p.]

�
6d∗
√

3

[
1
2

(LxLy � LyLx)exy � c.p.
]

,
(3.41)

where b∗ and d∗ are equal to b and d in the absence of spin–orbit interaction.
The prefactors of the b∗ and d∗ terms in (3.41) have been chosen to agree with
those in (3.77) of [3.36]. Show that the stress-induced splittings are given by

‰E �

{
3b∗(S11 � S12)X, [100] stress,

(
√

3/2)d∗S44X, [111] stress.
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Show that if the spin–orbit splitting implicit in the Hamiltonian of (3.23) does
not depend an strain, b � b∗ and d � d∗. Explain the origin of the difference
of those prefactors in (3.23) and (3.41). Now include spin–orbit coupling and
assume that the J � 3/2 and J � 1/2 states are separated by ¢. Use the Pikus–
Bir Hamiltonian involving L to calculate the stress-induced splitting of these
levels to second order in X for stress parallel to both [100] and [111].

3.9 Calculation of Volume Deformation Potentials
Using the Tight-Binding Model

The calculation of the absolute volume deformation potential of a band edge
in a finite solid is a difficult task because in a finite solid the band edges are
dependent on surface properties (for example, see discussion in [3.32]). This
difficulty does not appear when calculating the relative volume deformation
potentials between two bands, such as between an s-like antibonding conduc-
tion band and a p-like bonding valence band. In this case the deformation
potential can be calculated easily with the tight-binding model.

Assume that the zone-center °2′ conduction and °25′ valence band edges in
a diamond-type semiconductor are given by (2.84a) and (2.84b), respectively.
Furthermore, assume that the overlap parameters Vss and Vxx both depend
on the nearest neighbor distance d as d�2. Show that the relative deformation
potential ac � av is given by (�2/3)(|Vss | � |Vxx |). Use the empirical values
of Vss and Vxx for Si and Ge given in Table 2.26 to calculate the theoretical
values of ac � av for Si and Ge. Compare these values with the experimental
values for Si and Ge given in Table 3.1 under a(°1c) � a(°15v)

3.10 Calculation of the Shear Deformation Potential b∗

for the °15 Valence Bands Using the Tight-Binding Model
The shear deformation potentials b∗ and d∗ for the °15 (or °25′) valence bands
in zinc-blende (or diamond) type semiconductors can also be calculated using
the tight-binding model. This problem involves the calculation of the shear de-
formation potential b∗, leaving the calculation of d∗ to the next problem.

Assume a stress X is applied along the [100] crystallographic axis. Accord-
ing to Problem 3.4b, the strain induced in the crystal can be decomposed into
a multiple of a unit matrix plus a traceless matrix of the form

·

⎛⎝ 2 0 0
0 �1 0
0 0 �1

⎞⎠ ,

where · � (X/3)(S11 �S12). The effect of this shear strain is to lower the cubic
symmetry of the crystal to tetragonal symmetry by making the x direction in-
equivalent to the y and z directions. As a result, we expect that the originally
triply degenerate °15 wave functions |X〉, |Y〉, and |Z〉 will split into a doublet
and a singlet. To calculate this splitting it is necessary to evaluate the overlap
parameters Vxx and Vyy(� Vzz) in the presence of the shear strain.
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a) Suppose that the locations of the four nearest neighbors of an atom located
at the origin in the unstrained lattice are

d1 �(1, 1, 1)a/4;

d2 �(1, �1, �1)a/4;

d3 �(�1, 1, �1)a/4;

and

d4 �(�1, �1, 1)a/4.

Show that in the strained lattice these four nearest-neighbor locations are
changed to

d′
1 �(1 � 2·, 1 � ·, 1 � ·)a/4;

d′
2 �(1 � 2·, �1 � ·, �1 � ·)a/4;

d′
3 �(�1 � 2·, 1 � ·, �1 � ·)a/4;

and

d′
4 �(�1 � 2·, �1 � ·, 1 � ·)a/4.

Show that, to first order in ·, the bond lengths are unchanged by the strain
but the bond angles are changed.

b) Use the results of Problem 2.16 to show that the overlap parameters in the
strained lattice are

V′
xx �

4
3

VppÛ(1 � 4·) �
8
3

Vpp(1 � 2·)

and

V′
yy �

4
3

VppÛ(1 � 2·) �
8
3

Vpp(1 � ·).

c) Calculate the energy of the bonding orbitals with p-symmetry at zone-
center in the strained lattice. Show that the splitting between the doublet
with py and pz symmetries and the singlet with px symmetry is given by
�8·(VppÛ � Vpp).

d) By combining the result of part (c) with those of Problem 3.9d show that

b � �
8
9

(VppÛ � Vpp) � �
2
3

Vxy.

Substitute the values of Vxy for Si and Ge given in Table 2.26 into the above
expression to evaluate the theoretical values of b∗ for Si and Ge. You will find
that the calculated values are larger than the experimental values by about a
factor of two but the signs agree. The agreement between theory and exper-
iment can be improved by including an additional higher energy s orbital in
the tight-binding model (the resultant model is referred to as the sp3s∗ model).
See [3.30] for more details.
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3.11 Calculation of the Shear Deformation Potential d∗

for the °15 Valence Bands Using the Tight-Binding Model
The calculation of the shear deformation potential d∗ is complicated by the
following considerations.

Let us assume that a uniaxial stress is applied along the [111] axis of a
diamond or zinc-blende crystal. As shown in Problem 3.4c, the resultant strain
tensor can be decomposed into a multiple of a unit tensor and the traceless
shear strain tensor (of °15 symmetry)

·

⎛⎝ 0 1 1
1 0 1
1 1 0

⎞⎠ , where · � S44X/6.

This strain tensor describes a trigonal distortion of the cubic lattice along
the [111] direction. The symmetry of this distortion is the same as that of a dis-
placement of the two sublattices in the diamond or zinc-blende lattice along
the body diagonal. As a result, it is possible to “mix” these two types of dis-
tortions. The displacement of the two neighboring atoms in the diamond or
zinc-blende crystals along the body diagonal corresponds to the zone-center
(°15) optical phonon. A macroscopic °15 shear strain along the [111] direction
can, therefore, change the nearest-neighbor distance along the [111] direction
in addition to producing a trigonal distortion in the cubic lattice. To specify
the change in the nearest-neighbor distance it is necessary to define an inter-
nal strain parameters ˙ in terms of the relative displacement u between the
two sublattices. The internal strain parameter will be defined in Problem 3.13.
In this problem we will assume that the [111] stress does not produce an inter-
nal strain (i. e., ˙ � 0). The resultant deformation potential will be denoted by
d′ so as to distinguish it from the deformation potential d for the case when
the internal strain is not zero.

From symmetry considerations, it is clear that the effect of a [111] stress on
the p orbitals will be different from that of a [100] stress. While a [100] stress
makes the px orbital different from the py and pz orbitals, a [111] stress should
affect the three orbitals in exactly the same way. Instead, a [111] stress will
mix the three orbitals and produce a new set of three orbitals which should
be symmetrized according to the trigonal symmetry (C3v point group). Such a
set of three orthogonal and symmetrized orbitals is given by

|X1′〉 � [|X1〉 � |Y1〉]/
√

2,

|Y1′〉 � [|X1〉 � |Y1〉 � 2|Z1〉]/
√

6,

|Z1′〉 � [|X1〉 � |Y1〉 � |Z1〉]/
√

3.

Similarly symmetrized p orbitals are defined for the second atom within the
primitive cell. Under [111] stress the orbitals |Z1′〉 and |Z2′〉 which are parallel
to the stress direction (and of §1 symmetry) will split from the other two
sets of two orbitals (of §3 symmetry) which are perpendicular to the stress
direction.
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a) Show that under a [111] shear strain the locations of the four nearest neigh-
bors in the diamond and zinc-blende lattice are changed to

d′
1 �{(a/4) � (a·/2)}(1, 1, 1);

d′
2 �(a/4)(1 � 2·, �1, �1);

d′
3 �(a/4)(�1, 1 � 2·, �1);

d′
4 �(a/4)(�1, �1, 1 � 2·).

b) Based on the result of (a), show that the effects of the [111] stress are: (1)
to change the lengths of the nearest-neighbor distance by the amount (to first
order in ·)

(‰d1)/d1 � 2·;

(‰d2)/d2 � (‰d3)/d3 � (‰d4)/d4 � �2·/3

and (2) to change the orientations of the three bonds d2, d3, and d4. The
directional cosines of the bond d′

2 in the strained lattice are given by

d′
2 � {3[1 � (4·/3)]}�1/2(1 � 2·, �1, �1)

with similar results for d′
3 and d′

4.

c) Assuming that the overlap parameters VppÛ and Vpp both depend on bond
distance d as d�2, show that, to first order in ·, the [111] shear strain does not
change the matrix elements 〈X1 |�int |X2〉, 〈Y1 |�int |Y2〉, etc. On the other
hand (use the results of Problem 2.16), the matrix elements 〈X1 |�int |Y2〉,
〈X1 |�int |Z2〉, etc., in the strained lattice are all changed to

V′
xy � (�8·/9)(VppÛ � Vpp).

Thus a [111] shear strain couples the wave function |X1〉 with |Y2〉 and |Z2〉,
|Y1〉 with |X2〉 and |Z2〉, and so on. The new 6×6 matrix for the six p orbitals
of the two atoms within the primitive cell is now given by

X1 Ep1 � Ek 0 0 Vxx V′
xy V′

xy
Y1 0 Ep1 � Ek 0 V ′

xy Vxx V′
xy

Z1 0 0 Ep1 � Ek V′
xy V′

xy Vxx

X2 Vxx V′
xy V′

xy Ep2 � Ek 0 0
Y2 V′

xy Vxx V′
xy 0 Ep2 � Ek 0

Z2 V′
xy V′

xy Vxx 0 0 Ep2 � Ek

X Y Z X Y Z1 1 1 2 2 2

where Ep1 and Ep2 are the energies of the p orbitals of the two atoms in the
primitive cell.

d) Assume that the two atoms in the primitive cell are identical (thus the
results we will obtain from now on are only valid for the diamond structure)
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and diagonalize the 6×6 matrix in part (c) to obtain the eigenfunctions and
energies in the [111]-strained lattice. The more general results for the case
when the two atoms are different are given in [3.30].

Hint: Since the Hamiltonian is symmetric with respect to interchange of the
atoms in the primitive cell, define linear combinations of the wave functions

|X�〉 � [|X1〉 � |X2〉]/
√

2; |X�〉 � [|X1〉 � |X2〉]/
√

2,

|Y�〉 � [|Y1〉 � |Y2〉]/
√

2; |Y�〉 � [|Y1〉 � |Y2〉]/
√

2,

|Z�〉 � [|Z1〉 � |Z2〉]/
√

2; |Z�〉 � [|Z1〉 � |Z2〉]/
√

2.

Show that the 6×6 matrix decomposes into two 3×3 matrices:

Ep �Ek �Vxx V′
xy V′

xy 0 0 0
V′

xy Ep �Ek �Vxx V′
xy 0 0 0

V′
xy V′

xy Ep �Ek � Vxx 0 0 0
0 0 0 Ep �Ek �Vxx �V′

xy �V′
xy

0 0 0 �V′
xy Ep �Ek �Vxx �V′

xy
0 0 0 �V′

xy �V′
xy Ep �Ek �Vxx

X Y Z X Y Z� � � � � �

Note that the wave functions with the � (�) subscript are antisymmetric
(symmetric) under interchange of the two atoms inside the primitive cell so
they correspond to the antibonding (bonding) orbitals. The two resultant 3×3
matrices can be diagonalized by a transformation to two new sets of sym-
metrized wave functions, one for the bonding orbitals and one for the anti-
bonding orbitals. The set of eigenfunctions for the antibonding orbitals is given
by

|X ′
�〉 � [|X�〉 � |Y�〉]/

√
2,

|Y ′
�〉 � [|X�〉 � |Y�〉 � 2|Z�〉]/

√
6,

|Z′
�〉 � [|X�〉 � |Y�〉 � |Z�〉]/

√
3.

The corresponding energies are given by

〈Z′
�|�int |Z′

�〉 � Ep � Vxx � 2V′
xy

and

〈X ′
�|�int |X ′

�〉 � 〈Y ′
�|�int |Y ′

�〉 � Ep � Vxx � V′
xy.

The energies for the bonding orbitals are given by

〈Z′
�|�int |Z′

�〉 � Ep � Vxx � 2V′
xy

and

〈X ′
�|�int |X ′

�〉 � 〈Y ′
�|�int |Y ′

�〉 � Ep � Vxx � V′
xy.
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These results show that a [111] uniaxial stress splits both the antibonding (°15
conduction band) and bonding (°25′ valence band) orbitals into a doublet and
a singlet with an energy splitting equal to 3V′

xy.

e) Using the results in part (d) and in Problem 3.8d, show that the deforma-
tion potential d′ is given by

d′ � (8/35/2)(VppÛ � Vpp) � (2/33/2)Vxy

in the tight-binding model. The values of d′ obtained this way for Si and Ge
are, respectively, 2.9 eV and 2.6 eV. These theoretical values of d′ are not only
quite different but also have signs opposite to those of the experimental values
of d since we have neglected the internal strains, which are usually not equal
to zero in stressed crystals.

3.12 Calculation of the Optical Deformation Potential d0
for the °15 Valence Bands Using the Tight-Binding Model

As pointed out in Problem 3.11, a relative displacement u between the two
sublattice in the diamond and zinc-blende crystals corresponds to the zone-
center optical phonon with °15 symmetry. The deformation potential describ-
ing the electron–optical-phonon interaction is denoted by d0 and is defined
by

‰E111 �
d0u

a
,

where ‰E111 is the shift in energy of the singlet component ([|X〉 � |Y〉 �
|Z〉]/

√
3) of the p orbital induced by the sublattice displacement u. d0 can

also be calculated within the tight-binding model in a way very similar to that
adopted in Problem 3.11.

a) Assuming that the relative displacement of the two sublattices is given by
u � (a·/4)(1, 1, 1), show that the locations of the four nearest neighbors in the
diamond or zinc-blende lattice are changed to

d′
1 � (a/4)(1 � ·)(1, 1, 1);

d′
2 � (a/4)(1 � ·, �1 � ·, �1 � ·);

d′
3 � (a/4)(�1 � ·, 1 � ·, �1 � ·);

and

d′
4 � (a/4)(�1 � ·, �1 � ·, 1 � ·).

b) Based on the result of (a), show that the effects of the relative displace-
ment u are: (1) to change the lengths of the nearest-neighbor distances by the
amount (to lowest order in ·)

(‰d1)/d1 � ·;

(‰d2)/d2 � (‰d3)/d3 � (‰d4)/d4 � �·/3
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and (2) to change the orientations of the three bonds d2, d3, and d4. The
directional cosines of the bond d′

2 are given by

d′
2 � {3[1 � (·/3)]}�1/2(1 � ·, �1 � ·, �1 � ·)

with similar results for d′
3 and d′

4.

c) As in the case of Problem 3.11c, show that, to first order in ·, the sub-
lattice displacement does not change the matrix elements 〈X1 |�int |X2〉,
〈Y1 |�int |Y2〉, etc. On the other hand the matrix elements 〈X1 |�int |Y2〉,
〈X1 |�int |Z2〉, etc., are all equal to V′

xy � (�16·/9)(VppÛ � Vpp). Set up the
6×6 matrix for calculating the energies of the p orbitals in the displaced sub-
lattices as in Problem 3.11.

d) Diagonalize the 6×6 matrix in part (c) and show that the splitting between
the doublet and singlet in the displaced sublattices is given by

‰E �
16·

3
(VppÛ � Vpp) � 4·Vxy.

The optical phonon deformation potential is then given by

d0 �
32

3
√

3
Vxy � 16d′.

Note that d0 is much larger than d′.

3.13 Internal Strain and the Deformation Potential d
In Problems 3.11 and 3.12 the tight-binding model is used to calculate the
deformation potentials for the diamond- and zinc-blende-type crystals in two
extreme cases. In Problem 3.11 the crystal is assumed to be a continuum and
the displacements of the atoms are described by the macroscopic strain ten-
sor. In Problem 3.12 the atomic structure of the crystal is taken into account.
The fact that the crystal is constructed from two sets of atoms located at two
sublattices suggests that one can displace the two sublattices relative to each
other in a way such that the symmetry of the primitive cell of the crystal is un-
changed. For the diamond and zinc-blende structures this is the case when the
two atoms within the primitive cell are displaced relative to each other along
the body diagonal of the fcc lattice. Such microscopic relative displacements
of the sublattices in a crystal cannot be described by the macroscopic strain
tensor and are known as an internal strain.

By definition internal strain can only occur in crystals with more than one
atom per primitive cell. The number of possible internal strain patterns for a
given crystal structure can be determined by group theory and crystal symme-
try [3.46]. In the diamond and zinc-blende structure the only possible internal
strain is the relative displacement of the two atoms in the primitive cell along
the [111] axis (or equivalent ones, e.g., [111]) described above. As noted in
Problem 3.12, this displacement pattern is identical to that of the zone-center
optical phonon in these structures. This is no coincidence. Anastassakis and
Cardona [3.46] have shown that internal strains can be regarded as “frozen”
Raman-active optical phonons.
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It was pointed out by Kleinman [3.45] that under a [111] strain the bond
length between the two atoms inside the primitive cell of Si is undetermined
due to the possibility of an internal strain. Assume the [111] strain is given by
the strain tensor

·

⎛⎝ 0 1 1
1 0 1
1 1 0

⎞⎠ .

The internal strain is specified by choosing one atom as the origin and describ-
ing the displacement u of its nearest neighbor atom at (a/4)(1, 1, 1) as

u � (�a·/2)(˙, ˙, ˙),

where ˙ is the internal strain parameter mentioned in Problem 3.11. For
˙ � 0, there is no internal strain and the change in the bond length is spec-
ified completely by the macroscopic strain tensor as in Problem 3.11. For
˙ � 1 the internal strain exactly cancels the change in the bond length in-
duced by the [111] strain so that the bond length in the strained crystal is un-
changed.

a) Show that for a [111] shear strain with an internal strain parameter ˙ the
shear deformation potential d is given by

d � d′ � (1/4)˙d0.

b) The value of ˙ has recently been deduced from experimental results for Si
(0.58), Ge (0.56) [3.51] and a few zinc-blende semiconductors such as GaAs
(0.65) [3.52]. Since d0 � 16d′ and the value of ˙ is fairly close to 1, the de-
formation potential d is determined mainly by d0. Calculate the value of d for
Si using the value of d0 obtained in Problem 3.12 and compare it with the
experimental value of d(�5.1 eV) in Table 3.1.

3.14 Stress Induced Splitting of [110] Valleys
Consider a nondegenerate electronic state with wave vector k‖[110] in a cu-
bic crystal. There are six equivalent valleys along the [110], [110], [101], [101],
[011], and [011] directions (it is not necessary to consider the six opposite di-
rections). Show from symmetry arguments that:

a) A [100] uniaxial strain will split these six valleys into a doublet {[011] and
[011] valleys} and a quadruplet {the remaining four valleys} (this splitting is
described by the shear deformation potential •u in Table 3.2);

b) A [111] uniaxial strain will split the six valleys into two triplets: {[110],
[011], and [101] valleys} and {[101], [110], and [011]} (this splitting is de-
scribed by the shear deformation potential •p in Table 3.2).

c) Explain, using group theory, why the deformation potentials •u given in
Table 3.2 are, in general, different for [100] and for [111] strain. Explain why
two different shear deformation potentials •u and •p are needed for k along
[110].
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3.15 Electromechanical Tensors
in Zinc-Blende- and Wurtzite-Type Semiconductors

a) Use the symmetry properties of the zinc-blende crystal described in Chap.
2 to show that the nonzero and linearly independent components of its elec-
tromechanical tensor em are

(em)14 � (em)25 � (em)36.

b) Use the symmetry properties of the wurtzite crystal described in Problem
3.7 to show that its electromechanical tensor has the form⎛⎝ 0 0 0 0 (em)15 0

0 0 0 (em)15 0 0
(em)31 (em)31 (em)33 0 0 0

⎞⎠ .

3.16 Piezoelectric Electron–Phonon Interactions
in Wurtzite-Type Semiconductors

a) Combine the results in Problems 3.7 and 3.15 to calculate the electric field
induced by a phonon displacement u, E � em · (∇u)/Â∞, for all three acoustic
modes. In particular show that for the TA1 and LA phonons E is given by

Ex � 0,

Ey � iq
[
(em)15 sin £ uz � (em)15 cos £ u⊥

]/
Â∞,

and

Ez � iq
[
(em)31 sin £ u⊥ � (em)33 cos £ uz

]/
Â∞,

where £ is the angle between the phonon wave vector q and the c axis of the
wurtzite crystal, uz is the projection of u on the c axis, and u⊥ is the compo-
nent of u perpendicular to the c axis.

b) Substituting the results of part (a) into (3.29) and (3.30), show that the
piezoelectric electron–phonon interaction in wurtzite crystals is given by [3.40]

Hpe � (4| e |/Â∞)[(em)15 sin £(uz sin £ � u⊥ cos £)

� (em)31 sin £ cos £ u⊥ � (em)33 cos2 £ uz].

3.17 Dependence of Phonons Frequencies on Volume:
Grüneisen Parameters

In the harmonic approximation, the phonon frequencies are independent of
strain. In nature, however, external strains result in small changes in the fre-
quencies of phonons (anharmonic effects). The simplest of these effects are
represented by the so-called mode Grüneisen parameters Áˆ � �d ln ˆ/d ln V,
where V is the crystal volume. Each phonon frequency has a specific mode
Grüneisen parameter Áˆ.

a) The Áˆ of optical phonons of tetrahedral semiconductors are ∼�1. Give a
qualitative explanation.
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b) The thermal expansion is a manifestation of anharmonicity. Derive
the following expression for the linear thermal expansion coefficient · �
(1/3)(d ln V/dT):

· � 〈Á〉C/3B, (3.42)

where C is the specific heat, B the bulk modulus (p. 131) and 〈Á〉 an average
Grüneisen parameter of all phonon frequencies.

c) The Áˆ of TA modes near the edge of the BZ is often negative [3.53].
Discuss the effect of a negative Áˆ on · [3.54].

3.18 Phonons in Selenium and Tellurium
Selenium and tellurium have three equal atoms per unit cell, hence 6 opti-
cal and 3 acoustic phonon branches. Discuss the eigenvectors of the optical
phonons at the center of the BZ, their symmetries and degeneracies [2.5].

3.19 Biaxial Strains
Nowadays there is much interest in the growth of epitaxial layers of one mate-
rial on a substrate of different lattice constant (see, for example, Section 1.2.5).
Depending on the lattice mismatch between the epilayer and the substrate, the
epilayer can experience either a tensile or compressive strain. The character-
istic of this strain is that the corresponding stress is two-dimensional and lies
within the plane of the epilayer. Such strain is known as a biaxial strain as
distinct from a unaxial strain.

Assume that an epilayer of diamond- or zincblende-type crystal is grown
epitaxially along the [001] axis on a substrate of similar crystal structure. The
difference in the two lattice constants is given by: ¢a � a0 � a where a and a0
are the lattice constants of the epilayer and substrate, respectively. Along the
[001] axis we can usually assume that there is no stress on the epilayer.

(a) Show that the strain tensor of the resultant biaxial strain is given by:⎛⎝ exx 0 0
0 eyy 0
0 0 ezz

⎞⎠ with exx � eyy � ¢a0/a0 and ezz � �
2C12

C11
exx

where C11 and C12 are the components of the fourth rank stiffness tensor
defined in Problem 3.5.

(b) Show that a biaxial strain is equivalent to a sum of two strains: (1) a hy-

drostatic strain described by the tensor:

⎛⎝ exx 0 0
0 exx 0
0 0 exx

⎞⎠ and (2) a uniaxial

strain along the [001] axis described by the tensor:

⎛⎝ 0 0 0
0 0 0
0 0 ezz � exx

⎞⎠.

Note that: if the biaxial strain is compressive then the hydrostatic strain is also
compressive. However, the corresponding uniaxial strain is tensile.
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S UMMARY

Although the atoms in semiconductors are not stationary, their motion is
so slow compared to that of electrons that they were regarded as static in
Chap. 2. In this chapter we have analyzed the motion of atoms in semi-
conductors in terms of simple harmonic oscillations. Instead of calculating
from first principles the force constants for these quantized oscillators or
phonons, we have studied models based on which these force constants
can be deduced from experimental results. The usefulness of these mod-
els is judged by the minimum number of parameters they require to de-
scribe experimental phonon dispersion curves. The more successful models
typically treat the interaction between the electrons and ions in a realistic
manner. The shell model assumes that the valence electrons are localized
in deformable shells surrounding the ions. Bond models regard the solid as
a very large molecule in which atoms are connected by bonds. Interactions
between atoms are expressed in terms of bond stretching and bond bending
force constants. In covalent semiconductors charges are known to pile up in
regions between adjacent atoms, giving rise to bond charges. So far, models
based on bond charges have been most successful in fitting experimental
results.

In this chapter we have also studied the different ways electrons can be
affected by phonons, i. e., electron–phonon interactions. These interactions
have a significant effect on the optical and transport properties of electrons
in semiconductors. We showed how long-wavelength acoustic phonons can
change the energy of electrons via their strain field. These interactions can
be described in terms of deformation potentials. Optical phonons can be
regarded as giving rise to “internal strain” and their interactions with elec-
trons can likewise be described by optical-phonon deformation potentials. In
polar semiconductors both long-wavelength acoustic and optical phonons
can generate electric fields through the charges associated with the mov-
ing ions. These fields can interact very strongly with electrons, giving rise
to piezoelectric electron–phonon interactions for acoustic phonons and the
Fröhlich interaction for optical phonons. Electrons located at band extrema
near or at zone boundaries can be scattered from one valley to another
equivalent valley via intervalley electron–phonon interactions.
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One reason why semiconductors are so useful for device applications is that
their electrical properties can be modified significantly by the incorporation
of small amounts of impurities or other kinds of defects. However, while one
type of defect can make a semiconductor useful for fabricating a device, an-
other type can have undesirable effects which render the device useless. The
quantity of defects necessary to change the properties of a semiconductor is
often considerably less than one defect atom per million host atoms.

As a result, our ability to control the defects in a semiconducting material
often determines whether it can be used in device applications. To control the
amount and nature of defects in a material typically involves developing a pro-
cess for growing a relatively defect-free sample. Then the desired amounts of
defects are introduced either during the growth process or after growth. There
is extensive literature devoted to the study of defects in semiconductors. It
would take more than a whole book to review all the properties of defects, so
in this chapter we will limit ourselves to the study of the electronic properties
of defects.

We shall begin by classifying the different kinds of defects found in semi-
conductors. Next we will separate defects into two broad categories. Impurities
whose electronic energies can be calculated by means of the “effective mass
approximation” are referred to as shallow impurities, while defects whose en-
ergies cannot be calculated with that approximation are known as deep cen-
ters. One method capable of calculating the energy levels of deep centers is
the Green’s function method. As simple illustrations of this method we will
study deep centers in tetrahedrally bonded semiconductors.

P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, Graduate Texts in Physics, 4th ed., 
DOI 10.1007/978-3-642-00710-1_4, © Springer-Verlag Berlin Heidelberg 2010 
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4.1 Classification of Defects

In general, defects are classified into point defects and line defects. As the
name implies, point defects usually involve isolated atoms in localized regions
of a host crystal. Line defects, on the other hand, involve rows of atoms, and
typical examples of line defects are dislocations. In addition to point and line
defects, there are defects which are composed of a small number of point de-
fects. These are referred to as complexes. Line defects are always detrimental
to devices. Hence semiconductor wafers used in fabricating devices have to
be as free of such defects as possible. The surface which terminates a three-
dimensional crystal can also be considered as a two-dimensional “defect”.
However, the electronic states introduced by such surfaces are usually called
“surface states” rather than defect states. In this chapter we shall not consider
surface states or dislocations. Instead we will concentrate on the properties of
point defects and complexes only, since they tend to determine the proper-
ties of semiconductor devices. For a brief discussion of surface states and their
energies see Sect. 8.3.

Point defects are often further classified into the following kinds with spe-
cial nomenclature and notations:

Vacancy: the vacancy created by a missing atom A is denoted by VA.
Interstitial: an atom A occupying an interstitial site is denoted by IA.
Substitutional: an atom C replacing a host atom A is denoted by CA.
Antisite: a special kind of substitutional defect in which a host atom B occu-

pies the site of another host atom A.
Frenkel defect pair: a complex VA–IA formed by an atom A displaced from a

lattice site to a nearby interstitial site.

Vacancies and antisite defects are intrinsic or native defects since they do not
involve foreign atoms. Their concentrations cannot be determined by chemical
analysis or mass spectrometry. Defects involving foreign atoms (i. e., impuri-
ties) are referred to as extrinsic defects.

Many important defects are electrically active. Defects which can con-
tribute free electrons to the host crystal are known as donors, while defects
which can contribute holes (i. e., remove free electrons) are known as accep-
tors. Examples of donors in Si are substitutional group-V atoms such as P,
As, and Sb or interstitial monovalent atoms such as Li and Na. The group-V
atoms have one more valence electron than the Si atoms they replace. Fur-
thermore, this extra electron is loosely bound to the group-V atom in Si so
that it can be easily excited into the conduction band of the host Si crystal.
Substitutional group-VI atoms such as S, Se, and Te in Si can contribute up to
two conduction electrons so they are known as double donors. Examples of
acceptors in Si are substitutional group-III atoms such as B, Al, Ga, and In.
Substitutional group-II atoms (such as Be and Zn) in Si are double acceptors.
When a substitutional impurity atom has the same valence as the host atom,
it is referred to as an isoelectronic or isovalent center. Examples of such cen-
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ters are CSi in Si and NP in GaP. As we will show later (Sect. 4.3.3), isovalent
centers can behave as donors or acceptors or remain electrically inactive.

A term which is commonly found in the literature but rarely defined is
deep center. In the past, some authors have used the term “deep centers”
to mean defects whose electronic levels are located near the middle of the
bandgap. Now we know that there are many defects with properties similar to
those of deep levels but whose energies are not near the center of the gap. As
a result, the term has been broadened to apply to any center which cannot be
classified as shallow! Thus, to understand deep centers we have to understand
first what shallow centers are. In the next section we shall study the properties
of shallow or hydrogenic impurities in semiconductors with the diamond and
zinc-blende structures. After that we shall study the properties of some deep
centers.

4.2 Shallow or Hydrogenic Impurities

Let us consider a substitutional donor atom such as PSi in Si. Compared to the
Si nucleus, the P nucleus has one extra positive charge, which is balanced by
the extra valence electron in the P atom as compared to the Si atom. The at-
tractive potential between this extra valence electron and the P nucleus is not
equal to that of an isolated P nucleus since the Coulomb potential of the P nu-
cleus in Si will be screened, not only by the core electrons of the P atom, but
also by the remaining four valence electrons of the P atom, and all the valence
electrons of neighboring Si atoms. This screening effect allows us to approx-
imate the attractive Coulomb potential seen by the extra valence electron in
P by the Coulomb potential of a proton screened by the valence electrons of
the Si host. Thus a P impurity in Si behaves effectively like a hydrogen atom
embedded in Si, except that the mass of the P nucleus is so much heavier
than the mass of the proton that we can assume it to be infinite. In addition,
the Coulomb attraction between the electron and the positive charge in this
“hydrogen-like” impurity is much weaker than the Coulomb attraction in the
hydrogen atom since it is strongly screened by the large number of valence
electrons in Si. As a result, the extra valence electron in the P atom is only
loosely bound to the P atom when the atom is embedded in Si. This loosely
bound electron can be ionized easily by thermal or electrical excitations. For
this reason P in Si is known as a donor and the extra valence electron which it
can “donate” to the Si conduction band is referred to as the donor electron. In
the case of an acceptor impurity atom (such as a B atom replacing a Si atom)
in Si, there is a deficiency of a valence electron when the acceptor bonds with
its four nearest-neighbor Si atoms. Instead of regarding an acceptor atom as
short of a valence electron, we think of it as possessing an extra hole which is
loosely bound to a negatively charged B nucleus with an infinite mass. While
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a donor atom can be compared with a hydrogen atom, an acceptor atom is
analogous to a positron bound to a negatively charged muon.

To calculate exactly the screened Coulomb potential between the donor
electron and the donor ion is very difficult, since it depends on the many-
body interactions between the electrons in the impurity atom with the valence
electrons of the host. One simple approach to circumventing this problem is to
assume that the positive charge on the donor ion is screened by the dielectric
constant of the host crystal. With this approximation the Coulomb potential
of the donor ion can be expressed as

VS � �
| e |

4Â0Â0r
, (4.1)

where Â0 is the dielectric constant of the host crystal. If we assume further
that the donor electron is not too localized near the donor ion then we can
use the static (i. e., zero-frequency) dielectric constant as Â0 in (4.1). More de-
tailed studies of the dielectric constants of semiconductors will be presented in
Chap. 6.

Since the donor electron is moving inside a semiconductor, its motion is
affected by the crystal potential in addition to the impurity potential (4.1).
The Schrödinger equation of the donor electron is given by

(H0 � U)æ(r) � Eæ(r), (4.2)

where H0 is the one-electron Hamiltonian of the perfect crystal, U is the po-
tential energy of the electron in the screened Coulomb potential VS

U � �| e |VS (4.3)

and æ(r) is the donor electron wave function. In principle, one way to solve
(4.2) is to expand æ(r) in terms of the Bloch functions „nk(r) of the per-
fect crystal, since they form a complete orthonormal set. This approach re-
quires extensive numerical calculations. Since the defect breaks down the
translational symmetry of the crystal we cannot take advantage of the Bloch
theorem to simplify the problem. The most common approach to solving (4.2)
is to utilize the effective mass approximation. This approximation makes use
of the known electronic band structure parameters, such as effective masses,
of the perfect crystal and is useful not only for calculating defect energy levels
but also for studying properties of electrons under any weak external pertur-
bation. We will make a digression to discuss this approximation in the next
section.

4.2.1 Effective Mass Approximation

There are two approaches to deriving the effective mass approximation. One
approach involves introducing the concept of Wannier functions. The other
utilizes Bloch functions only. The Wannier functions are Fourier transforms of
the Bloch functions, so the two approaches will eventually produce the same



4.2 Shallow or Hydrogenic Impurities 163

results. The Wannier function an(r ; Ri) is related to the Bloch function „nk(r)
by

an(r ; Ri) � N�1/2
∑

k

exp(�ik · Ri)„nk(r), (4.4a)

„nk(r) � N�1/2
∑
Ri

exp(ik · Ri)an(r; Ri), (4.4b)

where Ri is a lattice vector, n the band index, k the wave vector in the re-
duced zone scheme, and N the number of unit cells in the crystal. While Bloch
functions are indexed by the wave vectors in reciprocal lattice space, Wannier
functions are indexed by lattice vectors in real space. While Bloch functions are
more convenient for representing extended states in crystals, Wannier func-
tions are more appropriate for localized states. We note that Wannier func-
tions are similar to the Löwdin orbitals defined in (2.72) for the tight-binding
model (Sect. 2.7.2). For very localized electrons, one can think of Wannier
functions as atomic orbitals. In this chapter we will approach the problem of
defects by using Wannier functions. An excellent reference for this approach
is the classic text by Wannier himself [4.1]. An equally excellent reference
for the alternative approach based on Bloch functions is the review article
by Kohn [4.2].

Some of the properties of Wannier functions are summarized below

• an(r; Ri) is a function of r � Ri only. This can be easily shown by noting
that an(r; Ri) � an(r � s; Ri � s) for any vector s. From now on we will
represent an(r; Ri) as an(r � Ri).

• Wannier functions an(r � Ri) where Ri varies over all the lattice vectors
inside the crystal, form a complete and orthonormal set just like the Bloch
functions.

• Wannier functions are eigenfunctions of a “lattice vector operator” Rop
defined by

Ropan(r � Ri) � Rian(r � Ri). (4.5)

The effect of Rop on a wave function

æ(r) �
∑
n, k

An(k)„nk(r)

can be represented approximately as

Ropæ(r) ≈
∑
n, k

(
i

�

�k
An(k)

)
„nk(r). (4.6)

The proof of (4.6) involves expanding æ(r) first in terms of Bloch functions
and then in terms of Wannier functions:

æ(r) �
∑
n, k

An(k)„nk(r)

�
∑
n, k

An(k)
∑
Ri

(N�1/2) exp(ik · Ri) an(r � Ri). (4.7)
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Operating on both sides of (4.7) with Rop we obtain

Ropæ(r) �
∑
n, k

An(k)
∑
Ri

(N�1/2) exp(ik · Ri) Rian(r � Ri). (4.8)

Formula (4.8) can be rewritten as

Ropæ(r) �
∑
n, k

An(k)
∑
Ri

(N�1/2)
(

�i
�

�k

)
exp(ik · Ri) an(r � Ri) (4.9)

�
∑
n, k

(
�i

�

�k

)
An(k)„nk(r) �

∑
n, k

[(
�i

�

�k

)
An(k)

]
„nk(r). (4.10)

The summation over k on the right hand side of (4.10) can be approximated by
an integral over k in the limit that the crystal volume becomes infinite. After
integration, the first term on the right hand side of (4.10) involves

An(k2) „nk2 (r) � An(k1) „nk1
(r),

where k1 and k2 are two equivalent points on opposite surfaces of the Bril-
louin zone. Because of the periodicity of the Bloch functions An(k)„nk(r), this
term vanishes and we obtain (4.6) [4.1]. The ≈ sign in (4.6) is a reminder that
this equation is an approximation because the values of k are discrete. The
interpretation of (4.6) is as follows: the effect of operating with Rop on any
function æ(r) is equivalent to applying the operator (i�/�k) to the coefficients
An(k) of the expansion of æ(r) in terms of Bloch functions. One can show
that �k and Rop are conjugate operators just like momentum p and r in the
sense that

R ↔ (i�/�k) and k ↔ (�i�/�R). (4.11)

From now on we will drop the subscript op in Rop and, for simplicity, R will be
understood to represent both the lattice vector R and its operator Rop. One
should keep in mind that k and R are discrete variables while p and r are truly
continuous variables. The correspondences in (4.11) represent approximations
which are valid only under the various assumptions discussed above.

We will now utilize the result in (4.6) to simplify the Schrödinger equation
(4.2). Let us expand the wave function æ(r) in (4.2) as a linear combination
of Wannier functions:

æ(r) � N�1/2
∑
n, i

Cn(Ri) an(r � Ri), (4.12)

where n is again the band index and the Cn(Ri) are coefficients analogous to
An(k) in (4.7). Thus the Cn(Ri) can be regarded as the amplitudes of Wannier
functions. We will show later that they are also solutions to a wave equation,
so they are known as envelope wave functions. Let the eigenvalues of the
unperturbed Hamiltonian H0(r) in (4.2) be represented as Wn(k). Then (4.11)
allows us to convert Wn(k) into an operator on Wannier functions:

〈n, Ri |H0(r) |n′, Rj〉 ↔ ‰nn′‰ijWn(�i�/�R). (4.13)

where |n′, Rj〉 denotes the Wannier function an′(r � Rj) and the index for R
has been dropped, as in (4.11), to simplify the notation.
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To obtain the operator corresponding to U(r) in (4.2), we will assume that
U is a slowly varying function of r, so that the change in U within one lattice
constant (a0) is small compared with U, i. e.

a0 |∇U(r) | � U(r). (4.14)

The matrix elements of U between two Wannier functions are given by

〈n, Ri |U(r) |n′, Rj〉 �

∫
a∗n(r � Ri) U(r) an′(r � Rj) dr. (4.15)

Suppose r lies within the primitive cell indexed by the lattice vector R. Be-
cause U is a slowly varying function of r we can expand U about U(R) to just
the first order in ∇RU:

U(r) � U(R) � (r � R)∇RU(R). (4.16)

Substituting (4.16) into (4.15) we obtain

〈n, Ri |U(r) |n′, Rj〉 � U(R)‰nn′‰ij

� ∇U(R)
∫

a∗n(r � Ri)(r � R)an′(r � Rj)dr. (4.17)

Using the inequality (4.14), the second term in (4.17) can be neglected com-
pared with the first term, so that (4.17) reduces to

〈n, Ri |U(r) |n′, Rj〉 ≈ ‰nn′‰ijU(R). (4.18)

Combining (4.13) and (4.18) we obtain

〈n, Ri |H0 � U(r) |n′, Rj〉 ↔ ‰nn′‰ij[Wn(�i�/�R) � U(R)]. (4.19)

We should note that while the lattice vectors Ri on the left hand side are dis-
crete, at the right hand side of (4.19) they are treated as continuous variables.
To be exact (4.19) should be replaced by a set of difference equations [4.3].
Replacing (4.19) into (4.2) and using (4.12) we arrive at a very useful equa-
tion:

[Wn(�i�/�R) � U(R)]Cn(R) ≈ ECn(R). (4.20)

As an illustration of how to apply (4.20) to solve for the energies of a
donor electron, we will assume that the lowest conduction band for the semi-
conductor is isotropic, nondegenerate, and parabolic, with the band minimum
located at the zone center. Its energy is thus given by

Wn(k) � Ec(0) �
�2k2

2m∗ , (4.21)

where m∗ is the effective mass of this conduction band and Ec(0) the band
edge. Since we consider only one conduction band the band index n will be
dropped. We note that both Si and Ge do not satisfy these assumptions since
their conduction band minima are degenerate and do not occur at the zone
center. However, these assumptions are valid for many semiconductors with
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the zinc-blende structure, such as GaAs and InP. Substituting the expression
for Wn(k) in (4.21) into (4.20) we obtain[

�

(
�2

2m∗

)
�2

�R2 � U(R)

]
C(R) ≈ [E � Ec(0)]C(R), (4.22)

which is equivalent to the Schrödinger equation for a particle with effective
mass m∗ moving in a potential U. In other words, the net effect of the crys-
tal potential on the donor electron inside the crystal is to change the elec-
tron mass from the value in free space to the effective mass m∗ and also to
contribute the factor Â0 in (4.1). As a result this approach is known as the
effective mass approximation. We should remember that (4.22) enables only
the envelope function C(R) to be calculated. This envelope function has to
be multiplied by the Wannier function a(r � R) in order to arrive at the final
electron wave function æ(r).

The effective mass approximation will be used throughout this book in
calculating the transport and optical properties of electrons in semiconductors
(these topics will be covered in Chaps. 5 and 6, respectively). In order for this
approximation to be valid the perturbing potential must be weak (so that no
electrons are excited from one band to another) and slowly varying in space
(so that R can be regarded as continuous). In the next section we will apply it
to calculate the energies and wave functions of shallow donors.

4.2.2 Hydrogenic or Shallow Donors

By treating R as a continuous vector in real space rather than as a discrete
lattice vector (4.22) can be solved as a differential equation. Equation (4.2)
then essentially becomes the Schrödinger equation for a particle moving in
a Coulomb potential and the motion of the donor electron becomes equiv-
alent to that of the electron in the hydrogen atom. Donors whose electrons
can be described by the solutions of (4.22) are said to be hydrogenic or shal-
low. The solutions to the Schrödinger equation for the electron in the hydro-
gen atom are well known. They can be found in many textbooks on quan-
tum mechanics, hence we will not repeat them here. Instead we will state the
results.

• There are both discrete and continuous eigenvalues. The continuum states
of the donor electron are now the delocalized conducting states. Note that
in the vicinity of the bandgap these conducting states are not the same
as the conduction band states in the absence of the defect potential. Only
in the limit that U approaches zero does the donor electron energy E in
(4.22) approach the conduction band energy Ec and the wave functions of
the donor electron become equal to those of the nearest conduction band
electrons. The bound states of the donor electron are classified according
to their principal quantum number N, angular momentum L, and spin. In
atomic physics these bound states are denoted as 1s, 2s, 2p, etc. Similar
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notations are used to denote the bound states of shallow impurities. The
energies of these bound states are given by the Rydberg series:

E � Ec(0) � �R/N2 (N � 1, 2, 3, . . .) . (4.23)

R is the Rydberg constant for the donor electron and is related to the
Rydberg constant for the hydrogen atom [e4m0/(2�2)] by

R �

(
m∗

m0

) (
1
Â2

0

) (
e4m0

2�2

)
, (4.24)

1
(4Â )2

0

m0 being the free electron mass. A schematic diagram of some of the
bound states of a donor atom near a simple parabolic conduction band
is shown in Fig. 4.1.

• The extent of the bound-state electron wave functions in real space is mea-
sured in terms of a donor Bohr radius a∗. It is related to the Bohr radius
in the hydrogen atom [�2/(m0e2)] by

a∗ �

(
Â0m0

m∗

) (
�2

m0e2

)
. (4.25)(4Â )0

In particular, the wave function of the 1s state is given by

C1s(R) �

(
1


)1/2 (
1
a∗

)3/2

exp
(

�R
a∗

)
. (4.26)

In order that R can be considered continuous rather than discrete, we re-
quire a∗ 	 a0. This condition also ensures that it is meaningful to approx-
imate the entire conduction band structure by an effective mass m∗. The
reason is that the extent in R of an envelope function C(R) corresponding
to the electron wave function æ(r) scales as a∗. On the other hand, the ex-
tent in k-space of Bloch functions (which are indexed by k) to be summed
over in the reciprocal space to construct æ(r) can be small. This is because
of an “uncertainty principle” for two variables that are related by Fourier

Eg

1S
2S, 2P
3S, 3P, 3D

E ∞

k

Conduction

Valence

Fig. 4.1. Schematic diagram of the n�1,
2, and 3 bound states of a shallow donor
electron near a nondegenerate and para-
bolic conduction band (corresponding to
n � ∞). Eg is the bandgap
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transformations. For example, if a function f (t) of the time t has an ex-
tent ¢t, its Fourier transform g(ˆ) is a function of angular frequency ˆ
and has an extent ¢ˆ. Then there is a relation between ¢t and ¢ˆ given
by ¢t¢ˆ ≈ 1. Similarly, we expect that ¢k · ¢R ≈ |¢k |a∗ ≈ 1 or |¢k | ≤
(1/a∗). Hence only conduction band states over a small region of reciprocal
space around the band minimum contribute to the defect wave function if
a∗ 	 a0. This justifies the expansion of the conduction band energy in
(4.21) to only the quadratic term, which involves the effective mass. We
note that while the binding energy of the donor electron decreases as
(1/N2), the extent of its wave function increases as N2. It is therefore pos-
sible for the higher excited states of a donor electron to be well described
by the hydrogenic model even if this is not true for its 1s ground state.

• The relative errors in eigenvalues introduced by using the effective mass
approximation are of the order of [a0/(2a∗)]2, where a0, the lattice con-
stant of the semiconductor, is usually a few angstroms. To obtain an order
of magnitude estimate for a∗ and R, let us assume some typical values for
Â0 and m∗ in semiconductors, such as Â0 ≈ 10 and m∗ ≈ 0.1m0. Substituting
these values into (4.24) and (4.25) gives an a∗ of about 50 Å and a binding
energy of about 14 meV for a donor electron. Since a∗, as shown by this
estimate, is generally much larger than a0, donor electrons in most semi-
conductors with conduction band minimum at °, can be described rather
well by the effective mass approximation.

As pointed out earlier, the function C(R) obtained by solving (4.22) is
only the envelope function and not the complete wave function. It has to be
multiplied by the Wannier functions to obtain the complete wave function.
We shall now consider the donor electron wave function æ(r) in the limit of
a very large Bohr radius a∗. We first express the wave function in terms of
Bloch functions. Starting with

æ(r) �
∑

i

C(Ri)a(r � Ri) (4.27)

we substitute (4.4a) for a(r � Ri) and obtain

æ(r) �
∑

i

C(Ri)N�1/2
∑

k

exp(�ik · Ri)„k(r). (4.28)

The Bloch function „k(r) can be expressed in terms of the periodic functions
uk(r) using (2.6):

„k(r) � exp(ik · r)uk(r). (4.29)

Substituting (4.29) into (4.28) we arrive at

æ(r) �
∑

i

C(Ri)N�1/2
∑

k

exp[�ik · (Ri � r)]uk(r). (4.30)

As pointed out earlier, when a∗ is large, the summation over k in (4.30) can be
restricted to a small region near the band minimum at the zone center. This
allows us to assume the periodic function uk(r) to be independent of k and
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equal to the function at k � 0. Equation (4.30) can therefore be approximated
by

æ(r) ≈ u0(r)
∑

i

C(Ri)N�1/2
∑

k

exp[�ik · (Ri � r)]

� u0(r)
∑

i

C(Ri)‰(Ri � r) (4.31)

� u0(r)C(r). (4.32)

It should be remembered that (4.32) is only an approximate result. However, it
provides a very simple picture of the defect wave function. The wave function
of a conduction electron is constructed by multiplying u0, a periodic function,
with a plane wave. To construct the donor electron wave function, u0 is multi-
plied by the envelope function C(r) which is localized around the defect. Fig-
ure 4.2 shows a schematic wave function for a donor electron in the 1s state.

In Table 4.1 we list the binding energies for the 1s level of donors in sev-
eral zinc-blende-type semiconductors calculated with (4.23) and (4.24) using
the experimentally measured values of m∗ and Â0. These theoretical binding

C(r)

u0(r)

r
–a–2a a 2a

Ψ(r)

Fig. 4.2. Schematic diagram of
a shallow donor electron wave
function in real space. u0(r) is
the Bloch function part and
C(r) is the envelope function;
a is the distance between the
lattice sites

Table 4.1. Experimental binding energies of the 1s state of shallow donors in some zinc-
blende-type semiconductors (from [Ref. 4.4, p. 224]) compared with the predictions of (4.24)

GaAs 5.72 SiGa(5.84); GeGa(5.88)
SAs(5.87); SeAs(5.79)

InP 7.14 7.14

InSb 0.6 TeSb(0.6)

CdTe 11.6 InCd(14); AlCd(14)

ZnSe 25.7 AlZn(26.3); GaZn(27.9)
FSe(29.3); ClSe(26.9)
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energies are compared with the experimental values for some of the common
donors in each semiconductor. This table shows that the effective mass approx-
imation can predict the shallow donor binding energies rather well. However,
there are also a large number of donors whose binding energies do not agree
with the prediction of the effective mass theory. For example, Cu in GaAs
is a donor with a binding energy of 70 meV. Centers whose binding energy
cannot be calculated by the effective mass approximation are referred to as
deep centers. They will be discussed in greater detail in the following sections.

Given an impurity atom in a host semiconductor, it is not easy to predict
whether it will form a shallow or a deep center. The following guidelines have
been found to be helpful, although not foolproof.

• If the “core” (the atom minus the outer valence electrons) of the impurity
atom resembles the core of the host atom (allowing, of course, for the
difference of one nuclear charge), the impurity levels tend to be shallow.
For example, consider GeGa in GaAs. The core of the Ge atom is almost
identical to the core of the Ga atom, so GeGa is a shallow donor in GaAs.

• If the impurity atom induces a strongly localized potential, such as a strain
field around the impurity atom, the result is most likely a deep center. The
part of a defect potential which is localized within one unit cell is known
as a central cell correction. Central cell corrections violate the assumption
that the defect potential is slowly varying in space in the effective mass
approximation and therefore may result in deep centers. In some cases a
defect may have both shallow and deep bound states. For example, elec-
trons with s-symmetry envelope wave functions are more likely to behave
like deep centers than electrons with p-symmetry envelope functions. The
reason is that envelope functions with s-symmetry have nonzero probabil-
ity densities at the origin (or the defect) and therefore are more sensitive
to central cell corrections.

The above guidelines are not infallible principles. The problem is that the
properties of defects in semiconductors depend on a number of factors, in-
cluding the charge state of the defect, the band structure, and so on. An il-
lustration of the difficulty in predicting whether an impurity will be shallow
or deep is the case of Si in GaAs. While SiGa in GaAs is a perfect example
of a hydrogenic donor, Si can also be incorporated as a deep donor known
as the DX center, with completely different properties in GaAlAs alloys con-
taining more than about 25 % of Al [4.5] or in pure GaAs under pressure
[4.6]. It is now generally accepted that while the lowest electronic levels of
SiGa in GaAs are hydrogenic there is an excited deep state which is resonant
with the conduction band. Alloying with Al or applying hydrostatic pressure
changes the conduction band structure and lowers the resonant deep state into
the bandgap. When this deep state becomes lower in energy than the shallow
levels a shallow-to-deep instability occurs. It has been suggested [4.7, 8] that
this resonant level of Si in GaAs behaves like a deep center because of a large
lattice relaxation associated with the impurity. The predicted configuration of
this lattice distortion has not yet been confirmed experimentally. However,
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the theoretical models are now believed to be correct based on the verfica-
tions of their other predictions [See Appendix on DX Centers in A4.1 of Ap-
pendix C].

4.2.3 Donors Associated with Anisotropic Conduction Bands

Some of the most important semiconductors, such as Si, Ge, GaP, and even
diamond, have their lowest conduction band minima near the zone bound-
aries. In these semiconductors the conduction band effective mass is strongly
anisotropic. In addition, the conduction valleys are degenerate as a result of
their symmetry. For example, we see in Fig. 2.10 that there are six conduction
band minima in Si occurring in the six equivalent [100] directions about 85 %
out towards the zone boundary. The impurity central cell corrections produce
an interaction between the six degenerate valleys known as the valley–orbit
coupling. These complications require a modification of the effective mass ap-
poximation discussed in the last section. We will consider the donors in Si as
an example but the technique can also be applied to donors in Ge with slight
modifications.

Let us first neglect the valley–orbit coupling between the six equivalent
conduction band valleys. The electron effective mass for each valley in Si can
be written as a second-rank tensor∣∣∣∣∣∣

ml 0 0
0 mt 0
0 0 mt

∣∣∣∣∣∣ ,

where ml and mt are, respectively, the effective masses longitudinal and trans-
verse to the [100] axis (these masses have to be permuted when considering
the equivalent [010] and [001] directions). For Si the masses have been de-
termined by means of cyclotron resonance experiments to be 0.916m0 and
0.190m0, respectively. With this effective mass tensor the wave equation (4.22)
for the envelope wave function ºj(R) (where the integer j now labels the val-
ley along the [100] axis) becomes[

�

(
�2

2

) (
2∇∇∇2

t

m t
�

∇∇∇2
l

ml

)
� | e |VS

]
ºj(R) ≈ [E � Ec(k0)]ºj(R), (4.33)

where ∇t and ∇l are, respectively, the components of the operator ∇∇∇ pro-
jected along directions transverse and longitudinal to the [100] axis and k0 is
the location of the conduction band minimum along the [100] axis in recip-
rocal lattice space. Equation (4.33) can be regarded as the wave equation for
an “elliptically deformed hydrogen atom”. If ml is not too different from mt,
the solutions of this equation should be quite similar to those of the hydrogen
atom and we can still label its eigenstates as 1S, 2S, and 2P, etc. However,
the lowering of the symmetry from spherical to cylindrical inherent in (4.33)
means that states with the same principal quantum number N and angular mo-
mentum L but different magnetic quantum numbers m are no longer degen-
erate. It can be shown (for example, with time reversal symmetry arguments)
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that states with equal and opposite values of m remain degenerate. For exam-
ple, 2P1 and 2P�1 are still degenerate but will have a different energy than
2P0. If ml is much larger than mt, (4.33) can be solved by using an adiabatic
approximation to separate the longitudinal motion from the transverse one.
More generally, (4.33) can be solved approximately by a variational technique.
Kohn and Luttinger [4.9] solved (4.33) by using trial functions of the form

º(x, y, z) � exp[�a(y2 � z2) � bx2]1/2, (4.34)

where the parameters a and b are varied to minimize the energy and the x
axis is chosen along the direction ([100] in the present case) of the valley.

The results of a variational calculation performed by Faulkner [4.10] for
several donors in Si are compared with the experimental results in Fig. 4.3.
We see that the agreement between Faulkner’s calculation and experiment is
very good for the excited states but rather poor for the 1S ground state. This is
expected since the excited states have larger orbits and are therefore less sen-
sitive to central cell corrections. The theoretical 1S ground state energy can be
greatly improved by including the valley–orbit coupling.

For simplicity, we shall treat the valley–orbit coupling among the 1S
ground states of the six equivalent [100] valleys by perturbation theory and
neglect their mixing with the excited states. As unperturbed wave functions,
we construct six approximate wave functions similar to the donor wave func-
tion in (4.32):

xj(r) � ºj(r)„j(r), (4.35)
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Fig. 4.3. Calculated and measured shallow donor energy levels in Si. (From [4.10])
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where „j(r) is the Bloch function for the jth (j � 1, . . . , 6) conduction band
minimum and ºj(r) the corresponding envelope function obtained by solving
(4.33). For convenience, the six Bloch wave functions „j(r) are labeled X, X,
Y, Y, Z and Z according to the direction of the corresponding conduction
band minimum. If we assume that the donor in Si is substitutional (such as
AsSi), the impurity potential has tetrahedral symmetry. The diagonalization of
the perturbation Hamiltonian is simplified by symmetrizing the six functions
according to the irreducible representations of the Td group. Using the char-
acter table for the Td group (Table 2.3) it can be shown (Problem 4.1) that
these six Bloch functions form a singlet with A1 symmetry, one doublet with
E symmetry, and a triplet with T2 symmetry. Since the impurity potential has
only rotational and no translational symmetry, it is customary to use the point
group notations for the symmetrized defect wave functions. The appropriate
linear combinations are

A1: (X � X � Y � Y � Z � Z)
/√

6; (4.36a)

E: (X � X � Y � Y)
/

2, (2Z � 2Z � X � X � Y � Y)
/√

12; (4.36b)

T2: (X � X)
/√

2, (Y � Y)
/√

2, (Z � Z)
/√

2. (4.36c)

In Fig. 4.3 we notice that the totally symmetric A1 state is usually found ex-
perimentally to have the lowest energy. A plausible explanation is that the im-
purity potential is attractive and the A1 state, like the s states in the hydrogen
atom, has the highest probability of being near the origin, where attractive
central cell corrections are generated. In addition, different donor species ex-
hibit rather large chemical shifts in their ground state energies. This is because
the impurity potential is usually not purely Coulombic near the core. There
are corrections due to exchange and correlation effects between the donor
electron and the core electrons. In addition, the screening of the Coulomb po-
tential (via the dielectric constant Â0) is reduced near the core. It is difficult to
calculate these corrections from first principles. Once a realistic potential has
been determined, the Hamiltonian for the envelope wave function can be di-
agonalized by numerical methods. Table 4.2 compares the experimental valley–
orbit split energy levels for donors in Si with theoretical values computed by
Pantelides and Sah [4.11]. The agreement between theory and experiment is
very good for P and As but not so satisfactory for Sb.

Table 4.2. Experimental substitutional donor binding energies [meV] in Si compared with
values computed numerically by solving the effective mass equation including valley–orbit
interaction (from [4.11])

A1 �44.3 �45.5 �53.1 �53.7 �31.7 �42.7
E �30.5 �32.6 �29.6 �31.2 �28.5 �30.5
T2 �31.3 �33.9 �29.8 �32.6 �27.8 �32.9
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4.2.4 Acceptor Levels in Diamond- and Zinc-Blende-Type Semiconductors

The calculation of acceptor binding energies in tetrahedrally coordinated semi-
conductors presents a special challenge due to two factors. First, the valence
bands are degenerate at the Brillouin zone center, and second, as a result of
the degeneracy, the valence bands are warped (Sect. 2.6.2). Hence, it is not
possible to define a simple effective mass tensor for the valence bands.

Several different approaches to solving the acceptor problem have ap-
peared in the literature. Invariably they all involve numerical solutions of a
wave equation for the envelope functions. Here we present a derivation of
these wave equations without solving them. The purpose is to obtain some
insight into the problem without going into the details of the numerical so-
lutions. We will also try to simplify the calculation as much as possible. We
start by assuming that the spin–orbit coupling is much larger than the accep-
tor binding energies so that only the heavy- and light-hole bands need to be
considered. The wave equation for the four resultant envelope functions ºi(r)
(i � 1, . . . , 4) can be cast in the form [4.2]

�
∑

j

∑
·‚

D·‚
ij

(
�

�x·

) (
�

�x‚

)
ºj �

e2

Â0r
ºi � Eºi. (4.37)

4Â0

D·‚
ij (�/�x·) (�/�x‚) is the 4×4 matrix operator obtained from the 4×4 matrix

{H′
ij} in Sect. 2.6.2 by using (4.11) to convert k into (�/�r). In the absence

of the Coulomb potential term, the solutions of (4.37) are four-fold degen-
erate (symmetry: °8 in zinc-blende structure and °�

8 in diamond structure).
One could also have included in (4.37) the doubly degenerate, spin-orbit split
bands (symmetries: °7 in zinc-blende structure and °�

7 in diamond structure)
but except in the case of Si [4.12], their effect on acceptor levels is very small.
The spin degeneracy is not lifted by the Coulomb potential so the solutions of
(4.37) should remain at least doubly degenerate.

The approach adopted by Kohn and Schechter [4.13] was to expand ºi(r)
in terms of radial wave functions and spherical harmonics as in the case of the
hydrogen atom. For simplicity the expansion was truncated at an angular mo-
mentum (l) less than some value l0, and then a variational technique was used
to solve (4.37). With this approach Kohn and Schechter [4.13] obtained a value
of 8.9 meV for the ground state acceptor binding energy in Ge as compared to
an experimental value of between 10.2 to 11.2 meV. The disadvantage of this
technique lies in the difficulty of improving its accuracy.

More recently, Baldereschi and Lipari [4.14, 15] have developed a different
and more systematic approach to solving this problem. Their starting point is
the Luttinger Hamiltonian in (2.70). This Hamiltonian has been constructed to
reflect the cubic symmetry of the crystal. Noting that deviations from spherical
symmetry in the warped heavy and light hole bands are small in most semi-
conductors, Baldereschi and Lipari rewrote the Luttinger Hamiltonian using
spherical tensors instead of Cartesian tensors. The idea is that all the sym-
metry operations of a spherically symmetric potential form a group known
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as the full rotational group. The spherical harmonic functions form a com-
plete orthonormal set of basis functions for the irreducible representations of
this group. Symmetrizing the Luttinger Hamiltonian with spherical tensors is,
therefore, the systematic way to decompose the Luttinger Hamiltonian into
terms with spherical and cubic symmetries. The process involved is left as an
exercise in Problems 4.2 and 4.3. The resultant “spherically symmetrized” Lut-
tinger Hamiltonian obtained by Baldereschi and Lipari (HBL) is given by

HBL �
Á1p2

2m0
�

3Á3 � 2Á2

45m0

(
�(2) · J(2)) �

Á3 � Á2

18m0

{[
�(2) × J(2)](4)

�4

�

√
70
5

[
�(2) × J(2)](4)

0 �
[
�(2) × J(2)](4)

4

}
, (4.38)

where �(2) and J(2) are second-order spherical tensors. Their definitions plus
those of the tensor products �(2) ·J(2) and [�(2)×J(2)](4)

i can be found in Prob-
lems 4.2 and 4.3.

Note that both the first and second terms in (4.38) are spherically sym-
metric. Only the third term proportional to (Á3 � Á2) has lower, cubic sym-
metry and gives rise to warping of the valence bands. In most diamond- and
zinc-blende-type semiconductors the spherical terms are much larger than the
cubic one. This can be seen in Table 4.3, where the values of Á1, Á2, and Á3 for
a number of tetrahedrally bonded semiconductors are listed. As a result, the

Table 4.3. Values of the dimensionless valence band parameters Á1, Á2, Á3, Ì and ‰ for
various semiconductors with the diamond and zinc-blende structures. Although most of
these values have been reproduced from [4.14] many of the values in this reference have
been changed to the most recent valuesa,b. In addition, the values of these parameters
now agree with those computed from the parameters A, B and C in Table 2.4 using
(2.71a) to (2.71c)

Si 4.28 0.339 1.446 0.47 0.26
C 2.5 –0.1 0.63 0.27 0.29

Ge 13.38 4.24 5.69 0.766 0.11
SiCc 2.8 0.51 0.67 0.433 0.488
GaNd 5.05 0.59 1.78 0.52 0.24
GaP 4.05 0.49 1.25 0.47 0.19
GaAs 6.9 2.2 2.9 0.75 0.1
GaSb 13.3 4.4 5.7 0.8 0.1
InP 5.15 0.95 1.62 0.523 0.13
InAs 20.4 8.3 9.1 0.861 0.039
InSb 36.41 16.24 17.34 0.928 0.03
ZnS 2.54 0.75 1.09 0.751 0.134
ZnSe 2.75 0.5
ZnTe 3.8 0.72 1.3 0.562 0.153
CdTe 4.14 1.09 1.62 0.68 0.128

Á1 Á2 Á3 Ì ‰

a Refer to Landolt-Börnstein Tables Vol. 22a. (Springer, Berlin Heidelberg 1987)
b H. Mayer and U. Rössler: Solid State Commun. 87, 81 (1993)
c and d Values for the zinc-blende structure.
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cubic term can be neglected in the first-order approximation and the heavy
and light hole bands treated as spherical.

To calculate the acceptor binding energy, it is more convenient to simplify
first the acceptor Hamiltonian:

H � HBL �
| e |2

4Â0Â0r
(4.39)

by

• defining two new parameters

Ì � 2(3Á3 � 2Á2)/5Á1 (4.40)

and

‰ � (Á3 � Á2)/Á1, (4.41)

where Ì is a measure of the magnitude of the second spherical term in
(4.38) while ‰ is proportional to the coefficient of the cubic term, and

• introducing effective atomic units in which both the effective Bohr radius:

a∗ �
Â0�2Á1

m0e2 · 4Â0 (4.42)

and the effective Rydberg:

R �
e4m0

2�2Â2
0Á1

· 1
(4Â0)2 (4.43)

are set equal to unity [this implies e2 � 2Â0, �2 � 2m0/Á1].

With these simplifications, (4.39) becomes

H �
p2

�2 �
2
r

�
Ì

9�2 (�(2) · J(2)) �
‰

9�2

([
�(2) × J(2)](4)

�4

�

√
70
5

[
�(2) × J(2)](4)

0 �
[
�(2) × J(2)](4)

4

)
. (4.44)

Except for the last term, which is proportional to ‰, this Hamiltonian has full
rotational symmetry. Hence it is important to compare the values of Ì and ‰
for various semiconductors, shown in Table 4.3. We see that, with the excep-
tion of Si, SiC and GaN, the spherical parameter Ì is at least four times larger
than the cubic parameter ‰.

We shall not attempt to diagonalize (4.44) since it is quite complicated, as
one may expect. Instead we shall discuss the qualitative features of the solu-
tions. We shall begin with the simplest case by neglecting most of the terms in
(4.44). Then we shall introduce one additional term at a time and examine the
consequence of each term using perturbation theory.

a) “One Spherical Band Approximation”

The simplest approximation of (4.44) one can make is to set the terms de-
pending on Ì and ‰ both equal to zero:
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H �
p2

�2 �
2
r

. (4.45)

Within this approximation the heavy and light hole masses are equal (hence,
they are treated as one band). Equation (4.45) becomes analogous to the hy-
drogenic donor, therefore its solutions are characterized by a principal quan-
tum number N and an angular momentum L. The bound states will be labeled
nS, nP, etc. and their energies are given by the Rydberg series (4.23), except
that the Rydberg constant (4.24) is now defined by (4.43).

b) “Spherical Approximation”

Next, the term �(2) · J(2) is added as a perturbation to (4.45):

H �
p2

�2 �
2
r

�
Ì

9�2

(
�(2) · J(2)). (4.46)

The Hamiltonian still has spherical symmetry but now the heavy and light
hole bands have different masses (Problem 4.3). The term �(2) · J(2) resembles
the spin–orbit interaction if we note that the “pseudo-angular momentum” J
plays the role of spin except that J � 3/2. Using this similarity, a “pseudo-
total angular momentum” F � L � J can be defined. F is conserved just as the
total angular momentum L�S would be conserved if spin–orbit coupling were
included (except that now J is the pseudo-angular momentum of the Bloch
function while L represents the angular momentum of the impurity envelope
function). As in atomic physics, the bound states of the acceptor can be label-
ed with the spectroscopic notation

L � 0 : nS3/2;
L � 1 : nP5/2, nP3/2, and nP1/2;
L � 2, and so on.

In general, only terms with L � 2 are significant. Notice that there is only
one 1S acceptor state. If we had made the assumption that the heavy and light
hole bands can be treated as two separate spherical bands we would, instead,
incorrectly obtain two 1S acceptor states.

In spite of the analogy with the spin–orbit coupling, the �(2) · J(2) term is
not trivial to treat by perturbation theory because of the degeneracy of the
heavy and light holes. Since �(2) and J(2) are second-order spherical tensors,
the selection rules for the matrix elements of �(2) ·J(2) are ¢F � 0 and ¢L � 0
or ±2. For simplicity we will consider only these lowest energy states: 1S3/2,
2S3/2, 2P5/2, 2P3/2, and 2P1/2. Except for the 2P1/2 state, these states are cou-
pled to higher energy levels by the �(2) · J(2) term. Baldereschi and Lipari
[4.14] assumed that each of these states is coupled with no more than one
other state. In this approximation, the envelope wave functions consist of lin-
ear combinations of at most two functions:

º(S3/2) � f0(r) |L � 0, J � 3/2, F � 3/2, Fz〉
� g0(r) |L � 2, J � 3/2, F � 3/2, Fz〉; (4.47a)
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º(P1/2) � f1(r) |L � 1, J � 3/2, F � 1/2, Fz〉; (4.47b)

º(P3/2) � f2(r) |L � 1, J � 3/2, F � 3/2, Fz〉
� g2(r) |L � 3, J � 3/2, F � 3/2, Fz〉; (4.47c)

º(P5/2) � f3(r) |L � 1, J � 3/2, F � 5/2, Fz〉
� g3(r) |L � 3, J � 3/2, F � 5/2, Fz〉. (4.47d)

Except for º(P1/2), substituting these wave functions into (4.46) produces
two coupled differential equations for the radial functions fi and gi. These dif-
ferential equations can be solved only approximately by numerical methods.
However, the energy of the 2P1/2 state can be calculated exactly because its
radial wave equation is similar to that of the p state in the hydrogen atom. Its
eigenvalue can be shown to be equal to [4(1 � Ì)]�1. Noting that the effective
mass of the light hole is given by (1 � Ì)�1 (Problem 4.4), we see that the
energy of the 2P1/2 state is equal to that of the n � 2 level of a hydrogenic
acceptor with the light hole mass.

The energies of the other three states have been calculated by Baldereschi
and Lipari [4.14] using variational techniques and the values of the Kohn–
Luttinger parameters listed in Table 4.3. Their results are shown in Table 4.4.
Note that the values of some of the Kohn–Luttinger parameters have since
been revised. The theoretical acceptor energy levels are compared with the
experimental values available at the time of the calculation.

The agreement between the experimental and theoretical ground state en-
ergies of acceptors is quite good for most diamond- and zinc-blende-type semi-
conductors. The notable exceptions are Si, GaP, InP, and some II–VI semicon-
ductors. As pointed out earlier, the spherical model is not expected to work
well for Si because it has a relatively large cubic term (‰/Ì ≈ 0.5, see Table
4.3). The experimental acceptor value quoted by Baldereschi and Lipari [4.14]

Table 4.4. Comparison between the values of the lowest-energy bound states of accep-
tors for various semiconductors with the diamond or zinc-blende structures calculated by
Baldereschi and Lipari [4.14, 16, 17] using (4.47) with available experimental values (values
in italics represent measurements after 1973). All energies are in meV

Si 45, 68.9 31.6 8.6 4.2 11.2 7.6
Ge 10.8 9.8 2.9 0.6 4.2 2.5
GaP 57–64 47.5 13.7 4.2 19.1 11.7
GaAs 31 25.6 7.6 1.6 11.1 6.5
GaSb 13–15 12.5 3.8 0.65 5.6 3.2
InP 31, 56.3 35.2 10.5 2 15.5 8.9
InAs 10–20 16.6 5.1 0.4 7.9 4.4
InSb ≈10 8.6 2.7 0.2 4.2 2.3
ZnS 175.6 52 11.7 75.1 44.1
ZnSe 114 110.1 33 6.1 48.6 28
ZnTe ≈30 77.7 23 5.1 33.4 19.6
CdTe ≈30 87.4 26.5 3.7 39.9 22.6

Experiment 1S3/2 2S3/2 2P1/2 2P3/2 2P5/2
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was for AlSi. The more recent experimental value for BSi, 45 meV, is in better
agreement with the theoretical predictions. In the case of GaP and InP the
experimental values quoted were for ZnGa and CdIn, respectively. More re-
cent values for the binding energies of MgGa and BeGa in GaP are 56.6 and
59.9 meV, respectively. The corresponding energies for MgIn and BeIn in InP
are both 31 meV. These latest experimental values are in much better agree-
ment with theory. The acceptors in ZnTe and CdTe, for which binding energies
have become available recently, correspond to Li substituting for the cations.
The understanding of impurities in these II–VI semiconductors is still rela-
tively poor, in part due to inaccuracies in our knowledge of the Luttinger pa-
rameters. Lately, there has been much interest in shallow impurities in the
larger bandgap II–VI semiconductors because of their use in blue and green
lasers [4.18, 19]. This should lead to more precise determinations of acceptor
binding energies.

c) Including the Cubic Term

When the cubic term is included, the wave functions have to be classified
according to the irreducible representations of Td. For example, an accep-
tor wave function formed from a J � 3/2 valence band with °8 symmetry
(double group notation) and an envelope function with S symmetry in the
spherical model (or °1 symmetry in Td) has °8 symmetry (the direct prod-
uct of °8 and °1). Similarly, if the envelope function has P symmetry (or °4),
the symmetries of the acceptor wave functions will belong to the representa-
tions °8 ⊗ °4 � °6 ⊕ °7 ⊕ 2°8. It is easily shown that the doubly degenerate
P1/2 state will become the °�

6 state while the four-fold degenerate P3/2 state
becomes °�

8 in the case of Si and Ge. The six-fold degenerate P5/2 state is
reducible into a doubly degenerate °�

7 level plus a four-fold degenerate °�
8

level. From these symmetry considerations one concludes that the cubic term
can

• only shift the energies of the S3/2, P1/2, and P3/2 levels and
• split the degeneracy of the P5/2 level.

Thus the S3/2, P1/2, and P3/2 levels are not affected by the cubic term to
first order in ‰. When higher order terms in ‰ are included, the selection rules
for the cubic term are ¢Fz � 0 and ±4 (the result of multiplying two second-
order spherical tensors in the cubic term is a tensor of fourth order; see Prob-
lem 4.3). These selection rules greatly restrict the levels which can be coupled
via the cubic term. As a result, the 1S3/2, 2S3/2, and 2P1/2 levels are basically
unchanged by the cubic term. In summary, the “spherical model” in which the
cubic term is neglected should be as good an approximation as models in-
cluding the cubic term for calculating the lower energy levels of acceptors in
tetrahedrally coordinated semiconductors.

The cubic term shifts the P3/2 levels mainly by coupling them with the
nearby P5/2 levels. The corresponding shift in energy is typically less than
10 %. For example, in Si, where the largest shift is expected to occur, the cubic
term changes the 2P3/2 level energy from 11.2 meV to 12.13 meV. The values
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of the 2P5/2(°�
7 ) and 2P5/2(°�

8 ) levels calculated numerically by Baldereschi
and Lipari [4.15] by including the cubic term are listed in Table 4.5.

The measured excited-state energies of some common acceptors in Si and
Ge are compared with the values calculated by Baldereschi and Lipari in Fig.
4.4. The agreement between theory and experiment is excellent for Ge but
only fair for Si. The agreement is especially poor for the 1°�

8 ground state in
Si. The calculated binding energy in Si is 44.4 meV while the experimental val-
ues vary from 45 meV for boron to 160 meV for indium. These discrepancies
can be attributed, at least in part, to central cell corrections which become
more important in Si. However, the calculation based on a 4 × 4 Luttinger
Hamiltonian should break down when the calculated binding energy is larger
than ¢0. In this case, the full 6 × 6 Hamiltonian, including the °7 bands split-
off by ¢0, must be solved [4.20]. It turns out that the spin–orbit splitting of
the ground state of the acceptor levels can be much smaller than ¢ [4.20, 21].

Table 4.5. Comparison between the theoretical values of the 2P5/2 bound states of accep-
tors calculated with and without the cubic term for various semiconductors with diamond
and zinc-blende structures by Baldereschi and Lipari [4.14, 15]. All energies are in meV

Si 7.6 8.51 5.86
Ge 2.5 2.71 2.04
GaP 11.7 13.04 9.42
GaAs 6.5 7.2 5.33
GaSb 3.2 3.59 2.61
InP 8.9 9.98 7.32
InAs 4.4 4.76 3.63
InSb 2.3 2.54 1.91
ZnS 44.1 49.56 35.57
ZnSe 28 31.47 22.68
ZnTe 19.6 22.32 15.36
CdTe 22.6 25.85 17.68

“Spherical model” “Including cubic term”

2P5/2 2P5/2(°�
8 ,      ) 2P5/2(°�

7 ,     )°8 °7

4.3 Deep Centers

We have shown in the last section that one characteristic of shallow impurity lev-
els is that their electron wave functions typically extend over many primitive unit
cells. As a result, those wave functions can be constructed from one Bloch func-
tion indexed by a single wave vector equal to that of the nearest band extremum,
see (4.32). Deep centers, on the other hand, have localized wave functions which
involve Bloch functions from several bands and over a large region of k-space.
Thus, defects with highly localized potentials are expected to form deep cen-
ters. Such localized potentials can be caused by broken bonds, strain associated
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Fig. 4.4. Theoretical values of shallow acceptor energies in Si and Ge calculated with
the Baldereschi and Lipari Hamiltonian [4.14] compared with experimental values. (From
[4.22])

with displacement of atoms, and difference in electronegativity or core poten-
tials between the impurity and host atoms. The localized nature of deep center
potentials suggests that a tight-binding molecular orbital approach should be
a better starting point for studying their electronic energies. Since a defect is
imbedded in a semiconductor, it is necessary to consider also the interaction
between the localized defect electrons and the Bloch electrons of the host.
For example, when a deep center energy level (or deep level for short) over-
laps with band states of the host, it becomes a resonant state.

To calculate the energies of deep levels one needs to know the defect po-
tential and then find a way to solve the corresponding Schrödinger equation.
It is very difficult to deduce the defect potential for deep centers because dis-
placements of atoms (or lattice relaxation) can occur. Both the impurity atom
and atoms surrounding it can be involved in the relaxation. The reason why
lattice displacements are important in deep centers can be qualitatively seen
from the following examples.

Suppose an impurity atom in a semiconductor has a choice of becoming ei-
ther a shallow donor on a substitutional site or a deep level via a lattice distortion.
Let us assume that, as a deep level, it is located deep in the bandgap at an energy
E0 (known as its thermal ionization energy) below the conduction band. On the
other hand, as a shallow donor its energy will be near the conduction band edge.
Thus the impurity atom can lower its electronic energy (by about E0) by be-
coming a deep center. However, it may require a lattice relaxation energy Ed to
produce the lattice distortion. If E0 is larger than Ed it is energetically favorable
for the impurity atom to distort spontaneously and become a deep center. It is
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necessary to know both E0 and Ed in order to predict whether this impurity will
be deep or shallow. Lattice displacements are responsible for the shallow-to-deep
instability which converts shallow donors in GaAs to the DX center in AlGaAs
alloy [4.7, 8]. In the case of the DX centers, E0 is on the order of 0.4 eV for Si in
an AlGaAs [4.23]. Actually, the electronic energy gained by DX centers via their
lattice displacements is equal to 2E0 because of their peculiar property known
as negative U. For further details on the DX center and on their negative prop-
erties, see the following Web Page: http://Pauline.berkeley.edu/textbook/DX-
Center.pdf. Here U stands for the on-site repulsive Coulomb interaction between
two electrons in the so-called Hubbard model [4.24]. For a deep center with a
negative U, a second electron will actually be attracted to it even though it is
occupied by one electron already as a result of lattice distortions. The resultant
negatively charged state will be more stable than the neutral state. This negative
U property makes it energetically even more favorable for a defect to undergo
lattice relaxation and become a deep center. It has been known for some time
that some large bandgap II–VI semiconductors, such as ZnS and ZnSe, cannot
be doped p-type easily while others, such as ZnTe, cannot be doped n-type. This
phenomenon is known as self-compensation [Ref. 4.4, p. 238]. While it is still
not completely understood, recently it has been suggested that DX center for-
mation by substitutional donors can explain why ZnTe cannot be doped n-type
by common group III dopants like Al and Ga [4.25].

As another example of lattice relaxation in deep centers we consider a
vacancy in a group-IV semiconductor. The removal of an atom results in a
loss of four electrons in this case. This is equivalent to adding four positive
charges to the otherwise neutral semiconductor. Obviously the electrons in-
side the semiconductor will respond by screening these positive charges. The
response of the semiconductor is best understood in terms of a tight-binding
model. A vacancy in a covalent semiconductor produces four unpaired dan-
gling bonds as shown schematically in Fig. 4.5a. The four dangling bonds can

Vacancy

Dangling
bonds

(a) (b)

Fig. 4.5. Schematic diagram of a covalent semiconductor with (a) an unrelaxed vacancy
involving four dangling bonds and (b) a relaxed vacancy with no dangling bonds
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be “healed” by forming two pairs of bonds among neighboring dangling bonds.
Since originally the distances between atoms with dangling bonds are larger
than the bond lengths in the perfect crystal, atoms with dangling bonds have
to move closer to each other in order to form new bonds, as shown in Fig.
4.5b. This displacement of neighboring atoms involves an elastic energy, which
is compensated for by the lowering of the energy of the four electrons origi-
nally in the dangling bonds. Since each new bond can accommodate two elec-
trons in the bonding state, the decrease in the energy of each electron in the
dangling bond is of the order of the overlap parameters (Vss, Vpp, and Vsp) dis-
cussed in Sect. 2.7.1. We will consider in more detail the electronic energy of
a vacancy in diamond- and zinc-blende-type semiconductors in Sect. 4.3.2.

4.3.1 Green’s Function Method for Calculating Defect Energy Levels

In this book we will avoid the difficult problem of determining deep center
potentials. Instead we will study one method to solve for the deep center en-
ergies if the potential is known. There are now first-principles techniques for
calculating deep center energies including lattice relaxation [4.7, 8], but these
techniques are beyond the scope of this book. The method we will consider
here is the Green’s function approach to calculating the electronic structure
of deep centers. Many books have been written on Green’s functions. Dis-
cussions of their applications to the defect problem can be found in those by
Economou [4.26] and Lannoo and Bourgoin [4.27]. We will apply this tech-
nique to study the systematics of defects, especially isoelectronic centers, in
diamond- and zinc-blende-type semiconductors.

To understand the motivation for using Green’s functions to study defects
we will first introduce the concept of density of states (to be abbreviated as
DOS). The DOS of a system is defined as the number of allowed states per
unit energy lying in the energy range between E and E � ‰E. Suppose a par-
ticular system under study is described by a Hamiltonian H and its energy
levels are denoted by Ek. These energy levels can be discrete or continuous.
The particles in the system may be arranged periodically in space like atoms
in a crystal, or be completely random as in an amorphous solid. The DOS of
this system, n(E), is equal to

n(E) �
∑

k

‰(E � Ek) (4.48)

where ‰(x) represents the Dirac delta function, [4.28] and k labels all possible
states. n(E) is an important quantity because it can be calculated theoretically
and can also be measured experimentally. Next we will define the resolvent or
Green’s function operator G as

G � Lim
Ë→0�

(E � H � iË)�1. (4.49)
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To understand the reason for defining G this way, we note that the expec-
tation value of G for an eigenstate |k〉 of H is given by

〈k |G |k〉 � Lim
Ë→0�

(E � Ek � iË)�1. (4.50)

Using a well-known property of the delta function, the right hand side of (4.50)
can be rewritten as

Lim
Ë→0�

(E � Ek � iË)�1 � �(E � Ek)�1 � i‰(E � Ek), (4.51)

where �[E � Ek]�1, known as the Cauchy principal value of [E � Ek]�1, is
defined by

�∞∫
�∞

f (E′)�[E � E′]�1dE′ � �

�∞∫
�∞

f (E′)
E � E′ dE′

� Lim
Â→0

⎛⎝ E�Â∫
�∞

f (E′)
E � E′ dE′ �

�∞∫
E�Â

f (E′)
E � E′ dE′

⎞⎠. (4.52a)

In some sense we can regard the function �[x]�1 as having the property

�[x]�1 �

{
0 when x � 0,
x�1 when x �� 0.

(4.52b)

From (4.48) and (4.51) we obtain

n(E) � �
1


∑
k

Im
{
〈k |G |k〉

}
� �

1


Im
{

TrG
}

, (4.53)

where Im{A} stands for the imaginary component of a complex quantity A,
and Tr{G} respresents the trace of the matrix 〈k |G |k′〉. Thus (4.53) estab-
lishes the relation between the operator G and n(E). We should note that the
matrix element of G defined in (4.50) is a complex function of E. Its real part
is always related to its imaginary part in a particular way. For example, let us
denote 〈k |G |k〉 by g(E � Ek) [see (4.50)] and define

F(E) �

�∞∫
�∞

g(E � E′) f (E′)dE′, (4.54)

where f (x) is any given function. Substituting (4.50) into (4.54) we obtain

F(E) � �

⎛⎝ �∞∫
�∞

f (E′)
E � E′ dE′

⎞⎠ � if (E). (4.55)

Noting that Im{F} � f (E) in (4.55), the real part of F(E) can be rewritten as

Re{F(E)} �
1


�

( ∫
Im{F(E′)}

E � E′ dE .′

)
(4.56)

�∞

�∞
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This equation expressing the real part of the function F(E) in terms of its
imaginary part is one of two equations known as the Kramers–Kronig re-
lations or the dispersion relations. It is also called a Hilbert transform. In
Chap. 6 we will utilize these important relations extensively in studying the
linear optical response function (which will be defined in Chap. 6). Obviously
the function g(E � Ek) satisfies the Kramers–Kronig relations.

Another expression for n(E) which is useful for defect problems is

n(E) �
1


d
dE

Im
{

log
(

det G
)}

(4.57)

where det G represents the determinant of the matrix 〈k |G |k′〉.
Let us express the Schrödinger equation for the defect electron as:

(H0 � V)º � Eº, (4.58)

where H0 is the Hamiltonian of the perfect crystal, V is the defect poten-
tial, and E is the defect energy. As mention before, we will assume that V is
known. Furthermore, we will assume that the wave functions º0 and eigenval-
ues E0 of the “unperturbed” equation

(E0 � H0)º0 � 0. (4.59)

are known. Equation (4.58) can be rewritten as

º � [E � H0]�1Vº. (4.60)

We will now define the “unperturbed” Green’s Function operator G0 using
(4.49):

G0 � Lim
Ë→0�

[E � H0 � iË]�1, (4.61)

so that º can be expressed as

º � G0Vº (4.62)

One should remember that G0 is a function of the defect energy E.
There are two possible types of solutions for (4.58).

a) Bound State Solutions

If the defect electron energy E does not overlap with the eigenvalues E0 of
the unperturbed wave equation, that the eigenstate º of the defect electron
has to be a bound state. Since E does not overlap with E0 no extended state
can exist at this energy. The defect electron wave function has to be localized
around the defect. To determine E we can expand in terms of an orthonormal
set of basis functions „j:
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º �
∑

j

aj„j. (4.63)

Substituting this expression into (4.62) we obtain a system of homogeneous
linear equations in the unknown aj’s:∑

j

(I � G0V)ijaj � 0, i � 1, 2, . . . , (4.64)

where I is the unit matrix; (4.64) has nonvanishing solutions only if its deter-
minant is zero. The defect energies E can thus be obtained, in principle, by
solving the equation

det[I � G0V] � | I � (E � H0)�1V | � 0. (4.65)

For a general potential V (4.65) is very complicated and difficult to solve. For
point defects the potential V is localized and (4.65) can be simplified by choos-
ing a suitable set of localized basis functions „j such that there will be only a
small number of nonzero matrix elements Vij. Applications of this approach
will be studied in Sect. 4.3.2.

b) Resonant State Solutions

In the second case, the defect energy overlaps with the eigenvalues of the
unperturbed states and a resonant state is formed. For E � E0 the general
solution º can be expressed as:

º � º0 � G0Vº (4.66)

The defect will modify the DOS n0(E) of the unperturbed state. Our goal
will be to calculate ‰n(E), the modification in n(E) caused by the defect. For
a highly localized defect potential it will be useful to define a local density of
states since we expect ‰(E) to be significant only in the vicinity of the defect.
We will first introduce a matrix element of the operator G0 defined by

G0(r, r ′, E) � 〈r |G0 | r ′〉 � Lim
Ë→0�

∑
k

〈r |k〉 〈k | r ′〉(E � Ek � iË)�1. (4.67)

Using (4.51) we can show that

Im
{

G0(r, r, E)
}

� �
∑

k

∣∣〈r |k〉∣∣2 ‰(E � Ek). (4.68)

Now | 〈r |k〉 |2 equals the probability of finding an electron with wavevector k
at the point r while

∑
‰(E � Ek) is the DOS in the absence of defects [i.e.,

n0(E)]. When these two terms are multiplied together, the resultant term

n0(r, E) �
∑

k

∣∣〈r |k〉∣∣2 ‰(E � Ek) (4.69)
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has the meaning of an unperturbed local DOS. With the use of (4.68) n0(r, E)
can be related to G0 by

n0(r, E) � �(1/)Im{G0(r, r, E)}. (4.70)

The total density of unperturbed states n0(E) is given by

n0(E) �
∑

r

n0(r, E) � �
1


Im

{∑
r

G0(r, r, E)

}
� �

1


Im
{

Tr G0
}

. (4.71)

The local density of states n(r, E) in the presence of a defect can similarly be
defined as

n(r, E) � �
1


Im

{∑
r

G(r, r, E)

}
, (4.72)

where G(r, r ′, E) is given by

G(r, r ′, E) � Lim
Ë→0�

∑
k

〈r |k〉 〈k | r ′〉 (E � H0 � V � iË)�1 . (4.73)

For computational purposes it is more convenient to use (4.57) to define
n0(r, E) and n(r, E) so that the change in the local DOS induced by a defect
can be expressed as

‰n(r, E) � n(r, E) � n0(r, E)

�
1


d
dE

(
Im

{
log

det G(r, r, E)
det G0(r, r, E)

})
. (4.74)

Equation (4.74) can be simplified by expressing G in terms of G0:

G � Lim(E � H0 � V � iË)�1

� Lim(E � H0 � iË)�1[1 � V(E � H0 � V � iË)�1]
� G0 � G0VG. (4.75)

In the above equations it is understood that Lim stands for the limit Ë → 0�.
Equation (4.75) is known as the Dyson equation. Using this equation G can
be expressed as G � (1 � G0V)�1G0 and det G as

det G � det (I � G0V)�1 det G0. (4.76)

Substituting (4.76) for det[G] into (4.74) we obtain an expression for ‰n(r, E)
in terms of G0 and V only:

‰n(r, E) � �
1


d
dE

(
Im

{
log(det[I � G0(r, r, E)V])

})
. (4.77)

Thus, for both bound state and resonant state solutions, the change in the
electron density of states induced by a defect potential V is determined by
det[I � G0V].
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4.3.2 An Application of the Green’s Function Method:
Linear Combination of Atomic Orbitals

We shall now apply the Green’s function method to calculate the bound state
energies of a deep center. Linear combinations of atomic orbitals will be used
as the basis functions „j. They are assumed to be given by the Löwdin orbitals
ˇms(r � rjs) introduced in Sect. 2.7.2. In diamond- and zinc-blende-type semi-
conductors they can be further restricted to include only the four sp3 orbitals.
For illustration purposes we shall consider only one type of orbital (say an
s-symmetry orbital) from each atom at the lattice vectors rjs. The atoms are
divided into two groups A and B such that the subspace B contains the loca-
tion of all the atoms for which the defect potential V has zero matrix elements.
In this simple case the defect wave function º in (4.63) can be expressed in
terms of the two sets of basis functions {„A} and {„B} indexed by A and B:

º �
∑

aA„A � aB„B. (4.78)

The summation in (4.78) is over the subspaces A and B and the coefficients
{aA} and {aB} are arrays. The matrices G0 and V can be represented as

G0 �

(
G0AA G0AB

G0BA G0BB

)
and V �

(
VAA 0

0 0

)
, (4.79)

where G0AA, G0AB, VAA, etc. represent matrices of G0 and V calculated for
the two subspaces. Substituting (4.78) into (4.64) and (4.65) we obtain

{aA} � G0AAVAA{aA}, (4.80a)

{aB} � G0BAVAA{aA}, (4.80b)

and

det
(

I � G0AAVAA 0
� G0BAVAA I

)
� det(I � G0AAVAA) � 0. (4.81)

In addition º has to satisfy the normalization condition

〈º |º 〉 � 1. (4.82)

For a very localized deep center, the subspace A, representing the spatial ex-
tent of the defect, is very small. Hence the determinant in (4.81) and the ma-
trix equations in (4.80) can be solved easily even with a personal computer. In
particular, the defect energy E can be determined from (4.81) since the matrix
element G0AA is a function of E. We will show later how to evaluate G0AA

from the density of states of the perfect crystal.
Equation (4.82) ensures that the total probability of finding the electron

in subspaces A plus B is unity. A more convenient form for (4.80a) can be
obtained by writing G�

0 G0 formally as

G�
0 G0 � [E � H0]�2 � �

dG0

dE
, (4.83)
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where G�
0 is the adjoint of G0 defined as

G�
0 � Lim

Ë→0�
(E � H0 � iË)�1 (4.84)

Substituting (4.83) and (4.59) into the normalization condition

〈º |º 〉 � 〈º |V�G�
0 G0V |º 〉 � 1 (4.85)

an equation containing only aA is obtained:

�a�
AVAA

(
dG0AA

dE

)
VAAaA � 1. (4.86)

Since (4.86) involves only a closed subspace A, it can be solved numerically
provided A is kept small. This will be the case for a localized deep center.
Once aA is known, aB can be determined from (4.80b).

We shall now consider the extreme case where A contains only the defect
site and four sp3 orbitals. These orbitals are the same sp3 orbitals as discussed
already in Sect. 2.6 and denoted by S, X, Y, and Z. This approximation is
reasonable for a deep substitutional impurity or a vacancy in the diamond-
and zinc-blende-type semiconductors. From symmetry considerations, it is not
difficult to see that S transforms according to the irreducible representation
A1(°1) of the Td group while X, Y, and Z belong to the triply degenerate
T2(°4) representation. Using these four basis functions the determinants of
G0 and V can be written in the simplified form∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
G0A 0 0 0

0 G0T 0 0
0 0 G0T 0
0 0 0 G0T

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

VA 0 0 0
0 VT 0 0
0 0 VT 0
0 0 0 VT

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

where the matrix elements G0A and VA represent the matrix elements
〈S |G0 |S〉 and 〈S |V |S〉, respectively. G0T and VT are defined similarly us-
ing the T2 triplet. Substituting these determinants into (4.81) we obtain two
implicit equations

G0A(EA)VA � 1 and G0T(ET)VT � 1, (4.87)

from which the defect energies EA and ET (for the deep levels with symme-
tries A1 and T2 respectively) can be determined.

Hjalmarson et al. [4.29] have studied the dependence of the deep level en-
ergies on the defect potential V in a large number of tetrahedrally bonded
semiconductors. To understand their results, we shall consider G0A as a func-
tion of E. According to the definition in (4.50), G0A is equal to

G0A � 〈S |G0A |S〉 �
∑

k

Lim
Ë→0�

[E � ES(k) � iË]�1, (4.88)

where ES(k) and k denote, respectively, the energy and wave vector of elec-
trons in the bands which contain atomic orbitals with s-symmetry. Since we
have assumed that the deep level with A1 symmetry is a bound state, there
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are no energies ES(k) for which E � ES(k). As a result, (4.88) can be rewrit-
ten as

G0A(E) �
∑

k

�[E � ES(k)]�1 (4.89)

� �

(∫
Nd(ES)
E � ES

dES

)
. (4.90)

In (4.90) we have transformed the summation over the electron wave vector
k into an integration over electron energy by introducing a density of states
Nd(ES). Notice that Nd(ES) is the DOS for electrons with s-symmetry only.
This is sometimes referred to as a partial or projected density of states.

Equation (4.90) can also be derived from the Kramers–Kronig relations by
regarding G0A(E) as a complex function of E. In general Re{G0A(E)} is re-
lated to the integral of Im{G0A(E)} over all E via (4.56). Im{G0A(E)} turns
out to be equal to �Nd(ES) [see (4.51)]. To visualize the function G0A(E) we
first make a crude approximation to the partial DOS of the s-symmetry va-
lence (bonding) and conduction (antibonding) bands in a typical zinc-blende-
type semiconductor such as GaAs. This is shown schematically in Fig. 4.6a.
From this partial DOS we can calculate G0A(E) using (4.90). We can also

EscEcEsv Es

Nd(Es)

0

(a)

EscEcEsv E

G0A(E)(b)

0

Fig. 4.6. Schematic plots of (a) the density of states for the valence band (centered at
energy Esv) and conduction band (centered at energy Esc) derived from the s-symmetry
atomic orbitals in a zinc-blende-type semiconductor and (b) the function G0A(E) obtained
from the density of states in (a) using (4.89). The energy at the middle of the gap has
been chosen as the zero in the energy scale. Ec denotes the bottom of the conduction
band
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“guess” the shape of G0A(E) by noticing that there are “correlations” between
the shapes of the real and imaginary parts of a complex function satisfying the
Kramers–Kronig relations. Such “correlations” are illustrated with an exam-
ple in Problem 4.5. The G0A(E) “guesstimated” by using such correlations is
sketched in Fig. 4.6b. For E lying within the energy gap (0 � E � Ec) G0A(E)
is approximately a linear function of E (note that the origin of energies is
assumed to be in the middle of the gap). As a result of this linear relation
the solution of (4.81) produces an almost hyperbolic dependence of the trap
energy EA on VA:

EA ∝ (1/VA). (4.91)

Figure 4.7 shows the energies of the A1-symmetry deep impurity levels in
several diamond- and zinc-blende-type semiconductors obtained by Hjalmar-
son et al. [4.29]. These authors first fitted the known band structures of vari-
ous semiconductors with a nearest-neighbor tight-binding model. The overlap
parameters obtained from this fitting procedure were used to determine the
partial DOS of s-symmetry. The defect potential VA was taken to be equal
to the difference between the s atomic orbital energies of the impurity and
the host atom it replaces. The deep level energies for various substitutional
impurities were calculated with (4.87). The relevant impurities are listed in
Fig. 4.7 above the upper horizontal axis in the order of their defect poten-
tials VA. Notice the nearly hyperbolic dependence of the deep level energy
EA on VA as predicted by (4.91). The intercepts of the quasi-hyperbolas with
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Fig. 4.7. Energies of the A1-symmetry deep impurity levels in various diamond- and zinc-
blende-type semiconductors calculated by Hjalmarson et al. [4.29]. The relevant impuri-
ties are listed above the upper horizontal axis in the order of their defect potentials
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the band edges (the E � 0 axis being one of them) determine the thresholds
for either an attractive or repulsive potential. For some semiconductors, such
as Si and Ge, the quasi-hyperbolas terminate at the point where �E equals the
bandgap. Beyond that point, a resonant state rather than a bound state will be
formed. For quasi-hyperbolas which do not terminate at the band edges, they
asymptotically approach the energies EA(±∞) when VA approaches ±∞. At
these energies, unless dG0AA/dE in (4.86) vanishes also, aA � 0, i.e., no elec-
tron or hole can be trapped at these energies. Thus the asymptotes of EA are
the dangling-bond or ideal vacancy energies. These energies are determined
by the host semiconductor.

From the above discussion we can draw some qualitative conclusions about
deep level energies. In general, the defect energy is not very sensitive to V
when V is large. The reason is that E is given by the solution of G0(E) � 1/V,
which varies slowly with V when V is much larger than zero. This explains
why impurities whose atomic energies differ by more than 10 eV often give
rise to deep levels with defect energies differing by less than 1 eV. For in-
finitely large values of V, the defect energy approaches that of an ideal va-
cancy. Thus the energy of a vacancy can be considered as the lower bound for
a deep level energy. Based on these considerations a substitutional deep cen-
ter can be regarded as a vacancy in the lowest order of approximation. A deep
center wave function is predominantly determined by the host crystal rather
than by the impurity. One serious limitation of this model is its neglect of
lattice relaxations. Since most deep centers usually induce some lattice distor-
tion, this model cannot predict deep center energies quantitatively. However,
its use lies in predicting their chemical trends. For example, from Fig. 4.7 we
can predict that As on Ga sites and O on As sites both form deep donors
in GaAs, in agreement with experiment. Another application of this model is
the calculation of the variation of deep center energies with changes in the
host band structure. Such changes can be induced by alloying or by hydro-
static pressure. The next section is devoted to one such application in order
to understand substitutional nitrogen in GaAsP alloys. The model has been
recently used to estimate the spin–orbit splitting of acceptor ground states,
which is much smaller than ¢0 for diamond and silicon [4.20, 21].

4.3.3 Another Application of the Green’s Function Method:
Nitrogen in GaP and GaAsP Alloys

Nitrogen substituting for P in GaP is an example of an isoelectronic or isova-
lent center because N has the same valence as P. In this case the isoelectronic
centers produce localized defect levels because of the strength of V. In many
other cases, isoelectronic impurities such as phosphorus replacing As or alu-
minum replacing Ga in GaAs do not produce localized states. Instead they
generate resonant states which overlap with the band structure and hybridize
with the Bloch states. When present in sufficient concentration they can be
considered as forming a random alloy such as GaxAl1�xAs. The band structure
of these alloys can be calculated by assuming the crystal to be perfect except
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for having an average effective or virtual crystal potential. Not surprisingly this
approach is known as the virtual crystal approximation. For NP in GaP, N can
attract an electron because N is much more electronegative than P. (These
electrons can be introduced by n-type doping or by optical excitation.) The
electronegativity of N and P, as defined by Phillips, are respectively 3.0 and
1.64 [4.30]. Once N has bound an electron and become negatively charged (to
be denoted by N�), it attracts a hole just like an acceptor. As a result, N in
GaP is known as an isoelectronic acceptor. Similarly Bi (whose electronegativ-
ity of 1.24 is less than that of P) is an isoelectronic donor in GaP. Isoelectronic
impurities appear electrically neutral except within the immediate vicinity of
the impurity. Their potentials are therefore always short-ranged. The highly
localized nature of isoelectronic impurity potentials causes them to behave as
deep centers in spite of the fact that they may have very small binding en-
ergies. For example, the binding energy of an electron to NP in GaP is only
about 9 meV [4.31].

The very short-ranged potential of N in GaP is responsible for its appli-
cation in the fabrication of light-emitting diodes (LEDs). Once N has cap-
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tured an electron, its Coulomb potential dominates over the short-range po-
tential. This Coulomb potential is screened by the dielectric function of the
semiconductor as usual and hence N� behaves like a hydrogenic acceptor with
a binding energy of 11 meV [4.32]. An alternative way of looking at a hole
bound to form N� is to regard it as an electron–hole pair bound to a neutral N
(denoted by the point XN in Fig. 4.8). An electron–hole pair is also known as an
exciton. An exciton bound to an impurity like N in GaP via an attractive potential
is known as a bound exciton. Excitons and bound excitons are very important in
determining the optical properties of semiconductors and will be studied in more
detail in Chaps. 6 and 7. At this point we simply note that normally GaP is not
an efficient light emitter because it has an indirect bandgap. In order to conserve
the wave vector during optical transitions, radiative recombination of an exci-
ton in an indirect-bandgap semiconductor requires the cooperation of phonons
(Sect. 6.2.6). As a result, indirect-bandgap semiconductors have smaller light
emission probabilities than direct-bandgap semiconductors. However, excitons
bound to N in GaP have a relatively high probability of radiative recombina-
tion because the localized N centers break the translational invariance of the
crystal and thereby relax the wave vector conservation requirement in optical
transitions. As a result, GaP becomes a more efficient light emitter with the in-
troduction of N. The optical properties of impurities in GaP will be studied in
more detail in Chap. 7 when we discuss luminescence.

We now calculate the binding energy of an electron to N in GaP using the
Green’s function method. First we have to determine the impurity potential V.
Since V has a very short range we will simply assume V to be a delta function
in real space. More precisely, we assume the matrix element of V to be

〈n, R |V |n′, R′〉 � U0‰n,n′‰R,R ′‰n,0‰R,O, (4.92)

where n and n′ are band indices (with the lowest conduction band numbered
arbitrarily as 0); R and R′ are lattice vectors (with NP assumed to be the ori-
gin); and |n, R〉 denotes the Wannier function anR defined in (4.4a). When
defined in this way V is called the Slater–Koster interaction potential. Exper-
imentally it is known that N in GaP forms only one bound state inside the
energy gap. Using the result of Sect. 4.3.1 the energy E of this bound state
can be obtained by solving (4.65). Substituting V into (4.65) we obtain

1 � U0〈0, 0 | (E � H0)�1 | 0, 0〉 � 0. (4.93)

There are two ways to solve (4.93). One approach is to use a simple tight-
binding model with the minimum number of parameters, as discussed in the
last section. Another method is to use a more exact band structure obtained
by methods such as the empirical pseudopotentials method (Sect. 2.5). We
shall briefly describe the results of both approaches for comparison.

a) Tight-Binding Method

Using this method Hjalmarson et al. [4.29] have calculated the energy of an
electron bound to N in GaAs1�xPx alloys as a function of the alloy compo-
sition x. Their results are shown in Fig. 4.8. According to their calculation N
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forms a resonant state above the bottom of the conduction band in GaAs. As
the concentration of P in the alloy is increased, this resonant level gradually
moves into the bandgap and becomes a bound state. The important thing to
note is that the location of the lowest conduction minimum in the reciprocal
space changes from the zone center to the X point at x ≈ 0.5. As a result,
the slope of the lowest conduction band minimum versus x in Fig. 4.8 changes
abruptly at x ≈ 0.5. On the other hand, the deep level energy varies smoothly
with x. This is consistent with what we expect for a deep level. The energy
of a highly localized center should be determined by the entire band and not
by the lowest band minimum only, as in case of the shallow centers. The ex-
perimentally measured energies of an electron to N in the GaAsP alloys are
shown as open circles in Fig. 4.8. While the calculated energies of the N deep
level are lower than the experimental values, the measured dependence of the
deep level on alloy concentration is in very good agreement with theory. In
addition, the resonant nature of the N level in GaAs has been verified by
Wolford et al. [4.33]. Instead of varying the concentration of P, Wolford et al.
applied hydrostatic pressure to lower the conduction band minimum at X be-
low the band minimum at °. At pressures above 30 kbar (or 3 GPa), the N
deep level moved into the bandgap as in the case of increasing P concentra-
tion. Using this method, excitons bound to N in GaAs have been studied in
great detail by photoluminescence experiments, see Fig. 4.9.

b) Empirical “Energy Moment” Approach

In this approach, we change the basis function in (4.93) from the Wannier func-
tions back to Bloch functions |n, k〉. The resultant secular equation becomes

1 �
U0

N

∑
k

〈0, k | (E0, k � E)�1 | 0, k〉 � 0, (4.94)

where n � 0 denotes the lowest conduction band. Equation (4.94) can be
solved numerically. In particular, we recognize that the expression 〈0, 0 | (E �
H0)�1 | 0, 0〉 in (4.93) is related to the local DOS by the Kramers–Kronig re-
lations. So E can be computed from the DOS of the host semiconductor in a
relatively straightforward manner. Alternatively, we can obtain an analytic ex-
pression for E by introducing approximations such as expanding (E0,k � E)�1

into a series:

(E0, k � E)�1 � E�1
0, k � E�1

0, k

(
E

E0, k � E

)
� E�1

0, k

{
1 �

E
E0, k

[
1 �

E
E0, k

�

(
E

E0, k

)2

� · · ·
]}

.
(4.95)

Substituting (4.95) into (4.94) we obtain

0 � 1 �
U0

N

{∑
E�1

0, k

}
� E

U0

N

{∑
E�2

0, k

}
� E2 U0

N

{∑
E�3

0, k

}
� . . . . (4.96)
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Equation (4.96) can be expressed in a more compact form by defining “mo-
ments” of the band n � 0:

〈E�1
0 〉 �

{∑
E�1

0, k

}/
N, (4.97a)

〈E�2
0 〉 �

{∑
E�2

0, k

}/
N, (4.97b)

and so on. These moments can be calculated from the band structure. With
this notation (4.96) becomes

0 � 1 � (U0〈E�1
0 〉) � E(U0〈E�2

0 〉) � E2(U0〈E�3
0 〉) � . . . . (4.98)

In the case of N in GaP it is known that E satisfies the condition E〈E�1
0 〉 � 1,

hence we can neglect the term in (4.98) that depends on E2 and higher terms.
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This gives the approximate solution for E as

E ≈ �
[
1 � (U0〈E�1

0 〉)
]/

U0〈E�2
0 〉. (4.99)

Since we have assumed that the potential V of N in GaP is attractive, U0 is
negative. Without loss of generality we can choose the energy of the bottom of
the conduction band as zero. Since 〈E�2

0 〉 is positive, in order that E be a solu-
tion of (4.99) lying in the gap, E has to be negative. Hence 1 � (U0〈E�1

0 〉) has
to be negative also. This imposes the condition on U0 that |U0〈E�1

0 〉 | ≥ 1.
Faulkner [4.31] used the conduction band structure of GaP and the exper-

imental value of the binding energy of an electron to N to derive a value for
U0 based on the above model. Unfortunately, the value of U0 obtained does
not explain the other experimental results such as the binding energy of an
exciton to pairs of nitrogen atoms [4.34] and the properties of bound excitons
in GaAsP alloys. Furthermore, the Slater–Koster potential allows the existence
of only one bound state and therefore cannot explain the presence of excited
states. Some of these shortcomings can be traced to the fact that the expansion
in (4.95) is a good approximation only when the defect energy E is quite dif-
ferent from the band energies. In other words, the binding energy of the deep
center has to be large. This condition is not satisfied by N in GaP. In spite
of these shortcomings, this very simple model does provide a framework for
understanding qualitatively some of the properties of isoelectronic impurities
in semiconductors. It has become the starting point for later models proposed
to overcome some of its shortcomings. In one model proposed by Hsu et al.
[4.35], a long-range potential due to strain was added to the Slater-Koster po-
tential. The energies of excited states of excitons bound to N and of excitons
bound to nitrogen pairs were satisfactorily explained by choosing this long-
range potential appropriately.

4.3.4 Final Note on Deep Centers

Our quantitative discussion of deep centers so far has neglected lattice dis-
tortions (i.e., relaxation). This effect is known to play an important role in
deep defect centers such as the EL2 [4.36] and the DX centers [4.23]. These
deep centers have significant impact on semiconductor devices based on III–V
and perhaps even II–VI semiconductors. Given their importance and the
greater understanding we have now of their interesting properties, such as
metastability and lattice relaxation, we have devoted an appendix (see A4.1 in
Appendix C) to the DX centers. EL2 [4.36] and DX centers [4.23], have been
found to play important roles in semiconductor devices based on III–V and
perhaps even II–VI compound semiconductors. These defects exhibit interest-
ing properties such as metastability, persistent photoconductivity, and negative
U. Often these properties of deep centers can be understood only when lat-
tice relaxations are included. Readers interested in these topics should refer
to one of the review articles listed in the references, e. g. [4.23, 36] and to the
Appendix C on the DX Centers to be found under Section A4.1.
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PROBLEMS

4.1 Symmetrization of the Conduction Band Wave Functions in Si
for Donor Binding Energy Calculations

a) There are six conduction band minima in Si. They occur along the six equiv-
alent [100] directions inside the Brillouin zone. Use the notation X, Y, and Z
to represent the wave function for the minima occurring in the [100], [010],
and [001] directions, respectively, (X, Y, and Z for those along [100], [010],
[001]). Apply the symmetry operations of the point group Td to these six wave
functions. Show that the characters of the corresponding representation are

{E} {3C2} {6S4} {6Û} {8C3}
6 2 0 2 0

b) Using Table 2.3, show that these six wave functions form a reducible repre-
sentation which can be reduced to

A1 ⊕ E ⊕ T2.

c) By examining the basis functions in Table 2.3, show that the six wave func-
tions when written as the following linear combinations correspond to the ir-
reducible representations:

A1: (X � X � Y � Y � Z � Z)/
√

6;
E: (X � X � Y � Y)/2, (2Z � 2Z � X � X � Y � Y)/

√
12;

T2: (X � X)/
√

2, (Y � Y)/
√

2, (Z � Z)/
√

2.

4.2 Full Rotation Group and Spherical Tensors
Consider a particle moving in a spherically symmetric potential. A rotation
about an axis in the three-dimensional space is clearly a symmetry operation.
The set of all rotations can be shown to form an infinite group known as the
full rotation group (see for example books on group theory listed for Chap. 2).
All rotations through the same angle (irrespective of the axis of rotation) can
be shown to belong to the same class. Rotations by different angles belong
to different classes: there are an infinite number of classes. Hence there are
also an infinite number of irreducible representations. In quantum mechanics
we learn that the angular momentum l is a good quantum number for parti-
cles moving in spherically symmetric potentials. Their eigenfunctions are the
spherical harmonic functions {Ylm} where m � �l, �l � 1, . . . , �1, 0, 1, . . . , l.
For integral values of l, these functions turn out to be the basis functions for
the irreducible representations of the full rotation group. Hence an irreducible
representation with {Ylm} as basis functions has dimension 2l � 1. Suppose we
choose a polar coordinate system (r, £, ˇ) with the z axis as the polar axis.

a) Show that the effect of a clockwise rotation of the coordinate axes by an
angle · about the z axis on Ylm(£, ˇ) is given by

P·Ylm(£, ˇ) � exp(�im·) Ylm(£, ˇ).
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b) Show that the representation matrix of such a rotation is a diagonal matrix
with diagonal elements exp(�im·), where m � l, l � 1, . . . , 0, . . . , �l � 1, �l.
Hence show that the character for such a rotation is given by

¯l(P·) �
sin

[(
l � 1

2

)
·
]

sin(·/2)
.

The functions {Ylm} form a spherical tensor of order l and dimension 2l � 1.
For the purpose of this chapter, we need to know only {Ylm} for l � 0, 1,
and 2. For l � 0, {Ylm} is a scalar or any function that is invariant under all
rotations. The {Y1m} for l � 1 are three functions defined by

Y10 �

(
3

4

)1/2 z
r

;

Y1±1 �

(
3

8

)1/2 x ± iy
r

.

The spherical harmonic functions for l � 2 are

Y20 �

(
5

16

)1/2 3z2 � r2

r2 ;

Y2±1 � ±
(

15
8

)1/2 (x ± iy)z
r2 ;

Y2±2 �

(
15

32

)1/2 x2 � y2 ± 2ixy
r2 .

c) Suppose {Tij}, where i and j stand for x, y, and z, is now a second-rank
Cartesian tensor containing nine elements. These nine elements form a re-
ducible representation of the full rotation group.

Show that the second-rank Cartesian tensor {Tij} can be reduced to the
following three spherical tensors T(0) � {T(0)

0 }, T(1) � {T(1)
q }, T(2) � {T(2)

q } of
order 0, 1, and 2, respectively:

T(0)
0 � T11 � T22 � T33

T(1)
0 � T12 � T21

T(1)
± � ∓(1/

√
2)

[
T23 � T32 ± i(T31 � T13)

]
T(2)

0 � (3/2)1/2T33

T(2)
±1 � ∓(T13 ± iT23)

T(2)
±2 � (1/2) (T11 � T22 ± 2iT12).

4.3 Luttinger Hamiltonian in Terms of Spherical Tensors
Two spherical tensors can be multiplied together to generate another tensor
as with Cartesian tensors. For example, the scalar product of two spherical
tensors T(k) � {T(k)

q }, and U(k) � {U(k)
q } both of order k, can be defined as(

T(k) · U(k)) �
∑

q

(�1)qT(k)
q U(k)

�q.
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The tensor product [T(a) × U(b)](c)
d of two spherical tensors of orders a and b,

respectively, are spherical tensors of order c defined by[
T(a) × U(b)](c)

d � (�1)a�b�d(2c � 1)1/2
∑

i, j

[
a b c
i j �d

]
T(a)

i U(b)
j ,

where
[

a b c
i j �d

]
is the 3 � j symbol used in the addition of two angular

momenta in quantum mechanics (see, for example, Appendix C in [4.37]). Us-
ing these definitions the terms (∇∇∇ · J)2 and (∇2

xJ2
x � c.p.) inside the Luttinger

Hamiltonian HL in (2.70) can be expressed in terms of two spherical tensors of
second rank: �(2) and J(2) which can be constructed using the results of Prob-
lem 4.2 from the corresponding linear and total angular momentum operators
� and J via the second rank Cartesian tensors defined by:

�ij � �i�j � (i��/�xi)(i��/�xj) and Jlm � JlJm

show that

�2
xJ2

x � �2
yJ2

y � �2
zJ2

z �

(
1
3

)
�2J2 �

(
2

45

) (
�(2) · J(2))

�

(
1

18

) {[
�(2) × J(2)](4)

�4

�
(70)

5

1/2 [
�(2) × J(2)](4)

0 �
[
�(2) × J(2)](4)

4

}
,[

{�x�y}{JxJy} � cyclic permutations
]

�(
1
30

) (
�(2) · J(2)) �

(
1

36

) {[
�(2) × J(2)](4)

�4�

(70)
5

1/2 [
�(2) × J(2)](4)

0 �
[
�(2) × J(2)](4)

4

}
.

4.4 Average Light and Heavy Hole Masses
In Sect. 2.6.2 we have already attempted to approximate the warped heavy
and light hole bands with spherical bands by defining averaged effective
masses with (2.69a) and (2.69b):

1
m∗

hh
�

1
�2

[
�2A � 2B

(
1 �

|C |2
10B2

)]
(2.69a)

1
m∗

lh
�

1
�2

[
�2A � 2B

(
1 �

|C |2
10B2

)]
. (2.69b)

In this chapter we have presented a different approach. Using the method
of Baldereschi and Lipari [4.14] we can express the Luttinger Hamiltonian in
terms of irreducible representations of the full rotational group:

HBL �
p2

�2 �
Ì

9�2

(
�(2) · J(2)) � ‰

([
�(2) × J(2)](4)

�4

�

√
70
5

[
�(2) × J(2)](4)

0 �
[
�(2) × J(2)](4)

4

)
.
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The hole bands can be “sphericalized” by setting the cubic term, proportional
to ‰ in HBL, equal to zero. Show that, in this spherical approximation, the
energy dispersions of the heavy- and light-hole bands are given by

E(±) � �
�2Á1

2m0
(1 ± Ì)k2

and that the “sphericalized” heavy- and light-hole masses are given by

1
m∗

hh
�

1
�2

⎧⎨⎩�2A �
4
5

B

⎡⎣1 �
3
2

(
1 �

4|C |2
9B2

)1/2
⎤⎦⎫⎬⎭

1
m∗

lh
�

1
�2

⎧⎨⎩�2A �
4
5

B

⎡⎣1 �
3
2

(
1 �

4|C |2
9B2

)1/2
⎤⎦⎫⎬⎭ .

Notice that in the limit C � 0 the above masses become identical to those in
(2.69a) and (2.69b).

4.5 Kramers–Kronig Relations
Given that the imaginary part of a function F(E) is a Lorentzian:

�Im
{

F(E)
}

�
1

(E � E′)2 � °2 ,

use the Kramers-Kronig relation in (4.56) to show that the real part of F(E) is
given by

Re
{

F(E)
}

�

(
1
°

)
E � E′

(E � E′)2 � °2 .

An alternative, easier way to solve this problem “by inspection” is to note that
if F(E) is equal to the analytic function

F(E) �

(
1
°

)
1

(E � E′) � i°

then the imaginary part of F(E) is equal to the given Lorentzian.
Figure 4.10a,b shows schematically the functions Re

{
F(E)

}
and

�Im
{

F(E)}. These plots illustrate the “correlations” between functions which
are related to each other by the Kramers–Kronig relations:

• If �Im
{

F(E)
}

is symmetric with respect to the vertical axis y � E0, then
Re

{
F(E)

}
is antisymmetric with respect to y � E0.

• If �Im
{

F(E)
}

is always positive and large over only a limited range of
values of E; E1 � E � E2, then Re

{
F(E)

}
will be negative for E well

below E1 but positive for E much larger than E2.
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Fig. 4.10. Schematic plots of
the functions (a) Re{F(E)}
and (b) �Im{F(E)} defined
in Problem 4.5

S UMMARY

This chapter dealt with the study of the electronic properties of defects in
semiconductors because electrically active defects play an important role in
the operation of many semiconductor devices. Since defects come in many
different forms we restricted our discussions to point defects only. These are
separated into donors and acceptors and further divided into shallow or hy-
drogenic centers and deep centers. For shallow centers we introduced the
effective mass approximation for calculating their energies and wave func-
tions. Properties of shallow centers were shown to be very similar to those
of the hydrogen atom except for effective mass anisotropy and other cor-
rections arising from the host crystal lattice. Hence energy levels of shallow
centers are sometimes referred to as hydrogenic levels. Many defect centers
cannot be understood within this approximation and they are referred to as
deep centers. Properties of deep centers are often determined by potentials,
localized within one unit cell, known as central cell corrections. These local-
ized potentials are difficult to handle. We have, therefore, presented only
a rather rudimentary Green’s functions approach to calculating deep cen-
ter energies. This approach was applied to explain the chemical trends of
deep levels in tetrahedrally bonded semiconductors and to the special case
of isovalent (substitutional nitrogen) impurities in GaAsP alloys. A very se-
rious limitation of our approach is the neglect of lattice relaxations, which
are often associated with deep centers.
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In Chap. 4 we studied electrons and holes located around defects. Since these
electrons and holes are immobile they are known as bound electrons and holes,
respectively. In contrast, electrons in the conduction band and holes in the va-
lence band of a semiconductor can carry electrical current. Hence they are re-
ferred to as free carriers. In this chapter we will study the effect of an external
electric field on free carriers in a semiconductor. The response of these carri-
ers to an electric field depends on the field strength. We will first consider the
case of weak electric fields, where the behavior of carriers can be described by
Ohm’s law. Under high electric fields, carriers in a semiconductor can acquire
so much energy that their average kinetic energy becomes higher than that of
the lattice. Such energetic electrons are known as hot electrons. It is very dif-
ficult to calculate their properties analytically, therefore our discussions of hot
electrons will be qualitative.

5.1 Quasi-Classical Approach

Let F represent a weak external static electric field applied to a semiconduc-
tor. We can assume without loss of generality, that this semiconductor con-
tains only free electrons (i. e., it is an n-type semiconductor). For simplicity,
we will assume that the concentration of free electrons is low enough that we
can neglect their interactions with each other (such as collision and screening
effects). We will also neglect local field effects due to ionic charges, i. e. the
field experienced by every free electron is assumed to be equal to the external
applied field. Now let º be the electric potential associated with the applied

P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, Graduate Texts in Physics, 4th ed., 
DOI 10.1007/978-3-642-00710-1_5 , © Springer-Verlag Berlin Heidelberg 2010 
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field. The wave equation for the time evolution of an electron in a semicon-
ductor under the influence of º is given by

(H0 � eº)„(r, t) � i�
�„
�t

, (5.1)

where H0 is the one-electron Hamiltonian (in the absence of external pertur-
bations) that we have already studied in Sect. 2.1, e is the magnitude of the
electronic charge and „(r, t) is the electron wave function in the presence of
the external field. As long as º is small and does not vary rapidly in space,
we can use the effective mass approximation (Sect. 4.2.1) to solve (5.1). The
approach is very similar to the way we handled the donor electron problem in
Sect. 4.2. The difference is that, in the present case, we are interested in the
nonstationary solutions, which produce a current in response to the applied
field. This requires the expectation value of ev to be evaluated where v is the
electron velocity operator. The current density operator j is then defined as

j � nev, (5.2)

where n is the electron density. As we saw in Sect. 4.2, solving the Schrödinger
equation within the effective mass approximation is quite an involved process.
Instead of the fully quantum mechanical approach, we will adopt here a quasi-
classical approach [5.1]. We shall derive a classical equation of motion for our
electron in the external field based on the effective mass approximation.

As we discussed in detail in Sect. 4.2.1, a wave equation for Bloch waves
such as (5.1) can be replaced by an effective wave equation for the envelope
functions C(R, t). For simplicity we shall assume that our electron is in an
isotropic and nondegenerate conduction band with an energy minimum at the
zone center (k � 0) and a dispersion given by

Ec(k) � Ec(0) �
�2k2

2m∗ , (5.3)

where m∗ is the effective mass. These assumptions are valid for electrons in
direct bandgap semiconductors such as GaAs and InP but not for Si and Ge.
Within the effective mass approximation the wave equation for the envelope
functions can be written as [see (4.22)][

Ec(0) �

(
�

2m∗

)
�2

�R2 � eº(R)

]
C(R, t) ≈ i

��

�t
C(R, t). (5.4)

Instead of solving (5.4), we argue that the net effect of the crystal potential
on the motion of this electron inside the semiconductor is to cause its mass
to change from the value in free space to m∗. This suggests that, as a sim-
ple approximation, we can describe the motion of this electron in an external
electric field by a classical equation of motion (see, for example, [5.1])
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m∗ d2r
dt2 �

m∗

Ù

(
dr
dt

)
� �eF, (5.5)

where r is the position of the electron and Ù is a phenomenological scattering
time introduced to account for the scattering of the electron by impurities and
phonons. Equation (5.5) is considered quasi-classical because the concept of
an effective mass for the electron motion has been derived quantum mechan-
ically.

Once we have established (5.5), the motion of any charge q can be de-
rived via classical mechanics. For example, under the influence of F a sta-
tionary charge will accelerate. As its velocity increases, the retardation term
(m∗/Ù) (dr/dt) will also increase. Eventually the retardation term will cancel
the term due to F and a steady state in which the charge has no acceleration
is attained. The steady-state velocity of the charge is known as its drift veloc-
ity vd. It is obtained from (5.5) by setting the acceleration term m∗(d2r/dt2) to
zero and denoting by q the electronic charge �e:

vd � qFÙ/m∗. (5.6)

The current density J at steady state is related to vd by

J � nqvd. (5.7)

Combining (5.6 and 7) we obtain an expression for the current density:

J � nq2FÙ/m∗. (5.8)

The second-rank conductivity tensor ÛÛ is defined in general by

J � ÛÛ · F. (5.9)

For the case of an isotropic conduction band ÛÛ is a diagonal tensor with all
diagonal elements given by

Û � nq2Ù/m∗. (5.10)

Since Û depends on q2, the contributions to the conductivity of a semiconduc-
tor from electrons and holes always add. Semiconductors differ from metals in
that their carrier densities can be varied widely by changing the temperature
or the dopant concentration. It is therefore convenient to factor out the depen-
dence of Û on n. This can be accomplished by defining a carrier mobility Ì as

vd � ÌF. (5.11)

Combining (5.6 and 11) we obtain

Ì � qÙ/m∗. (5.12)

In a semiconductor containing both free electrons and free holes Û is given by

Û � e(neÌe � nhÌh), (5.13)

where the subscripts e and h refer to electrons and holes, respectively.
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5.2 Carrier Mobility for a Nondegenerate Electron Gas

The expressions we derived in the previous section are valid when all the car-
riers have the same scattering time. We will now generalize these expressions
to the case where the carriers are distributed in a band according to the Boltz-
mann distribution [to be defined later in (5.22)] and the scattering time de-
pends on the carrier energy.

5.2.1 Relaxation Time Approximation

We define the distribution function fk(r) of a carrier as the probability that a
band state with energy Ek will be occupied by this carrier at a carrier tem-
perature T. We assume that in the absence of an external field the carriers
are at thermal equilibrium, so that fk is equal to the Fermi–Dirac distribution
function:

(5.14)f 0
k �

1
exp[(Ek � ÌF)/(kBT)] � 1

,

where Ì F is the chemical potential (also called Fermi energy when T ≈ 0) and
kB the Boltzmann constant. The equation governing the variation of fk in the
presence of an external perturbation is known as the Boltzmann equation:

dfk

dt
�

(
�fk

�t

)
field

�

(
�fk

�t

)
diff

(
�fk

�t

)
scatt

. (5.15)�

Equation (5.15) includes the effects on fk due to the applied field, the diffu-
sion of carriers, and the scattering of carriers by phonons, impurities, etc. For
simplicity, we shall assume that the diffusion term is negligible and the applied
field F is small enough that we can expand fk about f 0

k as a function of F:

fk � f 0
k � gk(F). (5.16)

With this approximation we can write (�fk/�t)field as(
�fk

�t

)
field

≈
(

�f 0
k

�Ek

) (
dEk

dt

)
�

(
�f 0

k

�Ek

)
qvk · F, (5.17)

where vk is the velocity of carriers with wave vector k. Within the relaxation
time approximation, we assume that the net effect of the scattering processes
is to cause gk to relax with a time constant Ùk, so that(

�fk

�t

)
scatt

≈ �
gk

Ùk
. (5.18)

After substituting (5.17) and (5.18) into (5.15) we obtain

gk �

(
�

�f 0
k

�Ek

)
qÙkvk · F. (5.19)
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The corresponding generalized expression for the current density is now given
by

j �

∫
qfkvkdk �

∫
qgkvkdk (5.20)

� q2
∫

Ùkvk

(
�

�f 0
k

�Ek

)
(vk · F)dk, (5.21)

since
∫

qf 0
k vkdk � 0. Using (5.21) the corresponding expressions for Û and Ì

can be easily obtained.

5.2.2 Nondegenerate Electron Gas in a Parabolic Band

As an example of how to apply (5.21) we will consider the simple case of
a nondegenerate electron gas in a parabolic band with an isotropic effective
mass m∗ in a cubic crystal. In such crystal j and vk are parallel to F, at least in
the region where Ohm’s law holds. The distribution function (5.14) for a non-
degenerate electron gas can be approximated by the Boltzmann distribution:

f 0
k ∝ exp

[
� Ek/(kBT)

]
(5.22)

so that

�f 0
k

�Ek
∝ �

1
kBT

exp
(

�Ek

kBT

)
. (5.23)

The integration over k-space in (5.21) can be replaced by an integration over
the energy Ek using the density of states (DOS) introduced in Sect. 4.3.1. For
a parabolic band in three dimensions, the DOS D(E) is given by (including
spin degeneracy):

D(E) �
1

2 k2 dk
dE

�
1

22

(
2m∗

�2

)3/2

E1/2. (5.24)

Substituting these results into (5.21) we can calculate j and hence Û:

Û �

(
q2

32m∗kBT

) (
2m∗

�

)3/2 ∫ ∞

0
Ù(E)E3/2 exp

(
� E/(kBT)

)
dE. (5.25)

In analogy with (5.10) we can define an average scattering time 〈Ù〉 by

Û �
1

m∗

∫ ∞

0
D(E)q2〈Ù〉dE. (5.26)

Comparing (5.25) and (5.26) we obtain

〈Ù〉 �

(
2

3kBT

) ∫ ∞
0 Ù(E)E3/2 exp

[
� E/(kBT)

]
dE∫ ∞

0 E1/2 exp
[
� E/(kBT)

]
dE

. (5.27)

Using 〈Ù〉 we can express the mobility for a nondegenerate electron gas as

Ì � q〈Ù〉/m∗. (5.28)
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From the expression for 〈Ù〉 we notice that the mobility depends on the
electron temperature T. In order to calculate this temperature dependence, it
is necessary to know the dependence of the scattering mechanisms on electron
energy.

5.2.3 Dependence of Scattering and Relaxation Times on Electron Energy

Carriers in a semiconductor are scattered by their interaction with the follow-
ing excitations [Ref. 5.2, pp. 82–183]:

• phonons: both acoustic and optical,
• ionized impurities,
• neutral defects,
• surfaces and interfaces,
• other carriers (e. g., scattering between electrons and holes).

In order to calculate the relaxation time Ùk to be used in (5.18), we have
to first consider the effect of scattering on fk. Let us define P(k, k′) as the
probability per unit time that an electron with wave vector k will be scattered
into another state k′. Once this scattering rate is known the rate of change of
fk caused by scattering can be calculated with the equation(

�fk

�t

)
scatt

�
∑
k′ ��k

[
P(k′, k)fk′(1 � fk) � P(k, k′)fk(1 � fk′)

]
. (5.29)

The first term inside the square brackets represents the rate at which an elec-
tron at k′ will be scattered into the state at k, while the second term is the
rate for scattering out of the state k into k′. The summation is over all pro-
cesses which conserve both energy and wave vector. If we assume as before
that the electron gas is nondegenerate, then fk and fk′ are small and can be
neglected compared with unity. Applying the principle of detailed balance,
P(k′, k)f 0

k′ � P(k, k′)f 0
k , see [5.3], (5.29) simplifies to

�

(
�fk

�t

)
scatt

�
∑
k′ ��k

P(k, k′)
[
fk � (fk′ f 0

k

/
f 0
k′)

]
. (5.30)

In general, (�fk/�t)scatt cannot be expressed as �(fk � f 0
k )/Ùk as assumed in

the relaxation time approximation. Only with more assumptions do we obtain
an expression of the form (Problem 5.2)(

�fk

�t

)
scatt

� �(fk � f 0
k )

⎛⎝∑
k′ ��k

P(k, k′)

⎞⎠ , (5.31)

from which a scattering time Ùs can be defined as

(1/Ùs) �

�

∑
k′ k

P(k, k′), (5.32)
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where the summation is over all the final states k′ that satisfy both energy
and momentum conservation. However, Ùs represents the residence time of
the electron in state k before being scattered and is not the same as Ùk, which
is equal to the time it takes a perturbed distribution to return to equilibrium.
In order for thermal equilibrium to be achieved, carriers have to be scattered
in and out of a state many times. When P(k, k′) is known, it is possible to
calculate Ùk numerically by following the time evolution of the distribution
function of an electron gas using a Monte Carlo simulation technique [5.4, 5].

5.2.4 Momentum Relaxation Times

We shall now obtain analytical expressions for Ùk by making some approxima-
tions. One approach is to equate Ùk to a momentum relaxation time Ùm. We
can argue that the most important effect of scattering on electron transport is
the randomization of the electron velocity. The relevant quantity is a momen-
tum relaxation rate defined by

〈dk/dt〉 � k(Ùm)�1 �
∑
k′ ��k

(k′ � k)P(k, k′). (5.33)

The scattering rate P(k, k′) can be calculated using Fermi’s Golden Rule

P(k, k′) � (2/�)|〈k |Hscatt |k′〉|2Úf, (5.34)

where Hscatt is the Hamiltonian for the scattering processes which conserve
both energy and wave vector, and Úf is the density of final states k′ per unit
volume of crystal. Of the scattering processes listed earlier, the ones most ef-
fective in randomizing the electron momentum are those with impurities and
with phonons. Scattering by the static potential of impurities is elastic. Scatter-
ing by acoustic phonons is nearly elastic (quasi-elastic) because of the small
energy transfers involved; the average scattering angles are large. As we saw
in Chap. 3, optical phonons in semiconductors have energies in the range of
tens of meV, therefore scattering between electrons and optical phonons is in-
elastic.

We will now calculate the individual rates for these scattering processes.
Afterwards these rates can be added together to calculate the total scattering
rate whose inverse is a measure of the relaxation time.

a) Intraband Scattering by Acoustic Phonons

We will assume that an electron with initial energy Ek and wave vector k is
scattered to another state with energy Ek′ and wave vector k′ via the emission
of an acoustic phonon with energy Ep and wave vector q. Since the total en-
ergy and wave vector of the electron and phonon have to be conserved in the
scattering in a periodic lattice, the initial and final electron energies and wave
vectors are related by the equations (for the case of phonon emission)

Ek′ � Ek � Ep and k′ � k � q. (5.35)
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For an acoustic phonon with a small q, Ep is related to q by

Ep � �vsq, (5.36)

where vs is the phonon velocity. For simplicity we shall assume vs to be
isotropic.

We shall further assume that the electron is in a parabolic band with ef-
fective mass m∗ and it is scattered by acoustic phonons within the same band
(this is known as intraband scattering). Since the scattering process conserves
energy and wave vector, the allowed values of q are obtained by combining
(5.35) and (5.36) into

(�2/2m∗) (k2 � |k � q |2) � �vsq (5.37)

and solving for q. The final electronic states, after emission of an acoustic
phonon, are shown schematically in Fig. 5.1a. From this picture it is clear that
the allowed values of q lie between a minimum (qmin) and a maximum (qmax).
For k � mvs/�, qmin is zero while qmax is reached when k′ is diagonally oppo-
site to k, i. e., when the electron is scattered by 180◦ (backscattering). From
(5.37) qmax can easily be calculated to be

qmax � 2k � (2mvs/�). (5.38)

The energy lost by the electron in emitting this phonon is

Ek � Ek′ � �vsqmax � 2�vsk � 2mv2
s . (5.39)

To estimate the order of magnitude of these quantities, we will assume
the following values of the parameters involved: m∗ � 0.1m0 (m0 is the free
electron mass), vs � 106 cm/s, and Ek � 25 meV (roughly corresponding to
room temperature times kB). For this electron k � 2.6 × 106 cm�1, qmax �
5 × 106 cm�1 ≈ 2k, k′ � 2.4 × 106 cm�1 (k′ ≈ �k) and Ek � Ek′ � 3.3 meV.
In emitting an acoustic phonon with wave vector qmax, the electron completely

Ek

k

Ek

k

Acoustic
phonon

q

q2max

q2min

ELO

Optical 
phonon

(b)(a)

Fig. 5.1. Schematic diagrams for the scattering of an electron in a parabolic band by emis-
sion of (a) an acoustic phonon and (b) a longitudinal optical (LO) phonon showing the
final electronic states and also the range of phonon wave vectors allowed by wave vector
conservation
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reverses its direction but its energy changes by only about 13 %. Thus scatter-
ing between electrons and acoustic phonons is nearly elastic (or quasi-elastic)
and the main effect of these collisions is the relaxation of electron momen-
tum.

Using (5.34) we shall now calculate the probability PLA(k, q) that an elec-
tron in a parabolic and nondegenerate band will emit a LA phonon of wave
vector q. First we shall consider only the deformation potential mechanism
and use the electron LA–phonon interaction Hamiltonian He�LA defined in
(3.21 and 22). The scattering matrix element in (5.34) will now be written
as |〈k, Nq |He�LA |k′, N′

q〉|2, where |k, Nq〉 represents the initial state with the
electron in state k and the occupation number (for a definition see Sect. 3.3.1,
p. 126) of LA phonons with wave vector q equal to Nq. Similarly, |k′, N′

q〉 is
the final state, where the phonon occupation number is changed to N′

q and the
electron is scattered to state k′. We will be interested in one-phonon scatter-
ing only, i. e., N′

q differs from Nq by ±1. Since our goal here is to calculate
the temperature dependence of the electron mobility with (5.27), we are con-
cerned only with the dependence of PLA on electron energy and temperature.
As discussed already in Sect. 3.3.1, we can express |〈k, Nq |He�LA |k′, N′

q〉|2 as

|〈k, Nq |He�LA |k′, N′
q〉|2 ∝ q

(
Nq � 1

2 ± 1
2

)
, (5.40)

where the �(�) sign in (5.40) corresponds to emission (absorption) of a
phonon by the electron. As also shown in Sect. 3.3.1, Nq at room tempera-
ture can be approximated by kBT/(�vsq) 
 1, so that |〈k, Nq |He�LA |k′, N′

q〉|2
is proportional to Nq 
 1 for both phonon emission and absorption. As a
result, we can deduce the following dependence of PLA on T and Ek

PLA(k) �
∑

q

PLA(k, q) ∝
∫

qNq‰[Ek � Ek′ � �vsq]dq. (5.41)

Using polar coordinates, (5.41) can be expressed as

PLA(k) ∝
qmax∫
0

q3(T/q)dq

∫
0

‰
{[

�2q/(2m)
]
(2k cos £�q)��vsq

}
d(cos £) (5.42a)

≈ Tq2
max/k, (5.42b)

where £ is the angle between k and q. Since qmax is approximately equal to
2k, PLA is roughly proportional to kT. Thus the PLA produced by the defor-
mation potential mechanism depends on the electron energy Ek and tempera-
ture as (see Problem 5.3)

PLA ∝ T(Ek)1/2. (5.43)

In noncentrosymmetric crystals, carriers can be scattered by both LA and TA
phonons via the piezoelectric interaction (Sect. 3.3.3). Again we are interested
mainly in the energy dependence of the corresponding scattering matrix ele-
ment: |〈k, Nq |Hpe |k′, N′

q〉|2. From (3.30) and (3.22) we obtain

|〈k, Nq |Hpe |k′, N′
q〉|2 ∝ (1/q)

(
Nq � 1

2 ± 1
2

)
. (5.44)
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Unlike |〈k, Nq |He�LA |k′, N′
q〉|2, the constant of proportionality in (5.44)

depends, in general, on the direction of q, so we cannot simply substitute
(5.44) into (5.41) to calculate the electron–phonon scattering rate due to the
piezoelectric interaction. However, by comparing the dependence on q in (5.44
and 40) it is clear that the piezoelectric interaction is more important for
small-q phonons. Since phonons with small q are less effective in relaxing car-
rier momentum, we may argue that the piezoelectric interaction is less impor-
tant than the deformation potential interaction in momentum relaxation. This
is only true if the electromechanical constants are small, such as for semi-
conductors with low ionicity. In more ionic crystals, such as II–VI compound
semiconductors, the piezoelectric interaction tends to dominate over the de-
formation potential interaction [5.6]. If we can assume the constant of propor-
tionality in (5.44) to be independent of the direction of q, then it is straight-
forward to show (Problem 5.4) that the piezoelectric electron–acoustic-phonon
scattering rate Ppe is proportional to

Ppe ∝ T(Ek)�1/2. (5.45)

This expression is obviously not valid for very low energy electrons. When Ek

is small, the wave vector q of the acoustic phonons involved in the scattering
will be small also. Usually, in the case under consideration, corresponding to
(5.45), free carriers are also present in the semiconductor, and therefore the
macroscopic piezoelectric field associated with these long-wavelength phonons
will be screened by the free carriers. For a nondengenerate electron gas this
screening effect can be included by introducing a screening wave vector q0,
which is defined as the reciprocal of the Debye screening length ÏD, see [Refs.
5.1, p. 151; 5.2, p. 179; 6.10, p. 497]

q2
0 �

1
Ï2

D
�

4Ne2

4Â0ÂskBT
, (5.46)

where Âs is the static dielectric constant. The result is that the matrix element
|〈k, Nq |Hpe |k′, N′

q〉|2 in (5.44) should be replaced by

|〈k, Nq |Hpe |k′, N′
q〉|2 ∝

(
q3

(q2 � q2
0)2

)
(Nq � 1

2 ± 1
2 ). (5.47)

Notice that (5.44) is recovered if q0 � 0. When the screening effect is in-
cluded in (5.47), i. e., q0 �� 0, |〈k, Nq |Hpe |k′, N′

q〉|2 approaches zero as q → 0.
Similarly Ppe goes to zero, rather than diverging like in (5.45), as the electron
energy decreases to zero. Figure 5.2 shows qualitatively the dependence of Ppe
on electron energy.

From (5.41) we see that carriers are more likely to be scattered by LA
phonons with large q via the deformation potential interaction. Since these
phonons are more effective in randomizing the carrier momentum, acoustic
phonon scattering (via the deformation potential interaction) is the dominant
mechanism for momentum relaxation of carriers at room or lower temper-
atures in most semiconductors except for the very ionic ones. The acoustic
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E0

Ppe

h q
8m*

2 2
0

Fig. 5.2. Sketch of the dependence on
the energy of an electron of the rate of
scattering (Ppe) by acoustic phonons via
the piezoelectric electron–phonon inter-
action [Ref. 5.2, Fig. 3.20]

phonon scattering time for conduction electrons in GaAs (via deformation po-
tential interaction only) has been calculated by Conwell and Vassel [5.8]. Their
results are shown in Fig. 5.3. Notice that this scattering time is of the order
of several picoseconds (one picosecond is equal to 10�12 s and abbreviated as
ps) in GaAs (Problem 5.3), and notice also how it decreases with increasing
electron energy as predicted by (5.43).
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Fig. 5.3. Momentum relaxation times of a conduction electron in the ° valley of GaAs
as a function of electron energy. Scattering by: small wave vector LA phonons (Ùac) via
the deformation potential interaction; small wave vector optical phonons (Ùpo) via the
Fröhlich interaction and via zone-edge phonons from ° to the X valleys (Ù1→2) calculated
by Conwell and Vassel [5.8]. Notice that the deformation potential for the ° to X inter-
valley scattering has been assumed to be either 1 × 108 or 5 × 108 eV/cm. These values
are smaller than the now accepted value of 109 eV/cm [5.9]
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b) Intraband Scattering by Polar Optical Phonons

Optical phonons in semiconductors typically have energies of the order of tens
of meV (Chap. 3). Hence at low temperatures (T � 100 K) most electrons do
not have sufficient energy to emit optical phonons. In addition, the thermal
occupation number Nq of optical phonons is very low, and consequently the
probability of an electron absorbing an optical phonon is small also. Thus, op-
tical phonon scattering processes are negligible at low temperatures. On the
other hand, at room temperature, where there are sufficient high-energy elec-
trons to emit optical phonons, they tend to dominate over acoustic phonon
scattering. This is particularly true in polar semiconductors, where the Fröhlich
electron–phonon interaction (Sect. 3.3.5 and Fig. 5.3) can be very strong. The
distribution of final electronic states after optical phonon scattering is shown
schematically in Fig. 5.1b. While scattering by acoustic phonons relaxes mainly
the electron momentum, scattering by optical phonons contributes to both mo-
mentum and energy relaxation.

The LO phonon scattering probability (PLO) corresponding to PLA(k) in
(5.42) can be shown to be [Ref. 5.2, p. 115, 5.10]

PLO ∝
∞∫

0

(
q2

(q2 � q2
0)2

)
q2dq

∫
0

d(cos £)
{

NLO‰[Ek′ � (Ek � ELO)]

� (NLO � 1)‰[Ek′ � (Ek � ELO)]
}

, (5.48)

where NLO and ELO are, respectively, the LO phonon occupation number and
energy. For simplicity we have assumed that the LO phonon is dispersion-
less, which is usually a good approximation since only phonons with q �∼ q0
contribute significantly to (5.48). The term inside the first set of parentheses
comes from the Fröhlich matrix element, including screening. The terms pro-
portional to NLO and NLO �1 are identified with phonon absorption and emis-
sion, respectively. As a result of wavevector conservation in (5.35), (5.48) can
be expressed as

PLO ∝
∞∫

0

(
q4

(q2 � q2
0)2

)
dq

∫
0

{
NLO‰

[(
�2q
2m

)
(k cos £ � q) � ELO

]

�(NLO � 1)‰

[(
�2q
2m

)
(�k cos £ � q) � ELO

]}
d(cos £). (5.49)

Integrating over £ results in the following expression for PLO:

PLO ∝ NLO

q1 max∫
q1 min

(
q3

(q2 � q2
0)2

)
dq � (NLO � 1)

q2 max∫
q2 min

(
q3

(q2 � q2
0)2

)
dq, (5.50)

where qi max and qi min are, respectively, the maximum and minumum values
of the LO phonon wave vector for phonon absorption (i � 1) and phonon
emission (i � 2) (Problem 5.5). From Fig. 5.1b one can easily identify the
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electron final states corresponding to the minumum and maximum values of
q. Since qi min is nonzero for optical phonons, the screening wave vector in
(5.50) is not as important as for piezoelectric acoustic phonons, except in the
case of highly doped semiconductors. If we neglect q0 in (5.50), PLO decreases
as 1/q and scattering by small-q LO phonons is more likely than by large-q
LO phonons. In contrast to the case of acoustic phonon scattering, scattering
between electrons and LO phonons tends to relax the electron energy rather
than its momentum.

The momentum relaxation time of an electron due to LO phonon scatter-
ing can be deduced from (5.50) using (5.33). The result is [Ref. 5.2, p. 118](

1
Ùm

)
∝ NLO

(
Ek � ELO

Ek

)1/2

� (NLO � 1)
(

Ek � ELO

Ek

)1/2

�

(
ELO

Ek

) [
�NLO sinh�1

(
Ek

ELO

)1/2

� (NLO � 1) sinh�1
(

Ek � ELO

ELO

)1/2
]

. (5.51)

A plot of the relaxation time for electrons in GaAs due to LO phonon scattering
(via the Fröhlich interaction) is shown in Fig. 5.3 under the label Ùpo. Typically
the relaxation time due to scattering by LO phonons is less than 1 ps.

c) Intervalley Scattering

The role of intervalley scattering in electron relaxation is different in direct
and indirect bandgap semiconductors. In direct bandgap semiconductors, such
as GaAs and InP, intervalley scattering is important only for electrons with
sufficient energy to scatter into the higher conduction band valleys. Since these
valleys are several tenths of an eV above the conduction band minimum at
zone center, in these semiconductors intervalley scattering is important only
for their hot electron transport properties. This will be discussed in more de-
tail in Sect. 5.4. The situation is quite different in indirect bandgap semicon-
ductors, such as Si and Ge. In these materials the electrons are located in
conduction band minima which are not at zone center and are degenerate. In
addition to intraband scattering by phonons, electrons can be scattered from
one degenerate valley to another via intervalley scattering. In both materials
the latter scattering processes turn out to be more important than the intra-
band processes in relaxing the momentum and energy of conduction electrons.
In this section we shall consider only intervalley scattering of electrons in in-
direct bandgap semiconductors.

As an example, we discuss the case of Si, where the conduction band
minima occur along the six equivalent [100] directions (¢1) at about 0.83
of the distance from zone center to the zone edge. Electrons in one of the
minima (say in the [100] direction) can be scattered either into the valley
along the [100] direction or into one of the four equivalent [0,±1,0] and
[0,0,±1] valleys (Fig. 5.4a). The former process is known as a g-process and the
phonon involved is known as a g-phonon while the latter processes are called
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Fig. 5.4a,b. Schematic diagram of the intervalley scattering processes for electrons in the
conduction band minimum of Si showing the phonon wave vectors involved in the g- and
f-processes [Refs. 5.2 (Fig. 3.16), 5.11]. ¢K is given in units of (2/a0).

f-processes. For both processes the electron valley after scattering can lie in
the same Brillouin zone or in an adjacent one (Fig. 5.4b). The former process
is known as a normal process, the latter as an umklapp process [Ref. 5.7, p.
146]. As shown in Fig. 5.4b, the wave vector ¢Kg (note that, in order to show
both the g- and f-phonons in this figure, the g-phonon is now chosen along
the [001] direction) of the phonon mediating the normal g-process is about
1.7 times the Brillouin zone length along the X axis. On the other hand, the
phonon wave vector (ÛÛg) of the umklapp g-process is only ≈ 0.34 of the Bril-
louin zone edge (measured from the zone center) in the [001] direction. The
reciprocal lattice vector involved in the g umklapp process, denoted by K001,
is also along the X direction. The f-phonon ¢Kf is approximately equal to
1.2 times (2/a0)(1,±1, 0), a0 being the size of the unit cube in Si. The wave
vector lies outside the first Brillouin zone. Hence both g- and f-processes re-
quire phonons with wave vectors outside the first Brillouin zone. Thus in the
reduced zone scheme only umklapp processes are allowed. Combined with a
reciprocal lattice vector K111 � (2/a0)(1, 1, 1), the resultant umklapp wave
vector ÛÛf is about 11◦ off the [001] direction (™1 symmetry) with length al-
most exactly equal to that of the zone-boundary value along that direction
(Fig. 5.4b). The symmetries and energies of intervalley phonon modes allowed
by group theory in Si are (see Fig. 3.1 and [5.2], p. 110)
g-process: ¢′

2 (LO), 63 meV
f-processes: ™1 (LA, TO; 45 and 57 meV; an average of 54 eV was used in

[5.2], p. 110).
The corresponding selection rules for intervalley scattering in III–V com-
pounds have been derived by Birman et al. [5.12].

In order to fit the temperature dependence of the mobility of Si it was
found necessary to include a contribution to intervalley scattering from a
phonon of 16 meV energy [5.11]. According to the phonon dispersion curves
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of Si, this 16 meV phonon (Fig. 3.1; 16 meV ⇔ 130 cm�1 ⇔ 3.9 THz) can
be attributed to an LA mode with wave vector about 0.3 times the zone
boundary, corresponding to the g umklap process of Fig. 5.4. This process
is strictly speaking forbidden since the corresponding matrix element has
¢1 ⊗ ¢1 ⊗ ¢2′ � ¢2′ symmetry and therefore vanishes. The presence of such
processes, required by the first of the resistivity vs T curve has been explained
by expanding the electron–phonon interaction as a function of phonon wave
vector beyond the lowest (zeroth) order term [5.13]. Except for the higher or-
der electron–phonon interactions, the calculation of the intervalley scattering
rates is similar, in principle, to that for acoustic phonons in direct bandgap
semiconductors. In practice the calculation is complicated by the anisotropy in
the electron mass in Si. Assuming for the sake of simplicity an isotropic mass,
we find that the intervalley scattering rate due to the zeroth-order electron–
phonon interaction is given by

(1/Ùiv) ∝ Nq(Ek � Ep)1/2 � (Nq � 1)(Ek � Ep)1/2U(Ek � Ep), (5.52a)

where Ep is the phonon energy and U(x) is the step function:

U(x) �

{
0 for x � 0,
1 for x ≥ 0.

(5.52b)

Readers interested in the contribution to the scattering rate from the first-order
electron–phonon interaction should consult either [5.13] or [Ref. 5.2, p. 110].

d) Scattering by Impurities

Typically a semiconductor contains defects such as impurities and dislocations.
Carriers are scattered elastically by these defects, the details of the scattering
mechanism depending on the defect involved. Here we will concern ourselves
with scattering by the most common kind of defects, namely, charged impu-
rities. Free carriers are produced in semiconductors by ionization of shallow
impurities (except in the intrinsic case where they are produced by thermal
ionization across the gap). As a result, free carriers will, in principle, always
be scattered by the ionized impurities they leave behind. A way to avoid this
will be presented in the next section.

Our approach to calculating impurity scattering rates will be different from
the approach for phonon scattering. Phonons are quantized lattice waves with
well-defined wave vectors and therefore they scatter electrons from one Bloch
state to another. Impurity potentials are localized in space. Hence they do not
scatter electrons into well-defined Bloch states. This problem can be treated
quantum mechanically using scattering theory and what is referred to as the
Brooks–Herring approach [Refs. 5.2, p. 143; 5.14]. In this approach the impu-
rity potential is approximated by a screened Coulomb potential. The screening
can be either Debye [with the screening length of (5.46)] or Thomas–Fermi
[Ref. 5.7, p. 266]. The scattering cross section is calculated within the Born ap-
proximation. The quantum mechanical results obtained by Brooks [5.14] are
not too different from the classical results obtained earlier by Conwell and
Weisskopf [5.15] so we shall first consider the Conwell–Weisskopf approach.
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Conwell–Weisskopf Approach. In this approach an electron is assumed to be
scattered classically via Coulomb interaction by an impurity ion with charge
�Ze. The corresponding scattering cross section is calculated in exactly the
same way as for the Rutherford scattering of · particles [5.16]. The scattering
geometry of this problem is shown schematically in Fig. 5.5. The scattering
cross section Û as a function of the scattering angle £ is given by

Û(£)dø � 2b d |b | (5.53)

where dø is an element of solid angle, b is known as the impact parameter.
and d |b | is the change in |b | required to cover the solid angle dø. The im-
pact parameter and the solid angle dø are related to the scattering angle by

b � K cot(£/2); dø � 2 sin £d£ (5.54)

where K is a characteristic distance defined by

K �
Ze2

mv2
k

(5.55)

and vk is the velocity of an electron with energy Ek � mv2
k/2. If dø and d |b |

are expressed in terms of d£, (5.53) can be simplified to

Û(£) �

(
K

2 sin2(£/2)

)2

. (5.56)

The well-known dependence of Û on the electron velocity to the power of �4
in Rutherford scattering is contained in the term K2. The scattering rate R
(per unit time) of particles traveling with velocity v by N scattering centers
per unit volume, each with scattering cross section Û, is given by

R � NÛv. (5.57)

Since scattering by impurities relaxes the momenta of carriers, but not their energy,
we can define a momentum relaxation time Ùi due to impurity scattering by

1/Ùi � Nivk

∫
Û(£)(1 � cos £)2 sin £ d£, (5.58)

where Ni is the concentration of ionized impurities. Within the integrand, the
term (1 � cos £) is the fractional change in the electron momentum due to
scattering event and the term 2 sin £ d£ represents integration of the solid
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angle ø. In principle, £ has to be integrated from 0 to . The divergence of
(5.56) at £ � 0 makes the integral in (5.58) diverge. This problem can be
avoided by arguing that b cannot be larger than a maximum value bmax equal
to half of the average separation between the ionized impurities:

bmax � 1
2 N�1/3

i . (5.59)

As a result the minimum value of £ allowable in (5.58) is

£m � 2 cot�1(bmax/K). (5.60)

Integrating (5.58) with the condition (5.60) we obtain the following expression
for 1/Ùi:

1/Ùi � �4NivkK2 ln[sin(£m/2)] (5.61)

or, in terms of the electron energy Ek,

1
Ùi

� 2Ni

(
2Ek

m

)1/2 (
Ze2

2Ek

)2

ln

⎡⎣1 �

(
Ek

N1/3
i Ze2

)2
⎤⎦ . (5.62)

The scattering rate of electrons by ionized impurities is independent of
temperature and depends on the electron energy approximately like E�3/2

k due
to the dependence of the scattering cross section on the particle velocity in
(5.56). As a result, ionized impurity scattering tends to become dominant at
low temperature where the electron energies are small and, moreover, phonon
scattering freezes out.

Brooks–Herring Approach. As mentioned earlier, in the Brooks–Herring ap-
proach the scattering rate of electrons by ionized impurities is calculated quan-
tum mechanically. If the effect of screening of the impurity potentials by free
carriers is taken care of by introducing a screening wave vector q0 [which is
the reciprocal of the Debye screening length] defined in (5.46), then (5.56)
must be replaced by

Û(£) �

⎡⎢⎣ K

2 sin2 £
2

�
( q0

2k

)2

⎤⎥⎦
2

. (5.63)

In this way the divergence in Û(£) at £ � 0 in (5.56) is automatically avoided
without introducing, in a somewhat artificial way, the maximum impact param-
eter bmax.

The electron mobility (assuming that the only scattering process is by ion-
ized impurities) calculated by the Brooks–Herring approach (BH for short) is
compared with that calculated by the Conwell-Weisskopf approach (curves la-
beled CW) in Fig. 5.6 as a function of carrier density for a hypothetical uncom-
pensated semiconductor. Except for high carrier concentrations the two re-
sults are almost identical. However, for very high carrier concentrations even
the Brooks–Herring approach breaks down. The question of screening at high
carrier concentrations has been studied by many researchers and a detailed
account can be found in [Ref. 5.2, pp. 145–152].
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Fig. 5.6. Mobility of electrons calculated by considering only ionized impurity scattering
as a function of impurity concentration. The curves labeled CW have been calculated
classically by Conwell and Weisskopf [5.15]. The curves labeled BH have been calculated
quantum mechanically using the Brooks–Herring approach [5.14]

5.2.5 Temperature Dependence of Mobilities

We are now in a position to discuss the temperature dependence of carrier
mobilities in a nondegenerate semiconductor with parabolic bands. From the
scattering rates of an electron in a band we first calculate the electron lifetime
Ù(Ek) by taking the reciprocal of the total scattering rate. Next we substitute
Ù(Ek) into (5.27) to obtain 〈Ù〉. Since the different scattering mechanisms have
different dependences on electron energy and temperature, they result in dif-
ferent temperature dependences of the mobility. By comparing the measured
temperature dependence of the mobility with theory one can determine the
contributions from the different scattering mechanisms. To facilitate this com-
parison we note that if Ù(Ek) can be expressed as a function of Ek and T as
being proportional to En

k and Tm then∫
E3/2 exp(�E/kBT)Ù(E)dE ∝ Tm�n�5/2 (5.64)

and

〈Ù〉 ∝ Tm�n. (5.65)

Using the energy and temperature dependence of the scattering rate obtained
in the previous section we can conclude that

• Ì ∝ T�3/2 for acoustic phonon (deformation potential) scattering;
• Ì ∝ T�1/2 for acoustic phonon (piezoelectric) scattering;
• Ì ∝ T3/2 for ionized impurity scattering.
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Fig. 5.7a,b. Temperature dependence of mobility in n-type Si. The solid curve in (a) rep-
resents the experimental results. The curves in (b) are the relative contributions to the
mobility from scattering by different kinds of phonons. Curve A represents the contri-
bution from intravalley acoustic phonon scattering while the other two curves represent
contributions from intervalley scattering by phonons whose energies correspond to tem-
peratures of 190 K (or 16 meV) and 630 K (54 meV). The filled circles in (a) display a fit
to the experimental curve using the theoretical curves in (b) [5.13]

Figure 5.7 shows the temperature dependence of the mobility in intrin-
sic n-type Si. The experimental results [solid curve in (a)] can be explained
by a combination of intravalley scattering by acoustic phonons and intervalley
scattering by two phonons of energies 16 meV (129 cm�1, TA) and 54 meV
(436 cm�1, LO). The electron–phonon interaction for the LO intervalley scat-
tering is symmetry allowed for phonons along ¢ while that for the TA phonon
is forbidden. Ferry [5.13] attributed the nonvanishing value of the latter to
contributions from phonons close to but not exactly along ¢.

Figure 5.8 shows the mobility in n-type Si for various donor concentra-
tions. The shape of the experimental curves at high donor concentrations can
be explained by the dominance of ionized impurity scattering at low temper-
atures, as sketched in the inset. The experimental temperature dependence of
mobility in n-type GaAs is compared with theory in Fig. 5.9. Again the ex-
perimental results can be understood in terms of ionized impurity scattering
at low temperatures and phonon scattering at higher temperatures. At room
temperature, the scattering of electrons in GaAs is dominated by the polar
LO phonon processes.
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5.3 Modulation Doping

From the temperature dependence of mobilities in Si and GaAs we conclude
that scattering by ionized impurities ultimately limits the carrier mobility at
low temperatures. This limitation can be circumvented by using the method of
modulation doping proposed by Störmer et al. [5.20].

The idea behind modulation doping is illustrated in Fig. 5.10. Two mate-
rials with almost identical lattice constants but different bandgaps are grown
on top of each other to form a heterojunction (see Chap. 9). One example of
a well-behaved heterojunction used commonly in the fabrication of semicon-
ductor laser diodes is GaAs/AlxGa1�xAs (other examples will be discussed in
Chap. 9). The lattice constants of these two semiconductors differ by less than
1 %. The bandgap of AlGaAs with less than 40 % of Al is direct and larger
than that of GaAs. The difference between their bandgaps is divided in an
approximately 60/40 split between the conduction and valence bands (for
further discussions see Chap. 9). The results are very abrupt discontinuities,
known as band offsets, in their energy bands at the interface, as shown
schematically in Fig. 5.10. If the material with the larger bandgap (AlGaAs)
is then doped with shallow donors, the Fermi level is shifted from the middle
of the bandgap of AlGaAs to the donor level. In order to maintain a con-
stant chemical potential throughout the two materials, electrons will flow from
AlGaAs to GaAs. This causes the band edges to bend at the interface as
shown in Fig. 5.10, a phenomenon known as band bending. We shall show
in Sect. 8.3.3 that band bending also occurs near the surface of semiconduc-
tors as a result of the existence of surface states.

Due to band bending the electrons in GaAs are now confined by an ap-
proximately triangular potential near the interface and form a two-dimensional
(2D) electron gas. These 2D electrons are physically separated from the ion-
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Fig. 5.10. The structure and band diagram of a modulation-doped heterojunction between
GaAs and n-AlGaAs. Ec and EF represent, respectively, the conduction band edge and
the Fermi energy
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ized impurities in AlGaAs, hence they are only weakly scattered by the
charged impurities. This method constitutes the modulation doping technique
mentioned above [5.20]. If scattering by interface defects can be avoided, the
mobility of the 2D electron gas in a modulation-doped sample can approach
the theoretical limit set by phonon scattering in the absence of impurity scat-
tering. Using this method carrier mobilities exceeding 106 cm2/(Vs) have been
achieved in GaAs. Figure 5.11 shows the temperature dependence of the mo-
bility of a 2D electron gas at a GaAs/Al0.3Ga0.7As heterojunction. Notice that
unlike the mobility depicted in Fig. 5.9, the mobility in Fig. 5.11 does not de-
crease when the temperature is lowered towards zero, as would be expected
if scattering by ionized impurities were present. However, some residual scat-
tering by the potential of the impurities located inside the Al0.3Ga0.7As is still
present; it is labeled “remote impurities” in Fig. 5.11. It approaches a small
constant value at low temperatures so that modulation doping improves the
carrier mobility when phonon scattering is frozen. Since electron scattering in
these samples is dominated by phonons (except at very low temperatures),
it is possible to determine the absolute volume deformation potentials of LA
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Fig. 5.11. Mobility of a two-dimensional electron gas in a modulation-doped GaAs/
Ga0.7Al0.3As heterojunction as a function of temperature. The closed circles indicate the
experimental results. The various broken curves represent calculated contributions to the
mobility from different scattering mechanisms. The solid curve represents the sum of all
those contributions [5.21]
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phonons quite accurately from the temperature dependence of the electron
mobility [5.21].

Modulation doping is now utilized in the fabrication of field-effect transis-
tors with very high mobility. These transistors are known either as MODFETs
(which stands for modulation-doped field-effect transistors) or HEMTs (high
electron mobility transistors) [Ref. 5.22, p. 698].

5.4 High-Field Transport and Hot Carrier Effects

The formalism developed in Sect. 5.1 for calculating the carrier drift velocity
leads to Ohm’s law and is valid only at low electric fields. In most semiconduc-
tors we find that Ohm’s law breaks down at electric fields exceeding 104 V/cm.
In this section we shall study the effect of high electric fields on carrier dis-
tributions and also other transport phenomena which can occur under high
electric fields. As we pointed out in the introduction, these high-field effects
can only be calculated numerically [5.4, 5.23] and therefore our discussions
will necessarily be qualitative.

The main difficulty in these calculations results from the very fast rates
at which carriers gain energy under the high electric field. When these rates
are larger than those for energy loss to the lattice, the carriers are no longer
at thermal equilibrium with the lattice. There are two possible scenarios for
these nonequilibrium situations. In one case, carriers are in thermal equilbrium
among themselves but not with the phonons. In this situation carriers can be said
to be in quasi thermal equilibrium. Their distribution can still be characterized
by a Fermi–Dirac distribution, albeit with a temperature different from the sam-
ple temperature (defined as that of the phonons which are in equilibrium with
the thermal sink to which the sample is attached). Usually these carriers have
higher temperatures than the lattice, hence they are known as hot carriers. In
the second scenario, the carriers cannot be described by an equilibrium distribu-
tion and therefore do not have a well-defined temperature. In the literature one
may also find that these nonthermal equilibrium carriers are loosely referred to
as hot carriers. More precisely these carriers should be called nonequilibrium
carriers. Hot-carrier effects are important in the operation of many semiconduc-
tors devices such as laser diodes, Gunn oscillators, and short-channel field-effect
transistors [Ref. 5.22, pp. 698–720]. The hot carriers in these devices are gener-
ated electrically by a high field or by injection through a barrier. Hot carriers
can also be produced optically by high intensity photon beams such as in laser
annealing [5.24].

What conditions determine whether a carrier distribution is an equilibrium
one or not? The answer depends on the magnitude of the various time scales
which characterize the interaction among the carriers and their interaction
with the lattice relative to the carrier lifetime. Let us define the time it takes
a nonequilibrium carrier distribution to relax to equilibrium as the thermal-
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ization time. Processes contributing to thermalization are carrier–carrier and
carrier–phonon interactions. As shown in Fig. 5.3, carrier–phonon interaction
times can range from 0.1 ps (for polar optical phonons and for phonons in
intervalley scattering) to tens of picoseconds (for acoustic phonons). Carrier–
carrier interaction times depend strongly on carrier density. This has been
measured optically in GaAs. At high densities (�1018 cm�3) carriers thermal-
ize in times as short as femtoseconds (equal to 10�15 s and abbreviated as fs)
[5.25]. Thus the thermalization time is determined by carrier–carrier interac-
tion at high carrier densities. At low densities, it is of the order of the shortest
carrier–phonon interaction time. Often carriers have a finite lifetime because
they can be trapped by defects. If both electrons and holes are present, the
carrier lifetime is limited by recombination (Chap. 7). In samples with a very
high density of defects (such as amorphous semiconductors) carrier lifetimes
can be picoseconds or less. Since the carrier lifetime determines the amount
of time carriers have to thermalize, a distribution is a nonequilibrium one
when the carrier lifetime is shorter than the thermalization time. A transient
nonequilibrium situation can also be created by perturbing a carrier distribu-
tion with a disturbance which lasts for less than the thermalization time.

The properties of hot carriers can be different from those of equilibrium
carriers. One example of this difference is the dependence of the drift velocity
on electric field. Figure 5.12 shows the drift velocity in Si and GaAs as a func-
tion of electric field. At fields below 103 V/cm, the carriers obey Ohm’s law,
namely, the drift velocity increases linearly with the electric field. At higher
fields the carrier velocity increases sublinearly with field and saturates at a ve-
locity of about 107 cm/s. This leveling off of the carrier drift velocity at high
field is known as velocity saturation. n-Type GaAs shows a more complicated
behavior in that its velocity has a maximum above the saturation velocity. This
phenomenon is known as velocity overshoot (Fig. 5.12) and is found usually
only in a few n-type semiconductors such as GaAs, InP, and InGaAs. For
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Fig. 5.12. Dependence of drift velocity on electric field for electrons and holes in Si and
GaAs [5.17]. Notice the velocity overshoot for electrons in GaAs
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electric fields between 3×103 V/cm and 2×105 V/cm, the velocity of electrons
in GaAs decreases with increasing electric field. This phenomenon is known as
negative differential resistivity. We shall consider these high field behaviors of
carriers separately.

5.4.1 Velocity Saturation

The Boltzmann equation (5.15) is difficult to solve under high-field conditions,
for which the carrier distribution can be a nonequilibrium one. One simpli-
fying approach is to expand the carrier distribution as a function of carrier
velocity in a Taylor series. This leads to a field-dependent mobility of the form

Ì(F) � Ì(0) � ‚F2 � . . . . (5.66)

Carriers are sometimes referred to as warm carriers when only the terms up
to ‚F2 are important [Ref. 5.26, p. 102]. As mentioned in Sect. 5.1, hot carrier
properties are usually calculated numerically using a Monte Carlo simulation
method; a discussion of these calculations is beyond the scope of this book
[5.27]. Instead, we will present a highly simplified explanation of why the drift
velocity in most semiconductors saturates at more or less the same value of
107 cm/s.

Within the quasi-classical approach that we adopted in Sect. 5.1, carriers in
a semiconductor are regarded as free particles with effective mass m∗. Their
average energy 〈E〉 can be defined as 〈E〉 � m∗v2

d/2, where vd is their drift
velocity. The saturation in vd under a high electric field therefore implies that
the average energy of the carriers no longer increases with electric field at
high field strengths. This can be understood if there is an energy loss mech-
anism that becomes dominant at large 〈E〉. Scattering with optical phonons
is the most obvious candidate. A simple-minded picture of what happens is
as follows. At low fields, carriers are scattered elastically by acoustic phonons
and these processes lead to momentum relaxation of the carriers. The carrier
distribution is essentially a “drifted” equilibrium distribution (Problem 5.2).
At intermediate fields, 〈E〉 becomes large enough for some of the carriers in
the high-energy tail of the distribution to start to scatter inelastically with op-
tical phonons. This distorts the carrier distribution and causes 〈E〉 to increase
sublinearly with the field. At still higher fields, more of the carriers are scat-
tered inelastically, until energy relaxation processes dominate. When the rate
at which carriers gain energy from the field is balanced exactly by the rate of
energy loss via optical phonon emission, 〈E〉 (and also vd) becomes indepen-
dent of electric field.

The saturation velocity vs can thus be deduced from the energy-loss rate
equation

d〈E〉
dt

� eFvs �
Eop

Ùe
, (5.67)

where Eop is the optical phonon energy and Ùe is the energy relaxation time.
A corresponding rate equation for momentum relaxation is
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d(m∗vs)
dt

� eF �
m∗vs

Ùm
, (5.68)

where Ùm is the momentum relaxation time. Assuming that scattering by opti-
cal phonons is the dominant process at high fields, both Ùe and Ùm are equal
to the optical phonon scattering time Ùop. In the steady state, d〈E〉/dt � 0 and
d(m∗vs)/dt � 0. Therefore the solution for vs from (5.67) and (5.68) is simply

vs � (Eop/m∗)1/2. (5.69)

Notice that Ùop is absent in the expression for vs. For most tetrahedrally
bonded semiconductors, the optical phonon energy is of the order of 40 meV
and the carrier effective mass m∗ is of the order of 0.1m0. Substituting these
values into (5.69) we obtain vs ≈ 2 × 107 cm/s. This explains both the con-
stancy and order of magnitude of the experimental saturation velocities in
many semiconductors.

5.4.2 Negative Differential Resistance

Electrical resistance is normally associated with dissipation of electrical energy
in the form of heat in a conductor. Thus a negative electrical resistance sug-
gests that electrical energy can be “created” in such a medium. However, it
should be noted that a negative differential resistance (often abbreviated as
NDR) is only a negative AC resistance. This means that NDR can be used
in designing an AC amplifier only. When we study electronics we learn that
an amplifier coupled with a properly designed positive feedback circuit can be
made into an oscillator. Thus one important application of materials exhibiting
NDR is in the construction of high-frequency (typically microwave frequen-
cies) oscillators. The Esaki tunnel diode1 is an example of a device exhibiting
NDR [Ref. 5.22, pp. 641–643]. More recently resonant tunneling diodes (see
Chap. 9 for further discussions) have also been shown to exhibit NDR [5.28].
The principles behind the NDR in these devices are different from those of
n-type GaAs under a high electric field.

To understand the NDR in GaAs we have to refer to the conduction band
structure shown in Fig. 2.14. While the lowest conduction band minimum in
GaAs occurs at the Brillouin zone center, there are also conduction band
minima at the L points, which lie about 0.3 eV higher in energy. The effec-
tive mass of electrons in these L valleys is not isotropic. For motion along the
axis of the valleys, the longitudinal mass is 1.9m0 while the transverse mass is
0.075m0 [5.29]. These masses are much larger than the effective mass (to be
denoted by m∗

°) of 0.067m0 for electrons in the ° valley. On the basis of (5.12)
we expect the mobility of electrons in the ° valley (to be denoted by Ì°) to be
larger than that of electrons in the L valleys (denoted by ÌL). At low electric
fields all the electrons are in the ° valley and the electron mobility is high

1 Leo Esaki shared the 1973 Nobel Prize in Physics for his discovery of the phenomenon
of electron tunneling in the diodes named after him.
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because of the small m∗
°. As the field is increased, electrons gain energy until

some of them have sufficient energy to transfer via intervalley scattering to
the L valleys. This intervalley scattering now competes with intravalley relax-
ation via scattering by optical phonons. In GaAs the time it takes an electron
to emit a LO phonon via the Fröhlich interaction (Fig. 5.3) is about 200 fs.
The corresponding ° to L intervalley scattering time at room temperature is
less than 100 fs [5.30, 31]. However, the time it takes the electron to return to
the ° valley is of the order of picoseconds because the density of states of the
° valley is much smaller than that of L valleys. As a result, for high enough
electrics fields, we expect that a significant fraction of the electrons will be
excited into the L valleys and the electron conductivity will become

Û � e(N°Ì° � NLÌL), (5.70)

where N° and NL are, respectively, the number of electrons in the ° and L
valleys. Since ÌL is smaller than Ì°, the conductivity decreases with increasing
field, leading to a negative differential resistance. The field dependence of the
electron drift velocity in GaAs deduced from the above picture is shown in
Fig. 5.13. At even higher fields (E � Eb in Fig. 5.13) there will be more elec-
trons in the L valleys than in the ° valley because the former have larger den-
sity of states and the intervalley transfer of electron stops. Now the electrons
in the L valleys are accelerated by the external field and their velocities in-
crease linearly with field again as shown schematically in Fig. 5.13. The thresh-
old field Ec at which the drift velocity begins to decrease is commonly referred
to as the critical field. It should be noted that at one time it was thought that
the NDR in GaAs was caused by transfer of electrons to the X valleys. After
it was demonstrated that the L valleys were lower in energy than the X valleys
[5.32], transfer to the L valleys became accepted as the mechanism responsible
for NDR in GaAs.
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Fig. 5.13. Sketch of the dependence of the drift velocity of electrons in GaAs on electric
field based on the qualitative model in Sect. 5.4.2
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In order to observe NDR it is necessary to satisfy the following condi-
tions. There must be higher energy valleys to which carriers can be excited un-
der high electric field. The mobility of carriers in these higher energy valleys
should be much smaller than in the lower energy valleys. The separation of
the higher energy valleys from the lower energy valleys should be much larger
than kBT, where T is the device operation temperature, in order that the
higher valleys are not populated thermally. However, this separation should
not be larger than the bandgap. Otherwise, before the carriers have acquired
enough energy from the field to transfer to the higher valleys they can already
excite carriers from the valence band into the conduction band via impact ion-
ization [Ref. 5.22, pp. 322–384]. These conditions are satisfied by the conduc-
tion bands of GaAs, InP [5.26], and the ternary alloy InxGa1�xAs (x � 0.5).

5.4.3 Gunn Effect

In 1963 J. B. Gunn [5.33, 34] discovered that when a thin sample (thickness of
the order 10 Ìm) of n-type GaAs is subjected to a high voltage (such that the
electric field exceeds the critical field Ec in GaAs), the current through the
sample spontaneously breaks up into oscillations at microwave frequencies as
shown in Fig. 5.14. The frequency of oscillation is inversely proportional to the
length of the sample across which the field is applied. As will be shown below,
the frequency of oscillation turns out to be equal to the saturation velocity vs
divided by the sample length. For sample lengths of the order of 10 Ìm and

Fig. 5.14. Oscilloscope traces of Gunn oscillations in a thin piece of GaAs under a high
electric field. Current waveform produced by the application of a voltage pulse of 16 V
amplitude and 10 ns duration to a specimen of n-type GaAs 2.5 × 10�3 cm in length.
The frequency of the oscillating component is 4.5 GHz. Lower trace: 2 ns/cm horizontally,
0.23 A/cm vertically. Upper trace: expanded view of lower trace [5.33]
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vs equal to 107 cm/s, the oscillation frequency is of the order of 1010 Hz, i. e.
10 gigahertz2. Electromagnetic waves of such high frequencies are known as
microwaves. Hence the obvious application of the Gunn effect is the fabrica-
tion of microwave generators known as Gunn diodes.

The Gunn effect is one example of how NDR can lead to high-frequency
oscillations. To understand this effect qualitatively [5.35], we will assume that
the field dependence of the drift velocity in n-type GaAs has the simple form
shown schematically in Fig. 5.15a. Suppose a constant high voltage is applied
to the sample so that carriers drift from the left to right as shown schemati-
cally in Fig. 5.15b. We assume that the electric field is maintained at a value
slightly below the threshold field Ec. Due to fluctuations in the electric field at
finite temperatures, a small region labeled D in Fig. 5.15b has a field slightly
above Ec at time t � 0. The carriers on both sides of D have now higher drift
velocities than carriers inside D. As a result, carriers will pile up on the left
hand side in D while the carrier density will drop on its right hand side. This
charge pile-up in D at t � 0 leads to an increase in electric field inside D and
a decreasing field outside, as shown in Fig. 5.15b. Because of the NDR for

Charge pile-up
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Fig. 5.15. (a) A highly simplified field de-
pendence of the drift velocity in GaAs. (b)
Spatial dependence of the electric field in a
GaAs sample biased near the critical field
Ec showing the build-up of a domain D in-
side the sample as a function of time. (c)
Charge density variation across the GaAs
sample showing the charge pile-up and de-
pletion in the vicinity of the domain D

2 The unit of frequency is hertz (Hz), named after Heinrich Hertz who produced and
detected radio waves in 1888. One hertz is equal to one cycle per second.



232 5. Electrical Transport

fields larger than Ec, the increase in the field inside D leads to further slow-
ing down of electrons inside D and hence more charge pile-up. This process,
once started, will continue until most of the applied field is across D, as shown
in the dotted curve in Fig. 5.15b for t 
 0. Figure 5.15c displays the charge
distribution along the length of the sample. The region D where the electric
field is high is known as a domain. Only one domain can exist inside the sam-
ple at one time since most of the applied voltage will be across this domain.
The most likely place for domains to be formed is the cathode, since the field
fluctuations tend to be largest there. Under the influence of the applied volt-
age this domain will drift across the sample with the saturation velocity until
it reaches the anode, thus giving rise to a periodic oscillation in current. The
frequency of this oscillation is equal to vs divided by the length of the sample.
As a result of this oscillatory current, electromagnetic waves are radiated from
the sample. From this simple description it is clear that Gunn oscillators are
very efficient, yet miniature, microwave generators.

5.5 Magneto-Transport and the Hall Effect

We conclude this chapter by discussing the electric current induced in a sam-
ple in the presence of both electric and magnetic fields. As we pointed out in
Sect. 5.1, in a cubic crystal the second-rank conductivity tensor ÛÛ can usually
be represented by a diagonal matrix. This is not true when a magnetic field
is present. In this case the conductivity tensor contains off-diagonal elements
that are linearly dependent on the magnetic field. In this section we will de-
rive this magneto-conductivity tensor and use the result to study an important
phenomenon known as the Hall effect. Our approach in this section will be
classical, leaving a quantum mechanical treatment to Chap. 9, where we shall
consider the quantum Hall effect in two-dimensional electron gases.

5.5.1 Magneto-Conductivity Tensor

We shall first assume that the sample is an infinite, cubic and nonmagnetic
crystal. Without loss of generality we can suppose that a magnetic field Bz

is applied to the sample along the z axis, while an electric field F is applied
along any arbitrary direction. To calculate the resultant current we use the
quasi-classical approach adopted in Sect. 5.1. In the presence of both electric
and magnetic fields, the equation of motion for the electrons (5.4) is replaced
by the Lorentz equation:∗

m∗ d2r
dt2 �

m∗

Ù
dr
dt

� (�e)
[
F � (v × B/c)

]
, (5.71)

∗ The equations in this section are transformed into SI units by deleting the velocity of
light c.
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where c is the speed of light in vacuum. In (5.71) we have assumed that m∗

and Ù are isotropic. For generalizations see [5.36, 37]. Under steady-state con-
ditions, dv/dt � d2r/dt2 � 0, we obtain

(m∗/Ù)vd � (�e)
[
F � (vd × B/c)

]
(5.72)

for the electron drift velocity vd. In terms of its components along the x, y,
and z axes, the three components of this equation can be written as

(m∗/Ù)vd,x � (�e)
[
Fx � (vd,yBz/c)

]
, (5.73a)

(m∗/Ù)vd,y � (�e)
[
Fy � (vd,xBz/c)

]
, (5.73b)

(m∗/Ù)vd,z � (�e)Fz. (5.73c)

By multiplying each of the above equations by the electron density n and
charge (�e) we obtain the corresponding equations for the current density
j � n(�e)vd:

jx � (ne2Ù/m∗)Fx � (eBz/m∗c)Ù jy, (5.74a)

jy � (ne2Ù/m∗)Fy � (eBz/m∗c)Ù jx, (5.74b)

jz � (ne2Ù/m∗)Fz. (5.74c)

It is convenient at this point to introduce the definitions

Û0 � ne2Ù/m∗, (5.75)

which can be recognized as the zero-field conductivity, and

ˆc � eBz/(m∗c), (5.76)

which is the classical cyclotron frequency of the electron in the presence of
the magnetic field Bz. Using these definitions, (5.74) can be simplified to

jx � Û0Fx � ˆcÙ jy, (5.77a)

jy � Û0Fy � ˆcÙ jx, (5.77b)

jz � Û0Fz. (5.77c)

Solving (5.77), we obtain the three components of the current density:

jx �
1

1 � (ˆcÙ)2 Û0(Fx � ˆcÙFy), (5.78a)

jy �
1

1 � (ˆcÙ)2 Û0(Fy � ˆcÙFx), (5.78b)

jz � Û0Fz. (5.78c)

Based on (5.78) we can define a generalized magneto-conductivity tensor ÛÛ(B)
for the electrons as

ÛÛ �
Û0

1 � (ˆcÙ)2

⎛⎝ 1 �ˆcÙ 0
ˆcÙ 1 0

0 0 1 � (ˆcÙ)2

⎞⎠ . (5.79)
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Notice that (5.79) contains the sum of a diagonal and an antisymmetric tensor.
The sign of the off-diagonal elements depends on the sign of the charge.

From (5.79) we conclude that the effects of the magnetic field on the
charge transport are twofold. (1) The conductivity perpendicular to the mag-
netic field is decreased by the factor [1�(ˆcÙ)2]�1. The corresponding increase
in the sample resistance induced by a magnetic field is known as magnetore-
sistance (for small values of B it is proportional to B2). (2) The magnetic field
also generates a current transverse to the applied electric field, resulting in
off-diagonal elements in the conductivity tensor. These are linearly propor-
tional to the magnetic field whereas the diagonal elements are quadratic in
the magnetic field. The off-diagonal elements give rise to the Hall effect to be
discussed in the next section.

5.5.2 Hall Effect

Let us consider a sample in the form of a rectangular bar oriented with its
longest axis along the x axis, as shown in Fig. 5.16a. The electric field F is now
applied along the x axis while the magnetic field B is still along the z axis. Ac-
cording to Lorentz’s law, when electrons start to drift along the x axis under
the influence of the electric field, they also experience a force in the y direc-
tion. This results in a current in the y direction although there is no applied
electric field along that direction. One typical experimental configuration in-
volves a closed current loop in the x direction while leaving an open circuit in
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Fig. 5.16a, b. Sample geometries for performing Hall measurements: (a) sample in the
form of a bar and (b) sample in the form of a thin film which is used in the van der
Pauw method [5.39]. B denotes the magnetic field. I stands for the current source while
V represents the meter for measuring the Hall voltage
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the y direction, as shown in Fig. 5.16a. As a result of this open circuit the current
density jy must be zero. From (5.78b) we see that an electric field Fy is induced
by the presence of the B field. This phenomenon is known as the Hall effect
[5.38] after E.H. Hall (1855–1938), who discovered it at Johns Hopkins Uni-
versity in 1879 and then became a professor at Harvard [from 1881 to 1921].

A simple physical picture of what happens is as follows. The magnetic
field causes the charges to drift in the y direction. As a result, charges pile
up on the two opposite sample surfaces perpendicular to the y axis and create
an electric field Fy, which cancels the effect of the Lorentz force. Under the
steady-state condition jy � 0, the induced field Fy is equal to

Fy � �ˆcÙ jx/Û0 (5.80a)

while the current measured in the x direction is given by
jx � Û0Fx. (5.80b)

The measured quantity in this experiment is Fy while the externally controlled
parameters are jx and B. Therefore one defines the Hall coefficient RH as the
ratio

RH � Fy/(jxBz). (5.81)

Combining (5.80a) and (5.80b), we find that RH is equal to3

RH � �
ˆcÙ

Û0Bz
� �

1
nec

. (5.82)

Notice that the sign of RH depends on the sign of the charge. While the Hall
coefficient in (5.82) is negative (since we have assumed the charges are elec-
trons), it can be easily shown that RH becomes positive for holes. Thus we
see that the Hall effect is an important technique for determining both the
concentration and the sign of charged carriers in a sample. This technique is
not limited to semiconductors only but is also used extensively in the study
of metals. In compensated semiconductor samples, where both electrons and
holes are present, RH can be shown to be given by (Problem 5.6)

RH �
Np � b2Nn

ec(bNn � Np)2 , (5.83)

where Nn and Np are the concentrations of the negative and positive charges,
respectively, and b is the ratio of their mobilities: Ìn/Ìp. Corrections to (5.82)
for the case of anisotropic masses and Ù have been given by Herring and Vogt
[5.37].

5.5.3 Hall Coefficient for Thin Film Samples (van der Pauw Method)

One limitation of the Hall effect measurement described in the previous sec-
tion is the requirement that the sample be in the shape of a rectangular bar.
As discussed in Sect. 1.2, samples are often grown in the form of thin epitaxial

3 To convert to SI units delete c.
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films on some insulating substrate. The extension of the Hall technique to such
thin films was developed by van der Pauw [5.39]. Two common geometries for
the van der Pauw method of measuring the Hall coefficient and resistivity in
a thin sample are shown in Fig. 5.16b. This method is particularly convenient
for a disk of irregular shape. The current is fed through the contacts 3 and 4
while the Hall voltage is measured across the contacts 1 and 2. The “clover”
shape in Fig. 5.16b has the advantage of keeping the current flow away from
the Hall voltage contacts. To minimize the error in the measurement of the
Hall voltage due to the fact that the current flow may not be perpendicular to
the line joining the contacts 1 and 2, one usually measures the voltage both
with the magnetic field V12(±B) and without the field V12(0). Van der Pauw
showed that the Hall coefficient is given by

RH �
[V12(B) � V12(0)]d

I34B
�

[V12(B) � V12(�B)]d
2I34B

, (5.84)

where d is the thickness of the film, B is the magnetic field, and I34 is the cur-
rent flowing from contact 3 to contact 4.

The sample resistivity Ú can also be measured with the van der Pauw
method. In this case two adjacent contacts such as 2 and 3 (I23) are used as
current contacts while the two remaining contacts are used for measuring the
voltage drop (V41). The resultant resistance is defined as R41,23:

R41,23 � |V41|
/

I23. (5.85)

Another measurement is then made in which current is instead sent through
the contacts 1 and 3 and the voltage is measured across the contacts 2 and 4.
From the resulting resistance R24,13, together with R41,23, Ú can be calculated
with the expression

Ú �
d(R24,13 � R41,23)f

2 ln 2
(5.86)

where f is a factor that depends on the ratio R24,13/R41,23; f is equal to 1 when
this ratio is exactly 1 [Ref. 5.26, p. 63]. When this ratio is equal to 10, f de-
creases to 0.7. Usually a large value for this ratio is undesirable and suggests
that either the contacts are bad or that the sample is inhomogeneously doped.

5.5.4 Hall Effect for a Distribution of Electron Energies

So far we have assumed that all the charged carriers have the same properties.
We shall now consider a collection of electrons with a range of energies E and
a distribution function f (E). We denote the average of any electron property
a(E) by 〈a〉:

〈a〉 �

∫
a(E)f (E)dE

/∫
f (E)dE. (5.87)

Using this definition, (5.78) can be rewritten as

〈jx〉 � ·Fx � ÁBzFy (5.88a)
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〈jy〉 � ·Fy � ÁBzFx (5.88b)
〈jz〉 � 〈Û0〉Fx, (5.88c)

where∗

· �
ne2

m∗

〈
Ù

1 � (ˆcÙ)2

〉
(5.89a)

Á �
ne3

m∗2c

〈
Ù2

1 � (ˆcÙ)2

〉
(5.89b)

In the limit of a weak magnetic field or, when (ˆcÙ)2 � 1, we can approximate
1 � (ˆcÙ)2 by one and thus write:

· � ne2

m∗ 〈Ù〉 and Á � ne3〈Ù2〉
m∗2c

(5.90)

Within this approximation the Hall coefficient for a distribution of electrons
can be expressed as4

RH �
〈Ù2〉

(�nec)〈Ù〉2 � �
rH

nec
(5.91)

The factor rH � 〈Ù2〉/〈Ù〉2 is called the Hall factor. Its magnitude depends on
the scattering mechanisms that contribute to Ù and is usually of the order of
1 [Ref. 5.26, p. 57]. In the limit of strong magnetic fields, or for very pure
samples, when (ˆcÙ)2 
 1, (5.91) remains valid with rH � 1 (Problem 5.7). In
principle we can determine the carrier mobility by measuring RH and Û0 and
using (5.75 and 82) to obtain

Ì � RHÛ0, (5.92)

but in practice the carriers usually have a distribution of energies, so that the
mobility calculated from (5.92) is not the same as the mobility Ì defined by
(5.12). Instead the mobility defined by (5.92) is referred to as the Hall mobility
ÌH and is related to Ì by

ÌH � rHÌ. (5.93)

PROBLEMS

5.1 Drifted Carrier Distributions
Using (5.19) show that, within the relaxation time approximation, the carrier
distribution in the presence of the field F can be approximated by

fk � f 0
k (Ek � qÙkvk · F).

for a small external field. This means that the effect of the electric field is to shift
the entire distribution (without distortion) by the energy qÙkvk · F. This is just
the energy gained by a charge q with velocity vk in the field F during a time Ùk.

4 remove c to convert to SI units.
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5.2 a) Drifted Maxwell–Boltzmann Distributions
Suppose the thermal equilibrium electron distribution f 0

k in (5.14) is approxi-
mated by a Boltzmann distribution function

f 0
k � A exp

[
� Ek/(kBT)

]
.

For free carriers located in a spherical band with effective mass m∗ the elec-
tron energy is given by Ek � (1/2)m∗v2

k. The resultant f 0
k is known as a

Maxwell–Boltzmann distribution. Using the result of Problem 5.1, show that
the carrier distribution in the presence of a weak external electric field F can
be approximated by

fk ≈ A exp

(
�

m∗(vk � vd)2

2kBT

)
,

where vd is the drift velocity defined in (5.6). The interpretation of this result
is that the external field causes the carrier velocities to increase uniformly by
an amount equal to vd while leaving the distribution function unchanged. Con-
sequently the resultant distribution is known as a drifted Maxwell–Boltzmann
distribution.

b) Relaxation Time Approximation
The purpose of this problem is to show how the relaxation time approxima-
tion (5.18) can be obtained starting from (5.30). We will make the following
assumptions:

1) The electronic band is isotropic, with effective mass m∗.
2) Scattering is completely elastic (so that Ek′ � Ek and f 0

k � f 0
k′).

3) The applied field is weak so that (5.19) is valid.

a) With these assumptions, show that

fk � fk′ � (fk � f 0
k )

[
1 � (vk′ · F)

/
(vk · F)

]
.

Substitute this result into (5.30) and show that

Ù�1
k �

∑
k′

P(k, k′)
[
1 � (vk′ · F)/(vk · F)

]
.

b) To simplify the above expression we choose (without loss of generality)
coordinate axes such that k is parallel to the z-axis and F lies in the yz-plane.
Let ı and ı′ be, respectively, the angles between k and F and between k′ and
F. Let the polar coordinates of k′ in this system be (k′, ·, ‚). Show that

(vk′ · F)
/

(vk · F) � tan ı sin · sin ‚ � cos ·.

c) Assume that the elastic scattering probability P(k, k′) depends on · but not
on ‚. Show that

Ù�1
k �

∑
k′

P(k, k′)(1 � cos ·).

The physical interpretation of this result is that the relaxation time in elastic
scattering is dominated by large angle scattering (i. e., processes with · � ).
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5.3 Intravalley Scattering by LA Phonons
a) Using (5.42) show that the contribution of deformation potential interac-
tion to the intravalley LA phonon scattering time (Ùac) of an electron in a
nondegenerate band with isotropic effective mass m∗ and energy E is given by

1
Ùac

�

√
2(ac)2(m∗)3/2kBT(E)1/2

�4Úv2
s

,

where ac is the volume deformation potential for the electron, T is the tem-
perature, kB is the Boltzmann constant, Ú is the crystal density, and vs is the
LA phonon velocity.

b) Assume that the parameters in (a) have the following values, appropriate
to GaAs: m∗ � 0.067; E � 0.36 meV; ac � 6 eV; Ú � 5.31 g/cm3, and vs �
5.22 × 105 cm/s. Show that Ùac � 7 × 10�12 s (7 ps) at T � 300 K.

5.4 Piezoelectric Acoustic Phonon Scattering Rate
Assume that the constant of proportionality in (5.44) is independent of angle.
Substitute the result into (5.41) and perform the integration corresponding to
that in (5.42). Show that instead of a scattering probability proportional to
T(Ek)1/2 as in (5.43), the probability for piezoelectric scattering is proportional
to T(Ek)�1/2. See p. 202 for discussions on how to remove the divergence in
the scattering probability when Ek → 0.

5.5 Rate of Scattering by LO Phonons for Electrons in a Parabolic Band
a) Consider a polar semiconductor with a dispersionless LO phonon energy
�ˆLO. The Fröhlich electron–LO-phonon interaction Hamiltonian is given by
(3.36). For an electron in a nondegenerate conduction band with isotropic ef-
fective mass m∗, the electron wave vector and energy above the band mini-
mum are denoted by k and Ek, respectively. Show that for Ek � �ˆLO the
minimum and maximum phonon wave vectors, q2 min and q2 max, of the phonon
emitted by the electron are given by

q2 min � k[1 � f (Ek)]

and

q2 max � k[1 � f (Ek)]

where

f (Ek) �
[
1 � (�ˆLO/Ek)

]1/2
.

b) Show that the corresponding q1 min and q1 max for absorption of one LO
phonon are given by

q1 min � k[f ′(Ek) � 1]

and

q1 max � k[f ′(Ek) � 1]
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where

f ′(Ek) �
[
1 � (�ˆLO/Ek)

]1/2
.

In the special case that k � 0,

q1 min � q1 max � [2m∗ˆLO/�]1/2.

c) Substituting the above results into (5.50), show that the momentum relax-
ation rate by LO phonon scattering is given by (5.51) in the limit q0 � 0.

d) Assume that a conduction band electron in GaAs has Ek/(�ˆLO) � 4.
Use the Fröhlich interaction in (3.36) to calculate the scattering rate of this
electron by LO phonons. Some materials parameters for GaAs are: density
Ú � 5.31 g/cm3; m∗ � 0.067m0; Â0 � 12.5; Â∞ � 10.9; and �ˆLO � 36 meV.

5.6 Hall Coefficient for Samples Containing both Electrons and Holes
a) Show that, for a sample containing Nn electrons and Np holes per unit vol-
ume with the corresponding mobilities Ìn and Ìp, the equations for the current
density in the presence of applied electric field F and magnetic field Bz are

jx � (·n � ·p)Fx � (‚n � ‚p)BzFy,

jy � (·n � ·p)Fy � (‚n � ‚p)BzFx,

jz � Û0Fx,

where ·i � NieÌi and ‚i � �·iÌi/c (delete c for SI units) for i � n and p.

b) Assume that jy � 0, as in a conventional Hall effect measurement, and
derive Fy. Calculate the Hall coefficient RH � Fy/(jxBz).

5.7 Hall Factor in the Limit of Strong and Weak Magnetic Fields
Show that the Hall coefficient for electrons with a distribution of energies and
scattering times Ù is given by:

RH � �
Á
·2

[
1 �

Á2B2
z

·2

]�1

where · and Á are defined in (5.89a,b).
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S UMMARY

In this chapter we have discussed the transport of charges in semiconduc-
tors under the influence of external fields. We have used the effective mass
approximation to treat the free carriers as having classical charge and renor-
malized masses. We first considered the case of weak fields in which the
field does not distort the carrier distribution but causes the entire distribu-
tion to move with a drift velocity. The drift velocity is determined by the
length of time, known as the scattering time, over which the carriers can ac-
celerate in the field before they are scattered. We also defined mobility as
the constant of proportionality between drift velocity and electric field. We
calculated the scattering rates for carriers scattered by acoustic phonons,
optical phonons, and ionized impurities. Using these scattering rates we de-
duced the temperature dependence of the carrier mobilities. Based on this
temperature dependence we introduced modulation doping as a way to
minimize scattering by ionized impurities at low temperatures. We discussed
qualitatively the behavior of carriers under high electric fields. We showed
that these hot carriers do not obey Ohm’s law. Instead, their drift velocities
at high fields saturate at a constant value known as the saturation velocity.
We showed that the saturation velocity is about 107 cm/s in most semicon-
ductors as a result of energy and momentum relaxation of carriers by scat-
tering with optical phonons. In a few n-type semiconductors, such as GaAs,
the drift velocity can overshoot the saturation velocity and exhibit nega-
tive differential resistance. This is the result of these semiconductors hav-
ing secondary conduction band valleys whose energies are of the order of
0.1 eV above the lowest conduction band minimum. The existence of neg-
ative differential resistance leads to spontaneous current oscillations at mi-
crowave frequencies when thin samples are subjected to high electric fields,
a phenomenon known as the Gunn effect. Under the combined influence of
an electric and magnetic field, the transport of carriers in a semiconductor
is described by an antisymmetric second rank magneto-conductivity tensor.
One important application of this tensor is in explaining the Hall effect.
The Hall coefficient provides the most direct way to determine the sign and
concentration of charged carriers in a sample.
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The fundamental energy gaps of most semiconductors span the energy range
from zero to about 6 eV. Photons of sufficient energy can excite electrons from
the filled valence bands to the empty conduction bands. As a result, the op-
tical spectra of semiconductors provide a rich source of information on their
electronic properties. In many semiconductors, photons can also interact with
lattice vibrations and with electrons localized on defects, thus making optical
techniques also useful for studying these excitations. Their optical properties
are the basis of many important applications of semiconductors, such as lasers,
light emitting diodes, and photodetectors.

Figure 6.1 shows schematically some of the optical processes which can
occur when a medium is illuminated by light. At the surface of the medium,

Incident

Reflected Transmitted

(Absorbed)

Luminescence

Scattered
  (Raman, Brillouin...)

MEDIUM

Fig. 6.1. Schematic diagram showing the linear optical processes that occur at the surface
and in the interior of a medium. The incident beam is assumed to arrive at the surface of
the medium from vacuum (or air)
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a fraction of the incident light is reflected and the rest transmitted. Inside the
medium some of the radiation may be absorbed or scattered while the remain-
der passes through the sample. Some of the absorbed electromagnetic waves
may be dissipated as heat or reemitted at a different frequency. The latter pro-
cess is known as photoluminescence. Electromagnetic waves are scattered by
inhomogeneities inside the medium. These inhomogeneities may be static or
dynamic. An example of a dynamic fluctuation is the density fluctuation asso-
ciated with an acoustic wave. Scattering of light by acoustic waves is usually
referred to as Brillouin scattering [6.1a]. (This phenomenon was independently
discovered by Mandelstam [6.1b].) Scattering of light by other elementary ex-
citations, such as optical phonons or plasmons, is known as Raman scattering.
(Sir C.V. Raman received the Nobel Prize in Physics in 1930 for discovering, in
1928 in Calcutta, the effect named after him.) In general, the strongest optical
processes are reflection and absorption because they involve the lowest order
of interaction between electromagnetic waves and elementary excitations in-
side the medium. Light scattering involves two such interactions (since there
is incident radiation and scattered radiation) hence it tends to be weaker. In
this book we shall not consider nonlinear optical processes (such as sum and
difference frequency generations), which involve higher-order optical interac-
tions. Readers interested in these topics should consult [6.2–4]. Because there
are many different ways that photons can interact with excitations inside semi-
conductors, we shall divide the discussion on the optical properties of semicon-
ductors into two chapters. In this chapter, the fundamental optical properties
of semiconductors will be presented. Chapter 7 will discuss the more special-
ized topics such as photoluminescence and light scattering.

6.1 Macroscopic Electrodynamics

In a dielectric medium an external sinusoidal electromagnetic wave with elec-
tric field vector E(r, t) � E(q, ˆ) sin(q · r � ˆt), where q is the wavevector and
ˆ is the frequency, will induce a polarization vector P, which is related to the
applied field via a second-rank tensor:

Pi(r′, t′) �

∫
¯ij(r, r′, t, t′)Ej(r, t)dr dt. (6.1)

¯ij is known as the electric susceptibility tensor. To simplify the notation, sum-
mation over the repeated index j in (6.1) is automatically implied. Time is, of
course, homogeneous in the absence of time-dependent perturbations. It is of-
ten assumed that space is also homogeneous to avoid complications such as
local field corrections (avoided by averaging all microscopic quantities over a
unit cell).1 With this assumption, (6.1) can be simplified to

1 In recent years there has been considerable interest in the propagation of electromag-
netic waves through periodic structures composed of macro- or microscopic elements such
as semiconductor spheres. These samples are called photonic crystals [6.5].
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Pi(r′, t′) � Â0

∫
¯ij(|r � r′|, |t � t′|)Ej(r, t)dr dt. (6.2)

From the convolution theorem, (6.2) can be expressed in terms of the Fourier
transforms of P, ¯, and E (see Sect. 4.2.1 for a definition of Fourier trans-
forms):

Pi(q, ˆ) � Â0¯ij(q, ˆ)Ej(q, ˆ). (6.3)

In principle, all the linear optical properties of the medium are determined
by the complex electric susceptibility tensor ¯ij(q, ˆ). Note that while P(r′, t′),
¯ij(r, r′, t, t′), and E(r, t) are all real, their Fourier transforms can be complex.
The fact that ¯ij(r, r′, t, t′) is real imples that ¯ij(q, ˆ) � ¯∗ij(�q, �ˆ).

For comparison with experiments it is often more convenient to define an-
other complex, second-rank tensor, known as the dielectric tensor. This tensor
Âij(q, ˆ) is defined by

Di(q, ˆ) � Â0Âij(q, ˆ)Ej(q, ˆ) (6.4)

where D(q, ˆ) is the Fourier transform of the electric displacement vector
D(r, t) defined by D(r, t) � E(r, t) � 4P(r, t). It follows from their definitions
that ¯ij(q, ˆ) and Â(q, ˆ) are related by

Âij(q, ˆ) � 1 � 4¯ij(q, ˆ) � 1 � ¯ij(q, ˆ) in SI units. (6.5)

The real and imaginary parts of the dielectric tensor will be denoted by
ÂÂr(q, ˆ) and ÂÂi(q, ˆ), respectively. We will now state, without proof, some of
the properties of ÂÂ(q, ˆ) [6.6]:

ÂÂ( q, �ˆ) � ÂÂ ∗(q, ˆ), (6.6)
Âij(q, ˆ) � Âji(�q, ˆ). (6.7)

�

Equation (6.6) follows from the fact that ÂÂ(r, t) has to be a real function of
space and time. Equation (6.7) is one example of a general property of all so-
called kinetic coefficients known as the Onsager relations.

In most of the cases that we shall study, the wavelength of light is much
larger than the lattice constants or other relevant dimensions (such as the ex-
citon radius to be discussed in Sect. 6.3) of the semiconductor crystals. As a
result, the magnitude of the photon wavevector q can be assumed to be zero.
Unless noted otherwise, we shall therefore assume that to be the case and ab-
breviate the dielectric tensor as ÂÂ(ˆ). If we assume that ÂÂ(q, ˆ) is independent
of q whatever the value of q (although in fact this is only true for small q’s)
and calculate its Fourier transform (see also Sect. 4.2.1), we find that ÂÂ(r, ˆ) is
proportional to (the Dirac ‰-function) ‰(r). This means that the response to
E(r) is local, i.e., D(r) depends only on the field applied at the point r. On
the other hand, if ÂÂ is taken to depend on q, its Fourier transform depends on
r � r′ and the response is nonlocal. The variation of ÂÂ with q is called spatial
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dispersion. In most cases of interest in semiconductor optics this variation is
rather small [� 10�5 times the values of Âii(0, ˆ)]. Nevertheless it has been
observed in semiconductors such as Ge and GaAs [6.7, 8]. Readers interested
in this topic should consult the book by Agranovich and Ginzburg [6.9].

The rest of our discussions on the optical properties of semiconductors will
be concerned mostly with the calculation of the dielectric tensor and its prop-
erties. In either isotropic media or cubic crystals the dielectric tensor ÂÂ(ˆ) has
only three identical diagonal elements. In cases where the tensor nature of
ÂÂ(ˆ) is not important we shall replace Âij(ˆ) by a scalar function Â(ˆ) known
as the dielectric function. This will be assumed to be true for the rest of our
discussions unless stated otherwise.

Among the semiconductors we have studied so far, only the II–VI com-
pounds with the wurtzite structure, e.g., CdS and ZnO (Problem 3.7), are not
cubic. These crystals are said to be uniaxial since they contain a special axis
known as the optical axis (which coincides with the c-axis in the wurtzite struc-
ture). When plane electromagnetic waves propagate along this axis they have
the same velocity independent of their polarization direction. Along other
crystallographic axes, the light velocity varies with the polarization, giving rise
to the phenomenon known as birefringence. Crystals with tetragonal or hexag-
onal symmetry (e.g. wurtzite or chalcopyrite structures) are uniaxial. Those
with lower symmetries have two directions along which plane electromagnetic
waves travel with the same velocity regardless of their polarization. They are
said to be biaxial (e.g. orthorhombic GeS, GeSe).

The macroscopic optical properties of an isotropic medium can also be
characterized by a complex refractive index ñ. The real part n of ñ is usually
also referred to as the refractive index. The imaginary part Î is known as the
extinction index or coefficient. The normal-incidence reflection coefficient or
reflectance � of a semi-infinite isotropic medium in vacuum is given by [6.10]

� � |(ñ � 1)/(ñ � 1)|2. (6.8)

When light is absorbed in passing through a medium from a point r1 to
another point r2, the absorption coefficient · of the medium is defined by

I(r2) � I(r1) exp(�·|r2 � r1|), (6.9)

where I(r) denotes the intensity at r. The absorption coefficient is related to Î
by

· � 4Î/Ï0, (6.10)

where Ï0 is the wavelength of the light in vacuum. The complex refractive
index ñ is related to Â(ˆ) by

Â(ˆ) � (ñ)2. (6.11)
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6.1.1 Digression: Units for the Frequency of Electromagnetic Waves

At this point it is important to make a digression to present the various units
of frequency of electromagnetic waves found in the literature. In principle
the frequency of light (to be denoted by Ó) is given in Hertz (Hz), i.e., cy-
cles per second. The angular frequency ˆ is related to Ó by ˆ � 2Ó (ra-
dians per second). In light scattering spectroscopy and infrared spectroscopy
one often encounters another unit, known as wavenumber, which is defined
as the reciprocal of the wavelength Ï. A wavenumber of 1 cm�1 corresponds
to a wavelength of 1 cm or a frequency of 3×1010 Hz (i.e., 30 GHz). When we
study quantum processes involving electromagnetic waves, we quantize the en-
ergy of electromagnetic waves into photons. The energy of a photon is equal
to �ˆ, where � is Planck’s constant. Photon energies are often expressed in
electron volts (or eV) or sometimes in units of an equivalent temperature
T (in Kelvin). The photon energy is then equal to kBT, where kB is Boltz-
mann’s constant. The conversion factors between eV and the various units of
frequency are 1 eV ↔ 8065.5 cm�1 ↔ 2.418×1014 Hz ↔ Ï � 1.2398 Ìm ↔
11600 K or 1 cm�1 ↔ 0.12398 meV.

6.1.2 Experimental Determination of Optical Functions

There are several ways to determine the optical functions of a semiconductor
as a function of photon energy. The appropriate method depends on whether
the photon energy is above or below the bandgap [6.11].

If the photon energy is below the electronic bandgap and well above any
phonon energies, the sample absorption coefficient is either zero or very small.
The relevant optical function is then the refractive index (which is real). This
can be measured by several different methods. One very accurate method is
to fabricate the material into a prism and to measure the angle of minimum
deviation of a beam of light passing through this prism. Another method is to
polish the sample into a thin slab with parallel surfaces and to measure the
interference fringes in the sample transmission or reflection spectra.

When the photon energy is increased from below to above the bandgap,
typically the semiconductor absorption coefficient increases rapidly to values
as large as or larger than 104 cm�1. As a result the sample becomes opaque
for photon energies higher than the bandgap unless its thickness is very small.
Since the intensity of light transmitted through a sample decreases exponen-
tially with thickness according to (6.9), it is necessary to thin the sample down
to about ·�1 in order to detect easily the transmitted radiation. The quantity
·�1 is therefore known as the optical penetration depth. Since · tends to in-
crease rapidly as a function of photon energy above the bandgap, a series of
progressively thinner samples is necessary in order to measure · over a wide
photon energy range.

An alternative and more popular method for determining the complex di-
electric function of strongly absorbing samples is to use reflection measure-



248 6. Optical Properties I

ments. The major drawback of these measurements is their sensitivity to the
sample surface quality. As pointed out above, the penetration depth of light
into a sample is equal to ·�1 and for semiconductors · is typically of the
order of 104–106 cm�1 above the absorption edge. For such large absorption
coefficients, light will probe only a thin layer, about 1 Ìm or less thick, at the
top of the sample. As a result, the reflectance will be very sensitive to the
presence of surface contaminants such as oxides or even air pollutants. Unless
great care is taken to achieve an atomically clean surface in an ultra-high vac-
uum (see Chap. 8 for a definition of ultra-high vacuum and discussions on sur-
face properties of semiconductors), the measured reflectance is that of a “com-
posite”, consisting of a surface contaminant layer and the bulk sample. Some
authors have labeled the dielectric functions deduced from the reflectance of
such contaminated samples as “pseudodielectric functions” [6.12]. As an ex-
ample of the sensitivity of the dielectric function to sample surface quality,
we compare in Fig. 6.2 the “pseudodielectric function” of an oxidized GaAs
surface (oxide thickness 10 Å) with that of GaAs with an abrupt and clean
surface. Notice that the largest difference in Â between these surfaces occurs
around 4.8 eV photon energy. In this energy range the value of Î is about 4
[6.12], with a corresponding penetration depth of about 50 Å. Obviously, even
an oxide layer of only 10 Å will make a difference in the reflectivity.
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Fig. 6.2. The real and imaginary parts
of the dielectric function of GaAs mea-
sured by ellipsometry. The solid curve,
labeled “abrupt”, was obtained for an
atomically clean surface, the broken
one for a surface covered by an oxide
layer. [6.12]

Except for this surface sensitivity, determining the dielectric function from
reflection measurements is quite straightforward. It involves irradiating the
sample at either normal or oblique incidence. In oblique incidence techniques,
the reflectance �s and �p of the s- and p-polarized components of the inci-
dent light are measured (components of the incident radiation perpendicular
and parallel to the plane of incidence are labeled, respectively, as s- and p-
polarized). These reflectances are related to the complex refractive index by
the Fresnel formulae [6.10]
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�s � |rs|2 �

∣∣∣∣∣cos ˇ � (ñ2 � sin2 ˇ)1/2

cos ˇ � (ñ2 � sin2 ˇ)1/2

∣∣∣∣∣
2

(6.12a)

and

�p � |rp|2 �

∣∣∣∣∣ ñ2 cos ˇ � (ñ2 � sin2 ˇ)1/2

ñ2 cos ˇ � (ñ2 � sin2 ˇ)1/2

∣∣∣∣∣
2

, (6.12b)

where rs and rp are the complex reflectivity for s- and p-polarized light, re-
spectively, and ˇ is the angle of incidence. The complex refractive index can
be deduced by measuring both �s and �p at a fixed ˇ.

An oblique angle of incidence technique which has become very popu-
lar in the past decade is ellipsometry. This name derives from the fact that
when linearly polarized light that is neither s- nor p-polarized is incident on
a medium at an oblique angle, the reflected light is elliptically polarized (Fig.
6.3). The ratio (Û) of the complex reflectivities rp/rs can be determined by
measuring the orientation and the ratio of the axes of the polarization ellipse
corresponding to the reflected light. The complex dielectric function can be
determined from Û and ˇ using the expression (Problem 6.1)

Â � sin2 ˇ � sin2 ˇ tan2 ˇ
(

1 � Û
1 � Û

)2

. (6.13)

Figure 6.3 shows schematically the principal components of an ellipsome-
ter [6.13]. The light source can be either a laser or a broad-band source such
as a xenon gas discharge or a quartz-halogen lamp. In the case of a broad-band
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Fig. 6.3. Schematic diagram of an ellipsometer [6.13]. P and S denote polarizations paral-
lel or perpendicular to the plane of incidence, respectively
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source the light is passed through a monochromator to select a narrow band of
frequencies. Ellipsometry performed over a wide range of photon frequencies
is known as spectroscopic ellipsometry. The light leaving the monochromator is
passed through a linear polarizer. After reflection from the sample surface the
light experiences a relative phase shift ı between its s and p components and
becomes elliptically polarized. There are several variations in the method to
detect the ellipticity of the reflected light. In Fig. 6.3 a compensator introduces
another relative phase shift �ı which exactly cancels the ellipticity induced
by the reflection and the light becomes linearly polarized again. This null con-
dition can be easily detected by passing the light through an analyzer, which
consists of another linear polarizer oriented to block out the light after the
compensator.

Despite the increasing popularity of ellipsometers, perhaps the most com-
mon and also the simplest technique for determining the optical constants is
to measure the normal-incidence reflectance. Figure 6.4 shows the construc-
tion of the apparatus used by Philipp and Ehrenreich [6.14] to measure the
normal-incidence reflectance � of semiconductors from about 1 eV to 20 eV.
Modern versions of this setup are basically the same except for improvements
in the light source, gratings and detectors. Instead of gas-discharge lamps syn-
chrotron radiation [6.15, 16] is preferred nowadays as the source of high inten-
sity and broad-band radiation extending from the infrared to the X-ray region.
Holographic gratings have mostly replaced mechanically ruled gratings since
much more uniform and closely spaced grooves can be generated by interfer-
ence effects. In the area of detectors, the biggest improvement has been the
appearance of multichannel detectors such as CCDs (which stands for charge-
coupled devices). These are solid-state detectors that are sensitive from the
near infrared (wavelengths of about 1 Ìm) to the ultraviolet. They can also be
used in the vacuum ultraviolet and soft-x-ray region together with a scintilla-
tor and image-intensifiers. They allow the entire optical spectrum, covering a
wide range of wavelengths, to be recorded electronically in one exposure. Fi-
nally, the electronic signal from these detectors can be processed by desktop
computers to display the optical constants in real time with time resolution of
milliseconds.

In principle, it is necessary to measure both the normal-incidence re-
flectance � and the absorption coefficient · in order to determine the complex
refractive index and hence the dielectric function Â(ˆ). In practice it is suffi-
cient to simply measure � over a wide range of photon frequencies and then
deduce the absorption coefficients using the Kramers–Kronig relations (KKRs)
or dispersion relations, which were introduced in Sect. 4.3.1.

6.1.3 Kramers–Kronig Relations

If we assume that the field strength of the incident radiation is weak enough
that the induced polarization is linearly dependent on the electric field, both
¯(ˆ) and Â(ˆ) describe the linear responses of a medium to an external field.
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It can be shown that linear response functions such as Â or ¯ satisfies the KKRs

Âr(ˆ) � 1 �
2


�

∞∫
0

ˆ′Âi(ˆ′)dˆ′

ˆ′2 � ˆ2 (6.14)

and

Âi(ˆ) � �
2ˆ


�

∞∫
0

Âr(ˆ′)dˆ′

ˆ′2 � ˆ2 , (6.15)
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Fig. 6.4. (a) The vacuum reflectometer used by Philipp and Ehrenreich [6.14] to measure
the normal incidence reflectance of semiconductors from about 1 to 20 eV. (b) Detailed
construction of the gas discharge lamp they used
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where � means the principal value of the integral. The proof of this relation
(see, for example, [6.10] and Problem 6.2) is based on the principle of causal-
ity (i. e., a response to an applied field such as the polarization cannot precede
the applied field). Although the refractive index is not a response function, we
can derive a KKR for ñ based on the fact that it has the same analytic prop-
erties as Â. For example, ñ approaches unity as ˆ approaches infinity and, if
relativistic causality holds (i. e., the response cannot propagate faster than the
speed of light), ñ is analytic in the upper half plane of the complex variable
ˆ. As a result, a set of KKRs for ñ can be obtained from (6.14 and 15) by
replacing Âr and Âi by n and Î, respectively.

Since it is easier to measure the normal-incidence reflectance than either
Â or n of a bulk sample in most experiments, it is desirable to derive a KKR
for the reflectance. Such a relation can be obtained by constructing a complex
function, known as complex reflectivity, with analytic properties similar to Â.
Let us define such a function r̃ as

r̃ �
(ñ � 1)
(ñ � 1)

� Ú exp(iı). (6.16)

Consider a contour integral of the function

f (ˆ′) �

(
1 � ˆ′ˆ
1 � ˆ′2

)
ln r̃(ˆ′)

/
(ˆ′ � ˆ) (6.17)

over the contour C shown in Fig. 6.5. The function f is constructed so that,
in contrast to ln r̃, it approaches zero as ˆ′ approaches infinity. Furthermore,
the only poles of f (ˆ′) are i and ˆ and the residue of f at ˆ gives ln r̃(ˆ).
From the Cauchy theorem the contour integral of f is given by the sum of the
residues at i and ˆ. The result can be written as∮

C
f (ˆ′)dˆ′ � 2i

[
ln r̃(ˆ) �

1
2

ln r̃(i)
]

. (6.18)

Taking the real part of both sides of (6.18) we obtain (note that the principal
part of the integral in (6.19) is equal to the contour integral in (6.18) minus
half of the residue at ˆ′ � ˆ, see Fig. 6.5):

�

∞∫
�∞

(1 � ˆ′ˆ) ln Ú(ˆ′)dˆ′

(1 � ˆ′2)(ˆ′ � ˆ)
� �ı (6.19)

[the fact that ln r̃(i) is real, needed for this derivation, can be surmised from
(6.48 and 49) below]. By simplifying this equation further, we can express ı in
terms of an integral of ln Ú(ˆ):

ı � �
2ˆ


�

∞∫
0

ln Ú(ˆ′)dˆ′

(ˆ′2 � ˆ2)
. (6.20)

Using (6.20), the complex reflectivity, refractive index, and dielectric function
can all be deduced from measurement of the reflectance over a wide frequency
range. Since it is difficult to measure the reflectance from zero to infinite fre-
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C

ω
ι

Fig. 6.5. Contour C for integrating the func-
tion f in (6.17) to obtain the KKR for the
reflectivity

quency, it becomes necessary to use extrapolations to both low and high fre-
quencies. At low frequency in an undoped sample � can be approximated by a
constant. At high enough frequencies the semiconductor can be approximated
by a free electron gas with the dielectric constant

Â � 1 � (ˆp/ˆ)2, (6.21)

where the plasma frequency ˆp (see Problem 6.3 for its definition and deriva-
tion) is determined by the density of valence electrons only. The core electrons
are so tightly bound that their contributions to the dielectric function can usu-
ally be neglected.

6.2 The Dielectric Function

6.2.1 Experimental Results

Some typical reflectance spectra of group IV and III–V semiconductors mea-
sured by Philipp and Ehrenreich [6.14] are shown in Figs. 6.6a–8a. The corre-
sponding real and imaginary parts of the dielectric function and the imaginary
part of the so-called energy loss function (1/Â) deduced from the reflectance
spectra using the KKRs are shown in Figs. 6.6b–8b. The dielectric function of
GaAs displayed in Fig. 6.8b compares well with that measured by ellipsometry
over a smaller photon energy range, shown in Fig. 6.2.

Notice that both the reflectance spectra and the dielectric functions in Si,
Ge, and GaAs show considerable structure in the form of peaks and shoulders.
These structures arise from optical transitions from the filled valence bands to
the empty conduction bands. That such structures occur in the optical transi-
tions between valence bands and conduction bands in crystalline semiconduc-
tors should not be surprising (they are, however, smoothed out by disorder in
amorphous semiconductors). In Sect. 2.3.4 we studied the selection rules for
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Fig. 6.6. (a) Reflectance curve of Si measured at room temperature. (b) The real (Âr) and
imaginary (Âi) parts of the dielectric function and the imaginary part of (�1/Â) (known
as the energy loss function) of Si deduced from the reflectivity curve in (a) using the
Kramers–Kronig relation [6.14]. Notice that the peak of Im{�1/Â}, occurs at the plasma
energy of the valence electrons (Problem 6.3)

the matrix elements of the electric dipole operator between two given electron
wavefunctions in zinc-blende-type crystals. In the following sections we will
discuss the relation between the band structure of a semiconductor and its
optical spectra based on a microscopic theory of the dielectric function.

6.2.2 Microscopic Theory of the Dielectric Function

We will use a semi-classical approach to derive the Hamiltonian describing
the interaction between an external electromagnetic field and Bloch electrons
inside a semiconductor. In this approach the electromagnetic field is treated
classically while the electrons are described by quantum mechanical (Bloch)
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Fig. 6.7a,b. Curves for Ge similar to those for Si in Fig. 6.6

wave functions. Although this approach may not be regarded as being as rig-
orous as a fully quantum mechanical treatment in which the electromagnetic
waves are quantized into photons (e. g., [6.17]), it has the advantage of being
simpler and easier to understand. This approach generates the same results as
the quantum mechanical treatment, including even spontaneous emission (to
be discussed in Chap. 7).

We start with the unperturbed one-electron Hamiltonian introduced al-
ready in (2.4):

�0 � p2/2m � V(r). (6.22)

To describe the electromagnetic fields we introduce a vector potential A(r, t)
and a scalar potential º(r, t). Because of gauge invariance, the choice of these
potentials is not unique. For simplicity, we will choose the Coulomb gauge
[6.10], in which

º � 0 and ∇∇∇ · A � 0. (6.23)
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Fig. 6.8a,b. Curves for GaAs similar to those for Si in Fig. 6.6

In this gauge the electric and magnetic fields (E, B) are given by2

E � �
1
c

�A
�t

and B � ∇∇∇× A, (6.24)

where c is the velocity of light. The classical Hamiltonian of a charge Q in the
presence of an external magnetic field can be obtained from the free-particle
Hamiltonian by replacing the momentum P by P�(QA/c), where P is the
momentum conjugate to the position vector [6.10, p. 409]. Correspondingly, we
obtain the quantum mechanical Hamiltonian describing the motion of a charge
�e in an external electromagnetic field by replacing the electron momentum
operator p in (6.22) by p � (eA/c):

� �
1

2m
[p � (eA/c)]2 � V(r). (6.25)

The term [p � (eA/c)]2/2m can be expanded [keeping in mind that p is an
operator which does not commute with A(r)] as

1
2m

(
p �

eA
c

)2

�
p2

2m
�

e
2mc

A · p �
e

2mc
p · A �

e2A2

2mc2 . (6.26)

2 In (6.24, 25, 26, 28, 29, 31) delete c for SI units.
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Using the definition of p as the operator (�/i)∇∇∇ we can express the term p · A
as

(p · A)f (r) � A ·
(

�

i
∇∇∇f

)
�

(
�

i
∇∇∇ · A

)
f . (6.27)

From (6.23), ∇∇∇ · A � 0, and therefore [e/(2mc)]p · A � [e/(2mc)]A · p. For the
purpose of calculating linear optical properties we can also neglect the term
e2A2/(2mc2), which depends quadratically on the field. Under this assumption
we can approximate � by

� � �0 �
e

mc
A · p. (6.28)

Compared with the unperturbed Hamiltonian �0, the extra term [e/(mc)]A · p
describes the interaction between the radiation and a Bloch electron. As a re-
sult, this term will be referred to as the electron–radiation interaction Hamil-
tonian �eR:

�eR �
e

mc
A · p. (6.29)

Note that the form of �eR depends on the gauge we choose. Another form
of �eR commonly found in the literature is

�eR � (�e)r · E. (6.30)

Equation (6.30) can be shown to be equivalent to (6.29) in the limit that the
wavevector q of the electromagnetic wave is small [(6.30) corresponds to the
electric dipole approximation; (6.29) is more general]. Both forms of �eR ne-
glect the term quadratic in the field. In the case of (6.30), the interaction between
the electrons and the electromagnetic field via the Lorentz force has been ne-
glected. Since this force depends on v × B and since the velocity v varies with
E, this term has a quadratic dependence on the applied field. The advantage
of using (6.29) for semiconductors is that the matrix elements of the electron
momentum enter directly into the k · p method of band structure calculation.
For example, the matrix element between the lowest °1c conduction band and
the top °4 valence band in tetrahedrally bonded semiconductors can be deter-
mined from the conduction band effective mass using (2.44). Other matrix ele-
ments are related to the dispersion of the valence bands as shown in (2.63–65).

There are several ways to calculate the dielectric function of a semicon-
ductor from �eR. Again, we will take the simplest approach. We first assume
that A is weak enough that we can apply time-dependent perturbation theory
(in the form of the Fermi Golden Rule) to calculate the transition probability
per unit volume R for an electron in the valence band state |v〉 (with energy
Ev and wavevector kv) to the conduction band |c〉 (with corresponding energy
Ec and wavevector kc). To do this we need to evaluate the matrix element
|〈c|�eR|v〉|2:

|〈c|�eR|v〉|2 � (e/mc)2|〈c|A · p|v〉|2. (6.31)

We will now write the vector potential A as Aê, where ê is a unit vector par-
allel to A. In terms of the amplitude of the incident electric field E(q, ˆ), the
amplitude of A can be written as
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A � �
E
2q

{exp[i(q · r � ˆt)] � c.c.} , (6.32)

where c.c. stands for complex conjugate. The calculation of the matrix element
〈c|A · p|v〉 involves integration over space. The integration over time of the
term exp[i(�ˆt)] in (6.32) and the corresponding factors in the electron Bloch
functions leads formally to∫

exp(iEct/�) exp[i(�ˆt)] exp(�iEvt/�)dt ∝ ‰(Ec(kc) � Ev(kv) � �ˆ), (6.33)

i. e., the delta function found in the Fermi Golden Rule. This result means
that the electron in the valence band absorbs the photon energy and is then
excited into the conduction band. Hence this term in (6.32) describes an
absorption process. Similarly, the matrix element of the complex conjugate:
〈c| exp(iˆt)|v〉, gives rise to ‰(Ec(kc) � Ev(kv) � �ˆ). This term is nonzero
when an electron which is initially in the conduction band emits a photon and
ends up in the valence band. Since this emission process occurs now in the
presence of an external field, this term describes a stimulated emission pro-
cess. In other words, the two terms in (6.32) describe, respectively, absorption
and emission of photons by electrons in a semiconductor under the influence
of an external electromagnetic field. Notice that the magnitudes of the matrix
elements describing both processes are equal. The stimulated emission term,
represented as c.c. in (6.33), will be discussed in more detail in Chap. 7 but
will be neglected in this chapter.

Writing the Bloch functions [see (2.6)] for the electrons in the conduction
and valence bands, respectively, as

|c〉 � uc, kc (r) exp[i(kc · r)] (6.34a)

and

|v〉 � uv, kv (r) exp[i(kv · r)] (6.34b)

and using the expression for A in (6.32), we obtain

|〈c|A · p|v〉|2

�
|E|2
4q2

∣∣∣∣∫ u∗
c, kc

exp[i(q � kc) · r](ê · p)uv,kv exp(ikv · r)dr

∣∣∣∣2

. (6.35)

Operating with p on uv, kv exp(ikv · r) yields two terms:

puv, kv exp(ikv · r) � exp(ikv · r)puv, kv � �kvuv, kv exp(ikv · r). (6.36)

The integral of the second term in (6.36) multiplied by u∗
c,kc

, vanishes because
uc, kc and uv, kv are orthogonal. We can split the corresponding integral of the
first term∫

u∗
c, kc

exp[i(q � kc � kv) · r]puv, kv dr

into two parts by writing r � Rj � r′, where r′ lies within one unit cell and Rj

is a lattice vector. Because of the periodicity of the functions uc, kc and uv, kv ,
we find
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u∗

c, kc
exp[i(q � kc � kv) · r]puv, kv dr

�

⎛⎝∑
j

exp[i(q � kc � kv) · Rj]

⎞⎠∫
unit
cell

u∗
c,kc

exp[i(q � kc � kv) · r′]puv,kv dr′.
(6.37)

The summation of exp[i(q�kc�kv)·Ri] over all the lattice vectors Rj results in
a delta function ‰(q�kc �kv). This term ensures that wavevector is conserved
in the absorption process:

q � kv � kc. (6.38)

Equation (6.38) is a consequence of the translation symmetry of the crystal
and therefore must be satisfied for all processes in a perfect crystal. It is,
however, relaxed in amorphous semiconductors (see Appendix by J. Tauc on
p. 566).

Using (6.38), the integral over the unit cell in (6.37) simplifies to∫
unit
cell

u∗
c, kc

exp[i(q � kc � kv) · r]puv, kv dr′ �

∫
unit
cell

u∗
c, kv�q puv, kv dr′. (6.39)

This expression can be further simplified if we assume that q is much smaller
than the size of the Brillouin zone, a condition usually satisfied by visible pho-
tons, whose wavelengths are of the order of 500 nm. For small q the wavefunc-
tion uc,kv�q can be expanded into a Taylor series in q:

uc,kv�q � uc,kv � q · ∇∇∇kuc, kv � . . . . (6.40)

When q is small enough that all the q-dependent terms in (6.40) can be ne-
glected, the matrix element |〈c|ê · p|v〉|2 is given by

|〈c|ê · p|v〉|2 �

⎛⎜⎜⎝∫
unit
cell

u∗
c, k(ê · p)uv, kdr′

⎞⎟⎟⎠
2

. (6.41a)

This approximation is known as the electric dipole approximation [it can be
shown to be equivalent to using (6.30)] and the corresponding matrix element
in (6.41a) as the electric dipole transition matrix element. Notice that the elec-
tric dipole approximation is equivalent to expanding the term exp(iq · r) in
(6.32) into a Taylor series: 1 � i(q · r) � . . . and neglecting all the q-dependent
terms. In this case we have kv � kc, and the transitions are said to be vertical
or direct.

If the electric dipole matrix element is zero, the optical transition is deter-
mined by the q · ∇∇∇kukv term in (6.41). The matrix element

|〈c|ê · p|v〉|2 �

⎛⎜⎜⎝∫
unit
cell

q · (∇∇∇ku∗
c, k)(ê · p)uv, kdr′

⎞⎟⎟⎠
2

(6.41b)
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gives rise to electric quadrupole and magnetic dipole transitions. These higher
order optical transitions can also be considered as arising from the i(q ·r) term
in the Taylor expansion of exp(iq · r). Compared to the electric dipole transi-
tions they are reduced in strength by a factor of (lattice constant/wavelength
of light)2 [6.7].

From now on we shall restrict ourselves to electric dipole transitions unless
stated otherwise. To simplify the notation we drop the subscript v or c in the
electron wavevectors kv and kc, since they are the same. In most cases the mo-
mentum matrix element in (6.41a) is not strongly dependent on k [6.18] so we
shall replace it by the constant |Pcv|2. Equation (6.31) can then be simplified
to read

|〈c|�eR|v〉|2 � (e/mc)2|A|2|Pcv|2. (6.42)

In using (6.42) one must remember that we have defined A in (6.32) as a sum
of exp[i(q · r � ˆt)] and its complex conjugate exp[�i(q · r � ˆt)] in order that
A be a real function of space and time. However, of these two terms only the
one containing exp(�iˆt) yields the absorption process. Its complex conjugate,
which gives rise to stimulated emission, has been completely disregarded in
the present discussion.

The electric dipole transition probability R for photon absorption per unit
time obtained by substituting (6.42) and (6.32) into the Fermi Golden Rule:

R � (2/�)
∑
kc,kv

|〈c|�eR|v〉|2‰(Ec(kc) � Ev(kv) � �ˆ) (6.43a)

is thus given by

R �
2
�

( e
mˆ

)2
∣∣∣∣E(ˆ)

2

∣∣∣∣2 ∑
k

|Pcv|2‰(Ec(k) � Ev(k) � �ˆ). (6.43b)

If we restrict the summation to those k’s allowed per unit volume of crystal
then (6.43b) gives the absorption transition rate per unit volume of the crystal.
The power lost by the field due to absorption in unit volume of the medium is
simply the transition probability per unit volume multiplied by the energy in
each photon:

Power loss � R�ˆ. (6.44)

This power loss from the field can also be expressed in terms of either · or
Âi of the medium by noting that the rate of decrease in the energy of the
incident beam per unit volume is given by �dI/dt, where I is the intensity of
the incident beam:

�
dI
dt

� �

(
dI
dx

) (
dx
dt

)
�

c
n

·I (6.45)

�
ÂiˆI
n2 . (6.46)

The energy density I can be related to the field amplitude by
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I �
n2

8
|E(ˆ)|2. (6.47)

Equating �dI/dt with the expression for the power loss per unit volume of the
field in (6.44) we obtain

Âi(ˆ) �

(
2e1
mˆ

)2 ∑
k

|Pcv|2‰(Ec(k) � Ev(k) � �ˆ). (6.48)
4Â0

By using the KKRs we can then obtain the expression for Âr:

Âr(ˆ) � 1 �
4e2

m

⎡⎣∑
k

(
2

m�ˆcv

)
|Pcv|2

ˆ2
cv � ˆ2

⎤⎦ (6.49)
4Â0

where �ˆcv � Ec(k) � Ev(k). We have purposely written (6.49) in a form
similar to the dielectric function for a collection of classical, charged, harmonic
oscillators with frequencies ˆi (Problem 6.4):

Âr(ˆ) � 1 �
4e2

4Â0m

(∑
i

Ni

ˆ2
i � ˆ2

)
, (6.50)

where Ni is the number of oscillators per unit volume with frequencies ˆi.
Comparing the two expressions for Âr in (6.49) and (6.50), we see that the
dimensionless quantity

fcv �
2|Pcv|2
m�ˆcv

(6.51)

is essentially the “number” of oscillators with frequency ˆcv. Therefore fcv is
known as the oscillator strength of the optical transition.3

6.2.3 Joint Density of States and Van Hove Singularities

Note that in (6.48) most of the dispersion in Âi comes from the summation
over the delta function ‰(Ec(k) � Ev(k) � �ˆ). This summation can be con-
verted into an integration over energy by defining a joint density of states for
the (doubly degenerate) conduction and valence bands (see Sect. 4.3.1 for the
definition of density of states):

Dj(Ecv) �
1

43

∫
dSk

|∇∇∇k(Ecv)| , (6.52)

where Ecv is the abbreviation for Ec�Ev, and Sk is the constant energy surface
defined by Ecv(k) � const. We have assumed that both the conduction and
valence bands are doubly degenerate (as a result of spin), which is strictly

3 The summation in (6.49) is performed over the k vectors allowed per unit volume of
crystal.
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valid for centrosymmetric crystals but not for zinc-blende-type crystals [6.19].
Since �eR does not involve electron spin, the spin state of the electron does
not change in an optical transition (provided there is no spin–orbit coupling).
With (6.52) we can make the following replacement in (6.4 and 49):∑

k

→
∫

Dj(Ecv)dEcv (6.53)

It has been pointed out by Van Hove [6.20] that the density of states of
electron and phonon bands possesses singularities at points where |∇∇∇k(E)|
vanishes [see (6.52)]. These points are known as critical points and the cor-
responding singularities in the density of states are known as Van Hove sin-
gularities. Assuming that k � 0 is a critical point in three-dimensional space,
E(k) can be expanded as a function of k about the critical point:

E(k) � E(0) � ·1k2
1 � ·2k2

2 � ·3k2
3 � . . . (6.54)

Van Hove singularities are classified according to the number of negative
coefficients ·i in (6.54). In three-dimensional space there are four kinds of Van
Hove singularities, labeled M0, M1, M2, and M3 critical points. For example, a
M0 critical point has no negative ·i’s and therefore represents a minimum in
the band separation Ecv. M1 and M2 are known as saddle points, since the
plots of their energies versus wavevector resemble a saddle. An M3 critical
point represents a maximum in the interband separation. It has been shown
extensively in the literature (see for example [6.11]) that the density of states
in the vicinity of an M0 critical point of doubly degenerate valence and con-
duction bands is

Dj �

{
(22·3/2)�1(E � E0)1/2, E � E0
0, E � E0

; ·3 � ·1·2·3 (6.55)

The dependences on E of the densities of states in the vicinity of Van Hove
singularities are listed in Table 6.1 for one-dimensional to three-dimensional k-
space. The corresponding Van Hove singularities in Âi are sketched in Fig. 6.9.

6.2.4 Van Hove Singularities in Âi

The real and imaginary parts of the dielectric function can be calculated read-
ily from the band structure of a semiconductor using (6.49) and (6.48), re-
spectively. A detailed comparison of the theoretical and experimental curves
is one of the most stringent tests of the accuracy of a band structure calcula-
tion. From such a comparison it is possible to identify the optical transitions in
reciprocal space which give rise to the structures in the experimental dielectric
functions. In Figs. 6.10 and 11 we show comparisons of the theoretical and ex-
perimental dielectric function curves for Si and GaAs. The theoretical curves
have been calculated from the band structures obtained by the empirical pseu-
dopotential method. Figure 6.12 shows a similar comparison for the imaginary
part of the dielectric function in Ge [6.25] except that the band structure was
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Table 6.1. Van Hove singularities in one, two, and three dimensions and the corresponding
density of states Dj . C stands for an energy-independent constant

Three dimensions M0 0 (E � E0)1/2

M1 C � (E0 � E)1/2 C
M2 C C � (E � E0)1/2

M3 (E0 � E)1/2 0

Two dimensions M0 0 C
M1 � ln(E0 � E) � ln(E � E0)
M2 C 0

One dimension M0 0 (E � E0)�1/2

M1 (E0 � E)�1/2 0

Type Dj

E � E0 E � E0

ωg ωg ωg ω g
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Fig. 6.9. Schematic dependence of the imaginary part of the dielectric constant (Âi) on
frequency near Van Hove singularities (i.e., interband critical points) in one, two, and
three dimensions
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Fig. 6.10a,b. A comparison be-
tween the experimental and cal-
culated dielectric function of Si:
(a) real part and (b) imaginary
part. In (b) the results of two
theoretical calculations, one in-
cluding and the other exclud-
ing local-field corrections, are pre-
sented [6.21]. For more recent
theoretical results see [6.22, 23].
The local field corrections are
due to changes in the higher
Fourier components of the crystal
(pseudo)-potential induced by the
electromagnetic field. Note that,
according to (b), their effect is
small; they do not improve agree-
ment with experimental data. The
sharp peak observed at 3.3 eV has
been attributed to excitonic ef-
fects (see Sect. 6.3.3 and [6.24])

calculated with the k · p method. The agreement between theory and experi-
ment is quite good in all three cases because some of the input parameters for
the band calculations were actually determined by fitting structures observed
in the experimental curves. This limitation of the empirical methods of band
structure calculations has been overcome in more recent ab initio pseudopo-
tential calculations as discussed in Sect. 2.5.2.

There are many similarities in the overall shape of the imaginary part of
the dielectric functions in Figs. 6.10–12. This is true not only for the three
semiconductors shown here, but also for most of the tetrahedrally bonded
semiconductors in the group IV, III–V and II–VI families. The main differ-
ence between their dielectric functions lies in the energies of the transitions.
A close examination of the Âi of these semiconductors shows that they all pos-
sess the following features:
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Fig. 6.11a,b. Results for GaAs
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6.10 for Si (the theoretical results
do not include local field correc-
tions) [2.8] p. 105

• An onset due to transitions between the absolute valence band maximum
and the conduction band minimum. This is known as the fundamental ab-
sorption edge. The strength of this absorption edge depends on whether
the valence band maximum and the conduction band minimum occur at
the same point in the Brillouin zone. Since transitions between bands with
the same wavevector are labeled as direct, semiconductors whose funda-
mental absorption edge involves a direct transition are said to have a direct
absorption edge. Otherwise the absorption edge is said to be indirect. Di-
amond, Si, SiC, Ge, AlAs, AlSb, and GaP have indirect absorption edges,
while GaN, GaAs, GaSb, InP, InAs, InSb and all the II–VI semiconductors
have direct absorption edges. Within the scheme presented so far, optical
transitions across an indirect bandgap are not allowed by the wavevector
conservation condition. As we shall show in the next section, optical tran-
sitions between two bands with different wavevectors (knows as indirect
transitions) are possible with the involvement of phonons, although they
are orders of magnitude weaker than direct transitions. Hence they can be
observed only when their energy is below that of all the direct transitions.
Âi becomes appreciable usually at the onset of the lowest-energy direct
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dielectric function in Ge. The theoretical curve was calculated from a band structure ob-
tained by the k · p method without spin-orbit interaction [6.25]

transition. In the diamond and zinc-blende-type semiconductors this tran-
sition usually occurs at the center of the Brillouin zone between the °4v
valence band and the °1c conduction band and is usually referred to in the
literature as the E0 transition. Whenever the valence band has a sizable
spin–orbit interaction, for example in semiconductors containing heavy el-
ements such as In, As, and Sb, this transition is split by spin–orbit cou-
pling into two transitions. The higher energy °7v–°6c transition involving
the split-off valence band is labeled the E0 � ¢0 transition.

• Above the fundamental absorption edge, Âi typically rises to an asymmet-
ric peak related to transitions occurring along the eight equivalent [111]
directions of the Brillouin zone (a direction and all equivalent ones are
represented as 〈111〉). If the spin–orbit coupling is small (such as in Si and
GaP), only one peak is observed and the transition is known as the E1

transition. Band structures suggest that these transitions involve M1-type
critical points in their joint density of states. [Since the negative longitu-
dinal mass of these transitions (i.e., (1/·1), with ·1 defined in (6.54)) is
very large, the E1 critical points are often modeled by a two-dimensional
M0 critical point.] When the spin–orbit interaction in the valence bands
is large, the E1 transitions are split into the E1 and E1 � ¢1 transitions.
Using the k · p method, the spin–orbit splitting in the valence band along
the 〈111〉 directions ¢1 can be shown to be approximately 2/3 of the spin–
orbit splitting ¢0 at zone center [6.11]. This “two-thirds rule” provides a
consistency check on the identification of the E1 transitions. Table 6.2 lists
¢0, ¢1 and the ratio ¢0/¢1 in a number of tetrahedrally coordinated semi-
conductors. Except for InP and GaN, this rule is well obeyed by all the
semiconductors in the list (see Problem 6.20).

• Âi reaches a strong absolute maximum known as the E2 peak. This peak
contains contributions from transitions occurring over a large region of the
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Table 6.2. The valence band spin–orbit splitting at zone center (¢0) and in the 〈111〉
directions (¢1) and their ratio in several tetrahedrally coordinated semiconductors (list
compiled from [6.19]). GaN values were calculated with the LCAO-LDA method in
[6.26]. The experimental value of ¢0 for GaN is 17 ± 1 meV [6.26]

Si 0.044 0.03 1.47
Ge 0.296 0.187 1.58
GaN 0.019 0.032 0.59
GaAs 0.341 0.220 1.55
InP 0.108 0.133 0.81
InAs 0.38 0.267 1.42
InSb 0.803 0.495 1.62
ZnSe 0.432 0.27 1.59
CdTe 0.949 0.62 1.53

Semiconductor ¢0 [eV] ¢1 [eV] ¢0/¢1

Brillouin zone close to the edges in the 〈100〉 and 〈110〉 directions [6.21].
Some of these transitions are associated with M2 critical points.

• Superimposed on these features are weaker structures labeled E′
0 and E′

1 tran-
sitions. These involve transitions between the valence bands and higher con-
duction bands at the zone center and along the 〈111〉 directions, respectively.

The above system for labeling the interband optical transitions was pro-
posed by Cardona [6.11]. Transitions occurring at the zone center, along the
〈111〉 directions and along the 〈100〉 directions are denoted by subscripts 0, 1,
and 2, respectively. As an illustration, these optical transitions are indicated
by arrows in the band structure of Ge in Fig. 6.13. This band structure has
been calculated by a “full-zone k·p method”, which is an extension of the k·p
method discussed in Sect. 2.6 in which the electron wavevector k is no longer
restricted to be near a critical point but can extend all the way to the zone
edge [6.18]. The overall agreement between theory and experiment in Figs.
6.10–12 supports the identifications of the structures in the optical spectra in
terms of critical points in the density of states. It should be pointed out that
many of the remaining disagreements between theory and experiment in Figs.
6.10–12 have since been removed in more recent calculations. The present
“state of the art” is represented by ab initio calculations which include
Coulomb interaction between the excited electron and the hole left behind.
This interaction enhances the E1 transitions while weakening E′

1, thus correct-
ing deficiencies of Figs. 6.10, 11 [6.22, 23].

Table 6.3 lists the experimental energies of structures in the optical spec-
tra measured at low temperatures for a number of semiconductors. In principle,
by comparing these energies with critical point energies in the calculated joint
density of states, the types of Van Hove singularities responsible for these struc-
tures can be deduced. In practice, the higher energy transitions are often found
to contain contributions from several critical points of different types. Only the
E0 and E1 transitions can be attributed definitively to three-dimensional critical
points with M0 and M1 (or two-dimensional M0) types of Van Hove singularities.
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Table 6.3. The measured energies [eV] of the prominent structures in the optical spectra
of some diamond and zinc-blende-type semiconductors. All energies are low temperature
values except that of the E0 transition in Si, which was measured at room temperature.
Compiled

a Grown on MgO.

from data listed in [6.27], [6.28] and [6.29].

E0 4.185 0.898 1.5192 1.4236 2.869
E0 � ¢0 4.229 1.184 1.859 1.532 2.949
E1 3.45 2.222 3.017 3.287 3.780
E1 � ¢1 — 2.41 3.245 3.423
E′

0 3.378 3.206 4.488 4.70 4.72
E′

0 � ¢′
0 — 3.39

E2 4.330 4.49 5.110 5.05 5.22
E′

1 5.50 5.65 6.63 6.8

Transition Si Ge GaAs InP GaP

4.659 5.17

3.835

4.88

3.302a

3.319a

7.03

7.63

GaN

6.2.5 Direct Absorption Edges

We shall now consider in more detail the optical transitions at the fundamen-
tal absorption edge, since many semiconductor optoelectronic devices, such as
lasers and photodetectors, involve these transitions. As pointed out in the pre-
ceding section, there are direct and indirect absorption edges. In the case of
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a direct absorption edge, Âi can be calculated from (6.48). Let mc and m˘ de-
note, respectively, the effective masses of the conduction and valence bands
(assumed to be spherical for simplicity) and Eg the direct energy gap. The
energy difference Ecv in the vicinity of the energy gap can be expanded as

Ecv � Eg � (�2/2Ì)k2, (6.56)

where Ì is the effective mass defined by Ì�1 � m�1
c � m�1

v . Using (6.52) the
joint density of states Dj can be calculated to be

Dj �

{
[21/2Ì3/2/(2�3)](Ecv � Eg)1/2 for Ecv � Eg,
0 for Ecv � Eg.

(6.57)

Substituting this result into (6.48) we obtain Âi near Eg as

Âi(ˆ) �

{
A (xx � 1)1/2–2 for x � 1,
0 for x � 1,

(6.58a)

where

A �
2e2(2Ì)3/2

m2�
|Pcv|2E�3/2

g

and

x � �ˆ/Eg. (6.58b)

Using the KKRs, Âr near Eg can be shown to have the form (Problem 6.2).

Âr(ˆ) �

{
const � Ax�2[2 � (1 � x)1/2] for x � 1,
const � Ax�2[2 � (1 � x)1/2 � (1 � x)1/2] for x � 1,

(6.59)

where the constant term is determined by contributions from transitions above
the fundamental absorption edge. According to (6.58) a plot of Â2

i , or the
square of the absorption coefficient, as a function of the photon energy should
be a straight line. The energy gap is given by the intercept of the line with the
x axis and either Ì or |Pcv|2 can be determined from its slope. An example of
such a plot is given in Fig. 6.14 for PbS. An equivalent semilogarithmic plot
for InSb is given in Fig. 6.15. A fit to the experimental values of Âr(ˆ) in PbS
with the expression (6.59) is shown in Fig. 6.14 (b).

6.2.6 Indirect Absorption Edges

If the lowest energy gap is indirect, a photon can excite an electron from the
valence band to the conduction band with the assistance of a phonon. The
wavevector difference between the electrons in the two bands is supplied by
the phonon. If the phonon energy and wavevector are denoted by Ep and Q,
the energy- and wavevector-conservation conditions in the optical process are
represented by
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�ˆ � Ecv ± Ep and kc � kv � ∓Q, (6.60)

where � and � correspond, respectively, to emission and absorption of a
phonon. Processes involving several phonons are in principle also possible but
usually with much smaller probabilities.

As a specific example of an indirect absorption edge we will consider Si.
The band structure of Si in the vicinity of the indirect gap ¢1 � °25′ is shown
schematically in Fig. 6.16. The absorption processes near this energy gap now
consist of two steps. One of these steps involves the electron–photon interac-
tion �eR while the other step involves the electron–phonon interaction �ep.
Both interactions will be assumed to be weak enough for perturbation theory
to be valid. The calculation of the optical transition probability can therefore
be performed by using second order perturbation theory. A systematic way to
calculate this probability makes use of Feynman diagrams. We shall defer the
discussion of this technique until Chap. 7, when we apply it to study Raman
scattering. Using Feynman diagrams to calculate the transition probability at
an indirect absorption edge is left for Problem 7.7. In this chapter we shall
point out, without proof, several possible processes which contribute to the in-
direct absorption edge. In one of them an electron is first excited via a virtual
transition (i. e., a transition which does not conserve energy – although such
transitions have to conserve wavevector as a result of the translation symmetry
of the crystal) from the valence band to an intermediate state |i〉 by absorb-
ing the incident photon. A second virtual transition takes the electron from |i〉
to the ¢1 conduction band state via absorption or emission of a phonon. In
the final state there is an electron in the ¢1 conduction band, a hole in the
°25′ valence band state and a phonon has been either created or annihilated.
This process is shown schematically for Si in Fig. 6.16 by arrows labeled 1. A
second possible phonon-assisted indirect optical transition is also shown in the
same figure by arrows labeled 2. These processes are similar except that for
process 2 the intermediate states occur at ¢.
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There are other possible processes which contribute to absorption at an in-
direct bandgap. In principle these terms have to be combined with the contri-
butions from the above two in calculating the transition probability. To under-
stand why the above two terms have been singled out, we shall examine their
contribution to the transition probability Rind using an extension of Fermi’s
Golden Rule to second order perturbation (see Sect. 7.2.4 for further details):

Rind �
2
�

∑
kc,kv

∣∣∣∣∣∑
i

〈f|�ep|i〉〈i|�eR|0〉
Ei0 � �ˆ

∣∣∣∣∣
2

‰(Ec(kc) � Ev(kv) � �ˆ ± Ep);

(6.61)

|0〉 represents the initial state of the system with a filled valence band and
an empty conduction band and phonon occupation number Np. In the final
state |f〉 an electron has been excited into the ¢1 conduction band, a hole has
been created at the °25′ valence band, and Np has changed by one. For the two
processes in Fig. 6.16, the intermediate state |i〉 involves either an electron ex-
cited into the ¢1 conduction band (shown by arrow 2) or a hole created at the
°25′ valence band (shown by arrow 1). In principle, it is necessary to permute
the time order in which �eR and �ep occur and also to sum over all possi-
ble intermediate states |i〉 in calculating Rind. However, processes in which the
phonons excite an electron across the gap make a negligible contribution be-
cause of the energy denominator in (6.61). Similarly, intermediate states for
which Ei0 � �ˆ are unimportant. As a result, the two processes shown in
Fig. 6.16 are usually the most important ones.

In many semiconductors, the matrix elements which appear in (6.61) can
be assumed to be constant in the vicinity of the indirect bandgap. Therefore
the photon energy dependence of Rind can be obtained by summing over the
delta function in (6.61). By converting the summations over kc and kv to in-
tegrations over the conduction and valence band energies Ec and Ev, respec-
tively, via their density of states Dv(Ev) and Dc(Ec) we obtain

Rind ∝
∫∫

Dv(Ev)Dc(Ec)‰(Ec � Ev � �ˆ ± Ep)dEcdEv. (6.62)

Assuming that the bands are parabolic and three-dimensional, we find

Dv ∝
{

(�Ev)1/2 for Ev � 0,
0 for Ev � 0,

(6.63)

and

Dc ∝
{

(Ec � Eig)1/2 for Ec � Eig,
0 for Ec � Eig.

(6.64)

The zero of the energy scale has been taken at the top of the valence band
and Eig is the indirect energy gap. Substituting Dv and Dc into (6.62) and
integrating over Ev one obtains

Rind ∝
�ˆ∓Ep�Eig∫

Eig

(Ec � Eig)1/2(�ˆ ∓ Ep � Ec)1/2dEc. (6.65)
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By changing the variable to

x �
Ec � Eig

�ˆ ± Ep � Eig
,

(6.65) can be expressed as

Rind ∝ (�ˆ ∓ Ep � Eig)2

1∫
0

x1/2(1 � x)1/2dx. (6.66)

On performing the integral in (6.66) we can conclude that, in the vicinity of
an indirect bandgap, Âi depends on the photon energy as

Âi(ˆ) ∝
{

(�ˆ ∓ Ep � Eig)2 for �ˆ ≥ Eig ± Ep,
0 otherwise.

(6.67)

Thus an indirect energy gap can, in principle, be distinguished from a direct
one by the different dependence of their absorption coefficients on photon
energy. In addition, every indirect energy gap gives rise to two absorption
edges, at Eig � Ep and Eig � Ep, for each phonon Ep that can mediate the
indirect transition. The edge at Eig � Ep corresponds to phonon absorption.
The electron–phonon matrix element |〈f|�ep|i〉|2 in (6.61) is proportional to
Np, where Np is the phonon occupation number (Sect. 3.3.1). This absorption
edge is therefore present only at high temperatures and disappears at temper-
atures too low for such phonons to be thermally excited. On the other hand,
the higher energy edge at Eig �Ep involves phonon emission and hence is pro-
portional to (1 � Np). It is present at both high and low temperatures. Identi-
fication of these two edges by their different temperature dependence enables
not only Eig but also Ep to be determined.

Figures 6.17–19 show the absorption edges of three indirect bandgap semi-
conductor: Si, Ge, and GaP. In these materials several phonons can participate
in indirect transitions, giving rise to a number of absorption thresholds. The
temperature dependence of these edges in Ge and GaP is shown in Figs. 6.18
and 19. Notice that at low temperature the shape of these indirect absorption
edges deviates from the proportionality to the square of the photon energy
predicted by (6.67). Instead, their shape resembles more the square root de-
pendence given in (6.58) for direct gaps. The explanation for this deviation is
that exciton effects modify the shape of these indirect absorption edges at low
temperatures. These effects will be discussed in Sect. 6.3.

6.2.7 “Forbidden” Direct Absorption Edges

The last case we shall consider involves a direct-bandgap semiconductor where
an electric dipole transition between the top valence band and the lowest con-
duction minimum is forbidden by a selection rule. One example of a semicon-



274 6. Optical Properties I

1.0 1.1 1.2 1.3 1.4

Photon energy  [eV]

0

1

2

3

4

5

6

7

8

9

10

Si

33
3 

K
29

0 
K

24
9 

K
19

5 
K

α1
/2

 [
cm

 –
1/

2 ]

Fig. 6.17. Plots of the square root of the absorption coefficients of Si versus photon en-
ergy at several temperatures. The two segments of a straight line drawn through the ex-
perimental points represent the two contributions due to phonon absorption and emission
[6.33]

2.3

2.2

6

5

4

3

2

1

0

Ge

0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86

Photon energy [eV]

0.7

0.9

0.769 0.771

4.2 K &
20 K

77 K

90 K195 K

249 K

291 K

Sq
ua

re
 r

oo
t o

f 
ab

so
rp

tio
n 

co
ef

fi
ci

en
t  

[c
m

–1
/2

]

0.
70

7

0.
70

8

0.
70

9

<

Fig. 6.18. Plots of the square root of the absorption coefficients of Ge versus photon
energy at several temperatures. The two insets compare the exciton-induced abruptness
of the absorption edge due to phonon emission at high and low temperatures [6.34]

ductor with such a “forbidden” direct absorption edge is Cu2O, whose crystal
structure and zone-center phonon properties were studied in Problem 3.1. This
crystal is centrosymmetric. Both the conduction and valence band extrema oc-
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cur at the zone center and have even parity [6.36]. The electron momentum
operator p in �eR has odd parity under inversion. As a result of the matrix-
element theorem discussed in Sect. 2.3.3, electric dipole transitions are allowed
only between states of different parity. Hence they are forbidden by the parity
selection rule at the absorption edge of Cu2O.

In the case of optical transitions involving isolated atoms or molecules,
the electronic density of states has discrete peaks. When the electric dipole
matrix element vanishes one may have to consider higher order optical tran-
sitions (such as quadrupole transitions). For interband transitions the density
of states is a continuum. When |Pvc|2 is zero at an M0 critical point, this does
not imply that there will be no electric dipole absorption edge; the density of
states is zero anyway at an M0 critical point. The vanishing of |Pvc|2 exactly at
the critical point just means that one has to consider the possibility that |Pvc|2
does not vanish for electron wavevectors k slightly off the critical point. In
general, one finds |Pvc|2 to have a nonzero k-dependent component. For ex-
ample, in the case of Cu2O one can use the k ·p expansion in (2.37) to express
either the conduction or valence band wavefunctions as a function of k. This
expansion introduces some mixture of odd-parity wavefunctions, giving rise to
parity-allowed electric-dipole transition matrix elements. Phenomenologically
one can expand |Pvc|2 as a Taylor series in k. Assuming that the critical point
occurs at k � 0 and |Pvc(0)|2 � 0, we find

|Pvc(k)|2 � |dPvc/dk|2k2 � 0(k4). (6.68)

When we substitute (6.68) into (6.48) the optical transition matrix element in-
troduces a term proportional to k2. Since the joint density of states at a direct
gap is proportional to k in three dimensions (6.57), Âi(ˆ) becomes propor-
tional to k3. Hence for a direct and “forbidden” bandgap semiconductor Âi(ˆ)
depends on photon energy as
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Âi(ˆ) ∝
{

(�ˆ � Eg)3/2 for �ˆ � Eg
0 for �ˆ � Eg.

(6.69)

Compared to direct but “allowed” absorption edges, a “forbidden” edge in-
creases more slowly with energy in the vicinity of the bandgap. As a result,
“forbidden” absorption edges are difficult to identify except when there are
strong exciton effects which change the smooth absorption edges into sharp
peaks. These effects will be studied in the next section.

6.3 Excitons

The approach we have adopted so far to view optical absorption processes is
that an incident radiation field excites an electron–hole pair inside the semi-
conductor. The properties of the electron and the hole are both described
by the band structure within the one-electron approximation. In this section
we shall go beyond this approximation and consider the effects of electron–
electron interaction on the absorption spectra.

To simplify the calculation we shall make the following assumptions. We
shall include only the Coulombic part of the electron–electron interaction ne-
glecting both exchange and correlation terms. Furthermore, the interaction be-
tween the excited electron in the conduction band and those left behind in the
now almost filled valence band will be replaced by an electron–hole interac-
tion. Attraction between the electron and the hole causes their motion to be
correlated and the resultant electron–hole pair is known as an exciton. Typ-
ically excitons have been studied in two limiting cases. For strong electron–
hole attraction, as in ionic crystals, the electron and the hole are tightly bound
to each other within the same or nearest-neighbor unit cells. These excitons
are known as Frenkel excitons. In most semiconductors, the Coulomb in-
teraction is strongly screened by the valence electrons via the large dielec-
tric constant. As a result, electrons and holes are only weakly bound. Such
excitons are known as Wannier–Mott excitons [6.37, 38] or simply as Wan-
nier excitons. In this book we shall be concerned with Wannier excitons only
[6.39–41].

The properties of Wannier excitons can be calculated with the effective
mass approximation introduced in Sect. 4.2. Within this approximation, the
electron and the hole are considered as two particles moving with the effec-
tive masses of the conduction and valence bands, respectively. Donors and ac-
ceptors studied in Chap. 4 can be regarded as “excitons” in which one of the
particles has an infinite effective mass. Since the difference in effective mass
between the electron and the hole in a semiconductor is not as large as that
between the electron and the proton, excitons are more analogous to positro-
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nium, an electron–positron pair. As a result of the Coulomb interaction be-
tween the electron and hole, the potential acting on an electron (or a hole) in
a crystal is not translationally invariant.

As in any two-particle system, the exciton motion can be decomposed into
two parts: a center-of-mass (CM) motion and a relative motion of the two par-
ticles about the CM. With this decomposition, the potential acting on the ex-
citon CM still has translational invariance since the Coulomb interaction de-
pends only on the relative coordinate of the electron and hole. Within the ef-
fective mass approximation, the exciton CM behaves like a free particle with
mass M � me � mh (where me and mh are, respectively, the electron and
hole effective masses). The relative motion of the electron and the hole in
the exciton is similar to that of the electron and the proton inside the hy-
drogen atom. There are bound states and continuum states. The bound states
are quantized with principal quantum numbers n � 1, 2, 3, etc., and orbital
angular momentum l � 0, �, 2�, etc. In the continuum states, excitons can be
considered to be ionized into free electrons and free holes but their wavefunc-
tions are still modified by their Coulomb attraction.

In the literature, one often finds schematic diagrams in which the exciton
energy levels are shown superimposed on a one-electron energy band struc-
ture. Strictly speaking this is incorrect. Since the exciton is a two-particle state,
its energy levels cannot be represented by one electron energy levels. To clar-
ify this point further, we compare the energies of an electron–hole pair in a
one-electron energy band diagram and in a two-particle energy diagram in Fig.
6.20. In the one-electron picture the ground state of the semiconductor is rep-
resented by a filled valence band and an empty conduction band. Since there
are no electron–hole pairs in the ground state, this state is represented by the
origin in the two-particle picture. In the one-particle picture, the excited state
is represented by an electron in the conduction band (with wavevector ke) and
a hole in the valence band (wavevector kh � �kv). This excited state corre-
sponds to an exciton in the two-particle state. We note that optical excitation
is not the only mechanism for creating such excited states. An energetic elec-
tron, for example, can also create an exciton. In the two-particle picture, the
exciton wavevector K is given by ke � kh. As pointed out earlier, the potential
for the exciton CM motion is translationally invariant even when the electron
is attracted to the hole. K is therefore a good quantum number. The kinetic
energy Eke of the exciton is related to K by the free-particle expression [to be
derived later, see (6.78)]

Eke �
�2K2

2M
. (6.70)

Thus exciton levels can be represented by parabolas in the two-particle energy
diagram in Fig. 6.20b. We shall show later that the exciton state wavefunction
with CM wavevector K is a linear combination of many electron–hole pair
wavefunctions with wavevectors ke and kh satisfying the condition K � ke�kh.
Thus the one-particle picture in Fig. 6.20a is not correct even for the exciton
continuum states.
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(a) One-electron picture (b) Two-particle picture
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Fig. 6.20. Comparison between the energy levels of the ground state and excited states of
a semiconductor in a one-electron band picture (a) and in a two-particle picture (b). Also,
schematic diagrams showing processes in which a photon is absorbed while producing an
electron-hole pair

Figure 6.20b shows schematically an optical transition in the two-particle
energy diagram. Since the CM motion is translationally invariant, wavevector
conservation applies only to the exciton wavevector and not to those of the
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individual electrons or holes. To conserve both energy and wavevector during
absorption, this process can occur only at the intersection between the radiation
(or photon) and the exciton dispersion curves, as shown in Fig. 6.20b. At this
point the electron–radiation (or more precisely the photon–exciton) interaction
couples the exciton and radiation to form a mixed mechanical-electromagnetic
wave known as an exciton-polariton [6.42, 43]. These will be studied after we
have considered excitonic effects at different kinds of critical points.

6.3.1 Exciton Effect at M0 Critical Points

We now consider quantitatively the effect of Coulomb attraction on the mo-
tion of electrons and holes in the vicinity of an M0 critical point of a direct
bandgap semiconductor in three dimensions. We shall assume the conduction
band to be spherical with energy

Ee(ke) � Eg �
�2k2

e

2me
, (6.71)

where Eg is the bandgap, and the corresponding hole energy to be given by

Eh(kh) �
�2k2

h

2mh
. (6.72)

Let the Bloch functions for the electron and the hole be represented by
„kc (re) and „kh

(rh), respectively. As in Sect. 4.2 we assume that the Coulomb
interaction between electron and hole is weak due to screening by the va-
lence electrons, so that the effective mass approximation is valid. We write
the exciton wavefunction æ as a linear combination of the electron and hole
wavefunctions:

æ(re, rh) �
∑
ke,kh

C(ke, kh)„ke (re)„kh
(rh). (6.73)

Similar to the case of the donor electron in Sect. 4.2, the electron and hole
in an exciton are localized relative to their CM, so it is more convenient to
express their wavefunctions in terms of Wannier functions rather than Bloch
functions. In terms of the Wannier functions aRe (re) and aRh (rh) for electron
and hole, respectively, the exciton wavefunction can be written as

æ(re, rh) � N�1/2
∑

Re,Rh

º(Re, Rh)aRe (re)aRh (rh), (6.74)

where º(Re, Rh) is the exciton envelope wavefunction. The wave equation for
º(Re, Rh) analogous to (4.22) is [6.44][

�

(
�2

2me

)
∇∇∇2

Re
�

(
�2

2mh

)
∇∇∇2

Rh
�

e2

4Â0Â0|Re � Rh|

]
º(Re, Rh)

� Eº(Re, Rh),

(6.75)

where Â0 is the zero-frequency dielectric constant of the semiconductor. Equa-
tion (6.75) can be solved in the same way as in the case of the hydrogen atom.
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One expresses Re and Rh in terms of two new coordinates: a center-of-mass
coordinate R and a relative coordinate r defined by

R �
meRe � mhRh

me � mh
and r � Re � Rh. (6.76)

The equation of motion for the CM is now decoupled from that for the
relative motion because the Coulomb interaction term does not involve R.
The two resultant equations are(

�
�2

2M

)
∇2

R„(R) � ER„(R), (6.77a)

(
�

�2

2Ì
∇2

r �
e2

4Â0Â0r

)
ˇ(r) � Erˇ(r), (6.77b)

where Ì, the reduced mass of the exciton, is defined by

1
Ì

�
1

me
�

1
mh

. (6.77c)

The total energy of the exciton E is simply the sum of ER and Er. The solu-
tions of (6.77a and b) can be obtained readily. Equation (6.77a) describes a
free particle whose eigenfunction and energy are given by

„K(R) � (N)�1/2 exp(iK · R) and ER �
�2K2

2M
. (6.78)

ER represents the kinetic energy of the CM motion and is therefore the same
as Eke in (6.70).

Equation (6.77b) is similar to the equation describing the motion of the
donor electron discussed in Sect. 4.2.2. As in the hydrogen atom, its wave-
functions and energies can be indexed by three quantum numbers: a princi-
pal quantum number n, the angular momentum quantum number l and the
magnetic quantum number m. The wavefunction ˇ can be expressed in polar
coordinates (r, ı, ˇ) as:

ˇnlm(r) � Rnl(r)Ylm(ı, ˇ), (6.79)

where Rnl(r) can be expressed in terms of the associated Laguerre polyno-
mials and Ylm(ı, ˇ) are the spherical harmonic functions. These functions are
tabulated in many quantum mechanics textbooks and therefore will not be
reproduced here. For isotropic effective masses Er depends on n only and is
given by

Er(n) � Er(∞) �
R∗

n2 , (6.80)

where Er(∞) is the minimum energy of the continuum states, i. e., the energy
gap Eg in (6.69), and R∗ is the Rydberg constant for the exciton defined as
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R∗ �
Ìe4

2 (4Â )�2 Â22
00

�

(
Ì

mÂ2
0

)
× 13.6 eV. (6.81)

If the hole mass is much heavier than the electron mass, as in the case of
most tetrahedrally bonded direct gap semiconductors, the reduced mass Ì is
close to the electron effective mass and hence the exciton Rydberg constant
should be comparable to the donor binding energy. Furthermore, the exciton
Bohr radius is also comparable to the donor electron Bohr radius.

Combining the above results for the relative motion and CM motion of
the exciton, we obtain the following envelope wavefunctions and energies for
the exciton:

ºnlm(R, r) � (1/
√

N) exp(iK · R)Rnl(r)Ylm(ı, ˇ), (6.82)

Enlm � Eg �
�2K2

2M
�

R∗

n2 . (6.83)

The energy spectrum of a Wannier exciton is shown schematically in Fig. 6.20b
and in greater detail in Fig. 6.21.

The above model of excitons based on electrons and holes with spherically
symmetric parabolic dispersion is useful for understanding qualitatively exci-
ton effects on optical spectra. However, it is not accurate enough for quantita-
tive interpretation of experimental spectra in diamond- and zinc-blende-type
semiconductors. As we discussed in Chap. 2, the valence band structure in
these families of materials is complicated by degeneracies and warping. Of the
various attempts to calculate excitonic effects based on realistic band struc-
tures, we shall mention the one by Baldereschi and Lipari [6.46]. They calcu-
lated the exciton binding energies by using a “spherical effective hamiltonian”

∞

n=1

2
R*

E∞ = Eg

K

E

0>

Fig. 6.21. The energy states of a Wan-
nier exciton showing both its bound
states n � 1 to 3 and the continuum
states. Eg is the bandgap and R∗ the
exciton binding energy
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Table 6.4. Exciton binding energy (R∗) and Bohr radius (a0) in some direct bandgap
semiconductors. The three semiconductors labeled (W) have the wurtzite crystal struc-
ture while the others have the zinc-blende structure. Experimental values of R∗ for GaAs
and InP are from [6.48, p. 155] and for CdTe, ZnTe, ZnSe and ZnS are from [6.49]. The
corresponding values for a0 are calculated from (4.25) by substituting the experimental
values of the reduced mass (rather than the effective mass m∗) and the static dielectric
constant. The theoretical values of R∗ are from [6.46]

GaAs 4.9 4.4
InP 5.1 5.14
CdTe 11 10.71   70
ZnTe 13 11.21   56
ZnSe 19.9 22.87   45
ZnS 29 38.02   28
ZnO (W) 59
CdSe (W) 15
CdS (W) 27

Semiconductor R∗ [meV] R∗ (theory) [meV] a0 [Å ]

113
112

GaNa 27 32   24

a for the A-exciton of wurtzite GaN, see [6.45]

to treat the holes similar to the one they proposed for hydrogenic acceptors
(Sect. 4.2.4) [6.47]. Table 6.4 lists the experimentally determined exciton bind-
ing energies and Bohr radii in a number of direct bandgap semiconductors.
The binding energies are compared with the theoretical values obtained in
[6.46].

While the agreement between theory and experiment is quite good for
R∗ in the smaller-bandgap semiconductors, there are significant discrepancies
for the more ionic materials. We mention that Altarelli and Lipari [6.50] have
calculated the exciton dispersion in semiconductors with degenerate valence
bands and showed that there are striking deviations from the parabolic depen-
dence of (6.83). However, a detailed discussion of this calculation is beyond
the scope of this book.

6.3.2 Absorption Spectra of Excitons

In principle, the absorption spectra of excitons can be calculated from the ex-
citon energies and wavefunctions in (6.83 and 82) with the introduction of
an interaction Hamiltonian between excitons and photons. Conceptually, how-
ever, optical absorption by excitons is different from optical absorption in the
one-electron picture. In the two-particle picture, optical absorption is the con-
version of a photon into an exciton; conservation of energy and wavevector
requires that this process must occur at the point where the photon dispersion
curve (broken line in Fig. 6.22b) intersects the exciton dispersion curves. At
these intersections the photon and exciton are degenerate. When an exciton–
photon interaction (even a very weak one) is introduced, the resultant eigen-
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Fig. 6.22. Dispersion curves of a “bare”
photon, a “bare” exciton (dashed curves)
and an exciton-polariton (solid curves
labeled I and II) for the A exciton in
CdS. The curves labeled I and II are
usually referred to as the “upper” and
“lower” branches of the polariton [6.51]

states are linear combinations of the photon and exciton wavefunctions. Such a
“coupled state” of an exciton with a photon is known as an exciton-polariton.
Its dispersion relations (solid curves labeled I and II) are different from those
of the uncoupled or “bare” photon and exciton as shown in Fig. 6.22 (drawn
for the so-called A exciton in CdS).

In general, “polariton” is the name given to any coupled electromagnetic
and polarization wave traveling inside a medium. The polarization wave in
the present case is associated with the electric dipole moments of the exci-
tons (assumed to be nonzero). As excitons travel in the medium they radiate
electromagnetic waves. In turn, the electromagnetic waves can excite excitons.
In principle, there is no way to separate the exciton wave from the electro-
magnetic wave. Thus introducing an exciton–photon interaction does not nec-
essarily mean that energy will be lost by photons inside the medium. In this
polariton picture energy is converted from photons to excitons and vice versa.
Suppose the sample is a thin slab and light is incident on the sample from the
left. Outside the sample there is only an electromagnetic field associated with
the photons. As it enters the sample the electromagnetic wave is converted
into a polariton wave (Fig. 6.23). Unless there are other interactions that can
scatter the polaritons inside the sample, they will travel unattenuated to the
sample surface on the right. On exiting the slab from the right surface, the
polaritons are reconverted into photons with no loss except for those polari-
tons reflected back at the surface. Thus no optical absorption has occurred
inside the medium. In order for absorption to occur (that is, for energy to be
dissipated from the photon field that enters the sample) polaritons have to
be scattered inelastically, e. g., by phonons. After inelastic scattering some po-
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Fig. 6.23. A schematic diagram showing the transmission of photons through a semicon-
ductor slab via propagation of polaritons inside the sample

laritons will eventually exit the sample and appear in the form of emission
(or luminescence, see Chap. 7 for further details) at a different photon energy.
The relative probability of re-emission and relaxation via phonons depends on
the polariton branch. High energy polaritons from branch I in Fig. 6.22 have
large photon components in their wavefunction (and therefore are said to be
photon-like); they have little interaction with phonons and are more likely to
escape from the medium. However, once they are scattered elastically by de-
fects into branch II, with a large exciton component in their wavefunctions
(or exciton-like), they lose their energy efficiently via scattering with phonons
or by nonradiative recombination. It is predominantly through the latter that
energy in polaritons becomes dissipated inside a medium, resulting in optical
absorption [6.52].

It is rather complicated to calculate the optical absorption using the above
exciton-polariton picture since it is necessary to introduce energy dissipation
processes for polaritons via phonon scattering. One way to avoid this difficulty
is to assume that, as a result of scattering between excitons and phonons, the
exciton damping constant is larger than the exciton–photon interaction. In this
approximation one can replace polaritons by the “bare” photons and excitons.
Whenever a photon is converted into an exciton it will lose its energy com-
pletely inside the medium via exciton damping processes. As a result, the rate
of dissipation of energy from the photon field is completely determined by the
rate of conversion of photons into excitons. Within this approximation we can
use Fermi’s Golden Rule to calculate the optical transition probability per unit
volume for converting a photon into an exciton. Similar to (6.43) we obtain

R � (2/�)
∑

f

|〈f|�xR|0〉|2‰(Ef(K) � E0 � �ˆ), (6.84)

where |0〉 is the initial (ground) state with no excitons, |f〉 the final state, where
an exciton with energy Ef and wavevector K has been excited optically, and
HxR the exciton–photon interaction. Because of wavevector conservation, K
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should be equal to the photon wavevector, which is negligible, i. e., K � ke �
kv ≈ 0. From now on we will therefore denote both kv and ke by k.

The contributions to the imaginary part of the dielectric function (Âi) due
to exciton absorption consists of two parts: one arising from the bound states
and the other from the continuum.

For the discrete bound states, we can express the exciton wavefunction
in terms of the envelope wavefunctions given in (6.82). The optical matrix
element can be shown to be ([6.44] and Problem 6.7):

〈f|�xR|0〉 �
∑
r,k

(1/
√

N)eik·rˇnlm(r)〈„k(re)„�k(rh)|�xR|0〉 (6.85a)

�
∑
r,k

(1/
√

N)eik·rˇnlm(r)〈„c
k|�c

eR|„v
k〉. (6.85b)

If we assume that the matrix element 〈„c
k|�c

eR|„v
k〉 is independent of k, the

summation of exp(ik · r) over k in (6.85) results in the delta function ‰(r).
Hence the summation over r can be easily performed, giving

|〈f|�xR|0〉|2 � N |ˇnlm(0)|2 |〈„c
k|�eR|„v

k〉|2. (6.86)

When r � 0, we have Re � Rh and therefore |ˇnlm(0)|2 represents the prob-
ability of finding the electron and hole within the same primitive cell. The
physical interpretation of (6.86) is that the probability of exciting an exciton
optically is proportional to the overlap of the electron and hole wavefunctions.
Since |ˇnlm(0)|2 is nonzero only for l � 0, only excitons with s symmetry can
be optically excited. Using the hydrogen atom wavefunctions one can show
that Âi for the bound states is equal to (in atomic units with m0 � e � � � 1)

Âi(�ˆ) �
8 |P|2 Ì3

ˆ2 Â33
0

∞∑
1

1
n3 ‰(ˆ � ˆn), (6.87)

(4Â )0

where |P|2 � |〈„c
k|ê ·p|„v

k〉|2, see (6.41), and a factor of 2 has been included to
take into account spin degeneracy. Thus the oscillator strength of the bound
states with quantum number n decreases as n�3 while their binding energy
decreases as n�2. In the limit n → ∞ the discrete peaks of the bound states
merge into a quasi continuum with density of states given by [6.44]

dn
dˆ

�
n3(4Â0)2Â2

0

Ì
. (6.88)

Substituting (6.88) into (6.87) we find that, as �ˆ approaches the bandgap,
Âi(�ˆ) approaches

Âi(�ˆ) � 8 |P|2 Ì2

ˆ2
g4Â0Â0

. (6.89)

For the continuum states the exciton wavefunctions can be expressed in
terms of confluent hypergeometric functions [6.44, 53]. The corresponding con-
tribution of exciton absorption to the imaginary part of the dielectric constant
is given by ([6.44] and Problem 6.7)
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Âi �
2 |P|2 (2Ì)3/2(ˆ � ˆg)1/2ÙeÙ

ˆ2 sinh Ù
, (6.90)

where Ù is defined (in atomic units) as.

Ù � 
∣∣∣∣ R∗

ˆ � ˆg

∣∣∣∣1/2

(6.91)

In the limit ˆ → ˆg one finds (Problem 6.7) that Âi approaches (6.89), and
therefore it varies smoothly from the discrete bound states to the continuum,
a physically rather appealing result. Figure 6.24 shows schematically the exci-
ton absorption coefficient, including contributions from both the bound and
continuum states. The broken curve displays the corresponding absorption co-
efficient when the exciton effect is neglected. We note that the exciton ef-
fect enhances the absorption coefficient both above and below the bandgap.
Instead of decreasing to zero at the bandgap, the absorption coefficient ap-
proaches a constant as in the case of an M0 critical point in two dimensions.
For a comparison of Elliott’s theory with experimental results, we show in Fig.
6.25 the absorption spectra of GaAs near the bandgap at different tempera-
tures. Since the binding energy of the exciton in GaAs is about 5 meV (Table
6.4), only a broadened n � 1 bound state is observed at 21 K. Notice that
excitons in GaAs should become thermally ionized at room temperature; how-
ever, the GaAs absorption edge is still modified by excitonic effects.

Excitonic effects also modify the shape of the absorption edge in indi-
rect bandgap semiconductors such as Ge and GaP at low temperatures, as we
pointed out in Sect. 6.2.6. Instead of rederiving the absorption coefficient in
this case, we present the following argument. As shown in Fig. 6.21, the ex-
citon energy levels consist of series of parabolas centered at K � 0 in direct
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Fig. 6.24. Comparison between the
absorption spectra in the vicinity of
the bandgap of a direct-gap semicon-
ductor with (solid lines) and without
(broken curve) exciton effects
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Fig. 6.25. Excitonic absorption spectra of GaAs near its bandgap for several sample tem-
peratures. The gray lines drawn through the 21, 90 and 294 K data points represent fits
with (6.90) [6.54]

bandgap semiconductors. In an indirect bandgap semiconductor, such as Ge,
the conduction band minima are at L and the valence band maximum is at
the zone center. We therefore expect an exciton created from these band ex-
trema to form parabolas centered at the wavevectors k0 � kL, where kL is the
wavevector of the electron at L at Ge. In the direct gap materials, excitons can
be excited directly by photons only at the point where the photon and exciton
dispersion curves intersect (Fig. 6.22). This wavevector conservation condition
is relaxed in indirect gap materials by the participation of phonons. As a re-
sult, photons can excite excitons at any point on the parabolas with nearly the
same probability. Thus the absorption coefficient is proportional to the den-
sity of final states, which has the same shape as the absorption edge at direct
bandgap semiconductors for uncorrelated electron–hole pairs (i. e., without ex-
citonic effects). Hence the absorption edge in indirect bandgap semiconduc-
tors including excitonic effects has the same dependence on energy as in a di-
rect bandgap semiconductor without excitonic effects [represented by (6.58a)].

So far the best example of an excitonic Rydberg series has been found in
the semiconductor Cu2O. As pointed out in Sect. 6.2.6, the conduction and
valence band extrema in Cu2O have the same parity under inversion. Optical
transitions between these two bands are electric-dipole forbidden but possible
as magnetic-dipole or electric-quadrupole transitions. Their optical transition
probability is thus proportional to the k-dependent term in the matrix ele-
ment |〈c, k|k ·p|v, k〉|2. Using (6.68) one can show that this transition probabil-
ity depends on the derivative |dºnlm(0)/dr|2 of the excitonic envelope function
evaluated at r � 0 [6.44]. This leads to the conclusion that exciton bound
states with p symmetry are weakly electric-dipole active at a “forbidden” di-
rect bandgap. The absorption coefficient is proportional to
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∣∣∣∣dºnlm(0)
dr

∣∣∣∣2

∝ n2 � 1
n5 (6.92)

and is identically zero for the n � 1 level (since this is the only level without
a p state). Figure 6.26 shows the weakly allowed excitonic absorption peaks in
Cu2O involving the so-called yellow exciton series 2p, 3p, 4p, etc., measured
by Baumeister [6.55]. The observed peaks are fitted very well with the Rydberg
series:

En � (2.166 � 0.097/n2) eV (n � 2, 3, . . .). (6.93)

Separately, a very sharp and weak exciton peak associated with the 1s exciton
has been observed in Cu2O at 2.033 eV. It is excited via magnetic-dipole and
electric-quadrupole transitions [6.56]. From the continuum threshold energy of
2.166 eV in (6.93) one obtains a binding energy of 0.133 eV for the 1s state,
while the higher exciton states in the same series can be fitted with the smaller
Rydberg energy of 0.097 eV. The reason for this difference is the central cell
correction discussed already in Sect. 4.2.2 in connection with hydrogenic im-
purities. A discussion of central cell effects in excitons is beyond the scope of
this book.

6.3.3 Exciton Effect at M1 Critical Points or Hyperbolic Excitons

In Table 6.1 we showed that the Van Hove singularity in the density of states
at an M1 critical point has a shape described by C � (E0 � E)1/2 (where C is
a constant and E0 is the energy of the critical point) for E � E0 and is equal
to C for E � E0. The corresponding shape of Âi in the vicinity of such a critical

17 100 17 200 17 300 17 400

n = 2

n=3 n=4
n=5

2.12 2.13 2.14 2.15 2.16

Photon energy  [eV]

Cu2O

Photon energy  [cm –1]

0

–1

–2

–3

ln
(t

ra
ns

m
is

si
on

)
<

Fig. 6.26. The low-temperature absorp-
tion spectrum of Cu2O showing the
excitonic p series associated with its
“dipole-forbidden” band edge [6.55]
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point in the joint density of states is sketched in Fig. 6.9. The characteristic fea-
ture of Âi is that it rises sharply as E approaches E0 from below and decreases
slowly for E above E0. In Sect. 6.2.4 we mentioned that the E1 and E1 � ¢1
transitions in the optical spectra of diamond- and zinc-blende-type semicon-
ductors are attributed to M1-type critical points based on band structure cal-
culations. However, experimentally it was found that the shape of the E1 tran-
sitions deviates significantly from that expected for M1 critical points. Figure
6.27 shows the imaginary part of the dielectric constant (Âi) in the region of
the E1 transitions in two II–VI semiconductors: CdTe and ZnTe. The dashed
curve was calculated from the pseudopotential band structures by Walter et al.
[6.58] without exciton effects. It shows the asymmetric shape expected for the
three-dimensional M1-type critical points. However, the experimental curves
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Fig. 6.27a, b. Imaginary part of the dielectric constant (Âi) in the region of the E1 transi-
tions for (a) CdTe and (b) ZnTe. The red solid curves represent the experimental results
of Petroff and Balkanski [6.57]. The dashed curve labeled “nonexcitonic” is calculated
from the band structure obtained by Walter et al. [6.58] without excitonic effects. Dotted
curves labeled Kane and A&N have been calculated, respectively, by Kane [6.59] and
Antoci and Nardelli [6.60], both including excitonic effects
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measured by Petroff and Balkanski [6.57] show asymmetries in the opposite
direction, i. e., the peaks are sharper above the critical point rather than be-
low. In addition, a weaker structure appears at energies higher than the main
strong peak in both spectra. These discrepancies between the experiment and
the theory based on a one-electron band calculation have been explained by
excitonic effects at M1 critical points. Such excitons occurring at saddle points
are known as hyperbolic excitons (since the constant energy surfaces near M1
critical points are hyperboloids).

Kane [6.59] calculated the lineshape of Âi near an M1 saddle point ˆ1 by
solving the wave equation for the relative motion of the electron and hole:(

P2
1

2Ì1
�

P2
2

2Ì2
�

P2
3

2Ì3
�

e2

4Â0Â0r

)
º(r) � Eº(r), (6.94)

where Ì1, Ì2 � 0 and Ì3 � 0. In the extreme case when |Ì3| → ∞ (6.94) re-
duces to the exciton equation of motion for an M0 critical point in two dimen-
sions. Analytic solutions in this case are known [6.61]. Quasi-two-dimensional
excitons are known to exist in layered-type semiconductor such as GaSe (Sect.
7.2.7). More recently they have been found to be important for the optical
properties of quantum wells (Chap. 9). Their bound state energies (indexed
by the quantum number n) E2D are given by the series

E2D(n) � E2D(∞) � R∗/(n � 1
2 )2 for n � 0, 1, 2, . . . , (6.95)

where the effective Rydberg R∗ is the same one as defined in (6.81) for three-
dimensional excitons. The corresponding oscillator strengths, analogous to
those in (6.87) but for the two-dimensional case, are proportional to (n� 1

2 )�3.
The ratio f0/f1 of the oscillator strengths of the n � 0 peak to the n � 1
peaks is given by (1/2)�3/[(3/2)�3] � 27. The important feature of the two-
dimensional M0 exciton is the dominance of the n � 0 peak. For finite |Ì3|
but |Ì3| � Ì1, Ì2, Kane solved (6.94) using the adiabatic approximation for
the heavier mass direction. The numerical solutions show that the effects of
a finite |Ì3| are to decrease the binding energy and to broaden asymmetri-
cally the n � 0 peak in the corresponding two-dimensional exciton. His re-
sults for the cases of m3 � Ì3/Ì1 � �320, �40, and �5 are shown in Fig.
6.28. Phillips [6.62] has interpreted this asymmetric broadening in terms of
a Fano interference [6.63] between a discrete state and a continuum. When
Ì3 is negative, there is a continuum of allowed states with energy below the
M1 critical point. The n � 0 state in the “two-dimensional” exciton can decay
into these continuum states and becomes a resonant state (Sect. 4.3). The line-
shape of the n � 0 state is similar to the so-called auto-ionizing states found in
atomic spectra. Kane’s theory explained quantitatively the absorption spectra
in CdTe. (Fig. 6.27a) but not in ZnTe [6.57] where the theoretical peak posi-
tion is lower in energy than the experimental one although their lineshapes
agree qualitatively. Later Antoci and Nardelli [6.60] showed that the theoret-
ical peak position in ZnTe can be made to agree better with experiment by
slightly modifying the energy bands along the 〈111〉 directions. Their results
are also compared with experiment in Fig. 6.27b.
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Fig. 6.28. Contribution to the imaginary part of the dielectric constant (Âi) in the vicinity
of an M1 critical point (with energy chosen at the origin) calculated numerically by Kane
[6.59] for the cases m3 � Ì3/Ì1 � �320, �40, and �5. The m3 � �40 and �5 curves have
been multiplied by factors of 5 and 20, respectively, in order to be displayed on the same
vertical scale as the m3 � �320 curve. The light mass atomic unit of energy is 2Ì1/Â0 Ry

In recent years more elaborate many-body calculations of exciton effects
on the whole dielectric function have largely corrected the discrepancies be-
tween theory and experiment shown in Figs. 6.10–12 [6.64, 65]. For an example of
such calculations and a comparison with the measured UV spectrum of GaN see
Sect. 6.7.

6.3.4 Exciton Effect at M3 Critical Points

We have found so far that excitonic effects tend to enhance the oscillator
strength at M0 and M1 critical points. Since the total oscillator strength is
proportional to the total number of valence electrons (see the sum rule in
Problem 6.5) it should be “conserved” in some way. In other words, the gain
in oscillator strength at M0 and M1 critical points induced by the excitonic
interaction must be compensated by losses elsewhere. Optical transitions are
suppressed at M2 and M3 critical points [6.66]. The equation for the relative
motion [i. e., the analog of (6.77b)] for electron–hole pairs at M3 critical points
is almost identical to that for M0 critical points except that the reduced mass
is negative. This is equivalent to keeping the reduced mass positive but chang-
ing the sign of the Coulomb attraction term in (6.77b). This means that at an
M3 critical point the electron and hole can be regarded as having normal pos-
itive masses but repelling rather than attracting each other via the Coulomb
interaction. The result is that no bound states are formed. The repulsion keeps
them apart and therefore the optical transition probability is suppressed. The
solutions of the wave equation can be shown to be similar to the continuum
solutions of (6.77b). Now Âi(ˆ � ˆ3), where ˆ3 is the frequency of the M3
critical point, is given (in atomic units, e � m0 � � � 1) by [6.66]
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of the imaginary part of the dielectric con-
stant in the vicinity of an M3 critical point
calculated with and without exciton effects
[6.66]. The energy units are exciton Rydbergs

Âi �
2 |P|2 (2Ì)3/2(ˆ3 � ˆ)1/2Ù′eÙ′

ˆ2 sinh Ù′
, (6.96a)

where Ù′ is defined as

Ù′ � �
∣∣∣∣ R∗

ˆ3 � ˆ

∣∣∣∣1/2

. (6.96b)

The resultant shape of Âi is shown in Fig. 6.29. The strong suppression of the
singularity in the optical transition strength is presumably the reason why no
M3 critical points have been positively identified in optical spectra.

6.4 Phonon-Polaritons and Lattice Absorption

In Chap. 3 we discussed how phonons in crystals containing more than one
atom per primitive cell are classified into acoustic and optical phonons. As
their names imply, optical phonons can interact with electromagnetic radia-
tion. We shall study this interaction in this section.

Since phonons are quantized simple harmonic oscillators, we shall begin
by reviewing the response of a collection of identical and charged simple har-
monic oscillators (SHO) to a radiation field in the form of the plane wave

E(r, t) � E0 exp i(k · r � ˆt). (6.97)

We shall assume that these SHO are isotropic and uniformly distributed in the
entire space (in order to avoid problems related to the presence of surfaces).
The mass and charge of the SHOs are M and Q, respectively. The natural
vibrational frequency of each SHO is ˆT. In response to the applied field the
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SHO are displaced from their equilibrium positions by the vector u. The equa-
tion of motion of the SHOs is

M(d2u/dt2) � �Mˆ2
Tu � QE. (6.98)

In the steady state the solutions to (6.98) can be expressed as

u � u0 exp[i(k · r � ˆt)]. (6.99)

Substituting this into (6.98) we obtain the solution for u0:

u0 �
QE0

M(ˆ2
T � ˆ2)

. (6.100)

Since these SHOs are charged and they are all displaced by the same amount
u, they produce a macroscopic polarization P oscillating also at frequency ˆ:

P � NQu, (6.101)

where N is the density of the SHOs. The electric displacement vector D of the
medium is given by

D � E � 4P � ÂE, D � Â0E � P � Â0ÂE (SI units) (6.102)

where Â is the dielectric function of the isotropic medium. Substituting (6.100
and 101) into (6.102) we obtain Â:

Â � 1 �
4NQ2

M(ˆ2
T � ˆ2)

� 1 (SI units)�
NQ2

Â0M (ˆ2
T � ˆ2)

(6.103)

When (6.103) is generalized to a collection of SHOs with different resonance
frequencies ˆi we obtain (6.50). Equation (6.103) can also be expressed in
terms of the refractive index n of the medium:

n2 � 1 �
∑

i

4NiQ2

M(ˆ2
i � ˆ2)

� 1 �
∑

i

NiQ2

Â0M(ˆ2
i � ˆ2)

(SI units). (6.104)

Equation (6.104) has been used to explain the anomalous dispersion in the
refractive indices of gases in the vicinity of absorption lines and is known as
Sellmeier’s equation [6.67].

Before proceeding further with (6.103) we shall include also the contribu-
tion of the valence electrons to the total dielectric function Â of the medium.
To distinguish the valence electron contribution from that of SHOs, we shall
denote one by Âe and the other by Âl (e and l stand, respectively, for electrons
and lattice). We shall assume that the bandgap Eg � �ˆ, so that the radiation
field appears to be static to the electrons and Âe(ˆ) can be approximated by
Âe(0). On the other hand if ˆ � ˆT the SHOs cannot follow the electric field
and they no longer contribute to the total dielectric function and therefore
Âl → 1 in (6.103). Thus for (Eg/�) � ˆ � ˆT we have the total Â ≈ Âe(0).
It is usual to designate Âe(0) as Â∞ and call it the high frequency dielectric
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constant since it is the dielectric constant at a frequency much higher that the
vibrational frequencies but below electronic excitation energies. When Â∞ is
included in (6.103), Â � Âl � Âe becomes

Â(ˆ) � Â∞ �
4NQ2

M(ˆ2
T � ˆ2)

� Â∞ �
NQ2

Â0M(ˆ2
T � ˆ2)

(SI units) (6.105)

provided ˆ � (Eg/�).
As there are no excess charges in the medium, the electric displacement D

satisfies the Gauss equation

div D � 0 (6.106)

or equivalently

Â(k · E0) � 0. (6.107)

This equation is fulfilled when either Â � 0 or (k · E0) � 0. We shall consider
these two cases separately.

Case 1 (Transverse Field): (k · E0) = 0

If E0 is also zero we obtain the trivial situation u � P � D � 0. If E0 is
nonzero then (k · E0) � 0 implies that E0 is perpendicular to the propagation
direction. In other words, the electric field has to be transverse. For such trans-
verse fields the response of the SHOs is described by the dielectric function in
(6.105). In particular, Â diverges when ˆ approaches ˆT. As a result, ˆT rep-
resents the resonance frequency of the medium when a transverse vibration is
excited (the transverse resonance frequency in short).

Case 2 (Longitudinal Field): E0 ‖ k and ÂÂ = 0

When the electric field is longitudinal (so that E0 · k �� 0), Â has to vanish
in order that (6.107) be satisfied. From (6.105) we see that this can occur at
frequencies ˆL defined by Â(ˆL) � 0. Solving (6.105) we obtain

ˆ2
L � ˆ2

T �
4NQ2

MÂ∞
� ˆ2

T �
NQ2

Â0Â∞M
(SI units). (6.108)

To understand what happens at ˆL, we note that (6.102) can be written as
E � (1/Â)D. When Â � 0, E is not necessary zero even for D � 0. In fact the
longitudinal electric field at ˆL, to be denoted as EL, is given by

EL � �(4/Â∞)P � �(4/Â∞)NQu � �(1/Â0Â∞)NQu (SI units) (6.109)

(when D � 0). This implies that no external charges are required to generate
an electric field when the SHOs are oscillating at ˆL. Instead, the longitudinal
electric field EL is produced by the polarization induced by the oscillations.
From (6.109) we see that EL is a macroscopic field (since P is a macroscopic
quantity). Furthermore, this field points in the opposite direction to the polar-
ization and therefore it contributes an additional restoring force to the longi-
tudinal oscillation. This explains why ˆL, the longitudinal resonance frequency,
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in (6.108) is always larger than the transverse frequency ˆT. It should be em-
phasized that EL should not be confused with the macroscopic electric field
in the parallel-plate capacitor shown in Fig. 3.3. While the planes of positive
and negative charges in a solid appear to resemble parallel-plate capacitors,
the fields they produce are microscopic. At equilibrium, in the absence of an
LO phonon, these microscopic fields when summed over many unit cells will
produce a zero macroscopic field. Otherwise a macroscopic polarization would
exist even without an external field as in ferroelectric materials. When an LO
phonon is excited in the medium, the relative displacements of the charges
result in many induced dipole moments. They sum to a macroscopic polariza-
tion, which gives rise to the longitudinal field EL.

The charge Q and mass M of the SHOs are microscopic properties that are
sometimes difficult to measure. On the other hand quantitities such as ˆT, ˆL,
and Â∞ can be determined experimentally. Often it is convenient to introduce
another quantity Â0 � Â(0), the low frequency dielectric constant, so that the
dielectric function can be expressed in terms of measurable quantities (Prob-
lem 6.4):

Â(ˆ) � Â∞

(
1 �

ˆ2
L � ˆ2

T

ˆ2
T � ˆ2

)
� Â∞

ˆ2
L � ˆ2

ˆ2
T � ˆ2 (6.110a)

or

Â(ˆ) � Â∞ �
Â0 � Â∞

1 � (ˆ2/ˆ2
T)

. (6.110b)

From these results one can derive the Lyddane–Sachs–Teller (LST) relation
(Problem 6.4):

Â0

Â∞
�

ˆ2
L

ˆ2
T

. (6.111)

6.4.1 Phonon-Polaritons

The above discussion of the interaction between electromagnetic fields and
charged harmonic oscillators neglects the radiation produced by the oscillating
macroscopic polarization P. As a result, the above theory predicts that trans-
verse and longitudinal resonance occur at ˆT and ˆL, respectively, even for
zero wavevector. Since whether a wave is transverse of longitudinal depends
on the direction of its displacement relative to its wavevector, one expects
however, that the transverse and longitudinal vibrations should become degen-
erate in the limit that the wavevector approaches zero. After all, there is no
way to distinguish between the two when the wavevector is zero. This short-
coming is rectified by taking retardation effects into consideration [6.68].
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A complete description of the interaction between electromagnetic waves
and charges must invoke Maxwell’s equations. Equation (6.106) is only one
of them. The remaining three equations (in the absence of any current in the
medium) are

div B � 0, (6.112a)

curl H � (1/c)(�D/�t), (6.112b)

curl E � (�1/c)(�B/�t), (6.112c)

(set c � 1 for SI units)
where B and H are, respectively, the magnetic induction and the magnetic
field. Since we have limited ourselves to considering only nonmagnetic semi-
conductors in this book, we can use the approximation B � H (for SI units
B � Ì0H, where Ì0 is the permeability of vacuum). It is well known, of course,
that Maxwell’s equations can be combined to generate two wave equations
(one for E and one for H) that describe the propagation of electromagnetic
fields [6.10].

Since electromagnetic waves are transverse (in an infinite medium) they
couple to transverse excitations such as TO phonons but not to LO phonons.
We can therefore limit our considerations from now on to Case 1 only. Equa-
tion (6.112a) implies that the H field is also perpendicular to k. As in the case
of E, we shall assume that H is represented by a plane wave:

H(r, t) � H0 exp[i(k · r � ˆt)]. (6.113)

By substituting E and H from (6.97 and 113) into (6.112b and c), respectively,
we obtain two linear homogeneous equations in E0 and H0. In order that these
two equations have nontrivial solutions we require that the characteristic de-
terminant be zero. This condition can be expressed as

k2 � (ˆ2/c2)Â, (6.114a)

which we recognize as the dispersion of a transverse electromagnetic wave
inside a nonmagnetic medium with dielectric constant Â. Substituting into
(6.114a) the expression for Â in (6.111) we obtain the dispersion relation

k2 �
ˆ2

c2

(
Â∞ �

Â0 � Â∞
1 � (ˆ2/ˆ2

T)

)
. (6.114b)

Figure 6.30 (solid curves) shows a plot of the solutions of (6.114b). If we
rewrite (6.114b) as a quadratic equation in ˆ2, we see that for every value
of k there are two solutions for ˆ2, in other words there are two “branches”
to the dispersion curve, similar to the exciton-polariton dispersion sketched
in Fig. 6.22. It is easy to show that as k → 0, one solution of (6.114b) ap-
proaches ˆ2 � c2k2/Â0 (known as the “lower branch”) while the other one
(“upper branch”) approaches the constant value ˆL. Thus the frequency of the
transverse oscillations in the limit of zero wavevector (for the upper branch)
becomes degenerate with the longitudinal oscillation frequency, as expected
because of the cubic symmetry. On the other hand, when k → ∞ the dis-
persion of the upper branch is given by ˆ2 � c2k2/Â∞ while the lower branch
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Fig. 6.30. Schematic diagram of the dispersion
curves of an uncoupled light wave and lattice
vibrations and of their coupled optical wave
(called a phonon-polariton) in a polar crys-
tal [6.68]. a: light in vacuo; b: photon-phonon
coupled mode (upper polariton); b1: photon
dispersion in the medium but without coupling
to the phonons; c, d: longitudinal and trans-
verse uncoupled lattice vibrations, respectively;
f : transverse phonons coupled to the photons
(lower polaritons)

approaches ˆT. Since the longitudinal oscillations cannot couple to the trans-
verse electromagnetic wave, they have no dispersion, a fact which is repre-
sented in Fig. 6.30 by the horizontal straight line passing through ˆL.

Although the above results have been derived for SHOs distributed uni-
formly in space, they can be shown [6.68] to be valid also for an ionic (or
partly ionic) crystal containing two atoms per unit cell provided we make the
following substitutions. The displacement of the SHO is replaced by the rela-
tive displacement of the two ions in the primitive unit cell or

Mu → Ì(u� � u�), (6.115)

where u� and u� are, the displacements of the positive and the negative ions
and Ì is the reduced mass of the two ions A and B with masses mA and mB,
respectively (Ì�1 � m�1

A � m�1
B ). The charge Q should be replaced by an ef-

fective ionic charge e∗ on the ions (one positive and the other negative). The
meaning of e∗ will be discussed in 6.4.4. The transverse and longitudinal oscil-
lation frequencies are now identified with the frequencies of the TO and LO
phonons, respectively. The resultant transverse wave whose dispersion is de-
scribed by (6.114b) in crystals is known as a phonon-polariton. Its dispersion
curve can be understood in terms of coupled vibrations. In the absence of the
TO phonons the dispersion of the electromagnetic oscillation in Fig. 6.30 is
given by the straight line ˆ � ck/Â1/2

∞ . If the TO phonon (which is assumed
to be dispersionless) does not couple to radiation it will be represented in the
same figure by a horizontal straight line passing through ˆT. At the wavevec-
tor where these two lines intersect (i. e., the modes are degenerate) they can
couple to each other. The reason is that electromagnetic waves can excite the
TO phonons while the oscillating charges can radiate electromagnetic waves.
The two kinds of waves cannot be separated. As a result of this coupling the
frequencies of the two modes are altered: one is raised while the other is low-
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ered. In other words, the two modes seem to “repel” each other. This is some-
times also referred to as level anticrossing. Notice that for ˆ � ˆT the TO
phonon also contributes to the dielectric function. As a result, the polariton
dispersion for small ˆ is given by (ck/ˆ) � Â1/2

0 . In Chap. 7 we shall describe
in further detail the measurement of the TO and LO phonon frequencies in
semiconductors near k � 0 and of the phonon-polariton dispersion in GaP
using light scattering techniques (Fig. 7.26).

6.4.2 Lattice Absorption and Reflection

Once the contribution to the dielectric constant from lattice vibrations is
known, it is straightforward to calculate the corresponding optical properties
of the sample, such as absorption coefficients, refractive index and reflectance,
using the KKRs and (6.10, 11, and 8). For example, the imaginary part of the
dielectric function is obtained from (6.105) with the KKR (Problem 6.4). The
resultant expression consists of a delta function centered at the TO phonon
frequency. This is therefore also the lineshape of the absorption spectrum of
an infrared-active optical phonon. Equation (6.110) shows that Â is negative
between the TO and LO phonon frequencies and the complex refractive in-
dex pure imaginary. The reflectance of the sample from (6.8) is therefore 1
between ˆL and ˆT. This means that no incident light can penetrate the sam-
ple. As we shall see later, the reflectivity at ˆT is reduced from 100 % when
damping of the TO phonon is included in the calculation. Still, the reflectivity
remains highest at ˆT. As a result the frequency of the TO phonon is known
as the reststrahlen (after a German word meaning residual rays) frequency.

For better agreement with experiment it is necessary to introduce a damp-
ing constant Á for the TO phonons [6.70]. The result is that the equation of
motion (6.98) becomes

M(d2u/dt2) � MÁ(du/dt) � �Mˆ2
Tu � QE (6.116)

and the corresponding dielectric constant in (6.103) is complex:

Â(ˆ) � Â∞ �
4NQ2

4Â0M(ˆ2
T � ˆ2 � iˆÁ)

(SI units). (6.117a)

Â(ˆ) can also be expressed in terms of Â∞ and Â0 as in (6.110b):

Â(ˆ) � Â∞ �
Â0 � Â∞

[1 � (ˆ2/ˆ2
T)] � i(ˆÁ/ˆ2

T)
. (6.117b)

A plot of the real and imaginary parts of Â(ˆ) for Á/ˆ � 0.05 is shown in Fig.
6.31a. The reflectivity coefficients calculated from (6.117b) are displayed for
several values of Á/ˆ in Fig. 6.31b. Figure 6.32 exhibits the measured lattice
reflection spectra in several zinc-blende-type semiconductors. They can all be
fitted reasonably well by curves calculated from (6.117b) with (6.8) using the
phonon frequency and the damping constant as the only adjustable parame-
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Fig. 6.31. Plot of (a) the real and imaginary parts of the complex dielectric constant and
(b) the reflectivity coefficients calculated from (6.117b). The vertical arrows indicate the
frequencies of the TO and LO phonons. Note the deep minimum in the reflectivity which
corresponds to Âr ≈ 1 [6.69]

ters. The parameters obtained in this way are listed in Table 6.5. The phonon
frequencies can be measured independently by other techniques such as Ra-
man scattering (Chap. 7), while Á can be deduced from time-resolved Raman
scattering since it is the inverse of the phonon lifetime [6.70, 73]. For calcula-
tions of phonon linewidths based on the electronic band structure see [6.70].
These widths can be considered as the imaginary part of an anharmonic cor-
rection to the energy (self-energy). Its real part is an anharmonic correction
to the phonon frequency [6.71].

6.4.3 Multiphonon Lattice Absorption

Although the optical phonons in covalent semiconductors, such as Si and Ge,
are not infrared active (Sect. 2.3.4) these semiconductors also absorb infrared
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Fig. 6.32. Comparison between experimental (solid curves) lattice reflection spectra in
several zinc-blende-type semiconductors with those calculated from (6.117b) using (6.8)
(broken curves). The TO and LO phonon frequencies and the corresponding damping
constants were adjusted to fit the experimental spectra. The spectra on the left-hand side
were measured at liquid helium temperature; those on the right are room temperature
spectra [6.69]

Table 6.5. The TO (ˆT) and LO phonon (ˆL) frequencies and the ratio of the damping
constant (Á) to ˆT determined from lattice reflection spectra in several zinc-blende-type
semiconductors [6.69] and from Raman scattering [6.72]

InSb 4.2 184.7 197.2 �0.01
300 179.1 190.4 0.016

InAs 4.2 218.9 243.3 �0.01
InP 300 307.2 347.5 0.01
GaSb 4.2 230.5 240.3 �0.01
GaAs 4.2 273.3 297.3 �0.01

296 268.2 291.5 0.007
GaP 300 366.3 401.9 0.003
GaN 300 555 740 –
AlSb 300 318.8 339.6 0.0059
CdTe 1.2 145 170 –
ZnSe 80 211 257 0.01

Semiconductor Temperature [K] ˆT [cm�1] ˆL [cm�1] Á/ˆT

radiation. Figure 6.33a shows their infrared absorption spectra measured by
Collins and Fan [6.74]. The corresponding spectra in Si measured as a func-
tion of temperature by Johnson [6.75] are shown in Fig. 6.33b. A mechanism
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for these absorption processes has been proposed by Lax and Burstein [6.76].
In general, we can regard the polarization P in a medium as a function of
the TO phonon displacements u. When we expand P as a function of u in
zinc-blende-type semiconductors we find the lowest order nonzero term to be
proportional to u as in (6.101) (crystals containing a constant term indepen-
dent of u are known as ferroelectrics). In crystals with the diamond structure
this first-order term vanishes because of the parity selection rule (the optical
phonons are even, hence they cannot produce on odd parity polarization vec-
tor). As a result one has to include the second-order terms. Nonzero second-
order terms in phonon displacements give rise to the infrared absorption in Si
and Ge. According to Lax and Burstein [6.76], these terms can be visualized as
the joint effect of two vibrations. The first one breaks the inversion symmetry
and induces charges on the two atoms in the primitive cell. The second vibra-
tion causes these charges to oscillate and generate an electric-dipole moment
which couples to the electromagnetic wave. The combinations of two-phonon
modes contributing to the electric-dipole moment in the diamond structure
can be determined by using group theory [6.77]. Many of these two-phonon
modes involve one optical phonon plus an acoustic one, both at zone edges.

When two phonons participate in the lattice absorption, conservation of
energy and wavevector requires that

q1 � q2 � k ≈ 0, (6.118a)

where q1 and q2 are the wavevectors of the two phonons and k is the photon
wavevector, and

ˆ1 � ˆ2 � ˆ, (6.118b)

where ˆ1, ˆ2, and ˆ are the corresponding phonon and photon frequencies.
Unlike the one-phonon absorption process, the phonon wavevectors are thus
no longer restricted to the zone center. This means that the two-phonon ab-
sorption spectra can be a broad continuum determined by the two-phonon
density of states (DOS). Thus one can try to identify the structures in the two-
phonon spectra in Fig. 6.33 with critical points in the phonon DOS. The ener-
gies of the critical points deduced in this way can be compared with phonon
dispersion curves determined by neutron scattering. Table 6.6 shows the iden-
tifications of the peaks in the infra-red absorption spectra of Si based on the
assumption that these peaks involve sums and differences of four zone-edge
phonon frequencies in the TA, LA, TO and LO phonon branches:

ˆTA � 127.4 cm�1; ˆLA � 333.9 cm�1;

ˆTO � 482.3 cm�1; and ˆLO � 413.8 cm�1.

Notice that here the TO and LO phonons are not degenerate since these are
zone-edge phonons rather than zone-center ones. These multiphonon absorp-
tion peaks in Si have also been correlated with critical points in the phonon
DOS (at points L, X, W and ™ in the Brillouin zone) [6.79]. Multiphonon ab-
sorption spectra have been observed in zinc-blende-type semiconductors. Be-
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Table 6.6. List of the peak frequencies in the multiphonon absorption spectra of Si and
their identification in terms of combinations of four zone-edge phonons [6.78]

371.8 TO�TA 354.9
566.2 LO�TA 541.2
609.8 TO�TA 607.9
739.7 LO�LA 747.7
818.7 TO�LA 816.2
896.1 TO�LO 896.1
963.9 2TO 964.6

1301.9 TO�2LO 1309.9

Observed peak Identification Calculated peak
frequency [cm�1] frequency [cm�1]

sides the Lax–Burstein mechanism, an additional mechanism is present in this
case. Since one-phonon absorption is allowed, the incident photon can virtu-
ally excite the zone-center TO phonon. This TO phonon then decays via an-
harmonic interactions into two phonons. These results have been reviewed by
Spitzer [6.78] and will not be repeated here.

Amorphous Ge and Si, in which the translational symmetry is lifted, ex-
hibit rather strong infrared absorption [6.80].

6.4.4 Dynamic Effective Ionic Charges in Heteropolar Semiconductors

Using (6.108) and (6.111) we can express e∗ in terms of experimentally mea-
surable quantities:

e∗ �

(
Ì(Â0 � Â∞)

4N

)1/2

ˆT. (6.119)4Â0

Since this effective charge is associated with the absorption induced by TO
phonons it is referred to as the transverse or Born effective charge. Using
(6.119) we obtain an expression for the macroscopic longitudinal electric field
EL generated by LO phonons:

EL � [4ÌNˆ2
T(Â0 � Â∞)/4Â0Â2

∞]1/2(u� � u�), (6.120a)

which can also be written as

EL � �[4ÌNˆ2
L(Â�1

∞ � Â�1
0 )(4Â0)�1]1/2(u� � u�). (6.120b)

Equation (6.120b) has already been introduced in (3.32). Sometimes it is con-
venient to express (6.120b) as

EL � �4Ne∗L(u� � u�) (6.121)



304 6. Optical Properties I

by introducing another effective ionic charge e∗L, which is known as the lon-
gitudinal or Callan effective charge. Both e∗ and e∗L are examples of effective
charges determined from lattice vibrations. They are referred to as dynamic ef-
fective charges, as distinct from the static effective charges which result from
the static transfer of electrons from the cation to the anion when an ionic crys-
tal is formed. The static effective charge is related to the ionicity or polarity
of the crystal [6.81, 82]. However, since ionicity is a somewhat qualitative con-
cept, several functional relationships have been proposed in the literature to
relate the ionicity to static and dynamic charges. We reproduce here the one
proposed by Harrison [6.82] for the transverse charge:

e∗H � Z � 4 � (·P/3)(20 � 8·2
P), (6.122)

where Z is the cation core charge (three and two for III–V and II–VI com-
pounds, respectively) and ·P is the polarity defined by Harrison [6.82]. The
latter can be calculated within the LCAO scheme. If the bonding is assumed
to be dominated by the p orbitals, then ·P is defined by

·P �
Ec

p � Ea
p

[(Ec
p � Ea

p)2 � 4V2
xx]1/2 (6.123)

where Ec
p, Ea

p, and Vxx are, respectively, the atomic p electron energies of the
cation and anion and their overlap parameter defined in (2.80c) (Sect. 2.7.2).
Notice that ·P � 0 when the cation and anion are identical (such as in a ho-
mopolar crystal).

In Table 6.7 we display the experimental values of e∗ and e∗L together with
those of ·P and the corresponding values of e∗H obtained with (6.122). Note
the nonmonotonic dependence of e∗ and e∗H on ·P (compare, for example InSb
with CdTe).

The transverse effective charge can also be estimated from pseudopoten-
tial form factors such as those in Table 2.21. This determination, however,
requires a knowledge of the wavefunctions and an integration over the en-
tire Brillouin zone, similar to that needed for the calculation of the dielectric
function. The corresponding expressions have been given by Vogl [6.86] and
by Sanjurjo et al. [6.85]. The latter group of researchers have shown that the
rather forbidding complete expression for the effective charge e∗PS in terms of
pseudopotential form factors can be reduced to the following simple form:

e∗PS � Z � 4 �
8Pi

1 � P2
i

(6.124)

where Z is the cation core charge as in (6.122) and Pi � va
3/vs

3 with vs
3 and va

3
being the symmetric and antisymmetric pseudopotential form factors defined
in Sect. 2.5.1. Table 6.7 shows some of the values of e∗PS in zinc-blende-type
semiconductors obtained with (6.124) by Sanjurjo et al. [6.85] and also val-
ues calculated by de Gironcoli et al. [6.84] using the ab initio pseudopotential
method. Using the same method the latter group and also King-Smith and
Vanderbilt [6.87] have calculated, in addition, the piezoelectric constants (see
also Sect. 3.3.3), which are also related to ·P. Equation (6.124) yields a poor
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Table 6.7. Experimental values of the transverse (e∗) and longitudinal (e∗L) effective
charges in zinc-blende-type semiconductors [6.69, 83]. Provided for comparison with these
experimental values are theoretical transverse charges e∗H estimated from the values of ·P

using (6.122) (both values obtained from [6.82]) and e∗PS deduced from the semiempirical
pseudopotential form factors. All effective charges are in units of the electronic charge

InSb 2.5 0.16 0.53 2.11 2.0a

InAs 2.6 0.22 0.55 2.24 2.3a

InP 2.5 0.26 0.58 2.35 2.4a

GaSb 1.8 0.13 0.45 1.74 1.6a

GaAs 2.2 0.2 0.48 1.92 2.0a

GaP 2.0 0.24 0.51 2.43 2.0a

GaN 2.7c 0.52c 0.60 2.43 2.9b

AlSb 1.9 0.19 0.45 1.78 1.8a

AlAs 2.3 0.26 0.48 1.91 2.1a

AlP 2.28 0.31 0.51 2.03 2.2a

AlN 2.75 0.59 0.58 2.36 2.9b

ZnSe 2.03 0.34 0.75 1.88 2.8b

ZnTe 2.00 0.27 0.74 1.86 2.5b

CdTe 2.35 0.32 0.78 1.94 1.6b

a From [6.84].
b Calculated with (6.124) using the pseudopotential form factors from [6.85].
c Obtained from available parameters with (6.119)

Semiconductor e∗ e∗
L ·P e∗

H e∗PS

approximation in cases where Pi � 1. For the II–VI compounds and large-
bandgap III–V compounds (such as GaN and AlN) it gives reasonable results.
However, together with (6.122), it has proven to be useful for estimating the
effect of external perturbations (such as hydrostatic and uniaxial stress) on the
effective charge [6.88].

6.5 Absorption Associated with Extrinsic Electrons

In Chap. 4 we studied the electronic properties of impurities in semiconduc-
tors. The corresponding extrinsic electrons can also interact with electromag-
netic waves. In fact, infrared absorption and related optical spectroscopies are
the main techniques for determining the impurity energy levels discussed in
Chap. 4. In this section we shall concentrate on absorption associated with
donors and acceptors in diamond- and zinc-blende-type semiconductors only.
The optical properties of these impurity electrons depend on the sample tem-
perature. At low temperatures carriers are trapped on the bound states of
the impurities. At sufficiently high temperature the impurities are ionized
and their carriers become free, as in metals. Free-carrier absorption is par-
ticularly important in small-bandgap semiconductors such InSb, lead chalco-
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genides (such as PbTe) and some II–VI compounds (e. g. HgCdTe) since their
impurity levels are so shallow that they are completely ionized at relatively
low temperatures. We shall consider the optical properties of extrinsic elec-
trons in these two regimes separately.

6.5.1 Free-Carrier Absorption in Doped Semiconductors

The electrical and optical properties of free carriers in simple metals, such as
the alkali metals, have been covered extensively in many textbooks on solid-
state physics (e. g. [6.89, 90]) on the basis of the Drude model. We shall use
this model also, since free carriers introduced into semiconductors by doping
behave in many ways like those in simple metals. One important difference
between the two is that the carrier concentration in a semiconductor can be
changed. Since the dopant concentration is typically less than 1020 cm�3 (ex-
cept in very special cases) the plasma frequencies of carriers in semiconductors
(Problem 6.3) are usually in the infrared range whereas they are in the visible
or ultraviolet for metals.

To obtain the free-carrier contribution to the dielectric function of a semi-
conductor within the Drude model, we start with the corresponding expression
(6.117a) for the TO phonon. In the same spirit as in Problem 6.4 we can ob-
tain the “Drude free-carrier expression” by setting the phonon frequency ˆT
in (6.117a) to zero:

Â(ˆ) � Â∞ �
4Nce2

m∗(ˆ2 � iˆÁc)
(SI units). (6.125)

4Â0

In (6.125), Nc, e, and m∗ are, respectively, the density, charge and effective
mass of the free carriers. Á�1

c now represents their scattering time and is re-
lated to the phenomenological scattering time Ù introduced in Sect. 5.1. We
can decompose (6.125) into a real and an imaginary part:

Âr(ˆ) � Â∞

(
1 �

ˆ2
p

ˆ2 � Á2
c

)
, (6.126a)

Âi(ˆ) �
Â∞ˆ2

pÁc

ˆ(ˆ2 � Á2
c)

, (6.126b)

where

ˆ2
p � 4Nce2/(4Â0m∗Â∞) (6.126c)

and ˆp is the plasma frequency of the free carriers screened by the dielectric
constant Â∞. Notice that Âi(ˆ), the imaginary part of the dielectric function is
proportional to Ác, and hence the absorption coefficient is too. The reason for
this is well known in metal optics. A free-carrier absorption process is the an-
nihilation of a photon with the excitation of a carrier from a filled state below
the Fermi energy EF to an empty state above it.This is shown schematically in
Fig. 6.34. As in the case of excitons (Sect. 6.4), both energy and wavevector
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have to be conserved in this process. Equivalently, this process can occur only
at the point where the photon dispersion curve in Fig. 6.34 (with its origin
at 1) intersects the free carrier dispersion. As seen from Fig. 6.34, this does
not happen, because of the large slope of the photon curve. Wavevector can
be conserved if the transition is accompanied by scattering with a phonon or
an impurity (represented by the horizontal arrow in Fig. 6.34). By using the
definition of the absorption coefficient in (6.10) and the expression in (6.126b)
we obtain the free-carrier absorption coefficient ·c:

·c(ˆ) �
Â∞ˆ2

pÁc

nrc(ˆ2 � Á2
c)

, (6.127)

where nr is the real part of the refractive index and c the speed of light. At
low frequencies. (i. e. ˆ � Ác) ·c can be written as

·c �
4Nce2

4Â0nrcm∗Ác
. (6.128)

Comparing ·c with the corresponding expression for the electrical conductivity
Û in (5.10) we can rewrite (6.128) as

·c �
4Û
nrc

(6.129)

provided we can equate (Ác)�1 to the scattering time Ù. As we saw in Chap.
5, the conductivity for a sample at nonzero temperatures is determined by the
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Fig. 6.34. Schematic diagram of a free-carrier absorption process near the Fermi level EF.
The thin red straight line labeled “photon” represents the light dispersion. During absorp-
tion a carrier from state 1 below EF is excited to an empty state 2 above EF. Scattering
with a phonon or impurity, represented by the horizontal arrow, is needed to conserve
energy and wavevector in this process
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average scattering time 〈Ù〉 defined by (5.27), whereas the scattering processes
which determine Ùc involve a band of carriers around EF with width equal
to �ˆ or kBT, whichever is smaller. Due to the dependence of the scattering
probabilities on carrier energy (Sect. 5.2.3) Ác �� (〈Ù〉)�1 and (6.129) is only an
approximation. However, the various scattering processes which contribute to
Ác are similar to those for 〈Ù〉, such as scattering with acoustic phonons, optical
phonons, and ionized impurities. We shall not repeat these calculations here
but instead refer interested readers to the review article by Fan [6.91] for de-
tails. Thus, in conjunction with electrical transport measurements, free-carrier
absorption is a very useful technique for studying the scattering mechanisms
of carriers in semiconductors.

Figure 6.35 shows a log–log plot of the free-carrier absorption coefficient
in n-type InAs at room temperature for electron concentrations varying be-
tween 2.8 × 1016 and 3.9 × 1018 cm�3 [6.92]. The straight line drawn through
the data points suggests that ·c can be fitted with the simple expression

·c ∝ Ïp, (6.130)

where Ï is the wavelength of the infrared radiation. The exponent p is equal
to 3 in InAs. Other zinc-blende-type semiconductors have also been found to
obey (6.130), except that the value of p varies between 2 and 3 [6.91]. Equa-
tion (6.130) can be understood if we assume that ˆ � Ác in (6.126b) and
the refractive index nr is approximately independent of ˆ (e. g., if the valence
electron contribution Â∞ to nr is much larger than the free-carrier contribu-
tion). With these assumption ·c can be written as
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Fig. 6.35. Free-carrier absorption in n-type InAs at
room temperature for six different carrier concentra-
tions (in units of 1017 cm�3: A: 0.28; B: 0.85; C: 1.4;
D: 2.5; E: 7.8; and F: 39 [6.92]
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·c �
Âiˆ
nrc

∝ (ˆ2 � Á2
c)�1 ∝ Ï2. (6.131)

Deviations of p from 2 can be explained by the dependence of Ác on ˆ. The
fact that the scattering mechanisms which make the dominant contribution to
Ác vary with the semiconductor can be invoked to explain the variation in p
for different materials [6.91].

In the optical transition depicted in Fig. 6.34 the initial and final states
of the electron lie within the same band. The resultant free-carrier absorp-
tion is therefore called intraband. Interband free-carrier absorption can occur
if the band containing the carriers is separated from another empty band by an
amount smaller than the bandgap. The inset of Fig. 6.36 shows schematically
two such transitions between the spin–orbit-split (so) hole band and the heavy
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Fig. 6.36. The infrared absorption spectra of p-type GaAs (hole concentration:
2.7×1017 cm�3) at four different temperatures. The peaks at 0.15, 0.31 and 0.42 eV are
identified, respectively, with the transitions lh→hh, so→lh, and so→hh (hh, lh and so
stand for the heavy hole, light hole, and spin–orbit split hole bands, respectively). The
inset shows schematically transitions between the spin–orbit split (so) hole band and the
heavy hole (hh) and light hole (lh) bands and also between the latter two [6.93]
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hole (hh) and light hole (lh) bands in p-doped diamond- and zinc-blende-type
semiconductors. The corresponding infrared absorption spectra due to interva-
lence transitions in p-type GaAs are shown in Fig. 6.36 as a function of tem-
perature [6.93]. Three broad peaks at 0.15, 0.31 and 0.42 eV can be identified
and have been attributed to the lh→hh, so→lh and so→hh transitions, respec-
tively. From such intervalence band absorption measurements, the spin–orbit
coupling and the ratios of effective masses of the top valence bands in semi-
conductors such as InSb, InAs, GaAs, and GaSb have been determined [6.91].

According to the Drude model the reflectivity of metals drops very steeply
in the range 0 � Âr � 1, i. e. at the frequency slightly above the plasma fre-
quency [6.89]. If Âi ≡ 0 the reflectivity drops to zero when Âr � 1. This de-
crease in reflectivity is known as the plasma edge or Drude edge. In most real
metals the reflectivity does not vanish when Âr � 1 because the plasma fre-
quency is usually high enough for some interband transitions to contribute to
Âi. In doped semiconductors the plasma frequency is often below the bandgap
so that the only contribution to Âi comes from scattering of the free carriers
and is given by (6.126b). As a result, doped semiconductors can exhibit very
sharp plasma edges in their reflectivity curves. An excellent example of these
edges is shown in Fig. 6.37 for n-type InSb [6.94]. The solid curves are fits to
the experimental points with the effective mass m∗ as the adjustable parame-
ter. Spitzer and Fan [6.94] found that m∗ in InSb increases from 0.023m0 (free
electron mass) at low carrier concentration to 0.041m0 at high concentrations.
This behavior can be explained by the large nonparabolicity of the conduction
band of InSb, which is a consequence of its small bandgap (see Problem 6.15).
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Fig. 6.37. Plasma edges observed in the room
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with carrier concentration N varying between
3.5×1017 cm�3 and 4.0×1018 cm�3 [6.94]. The
solid curves are fits to the experimental points
using the reflectivity calculated with (6.8) and
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6.5.2 Absorption by Carriers Bound to Shallow Donors and Acceptors

In Chap. 4 we showed that shallow donors and acceptors in diamond- and
zinc-blende-type semiconductors behave somewhat like “hydrogen atoms em-
bedded in a solid”. It is well known that a hydrogen atom can absorb elec-
tromagnetic radiation via electronic transitions between its quantized levels.
These transitions give rise to series of sharp absorption lines known as the Ly-
man, Balmer, Paschen, etc., series in the spectra of atomic hydrogen [6.95]. By
analogy with the hydrogen atom we expect that the electron in a donor atom
or the hole on an acceptor can also be excited optically from one bound state
to another. In addition, we expect these transitions to obey selection rules sim-
ilar to those in the hydrogen atom, e. g., electric-dipole transitions are allowed
between states with s and p symmetries (i. e., when the difference in the angu-
lar momentum quantum number ¢l equals one) but forbidden between states
of the same symmetry.

Figure 6.38a shows the absorption spectrum of phosphorus donors in Si
at liquid helium temperature measured by Jagannath et al. [6.96]. The con-
centration of donors is around 1.2 × 1014 cm�3. Notice that the absorption
peaks are very sharp because of the discrete nature of the energy levels in-
volved. These peaks are assigned to transitions originating from the 1s(A1)
ground state (Sect. 4.2.3) of the P donors in Si to their excited levels labeled
2p0, 2p±, etc. As pointed out in Sect. 4.2.3, the degeneracy of the three p
levels with magnetic quantum numbers m � 0, ±1 in a hydrogen atom are
split in the donor atoms in Si because of the anisotropic effective mass tensor
associated with the lowest conduction band. In addition to the 1s(A1) ground
state, donors in Si have two other slightly higher energy states with symmetries
1s(E) and 1s(T2) as a result of the valley–orbit coupling (Fig. 4.3). These states
are not occupied at liquid helium temperature. They become thermally popu-
lated and contribute to infrared absorption at higher temperatures. Transitions
from these higher energy 1s states have been observed in Si:P by Aggarwal
and Ramdas [6.97] as shown in Fig. 6.38b. The energies of the bound states in
shallow donors in Si, determined with great precision from such infrared ab-
sorption spectra, have already been compared with theoretical calculations in
Fig. 4.3.

In spite of its sensitivity and resolution, infrared absorption spectroscopy
of shallow impurities has its limitations. The oscillator strength of a transi-
tion decreases as the quantum number n of the final state increases and hence
higher energy bound states are more difficult to observe. There is another
technique which is even more sensitive than infrared absorption in measuring
shallow impurity energy levels in semiconductors. This remarkable technique,
known as photothermal ionization spectroscopy (PTIS), can detect impurity
concentrations as low as 108 cm�3! It was first reported by Lifshits and Nad
[6.98]. The basic process in this technique can be described as phonon-assisted
photoconductivity. Photoconductivity is the name for electric conductivity in-
duced by shining light on a sample [6.99]. For example, an intrinsic semicon-
ductor at low temperature may have a very low conductivity because there are
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lium temperature containing around 1.2×1014 cm�3 of P. The inset shows the 2p0 line on
an expanded horizontal scale [6.96]. (b) Between 30 and 80 K in a sample containing
5.2×1015 cm�3 of P [6.97]

very few thermally, excited carriers. When it is illuminated by light with pho-
ton energy larger than its bandgap, free carriers (both electrons and holes)
are excited. The resultant increase in conductivity is known as intrinsic pho-
toconductivity. In a doped semiconductor at low temperature (when all the
carriers are frozen on the shallow impurities) extrinsic photoconductivity can
occur when the photon energy of the incident light is sufficient to ionize the
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impurities. Thus impurity ionization energies can be measured with photocon-
ductivity. This technique does not work for the excited bound states of the
impurities unless they are occupied. However, these states may be so close
to the continuum that once carriers from the ground state have been excited
optically into them they can be ionized by absorbing a phonon. The phonons
required can be thermally created by maintaining the sample at a tempera-
ture T such that kBT is slightly larger than the ionization energy of the excited
state to be studied. A schematic diagram of the photothermal ionization pro-
cess is shown in the inset of Fig. 6.39. The PTIS spectrum of ∼ 2 × 1014 cm�3

P donors in Si is shown in the same figure. A comparison between Figs. 6.38a
and 39 shows that the strengths of the transitions to the higher excited states
(n � 3 to 6) in PTIS are enhanced relative to the n � 2 and 3 levels. A PTIS
spectrum in ultra-pure p-type Ge measured by Haller and Hansen [6.100] at
8 K is shown in Fig. 6.40. This sample contains a net acceptor concentration
of only 1010 cm�3! The predominant group III acceptor is Al. The concen-
trations of B and Ga are about 20 times lower. The observed peaks have
been identified by comparing them with the theoretical acceptor levels cal-
culated by Baldereschi and Lipari [6.47] (Sect. 4.2.4). Table 6.8 summarizes
the binding energies for various excited states of group III shallow acceptors
in Ge as determined by PTIS. For comparison the corresponding energies cal-
culated within the model of Baldereschi and Lipari [6.47] are shown under
the column labeled “Theory”. The group theoretical notations in parenthe-
ses are based on the cubic point group of the crystal. Since PTIS can mea-
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Table 6.8. Binding energies [meV] of group III acceptors in Ge as determined by PTIS.
To convert the transition energies measured by PTIS into binding energies the energy of
the 2°�

8 state (peak D) has been assumed to be equal to the theoretical value [6.47] of
2.88 meV [6.101]

G 4.61 4.65 4.58 4.57 4.52 4.58 (1°�
8 )

E 3.27 3.3 3.54 3.57
D 2.88 2.88 2.88 2.88 2.88 2.88 (2°�

8 )
C 2.14 2.13 2.13 2.10 2.13 2.13 (1°�

7 )
2.11 (3°�

8 )
a 1.76 1.76 1.78
B 1.49 1.48 1.48 1.48 1.5 1.48 (4°�

8 )
1.22 (5°�

8 )
A∗ 1.16 1.13 1.15 1.15 1.14 1.14 (2°�

7 )
1.13 (6°�

8 )
A′ 1.03 1.00 1.01 1.00 1.01

Binding energy [meV]

Peak B Al Ga In Tl Theory
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sure only the energy difference between an excited state and the ground level,
the binding energies in Table 6.8 have been obtained by assuming that the
2°�

8 level (peak D) has the calculated binding energy of 2.88 meV. From this
table we see that the energy separations of shallow acceptor levels in Ge are in
very good agreement with theory. Also, the chemical shifts between different
acceptors due to central cell corrections are largest for the 1°�

8 level.

6.6 Modulation Spectroscopy

The spectra of the dielectric function of semiconductors above the fundamen-
tal absorption edge are rather broad (Figs. 6.11 and 12). They could be de-
scribed as broad bands with some superimposed Van Hove singularities (i. e.,
interband critical points). The reason for this can be found in the rather weak
nature of Van Hove singularities, especially those of the three-dimensional va-
riety. According to Table 6.1 they are of the form (E � Ei)1/2, i. e., the optical
functions remain finite for E � Ei although their derivatives with respect to ei-
ther E or Ei diverge. This suggests measuring directly one of these derivatives
instead of the dielectric function: the background should largely disappear and
sharp peaks should appear at the interband critical points (CPs). This is ac-
complished with any of the many modulation spectroscopy techniques to be
described in this section. Most of our precise knowledge of CP energies stems
from reflectance modulation measurements.

We note that the extreme accuracy with which Â(ˆ) can be measured with
present day ellipsometric methods enables one to numerically obtain deriva-
tives of Â(ˆ) (up to third order). This fact produced a certain shift of em-
phasis from modulation spectroscopy to spectral ellipsometry in the decade
1975–1985. Since 1985, however, there has been a revival in the use of modu-
lation spectroscopy techniques in connection with semiconductor superlattices
and quantum wells ([6.102], see also Chap. 9).

The use of modulation techniques for studying interband CPs can probably
be traced to Frova and Handler [6.103] and Seraphin and Hess [6.104], who
measured so-called electrotransmission and electroreflectance spectra, where
the modulation was produced by an applied ac electric field. Essential for the
development of these techniques was the commercial availability of lock-in
amplifiers, which are devices that select a small ac signal synchronous with the
modulation (acting as reference) while any other signal, including noise, is re-
jected. The measured signal is normalized to the average intensity of the trans-
mitted or the reflected beam and to the amplitude of the modulating agent.
In this manner the logarithmic derivative of the transmittance or reflectance
with respect to the modulation agent is obtained while the intensity I0 of the
incident light, including its fluctuation, is eliminated. Typical modulation am-
plitudes are of the order of 10�4–10�5 of the incident beam intensity; noise
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levels can be kept below 10�6. For reviews of modulation spectroscopy see
[6.11, 105, 106].

The power of reflectance modulation techniques is illustrated in Fig. 6.41
for GaAs. Note the sharp structures at the E0, E0 � ¢0, E1, E1 � ¢1, E′

0 and
E2 critical points which appear in the photon energy (i. e., frequency) deriva-
tive. These structures are well-reproduced in the theoretical spectra (broken
curve in Fig. 6.41c) calculated from the band structure using the pseudopo-
tential method [6.21]. Notice that the experimental E1 and E1 � ¢1 peaks are
much sharper than the corresponding theoretical ones because of excitonic ef-
fects discussed in Sect. 6.3.3. A transmittance modulation spectrum yields di-
rectly the corresponding derivative of the absorption coefficient · (except for
minor reflection corrections). The relationship between the reflectance mod-
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ulation and the corresponding modulation of real and imaginary parts of the
dielectric function is more complex. Since the modulation amplitude is small,
we can always linearize this relation by introducing the so-called Seraphin co-
efficients ‚r and ‚i:

¢�

�
� ‚r¢Âr � ‚i¢Âi (6.132a)

with

‚r �
� ln �

�Âr
and ‚i �

� ln �

�Âi
. (6.132b)

The coefficients ‚r and ‚i can be obtained by differentiation of (6.8) using
(6.11) (Problem 6.16). The spectral dependence of ‚r and ‚i on frequency is
sketched in Fig. 6.42 for germanium [6.109]. Note that around the fundamen-
tal edge only ‚r is significant. Therefore in this region the shape of the re-
flectance modulation spectra corresponds to the modulation of Âr. Around E1
and E1 � ¢1 both ¢Âr and ¢Âi contribute equally to the spectrum. Around
E′

0, however, ¢Âi dominates, while at higher frequencies (E2, E′
1), ¢Âr domi-

nates again with a sign reversal (note that ‚r is negative above 3.5 eV). Obvi-
ously ¢Âr and ¢Âi can be separated by using the Kramers–Kronig relations. In
this case, extrapolations beyond the spectral range are not important (Problem
6.16c).

Conceptually, the simplest modulation spectra are those in which the light
frequency is modulated. They just yield the derivative of Âr and Âi with re-
spect to E, i. e., for a critical point (E � Ei)1/2 we obtain a spectrum looking
like (E � Ei)�1/2. Other types of modulation spectra (with so-called external
modulation) are obtained by sinusoidally modulating an external agent which
affects Ei, such as the temperature, an applied stress, or an electric field. In

1 2 3 4
Photon Energy  [eV]

–0.03

–0.01

0.01

0.03

βr

β r
, β

i

βi

Fig. 6.42. Spectral dependence of
the Seraphin coefficients ‚r and ‚i

calculated for Ge at room temper-
ature [6.109]
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many cases such spectra are easier to obtain than their frequency-modulated
counterparts. Moreover, they may lead to additional information on the cou-
pling of the external perturbation to the electronic system. These agents not
only change Ei but also modify the prefactor of (E�Ei)1/2 by changing the os-
cillator strength and the reduced masses (6.51 and 56). Moreover, it becomes
imperative to consider the lifetime broadening of the critical points produced
by interaction with phonons and other scatterers. Here we shall represent such
broadening by the energy ° and write, for instance in the case of a three-
dimensional M0 CP, the density of states above Ei as

D(E) ∝ Re{(E � Ei � i°)1/2} (6.133)

(The corresponding expressions for Âr(E) and Âi(E) near M0, and also other
types of CPs including broadening are given in [6.11].) An external pertur-
bation will, in general, modulate not only Ei but also ° (the latter effect is
particularly strong in the case of temperature modulation).

Among the various external perturbation agents we must also distin-
guish between those which preserve translational invariance (e. g., tempera-
ture, strain) and those which destroy it along one or more directions (electric
field, magnetic field). Only in the former cases can we assume that the modu-
lated signal is proportional to the derivative of (6.133) with respect to Ei or ° .
Since (6.133) is the consequence of translational symmetry in all three direc-
tions, the application of a uniform electric field �, which destroys the transla-
tional invariance along its direction z (because the perturbation Hamiltonian
is proportional to �e�z) makes (6.133) meaningless. This case will be treated
in Sect. 6.6.3.

Using dimensionless energy units

W �
E � E0

°
, (6.134a)

(6.133) can be rewritten as

D(W) ∝ °1/2Re{(W � i)1/2} � °1/2
(

W
2

�
1
2

(W2 � 1)1/2
)

. (6.134b)

By means of (6.134a, b, 48, and 49) we obtain

dÂr

dE
� �

dÂr

dE0
∝ 1

2
°�1/2F(�W),

dÂi

dE
� �

dÂi

dE0
∝ 1

2
°�1/2F(W),

(6.135a)

where the function F(W), shown in Fig. 6.43, is given by

F(W) � (W2 � 1)�1/2[(W2 � 1)1/2 � W
]1/2

. (6.135b)

Likewise we can calculate the derivatives of Âr and Âi with respect to the
broadening energy ° . We find at a three-dimensional (3D) M0 CP
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dÂr

d°
∝ �

1
2

°�1/2F(W), (6.135c)

dÂi

d°
∝ 1

2
°�1/2F(�W). (6.135d)

The expressions equivalent to (6.135) for other types of CPs can be easily de-
rived by the reader (Problem 6.17).

We conclude this introduction by mentioning that phonons in semiconduc-
tors also modulate their dielectric function at the corresponding vibrational
frequency. This modulation is responsible for the phenomenon of Raman scat-
tering [to be discussed in Sect. 7.2, see (7.36)].

6.6.1 Frequency Modulated Reflectance and Thermoreflectance

A frequency modulation spectrometer is constructed by allowing the fre-
quency of the light coming out of the exit slit of the monochromator to have
a small modulation sinusoidally dependent on time. The corresponding change
in the reflected light, synchronous with the frequency modulation, is detected
with a lock-in amplifier. Thermoreflectance is measured by subjecting the sam-
ple to a periodic variation in temperature produced by an alternating current
or a periodically chopped laser beam.

An increase in temperature preserves the average symmetry of a crystal.
However, in principle, both the Ei and ° of a critical point are changed. At
E0 and E1 the gaps decrease with increasing temperature at a rate of about
�4.5 · 10�4 eV K�1 in most zinc-blende-type semiconductors. ° increases at
a rate of about 1.5 · 10�4 eV K�1 [6.110], see Fig. 6.44. Thus the thermore-
flectance spectra are expected to be dominated by the shift in the gap, i. e., by
(6.135a) for M0 3D CPs or their equivalents in the case of other types of CPs.
The frequency-modulated spectra of GaAs are shown in Fig. 6.41. They have
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been obtained by two different methods: the spectrum in Fig. 6.41b was com-
puted from a reflectance spectrum of GaAs measured at 2 K, those in Fig.
6.41c were measured directly with a wavelength-modulated spectrometer. The
two different approaches give very similar results. The corresponding ther-
moreflectance spectra at 80 K and 300 K are shown in Fig. 6.45. The frequency
modulated spectrum of the E1 and E1 � ¢1 CPs is nearly the same as the
thermo-reflectance spectrum at 80 K shown in Fig. 6.45. This confirms the fact
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that, at least for these CPs, the thermoreflectance spectrum is mainly produced
by the gap shift and not by the increase of ° with increasing temperature. This
conclusion, however, should not be regarded as general.

6.6.2 Piezoreflectance

Piezoreflectance spectra are usually obtained by applying a periodically mod-
ulated uniaxial stress to the sample. This can be accomplished in a number of
ways, for example by coupling the cone of a loudspeaker to the sample with a
pushrod. In another method, more common these days, the sample is mounted
on a piezoelectric transducer in the manner shown in Fig. 6.46 or in another
similar way.

Results obtained for the E0 gap of CdTe samples oriented along either
[100] or [111] are shown in Fig. 6.47. These spectra are determined mainly by
the derivative of the E0 exciton energy with respect to the strain. The strongly
anisotropic nature of these spectra (note the difference in sign between ê ‖ ¯̄
and ê ⊥ ¯̄, ¯̄ represents here the strain direction) is due to the fact that the
strain splits the energies of the hole in the exciton, as discussed in Sect. 3.3.2,
with a splitting linear in the magnitude of the strain ¯ and proportional to the
deformation potentials of the top of the valence band, b for [100] strain and
d for [111] strain. At the same time the strain has a hydrostatic component
which leads to the uniform shift of both split components by an amount pro-

Liquid
nitrogen

Vacuum
grease

Sample
(2 × 15 × 0.1 mm)

X

K r

Z

K i

Y

Fig. 6.46. Details of the piezoelectric
transducer modulator arrangement used
by Gavini and Cardona [6.113] for piezo-
reflectance measurements. The black-
shaded parallellopided represents a lead
zirconate-titanate (PZT) transducer. The
ends of a thin (100 Ìm) sample (shaded
red) are glued to the transducer with vac-
uum grease (shaded black) which freezes
at low temperatures, thus giving a strong
bond to the transducer
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Fig. 6.47. Piezoreflectance spectra of CdTe [6.113] at 80 K for two directions of the ap-
plied stress ¯̄, taken with polarizations ê parallel and perpendicular to ¯̄

portional to a, where a is the volume deformation potential defined in (3.20).
Using the wavefunctions shown in (3.20) we can see that the ( 3

2 , 3
2 ) split ex-

citon couples only to the ê ⊥ ¯ polarization while the ( 3
2 , 1

2 ) exciton couples
mainly to ê ‖ ¯̄. This is the reason for the opposite signs of the modulated
signal exhibited for these two polarizations in Fig. 6.47. From the ratios of
strengths of these two signals one can obtain the corresponding ratio of uniax-
ial to hydrostatic deformation potentials (b/a and d/a) (Problem 6.18). In cases
in which a is known (as it was for CdTe when the work of Fig. 6.47 was per-
formed) one can determine both b and d from the anisotropy of the signals in
Fig. 6.47. One thus finds for CdTe [6.113] b � �1.1 eV and d � �5.45 eV, in
rather good agreement with other measurements and calculations [6.29].

6.6.3 Electroreflectance (Franz–Keldysh Effect)

As mentioned above, even a uniform electric field of magnitude � (the nota-
tion � is used here for electric field to distinguish it from energy E) lifts the
translational symmetry along its direction. We discuss next the theory of the
dielectric function of a semiconductor around an M0 critical point under the
presence of �. We assume, for simplicity, that the CP is isotropic (a restriction
which can be easily lifted, the reader is encouraged to do it as an exercise),
with reduced mass Ì.

The applied uniform field � along z can be represented by a contribu-
tion to the Hamiltonian �� � �e�z which, obviously, is not translationally
invariant along z. The effect of �� on an electron–hole pair, however, de-
pends only on the relative separation of electron and hole, r, and not on the
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center-of-mass coordinate R [Sect. 6.3.1; (6.76)]. As in the case of excitons,
the center-of-mass motion is not affected by the uniform electric field, leading
to an equation equivalent to (6.77a). The solutions of this equation are plane
waves and only those with K � 0 contribute to the optical absorption. Hence
we can neglect the center-of-mass motion in the calculation of Â(ˆ, �). The
equation for the relative motion, equivalent to (6.77b), becomes(

�
�2

2Ì
∇∇∇2

r � e�z � Er

)
ˇ(r) � 0, (6.136a)

where e is the (negative) charge of the electron. Equation (6.136a) can be
separated into an equation for the components of r perpendicular to ��, not
involving ��, and another for the z component(

�
�2

2Ì
d2

dz2 � e�z � Ez

)
ˇ(z) � 0. (6.136b)

The solution ˇ(z) of (6.136b) must be multiplied by the plane-wave solution
of the corresponding x, y equation

ˇ(x, y) �
1√
N

exp[�i(kxx � kyy)], (6.136c)

where N is the appropriate normalization constant and the energy Ez must
be added to the kinetic energy in the x, y plane in order to obtain the total
“relative coordinate” energy Er :

Er � E0 �
�2(k2

x � k2
y)

2Ì
� Ez. (6.136d)

Equation (6.136b) can be written in the simple form

d2ˇ(Í)
dÍ2 � �Íˇ(Í) (6.137a)

by introducing the dimensionless reduced variable

Í �
Ez

£
� z

(
2

Ì|e|
�2 �

)1/3

, (6.137b)

where the so-called electrooptical energy £ is given by

£ �

(
e2�2�2

2Ì

)1/3

. (6.137c)

The solutions of (6.137a) which fulfill the appropriate regularity conditions for
z → ±∞ can be written in terms of the Airy function Ai(Í) [6.114] as

ˇEz (Í) �
(|e|�)1/2

£
Ai(Í), (6.138)

where the prefactor (|e|�)1/2/£ guarantees orthonormality with respect to the
continuous variable Ez.
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The dipole matrix element needed for the calculation of Âi(ˆ, �) with
(6.48) is given by the equivalent of (6.86)

|Pvc|2Ez
� NP2|ˇEz (0)|2. (6.139)

Equation (6.48) must be integrated over Ez and summed over all possible val-
ues of kx and ky. The latter is accomplished by introducing the density of
states, which, instead of the three-dimensional (6.55), for two dimensions and
at an M0 CP is (including the spin degeneracy)

D(Ex,y � E0) �
Ì

�2 for Ex,y � E0,

� 0 for Ex,y � E0

(6.140)

The corresponding Âi(ˆ, �) thus becomes

Âi(ˆ, �) �
2e2(2Ì)3/2P2£1/2

m2�E2

∞∫
Í0

Ai2(Í)dÍ (6.141)

with

Í0 �
E0 � E

£
and E � �ˆ.

The integral in (6.141) can be easily performed by using a standard integral
representation for Ai(Í) [Ref. 6.11; App. I]. We find

∞∫
Í0

Ai2(Í)dÍ � ÍAi2(Í) � Ai′2(Í) (6.142)

Actually, the quantity of interest in a modulation spectroscopy experiment is
not Âi(ˆ, �) but rather the change introduced in Âi by �. This can be written
as

¢Âi(ˆ, �) � Âi(ˆ, �) � Âi(ˆ, 0) �
2e2(2Ì)3/2P2£1/2

m2�E2 F

(
E0 � E

£

)
(6.143a)

where

F(Í) � 
[
Ai′2(Í) � ÍAi2(Í)

]
� (�Í)1/2H(�Í) (6.143b)

and H represents the Heaviside step function (which is zero [one] for negative
[positive] argument).

The real part of ¢Â(ˆ, �) can be obtained by replacing F(Í) in (6.143) by
its Kramers–Kronig transform:

G(Í) � 
[
A ′i (Í)B ′i (Í) � ÍAi(Í)Bi(Í)

]
� Í1/2H(Í), (6.143c)
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where Bi(Í) is the modified Airy function, which diverges for Í → ∞. For de-
tails of the derivation above see [6.11] and the original derivation of Âi(E, �)
by Thamarlingham [6.115].

The functions F(Í) and G(Í) are plotted in Fig. 6.48. The inset shows a
schematic plot of the imaginary part of the dielectric function Âi in the vicin-
ity of a 3D M0 CP, both with and without a field �. The effect of an electric
field on an optical absorption edge was first discussed independently by Franz
[6.117] and Keldysh [6.118] and hence it is known as the Franz–Keldysh effect.
The oscillations in Âi(ˆ) above the band gap are known as Franz–Keldysh os-
cillations. In the presence of �, Âi is no longer zero below the bandgap E0
but decreases exponentially. This can be understood simply by the fact that
the term e�z in (6.136b) tilts the bands spatially. As a result, the bandgap
vanishes. The conduction band energy can always be lowered enough to over-
lap with the valence band at different points of real space by making z large
enough. However, the electron wishing to make a transition from the valence
band to the conduction band has to tunnel through a distance dependent on �.
For photon energy �ˆ � E0 the absorption can be regarded as photon-assisted
tunneling from the valence to the conduction band (see Sect. 9.5).

So far we have neglected lifetime broadening of E0. Also, very often the
modulating field is produced at a surface depletion layer (8.22 and 23) and is,
therefore, strongly nonuniform. Both effects can be taken care of by introduc-
ing Airy functions of a complex variable. This, and also the treatment of other

F
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Fig. 6.48. Three-dimensional electrooptic functions F(Ë) (solid line) and G(Ë) (dashed
line) according to [6.116]. The inset shows the imaginary part of the dielectric function
with (red) and without (black) applied electric field
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types of CPs, is beyond the scope of this book (interested readers are referred
to [6.11, 119]).

Equation (6.143a), in connection with Fig. 6.48 indicates that around an
M0 critical point the modulation spectrum (¢�/�) should exhibit a sharp peak
at the gap energy E0, decay rapidly below E0, and oscillate above E0. It can
be shown, using standard asymptotic expansions for the Airy functions [6.114]
that the oscillatory behavior, in the limit of large |Í|, has the form [6.120]

¢�

�
∝ |Í|�1 cos

(
2
3

Í3/2 �

2

)
. (6.144)

Labeling the maxima and minima consecutively by an index n we find from
(6.144 and 137c)

(En � E0)3/2 � An� � B, (6.145)

where A depends only on Ì(A ∝ Ì1/3) and physical constants. The larger �, the
more widely spaced the oscillations become. A fit of the energies En of max-
ima and minima with (6.145) allows Ì to be determined provided � is known
[6.121].

As an example of the Franz–Keldysh oscillations we show in Fig. 6.49 the
spectrum obtained for a GaAs layer (100 nm thick) by modulating the field
between 0.9 and 1.1 × 105 V/cm in the configuration displayed in the inset. A
large number of oscillations are observed, with some evidence of a beating be-
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Fig. 6.49. Electroreflectance signal observed for strongly uniform modulating fields pro-
duced in an intrinsic GaAs layer (see inset) by a modulating voltage (1 ± 0.1 V) applied
between the n� (heavily doped) substrate and a thin transparent gold film [6.122]
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tween oscillations, which corresponds to heavy-hole to electron and light-hole
to electron transitions [6.121].

We discuss next the so-called low-field regime, in which the broadening
parameter ° is larger than the electrooptic energy £. In this case, which can
be described exactly by the theory given above modified to include ° (i. e., by
using Airy functions of imaginary argument), the oscillations shown in Figs.
6.48 and 49 should be largely washed out and, instead, a peak should remain
at E0.

It was suggested by Aspnes that in the limit ° � £ the spectral shape
of either ¢� or ¢Â corresponds to the third derivative of the primary spec-
tra with respect to E. This important and by no means obvious fact is vividly
illustrated in Fig. 6.50 for the E1 and E1 � ¢1 CPs of germanium. In this fig-
ure the primary Âr(E) and Âi(E) spectra of germanium obtained ellipsometri-
cally at 300 K are shown together with their first, second, and third derivatives
with respect to E. At the bottom of the figure, the corresponding ¢Âr and ¢Âi
low-field electroreflectance spectra are displayed [6.105]. The close correspon-
dence between the latter and the third derivative spectra (except for a trivial
sign reversal) is striking confirmation of Aspnes’ third-derivative approxima-
tion to the low field limit. Although this approximation was derived rigorously
by Aspnes, we give below a heuristic treatment which reveals the underlying
physical insight.

Let us approximate (6.49) in the neighborhood of a CP as

Âr � 1 � CE�2
∑

k

1
Ec � Ev � E

, (6.146a)

where C involves the dipole matrix element P and the gap E0 and is assumed
to be constant near the gap. The contribution of a given transition to Âr for
E �� Ec � Ev is said to arise from virtual transitions. According to the time–
energy uncertainty principle these transitions last a time Ù given by

Ù �
�

Ec � Ev � E
. (6.146b)

In the presence of a field � a conduction band electron (energy Ec) is acceler-
ated by the field, moving, during time Ù, a distance z:

z � �
e
2

�

mc
Ù2 � �

1
2

e�

mc

�2

(Ec � Ev � E)2 . (6.146c)

This displacement results, via the Hamiltonian ez�, in a change in energy with
respect to the unperturbed Ec:

¢Ec �
e2�2

2mc

�2

(Ec � Ev � E)2 (6.147a)

and, correspondingly, for an electron at the top of the valence band,

¢Ev � �
e2�2

2mv

�2

(Ec � Ev � E)2 . (6.147b)
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Equation (6.147a and b) result in a shift of (Ec � Ev):

¢(Ec � Ev) �
e2�2

2Ì
�2

(Ec � Ev � E)2 . (6.147c)

We now differentiate (6.146a) in order to calculate the effect of this shift on
Âr:

¢Âr �
dÂr

d(Ec � Ev)
· ¢(Ec � Ev) � �C

e2�2

2ÌE2

∑
k

�2

(Ec � Ev � E)4

�
�2e2�2

12ÌE2

�3E2Âr

�E3 �
1

6E2 £3 �3E2Âr

�E3 .

(6.147d)

Because of the analytic properties of Â, a similar expression holds for Âi. We
thus reach the surprisingly simple low-field result

¢Â �
1

6E2 £3 �3E2Â
�E3 . (6.148)

The rigorous derivation given in [6.105] yields the same expression except for
a numerical factor of 1/2. Note that, since £3 is proportional to �2, ¢Â also
depends quadratically on �, a physically meaningful result since (6.148) also
applies to materials with a center of inversion and hence there can be no ef-
fect linear in � (Problem 6.13). For zinc-blende-type crystals, however, there
is also a linear electric effect (Problem 6.14), which will not be discussed here
any further. The interested reader should look at [6.123].

For a discussion of the effects of an electric field on excitonic absorption
see [6.124].

Electroreflectance, usually of the low-field variety, is commonly used for
the characterization of semiconductors, particular of mixed crystal samples
(e. g., GexSi1�x, GaxAl1�xAs). We show in Fig. 6.51 a survey of the de-
pendence on Ge concentration of the various interband critical points in
the GexSi1�x system. These data were obtained [6.125] with the electrolytic
method of electroreflectance, which is particularly easy to implement: the field
is applied by immersing the sample into water with some salt (e. g., NaCl) and
polarizing it with respect to the electrolyte. Modulation of the polarization
voltage results in electroreflectance modulation [6.126].

6.6.4 Photoreflectance

In a photoreflectance measurement the reflectivity is modulated by a period-
ically chopped light (usually a laser beam) which is incident, at a different
angle, on the same sample spot as the monochromatized probing beam. Care
must be taken in order to avoid the detector registering some of the modulat-
ing beam (a small fraction of which is always diffusely scattered along the re-
flected probing beam). Photoreflectance measurements have recently become
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very important for the investigation of semiconductor microstructures [6.106].
The signal is usually sublinear with respect to the power WL of the modulating
laser (often ∝ W1/3), hence it is preferable to use low laser power (≤ 1 mW)
in order to enhance the ratio of signal to spurious scattered light.

Several mechanisms have recently been suggested as contributing to pho-
toreflectance and may be simultaneously operating in a given particular case.
The photoreflectance is often due to the screening of the depletion layer field
(Sect. 8.3.3) by the carriers generated when the modulating laser beam is ab-
sorbed. In this case, the technique is equivalent to electroreflectance (it is
sometimes called contactless electroreflectance). For this purpose it is conve-
nient to choose the doping such that the depletion layer thickness matches the
penetration depth of the light at the frequency of interest.

For undoped to moderately doped semiconductors the carriers freeze out
at low temperatures and the depletion layer becomes infinitely thick while the
corresponding field tends to zero. In this case no significant field modulation
can take place. Optical features involving strongly exciton modified CPs can,
however, be modulated by the laser beam through screening of the exciton in-
teraction by the induced carriers (for a theoretical treatment of this effect see
[6.127]).

An example of the latter is shown in Fig. 6.52 [6.128] for the direct gap E0
of three germanium crystals of different (stable) isotopic compositions. The
dependence of the gap on isotopic mass shown in this figure is produced by
gap renormalization through electron–phonon interaction and is closely re-
lated to the decrease of E0 with increasing temperature [6.129]. Since the spec-
tra in Fig. 6.52 were measured at very low temperatures (2 K) the renormal-
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ization is connected with the zero point vibrational amplitude of the phonons
(Problem 6.19).

Figure 6.53 displays a photoreflectance spectrum which, in view of the
large number of Franz–Keldysh-like oscillations (Figs. 6.49 and 50), must be
attributed to space-charge-layer field modulation and is thus equivalent to
electroreflectance. According to (6.145) the index which labels the extrema
should be proportional to (E � E0)3/2 (except for a small offset). This propor-
tionality is demonstrated in the inset of Fig. 6.53 [6.130].

Ph
ot

om
od

ul
at

io
n

0.882 0.884 0.886 0.888 0.890 0.892
Photon energy  [eV]

T = 6 K

70
Ge

74Ge

Ge76

E0

E0

E0

∆R R

Fig. 6.52. Photomodulated re-
flectivity showing the E0 di-
rect gap of single crystals of
nearly isotopically pure 70Ge,
74Ge, and 76Ge at T � 6 K
[6.128]. Note the remarkable
dependence of E0 on isotopic
composition

1.4 1.6 1.8
Photon energy  [eV]

8.0

0.0

–8.0

Index  n

0 3 6 9 12
0.0

0.05

(4
/3

π)
(E

n-
E

0)
3/

2  
[e

V
]3

/2

∆R R
10

5

UN+

300 K

Fig. 6.53. Photoreflectance
spectrum of a GaAs sam-
ple at room temperature ob-
tained with a 633 nm laser for
a modulating power between
3 ÌW cm�2 and 2 ÌW cm. The
inset shows a plot of (4/3)
(En � E0)3/2 as a function of
the index n which labels the
extrema [6.130]



332 6. Optical Properties I

6.6.5 Reflectance Difference Spectroscopy

We conclude this chapter by discussing a technique which has recently become
very powerful as an in situ diagnostic method for vapor-phase epitaxial growth
[6.131, 132]. The technique is based on measuring the difference in normal-
incidence reflectance for two different linear polarization directions. The first
such measurements were performed by rotating the sample surface about an
axis perpendicular to it [6.133, 134] while the probing linearly polarized light
was reflected at normal incidence on the sample surface. A lock-in amplifier
detected the signal synchronous with the sample rotation. (hence the name
rotoreflectance used in [6.133]). A more recent variation of this technique,
which has become the standard one these days, consists of flipping the lin-
ear polarization between two perpendicular directions with the help of a pho-
toelastic modulator [6.131]. The technique is nowadays known as reflectance
difference spectroscopy (RDS).

We show in Fig. 6.54 the RDS spectrum measured for a [110] silicon sur-
face covered by the standard oxide layer (∼2 nm) and after chemical stripping
of the oxide. The differences exemplify the strong sensitivity of the technique
to surface conditions, which can be used advantageously for the in situ inves-
tigation of epitaxial growth.

Several mechanisms can be invoked to explain the RDS phenomenon. The
simplest one is of bulk origin and applies, in principle, to the case of Fig. 6.54.
It is related to the k-dependence of Â(ˆ, k), i. e., to the phenomenon of spatial
dispersion mentioned in Sect. 6.1. This mechanism is effective for a [110] sur-
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Fig. 6.54. Reflectance difference spectra of a silicon [110] surface covered with natural
oxide and after stripping off the oxide with buffered HF. Note the sharp structure at the
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0 � E1 and E2 critical points [6.134]
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face because of the symmetry of Â(ˆ). The symmetry of the system crystal plus
light (compare with the concept of polaritons) is lower than cubic, in fact only
those symmetry operations of the crystal which also preserve the k vector are
symmetry operations of the whole. The resulting symmetry is orthorhombic
(C2v point group) and therefore the reflectivity for [110] polarization should be
different from that for [001] polarization [6.7]. This contribution to the RDS
is, however, an order of magnitude smaller than that shown in Fig. 6.54. In
order to explain the magnitude of the observed effect surface modification of
the effect of local fields on excitons is often invoked [6.134, 135].

Of particular interest is the case of [001] surfaces, which are most com-
monly employed for molecular beam epitaxy (MBE). For the sake of the dis-
cussion we place, as crystal growers do, the Ga atom at the center of the co-
ordinate system and As at (a/4)(111) (note that the convention used in Chap.
2, which leads to positive antisymmetrical pseudopotential form factors, is the
opposite one). In this case at a [001] surface terminated by Ga the topmost
As–Ga bonds are along [110], while if the surface is As-terminated the top-
most Ga–As bonds are along [110] (readers should provide themselves with a
model of the crystal and examine this fact). Hence optical surface anisotropy
results, which can be measured by RDS. This anisotropy is different depend-
ing on whether the surface is Ga- or As-terminated, a fact which allows in situ
monitoring of the growth. For a theory of the effect see [6.136]. For reviews
of the applications of RDS to epitaxial growth see [6.132, 137].

6.7 Addendum (Third Edition): Dielectric Function

As already mentioned in connection with Fig. 6.10, considerable progress was
made in the late 1990’s concerning ab initio calculations of the dielectric func-
tion of semiconductors [6.22, 23]. Because of the topical importance of GaN,
we present here an example of such state-of-the-art calculationis and a com-
parison with ellipsometric measurements of Â2(ˆ) for the wurtzite modifica-
tion of this semiconductor. Since the wurtzite structure is optically uniaxial,
two sets of dielectric functions are needed to describe the optical behavior of
GaN: one for E ⊥ c and the other for E ‖ c. In Fig. 6.55 we show Â2(ˆ) for
E ⊥ c measured ellipsometrically for GaN using synchrotron radiation as the
light source. The agreement between the measured spectrum and the ab ini-
tio calculations is excellent [6.138]. The measured epitaxial thin film, oriented
perpendicular to the c-axis, did not allow measurements in the E ‖ c polariza-
tion configuration. The calculations indicate that the E2 peak, split from E1
by the hexagonal crystal field, should not appear for E ‖ c. This has recently
been confirmed experimentally for a bulk GaN crystal [6.139]. The calculations
of Fig. 6.55 start with an ab initio pseudopotential and include the so-called
quasiparticle self-energy correction between the excited electron and the hole
left behind plus excitonic interaction between the quasiparticles.
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Fig. 6.55. Dielectric function Â2(ˆ) of wurtzite GaN for E ⊥ c as measured by ellipsome-
try using UV synchrotron radiation, compared with ab initio calculations [6.138]

PROBLEMS

6.1 Ellipsometry
Derive (6.13) from (6.12a and b).

6.2 Kramers–Kronig Relations
a) Show that if a linear response function, such as the linear electric suscepti-
bility ¯(ˆ) or the dielectric function Â(ˆ) � 1, satisfies the following two con-
ditions: (1) it is analytic in the upper half of the complex ˆ-plane and (2) it
approaches zero sufficiently fast as ˆ approaches infinity, then it satisfies the
KKRs given in (6.14 and 15).
b) Apply the KKR (6.14) to the Âi in (6.58) to derive the expression for Âr
given in (6.59). (The contour of integration for this proof can be found in
[6.11, p. 20].) Derive the corresponding expressions for Âi and Âr assuming that
the oscillator strength fvc in (6.51) is constant instead of the matrix element
|Pvc|2 being constant.
c) Show that the dielectric function obtained in (b) satisfies the conditions
listed in (a).
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6.3 Plasma Frequency and Plasmons
a) Show that, when damping is neglected, the dielectric constant for a three-
dimensional free electron gas of density N immersed in a uniform background
of equal and opposite positive charges (known as a plasma) in three dimen-
sions is given by

Â(ˆ) � 1 �
4Ne2

4Â0mˆ2 , (6.149)

where m is the electron mass.
b) Show that Â(ˆ) � 0 when ˆ � ˆp � (4Ne2/4Â0m)1/2. ˆp is known as the
plasma frequency of the free electron gas.
c) Show that when Â(ˆ) � 0 it is not necessary to apply an external field
to the free electron gas in order to produce an internal electric field. Calcu-
late this internal field E in terms of the oscillation amplitude of the electrons.
Hint: E � D(external field)/Â. When Â(ˆp) � 0, E is not necessarily zero
even when D � 0. The electrons can be excited to oscillate at ˆp with the
Coulomb attraction between the electrons and the positive background pro-
viding the restoring forces. Such oscillations of a free electron gas are known
as plasma oscillations. As in the case of a simple harmonic oscillator, the en-
ergy of plasma oscillations can be quantized into units of �ˆp. The quantized
entities are known as plasmons. Calculate the plasma frequency of the valence
electrons in diamond, silicon (see caption of Fig. 6.6) and GaAs.
d) A traveling wave (known as a plasma wave) can also be excited in a free
electron gas. Show that plasma waves are longitudinal waves (i. e., the dis-
placements of the electrons are parallel to the direction of propagation) and
they produce an oscillating macroscopic longitudinal electric field.

6.4 Dielectric Function of a Collection of Charged Harmonic Oscillators
a) Derive the expressions (6.110a and b) for the dielectric functions of a col-
lection of charged simple harmonic oscillators starting from (6.105 and 108).
Show that (6.108) reduces to the equation of a free electron gas when ˆT � 0
and Â∞ � 1.
b) Derive the Lyddane–Sachs–Teller relation (6.111) from (6.110a).
c) Use the KKRs [or (4.55)] to show that the imaginary part of the dielec-
tric function and hence the absorption spectrum of such oscillators consist of
a delta function at ˆT.

6.5 Sum Rules
Define the jth moment Mj of the imaginary part of the dielectric function (Âi)
of a semiconductor as

Mj �

∫ ∞

0
Âiˆjdˆ (6.150)

a) Use the KKRs to show that M1 is related to the total charge density N in
the semiconductor by

M1 � 22e2N/m. (6.151)

b) Show that M�1 is related to the low-frequency dielectric constant Âr(0) by

M�1 � (/2)[Âr(0) � 1]. (6.152)
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6.6 Van Hove Singularities
Verify the form of the Van Hove singularities in the density of states given in
Table 6.1.

6.7 Absorption Spectrum of Wannier Excitons at Direct Bandgaps
a) By using (6.72 and 82) derive the exciton–photon interaction matrix ele-
ment |〈f |HxR|0〉|2 in (6.85).
b) Looking up the form of the associated Laguerre polynomials Rnl(r) in a
quantum mechanics textbook, show that |〈f|HxR|0〉|2 varies with the principal
quantum number n as n�3.
c) Show that the probability of finding an exciton in the continuum state at
the origin |ˇE(0)|2 is given by (in atomic units with m0 � e � � � 1)

|ˇE(0)|2 �
ÙeÙ

NV0 sinh Ù
(6.153)

where Ù is defined as

Ù � |R∗/(ˆ � ˆg)|1/2. (6.154)

N is the number of unit cells in the crystal, V0 is the volume of each unit cell,
and R∗ the exciton Rydberg. Use this result to derive (6.90).
d) Show that, in the limit ˆ → ˆg (or Ù → ∞), Âi approaches a constant value:

Âi →
8|P|2Ì2

4Â0ˆ2
gÂ0

. (6.155)

e) Show that in the limit ˆ → ∞ (or Í → 0) |ˇE(0)|2 → 1 and Âi approaches
the value obtained in the absence of an exciton effect. Show, however, that
the exciton effect modifies the absorption edge even for photon energies well
above the band edge.

6.8 Low Frequency Dielectric Constant and the “Average Gap”
From Problem 6.5b we see that the zero-frequency dielectric constant Âr(0)
is determined by contributions from optical transitions throughout the entire
frequency range from zero to infinity. Penn has proposed a simple two-band
model with an “average bandgap” Eg (known as the Penn gap) to account for
Âr(0) in a semiconductor [6.140]. In this model Âr(0) is given by

Âr(0) � 1 � (Ep/Eg)2, (6.156)

where Ep is the plasma energy of the valence electrons. It was pointed out
in [6.141] that, because the oscillator strength at the E2 transition is the
strongest in many tetrahedrally coordinated semiconductors, a good approx-
imation to the Penn gap is the energy of the E2 transition. Calculate the
energy of the Penn gap from the experimental values of Âr(0) in Table 6.9
and compare with that of the E2 transitions obtained from Table 6.3.

Note that “zero frequency” in this context means a frequency low com-
pared to interband transitions but higher than phonon frequencies. The value
of Âr(0) listed in Table 6.9 is sometimes also referred to as the “high fre-
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Table 6.9. Comparison between the Penn gap [eV] calculated from the experimental val-
ues of Âr( ) and the E2 transition energies [eV] for a few representative semiconductors
[6.142]

Âr(   ) 12.0 16.0 10.9 9.6 9.1
Penn gap 4.8 4.3 5.2 5.2 5.75
E2 4.44 4.49 5.11 5.05 5.21

Si Ge GaAs InP GaP

quency” dielectric constant Âr(∞) because it is measured at a frequency much
higher than the phonon frequencies.

6.9 Exciton-Polariton Dispersion Curve
An exciton-polariton is a propagating mode in a dielectric medium in which
the electromagnetic wave is coupled with the polarization wave of excitons.
To obtain the polariton dispersion curve depicted in Fig. 6.22 we shall start
with the usual electromagnetic wave dispersion ˆ2 � c2k2/Â (6.114a), where ˆ
and k are, respectively, the frequency and wavevector of the electromagnetic
wave, c is the speed of light in vacuum, and Â is the dielectric function of
the medium. We shall regard the excitons as a collection of identical, charged
simple harmonic oscillators with mass M, charge q, and (transverse) resonance
frequencies ˆex. Using the result for infrared-active optical phonons in Sect.
6.4, the dielectric function of the medium is given by (6.103)

Â(ˆ) � 1 �
4Nq2

4Â0M(ˆ2
ex � ˆ2)

.

To take into account the fact that excitons are propagating polarization waves
with dispersion, replace ˆex in the above expression by the exciton dispersion
in (6.83)

ˆex(k) � ˆex �
�k2

2M
,

where k is now the exciton wavevector. The result is a spatially dispersive di-
electric constant Â(k, ˆ).
a) Obtain the exciton-polariton dispersion curve from Â(k, ˆ).
b) Calculate the longitudinal exciton frequency ˆL, i. e., the frequency for
which Â(ˆL) � 0 at k � 0. The frequency ˆex(0) is known as the transverse
exciton frequency and is denoted by ˆT in Fig. 6.22.
c) Sketch the polariton dispersion curves by substituting different values of ˆ
into the dispersion relation, such as ˆ � ˆex(0), ˆ � ˆex(0), ˆL � ˆ � ˆex(0),
ˆ � ˆL, and ˆ � ˆL, and solving ˆ2 � c2k2/Â(ˆ, k) for k.

6.10 Coupled Plasmon–LO Phonon Modes
In a doped zinc-blende-type semiconductor, there are two possible longitudi-
nal resonances; one corresponds to the plasma oscillation of the free carriers
(as discussed in Problem 6.3), while the other is the LO phonon. These two
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longitudinal oscillations couple with each other and exhibit the phenomenon
of “level anticrossing” discussed in Sect. 6.4. Assume that the free carriers
(when “uncoupled” to the LO phonon) have the plasma frequency ˆp defined
in Problem 6.3 while the corresponding LO phonon frequency in the absence
of free carriers is ˆL.
a) Using the results in Sect. 6.4 and Problem 6.3, show that the total dielectric
function of the semiconductor in the presence of the free carriers is given by

Â(ˆ) � Â∞

(
1 �

ˆ2
L � ˆ2

T

ˆ2
T � ˆ2

�
ˆ2

p

ˆ2

)
. (6.157)

b) Obtain the two new longitudinal oscillation frequencies ˆL� and ˆL� by
solving the equation Â(ˆ) � 0. These longitudinal oscillations are known as the
coupled plasmon–LO phonon modes. Show that, as a function of ˆp, the two
solutions never cross each other (i. e., they anti-cross). The higher frequency
branch (L�) approaches ˆL for ˆp � ˆL while the lower branch (L�) ap-
proaches ˆp. For ˆp � ˆL the L� branch approaches ˆp while the L� branch
approaches ˆT, the TO phonon frequency. This means that at high free car-
rier density (when ˆp � ˆL) the free carriers completely screen the extra
Coulombic restoring force induced by the phonon displacement (Sect. 6.4) so
that the transverse and longitudinal oscillations occur at the same frequency
ˆT.

6.11 Surface Plasmons and Phonons
a) Show that at a flat vacuum-solid interface the Laplace equation ∇2ˇ � 0
has solutions which propagate along the interface and decay exponentially
away from that interface when the dielectric function of the solid medium Â(ˆ)
is equal to �1. Such waves are known as surface waves. Assuming that Â of
a metallic medium is given by (6.149) (Problem 6.3), express the frequency
of the surface wave (known as the surface plasmon frequency) in terms of
the bulk plasmon frequency ˆp. You can neglect the propagation (i. e., re-
tardation) of the surface wave. Under what conditions is this approximation
valid?
b) Deduce the effects of retardation on the surface wave in (a) from (6.12b)
by imposing the condition that the reflectance �p → ∞, i. e., a reflected elec-
tromagnetic field is produced without an incident one. This means that a self-
sustaining resonant oscillation occurs (similar to what happens in the bulk
when Â � 0). See [6.143] for hints.
c) For a dielectric with Â given by (6.110a), the condition that Â � �1 is sat-
isfied at a frequency between the TO and LO phonon frequencies. Calculate
the frequency of this “surface phonon” (neglecting retardation).

6.12 Modeling the E1 and E1 � ¢1 Transitions
by Two-Dimensional M0 Critical Points

In Sect. 6.2.4 it was pointed out that the conduction and valence bands in
many diamond- and zinc-blende-type semiconductors are nearly parallel along
the 〈111〉 directions. As a result, the critical points E1 and E1 � ¢1 and their
joint density of states can be modeled by two-dimensional M0 critical points.
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a) Calculate the effective mass of these critical points using the k · p theory
(the corresponding matrix element of p is ≈ 2�/a0).
b) Calculate their contributions to Âi and Âr. See [6.144, 7.102] for hints.

6.13 Effects of Uniaxial Strain on Optical Phonons and on Effective Charges
a) Use symmetry arguments to deduce the effects of uniaxial strains along
the [100] and [111] axes on the zone-center optical phonons in diamond-type
semiconductors like Ge.
b) Repeat these arguments for the zone-center TO and LO phonons in GaAs.
From these results discuss the effects of uniaxial strains on the effective charge
e∗. See [6.145] for hints.

6.14 Electrooptic Tensors
The effect of a dc electric field E on the dielectric function can be expressed as

‰Âij � ‰ÂijkEk � ‰ÂijklEkEl, (6.158)
where the third-rank tensor ‰Âijk and the fourth-rank tensor ‰Âijkl are known
as the electrooptic tensors. The latter describes the Kerr effect, the former the
Pockels effect.
a) Show that ‰Âijk is identically zero in a centrosymmetric material (assuming
electric dipole transitions only).
b) Use symmetry arguments to determine the linearly independent and
nonzero coefficients of these electrooptic tensors for diamond- and zinc-
blende-type crystals. See [6.146] for hints.
c) Use the results of (a) and (b) to calculate the change in Â induced by an
electric field along the [001], [111], and [110] directions of Si and of GaAs.

6.15 Effect of Band Nonparabolicity on Plasma Frequency
In small-bandgap semiconductors such as InSb and InAs, the conduction band
dispersion is nonparabolic. As a result, the electron effective mass to be used
in calculating the free carrier plasma frequency in (6.126c) depends on the
carrier concentration. The effective mass obtained by fitting the plasma re-
flection is known as the optical mass m∗

op to distinguish it from the effective
mass determined by other techniques, such as cyclotron resonance. The effect
of conduction band nonparabolicity on the plasma frequency can be estimated
using the k · p method.
a) Write down the matrix corresponding to the k · p Hamiltonian around the
Brillouin zone center (° point) of zinc-blende-type semiconductors. Include in
your basis functions only the lowest s-like conduction band and the top p-like
valence bands (neglect spin–orbit coupling). Diagonalize this 4×4 matrix and
expand the energy of the conduction band, Ec(k), to k4 in the following form:

Ec(k) �
�2k2

2m∗ (1 � Nk2). (6.159)

Determine the nonparabolicity constant N.
b) Repeat the calculation in (a) including the spin–orbit interaction.
c) Define the optical mass as

1
m∗

op
�

1
�2

(
1
k

�Ec

�k

)
EF

, (6.160)
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where the subscript EF signifies that (6.160) must be evaluated at the Fermi
energy for a degenerate semiconductor. Calculate and plot the optical mass
of electrons in InSb and their plasma frequency as a function of carrier con-
centration, Ne, in the range 1017 ≤ Ne ≤ 1019 cm�3. Compare the plasma
frequencies you obtained with the data in Fig. 6.37 and the calculated optical
masses with the experimental values in [6.91].

6.16 Seraphin Coefficients
a) Derive an expression for the Seraphin coefficients in (6.132b) as a function
of Âr and Âi.
b) Using the experimental data in Fig. 6.10 sketch the frequency dependence
of these coefficients for Si. Note that for small photon energies ‚i is negligible
while ‚r and ‚i are comparable around the E′

0 and E1 critical points.
c) Discuss how to obtain ¢Âr and ¢Âi from a reflectance modulation spec-
trum by using the KKRs. Why are the extrapolations outside the experimental
range unimportant?

6.17 Modulation of Critical Points
Derive analytic expressions similar to those in (6.135a) for the derivatives
dÂr/dE and dÂi/dE near all the other types of critical points displayed in Table
6.1. Sketch the spectral dependence of your results.

6.18 Piezoreflectance
Calculate the ratio of the peaks shown in Fig. 6.46 for light polarized parallel
to the stress axis (ê ‖ ¯̄) and perpendicular to the stress axis (ê ⊥ ¯̄) as a
function of the ratio of shear to hydrostatic deformation potentials b/a (for
¯̄ ‖ [100]) and d/a (for ¯̄ ‖ [111]).

6.19 Temperature Dependence and Isotopic Shift of Bandgaps
a) Show that the temperature (T) dependence of an interband gap energy Eg
can be written as

Eg(T) � Eg(0) � A

(
2

exp[�ø/(KBT)] � 1
� 1

)
, (6.161)

where A is a temperature-independent constant, kB is the Boltzmann constant,
and �ø represents an average phonon energy. Hint: the term inside the paren-
thesis in (6.161) represents the ensemble-averaged square of the phonon dis-
placement. (See also [6.144].)
b) Show that ¢Eg(T) � Eg(T) � Eg(0) becomes linear in T in the limit of
kBT � �ø as shown in Fig. 6.44.
c) For small T, ¢Eg(T) can also be written as

¢Eg(T) �

(
�Eg

�V

)
T

(
dV
dT

)
P

¢T �

(
�Eg

�T

)
V

¢T, (6.162)

where the first term describes the change in Eg caused by thermal expansion.
Its sign can be positive or negative. The second term is the result of electron–
phonon interaction. Its sign is usually negative. Estimate the contribution of
these effects to Eg(0) by extrapolating Eg(T) to T � 0 using its linear depen-
dence at large T. The resultant energy is known as the renormalization of the
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bandgap at T � 0 by electron–phonon interaction. Determine this energy for
the E0 gap of Ge from Fig. 6.44.
d) The result in (c) can be used to estimate the dependence of bandgap on
isotopic mass. Since the bonding between atoms is not affected by the iso-
topic mass, the average phonon energy �ø in solids with two identical atoms
per unit cell, like Ge, can be assumed to depend on atomic mass M as M�1/2.
Calculate the difference in the E0 bandgap energies between the following
isotopes: 70Ge, 74Ge, and 76Ge. Compare your results with those in Fig. 6.52.

6.20 Third-Order Nonlinear Optical Susceptibility in Ge
In general this book has concentrated on linear optical properties and avoided
nonlinear optical phenomena. However, some nonlinear optical properties of
solids can be deduced from the effect of electric field E on their linear optical
properties. The third-order nonlinear optical susceptibility ¯(3) is defined by
(see also Problem 6.14):

¯ij(E) � ¯(1)
ij � ¯(2)

ijk Ek � ¯(3)
ijklEkEl, (6.163)

where ¯(1)
ij is the field-independent linear electric susceptibility tensor intro-

duced in (6.1). ¯(2)
ijk is the second-order nonlinear susceptibility tensor and is

related to nonlinear optical effects such as second harmonic generation [6.148].
¯(2) is identically zero in centrosymmetric crystals if only electric-dipole transi-
tions are considered. The third-order nonlinear susceptibility ¯(3) is responsible
for nonlinear phenomena such as two-photon absorption and third-harmonic
generation. It is related to the fourth-rank electrooptic tensor ‰Âijkl in Problem
6.14 via the expression

‰Âijkl � 4¯(3)
ijkl. (6.164)

In general ‰Âijkl depends on the photon frequency ˆ. For ˆ ≈ 0 (i. e., ˆ much
less than the E0 bandgap but ˆ much greater than the TO phonon frequency)
the diagonal element ‰Âiiii(0) in Ge can be calculated under the assumption
that its low-frequency dielectric constant Âr(0) is dominated by the contribu-
tion of interband transition between a parabolic valence band and a parabolic
conduction band separated by the E0 gap with both bands extending to in-
finity (why is this assumption reasonable in this exercise but not in Problem
6.8?). Hint: Start by expressing Âr(0) in terms of the E0 gap with (6.49). Next
differentiate Âr(0) with respect to the bandgap and use (6.147c) [6.149].

6.21 The ratio ¢0/¢1
¢0/¢1 is about 3/2 for most materials listed in Table 6.2. Notice, however, that
there are two exceptions. What might be the reasons for this anormalous be-
havior? Suggest other zinc-blende-type materials that may exhibit similar anor-
malous ratios.

6.22 Chirality
Discuss the symmetry of the phonons of the trigonal elemental semiconduc-
tors selenium and tellurium. Their structure can appear in two different space
groups: D4

3 and D6
3. Show that two crystals with different space groups are mir-

ror images of each other. This property is known as chirality (after the Greek
¯ÈρÂ: hand).
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a) Discuss possible effects of chirality on the optical response of the crystals.
b) Find out how many of the 6 optical vibrational modes at ° are ir-active
(i.e., eT �� 0) and explain qualitatively the origin of the eT’s. For hints see [2.5]
and [3.8].

6.23 Effect of Biaxial Strains on Optical Phonons in Diamond- and Zinc-
blende-Type Crystals
In Problem 3.19 we have discussed the biaxial strain induced by growing a
layer of diamond- or zincblende-type semiconductor epitaxially on a substrate
of similar crystal structure. An important tool for determining the magnitude
of biaxial strains in such epilayers is the measurement of strain-induced shifts
and splitting of the optical phonon frequencies. As shown in Problem 3.19, a
biaxial strain can be decomposed into a sum of a hydrostatic and a uniaxial
strain. The hydrostatic strain is expected to shift the phonon frequencies with-
out producing any splitting (see Problem 3.17). In Problem 6.13 we have used
symmetry arguments to predict qualitatively the splitting of optical phonon fre-
quencies induced by a uniaxial strain. Thus, in principle, both components of a
biaxial strain can be determined by measuring the optical phonon frequencies.
However, to determine the magnitude of the biaxial strain one has to develop
a quantitative theory of the effect of strain on optical phonon frequencies in
diamond- and zincblende-type semiconductors.

The optical phonon frequencies in a crystal are calculated by solving for
the eigenvalues of a dynamical matrix Dkk′ as defined in (3.7). To calculate
the phonon frequencies in the strained crystal, one has to derive the corre-
sponding dynamical matrix. The dynamical matrix for the optical phonon in a
zincblende-type semiconductor is a 3 × 3 matrix (or second-rank tensor) while
strain is defined by a second-rank tensor eij. For a small enough strain one can
expand Dkk′ as a Taylor series in eij:

Dkk′(eij) ∼ Dkk′(0) � [�Dkk′ /�eij]eij � ...

Thus the dynamical matrix in the strained crystal can be obtained by the con-
traction of a fourth rank tensor Kijkl � [�Dij/�ekl] with the strain tensor. Since
the dynamical matrix is a symmetric matrix, the symmetry properties of Kijkl

are very similar to those of the elastic tensors which are also fourth rank ten-
sors. As shown in Problem 3.5, there are only 3 linearly independent non-zero
components in the elastic tensors for zincblende-type crystals. Using the con-
tracted notation defined in Problem 3.3 these three components in Kijkl are:
K11 � K22 � K33; K12 � K23 � K13 and K44 � K55 � K66.

In the literature these tensor elements are often defined in terms of three
phonon deformation potentials p, q and r: K11 � K22 � K33 � Mp; K12 �
K23 � K13 � Mq and K44 � K55 � K66 � Mr
where M is the reduced mass of the two atoms in the primitive cell. It is clear
that p, q and r have the same dimension as the square of the phonon fre-
quency (ˆ0)2.

The following table shows the values of p, q and r for some common semi-
conductors (the convention used in this table is that a tensile strain is positive)
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expressed in a dimensionless form. Notice that the values of p, q and r are
mostly negative. This means that the phonon frequencies tend to be lowered
when the crystal is under a tensile strain. A simple explanation of this result
is that the force constants tend to be reduced when the bond length increases.
Similarly, when a shear strain increases the bond angle the force constants are
usually reduced.

Table 6.23.1 Phonon Deformation Potentials in some common Diamond and Zincblende-
Type Semiconductors

Semiconductor Phonon Deformation Potential
�p/ˆ2

0 �q/ˆ2
0 �r/ˆ2

0

Si 1.39(a) 2.01(a) 0.65(a)

Ge 1.47(a) 1.93(a) 0.87(a)

GaAs (TO) 1.67(a) 2.4(b),1.4(c) 1.87(a) 3.0(b),1.6(c) 0.2(a) 0.8(b,c)

GaAs (LO) 2.0(b),1.0(c) 2.7(b),1.5(c) 0.6(b),0.54(c)

GaSb (TO) 1.91(a) 2.35(a) 1.08(a)

InP (TO) 2.5(da) 3.2(d) 0.47(d)

InP (LO) 1.6(d) 2.8(d) 0.18(d)

InAs (TO) 0.94(a) 2.08(a) 0.76(a)

ZnSe (TO) 2.77(a) 4.01(a) 0.43(a)

References
(a) F. Cerdeira, C.J. Buchenauer, F.H. Pollak and M. Cardona, Phys. Rev. B 5, 580 (1972).
(note:the value of r for Ge in Table II of this reference is not correct).
(d) E. Anastassakis, Y.S. Raptis, M. Hünermann, W. Richter and M. Cardona, Phys. Rev.
B 38, 7702 (1988).

(a) Show that the optical phonon frequencies ˆ of a strained diamond- or
zincblende-type crystal (under a strain tensor eij) are given by the eigenvalues
of the following secular equation:∣∣∣∣∣∣

pexx �q(eyy �ezz)�Ï 2rexy 2rexz

2rexy pexx �q(eyy �ezz)�Ï 2rexy

2rexy 2rexy pexx �q(eyy �ezz)�Ï

∣∣∣∣∣∣ � 0.

Ï � ˆ2 � ˆ2
0, with ˆ0 being the optical phonon frequency in the unstrained

crystal.

(b) Show that the mode Grüneisen parameter Áˆ defined in Problem 3.17 for
optical phonons is related to p and q by the following equation: Áˆ � �(p �
2q)/(6ˆ2).

(c) Calculate the splitting and shifts of the optical phonons for a thin Ge
film grown epitaxially on a Si [100] substrate, assuming that the biaxial strain
(which is around 4%) is small enough for the approximation |ˆ � ˆ0| � ˆ0 to
be valid. See Problem 3.19 for the tensor components of the biaxial strain.
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S UMMARY

Chapters 6 and 7 are devoted to the study of the optical properties of semi-
conductors. In this chapter we have discussed those phenomena involving
only one photon frequency. In processes like absorption and reflection an
incident electromagnetic wave illuminates the sample and the frequency of
the wave is unchanged by its interaction with the sample. In the follow-
ing chapter we shall discuss phenomena in which the frequency of the in-
cident wave is altered by the sample. The optical properties of the sample
studied in this chapter can be completely described by its complex dielec-
tric function. A microscopic theory of this function shows that photons in-
teract mainly with the electrons in semiconductors by exciting interband
and intraband transitions. Interband transitions from the valence bands to
the conduction bands produce peaks and shoulders in the optical spectra
which can be attributed to Van Hove singularities in the valence–conduction
band joint density of states. These structures can be greatly enhanced by us-
ing the technique of modulation spectroscopy, in which the derivatives of
some optical response function with respect to either frequency or an ex-
ternal modulation (such as electric and stress fields) are measured. These
optical measurements have provided an extremely sensitive test of existing
electronic band structure calculations. Occasionally, disagreements between
experimental and theoretical spectral peak positions and lineshapes have
been found. These can be explained by the excitonic effect as a result of the
Coulomb interaction between excited electrons and holes in the semicon-
ductor. Intraband electronic transitions occur in doped semiconductors and
their contribution to the optical properties can be obtained by using the
Drude model proposed for free electrons in simple metals.

Transitions between the discrete levels of impurities in semiconductors
can also contribute to absorption of photons in the infrared. Although these
extrinsic absorption processes are much waker than those involving intrinsic
electronic transitions, they can give rise to extremely sharp peaks and have
been a very useful and highly sensitive probe of the electronic energy levels
of impurities. Finally, in polar semiconductors, such as those with the zinc-
blende crystal structure, photons can be absorbed and reflected as a result
of interaction with optical phonons. The reflectivity becomes particularly
high for photons with frequency between the TO and LO phonon frequen-
cies, giving rise to a phenomenon known for a long time as reststrahlen.
The coupling between infrared-active optic phonons and electromagnetic
waves can be so strong that they cannot be separated inside the medium.
Instead, they should be regarded as coupled waves or quasiparticles known
as phonon-polaritons.
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In Chap. 6 we studied the interactions between a semiconductor and an elec-
tromagnetic field in which the semiconductor is brought from the ground state
to an excited state via absorption of photons from the applied radiation. In
this chapter we study other important optical phenomena in semiconductors.
These optical processes involve emission of radiation from the sample. One
of these processes is luminescence, while the other is inelastic scattering of
light (also known as Raman or Brillouin scattering; their difference will be dis-
cussed later in this chapter). In a typical luminescence process electrons in the
sample are excited electrically or optically. After some energy loss (relaxation)
the excited electrons return to the ground state while emitting light. In a Ra-
man or Brillouin process light is scattered by fluctuations inside the sample.
One important difference between these two processes is that luminescence
involves real excitation of electrons, while in light scattering typically virtual
excitations of electrons are sufficient. We shall study the physical mechanisms
of these processes in this chapter. We begin with a discussion of luminescence.

7.1 Emission Spectroscopies

In order for a sample to emit radiation it has to be energized by some external
means. One possible way is to excite the sample by injection of electrons and
holes via an external current, leading to electroluminescence. Another com-
mon method is by absorption of photons of energy higher than that of the
bandgap, the resulting process, in which photons of energy lower than the ex-
citing photons are radiated, is known as photoluminescence. The production
of radiation by heating the sample is known as thermoluminescence, while
the process of inducing light emission by electron bombardment is also called

P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, Graduate Texts in Physics, 4th ed., 
DOI 10.1007/978-3-642-00710-1_7, © Springer-Verlag Berlin Heidelberg 2010 
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electroluminescence or cathodoluminescence. In this chapter we shall be more
concerned with the emission process than with how the sample is excited.

In Sect. 6.2.2 we pointed out that absorption and emission are related to
each other. They are described by two terms which are complex conjugates
of each other in the interaction Hamiltonian �eR in (6.29). In an absorp-
tion process energy is removed from an incident electromagnetic wave while
electron–hole pairs are created. Emission is the inverse of this process, i. e., an
electron–hole pair inside the medium is destroyed with the emission of elec-
tromagnetic radiation (the pair is said to undergo radiative recombination).
In the semiclassical approach we adopted in Sect. 6.2.2, an electromagnetic
wave has to be present in order for emission to occur (since �eR involves its
vector potential A). Such an emission process is known as stimulated emis-
sion. The probability of the stimulated emission process is proportional to the
strength of the field, just as for the absorption process. From our everyday
experience we know that a lamp can emit light in the absence of an external
radiation field. Therefore the same must be true for an excited semiconduc-
tor containing electron–hole pairs. Radiation produced this way without an
external field is known as spontaneous emission. A rigorous description of
such processes requires a quantum mechanical treatment of the electromag-
netic radiation (readers interested in such a treatment should refer to [7.1]).
One has to quantize the electromagnetic waves into photons in a way very
similar to the quantization of lattice vibrations into phonons (both photons
and phonons are bosons). The probability of creating a photon with energy
�ˆ (where ˆ is the angular frequency of the electromagnetic wave) is propor-
tional to 1 � Np, where Np is the photon occupation number and is also given
by the Bose–Einstein distribution function introduced in Sect. 3.3.1. Clearly
this probability is nonzero even when Np is zero. In this case one can under-
stand the emission as induced by the zero-point amplitude of the photons. In
the case of simple harmonic oscillators, the existence of such zero-point mo-
tion is well known in quantum mechanics and is explained by the uncertainty
principle, namely, that the position and momentum of the vibrating particle
cannot be zero simultaneously. The zero-point motion term in (1 � Np) is in-
dependent of Np and induces spontaneous emission, whereas the term pro-
portional to Np gives rise to stimulated emission. Interestingly, the relation
between absorption, spontaneous emission, and stimulated emission was first
proposed by Einstein [7.2, 3] without invoking quantum mechanics. This is the
approach we shall follow.

Einstein denoted the rates for absorption and stimulated emission per unit
electromagnetic energy density (within the frequency interval between Ó and
Ó � ¢Ó) due to the transition of an electron between a level n and another
level m by the coefficient Bnm. The rate for spontaneous emission of radia-
tion due to transition from level n to m was denoted by Anm. These rates are
now commonly referred to as Einstein’s A and B coefficients (Problem 7.1).
On the basis of the principle of detailed balance (Sect. 5.2.3), Einstein [7.2, 3]
showed that the coefficients Anm, Bnm, and Bmn for two nondegenerate levels
in a medium with refractive index nr are related by
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Bnm � Bmn (7.1a)

and

Anm �
8hÓ3n3

r

c3 Bnm, (7.1b)

where h is Planck’s constant (h � 2�), Ó the photon frequency [related to ˆ
by Ó � ˆ/(2)], and c the velocity of light in vacuum. The term 8hÓ3n3

r /c3

is equal to the product of hÓ and the density of electromagnetic modes with
frequency between Ó and Ó � ¢Ó inside the medium. The total emission rate
Rnm of radiation from level n to level m for a system in thermal equilibrium
at the temperature T can be written as

Rnm � Anm � BnmÚ (Ó), (7.2)e

where Úe(Ó), the photon energy density, is defined as the energy density of
photons with frequency between Ó and Ó � ¢Ó. It can be easily shown to be
8hÓ3n3

r /c3 multiplied by the photon occupation number Np. Using (7.1), (7.2)
can be rewritten as

Rnm � Anm[1 � (Bnm/Anm)Úe(Ó)] � Anm(1 � Np). (7.3)

Equation (7.3) contains two terms. The second term, proportional to Np, can
be identified with stimulated emission, while the first one corresponds to
spontaneous emission. The expression (7.3), obtained by Einstein using clas-
sical physics, is in complete agreement with the quantum mechanical result.
While stimulated emission is important for understanding semiconductor laser
diodes, we shall limit ourselves to considering only spontaneous emission in
this book. However, from (7.3) it is clear that one can obtain the stimulated
emission rate by simply multiplying the spontaneous emission rate by the oc-
cupation number Np of photons present.

We shall now assume that the photon density Ú(Ó) (equal to Úe(Ó) divided
by the photon energy hÓ) in the frequency interval ¢Ó, is small, so that we can
neglect the stimulated emission term. Furthermore, instead of discrete levels
we shall consider a conduction band (c) and a valence band (v). The emission
rate for the transition from the conduction band to the valence band is given
by

Rcv � Acvfc(1 � fv), (7.4)

where fc and fv are the electronic occupancies in the conduction and valence
bands, respectively. The term 1 � fv gives the probability that the correspond-
ing valence band states are empty in order that the transitions satisfy Pauli’s
exclusion principle. The corresponding absorption rate for the inverse transi-
tion (valence to conduction band) per photon is denoted by Pvc. At thermal
equilibrium, the principle of detailed balance (Sect. 5.2.3) requires



348 7. Optical Properties II

Pvc(Ó)Ú(Ó) � Rvc(Ó). (7.5)

This relation between emission and absorption is known as the van
Roosbroek–Shockley relation [7.4a]. The absorption rate can thus be related
to the absorption coefficient · defined in (6.10) by

Pvc � ·c/nr. (7.6)

Combining (7.5 and 6) and using for Ú(Ó) the Planck distribution at the tem-
perature T we obtain a relation between the emission probability and the ab-
sorption coefficient:

Rvc(Ó) �
·(Ó)8Ó2n2

r

c2[exp(hÓ/kBT) � 1]
. (7.7)

This relation applies to intrinsic semiconductors only. In heavily doped
semiconductors the emission spectra are modified by additional effects, such
as the introduction of bandtail states within the gap, bandgap shrinkage (or
renormalization) and filling up of the near-bandgap states. Some of these ef-
fects will be considered in more detail in Sect. 7.1.2. The band filling effect
causes a blue shift of the absorption edge known as the Burstein–Moss shift
[7.5, 6]. These effects are important for devices such as laser diodes, and read-
ers interested in this aspect should refer to [7.7]. Notice that (7.7) describes
the emission spectrum inside the sample. The spectrum measured externally
outside the sample will be different from the internal spectrum as a result of
reabsorption of the emitted photons as they propagate from the interior to the
surface of the sample.

Alternatively, (6.10) can be used to relate Rvc to the imaginary part of the
refractive index Î(Ó). Figure 7.1 shows the Î(Ó) curve for Ge and the corre-
sponding Rvc(Ó) curve computed from (7.7). The Î(Ó) curve shows two absorp-
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Fig. 7.1. Plots of the photon energy de-
pendence of the imaginary part of the re-
fractive index Î(Ó) and the emission rate
Rvc(Ó) of Ge at T � 300 K, multiplied
by ¢Ó � kBT/h (for historical reasons).
(From [7.4b])
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tion shoulders at 0.65 eV and 0.82 eV. They can be identified, respectively, as
the indirect (see also Fig. 6.18) and direct absorption edges of Ge. While the
direct absorption edge is much stronger than the indirect one, the heights of
the corresponding emission peaks are comparable. The explanation lies in the
exponential factor exp(hÓ/kBT) in the denominator of (7.7). At thermal equi-
librium the carrier population decreases exponentially with energy and there-
fore emissions are strongest from the lowest energy states. As a result lumines-
cence is a sensitive probe of low-lying energy levels, such as defect levels inside
the gap, provided electrons and holes can recombine radiatively at these lev-
els. Such defects are known as radiative recombination centers, otherwise they
are referred to as nonradiative traps. Although (7.5) and (7.7) were derived
for transitions between conduction and valence bands, they should apply, in
principle, to transitions between any two states in a system at thermal equilib-
rium. The amount of emission produced by a body under thermal equilibrium
at room temperature is very small, hence most experiments are carried out
under nonequilibrium conditions. The creation of such conditions and the de-
tection of the resultant spontaneous emission from the sample is the essence
of luminescence experiments.

In a luminescence experiment one excites initially a nonequilibrium distri-
bution of electron–hole (to be abbreviated as e-h) pairs in a semiconductor.
In most cases the electrons and holes will thermalize among themselves and
reach quasi-thermal equilibrium (Sect. 5.3) in a time short compared to the
time it takes for electrons and holes to recombine. Often these electrons and
holes have different quasi-equilibrium distributions. In the final step the e-h
pairs recombine radiatively, producing the spontaneous emission. Thus a lumi-
nescence process involves three separate steps:

• Excitation: Electron–hole pairs have to be excited by an external source of
energy.

• Thermalization: The excited e-h pairs relax towards quasi-thermal-
equilibrium distributions.

• Recombination: The thermalized e-h pairs recombine radiatively to pro-
duce the emission.

In special circumstances [7.8] emission from incompletely thermalized e-h
pairs can be observed; it is referred to as hot luminescence. Because lumines-
cence is produced by (either fully or partially) thermalized e-h pairs, the emit-
ted photons have no correlation with the excitation process. We shall see later
in this chapter that this is one important distinction between light scattering
and photoluminescence. While the frequency of the scattered photon follows
that of the incident photon, the energy of the emitted photon, in the case of
thermalized luminescence, depends only on the band structure and energy lev-
els of the sample. This is one useful way to distinguish between experimental
peaks arising from these two processes. Figure 7.2 shows the position of all the
observed peaks in a light scattering experiment involving Cu2O when excited
with photons in the vicinity of its “green” excitonic series [7.9]. (There are
four exciton series in Cu2O, labeled yellow, green, blue, and indigo according
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Fig. 7.2. Peaks observed in the emission spectra of Cu2O when excited with photons in
the vicinity of the green exciton series (labeled G�2P to G�4P). The difference between
the exciting frequency Ól and the peak frequency Ós is plotted vs. Ól. The straight red
lines labeled Y�2P to Y�4P represent the expected dependence of the yellow exciton
luminescence peaks on the incident photon energy Ól. The horizontal arrows indentify the
various multiphonon Raman peaks which are enhanced as a result of resonance of the
incident and scattered photon energies with the green and yellow excitons respectively.
(From [7.9])

to their photon frequencies, Sect. 6.3.2.) Some of these peaks are photolumi-
nescence peaks associated with recombination of the “yellow” excitonic series.
However, many are the results of light scattering. These Raman peaks ap-
pear only when the incident photon is resonant with the exciton peaks (a pro-
cess known as resonant Raman scattering to be discussed later in this chapter).
They are characterized by constant Raman frequencies (defined as the differ-
ence Ól � Ós between the incident laser frequency Ól and the scattered photon
frequency Ós). As a result they fall on horizontal lines in Fig. 7.2. On the other
hand the luminescence peaks have emission frequencies Ós independent of the
laser frequency Ól. Thus their frequency difference from Ól increases linearly
with Ól, following the solid red lines in Fig. 7.2.

We shall consider in more detail the various radiative recombination pro-
cesses found commonly in semiconductors. Unless specified differently we
shall assume that the e-h pairs have been excited optically, i. e., the experi-
mental technique is photoluminescence.
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7.1.1 Band-to-Band Transitions

In a perfect semiconductor e-h pairs will thermalize and accumulate at the
conduction and valence band extrema, where they tend to recombine. If this
semiconductor has a direct bandgap and electric dipole transitions are allowed,
the e-h pairs will recombine radiatively with a high probability. As a result,
high quality direct-bandgap semiconductors, such as GaAs, are strong emitters
of bandgap radiation. They are important materials for lasers and light emit-
ting diodes (LEDs). In indirect bandgap semiconductors, such as Si and Ge,
e-h pairs can recombine radiatively only via phonon-assisted transitions. Since
the probability of these transitions is smaller than for competing nonradia-
tive processes, these materials are not efficient emitters. The indirect bandgap
semiconductor GaP is an exception. In GaP (Sect. 4.3.3) the radiative transi-
tion can be enhanced by localizing the e-h pair at defects such as isovalent
nitrogen. There is much ongoing effort to make Si a more efficient emitter
of light by fabricating Si into the form of nanometer-size crystallites known
as nanocrystals. It is argued that by physically confining electrons and holes
one can enhance their radiative recombination rate. One such technique in-
volves the use of electrolysis [7.10] to produce a spongy form of Si known
as porous Si. Unlike bulk Si, porous Si has been shown to produce efficient
visible photoluminescence and electroluminescence [7.11, 12]. The reasons for
this increased emission efficiency in porous Si are, however, still controversial
[7.12, 13].

Band-to-band transitions involve the recombination of free electrons and
free holes. Let us define Ùr as the radiative recombination time of one elec-
tron and one hole. If the free electron and hole concentrations are, respec-
tively, ne and nh, then the rate of emission of photons by their recombination
is given by nenh/Ùr assuming that Ùr is the same for all possible choices of re-
combining pairs. For a thermalized distribution of free electrons and holes,
the radiative recombination time depends on the electron and hole energies
and therefore changes with the photon energy. In general Ùr should then be
replaced by an averaged radiative recombination time 〈Ùr〉. The averaging pro-
cedure depends also on whether wavevector is conserved in the recombination
processes. While wavevector is expected to be conserved in recombination in
perfect crystals, it has been found not to be conserved when a high density of
e-h pairs is excited. In electroluminescence, where it is possible to inject one
extra minority carrier into a semiconductor containing an equilibrium distri-
bution of electrons and holes, it is usual to define a minority carrier radiative
lifetime Ùrad as the time for this extra carrier to be annihilated radiatively by
the majority carriers. For the case of an extra electron injected into a p-type
sample, this time is given by

1
Ùrad

�
nh

〈Ùr〉
. (7.8)

In an intrinsic semiconductors nh (� ne) is given by the concentration of ther-
mally excited holes (usually denoted by pi, see [Ref. 7.14, p. 206]). For large-
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Table 7.1. Minority carrier radiative lifetime in several tetrahedrally bonded semiconduc-
tors at room temperature. From [Ref. 7.15, p. 111]

Si 4.6 h 2.5 ms
Ge 0.61 s 0.15 ms
GaP 3.0 ms

0.04 ÌsGaAs 2.8 Ìs
InAs 15 Ìs 0.24 Ìs
InSb 0.62 Ìs 0.12 Ìs

Ùrad

Semiconductor Intrinsic 1017 cm�3 majority carriers

bandgap semiconductors pi (� ni) is very small and hence Ùrad tends to be
large, ranging from hours in Si to microseconds in smaller bandgap semicon-
ductors like InSb (Table 7.1). Ùrad is always very large for indirect bandgap
semiconductors, such as Si and Ge, since their electric-dipole indirect transi-
tion probabilities are smaller. In doped semiconductors the majority carrier
concentrations are often much higher than the intrinsic carrier concentrations.
As a result the minority carrier radiative lifetime depends on the doping con-
centration. In Table 7.1 we show also these lifetimes in several semiconductors
when doped with 1017 cm�3 majority carriers.

There is a limit as to how much we can decrease Ùrad by increasing the
majority carrier concentration. At most, we can make this concentration equal
to the entire band population. For GaAs this minimum Ùrad is about 0.31 ns
[Ref. 7.15, p. 133]. Note that this limit is not valid for the stimulated emission
lifetime since the stimulated emission rate depends also on the photon density.
It is not unusual to have stimulated radiative lifetimes of less than 0.1 ps.

In photoluminescence (commonly abbreviated as PL) experiments one al-
ways excites equal numbers of electrons and holes. Since the intrinsic carrier
concentrations ni and pi are usually very low, it is relatively easy to excite op-
tically in an intrinsic semiconductor enough carriers that ne � nh � ni � pi
and ni and pi become negligible. If wavevector conservation is not necessary
(which may happen because of defects or phonons), the radiative recombi-
nation rate (1/Ùrad) for each optically excited carrier is equal to n/〈Ùr〉, where
n � ne � nh. Even if wavevector is conserved, the radiative lifetime will still
depend on the intensity of the excitation light. In addition to radiative decay
processes, the photoexcited e-h pairs can also recombine nonradiatively. The
total decay rate (1/Ùtot) of the photoexcited population of e-h pairs is given by

(1/Ùtot) � (1/Ùrad) � (1/Ùnonrad), (7.9)

where 1/Ùnonrad is the nonradiative recombination rate. In nonradiative pro-
cesses the energy of the e-h pair is dissipated as heat via excitation of phonons.
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If Ùtot is much longer than the electron–phonon interaction times, the electrons
and holes can reach quasi-thermal-equilibrium separately with the phonons.

To calculate the shape of the band-to-band PL spectra, we shall assume
a direct bandgap semiconductor with gap Eg and joint density of states [see
(6.57)]

Dj ∝ (E � Eg)1/2 (7.10)

Let fe and fh represent the quasi-equilibrium distribution functions for the
electrons and holes, respectively. For low photoexcitation density fe and fh can
be approximated by Boltzmann distributions:

fe or fh ∝ exp[�E/(kBT)]. (7.11)

Substituting (7.10 and 11) into (7.4), we obtain the PL spectral shape

IPL(�ˆ) ∝
{

(�ˆ � Eg) �Eg)1/2 exp[�(�ˆ /(kBT)] for �ˆ � Eg,
0 otherwise,

(7.12)

where �ˆ is the emitted photon energy (note the relationship between (7.12)
and (7.7)). Figure 7.3 shows the experimental PL spectra in GaAs measured at
room temperature under a pressure of 29.4 kbar [7.16]. The theoretical curve
is a plot of (7.12) with T � 373 K, which is higher than room temperature
because of heating of the small sample by the laser beam. For samples under
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Fig. 7.3. Photoluminescence spectrum due to band-to-
band transition in GaAs measured (broken line) at
room temperature and a pressure of 29.4 kbar. The
theoretical curve (solid line) is a plot of the expres-
sion (7.12), approximately proportional to exp[�(�ˆ�

Eg)/(kBT)], with T � 373 K. (From [7.16])
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high intensity excitation the electron–electron and hole–hole interactions can
become stronger than the carrier–phonon interactions. In such cases it is quite
common for the electrons and holes to attain a temperature much higher than
that of the lattice. Photoluminescence is one of the few methods capable of
measuring this carrier temperature directly.

7.1.2 Free-to-Bound Transitions

Band-to-band transitions tend to dominate at higher temperatures where all
the shallow impurities are ionized. At sufficiently low temperatures, carriers
are frozen on impurities. For example, consider a PL experiment on a p-type
sample containing NA acceptors per unit volume. At low photoexcitation the
density ne of free electrons created in the conduction band is much smaller
than NA. These free electrons can recombine radiatively (and sometimes also
nonradiatively) with the holes trapped on the acceptors. Such transitions, in-
volving a free carrier (an electron in this case) and a charge (a hole in this
case) bound to an impurity, are known as free-to-bound transitions. The emit-
ted photon energy in this example is given by Eg � EA, where EA is the
shallow acceptor binding energy. Thus, emission due to free-to-bound transi-
tions is a simple way of measuring impurity binding energies. Figure 7.4 shows
the electroluminescence specra of p-type GaAs at 4.2 K for various dopant
concentrations. The spectra for a sample with NA equal to 3.7 × 1017 and
1.9 × 1018 cm�3 can be assigned to free-to-bound transitions. As the accep-
tor concentration is increased these spectra exhibit several interesting changes.
They first broaden because of changes in the acceptor level density of states.
As the acceptors become closer to one another, their wavefunctions begin to
overlap. This results in broadening of the acceptor levels into an impurity band
(similar to the broadening of atomic levels into bands in solids discussed in
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Fig. 7.4. Electroluminescence of p-type (Zn-doped) GaAs at 4.2K for increasing dopant
concentrations in units of cm�3. (From [Ref. 7.15, p. 136])



7.1 Emission Spectroscopies 355

Sect. 2.7). When the band is so broad that it overlaps with the valence band,
holes are no longer localized on the acceptors and become free carriers. This
transformation of carriers from a localized state to a delocalized one is known
as a Mott transition [Ref. 7.14, p. 268]. (Actually the Mott transition often oc-
curs before the overlap takes place: the impurity levels broaden into bands,
which are half-filled because of the spin degeneracy. When the broadening is
larger than the additional energy required to put two electrons in the same
impurity level of a given atom, as opposed to putting them on separate atoms,
the material becomes conducting.) In addition to this broadening of the accep-
tor density of states, the carrier distribution function also becomes degenerate
as their concentration increases. This manifests itself as a deviation from the
exponential dependence exp[��ˆ/(kBT)] in the higher density spectra in Fig.
7.4. The highest density spectrum clearly resembles the Fermi–Dirac distribu-
tion more than the Boltzmann one. Finally the peak in the emission spectra
red-shifts with increase in dopant concentration. This is a many-body effect
known as bandgap renormalization [7.17, 18]. A detailed discussion of this ef-
fect is beyond the scope of this book.

Wavevector conservation in free-to-bound transitions is relaxed since the
translational symmetry of the crystal is broken by the defects. Hence an elec-
tron in the conduction band can recombine with a hole on an acceptor re-
gardless of its wavevector. The radiative recombination rates for free-to-bound
transitions in direct-bandgap zinc-blende-type semiconductors have been cal-
culated by Dumke [7.19] and compared with those of band-to-band transi-
tions. His result for (Ùe�A)�1, the rate of conduction band to acceptor transi-
tion, is(

1
Ùe�A

)
�

64
√

2nre2�2ˆ |Pcv|2 NA

c3m2(mhEA)3/2 , (7.13)

where mh is an average hole mass and Pcv is an averaged electron momen-
tum matrix element between the conduction and valence bands and NA the
acceptor concentration. For GaAs (7.13) becomes(

1
Ùe�A

)
� 0.43 × 10�9NA cm3/s. (7.14)

This equation predicts that electrons in GaAs samples containing 1018 shallow
acceptors per cubic centimeter will have a radiative lifetime of about 2 ns as
a result of recombination with bound holes. This time is comparable to the
radiative lifetime due to band-to-band transitions. Thus we expect that at low
temperatures (when kBT � EA) electron-acceptor recombination will domi-
nate the PL spectra in p-type GaAs. At higher temperatures, as more holes
are excited into the valence band, both free-to-bound and band-to-band emis-
sion peaks will be observed. Finally, at high enough temperatures the spec-
trum will be dominated by band-to-band emission. The electron-to-acceptor
PL intensity (Ie�A) should vary with temperature as 1 � exp[�EA/(kBT)]. The
acceptor ionization energy can therefore be determined from the slope of a
plot of ln[1 � (Ie�A/I0)] versus 1/(kBT), where I0 is the emission intensity at
T � 0 K. Such plots are known as Arrhenius plots.
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7.1.3 Donor–Acceptor Pair Transitions

Quite often a semiconductor may contain both donors and acceptors. Such
semiconductors are said to be compensated because, under equilibrium con-
ditions, some of the electrons from the donors will be captured (or compen-
sated) by the acceptors. As a result, a compensated sample contains both ion-
ized donors (D�) and acceptors (A�).1 By optical excitation, electrons and
holes can be created in the conduction and valence bands, respectively. These
carriers can then be trapped at the D� and A� sites to produce neutral D0

and A0 centers. In returning to equilibrium some of the electrons on the neu-
tral donors will recombine radiatively with holes on the neutral acceptors. This
process is known as a donor–acceptor pair transition (or DAP transition). It
can be represented by the reaction

D0 � A0 → �ˆ � D� � A�. (7.15)

At first sight one may expect the photon emitted in a DAP transition to have
the energy

�ˆ � Eg � EA � ED, (7.16)

where Eg is the bandgap energy and ED and EA are the donor and acceptor
binding energies, respectively. The problem with (7.16) is that it neglects the
Coulomb interaction between the ionized donors and acceptors. Suppose the
distance between the D� and A� is R, then this Coulomb energy is equal to
�e2/(4Â0Â0R) (provided R is much larger than the lattice constant), where Â0
is the static dielectric constant. The energy of the emitted photon in a DAP
transition should then be given by

�ˆ � Eg � EA � ED � e2/( Â R). (7.17)4Â0 0

The emitted photon energy is increased by the amount e2/(4Â0ÂR) because
the energy of the final state in (7.15) is lowered by the Coulomb attrac-
tion. Notice that, in the case of excitonic absorption, the external photon cre-
ates a pair of positive and negative charges. The Coulomb attraction between
these charges lowers the energy of the photon required to excite them. In the
present case, the energy of the initial state is shared in the final state between
the emitted photon and a pair of positive and negative charges. Any decrease
in the energy of the charge pair by Coulomb attraction ends up in the emit-
ted photon energy. In both cases a Coulomb interaction appears in the final
state only and therefore this interaction is referred to as a final state interac-
tion. In principle, there should also be an initial state interaction between the
neutral donor and acceptors. This interaction is similar to the van der Waals
interaction between two neutral atoms [7.20, 21]. Unlike the interaction be-
tween atoms, the separations between donors and acceptors are not continu-
ously variable but are, instead, determined by the crystal parameters (to be

1 Is is implicitly assumed that there are more donors than acceptors.
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discussed in more detail below). For distant pairs we expect the van der Waals
interaction to be completely negligible. For close pairs this interaction is still
rather weak and will be neglected in the lowest order approximation.

a) Spectral Lineshapes

There is an important difference between the Coulomb interaction in excitons
and in DA pairs. While the electron and hole separations in excitons are deter-
mined by quantum mechanics (via the solution of the Schrödinger equation),
the separation R between the ionized impurities is determined by the crystal
structure and the lattice constants. Since the values of R are discrete, the DAP
transitions produce a series of sharp peaks converging towards the photon en-
ergy Eg � EA � ED (corresponding to R � ∞). The best and most carefully
studied examples of DAP transitions are found in GaP. Because this is a bi-
nary compound there should be two different ways to distribute substitutional
donors and acceptors on its sublattices.

In type I DAP spectra both donors and acceptors are located on the same
sublattice. For example, pairs such as SP–SiP, SeP–SiP or SiGa–ZnGa produce
type I spectra.

In type II DAP spectra the donors and acceptors occupy different sublat-
tices, such as SP–ZnGa or OP–CdGa.

Since the lattice constant of GaP is known, one can calculate the relative
number of DA pairs for a given separation R by assuming that the donors
and acceptors are randomly distributed. Figure 7.5 shows the calculated dis-
tributions for both type I and II spectra in GaP. The horizontal scale is given
in terms of m, the shell number for the neighboring pairs. This can be trans-
lated into the energy of the emitted photon by adding to e2/(4Â0Â0Rm) the
appropriate energy Eg � EA � ED. Figure 7.6 shows the type I DAP spectra
in GaP due to SP–SiP and TeP–SiP pairs measured at 1.6 K by Thomas et al.
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Fig. 7.5. (From [7.22])

[7.22]. The numbers above the sharp peaks in the S-Si spectrum represent
the shell numbers determined with the help of Fig. 7.5a. Figure 7.7 shows a
type II spectrum in GaP due to SP–MgGa measured also at 1.6 K by Dean
et al. [7.23]. The richness of information contained in the DAP spectra be-
comes obvious from these figures. In particular, one can determine the energy
EA � ED (taking the known low temperature values of the indirect bandgap
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energy of GaP to be 2.339 ± 0.001 eV and Â equal to 10.75) with great pre-
cision by fitting the large number of observed peaks in the DAP spectra to
(7.17). Figure 7.8 shows the fit of the type I (SP–CP) and type II (SP–MgGa)
spectra in GaP. The curves labeled C were fitted directly to (7.17). The curves
labeled C�vdW were fitted to (7.17) including a van der Waals correction to
the initial state energies. These theoretical curves show that the van der Waals
correction is significant only for pair separation less the 20 Å and also that
the van der Waals approach over-corrects for the interaction between the neu-
tral donor and acceptor. From these fits one can determine very accurately
the difference in the binding energies of the two acceptors C and Mg to be
(EA)Mg � (EA)C � 5.6±0.3 meV. Taking for the binding energy of the shallow
donor SP the known value of 104.2 ± 0.3 meV, we can determine the acceptor
binding energies of Mg and C to be, respectively, 51.5±1 meV and 48±1 meV
in GaP.

b) Temporal Evolution

The intensity of the DAP transitions and its temporal dependence also exhibits
interesting properties [7.24]. Since the electron and the hole are spatially sep-
arated, their radiative recombination probability (ÙDA)�1 depends on the over-
lap of their wavefunctions. This overlap depends exponentially on their sepa-
ration as exp[�2(R/aD,A)], where aD,A is the larger of the Bohr radii of the
donor and acceptor. From the discussions on donors and acceptors in Sects. 4.2.2
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and 4.2.4, we find that the donor Bohr radius is usually larger in the tetrahe-
drally bonded semiconductors. Hence we shall assume that aD,A ≈ aD and

(1/ÙDA) ∝ exp[�2(R/aD)]. (7.18)

The calculation of the intensity distribution of DAP spectra is complicated be-
cause one needs to know the distributions of the excited donors and acceptors.
These depend on the respective concentrations and on whether the impurities
are distributed randomly or there is preferential pairing. They also depend on
the level of excitation. For low levels of photoexcitation only a fraction of the
donors and acceptors are excited and hence there will only be recombination
from distant pairs. At high enough intensity, however, all donors and accep-
tors are excited (this is known as saturation) and therefore closer pairs also
contribute to be recombination spectra. Thus one characteristic of DAP re-
combination is that the emission spectra shift to higher energy as the intensity
of the excitation light is increased. This trend is just opposite to the effect of
heating induced by higher light intensity because the bandgap in most tetrahe-
drally bonded semiconductors decreases with increasing temperature [6.147,
7.17], see also Fig. 6.44.

Another interesting characteristic of DAP recombination is its temporal
dependence after excitation by a short pulse. If we assume that all the donors
and acceptors are excited, the rate of recombination will be faster for the
closer pairs with smaller R because of (7.18). These recombination peaks will
also have higher photon energies according to (7.17). As a result, the DAP
spectrum peaks initially at higher photon energies. As recombination depletes
the number of neutral donors and acceptors their average separation increases
and the recombination spectrum peak shifts towards lower energy. Hence the
time decay of DAP spectra is non-exponential and the emission peaks red-
shift as time evolves. An example of the temporal behavior of DAP spectra in
GaP is shown in Fig. 7.9.

The theoretical curves in Fig. 7.9 were calculated by Thomas et al. [7.24]
with the following model. The concentration of acceptors was assumed to
be larger than that of donors (NA � ND) and the impurities randomly dis-
tributed. Only emission from distant pairs was considered. Since the energy
spacings between the emission peaks are very small, the acceptors were as-
sumed to be arranged in spherical shells around the donor. At time t � 0 all
the acceptors are assumed to be excited so that the number of neutral accep-
tors N0

A(0) was equal to NA. After time t, N0
A(t) will have decreased because

of recombination with neutral donors. The fraction of acceptors in a shell of
radius R is proportional to R2. Similarly, let 〈Q(t)〉 be the average probabil-
ity for the electron to be on the donor at time t. Since the fraction of donors
on a shell of radius R is also proportional to R2, the total number of donor–
acceptor pairs with distance R from each other at time t is proportional to
N0

A(t)〈Q(t)〉R4. If we define E′ as the energy of the emission measured with
respect to Eg � EA � ED, then E′ is proportional to 1/R because

E′ � �ˆ � (Eg � EA � ED) � e2/(4Â0Â0R). (7.19)
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The number of donor–acceptor pairs contributing to the emission intensity
IDA(E′, t) at time t is therefore proportional to N0

A(t)〈Q(t)〉(1/E′)4. The prob-
ability that these DAP will recombine radiatively is given by (7.18), hence
IDA(E′, t) is proportional to

IDA(E′, t) ∝ N0
A(t)〈Q(t)〉(1/E′)4 exp[�2e2/(4Â0Â0E′aD,A)]. (7.20)

Assuming that the rate of decrease in the population of neutral acceptors is
due entirely to recombination with neutral donors we can write [using (7.18)]

N0
A(t) � NA exp(�t/ÙDA)

� NA exp
{

�(t/Ù0
DA) exp[�2e2/(4Â0Â0E′aD,A)]

}
,

(7.21)

where 1/Ù0
DA is the recombination rate for a DAP with R � 0. Combining

(7.20) and (7.21) we obtain the following rather complicated expression for
IDA(E′, t):

IDA(E′, t)

∝ NA〈Q(t)〉
(

1
E′

)4

exp

[
�

2e2

4Â0Â0E′aD,A
�

(
t

Ù0
DA

)
exp

(
�

2e2

4Â0Â0E′aD,A

)]
. (7.22)

Figure 7.9 shows that the experimental spectra agree quite well with the pre-
dictions of (7.22).
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7.1.4 Excitons and Bound Excitons

In photoluminescence experiments on high purity and high quality semicon-
ductors at low temperatures, we expect the photoexcited electrons and holes
to be attracted to each other by Coulomb interaction and to form excitons. As
a result, the emission spectra should be dominated by radiative annihilation of
excitons producing the so-called free exciton peak. When the sample contains
a small number of donors or acceptors in their neutral state (a common oc-
currence at low temperature) the excitons will be attracted to these impurities
via van der Waals interaction. Since this attraction lowers the exciton energy,
neutral impurities are very efficient at trapping excitons to form bound exci-
tons at low temperature. Figure 7.10 shows the low temperature PL spectra
of GaAs measured by Sell et al. [7.25]. The peak labeled (D0, X) is due to
recombination of an exciton bound to a neutral donor, while the peaks in the
inset are attributed to free excitons. We shall now consider these two types of
emission peaks in more detail.
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Fig. 7.10. Photoluminescence of GaAs at 2 K measured by Sell et al. [7.25]. The inset
is an enlargement of the spectra within the rectangle labeled X. It contains the part of
the emission spectrum associated with free excitons. The spectrum in the inset labeled
(a) and those labeled (b) and (c) correspond to two different samples. The spectrum (c)
was excited by light intensity ten times higher than that used for spectrum (b). The peak
labeled (D0,X) is attributed to recombination of excitons bound to neutral donors
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a) Free-Exciton Emission

In principle, we should consider radiative recombination of excitons in terms
of exciton-polaritons (Sect. 6.3.2) or polaritons for brevity. To understand the
importance of the polariton approach we shall first neglect this effect and ex-
amine how well the theoretical results agree with experiment. Within this ap-
proximation, the emission process is simply a radiative decay of excitons into
photons. Since wavevector has to be conserved in this process only excitons
with wavevector k equal to the photon wavevector (i. e., k ≈ 0) can convert
to photons. The emission spectra should be essentialy a delta function at the
energy of the exciton ground state when damping is neglected. When exciton
lifetime broadening is included, the emission spectrum becomes a Lorentzian.
This conclusion disagrees with the experimental results in most high quality sam-
ples at low temperature. Often the observed free exciton emission spectra have
an asymmetric lineshape quite different from a Lorentzian. As an illustration,
we show in Fig. 7.11 excitonic emission spectra in four typical semiconductors
with bandgaps ranging from around 1.5 eV (GaAs) to over 3 eV (CuCl) [7.26].
In no case does the emission spectrum resemble a Lorentzian. Instead, all the
spectra exhibit an asymmetrical peak plus a higher energy shoulder.

Toyozawa [7.27] first pointed out that luminescence spectra in semiconduc-
tors at low temperature should be interpreted in terms of polaritons. Within
this picture, PL involves the conversion of external photons, on entering a
medium, into excitonic polaritons. These polaritons relax towards lower en-
ergies by scattering with phonons via their exciton component. Their photon
part has a very weak interaction with phonons. This relaxation process ran-
domizes their distribution. Some of the polaritons will be scattered backwards
to emerge from the sample as luminescence photons. Since the polariton dis-
persion curve shown in Fig. 6.22 has no energy minimum where relaxation
processes normally terminate, there is no a priori reason to assume that polari-
tons will attain thermal equilibrium via scattering processes. Thus one may ex-
pect the polariton emission spectra to show no peaks at all! Even if there is a
peak, its width can be much larger than predicted by the sample temperature.
Toyozawa [7.27] pointed out that polaritons could accumulate at a “bottle-
neck” near the transverse exciton energy (ET � �ˆT in Fig. 6.22, see also Prob-
lem 6.9) where their lifetimes are longest. The lower polaritons above this
bottleneck possess a large exciton component [7.28] and therefore have short
lifetimes as a result of strong scattering by phonons. These phonon scatter-
ing rates decrease as polaritons become more photon-like. On the other hand,
once their energies decrease below ET polaritons are short-lived again because
they now have high group velocities (defined as dˆ/dk, i. e., by the slopes of
the polariton dispersion curves such as those in Fig. 6.22) and can easily es-
cape from the sample as photons. Thus the polariton distribution function can
have a peak near its bottleneck. The emission spectrum represents the product
of this distribution function and the transmission coefficient of polaritons at
the sample surface. Unfortunately, polariton transmission coefficients cannot
be calculated simply by using Maxwell’s boundary conditions [7.29] only. Since
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Fig. 7.11a–d. Comparison between experimental and calculated polariton emission spectra
in four semiconductors. The solid curves are experimental spectra while the red dashed
curves were calculated [7.26] using a two-branch polariton model with the Pekar ABC.
The black dashed-dotted curves represent a bound exciton background

excitons are involved, it is necessary to introduce additional boundary condi-
tions (known as ABCs) to describe the behavior of excitons near the sam-
ple surface. There have been many theoretical treatments of the ABC prob-
lem (e. g. [7.30–33]) and a detailed description of these theories is beyond the
scope of this book. The whole question of which ABC to choose for a partic-
ular sample is still unresolved since it will presumably depend on the details
and quality of the sample surface [7.34].

Polariton luminescence spectra have been computed by Askary and Yu
[7.26] using two different types of ABCs. Figure 7.12a shows the calculated
polariton distributions in the lower branch (abbreviated as LB in the figure)
of CdS for the two ABCs. A large peak occurs at the bottleneck near the
transverse exciton energy as predicted by Toyozawa. The corresponding PL
spectra including the upper branch (labeled UB) and the transmission coeffi-
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cients are shown in Fig. 7.12b. The PL peak can be explained by the large po-
lariton population at the bottleneck and is relatively insensitive to the ABCs.
The higher energy shoulder visible in the experimental spectra in Fig. 7.11 can
now be identified with a change in the transmission coefficients near the lon-
gitudinal exciton energy (EL � �ˆL in Fig. 6.22, see also Problem 6.9) and
is very sensitive to the ABC chosen. The theoretical PL spectra calculated by
Askary and Yu using the ABC proposed by Pekar [7.30] are compared with
the experimental spectra in Fig. 7.11. Note that a background due to emission
associated with defects and possibly phonon emission has been added to some
of the theoretical spectra to achieve quantitative agreement with experiment.
The agreement between theory and experiment in Fig. 7.11 is quite good ex-
cept for GaAs. Instead of a peak at ET the experimental spectra exhibited a
dip. More recent experiments [7.35] showed that the minimum in GaAs was
caused by scattering with impurities such as donors. Since the polariton group
velocity has a minimum near ET, its scattering probability with defects is max-
imum at this energy. This dip in the PL spectrum is absent in purer GaAs
epi-layers. For recent work on polaritons in GaAs and ABC’s see [7.34].
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b) Bound-Exciton Emission

In Fig. 7.10 we have already seen that the emission spectrum of GaAs at
2 K is dominated by a strong peak occurring at an energy slightly below
the free exciton energy. This sharp peak was identified with recombination
of an exciton bound to a neutral donor atom, usually denoted by (D0X).
In addition to neutral donors, an exciton can also bind to a neutral accep-
tor forming the complex (A0X). Figure 7.13 shows the bound exciton emis-
sion spectrum of the wurtzite-type crystal CdS at low temperature [7.36]. The
very sharp peaks labeled I1 and I2 correspond to recombination of (A0X)
and (D0X), respectively. The nature of both excitons was established by their
splittings under a magnetic field (from which the g-values of the mobile par-
ticles can be determined). The many phonon sidebands of these bound ex-
citons present in the emission spectrum suggest that the interaction between
the bound charges and phonons is enhanced. These bound excitons can be
considered as analogs of the hydrogen molecule H2 except for the different
binding energies. Bound excitons have smaller binding energies because the
hole mass is much smaller than that of the proton. The binding energy of the
hydrogen molecule is known to be equal to 4.75 eV [7.37]. Hence the ratio
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of the binding energy of H2 to that of a single electron in the hydrogen atom
is 4.75 eV/13.6 eV � 0.35. The ratio of the binding energy of bound excitons
to that of a free exciton will depend on the ratio (r) of the hole effective mass
(m∗

h) to the electron effective mass (m∗
e). This dependence has been estimated

by Hopfield [7.38] and the results are shown in Fig. 7.14. In general, as r de-
creases the bound exciton binding energies also decrease.

Excitons can also bind to ionized impurities, forming bound excitons de-
noted as (D�X) and (A�X). The former can be regarded as an analog of the
hydrogen molecule ion H2

�. The ratio of the H2
� binding energy (2.6 eV) to

that of the hydrogen atom is 0.2. At first sight it seems that (D�X) can also
be regarded as a hole bound to a neutral donor, to be denoted as (D0h). The
more appropriate picture depends on which state has a larger binding energy.
Let us define EI as the energy required to remove both electron and hole
from (D�X) or (D0h) leaving behind the ion D�. In the (D�X) picture EI is
given by the sum of E(D�X), the binding energies of (D�X), and the ionization
energy of the exciton EX:

EI � E(D�X) � EX. (7.23)

In the other picture EI is equal to

EI � E(D0h) � ED, (7.24)

where E(D0X) and ED are, respectively, the binding energies of (D0h) and that
of the electron to the donor ion. Equating (7.23) and (7.24) we obtain

E(D�X) � EX � E(D0h) � ED. (7.25)

For a semiconductor with dielectric constant Â, ED � 13.6m∗
e/(m0Â2) eV while

EX � 13.6Ì/(m0Â2) eV. Since m∗
e � Ì we find from (7.25) that E(D�X) � E(D0h)
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and therefore the bound exciton (D�X) represents the correct way to describe
this complex.

Hopfield [7.38] had estimated that the (D�X) would not be bound for
r � 1.4. As a result, excitons cannot be bound to both ionized donors and ac-
ceptors in the same material. When r is larger than 1.4, (D�X) will be stable
but, since (1/r) is less than 1.4, (A�X) wil be unstable. In most semiconductors
r � 1 and therefore no PL peaks have been attributed to (A�X). Figure 7.15
shows the (D�X) recombination peak (labeled I3) in the emission spectra in
CdS at low temperature. In order to increase the population of ionized donors
at low temperature the sample has to be illuminated with infrared light to
photoionize the donors. The label I.R. in Fig. 7.15 denotes the voltage ap-
plied to the infrared source. Notice how the intensity of the I3 peak increases
with the intensity of the infrared source at the expense of the I2 (D0X) bound
exciton peak.

Finally one may ask if there is an analog of the hydrogen atom ion H�

containing two electrons moving around a proton. The binding energy of the
second electron in H� is only 0.75 eV [7.39]. The impurity analogs to H� are
an electron bound to a neutral donor (D0e) or D� and a hole bound to a
neutral acceptor (A0h) or A�. Obviously these must be very weakly bound
states. The D� state has been observed in n-type Si [7.40] with a thermal ion-
ization energy of the order of 1 meV. More recently the binding energy of D�

has been found to become enhanced in two dimensions, especially under high
magnetic fields [7.41].
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Fig. 7.15a–c. Emission spectrum of a high quality CdS crystal at 1.6 K showing the zero-
phonon bound exciton recombination peaks I2 and I3 as a function of the IR radiation in-
tensity. The infrared radiation ionizes shallow donors with the result that excitons bound
to neutral donors (I2) are quenched while excitons bound to ionized donors (I3) are en-
hanced. I.R. stands for the voltage applied to the infrared source. Thus the intensity of
the infrared radiation increases from (a) to (c). (From [7.36])
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In the case of bound excitons (D�X) and (A�X) an electron–hole pair
is bound to immobile charged impurities. In the negatively charged hydro-
gen ion H� two electrons are bound to a heavy (albeit mobile) proton. From
these considerations one may ask whether it will be possible to have a “three-
carrier” complex consisting of either two electrons and one hole or two holes
and one electron. These complexes, known as trions, can be considered as
charged excitons. Trions were first proposed by Lampert in 1958 [7.42] as
analogs of the positively charged hydrogen molecules H�

2 which contain two
positive charges and one electron. Lampert suggested that a trion of two holes
and one electron be abbreviated as X�

2 . Nowadays trions are usually consid-
ered as being closer to a positively charged exciton and therefore are abbrevi-
ated as X� and X�. From the discussion on the binding energy of bound ex-
citons in the last section it is obvious that the binding energy of trions would
be even smaller than those of excitons bound to charged impurities. Under
normal circumstances it would be extremely difficult to observe trions. Indeed
trions were not observed in semiconductors until recently when two devel-
opments made this possible. The first development is the fabrication of thin
layers of semiconductors sandwiched between semiconductor layers of larger
band gap to form quantum wells (see p. 5 and also Chap. 9). The confinement
of electrons and holes within such quantum wells to form two-dimensional
excitons increases their binding energy [see (6.95)] when compared to three-
dimensional excitons. The other development is the ability to modulation-dope
(see Sect. 5.3) the quantum wells so that excitons can be bound to free car-
riers without competition from charged impurities. Trions (of the X� variety)
were experimentally observed in modulation doped quantum wells of CdTe by
Finkelstein et al. [7.43]. Since then both X� and X� have been found in GaAs
quantum wells and in other II-VI semiconductor quantum wells. Further de-
tails can be found in a review paper by Cox et al. [7.44].

For a review of luminescence in gallium nitride see [1.1].

7.1.5 Luminescence Excitation Spectroscopy

With the availability of continuously tunable lasers, such as those based on
liquid dyes [7.45], color centers in alkali halides [7.46], or sapphire doped with
titanium (abbreviated as Ti: sapphire laser) [7.47, 48], a new kind of emission
spectroscopy has become possible. In this technique the spectrometer is set to
detect emission of a particular photon energy from the sample. The intensity
of this emission is then recorded as a function of the excitation photon en-
ergy. This technique is known as photoluminescence excitation spectroscopy or
PLE. It has become very popular for studying thin epilayers grown on opaque
bulk substrates. It is often assumed that the PLE spectrum is roughly equiv-
alent to the absorption spectrum of the sample. Since it is difficult to remove
the substrate from an epilayer so as to be able to perform absorption mea-
surements, PLE has become accepted as a simple alternative. In this section
we shall examine the conditions under which this assumption may be valid.
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As we discussed in Sect. 7.1.1, the photoexcited e-h pairs relax during pho-
toluminescence towards lower energy states and reach quasi-thermal equilib-
rium with the lattice. We expect the e-h pairs to “forget” how they were ex-
cited during this relaxation. Therefore the emission intensity should not nec-
essarily have any correlation with the absorption coefficient. To analyze this
question more quantitatively, however, let us write the relation between the
emission intensity Iem and the excitation intensity Iex as

Iem � PabsPrelPemIex. (7.26)

In (7.26) Pabs, Prel, and Pem denote, respectively, the probability of the incident
photon being absorbed by the sample, the probability that the photoexcited
e-h pairs will relax to the emitting state, and their probability of radiative re-
combination after relaxation. While Pem can be assumed to be a constant in a
PLE experiment Prel depends strongly on the e-h pair energies. In defect-free
semiconductors, excited e-h pairs relax predominantly via electron–phonon in-
teraction. However, when many defects are present the majority of e-h pairs
are trapped by defects and recombine nonradiatively. The probabilities for
both processes depend on the electron energy. As a result, it is usually not
possible to correlate Iem with Pabs without some knowledge of the relative
magnitudes of the defect trapping rate and the electron–phonon relaxation
rate. One exceptional case is a semiconductor in which nonradiative recombi-
nation is negligible compared with scattering by electron–phonon interaction.
Examples of such high quality materials are quantum wells (QWs, see Chaps.
1 and 9 for more details) based on GaAs and related III–V semiconductors.
As we have seen in Chaps. 3 and 5, energetic electrons in these semiconduc-
tors relax predominantly by scattering with LO phonons (via the Fröhlich in-
teraction) and acoustic phonons (via the piezoelectric or deformation poten-
tial interaction). These scattering processes occur on picosecond and subpi-
cosecond time scales, which are significantly shorter than the radiative lifetime
(Sect. 7.1.1). In high quality QW samples the nonradiative lifetimes are often
also long enough that Prel can be almost unity and independent of e-h energy.
Thus in these samples at low temperature, one finds a good correspondence
between the PLE and absorption spectra.

As an illustration, we show in Fig. 7.16a the absorption spectra in a 20 nm
GaAs/GaAlAs QW measured at low temperature [7.49]. Notice the existence
of several sharp peaks which have been identified as excitonic transitions as-
sociated with the quantized levels in the well (see Chap. 9). They are labeled
according to the quantum number n � 1, 2, 3 and 4. Some of these transitions,
such as n � 1 and 2, exhibit a doublet structure due to the splitting of the
heavy and light hole valence bands caused by the confinement potential (more
details on this effect can be found in Chap. 9). Figure 7.16b shows the PLE of
a different but equally high quality QW consisting of a wide GaAs well (width
10 nm) separated by a AlGaAs barrier from a narrower well (width 5 nm)
[7.50]. The broken curves are the PL spectra of the wide (upper panel) and
narrow wells (lower panel). When the spectrometer was set to detect the PL
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Fig. 7.16a–c. Comparison between absorption and PLE spectra in GaAs/AlGaAs quantum
well (QW) samples measured at low temperature. (a) Absorption spectra in a 20 nm well
showing structures due to excitonic absorption peaks (labeled n � 1, 2, etc.) [7.49]. (b)
PLE spectra from a sample containing two QWs with widths of 5 and 10 nm (shown in
lower and upper panels respectively). The broken curves show the PL from these two
wells. The primes on E and H label structures belonging to the 5 nm well [7.50]. (c) PLE
spectra from a p-doped well. The broken curve was obtained by setting the spectrometer
to admit only excitonic emission (indicated by the broken vertical arrow). The vertical
arrow labeled Eg marks the energy gap of the AlGaAs barrier layer. The solid curve is
the PLE spectrum obtained when the spectrometer was set at the energy of the electron-
to-neutral-acceptor emission (indicated by the solid vertical arrow labeled “Detection”)
[7.51]
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from one of the two wells, the PLE spectra (solid curves) in Fig. 7.16b were
obtained. In the upper panel the spectrometer was set to record only the PL
from the wider well. All the prominent structures in the PLE spectrum can be
identified with optical transitions to excited (excitonic) states in this well. The
lower panel shows the PLE (solid curve) spectrum of the narrow well. There
is good overall resemblance in shape between these PLE spectra and the ab-
sorption spectrum in Fig. 7.16a even though they were measured in QW of
different widths. However, this is not always the case. Figure 7.16c shows the
PLE of another GaAs/AlGaAs QW sample which contains shallow acceptors.
The broken curve represents the PLE when the spectrometer was set to detect
only the lowest excitonic emission (indicated by the vertical broken arrow). In
this case no structure due to excited excitonic states was observed. The rising
edge in the vicinity of the arrow labeled Eg was assigned to the bandgap of
the AlGaAs barrier. On the other hand, when emission produced by the cap-
ture of electrons at neutral acceptors was detected (energy indicated by the
solid arrow labeled “Detection”), the PLE spectrum (solid curve) looked like
the absorption spectrum in Fig. 7.16a. The explanation for two completely dif-
ferent PLE spectra in the same sample lies in their different Prel. In this doped
sample excitons are efficiently trapped by neutral acceptors. As a result Prel
is ≈1 for relaxation into bound excitons only. Hence, while the PLE of the
bound exciton emission resembles the absorption spectrum the PLE of the
free exciton does not.

Another sample of the application of PLE can be found in inhomoge-
neously broadened systems. As an example we shall consider a typical donor–
acceptor pair recombination spectrum which contains many overlapping peaks
associated with different pair separations. The width of the emission from a
pair with a well-defined separation is known as its homogeneous linewidth,
and often can be very narrow. However, due to the distribution of many de-
fect pairs with slightly different separations, many of these sharp peaks overlap
slightly and form a much broader band whose width is referred to as the inho-
mogeneous linewidth. This is not the only cause of inhomogeneous broaden-
ing. For example, emissions from gas molecules are broadened by the Doppler
effect associated with the random motion of these molecules. Multiple quan-
tum wells with a distribution of well widths are other examples of systems
whose emission spectra are inhomogeneously broadened.

Figure 7.17a shows the low-temperature DAP bands (peaks labeled P and
Q) of ZnSe containing two shallow acceptors: Li and Na [7.52]. These peaks
are featureless and have widths of the order of several meV. From these spec-
tra alone it would not be possible to identify the acceptors or to determine
their energy levels. Tews et al. [7.52] overcame this problem by using selective
excitation and PLE spectroscopy. When they set the spectrometer to admit a
narrow band of photon energies (� 1 meV) centered at 2.705 eV located on
the high-energy side of the Li-related Q band, they found that the PLE spec-
trum (Fig. 7.17b) showed considerable structure with one peak (labeled Li:
2P3/2) as narrow as 0.5 meV. They assigned it, together with another peak
labeled Li: 2S3/2, to excitation of the neutral acceptor into its excited states
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Fig. 7.17. (a) Donor–acceptor pair (DAP)
band luminescence spectrum in ZnSe:Na,Li
measured at low temperature. (b) PLE spec-
tra of the same obtained by scanning a dye
laser (�ˆp) while the spectrometer was set to
detect a narrow band of photons with energy
�ˆl � 2.705 eV. The peaks labeled Li:2S3/2

and 2P3/2 are identified as due to excited
states of the Li acceptors. The other peaks
will not be discussed in this chapter. (c) DAP
emission spectra selectively excited by dye
lasers of various photon energies �ˆp. (From
[7.52])
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(the remaining peaks in this PLE spectrum are not of interest here). These
peaks are sharp because the detector selected out emission from only a small
subset of acceptors. These acceptors satisfy the condition that their separa-
tions R from the donor are determined by the emission energy via (7.17).
When the incident photon excites these acceptors to their 2S3/2 and 2P3/2 states
(see Sect. 4.2.4 for the acceptor energy levels in zinc-blende-type semiconduc-
tors) the pair emission produced by transitions from their 1S3/2 ground state
to the donor becomes enhanced. This process is shown schematically in Fig.
7.18. Since only pairs with a selected separation are enhanced, the DAP band
exhibits a sharp peak superimposed on a broader background due to the non-
selectively excited pairs. These DAP emission spectra under selective excita-
tions are shown in Fig. 7.17c. Notice that in Fig 7.17 the bands of the PL
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Fig. 7.18. Schematic diagram showing the selective excitation process responsible for the
sharp emission peaks in the DAP spectra in Fig. 7.17c. The pump photon of energy �ˆp

(labeled 1) excites resonantly an electron from the 3S excited state of a neutral acceptor
(labeled 2) to the 1S ground state of a donor a distance R′

DA away. Afterwards the accep-
tor hole relaxes to the 1S ground state (labeled 3) before recombining with the electron
on the donor at distance R′

DA, emitting the photon �ˆl (labeled 4). The inset shows how
this selectively excited DAP emission forms a sharp peak superimposed on the broad
background due to DAP emission from many other pairs with different pair separation
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spectra are plotted as a function of the difference between the laser photon
energy �ˆp and the emission photon energy �ˆl. A number of sharp peaks
labeled c, e, f, g, i and j are observed depending on the excitation energy. Their
positions correspond to the separation between the ground and excited states
of the neutral acceptors. The peaks c and e are assigned to Li acceptors while
the remaining peaks are identified with Na acceptors. Their widths are now
determined by homogeneous broadening only. From these selectively excited
DAP spectra, Tews et al. [7.52] have determined accurately the binding energy
and excited state energies of Na and Li acceptors in ZnSe.

7.2 Light Scattering Spectroscopies

Although most of the light traveling through a medium is either transmitted or
absorbed following the standard laws of reflection and refraction (which ob-
tain from k-conservation), a very tiny fraction is scattered, in all directions, by
inhomogeneities inside the medium. These inhomogeneities may be static or
dynamic. Defects such as dislocations in a crystal are static scatterers and scat-
ter the light elastically (i. e., without frequency change). Fluctuations in the
density of the medium that are associated with atomic vibrations are exam-
ples of dynamic scatterers. Other examples of scattering mechanisms in semi-
conductors are fluctuations in the charge or spin density. Inelastic scattering
of light by acoustic waves was first proposed theoretically by Brillouin [7.53]
and later independently by Mandelstam [7.54]. Inelastic scattering of light by
molecular vibrations was first reported by Raman [7.55]. In 1930 Raman was
awarded the Nobel prize for his discovery of Raman scattering. Today Raman
scattering and resonant Raman scattering have become standard spectroscopic
tools in the study of semiconductors. In this section we shall first present a
macroscopic theory of Raman scattering by phonons in solids. This is followed
by a microscopic theory and a discussion of resonant Raman scattering. The
rest of the section is devoted to discussions of Brillouin scattering by acoustic
modes and resonant Brillouin scattering by exciton-polaritons.

7.2.1 Macroscopic Theory of Inelastic Light Scattering by Phonons

Consider an infinite medium with electric susceptibility ¯. As shown in Sect.
6.1, the electrical susceptibility should be a second rank tensor in general. For
the time being we shall assume the medium to be isotropic so that ¯ can be
represented by a scalar. When a sinusoidal plane electromagnetic field de-
scribed by

F(r, t) � Fi(ki, ˆi) cos(ki · r � ˆit) (7.27)

is present in this medium, a sinusoidal polarization P(r, t) will be induced:
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P(r, t) � P(ki, ˆi) cos(ki · r � ˆit). (7.28)

Its frequency and wavevector are the same as those of the incident radiation
while its amplitude is given by

P(ki, ˆi) � ¯(ki, ˆi)Fi(ki, ˆi). (7.29)

If the medium is at a finite temperature there are fluctuations in ¯ due to
thermally excited atomic vibrations. We have seen in Chap. 3 that the normal
modes of atomic vibrations in a crystalline semiconductor are quantized into
phonons. The atomic displacements Q(r, t) associated with a phonon can be
expressed as plane waves:

Q(r, t) � Q(q, ˆ0) cos(q · r � ˆ0t) (7.30)

with wavevector q and frequency ˆ0. These atomic vibrations will modify ¯.
We assume that the characteristic electronic frequencies which determine ¯
are much larger than ˆ0, hence ¯ can be taken to be a function of Q. This is
known as the quasi-static or adiabatic approximation. Normally the amplitudes
of these vibrations at room temperature are small compared to the lattice con-
stant and we can expand ¯ as a Taylor series in Q(r, t):

¯(ki, ˆi, Q) � ¯0(ki, ˆi) � (�¯/�Q)0Q(r, t) � . . . , (7.31)

where ¯0 denotes the electric susceptibility of the medium with no fluctua-
tions. The second term in (7.31) represents an oscillating susceptibility induced
by the lattice wave Q(r, t). Substituting (7.31) into (7.29) we can express the
polarization P(r, t, Q) of the medium in the presence of atomic vibrations as

P(r, t, Q) � P0(r, t) � Pind(r, t, Q), (7.32)

where

P0(r, t) � ¯0(ki, ˆi)Fi(ki, ˆi) cos(ki · r � ˆit) (7.33)

is a polarization vibrating in phase with the incident radiation and

Pind(r, t, Q) � (�¯/�Q)0Q(r, t)Fi(ki, ˆi) cos(ki · r � ˆit) (7.34)

is a polarization wave induced by the phonon (or other similar fluctuation).
Polarization waves can also be induced indirectly by longitudinal optical (LO)
phonons via their macroscopic electric fields (Sect. 6.4). For the time being we
shall neglect this effect.

To determine the frequency and wavevector of Pind we rewrite Pind(r, t, Q)
as

Pind(r, t, Q) � (�¯/�Q)0Q(q, ˆ0) cos(q · r � ˆ0t)

× Fi(ki, ˆi) cos(ki · r � ˆit)
(7.35a)

� 1
2 (�¯/�Q)0Q(q, ˆ0)Fi(ki, ˆit)

× {cos[(ki � q) · r � (ˆi � ˆ0)t]

� cos[(ki � q) · r � (ˆi � ˆ0)t]} .

(7.35b)
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Pind consists of two sinusoidal waves: a Stokes shifted wave with wavevector
kS � (ki � q) and frequency ˆS � (ˆi � ˆ0) and an anti-Stokes shifted wave
with wavevector kAS � (ki � q) and frequency ˆAS � (ˆi � ˆ0).

The radiation produced by these two induced polarization waves is known,
respectively, as Stokes scattered and anti-Stokes scattered light. Since the
phonon frequency is equal to the difference between the incident photon fre-
quency ˆi and the scattered photon frequency ˆs, this difference is referred to
as the Raman frequency or Raman shift (one also speaks of Stokes and anti-
Stokes shifts). Raman spectra are usually plots of the intensity of the scattered
radiation versus the Raman frequency.

When compared to nonlinear optical spectroscopy, light scattering can be
regarded as a kind of parametric process, since it involves periodically chang-
ing a parameter (namely, the electrical susceptibility) of the medium. How-
ever, the change induced is bilinear in the phonon displacement and the elec-
tric field and therefore light scattering is not a nonlinear optical process as
are optical parametric processes.2 The phonon modulation of the susceptibil-
ity at frequency ˆ0 generates sidebands at frequencies ˆi ± ˆ0 to the incident
radiation at frequency ˆi. In this respect light scattering resembles frequency
modulation (FM) in radio transmission. The incident radiation plays the role
of the carrier wave.

Notice that both frequency and wavevector are conserved in the above scat-
tering processes. As a result of wavevector conservation, the wavevector q of
phonons studied by one-phonon Raman scattering must be smaller than twice
the photon wavevector. Assuming that visible lasers are used to excite Ra-
man scattering in a sample with refractive index about 3, q is of the order
of 106 cm�1. This value is about 1/100 of the size of the Brillouin zone in a
semiconductor. Hence one-phonon Raman scattering probes only zone-center
phonons. In such experiments q can usually be assumed to be zero.

The expansion in (7.31) can be easily extended to second or even higher
orders in the phonon displacements. The second-order terms give rise to in-
duced polarizations whose frequencies are shifted from the laser frequency by
the amount ±ˆa ±ˆb (where ˆa � ˆb are the frequencies of the two phonons
involved). These induced polarizations give rise to two-phonon Raman scat-
tering. For two different phonons, peaks with Raman frequencies ˆa � ˆb and
ˆa � ˆb are referred to as the combination and difference modes, respectively.
If the two phonons are identical, the resultant two-phonon Raman peak is
called an overtone. Wavevector conservation in two-phonon Raman scattering
is satisfied when qa ± qb ≈ 0, where qa and qb are the wavevectors of the two
phonons a and b, respectively. In overtone scattering this condition implies
qa � �qb, i. e., the two phonons have equal and opposite wavevectors. Thus
in two-phonon Raman scattering there is no restriction on the magnitudes of
the individual phonon wavevectors as there is in one-phonon scattering (only
their sum must be near zero). Hence the overtone Raman spectrum, after di-

2 Stimulated Raman scattering (see pp. 258 and 395) however, is a nonlinear optical pro-
cess.
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viding the Raman frequency by two, is a measure of the phonon density of
states, although modified by a factor dependent on the phonon occupancy and
the scattering efficiency.

For Raman scattering with highly monochromatic x-rays, one cannot as-
sume that q ≈ 0. In fact, scattering wavevectors sweeping the whole BZ can
be obtained by varying the angle between the k’s of incident and scattered
photons. See [3.7] and [3.28b].

7.2.2 Raman Tensor and Selection Rules

The intensity of the scattered radiation can be calculated from the time-averaged
power radiated by the induced polarizations Pind into unit solid angle. Since
the induced polarizations for Stokes and anti-Stokes scattering differ only in
their frequencies and wavevectors, we will restrict ourselves to Stokes scat-
tering. This intensity will depend on the polarization of the scattered radi-
ation, es, as |Pind · es|2. If we denote the polarization of the incident radi-
ation as ei, the scattered intensity Is calculated from (7.35) is proportional to

Is ∝ |ei · (�¯/�Q)0Q(ˆ0) · es|2. (7.36)

In (7.36) we have approximated q by zero for one-phonon scattering and al-
lowed for the possibility of ¯ being complex. Notice that the scattered inten-
sity is proportional to the vibration amplitude Q squared. In other words,
there will be no Stokes scattering if no atomic vibration is present. This re-
sult is a consequence of our classical treatment. Once we quantize the vibra-
tional modes into phonons, in Stokes scattering, where a phonon is excited in
the medium by the incident radiation, the intensity becomes proportional to
(Nq � 1), where Nq is the phonon occupancy. (the summand 1 in Nq � 1 cor-
responds to the zero-point motion mentioned, in connection with photons, in
Sect. 7.1). Similarly, the anti-Stokes intensity will be proportional to Nq and
vanish at low temperatures.

Let us assume that Q is the vector displacement of a given atom induced
by the phonon so that (�¯/�Q) is a third-rank tensor with complex compo-
nents. By introducing a unit vector Q̂ � Q/|Q| parallel to the phonon dis-
placement we can define a complex second rank tensor � as

� � (�¯/�Q)0Q̂(ˆ0) (7.37)

such that Is is proportional to

Is ∝ |ei · � · es|2. (7.38)

� is known as the Raman tensor. In general � is obtained by a contraction of
Q and the derivative of ¯ with respect to Q, and therefore it is a second-rank
tensor with complex components like ¯.
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By measuring the dependence of the scattered intensity on the incident
and scattered polarizations one can deduce the symmetry of the Raman ten-
sor and hence the symmetry of the corresponding Raman-active phonon. Thus
Raman scattering can be used to determine both the frequency and symmetry
of a zone-center phonon mode. By means of two-phonon Raman scattering,
phonon densities of states can also be estimated. Obviously, Raman scattering
is a very powerful tool for studying vibrational modes in a medium. Later in
this chapter we shall show that, in addition to studying atomic vibrations, res-
onant Raman scattering can be used to study interband electronic transitions,
excitons, and even electron–phonon interactions. It is also useful to study mag-
netic excitations [7.56]. Thus Raman scattering is truly one of the most ver-
satile spectroscopic techniques for studying not only semiconductors but also
other condensed media.

At first sight, the Raman tensor as defined in (7.37) appears to be a sym-
metric second-rank tensor, since the susceptibility is a symmetric tensor. This
is only exactly correct if we can neglect the slight difference in frequency be-
tween the incident and scattered radiation. We shall come back to this point
later in this section. Within this approximation, antisymmetric components in
the Raman tensor can be introduced only by magnetic fields [7.56]. Since most
semiconductors are nonmagnetic we can usually assume the Raman tensor in
semiconductors to be symmetric. Additional requirements are often imposed on
Raman tensors as a result of the symmetries of the medium and of the vibra-
tional modes involved in the scattering. The result of these symmetry require-
ments is that the scattered radiation vanishes for certain choices of the polar-
izations ei and es and scattering geometries. These so-called Raman selection
rules are very useful for determining the symmetry of Raman-active phonons.

The simplest example of Raman selection rules can be found in centrosym-
metric crystals. In these crystals phonons can be classified as having even or
odd parity under inversion. Since the crystal is invariant under inversion, its
tensor properties, such as (�¯/�Q), should remain unchanged under the same
operation. On the other hand, the phonon displacement vector Q of an odd-
parity phonon changes sign under inversion, implying that (�¯/�Q) changes
sign. Hence the Raman tensor of odd-parity phonons in centrosymmetric crys-
tals (within the approximation that the phonon wavevector is zero) must vanish.
As we have seen in Sect. 6.4, these odd-parity phonons can be infrared active
while the even-parity phonons cannot. Thus infrared absorption and Raman
scattering are complementary in centrosymmetric crystals. In some crystals
there are phonon modes which are neither infrared nor Raman active. These
phonons are said to be silent.

As another example we shall consider Raman selection rules in the zinc-
blende-type semiconductor GaAs. Its zone-center optical phonon has symmetry
°4 (also called °15) as discussed in Sect. 3.1. This is a triply degenerate repre-
sentation whose three components can be denoted as X, Y, and Z. In this par-
ticular case we can regard these three components as equal to the projections
of the relative displacement of the two atoms in the unit cell along the crystal-
lographic axes. As we showed in Chap. 3 a third-rank tensor in the zinc-blende
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crystal, such as the piezoelectric or the electromechanical tensor, has only one
linearly independent and nonzero component, namely, the component with in-
dices xyz and its cyclic permutations, such as yzx, zxy, etc. Thus the third-rank
tensor �¯/�Q has only one linearly independent component, which we shall de-
note by d. The nonzero components of the corresponding Raman tensor are
dependent on the phonon displacement. For an optical phonon polarized along
the x direction, its Raman tensor �(X) will have only two nonzero components:
�yz(X) � �zy(X) � d. We can represent �(X) as a 3 × 3 matrix:

�(X) �

⎡⎣ 0 0 0
0 0 d
0 d 0

⎤⎦ . (7.39a)

Using similar arguments we can derive the Raman tensors for the equivalent
optical phonons polarized along the y and z axes as

�(Y) �

⎡⎣ 0 0 d
0 0 0
d 0 0

⎤⎦ and �(Z) �

⎡⎣ 0 d 0
d 0 0
0 0 0

⎤⎦ . (7.39b)

We should keep in mind that the zone-center optical phonon in GaAs is split
into a doubly degenerate transverse optical (TO) mode and a longitudinal op-
tical (LO) mode for q �� 0. The Raman tensor elements for these two phonons
are different because the LO mode can scatter light via its macroscopic longi-
tudinal electric field (Sect. 6.4). In order to distinguish them we shall use dTO
and dLO in their respective Raman tensors.

Using the Raman tensors defined in (7.39) we can now derive the selection
rules for Raman scattering in GaAs. Since these selection rules are dependent
on the scattering geometry, we shall introduce a notation for describing scat-
tering geometries which can be specified by four vectors: ki and ks (the di-
rections of the incident and scattered photons, respectively) and ei and es (the
polarizations of the incident and scattered photons, respectively). These four
vectors define the scattering configurations usually represented as ki(ei, es)ks.3

EXAMPLE: Raman Selection Rule for Backscattering
from the (100) Surface of a GaAs Crystal

Since GaAs is opaque to the usual visible laser light (bandgap 1.52 eV at 4 K,
see Table 6.3) the simplest scattering geometry is the backscattering one, i. e.,
ki and ks are antiparallel to each other. In order to conserve wavevector, the
q of the phonon must be along the [100] direction also for backscattering
from a (100) surface. The polarization of a TO phonon must be perpendic-
ular to q (or the x-axis) and therefore its Raman tensor is a linear combina-
tion of �(Y) and �(Z). The nonzero components of both tensors in (7.39b)
dictate that either ei or es must have a projection along the x-axis. If ki and
ks are both parallel to the x-axis, then ei and es are both perpendicular to

3 This notation is due to S.P.S. Porto, a Brazilian pioneer of light scattering in semicon-
ductors
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Table 7.2. Raman selection rules for backscattering geometries in zinc-blende-type crys-
tals. dTO and dLO denote the non-zero Raman tensor elements for the TO and LO
phonons, respectively. y′ and z′ denote the [011] and [011] axes, while x′′, y′′ and z′′ denote
the set of three mutually perpendicular [111], [110] and [112] axes (see Problem 7.4)

x(y, y)x; x(z, z)x 0 0
x(y, z)x; x(z, y)x 0 |dLO|2

x(y′, z′)x; x(z′, y′)x 0 0
x(y′, y′)x; x(z′, z′)x 0 |dLO|2

y′(x, x)y′ 0 0
y′(z′, x)y′ |dTO|2 0
y′(z′, z′)y′ |dTO|2 0

x′′(z′′, z′′)x′′ (2/3)|dTO|2 (1/3)|dLO|2
x′′(z′′, y′′)x′′ (2/3)|dTO|2 0

Scattering geometry Selection rule

TO phonon LO phonon

the x-axis, and therefore Raman scattering by the TO phonon is forbidden
in this backscattering geometry. For the LO phonon the situation is different
since its q is along the x-axis. Its Raman tensor is given by �(X) instead.
For the scattering geometries x(y, z)x or x(z, y)x the corresponding scattered
intensity is proportional to |dLO|2. On the other hand, the LO phonon is for-
bidden in the geometries x(y, y)x and x(z, z)x. One can also show that the LO
phonon is forbidden in the geometries x(y′, z′)x and x(z′, y′)x but allowed in
the geometries x(y′, y′)x and x(z′, z′)x, where y′ and z′ denote the [011] and
[011] axes, respectively. These and other additional Raman selection rules for
backscattering from zinc-blende-type crystals are summarized in Table 7.2. The
derivations of these selection rules and the corresponding ones for other scat-
tering geometries are left as an exercise (Problem 7.4).

The general problem of deriving the symmetry of Raman tensors in crystals
can be solved with the help of group theory. Again we shall use simple exam-
ples as illustrations. The rigorous derivations and discussions can be found in
articles by Loudon [7.57, 58]. Let us consider again a cubic crystal. We have
already shown in Sect. 3.3.1 that a symmetric second rank tensor, like the strain
tensor, can be decomposed into three components transforming according to the
irreducible representations °1, °3 and °4. Similarly, we expect that the Raman
tensor in a zinc-blende crystal can be decomposed into three (irreducible) ten-
sors: �(°1), �(°3) and �(°4). The tensors corresponding to the three irreducible
components of °4 have been given in (7.39) already. The Raman tensors belong-
ing to the other two irreducible representations can be derived in the same way
as for the strain tensors eij(°1) and eij(°3) in Sect. 3.3.1:

�(°1) �

⎡⎣ a 0 0
0 a 0
0 0 a

⎤⎦ (7.40)



382 7. Optical Properties II

�(°3) �

⎡⎣ b 0 0
0 b 0
0 0 �2b

⎤⎦;
√

3

⎡⎣ b 0 0
0 �b 0
0 0 0

⎤⎦. (7.41)

While there are no optical phonons belonging to these irreducible represen-
tations in crystals such as GaAs, these tensor components can be found in
two-phonon Raman spectra (to be shown for Si in the next section).

The quantity often measured in a scattering experiment is the scattering
efficiency Ë. This can be defined as the ratio of the energy of electromagnetic
waves scattered per unit time divided by the energy of incident electromag-
netic modes crossing the scattering area per unit time. Using the expression
(see, e. g., [7.29]) for the power radiated by the induced dipole in (7.35) we
can derive the following expression for Ë [7.59]:

Ë � (ˆs/c)4VL|ei · (�¯/�Q)0Q(ˆ0) · es|2. (7.42)

In (7.42) L is the scattering length. If the sample is transparent to the incident
light, L is equal to the thickness of the sample along the path of the incident
light. Otherwise L is equal to (·i �·s)�1, where · is the absorption coefficient.
V, equal to AL (A being the area of the incident beam), is the volume of the
sample producing the scattered radiation. Sometimes the efficiency is defined
per unit scattering length L and denoted as S. Notice that Ë depends on the
fourth power of ˆs. Thus short-wavelength light is scattered more efficiently
than long-wavelength radiation. This important property of light scattering is
responsible for the blue color of the sky on a sunny day and the red sun-
set. The scattering process in these cases is known as Rayleigh scattering and
results either from entropy fluctuations or, more commonly these days, from
pollutants.

One deficiency of the classical treatment of light scattering presented so
far is that the way the atomic displacement associated with the phonon is in-
cluded in (7.42) which applies only to stimulated emission or absorption of a
phonon. It does not work when the phonon is emitted spontaneously in the
light scattering process since the value of Q is zero at zero temperature. To
rectify this deficiency we use the results of Sects. 5.2 and 7.1. In Sect. 5.2.4 we
have stated that the probability of an electron emitting (or absorbing) a phonon
with wave vector q is proportional to Nq � 1 (or Nq) where Nq is the phonon
occupation number (p. 126). In Sect. 7.1 we have separated the total light emis-
sion rate into two parts: a spontaneous and a stimulated component. The rate
of stimulated emission in (7.3) is proportional to the photon energy density. By
the same argument we expect the rate of stimulated emission of a phonon to
be proportional to the phonon occupation number. Thus since we have defined
(7.42) to be the scattering efficiency for a single phonon, the corresponding ef-
ficiency for Stokes and Anti-Stokes scattering by Nq phonons can be obtained
by multiplying (7.42) by the factors (Nq � 1) and Nq, respectively. This result
suggests that it may be possible to determine Nq, and the temperature, from the
ratio of the Stokes to Anti-Stokes intensities in Raman scattering.
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Another deficiency is that radiation fields are not explicitly quantized into
photons. Raman scattering should be regarded as the inelastic scattering of
photons by quantized excitations in a medium. The efficiency of scattering of
particles is usually defined in terms of a scattering cross section Û. Let the flux
of the incident photon beam be Ni photons per unit area (A). If Ns is the total
number of particles integrated over all directions (or 4 solid angle) and all
scattered frequencies, then Û is defined by4

Ns � NiÛ. (7.43)

Clearly Û has the dimensions of an area. In experiments one usually collects
only photons scattered into a cone (with solid angle ‰ø) pointing in a specific
direction and within a scattered frequency range ‰ˆs centered on ˆs. In such
cases the ratio between the number of scattered photons and the incident pho-
ton flux is known as the differential scattering cross section d2Û/dø dˆs. It is
related to the second derivative of the scattering efficiency in (7.42) by

�

(
ˆ
iˆ

s

A

) (
d2Û

dø dˆs

d2Ë
dø dˆs

)
(7.44)

We stated earlier that the Raman tensor is symmetric with respect to in-
terchange between its two subindices because the electric susceptibility tensor
¯(ˆ), from which it is derived, has such symmetry in the limit where the pho-
ton wave vectors are negligible [see (6.1)]. This is not strictly correct. ¯(ˆ) de-
pends on the photon frequency ˆ only, while the Raman tensor involves two
slightly different frequencies: ˆi and ˆs. The Raman tensor is symmetric only
when we neglect the small difference between ˆi and ˆs. We can derive the
correct result, without neglecting this difference, by using time-reversal sym-
metry.

Let us assume that a beam of Ni photons with frequency ˆi and polar-
ization ei is incident on a unit area of a medium. The discussion in the rest of
this section will refer to a unit volume of sample and per unit time, unless oth-
erwise stated. This beam is Stokes scattered in the medium as shown in Fig.
7.19a. the polarization of the scattered beam is es and its frequency ˆs. The to-
tal number of spontaneously scattered photons (i.e., in spontaneous emission
discussed in Sect. 7.1; detailed discussion of this point will be postponed until
Sect. 7.2.4) will be proportional to |ei ·�(ˆi, ˆs) ·es|2Ni. Let us denote the cross
section corresponding to |ei · �(ˆi, ˆs) · es|2 as Û(ˆi, ˆs). Thus the number of
scattered photons Ns is equal to Û(ˆi, ˆs)Ni as long as the number of scattered
photons is small and stimulated scattering (as in stimulated emission) can be
neglected. Notice that the scattering cross section is a scalar quantity defined
in terms of photons. However, it can be calculated from the tensor � defined
for macroscopic electromagnetic fields. The arguments in Û(ˆi, ˆs) serve as

4 The cross section for scattering of a particle by another particle is uniquely defined.
In the case of a solid, however, it depends on the volume under consideration, i.e., a
primitive cell, a crystallographic unit cell, 1 cm3, etc.
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Fig. 7.19. Schematic diagram of (a) a Stokes Raman scattering process in a medium and
(b) its time-reversed anti-Stokes process

reminders of the tensor components in � from which Û can be derived. Let us
assume that the incident photon flux is such that only one scattered photon is
produced (Fig. 7.19a). This is equivalent to having

Ni � 1/Û(ˆi, ˆs). (7.45a)

The flux of the unscattered beam is therefore Ni � 1. In Fig. 7.19b we reverse
the direction of time so that the outgoing beams in Fig. 7.19a now become the
incoming beams and vice versa. We denote by Ns the total number of photons
emerging from unit area of the medium with frequency ˆi. This beam contains
Ni �1 photons, which are the unscattered photons. We can neglect loss of pho-
tons from this beam due to scattering since it requires at least Ni photons to
produce one scattered photon. In addition to these unscattered photons there
is an anti-Stokes scattered photon from the single incoming photon with polar-
ization es and frequency ˆs. Using the same notation as before for Stokes scat-
tering, the anti-Stokes scattering cross section will be denoted by ÛA(ˆs, ˆi).
Since there are now Ni � 1 photons present with the anti-Stokes frequency
ˆi we cannot neglect the contribution from stimulated emission. The probabil-
ity of stimulated emission is proportional to one plus the number of photons
present (Sect. 7.1). Therefore the anti-Stokes scattered photon flux is given by
NiÛA(ˆs, ˆi). Hence we obtain

Ns � (Ni � 1) � NiÛA(ˆs, ˆi). (7.45b)

Time-reversal symmetry requires that the number of photons Ns emerging
from the medium after time reversal (Fig. 7.19b) be equal to the number of
in-coming photons Ni before reversal (Fig. 7.19a). Therefore

Ni � (Ni � 1) � NiÛA(ˆs, ˆi) (7.46a)
or

1 � NiÛA(ˆs, ˆi). (7.46b)

Since we have chosen Ni to be 1/Û(ˆs, ˆi) in (7.45a), we obtain from (7.46b)

Û(ˆi, ˆs) � ÛA(ˆs, ˆi). (7.47)

From (7.47) we can go back to � to show that the Stokes Raman tensor el-
ement for incident photon frequency ˆi and incident and scattered photons
polarizations equal to ei and es, respectively, is equal to the corresponding
anti-Stokes tensor element for incident photon frequency ˆs and incident and
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scattered photon polarizations equal to es and ei, respectively. If we neglect
the difference between ˆi and ˆs, there is no distinction between Stokes
and anti-Stokes scattering and the Raman tensor is symmetric with respect
to an interchange between ei and es. The equality between the Stokes scat-
tering cross section Û(ˆi, ˆs) and the corresponding anti-Stokes scattering
cross section ÛAS(ˆs, ˆi) has been tested directly in GaAs multiple quantum
wells (see Sect. 9.2.4 for further description of the optical properties of these
quantum wells) under resonance condition (see Sect. 7.2.8 on the meaning
of resonant Raman scattering) where both the Stokes and anti-Stoke scat-
tering cross sections are strongly dependent on the incident photon energy
[7.60].

7.2.3 Experimental Determination of Raman Spectra

a) Experimental Techniques

The measurement of a Raman spectrum requires at least the following equip-
ment:

• a source of collimated and monochromatic light;
• an efficient optical system to collect the weak scattered radiation;
• a spectrometer to analyze the spectral content of the scattered radiation

and
• a highly sensitive detector for the scattered radiation.

Since Raman efficiencies are typically very small (in some cases as small as
10�12), every component in this system has to be optimized. We shall now
consider these components individually.

Light Source

In the days before the advent of lasers, the light source was typically a high
power discharge lamp. Discrete emission lines of a gas or vapor (typically mer-
cury vapor) were used. In those days only transparent samples could be stud-
ied because of their larger scattering lengths. Since many common semicon-
ductors are opaque, Raman studies of semiconductors became feasible only
after the advent of lasers. High power pulsed lasers, such as the ruby laser
which appeared first, made it possible to observe stimulated Raman scatter-
ing (see, for example, [7.61]). However, they are not well suited for studying
spontaneous Raman scattering for which a continuous wave (cw) laser of high
time-averaged power is preferred. As a result the cw He-Ne laser (wavelength
Ï � 632.8 nm) was the first laser to be used in Raman scattering. But soon it
was replaced by the Nd:YAG, Ar� and Kr� ion lasers. The latter two produce
several high power (� 1 W in a single line) discrete emission lines covering
the red (647 nm), yellow (564 nm), green (514 nm), blue (488 nm) and vio-
let (458 nm) regions of the visible spectrum. With these high average power
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cw lasers it became feasible to obtain not only one-phonon Raman spectra in
semiconductors but also their two-phonon spectra. With continuously tunable
cw lasers based on dyes (1 Ìm ≥ Ï ≥ 450 nm), color-centers in ionic crys-
tals (3 Ìm ≥ Ï ≥ 1 Ìm) and more recently Ti-doped sapphire (1 Ìm ≥ Ï ≥
700 nm) it became possible to perform Raman excitation spectroscopies, i. e.,
resonant Raman scattering. In analogy to the luminescence excitation spec-
troscopy discussed in Sect. 7.1.5, in resonant Raman spectroscopy one moni-
tors the Raman efficiency as a function of the excitation laser wavelength. The
physics involved in this kind of spectroscopy will be discussed in Sect. 7.2.7.

Spectrometers

In most Raman experiments on semiconductors the signal is 4–6 orders of
magnitude weaker than the elastically scattered laser light. At the same time
the difference in frequency between the Raman signal and the laser light is
only about 1% of the laser frequency. In order to observe this weak sideband
in the vicinity of the strong laser light, the spectrometer must satisfy several
stringent conditions. First it must have good spectral resolving power. Mod-
ern Raman spectrometers typically have resolving power (Ï/¢Ï) � 104, which
can be obtained easily with diffraction gratings. It is, however, important that
these gratings do not produce “ghosts” and “satellites”, which can be confused
with Raman signals. Modern holographic gratings (Sect. 6.1.2) have practically
eliminated this problem. A Raman spectrometer must also have an excellent
stray light rejection ratio. This is defined as the ratio of the background stray
light (light at all wavelengths other than the nominal one specified by the spec-
trometer) to the signal. Stray light is produced by imperfections in the optics
(such as mirrors and gratings) and by scattering of light off walls and dust
particles inside the spectrometer. Most spectrometers have a rejection ratio of
10�4–10�6. As a result, the background stray light can be orders of magnitude
larger than the Raman signal. This situation can be solved by: (a) making the
sample surface as smooth as possible to minimize the elastically scattered laser
light; (b) using a “notch filter”, which will block out the laser light; (c) putting
two or more spectrometers in series. A properly designed double monochro-
mator can have rejection ratios as small as 10�14, equal to the product of the
ratios for the two monochromators. This rejection ratio is adequate for Ra-
man studies in most semiconductors. Nowadays triple spectrometers have be-
come popular for use with multichannel detectors to be described next. In
these spectrometers two monochromators are put “back-to-back” for use as a
notch filter. The third monochromator provides all the dispersion required for
separating the Raman signal from the laser light.

Detector and Photon-Counting Electronics

Raman recorded the weak inelastically scattered light in his pioneering ex-
periment in 1928 by using photographic plates. These detectors actually have
many of the desirable characteristics of modern systems. They have the sen-
sitivity to detect individual photons. They are multichannel detectors in that
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they can measure many different wavelengths at the same time. Finally, they
can integrate the signal over long periods of time, from hours to even days.
They also have one big advantage compared to modern detector systems:
they are inexpensive! However, they also have some serious drawbacks: Their
outputs are not linear in the light intensity and it is also cumbersome to con-
vert the recorded signal into digital form for analysis. The first major advance
in photoelectric recording (see Chap. 8 for discussions of the photoelectric
effect) of Raman spectra was the introduction of photon counting methods
[7.62]. Instead of integrating all the photocurrent pulses arriving at the photo-
multiplier tube anode as the signal, a discriminator selects and counts only
those pulses with large enough amplitude to have originated at the photocath-
ode. The background pulses (noise) remaining in such systems are those gen-
erated by thermionic emission of electrons at the photocathode. This can be
minimized by cooling the entire photomultiplier tube to about �20C (via ther-
moelectric coolers) or to liquid nitrogen temperature. One of the most popu-
lar photomultipliers for Raman scattering has a GaAs photocathode cooled to
�20C. When coupled to properly designed counting electronics, such a detec-
tor system has a background noise (or dark counts) of a few counts per second
and a dynamic range of 106.

The above detector system has one major disadvantage compared with the
photographic plate. It counts the total number of photons emerging from the
spectrometer without spatially resolving the positions (and hence the wave-
lengths) of the photons. As a result, the Raman spectrum is obtained only af-
ter scanning the spectrometer output over a wavelength range containing the
Raman peak. Recently several multichannel detection systems have become
available commercially. These systems are based on either charge-coupled
devices (CCDs) or position-sensitive imaging photomultiplier tubes. These de-
tectors have been reviewed by Chang and Long [7.63] and by Tsang [7.64].
The CCD detector is essentially the same as a modern television camera. Its
sensitivity can be enhanced by adding an image-intensifier tube. This tube con-
sists of a photocathode as in a photomultiplier tube. The photoelectrons gener-
ated at the cathode are multiplied by a factor of 106–107 through a microchan-
nel plate. This is essentially a honeycomb consisting of many tiny glass tubes
whose interior walls are coated with a secondary electron emitter. Just one
such glass tube with an enlarged entrance in the shape of a funnel is known
as a channeltron (see Fig. 8.9 for a sketch). A high voltage is applied between
the entrance and exit ends of each glass tube. When an electron enters the
tube and hits the secondary emitter wall it generates several additional elec-
trons. These will, in turn, produce more secondary electrons when they impact
the glass wall. Thus an “avalanche” of secondary electrons is created as they
travel down the narrow tube. A phosphor at the exit end of the microchannel
plate converts the electron pulses back into a brighter image.

An imaging photomultiplier tube [7.65, 66] (also known as a Mepsicron)
has essentially the same construction as an image-intensifier tube except that
the phosphor is replaced by an anode with four output leads (Fig. 7.20). When
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Fig. 7.20. Schematic diagram of the construction of a position-sensitive imaging photo-
multiplier tube

an amplified electron pulse hits the anode, it generates four electrical output
pulses from these four anode leads. Depending on the position of the electron
pulse on the anode, these four output pulses emerge at different times. A tim-
ing circuit measures the arrival time delays between these four pulses. An ana-
log computer calculates the position of the original electron pulse at the anode
based on these time delays. This detector has all the advantages of a photo-
multiplier tube plus a much lower dark count. Since each pixel is equal to one
“channel” and the area of a pixel is much smaller than a photomultiplier tube,
its dark current per channel is also much smaller. The dark current of a cooled
imaging tube can be as low as 0.01 counts/second per channel. The major dis-
advantage of this detector is its finite lifetime. Every time a photoelectron is
amplified by the microchannel plate positive ions are emitted in the channel
plates and accelerated towards the photocathode. As a result, such detectors
are rated to have a total lifetime of 1013 photoelectrons/pixel. Obviously, such
detectors should be used only for extremely weak signals. For obvious reasons
the dynamical range of the mepsicrons is small, typically � 105 electrons/pixel.
The relative merits of the CCD and the Mepsicron multichannel detection sys-
tems have been compared by Tsang [7.64].

b) Experimental Phonon Raman Spectra in Semiconductors

One-Phonon Raman Spectra

Figure 7.21 shows Raman spectra of several group III–V semiconductors (GaAs,
InP, AlSb) measured by Mooradian and Wright [7.67] using a Nd:YAG laser
(1.06 Ìm wavelength) as the excitation source in a 90◦ scattering geometry (note



7.2 Light Scattering Spectroscopies 389

Anti-Stokes

340 300 260 220

GaAs

InP

AlSb

Stokes

300220 260 340

Anti-Stokes shift [cm–1] Stokes shift [cm–1]

LO

TO

LO

TO

Fig. 7.21. Raman spectra of three zinc-blende-type semiconductors showing the TO and
LO phonons in both Stokes and anti-Stokes scattering. Note that the vertical scales are
not the same for all spectra. (From [7.67])
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Fig. 7.22. First (peak at 520 cm�1) and second order Raman spectra of Si obtained in the
scattering geometry shown in the inset. The notations for the scattering configuration in
each spectrum are defined in Sect. 7.2.2. (From [7.68])

that these semiconductors are transparent to this wavelength). In this geome-
try both the TO and LO phonons are allowed by the selection rules discussed
in Sect. 7.2.2. Figure 7.22 shows the Raman spectra of Si obtained by Tem-
ple and Hathaway [7.68] in backscattering geometry but with several different
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polarization configurations. These configurations allowed them to extract com-
ponents of the Raman tensor with different symmetries. Notice that there is
only one very strong one-phonon peak at 519 cm�1 (at 305 K), correspond-
ing to the zone-center optical phonons in Si (the TO and LO phonons are
degenerate at zone center in diamond-type crystals as pointed out in Sect. 3.1).
In agreement with selection rules, this peak appears only in scattering con-
figurations where the °25′ components of the Raman tensor are allowed. It
appears rather weakly in the “forbidden” configurations; it is easy to figure
out possible reasons (e. g., imperfect polarizers).

Two-Phonon Raman Spectra

In addition to the one-phonon peak, Temple and Hathaway also observed a
number of weaker structures, which were identified with two-phonon Raman
scattering. While the selection rules for two phonon-scattering in semiconduc-
tors are beyond the scope of this book, they have been studied by several re-
searchers [7.69, 70]. In Si, components of the two-phonon Raman tensor with
symmetries °25′ , °12 and °1 are allowed. Notice that the two-phonon spec-
tra show peaks and shoulders that are reminiscent of structures in the three-
dimensional density of states associated with critical points. This is not sur-
prising since, as we pointed out in Sect. 7.2.1, overtone two-phonon Raman
spectra mimic the phonon density of states. The two-phonon Raman peaks
in Si roughly fall into three groups (similar results are found in zinc-blende-
type semiconductors although the phonon frequencies may be different). The
broad low-energy peak in the range of 200–450 cm�1 in Fig. 7.22 is the re-
sult of overtone scattering from the acoustic phonons. The few bands near
the one-phonon peak are combination modes involving one optical phonon
and one acoustic phonon. Finally, the high-energy peak located between 900
and 1000 cm�1 is due to overtone scattering by two optical phonons. Figure
7.23 shows the two-phonon Raman spectrum in Ge obtained by Weinstein and
Cardona [7.71]. In order to compare the two-phonon Raman spectrum with
the experimental phonon density of states (deduced from neutron scattering
results), these researchers took the linear combination °1 � 4°12 of the two-
phonon Raman spectra and then divided it by the factor [N(ˆ) � 1]2 [where
N(ˆ) is the Bose–Einstein occupation number of the phonon mode with fre-
quency ˆ] to eliminate the effect of phonon occupation number. The resul-
tant “reduced” two-phonon spectrum is the solid curve in Fig. 7.23. This is
compared with the two-phonon “overtone” density of states (broken curve)
obtained from the one-phonon density of states curve based on the phonon
dispersion curves of Ge [7.72] but with the phonon frequency doubled. Except
for the strong, sharp one-phonon peak at around 300 cm�1 in the experimen-
tal spectrum (which could not be completely eliminated because of imperfect
polarizers), the agreement between the two curves is quite good, especially in
the two-acoustic-phonon part of the spectrum. The vertical bars and labels in
this figure highlight the critical points in the Brillouin zone [numbers in paren-
theses denote the phonon branches, counting from lower (TA) to higher (TO)



7.2 Light Scattering Spectroscopies 391

100 200 300 400 500 600
Frequency  [cm–1]

0

50

100

R
ed

uc
ed

 R
am

an
 c

ro
ss

 s
ec

tio
n

3 × cross section

Reduced Raman
cross  section
Density of states

2L(1,2) 2X(1,2) 2W(1,2)

2Σ(1) 2Σ(2)
2Σ(4)

2W(3,4)

2L(3) 2X(3,4)

2L(4)

2X(5,6)
2L(5,6)

2W(5,6)

2Γ(4,5,6)

Fig. 7.23. “Reduced” two-phonon Raman spectrum of Ge compared with the density of
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where N(ˆ) is the Bose–Einstein occupation number of the phonon mode with frequency
ˆ. (From [7.71]). Note that at low frequencies the reduced Raman cross section lies below
the density of states (see Problem 7.15)

frequencies] which contribute to the structures in the two-phonon “overtone”
density of states.

Raman Spectra of Semiconductor Monolayers

The development of high intensity laser sources for Raman spectroscopies has
made it possible to measure the Raman spectra of opaque semiconductors.
Still the thickness of sample probed is of the order of the optical penetration
depth, which is typically larger than 100 nm. With the appearance of optical
multichannel detectors it is now possible to measure the Raman spectra of
monolayers of semiconductor materials. Figure 7.24c shows the Raman spec-
trum of two monolayers of Ge deposited on a Si(100) substrate. It is obtained
by subtracting the spectrum of the Si substrate (Fig. 7.24a) from that of the
Ge layer plus the Si substrate (Fig. 7.24b). Compared with the Raman spec-
trum of bulk Ge, the Ge monolayer shows one extra peak at 410 cm�1. Figure
7.25 shows the thickness dependence of the Raman spectra of Ge monolayers
on Si(100) substrates. For comparison, Fig. 7.25d shows the Raman spectrum
of a bulk Ge-Si alloy. These spectra indicate that the 410 cm�1 peak is also
present in the bulk Ge-Si alloy. It is strongest in the two-monolayer Ge film.
As the Ge film thickness increases, the intensity of this peak decreases rel-
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Fig. 7.24. Raman spectrum (c) of
two monolayers of Ge deposited
on a Si(100) substrate obtained by
subtracting spectrum (a) from (b).
(From [7.64])
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Fig. 7.25. Evolution of Raman
spectra of monolayers of Ge de-
posited on a Si(100) substrate
and then protected by 10 nm of
Si as a function of Ge layer
thickness. These spectra have
been obtained in the same way
as those in Fig. 7.24. Spectrum
(d) is that of a bulk Ge-Si alloy.
(From [7.64])

ative to that of the bulk Ge TO Raman peak at 300 cm�1. All these proper-
ties are consistent with the interpretation that this 410 cm�1 peak is associated
with the vibration of a Ge-Si bond that forms at the interface between the Ge
monolayer and the Si substrate. These results emphasize the power of Raman
spectroscopy for characterizing semiconductor systems.

Raman Spectra of Phonon-Polaritons

Usually the phonon wavevector observed by Raman scattering in semicon-
ductors is too small to be used for mapping out the phonon dispersion over
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the entire Brillouin zone (Exception: the novel technique of Raman scatter-
ing with x-rays, see Fig. 3.3 and [3.28b]). Nevertheless, Raman scattering is a
good technique for measuring dispersion of phonon-polaritons near the zone-
center (Sect. 6.4). We showed in that section that the coupling between the
electromagnetic field and the polarization wave generated by the atomic vi-
bration resulted in polaritons with dispersion given by (6.114b). As shown in
Fig. 6.30, polaritons exhibit considerable dispersion for q � 105 cm�1, a region
which is difficult to probe by neutron scattering but can be conveniently stud-
ied by forward Raman scattering. Figure 7.26a shows a comparison between
the theoretical polariton dispersion in GaP calculated from (6.114b) and the
experimental results obtained by Henry and Hopfield [7.73] using forward Ra-
man scattering. Their scattering geometry is shown in Fig. 7.26b. The broken
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Fig. 7.26. (a) A comparison between the theoretical polariton dispersion (solid curves) in
GaP with experimental points (�, �, �) determined by Henry and Hopfield [7.73]. The
numbers by the data points are values of the scattering angle ı defined by the scattering
geometry shown in (b). The broken lines in (a) represent the variation of Raman fre-
quency as a function of q for different values of ı. The wavevector q has been multiplied
in the abscissa by �c so as to obtain units of energy (eV). A He-Ne laser line (1.96 eV)
was used
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curves in Fig. 7.26a labeled with different values of ı show the variation of the
calculated Raman frequency as a function of q for different values of the scat-
tering angle ı (Problem 7.6). Although their scattering configuration allowed
them to observe the lower polariton branch only, there is no question that the
experimental polariton dispersion is in excellent agreement with theory.

7.2.4 Microscopic Theory of Raman Scattering

To describe microscopically inelastic scattering of light by phonons in a semi-
conductor, we have to specify the state of the three systems involved:

• incident and scattered photons with frequencies ˆi and ˆs, respectively;
• electrons in the semiconductor;
• the phonon involved in the scattering.

In the initial state |i〉 (before scattering occurs) there are, respectively, N(ˆi)
and N(ˆs) photons with the frequencies ˆi and ˆs. There are also Nq phonons
present in the semiconductor (assumed to be at a nonzero temperature T)
while the electrons are all in their ground states (i. e., the valence bands are
completely filled and the conduction band empty). In the final state |f〉, af-
ter Stokes Raman scattering, N(ˆi) has decreased by one while N(ˆs) and
Nq have both increased by one. The electrons remain unchanged. At first
sight it seems that this scattering process does not involve electrons and there-
fore it can be described by an interaction Hamiltonian involving photons and
phonons only. The strength of this interaction, however, is very weak un-
less the photons and phonons have comparable frequency. While such direct
(spontaneous) inelastic scattering of photons by phonons has been proposed
theoretically [7.74], it has not been identified experimentally to our knowl-
edge. The main experimental obstacle is, probably, the lack of laser sources
and single-photon detectors in the far-infrared.

When visible photons are used to excite Raman scattering in a semicon-
ductor, they couple by-and-large only to electrons via the electron–radiation
interaction Hamiltonian �eR in (6.29). The scattering proceeds in three steps.

Step 1. The incident photon excites the semiconductor into an intermediate
state |a〉 by creating an electron–hole pair (or exciton).

Step 2. This electron–hole pair is scattered into another state by emitting a
phonon via the electron–phonon interaction Hamiltonian �e�ion (Sect. 3.3).
This intermediate state will be denoted by |b〉.
Step 3. the electron–hole pair in |b〉 recombines radiatively with emission of
the scattered photon.

Thus electrons mediate the Raman scattering of phonons although they remain
unchanged after the process. Since the transitions involving the electrons are
virtual they do not have to conserve energy, although they still have to con-
serve wavevectors.

We notice that spontaneous emission of the scattered photon is involved
in step 3 and therefore what we have described is known as spontaneous Ra-
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man scattering as distinct from stimulated Raman scattering. In principle, such
spontaneous scattering processes can be described rigorously only by quan-
tizing the radiation fields. We will avoid this again by using the semiclassical
approach described in Sect. 7.1. A vector potential A(ˆs) associated with the
scattered radiation field will be assumed to exist (quantum-mechanical zero-
point amplitude) so that the Raman transition probabilities can be calculated.
Afterwards this stimulated Raman scattering probability is converted into a
spontaneous Raman scattering probability using the ratio between the Ein-
stein A and B coefficients as in (7.1). In the rest of this section we shall write
down only the stimulated scattering probabilities and leave the conversion into
the corresponding efficiencies for spontaneous scattering to the reader.

7.2.5 A Detour into the World of Feynman Diagrams

As long as all the interactions in the above Raman scattering processes are
weak, the scattering probability (for phonons) can be calculated with third-
order perturbation theory. However, it is not a trivial matter to enumerate all
the terms involved in such a third-order perturbation calculation. This is usu-
ally done, systematically, with the help of Feynman diagrams. It is beyond the
scope of the present book to discuss them in detail. Instead we shall simply de-
scribe what they are and how to use them to derive the scattering probability.
Readers can easily find further details in many books on quantum mechanics
and many-body problems (e. g. [7.75–77]).

The rules for drawing Feynman diagrams are:

• Excitations such as photon, phonons and electron–hole pairs in Raman
scattering are represented by lines (or propagators) as shown in Fig. 7.27.
These propagators can be labeled with properties of the excitations such
as their wavevectors, frequencies, and polarizations.

• The interaction between two excitations is represented by an intersection
of their propagators. This intersection is known as a vertex and is some-
times highlighted by a symbol such as a filled circle or empty rectangle.

• Propagators are drawn with an arrow to indicate whether the correspond-
ing excitations (quasiparticles) are created or annihilated in an interaction.
Arrows pointing towards a vertex represent excitations which are annihi-
lated. Those pointing away from the vertex are created.

Propagators

Vertices
Photon

Electron-hole pair or
exciton

Phonon

Electron-radiation interaction Hamiltonian �

Electron-phonon interaction Hamiltonian �

eR

e-ion

Fig. 7.27. Symbols used in drawing Feynman diagrams to represent Raman scattering
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• When several interactions are involved they are always assumed to pro-
ceed sequentially from the left to the right as a function of time.

• Once a diagram has been drawn for a certain process, other possible pro-
cesses are derived by permuting the time order in which the vertices occur
in this diagram.

It should be noted that there may be slight differences among publications in
the above rules for drawing Feynman diagrams.

We shall illustrate the application of Feynman diagrams by using them to
represent the Raman scattering by phonons [7.77, 78]. The diagram for the Ra-
man process described earlier in this section is shown in Fig. 7.28a. The other
five possible permutations of the time order of the three vertices involved in
this process are shown in Fig. 7.28b–f.

(a)

(b)

(d)

(c)

(e)

(f)

ω i

ω i

ωi

ωi

ω i

ω i

ω s

ω s

ωs

ωs

ω s

ωsn

n

n'

n'n n'

n n'

n n'

n n'

n n'

Fig. 7.28a–f. Feynman diagrams for the six scattering processes that contribute to one-
phonon (Stokes) Raman scattering
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After all the possible Feynman diagrams have been drawn, the next step
is to translate them into terms in the perturbation expansion of the scattering
probability. The probability for scattering a system from the initial state |i〉
to the |f〉 state can be derived, as usual, via the Fermi Golden Rule (Sect.
5.2.4). The resulting rules for translating a Feynman diagramm into a term in
the perturbation theory series [7.77] are best illustrated by an example. Let us
consider the diagram in Fig. 7.28a.

The first vertex introduces a term of the form∑
n

〈n|�eR(ˆi)|i〉
[�ˆi � (En � Ei)]

(7.48)

into the scattering probability. In this term |i〉 is the initial state and Ei is
its energy. |n〉 is an intermediate electronic state with energy En. The sign of
�ˆi in the energy denominator depends on whether the quantum of energy
�ˆi was absorbed (� sign) or emitted (� sign). Notice the summation over
all intermediate states |n〉 in (7.48). When there is a second vertex, as in Fig.
7.28a, (7.48) is multiplied by another similar term to become∑

n,n′

〈n′|�e�ion(ˆ0)|n〉 〈n|�eR(ˆi)|i〉
[�ˆi � (En � Ei)][�ˆi � (En � Ei) � �ˆ0 � (En′ � En)]

, (7.49a)

where |n′〉 is another intermediate state. The sign of �ˆ0 in the denominator is
negative now because the quantum of energy (a phonon in this case) is emit-
ted. Thus each vertex adds a term involving the matrix element of the inter-
action Hamiltonian to the numerator and an energy term to the denominator.
Notice how the second energy denominator also involves the energy denomi-
nator for the first vertex. By simplifying the energy denominators (7.49a) can
be rewritten as∑

n,n′

〈n′|�e�ion(ˆ0)|n〉 〈n|�eR(ˆi)|i〉
[�ˆi � (En � Ei)][�ˆi � �ˆ0 � (En′ � Ei)]

. (7.49b)

This process is continued until the last vertex in the diagram is reached. A
diagram with n vertices will therefore produce a term containing n matrix el-
ements in the numerator. In principle, there should also be n energy terms in
the denominator. The last energy denominator, however, represents the over-
all energy conservation condition and is converted to a delta function. For
example, the last energy term in the denominator corresponding to Fig. 7.28a
can be written as

[�ˆi � (En � Ei) � �ˆ0 � (En′ � En) � �ˆs � (Ef � En′)]

� [�ˆi � �ˆ0 � �ˆs � (Ei � Ef)].

We have pointed out that Raman scattering of visible photons by phonons is
mediated by electrons. However, the electrons are unchanged after the scat-
tering process so the final electronic state |f〉 in this case should be identical
to the initial state |i〉. Hence the last term in the denominator is simply

[�ˆi � �ˆ0 � �ˆs].
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It should vanish because of the energy conservation condition of Raman scat-
tering (Sect. 7.2.1). As a result it must be replaced by the delta function
‰[�ˆi � �ˆ0 � �ˆs] when writing down the scattering probability using the
Golden Rule.

If diagram Fig. 7.28a is the only term contributing to the scattering process,
the scattering probability as given by the Golden Rule will be

Pph(ˆs) �

(
2
�

) ∑
n,n′

∣∣∣∣ 〈i|�eR(ˆs)|n′〉 〈n′|�e�ion|n〉 〈n|�eR(ˆi)|i〉
[�ˆi � (En � Ei)][�ˆi � �ˆ0 � (En′ � Ei)]

∣∣∣∣2

‰[�ˆi � �ˆ0 � �ˆs].

(7.50a)

×

To obtain the scattering probability Pph due to all six diagrams in Fig. 7.28, we
have to sum first their individual contributions using the above rules and then
square (Problem 7.8):

Pph(ˆs) �

(
2
�

) ∣∣∣∣ ∑
n,n′

〈i|�eR(ˆi)|n〉 〈n|�e�ion|n′〉 〈n′|�eR(ˆs)|i〉
[�ˆi � (En � Ei)][�ˆi � �ˆ0 � (En′ � Ei)]

�
〈i|�eR(ˆi)|n〉 〈n|�eR(ˆs)|n′〉 〈n′|�e�ion|i〉
[�ˆi � (En � Ei)][�ˆi � �ˆs � (En′ � Ei)]

�
〈i|�eR(ˆs)|n〉 〈n|�e�ion|n′〉 〈n′|�eR(ˆi)|i〉

[��ˆs � (En � Ei)][��ˆs � �ˆ0 � (En′ � Ei)]

�
〈i|�eR(ˆs)|n〉 〈n|�eR(ˆi)|n′〉 〈n′|�e�ion|i〉

[��ˆs � (En � Ei)][��ˆs � �ˆi � (En′ � Ei)]

�
〈i|�e�ion|n〉 〈n|�eR(ˆi)|n′〉 〈n′|�eR(ˆs)|i〉

[��ˆ0 � (En � Ei)][��ˆ0 � �ˆi � (En′ � Ei)]

�
〈i|�e�ion|n〉 〈n|�eR(ˆs|n′〉 〈n′|�eR(ˆi)|i〉

[��ˆ0 � (En � Ei)][��ˆ0 � �ˆs � (En′ � Ei)]

∣∣∣∣2

× ‰(�ˆi � �ˆs � �ˆ0).

(7.50b)

By substituting some typical values appropriate for semiconductors for the
parameters in (7.50b), Loudon [7.57] estimated the Raman efficiency to be
around 10�6–10�7 [sterad cm]�1. Usually (7.50b), in spite of its generality, is
not too useful for calculating absolute Raman efficiencies because of the large
number of unknown parameters involved (such as electron–phonon interac-
tion matrix elements).

7.2.6 Brillouin Scattering

We have already pointed out in Sect. 7.2 that inelastic scattering of light by
acoustic waves was first proposed by Brillouin [7.53]. As a result, this kind
of light scattering spectroscopy is known as Brillouin scattering. In terms of
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physics, there is very little difference between Raman scattering and Brillouin
scattering. In semiconductors the main difference between them arises from
the difference in dispersion between optical and acoustic phonons. Except for
infrared-active phonons (polaritons), optical phonon energies typically do not
change much for a wavevector q varying between 0 and 106 cm�1 (which cor-
responds to backscattering), on the other hand the acoustic phonon dispersion
is linear with q:

ˆac(q) � vacq, (7.51)

where ˆac and vac are, respectively, the acoustic phonon angular frequency and
velocity. Substituting this phonon dispersion into the energy and wavevector
conservation equations for light scattering in crystals, we obtain the Brillouin
frequency, i. e., the acoustic phonon frequency ˆac involved in the Brillouin
scattering [7.79]

ˆac(q) � (ˆivac/c)[(ni � ns)2 � 4nins sin2(ı/2)]1/2, (7.52)

where c is the velocity of light, ni and ns are the refractive indices of the
medium at the incident and scattered photon frequencies, respectively, (ni �
ns) and ı is the scattering angle (inside the medium) as defined in Fig. 7.26. In
(7.52) we have neglected terms of higher order in vac/c since they are usually
too small to be observed experimentally. In most semiconductors the differ-
ence between ni and ns is negligible and (7.52) can be simplified to

ˆac(q) ≈ (2niˆivac/c) sin(ı/2). (7.53)

Thus one application of Brillouin scattering is to determine either vac or ni.
The spectral shape of Brillouin scattering deduced from (7.53) is, in prin-

ciple, a delta function for a well-defined scattering angle. In practice, the peak
is broadened by experimental factors such as a nonzero collection angle and
spectrometer resolution. In addition to these external factors, there are intrin-
sic broadening mechanisms, such as phonon lifetime and opacity of the sample.
Let us neglect the external factors and assume that the dominant broaden-
ing mechanism is the damping of the acoustic phonon with damping constant
equal to °q. The Brillouin peak is broadened into a Lorentzian:

Is(ˆs) �
°q

[(ˆi � ˆs � ˆac)2 � °2
q]

. (7.54)

Many semiconductors are strongly absorbing at laser frequencies such as
those of the Ar and Kr ion lasers used in scattering experiments. This attenua-
tion of the laser light introduces uncertainties in the photon wavevector inside
the semiconductor. Suppose the refractive indices ni and ns are now complex:

ni � Ëi � iκi, (7.55a)
ns � Ës � iκs, (7.55b)

where Ë and κ are the real and imaginary parts of n. The photon wavevector
is now defined in terms of the real refractive index:
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k′ � Ëˆ/c, (7.56a)

while the imaginary refractive index results in the photon wavevectors inside
the semiconductor spreading by the amount

k′′ � κˆ/c. (7.56b)

As a result, the Brillouin peak is also broadened into a Lorentzian [7.80]

Is(q) �
I0ˆ2

s

c2[(q � k′
i � k′

s)2 � (k′′
i � k′′

s )2]
, (7.57)

where I0 is a material-dependent parameter. Pine and Dresselhaus [7.81]
pointed out that when the scattering occurs very close to the sample surface,
as in opaque material, the acoustic phonon consists of the incident wave plus
a wave reflected from the sample surface. When the contributions from both
waves are included the lineshape becomes an asymmetric Lorentzian. The
lineshape derived by Dervisch and Loudon [7.80] is given by

Is(q) �

(
ˆ2

s

c2

)
4I0q2

[(q � k′
i � k′

s)2 � (k′′
i � k′′

s )2] � 4(k′
i � k′

s)2(k′′
i � k′′

s )2 . (7.58)

A slightly different expression has been obtained by Pine and Dresselhaus
[7.81]. This asymmetric Lorentzian has been observed in the Brillouin spec-
tra of several semiconductors, as will be shown in the next section.

7.2.7 Experimental Determination of Brillouin Spectra

a) Experimental Techniques

Because the frequency difference between incident and scattered light in Bril-
louin scattering (typically a few cm�1) is much smaller than in Raman scat-
tering, Brillouin spectra are usually analyzed by Fabry-Perot interferometers
rather than grating spectrometers. Since many semiconductors are opaque to
visible lasers, the amount of light elastically scattered at surface imperfections
tends to be very large. One interferometer often does not have sufficient stray
light rejection and resolution to separate the Brillouin peak from the strong
elastic peak. As in Raman scattering, this problem can be solved by using
several interferometers in tandem. One such tandem system is shown in Fig.
7.29a. It consists of a plane-parallel Fabry-Perot interferometer (labeled PPFP
in the figure) followed by a confocal spherical one (labeled CSFP) with the
former used as a pre-filter. It is located inside a pressure cell containing an
inert gas. The separation between its two plane mirrors is tuned by changing
the pressure inside the cell. The mirror spacing in the spherical Fabry-Perot is
tuned via piezoelectric transducers (PZT).

The most important development in Brillouin scattering instrumentation
was the invention of the multi-pass Fabry-Perot interferometer by Sandercock
[7.84]. The arrangement of one such unit is shown in Fig. 7.29b. By sending the
scattered beam through the same plane-parallel interferometer several times
using retroreflectors, the problem of synchronization between tandem interfer-
ometer is avoided.
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Fig. 7.29. (a) Schematic diagram of a Brillouin-experiment setup based on two Fabry–
Perot interferometers in tandem. (b) Construction of a multipass Fabry–Perot interfer-
ometer designed by Sandercock [7.82–84]. (From [7.79])

b) Experimental Brillouin Spectra in Semiconductors

Figure 7.30 shows some of the Brillouin scattering spectra measured by
Sandercock [7.82, 83] for opaque semiconductors like Si, Ge and GaAs. The
incident laser (488 nm) was strongly absorbed in the cases of Ge and GaAs
while the penetration depth was considerably longer for Si. The asymmetry
in the Brillouin spectra of Ge and GaAs caused by opacity is quite apparent.
From the known acoustic phonon velocities, Sandercock [7.82] was able to de-
termine the complex refractive index of Ge.

7.2.8 Resonant Raman and Brillouin Scattering

Equation (7.42 and 7.50) show that additional information about the medium,
besides phonon energies, can be deduced by Raman scattering. The determina-
tion of the phonon energies utilizes only the energy conservation condition of
light scattering. The scattering cross section contains, at least in principle, in-
formation on electron–phonon interaction, electron–radiation interaction and
the electron band structure. However, it is usually impossible to extract this in-
formation because of the summation over many intermediate states involved
in (7.50). This becomes feasible if only one or a small number of interme-
diate states make the dominant contribution to (7.50). One way to achieve
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Fig. 7.30. Brillouin spectrum
of (a) GaAs, (b) Si and
(c) Ge measured by Sander-
cock [7.82, 83] using a multi-
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set in (a) shows the scattering
geometry. R denotes the elas-
tic Rayleigh peak. L denotes
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this is by tuning the incident laser to resonate with a strong electronic inter-
band transition. The enhancement of the Raman cross section near an elec-
tronic resonance is known as resonant Raman scattering. Obviously, resonant
Brillouin scattering is defined similarly. Such Raman and Brillouin excitation
spectroscopy requires tunable lasers as the excitation sources. As pointed out
in Sect. 7.2.3, several kinds of continuously tunable lasers, such as dye lasers,
are now widely available. The photon energy dependence of the Raman (or
Brillouin) cross section is known as the Raman (or Brillouin) excitation spec-
trum or resonant Raman (or Brillouin) profile.

Under resonance conditions, the contributions of the nonresonant terms of
the scattering probability can be regarded as constant. In addition, of the six
Feynman diagrams involving the resonant state, the one shown in Fig. 7.28a
has the strongest contribution. To see this we assume the initial electronic
state is the ground state |0〉 of the semiconductor with no electron–hole pairs
excited, and its energy is taken to be zero. We shall denote the resonant in-
termediate state as |a〉 with energy Ea. The Raman scattering probability for
a given phonon mode in the vicinity of Ea (after summing over ˆs to remove
the delta function) can be approximated by

Pph(ˆi) ≈
(

2
�

) ∣∣∣∣ 〈0|�eR(ˆi)|a〉 〈a|�e�ion|a〉 〈a|�eR(ˆs)|0〉
(Ea � �ˆi)(Ea � �ˆs)

� C

∣∣∣∣2

, (7.59)

where C is a constant background. Notice that there are other terms in (7.50)
which contain either (Ea ��ˆi) or (Ea ��ˆs) in their denominators. These terms
will also exhibit enhancement when �ˆi is in the vicinity of Ea. However, the dif-
ference between �ˆi and �ˆs is equal to the phonon energy and is usually small
compared with electronic energies. Whenever (Ea ��ˆi) is small (Ea ��ˆs) will
also be small. Thus the term we include in (7.59) has “almost” two resonant de-
nominators while the other terms contain at most one. [Except for special circum-
stances, these two denominators do not vanish simultaneously. The case Ea � �ˆi
is referred to as an incoming resonance while Ea � �ˆs is an outgoing resonance.]
We have therefore lumped these less resonant terms together with the nonreso-
nant contributions in the constant C. It is important to note that the constant term
C is added to the resonant term first and then the total sum is squared to obtain
the scattering probability. This means that it is possible for the resonant term to
interfere with C depending on the relative sign. While such interference effects
are not uncommon [7.85, 86], we shall neglect them here. Within this approxi-
mation the constant term can be put outside the absolute square sign in (7.59).

When either the incident (�ˆi) or the scattering photon energy (�ˆs) is
resonant with Ea, (7.59) diverges (the energy denominator vanishes). One way
to avoid this unphysical situation is to assume that the intermediate state |a〉
has a finite lifetime Ùa due to radiative and nonradiative decay processes. As
a result, Ea has to be replaced by a complex energy Ea � i°a, where °a is the
damping constant [7.1] related to Ùa by °a � �/Ùa. If the resonant state Ea is a
discrete state (such as a bound state of an exciton) and is well separated from
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other intermediate states, the Raman scattering probability in the vicinity of
Ea can be written as5

Pph ≈
(

2
�

) ∣∣∣∣ 〈0|�eR(ˆs)|a〉 〈a|�e�ion|a〉 〈a|�eR(ˆi)|0〉
(Ea � �ˆi � i°a)(Ea � �ˆs � i°a)

∣∣∣∣2

. (7.60)

If the phonon involved in the Raman scattering has a nonnegligible damp-
ing constant °0, it can also be included in (7.60) by replacing �ˆs with
�ˆi � (�ˆ0 � i°0).

In general the behavior of Raman cross sections under resonance condi-
tions depends on whether the intermediate states form a continuum or not.
In the case of resonance with excitons, the results depend on the magnitude
of the exciton oscillator strength and also on its damping constant. We shall
consider some typical cases of resonant Raman and Brillouin scattering.

a) Resonant Raman Scattering in the Vicinity of Absorption Continua

For simplicity we shall consider resonant Raman scattering in the vicinity of a
direct bandgap formed by spherical conduction and valence bands. In addition,
we assume that (1) the wavevectors of the incident and scattered photons and
of the phonon are all negligible and (2) the three matrix elements in (7.60)
are constant and independent of wavevectors. With these simplifications the
dependence of Pph on the incident photon energy �ˆi can be expressed as

Pph ∝
(

1
�ˆ0

)2 ∣∣∣∣ 1
Ea � �ˆi � i°a

�
1

Ea � �ˆs � i°a

∣∣∣∣2

. (7.61)

By using (4.51) to express (Ea � �ˆi � i°a)�1 in terms of real and imaginary
parts and then comparing the results with the expressions (6.48 and 49) for the
real and imaginary parts of the dielectric functions in the vicinity of a direct
bandgap, we can express Pph in terms of the complex dielectric function Â:

Pph ∝
(

1
�ˆ0

)2

|Â(ˆi) � Â(ˆs)|2. (7.62)

Martin [7.87b] has presented a more rigorous derivation of this result plus dis-
cussions of the effects of nonzero phonon wavevectors on resonant Raman
scattering.

In the limit that the phonon energy approaches zero, (7.62) can be rewrit-
ten as

Pph ∝
∣∣∣∣ �Â
�E

∣∣∣∣2

. (7.63)

Since the phonon frequency in Brillouin scattering is quite small, we may
expect (7.63) to be more valid for resonant Brillouin experiments. One way

5 The reader may wonder why the ˆ4
s term of (7.42) does not appear in (7.60). For a

solution to the puzzle see [7.87a].
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to state the result of (7.63) is that resonant Raman and Brillouin scattering
can be regarded simply as a form of modulation spectroscopy. The same con-
clusion can be reached by starting from the macroscopic theory of Raman
scattering in Sect. 7.2.1. In this approach the atomic vibrations modulate the
electric susceptibility ¯ (hence also the dielectric function) at the phonon fre-
quency. When the damping of the electrons is larger than the phonon fre-
quency ˆ0 the resulting oscillation of the electrons at the phonon frequency
is over-damped and the modulation appears to them to be static. As a result,
the term (�¯/�Q)0 in the Raman tensor �, see (7.37), can be regarded as a
derivative of ¯ with respect to a static modulation Q. For example, if an optical
phonon of amplitude Q changes the bandgap energy by an amount ‰Eg then
� is proportional to (�¯/�Eg) for photon energy in the vicinity of Eg. Within
this approximation the dispersion of the Raman intensity Is is proportional to
|�¯/�Eg|2 or |�Â/�E|2. The tensor � for Brillouin scattering (the Brillouin ten-
sor) is actually the derivative of ¯ with respect to strain (i. e., the so-called
elasto-optic constants) contracted with the strain induced by the correspond-
ing acoustic phonon (Problem 7.7).

Comparison of (7.63) with experimental results is complicated by the fact
that the lowest energy bandgap in most diamond- and zinc-blende-type semi-
conductors involves two transitions (E0 and E0 � ¢0) split by spin–orbit cou-
pling. The data points in Fig. 7.31 show the experimental dispersion in the
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Fig. 7.31. The room temperature Raman cross section of the TO phonon in GaP plot-
ted as a function of the incident photon frequency ˆL relative to the bandgap frequency
ˆ0. The broken curve contains the contribution from the E0 transition only while the
solid curve includes also that from the E0 � ¢0 transition. In both curves the bandgap
frequency was taken to be equal to the actual bandgap frequency ˆ0 plus half of the
phonon frequency (ø0). (From [7.88])
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Raman cross section of the TO phonon in GaP at room temperature. The
broken curve is a plot of the calculated dispersion in |�¯/�E|2 including only
the contribution of the E0 transition. The solid curve is calculated similarly but
including the E0 � ¢0 transitions. In the theoretical curves the bandgap fre-
quency was taken to be equal to the actual bandgap frequency ˆ0 plus half
of the phonon frequency ø0. For more recent low temperature data on GaP
where incoming and outgoing resonance can be separated see [7.89].

b) Resonance Raman Scattering at Excitons

Free Excitons

In Fig. 7.31 the enhancement in the Raman cross section at resonance is only
two orders of magnitude relative to the nonresonant background. Further-
more, only a limited amount of information about the electron–phonon in-
teraction and the energy band structure is obtained from these measurements.
The importance of excitons as resonant intermediate states has been pointed
out by Birman and co-workers [7.90, 91]. Because of their small damping con-
stants at low temperatures, both free excitons and bound excitons have been
shown to enhance the Raman cross section by several orders of magnitude.
Such strong resonance effects have made possible the observation of new
phenomena, such as wavevector-dependent electron–LO phonon interaction,
electric-dipole forbidden transitions, higher order Raman scattering involving
more than three phonons, and the determination of exciton dispersions. Many
reviews [7.78, 92, 93] have been written on these topics. Here we limit our-
selves to mentioning some of the representative results.

Using (7.60) we can write the Raman scattering probability of a phonon in
the vicinity of an excitonic series indexed by the principal quantum number n
(Sect. 6.3) as

Pph ≈
(

2
�

) ∣∣∣∣∣∣
∑
n,n′

〈0|�eR(ˆi)|n〉 〈n|�e�ion|n′〉 〈n′|�eR(ˆs)|0〉
(En � �ˆi � i°n)(En′ � �ˆs � i°n′)

∣∣∣∣∣∣
2

. (7.64)

In the special case where the 1s exciton state is the only important intermedi-
ate state, (7.64) simplifies further to

Pph ≈
(

2
�

) ∣∣∣∣ 〈0|HeR(ˆi)|1〉 〈1|He�ion|1〉 〈1|HeR(ˆs)|0〉
(E1 � �ˆi � i°1)(E1 � �ˆs � i°1)

∣∣∣∣2

. (7.65)

An example of resonant Raman scattering in the vicinity of such a sin-
gle isolated exciton level is found in the layered-type semiconductor GaSe.
The quasi-two-dimensional nature of the crystal structure enhances its exci-
ton binding energy and oscillator strength. Figure 7.32 shows the enhance-
ment in the Raman cross section of its 255 cm�1 LO phonon in the vicinity
of its n � 1 exciton at 2.102 eV [7.94]. Notice that both the Stokes and the
anti-Stokes Raman modes show two resonance peaks of equal strength as pre-
dicted by (7.65). One of these peaks occurs when the incident photon energy
�ˆi is resonant with the exciton (indicated by the arrow labeled X) and corre-
sponds to the incoming resonance. The second one results from the resonance
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Fig. 7.32. Enhancements in the Raman cross sections of the 255 cm�1 LO phonon mode
in GaSe plotted as a function of the incident photon energy for T � 80 K. In addition
to the one-phonon mode in both Stokes and anti-Stokes scattering, the higher order mul-
tiphonon modes are also shown. The broken curves drawn through the data points are
just to guide the eye. Notice that the higher order modes tend to show a much stronger
outgoing resonance. (From [7.94])

of the scattered photon energy �ˆs with the exciton and is the outgoing res-
onance. Notice that the outgoing resonance in the anti-Stokes mode occurs
at one phonon energy below the exciton energy (indicated by X � LO). The
reason why the observed enhancements are so strong is because the damping
of the exciton is only about 3 meV. In Fig. 7.32 we find strong resonance not
only in the one-phonon modes but also in the higher order modes. Notice that
in these multiphonon resonant Raman profiles the outgoing resonance peaks
tend to be stronger than the incoming ones. We shall return to this point later
in this section.

Bound Excitons

Bound excitons (Sect. 7.1.4) which have “giant” oscillator strength [7.95] and
long nonradiative lifetimes are also good candidates for studying resonant Ra-
man scattering. An exciton which is strongly localized around an impurity is
expected to interact strongly with the vibrational modes of that impurity. If
these vibrational modes are also localized at an impurity, they are known as
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Fig. 7.33. Enhancements in the Raman intensity
of the 116 cm�1 vibrational mode of Cl donors
in CdS doped with 2 × 1017 cm�3 of Cl plotted
as a function of the incident photon energy. The
arrow labeled I2 is the energy of excitons bound
to the Cl donors determined from photolumi-
nescence. The solid curve is a plot of (7.66) as-
suming the matrix elements are constant [7.96b].
Temperature equal to 2 K

local modes [7.96a]. Thus we expect the local modes of a given impurity to
show specially strong enhancement at excitons bound to the same impurity.
In this way resonant Raman scattering can be a useful technique for studying
a small quantity of impurities in a host crystal. As an example of this ap-
plication we show in Fig. 7.33 the very sharp and strong enhancement of the
116 cm�1 vibrational mode of shallow Cl donor impurities in CdS measured at
2K [7.96b]. This resonance occurs at 2.5453 eV, i.e., at the energy of excitons
bound to shallow Cl donors (indicated by the arrow labeled I2). The sample
contained 2 × 1017 cm�3 of Cl and at this low concentration the Raman signal
from the Cl vibrational modes should normally be too weak to be observed.
The solid curve in Fig. 7.33 is a plot of (7.65) modified to include the damping
of the impurity vibrational mode:

Pph ≈
(

2
�2

) ∣∣∣∣ 〈0|�eR(ˆi)|b〉 〈b|�e�ion|b〉 〈b|�eR(ˆs)|0〉
(Eb � �ˆi � i°b)(Eb � �ˆs � i°0)

∣∣∣∣2

. (7.66)

Eb and °b are, respectively, the energy and damping of the bound exciton,
and °0 is the damping of the impurity vibrational mode. This modification is
necessary because °0 (equal to 2.8 meV) is larger than 10°b (°b being equal
to 0.25 meV). As a result of the large °0 the outgoing resonance is about 100
times weaker than the incoming resonance.

Electric-Dipole-Forbidden Excitons

One can take advantage of the extremely strong enhancement in Raman
cross sections at resonance with sharp excitons to study weak electric-dipole-
forbidden excitons. In Sect. 6.3.2 we pointed out that the 1S state of the low-
est energy exciton series (also known as the yellow exciton series) in the
centrosymmetric crystal Cu2O is electric-dipole forbidden by the parity se-
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lection rule. This is also true for its higher S- and D-symmetry states in the
same series. These levels can be optically excited via electric-quadrupole and
magnetic-dipole transitions. However, they are very difficult to observe in ab-
sorption experiments because they are masked by the weakly electric-dipole-
allowed P-symmetry transitions. The zone-center phonons in Cu2O also have
definite parity (Problem 3.1). Most of them have odd parity and therefore are
not Raman active. Washington et al. [7.97] have taken advantage of these par-
ity selection rules to observe enhancement in the Raman cross sections of odd
parity phonons in Cu2O at the forbidden excitons. They were able to deter-
mine accurately the energies of the normally forbidden S and D exciton series
via resonant Raman scattering. Their experimental results for the 109 cm�1

°�
12 (also called °12′ or °�

3 ) mode are plotted in Fig. 7.34.
These results can be understood on the basis of (7.50a). First we shall as-

sume that one of the exciton–photon interactions is an electric-dipole transi-
tion (to be denoted as ��

eR since it has odd parity) while the other one is an
electric-quadrupole or magnetic-dipole transition (to be denoted as ��

eR). Of
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Fig. 7.34a,b. Enhancements in the Raman cross section of the odd-parity °�
12 (109 cm�1)

mode of Cu2O plotted as a function of the incident photon energy in the region of the
yellow excitonic series. (a) The peaks in the Raman excitation spectrum are identified as
incoming resonances with the electric-dipole forbidden series of S and D symmetries (see
red tics on the abscissa). (b) The outgoing resonance peaks are similarly identified. T � 4
K. (From [7.97])
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the two intermediate exciton states n and n′, again one will have even par-
ity (for example yellow excitons in S and D states) while the other will be
odd (i. e., P states of the yellow exciton series in Cu2O). It should be remem-
bered that these symmetries refer to the symmetry of the exciton envelope
functions only. These envelope functions are multiplied by the Wannier func-
tions for the electron and the hole to form the total wavefunction for the exci-
ton, see (6.72). Since the binding energies of the yellow excitons of Cu2O are
small, one can use instead of Wannier functions the periodic Bloch functions
of the corresponding band edges, [see (4.32)] which are both even: the absorp-
tion edge of Cu2O is direct but forbidden (see Sect. 6.2.7). Correspondingly,
transitions via ��

eR to excitonic states with an even envelope function will be
(dipole) forbidden while those to states with odd envelope functions will be
allowed, and vice versa for the quadrupole or magnetic dipole transitions in-
duced by ��

eR. With these results in mind, one can easily rewrite (7.50a) such
that all the matrix elements in the numerator are nonzero:

Pph ≈
(

2
�

)∣∣∣∣ 〈0|��
eR(ˆi)|n′(P)〉〈n′(P)|�e�ion|n(S, D)〉〈n(S, D)|��

eR(ˆs)|0〉
(En′ � �ˆi � i°n)(En � �ˆs � i°n)

�
〈0|��

eR(ˆi)|n(S, D)〉 〈n(S, D)|�e�ion|n′(P)〉 〈n′(P)|��
eR(ˆs)|0〉

(En � �ˆi � i°n)(En′ � �ˆs � i°n′)

∣∣∣∣2

(7.67)

provided the electron–phonon interaction �e�ion that connects two states of
opposite parity involves an odd parity phonon. Normally one expects the
electric-quadrupole and magnetic-dipole transition matrix elements in (7.67)
to be several orders of magnitude smaller than the electric-dipole matrix ele-
ments. In principle such “forbidden” (according to the Raman selection rules
given in Sect. 7.2.2) phonon modes should be too weak to be observed. How-
ever, the small optical matrix elements result in small radiative decay proba-
bilities and hence small damping constants provided nonradiative decay pro-
cesses are negligible. At resonance the small damping constant in the denom-
inators in (7.67) “over-compensates” the small matrix elements in the numer-
ator, since the damping constants, when due only to radiative transitions, are
proportional to the square of the optical matrix elements. This is particularly
true for the 1S level, whose lifetime is about 1.5 ns and is determined by its
decay into a lower energy paraexciton state [7.98].

Based on (7.67) one predicts that: (1) only the odd parity phonon modes
are enhanced at the S and D excitonic states; (2) both odd and even parity
phonons are enhanced at the P states; and (3) both incoming and outgoing
resonances should be observed at the S, P and D states. Figure 7.34a shows
that resonances at the 3P and 4P states are indeed observed, although they
are weaker than the resonances at the S and D states. This is presumably a re-
sult of their larger damping constants since the P states have larger probability
of radiative decay. The outgoing resonances were also observed by Washington
et al. [7.97] as shown in Fig. 7.34b. In addition to the °�

12 mode, enhancements
in other odd parity phonons were also observed in Cu2O and found to be in
good agreement with (7.67).
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Wavevector Dependence of Exciton–LO Phonon Interaction

In principle one can determine the magnitude of electron–phonon interactions
by measuring the resonant Raman profile. In practice this is rather difficult be-
cause it is necessary to know the absolute values of the corresponding Raman
cross section. So far this has been accomplished only in a few cases [7.99–
101]. It is much easier to obtain qualitative information or relative magnitudes
of electron–phonon interactions via resonant Raman scattering. As an exam-
ple of such an application, we shall study the wavevector dependence of the
exciton–LO phonon (Fröhlich) interaction and the important role it plays in
resonant Raman scattering.

In Sect. 3.3.5 we investigated the Fröhlich interaction for electrons which
arises from the interaction between the electron and the macroscopic longitu-
dinal electric field produced by an LO phonon. A similar interaction for holes
can be derived by simply changing the sign of the charge. An exciton consists
of an electron and a hole whose motions are correlated. We shall now write
down, without derivation, the Fröhlich interaction Hamiltonian �F,X for an
exciton derived from spherical electron and hole bands with effective masses
me and mh, respectively [7.27]. The resultant expression is easier to under-
stand if we write �F,X in terms of creation and annihilation operators both for
phonons [denoted by C�

q and Cq respectively, see also (3.22, 37)] and for exci-
tons (a�

K and aK respectively, K being the exciton wavevector):

�F,X � (iCF/q)[exp(iphq · r) � exp(ipeq · r)](a�
K�qaK)(C�

�q � Cq), (7.68)

where CF is the same coefficient as defined in (3.39), r is the relative position
of the electron and hole defined in (6.76) and the quantities pe and ph are
defined as

pe �
me

me � mh
and ph �

mh

me � mh
. (7.69)

The term a�
K�qaKC�

�q in (7.68) describes the scattering of an exciton from the
state with wavevector K to state K � q by emission of an LO phonon with
wavevector q. Similarly, the remaining term describes the scattering of the ex-
citon with absorption of an LO phonon.

The matrix element of �F,X for the 1s state of the exciton with Bohr radius
aB can be shown to be given by (see [7.27, 92, 102])

|〈1s|�F,X|1s〉| �
CF

q

(
1

[1 � (phaBq/2)2]2 �
1

[1 � (peaBq/2)2]2

)
. (7.70a)

A plot of this matrix element (squared) is shown in the inset of Fig. 7.35
for pe � 0.4 and ph � 0.6. The important features of this plot are (1)
|〈1s|�F,X|1s〉|2 vanishes for q � 0 and increases as q2 for qaB � 1; (2) it
reaches a maximum at qaB ≈ 2; and (3) it decreases to zero again for large
qaB. This behavior can be understood with the following simple arguments.
For q � 0 the macroscopic electric field of the LO phonon is uniform in space.
Since the exciton is neutral, its energy cannot be changed by a uniform field.
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Raman cross sections in CdS near its
lowest energy exciton measured at 6
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[7.103]. The inset shows a plot of the
squared exciton–LO-phonon interac-
tion matrix element |〈1s|�F,X|1s〉|2 for
pe � 0.4 and ph � 0.6 [see (7.70a)]

For small but nonvanishing values of q, the denominators in (7.70a) can be
expanded in powers of q, to yield, to first order in q,

|〈1s|�F,X|1s〉| � CFqaB
me � mh

me � mh
. (7.70b)

Hence this matrix element is proportional to q, like the matrix element for
optical quadrupole transitions. Notice that (7.70b), and also (7.70a), vanishes
exactly for all values of q when me � mh. This reflects the fact that the effect
of the electric field on the electron is cancelled exactly by the corresponding
effect on the hole. For me �� mh the interaction between the exciton and the
electric field will be largest when the wavelength of the field is of the order of
the exciton Bohr radius or qaB ≈ 1. Finally, when q is very large the matrix
element of the interaction Hamiltonian decreases as q�5.

The wavevector dependence of the matrix element in (7.70) has a strong
influence on the Raman selection rule for LO phonon scattering when ex-
citons form resonant intermediate states. As we pointed out in Sect. 7.2.2,
one-phonon Raman selection rules are usually derived based on the assump-
tion that the phonon wavevector q is zero. This assumption makes it possi-
ble to deduce the nonzero and linearly independent elements of the Raman
tensor � using only the symmetry properties of the crystal. If q is nonzero
the allowed symmetry operations are those that leave q also invariant, and
hence the resultant Raman selection rule will now depend on the direction
of q. Breakdown of the Loudon Raman selection rules for LO phonons at
resonance with excitons was observed by Martin and Damen [7.104] in CdS
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and was labeled “forbidden” scattering. It was found that the enhancement
of the LO phonon in the “allowed” scattering configuration was weaker than
those in the “forbidden” geometries. Furthermore, the enhancement was al-
ways strongest when the incident and scattering radiations were polarized par-
allel to each other, irrespective of the symmetry of the crystal. These results
(Fig. 7.35) were explained in terms of the wavevector-dependent exciton LO-
phonon interaction by Martin [7.103]. Colwell and Klein [7.105] tried to ver-
ify directly the wavevector dependence in the one-LO-phonon Raman scat-
tering resonant at excitons in CdS by comparing the forward (q ≈ 0) and
backward scattering (q maximum) cross sections. They found nearly the same
results for both cases and concluded that defect-induced scattering led to a
breakdown of wavevector conservation, i. e., to a matrix element larger than
that of (7.70a,b), nearly independent of the wavevector of the laser and scat-
tered light. Asymmetry in forward and backward resonant Raman scattering
of LO phonons was later observed in high quality CdS crystals by Permogorov
and Reznitsky [7.106] and by Yu [7.92]. Gross et al. [7.107] adopted a differ-
ent approach. They measured the ratio of the intensities between the “forbid-
den” one-LO phonon scattering in CdS and the wavevector-independent two
LO phonons. The measured ratios were found to vary with excitation pho-
ton energy in accordance with the q�2 dependence in the squared exciton-LO
phonon matrix element. Since then it has been shown that it is possible to
choose scattering configurations such that the “allowed” LO phonon Raman
tensor (due to the deformation potential interaction) will interfere either con-
structively or destructively with the wavevector-dependent “forbidden” tensor
[7.86, 101]. More recent calculations show that resonant profiles and absolute
scattering efficiencies can be reproduced provided the exciton continuum is
included [7.100, 101].

Exciton-Mediated Multiphonon Resonant Raman Scattering

In Fig. 7.32 we found that, in resonant Raman scattering of the 255 cm�1

LO mode in GaSe in the vicinity of its lowest energy exciton state, not only
does the one-phonon mode become strongly enhanced but the higher order
multiphonon modes also exhibit large enhancements whose strengths decrease
slowly with the scattering order. Such strong multi-LO-phonon scattering was
first observed in CdS by Leite et al. [7.108] and Klein and Porto [7.109]. In
CdS up to nine LO-modes have been observed (Fig. 7.36). At first sight it
seems that such n-order Raman processes with n � 1 should be extremely
weak since they should involve scattering of excitons by either n phonons si-
multaneously or by sequential applications of the one phonon interaction n
times. If the first case applies, then the corresponding one-phonon interaction
would be expected to be so strong that perturbation theory would break down.
This is not consistent with other experimental results, such as the rather well
behaved electron mobility that is determined by electron–phonon interaction.
In the second case one would expect each successive application of exciton–
phonon interaction to decrease the scattering cross section by at least one or-
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der of magnitude. These exciton-enhanced multiphonon Raman results have
been explained in terms of the “cascade model” [7.110]. This model can be
understood with the help of Fig. 7.37.

In this model the scattering process is decomposed into sequential steps:
(1) absorption of the incident photon (�ˆi) with excitation of a 1s exciton with
energy E1(K1) and wavevector K1 and the emission of an LO phonon to con-
serve wavevector (but not necessarily energy); (2) relaxation of this exciton
into lower energy states E1(K2) etc. with successive emission of LO phonons
(“cascade”) within the 1s exciton band; (3) radiative recombination of the ex-
citon with emission of the scattered photon (�ˆs) plus another LO phonon
for wavevector (not energy) conservation. The scattering probability for the
n-LO-phonon Raman processes can be written as

P(n)
ph ∝ ·1

(
Ùrel

°1(K1)

)(
Ùrel

°1(K2)

)
. . .

(
Ùrel

°1(Kn�2)

)(
Ùrad

°1(Kn�1)

)
, (7.71)

where ·1 is the absorption coefficient for LO-phonon-assisted creation of ex-
citons, Ùrel is equal to the rate of relaxation of excitons via emission of one LO
phonon, °1(Ki) is the damping of the exciton state E1(Ki), and Ùrad is the rate
of LO-phonon-assisted radiative recombination of excitons. In this model, the
enhancement of the nth order LO phonon relative to the (n � 1)th mode de-
pends on the relative magnitudes of Ùrel and °1(Kn�1). For polar semiconduc-
tors, in which exciton trapping by impurities is not as important as relaxation
via LO phonon emission, the square of the matrix element (7.70a,b) appears
both in the numerators and in the denominators of (7.71), and thus (7.71)
becomes independent of the usually small electron–phonon coupling strength.
Consequently the multiphonon cascade decays slowly with n, as shown in Fig.
7.36. Such cascade processes often terminate when the excitons no longer
have sufficient energy to relax by LO phonon emission. When this occurs,
�ˆs ≈ E1(K ≈ 0). Hence these multiphonon Raman processes tend to ex-
hibit outgoing resonances at excitons. A rigorous formulation of the cascade
model has since been presented by Zeyher [7.111], who concluded that the
above argument is valid in three-dimensional crystals for n ≥ 4. The argument
(Fig. 7.37) considers only phonon-induced real transitions, for which the real
parts of the denominators in the transition probabilities vanish [see for exam-
ple (7.65)]. For n ≤ 3 there is a significant contribution of virtual transitions,
in which these denominators do not vanish.

It was pointed out by Menéndez and Cardona [7.112] that the same model
may explain the much stronger outgoing resonances observed in even the one-
LO mode if one invokes elastic scattering via impurities as a substitute for one
of the LO phonons.

The fact that all the processes depicted in Fig. 7.37 are real (except for the
first and last one away from resonance) suggests that the cascade model of
resonant Raman scattering resembles the photoluminescence process we de-
scribed in Sect. 7.1. Many authors have preferred to denote such processes as
hot luminescence rather than resonant Raman scattering [7.113]. The distinc-
tion between these two kinds of processes has generated a fair amount of con-
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troversy [7.114]. A measurement of the coherence of the scattered photon for
a well defined set of scattering phonons is necessary before one can distinguish
these two types of processes. Since in most resonant Raman experiments such
a measurement is not performed, the choice of label for the emission process
becomes usually a case of semantics.

In closing this section we would like to mention recent calculations of res-
onant Raman scattering by two phonons in several III–V semiconductors that
include not only the discrete exciton states but also the continuum. They show
that the latter is essential for reproducing the experimentally determined scat-
tering efficiencies [7.115].

Exciton Dispersion Determined by Resonant Raman Scattering

One consequence of the cascade model of multi-LO-phonon scattering (i. e.,
of the dominance of real transitions) is that the wavevectors of the LO
phonons involved are determined by the exciton dispersion (since for real
transitions the exciton relaxation processes have to satisfy both energy and
wavevector conservation). In principle, the wavevector of the LO phonon
emitted by an exciton will vary with the exciton energy and hence with �ˆi. As
a result, the corresponding LO-phonon frequencies will change with �ˆi. This
is usually not observed, mainly because most LO phonons have very small dis-
persion near the Brillouin zone center (since the Fröhlich interaction tends to
favor small-q phonons; see, however, [7.116]). The opposite is true for longi-
tudinal acoustic (LA) phonons. Acoustic phonons have linear dispersions (at
least for small q) and the deformation potential electron LA–phonon interac-
tion �e�LA [see (3.21)] has an explicit linear dependence on q. At very low
temperatures, when the LA phonon occupation number NLA is much smaller
than one, the term NLA � 1 in the probability of emitting an LA phonon is
approximately unity. Thus the matrix element (squared) of �e�LA for phonon
emission can be shown to be also proportional to q (Sect. 3.3.1). Unlike the
Fröhlich interaction, the deformation potential interactions between the LA
phonon with the electron and hole do not cancel each other. The net result
is that the squared matrix element |〈1s|�X,LA|1s〉|2 of the exciton LA–phonon
interaction Hamiltonian �X,LA dependends linearly on q. As a consequence,
differences between LA and LO phonons appear: multiphonon resonant Ra-
man peaks involving the former are broader, with a peak position occurring
at the largest value of q allowed by the exciton dispersion. Furthermore, this
peak frequency will change with photon energy as excitons with different en-
ergies are excited as intermediate states. Such dispersive multiphonon Raman
modes involving acoustic phonons have been observed in Cu2O at resonance
with its extremely narrow 1s yellow exciton [7.9]. From the variation of the
Raman frequency with excitation photon energy the exciton effective mass
me � mh was determined.

To illustrate these results we show first in Fig. 7.38 the measured depen-
dence of the frequencies of multiphonon Raman modes in Cu2O on incident
photon frequency, reproduced from [7.9]. Except for the three peaks labeled
X, Y and Z, most of the other Raman peaks have been identified as multi-
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optical-phonon modes based on the known zone-center optical phonon fre-
quencies [7.117, 118]. Unlike the multi-optical-phonon peaks, X, Y and Z ex-
hibit considerable dispersion when the excitation photon frequency is changed.
Yu and Shen [7.9] attributed X and Y to three-phonon scattering by 2°�

12 �TA
and 2°�

12 � LA modes. The corresponding resonant Raman processes are
shown schematically in Fig. 7.39. Because of the similarity between Figs. 7.37
and 7.39 we shall use the cascade model to write down their scattering proba-
bility as

P(m)
ph ∝ ·1

(
Ùrel

°1(K1)

) (
Ùrad

°1(K2)

)
. (7.72)

Here ·1 is the probability of the incident photon exciting a 1s exciton with
wavevector K1 with the assistance of a dispersionless °�

12 optical phonon (with
wavevector �K1 because of wavevector conservation), Ùrel the rate of relax-
ation of the 1s exciton into a lower energy state with wavevector K2 and Ùrad
the rate of radiative recombination of the 1s exciton with emission of a second
°�

12 optical phonon (with wavevector �K2). The energy and wavevector of the
photoexcited 1s exciton are determined by energy conservation:
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E1s(K1) � E1s(0) �
�2K2

1

2M
� �(ˆi � ˆ0), (7.73)

where M is the mass of the exciton, and �ˆi and �ˆ0 are the energies of the
incident photon and the °�

12 phonon, respectively. Notice that while energy
conservation is in general unnecessary for transitions to virtual intermediate
states during Raman scattering, this case is different because of the assump-
tion of real excitation of the 1s exciton. The damping constant (°1) of the 1s
exciton is so small that the scattering probability is greatly enhanced whenever
this exciton is at resonance. Similarly, not only wavevector, but also energy is
conserved in the next step when the exciton relaxes via emission of an LA
phonon:

qLA � (K1 � K2) (7.74)

(where qLA is the LA phonon wavevector) and

ˆLA � �(K2
1 � K2

2)/(2M) (7.75)

(ˆLA being the LA phonon frequency).
Assuming a linear dispersion for the LA phonon,

ˆLA(q) � vLA|q|, (7.76)

with phonon velocity vLA, (7.74 and 75) can be combined into the equation

vLA|K1 � K2| � �(K2
1 � K2

2)/(2M). (7.77)

For a given K1, the solutions to (7.77) range from K2 � K1 (i. e., qLA � 0) to
K2 being diagonally opposite K1 but with magnitude K2 � K1 � (2MvLA/�). In
the latter case qLA reaches the maximum value qLA(max):

qLA(max) � 2K1 � (2MvLA/�). (7.78)
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Using the fact that the exciton–LA interaction squared matrix element
|〈1s|�X,LA|1s〉|2 is proportional to qLA, Yu and Shen [7.9] showed that the re-
laxation rate Ùrel is proportional to q2

LA (see also Problem 7.10). On the basis
of this result they were able to explain quantitatively the experimental line-
shape of the resonantly enhanced 2°�

12 �LA peak and also obtain the theoret-
ical Raman frequency versus excitation photon frequency curves shown in
Fig. 7.38. The theoretical curve for the peak Y is essentially a plot of 2ˆ0 �
vLAqLA(max) with qLA(max) calculated from (7.78). The values of K1 used
in this equation are determined by the incident photon frequency via (7.73).
Since the acoustic phonon velocities can be calculated from the elastic con-
stants, the only unknown quantity is the exciton mass M. Yu and Shen [7.9]
obtained M equal to three times the free electron mass by fitting the 2°�

12�LA
mode. Once M was known they were able to predict the dependence of the
Raman frequencies on ˆi for the 2°�

12 � TA and 2°�
12 � 2LA modes (peaks

X and Z in Fig. 7.38) with no adjustable parameters. The excellent agreement
between the theoretical curves and the experimental points strongly supports
their interpretation, in particular the assumption of real intermediate states,
and shows that the exciton effective mass can be directly determined by res-
onant Raman scattering. In the next section we shall demonstrate that the
exciton-polariton dispersion can also be determined via resonant scattering by
acoustic phonons.

c) Resonant Brillouin Scattering: Exciton-Polaritons

In the previous section we have considered resonant Raman scattering where
excitonic effects are important. In high quality crystals where the exciton
damping is smaller than or comparable to the exciton-radiation interaction
strength, we expect exciton-polariton effects to be important (Sects. 6.3.2 and
7.1.4). The role of the exciton-polariton (to be abbreviated as polariton in the
rest of this section) in an understanding of resonant Raman scattering was
pointed out by several researchers around 1969–1970 [7.119–121]. Here we are
interested mainly in the determination of polariton dispersion curves by reso-
nant Brillouin scattering. Techniques such as emission [7.122] and transmission
through ultrathin plates [7.123] have also been shown to be capable of mea-
suring polariton dispersion (Fig. 6.22). However, so far the most direct method
for achieving this is resonant Brillouin scattering (RBS).

The idea of studying polaritons by RBS, first proposed by Brenig et al.
[7.124], can be understood with the help of Fig. 7.40. Suppose a photon is inci-
dent on a medium from the left as shown in Fig. 6.1. At the surface, polaritons
propagating to the right are excited. The number of polariton branches excited
depends on the frequency of the incident photon. Only the lower branch po-
lariton (Fig. 6.22) will be excited if the incident photon frequency is less than
the longitudinal exciton frequency ˆL. Otherwise two polaritons, one from
each branch, will be simultaneously excited. Within the polariton picture, Bril-
louin scattering is simply scattering of polaritons by acoustic phonons. In a
backscattering geometry, the polaritons propagating to the right are scattered
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by acoustic phonons into states traveling to the left. As shown in Fig. 7.40,
two such polaritons going to the right can be scattered into as many as four
propagating to the left (labeled I′, II′, III′ and IV′) by phonons belonging to
one particular acoustic branch. The arrows in Fig. 7.40 represent the scattering
processes and have been drawn so as to conserve both energy and wavevector.
The slopes of the arrows are determined by the acoustic phonon velocity. In
this respect these arrows are very similar to the one in Fig. 7.39 representing
the scattering of the 1s exciton in Cu2O with emission of an LA phonon. The
main difference between the exciton and polariton picture lies in the existence
of two polariton branches with the same energy. As a result, for each acous-
tic phonon branch, polariton scattering can produce as many as four Brillouin
peaks, compared to only one for the simpler exciton picture. As in the case
of the 2°�

12 � LA mode in Cu2O, the Brillouin frequencies in scattering of
polaritons by acoustic phonons vary with the excitation frequency. Polariton
dispersion curves have been deduced from these variations.

The theoretical predictions of Brenig et al. [7.124] were first verified ex-
perimentally by Ulbrich and Weisbuch [7.125]. Using a cw tunable dye laser
they excited polaritons in GaAs at low temperature and observed enhanced
Brillouin peaks with a double monochromator. The number and frequencies
of these peaks (both Stokes and anti-Stokes) varied with the incident laser
frequency in good agreement with the predictions of Brenig et al. Their re-
sults are reproduced in Fig. 7.41. The theoretical curves in this figure were
calculated with the polariton dispersion obtained by solving:
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c2k2

Â∞ˆ2 � 1 �
ˆ2

L � ˆT(0)2

ˆT(0)2 � ˆT(0)(�k2/M) � ˆ2 (7.79)
4Â0

where Â∞ is the background dielectric constant (related to electronic transi-
tions, other than the exciton being considered), M the exciton mass, and ˆT(0)
the transverse exciton frequency (or ˆT in Fig. 6.22). We notice that this ex-
pression is very similar to that for phonon-polaritons discussed in Sect. 6.4.
In fact one can obtain this result by replacing the transverse optical phonon
frequency in (6.110b) by the corresponding k-dependent exciton frequency:
ˆT(k) � ˆT(0) � (�k2/M). The theoretical polariton curves in Fig. 7.41a
were obtained by fitting the experimental points in Fig. 7.41b with these ad-
justable parameters: Â∞ � 12.55; M � 0.6 times the free electron mass,
�ˆT(0) � 1.5150 eV, and �ˆL � �ˆT(0) � 0.08 meV. Although a fairly large
number of parameters are used to fit the experimental results, these param-
eters can all be determined quite accurately because of the large amount of
information contained in the experimental data. As an example, the broken
curve in Fig. 7.41b was obtained by changing M to 0.3 times the free elec-
tron mass while keeping the other parameters unchanged. This shows that the
2 → 2′ curve in Fig. 7.41b is quite sensitive to the value of M.
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efficiencies of the Brillouin peaks on incident photon energy. (From [7.125])
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Since the pioneering work of Ulbrich and Weisbuch [7.125], RBS has
been studied in almost all semiconductors that show well-defined exciton-
polaritons. It is beyond the scope of this book to review all the subsequent
work in this area. Interested readers are referred to the excellent review arti-
cles [7.93, 126, 127].

PROBLEMS

7.1 Einstein’s A and B Coefficients
Assume a collection of atoms with two nondegenerate levels n and m which
are in thermal equilibrium with radiation from a blackbody radiator. The en-
ergies of these levels are, respectively, En and Em (En � Em). Let Nn and Nm

be the population of electrons in the levels n and m, respectively. At thermal
equilibrium Nm/Nn � exp[�(En � Em)/(kBT)]. Use the principle of detailed
balance to derive (7.1). The frequency of the radiation is Ó with the photon
energy hÓ � En � Em. The velocity of light in the medium is c/nr, where nr is
the refractive index. Let u(Ó)·¢Ó represent the average energy per unit volume
of blackbody radiation with frequency between Ó and Ó � ¢Ó. u(Ó) is given by
the well-known Planck radiation law (derive this law from the Bose–Einstein
distribution function):

u(Ó) �
8hÓ3n3

r

c3{exp[hÓ/(kBT)] � 1} , (7.80)

where kB is the Boltzmann constant and T the temperature. The amount of
energy absorbed per unit time from the radiation field by the atoms is given
by Bmnu(Ó) · Nm. One may call this “stimulated absorption”. At the time Ein-
stein proposed the A and B coefficients, emission was assumed to be always
spontaneous (the rate is denoted by Anm). Einstein realized that if emission
does not depend on u(Ó) while absorption depends on u(Ó) it would be im-
possible to achieve thermal equilibrium between the absorber and the thermal
radiation. As a result he proposed the concept of stimulated emission (rate
denoted by Bnm). One important consequence of this new idea is the laser.
The total amount of energy radiated per unit time by the atoms is now given
by Nn · [Bnmu(Ó) � Anm].

7.2 Band-to-Band Emission Lineshape
From (7.12) calculate the peak frequency and full width at half maximum
(FWHM) of the band-to-band PL spectrum in an intrinsic semiconductor. Cal-
culate and sketch the shape of the luminescence spectrum for a heavily doped
(degenerate) n- or p-type semiconductor. Show that (7.7) does not apply in
this case and discuss why.

7.3 Donor–Acceptor Pair Distributions
a) To produce a type I DAP spectrum in a zinc-blende lattice both the
donors and the acceptors are located on the same face-centered cubic sublat-
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Table 7.3. Lattice vector and degeneracy in a type I DAP spectrum with the donor at the
origin and the acceptor in the first ten shells

1 〈1, 1, 0〉 12
2 〈2, 0, 0〉 6
3 〈2, 1, 1〉; 〈�2, �1, �1〉 12
4 〈2, 2, 0〉 12
5 〈3, 1, 0〉 24
6 〈2, 2, 2〉; 〈�2, �2, �2〉 4
7 〈3, 2, 1〉; 〈�3, �2, �1〉 24
8 〈4, 0, 0〉 6
9 〈4, 1, 1〉; 〈�4, �1, �1〉 12
9 〈3, 3, 0〉 12

10 〈4, 2, 0〉 24

Shell number Lattice vector Degeneracy
in units of a0/2

tice. Suppose that a donor is located at the origin. Show that the lattice vectors
and degeneracies for the acceptor located at the first ten shells are those given
in Table 7.3.

b) Repeat the calculation for a type II distribution.

7.4 Raman Selection Rules for the °4 Optical Phonon
in Zinc-Blende-Type Crystals

a) Starting with the Raman tensors for the optical phonons in (7.39) derive
the selection rules in Table 7.2. Follow the example given in the text. From
the directions of ki and ks determine the phonon wavevector q. Calculate the
polarization directions of the TO and LO components. Use (7.39) to calculate
the Raman tensor components corresponding to these phonon polaritons. Use
(7.38) to arrive at the scattered intensities.

b) Derive the selection rules for the following scattering geometries: x(z, y)y;
x(y, z)y; x(z, x)y; x(y, x)y.

c) Derive the selection rules for backscattering from a (311) face of (i) Si and
(ii) GaAs (by both TO and LO phonons).

7.5 Raman Tensors of Wurtzite Crystals
Derive the forms of the irreducible components of the Raman tensor in a
wurtzite-type crystal such as CdS (refer to Problem 3.7 for its structure and
symmetry) with the point group C6v. The answer can be found in [7.58].

7.6 Raman Scattering Mediated by Polaritons
a) From Fig. 7.26b, which shows the scattering geometry used by Henry and
Hopfield [7.73] to determine the polariton dispersion in GaP, calculate the
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minimum value of polariton wave vector (qmin) that can be measured for a
given scattering angle £.

b) Show that the wavevector of the scattered photon is given by

ks � kL cos £ � (q2 � q2
min)1/2. (7.81)

c) Sketch the dependence of the Raman frequency (ˆL �ˆs) as a function of q
for £ � 0, 2, and 4. Use either some fictitious values for kL and the refractive
index of the medium or values appropriate for GaP and the He-Ne laser used
by Henry and Hopfield [7.73].

7.7 Selection Rules for Brillouin Scattering
The Brillouin tensor is obtained from the derivatives of ¯ with respect to
strain, which we designate here for a cubic crystal by the three independent
constants P11(�¯xx/�exx), P12(�¯xx/�eyy), and P44(�¯xy/�exy). Calculate the selec-
tion rules for forward and backward scattering by LA and TA phonons on a
(100) face of a cubic semiconductor.

7.8 Practice with Feynman Diagrams
a) Translate the Feynman diagrams in Fig. 7.28 into the corresponding terms
in (7.50).

b) Draw Feynman diagrams for processes that contribute to phonon-assisted
optical transitions in an indirect-bandgap semiconductor. Translate these dia-
grams into an expression for the optical transition probability and compare
with the results in (6.61). Fill in the missing terms in (6.61) to obtain the com-
plete expression for the transition probability Rind.

c) Draw Feynman diagrams for all possible two-phonon Raman scattering pro-
cesses. Be sure to introduce a new vertex for the electron–two-phonon inter-
action Hamiltonian. In this interaction one electron or one hole can emit two
phonons simultaneously.

7.9 Symmetry of the Raman Tensor
Starting with (7.50), show that the Raman tensor satisfies the condition (7.47).
(Hint: see [7.57].)

7.10 Raman Scattering of Odd-Parity Phonons in Cu2O
In Sect. 7.2.2 the selection rules for Raman scattering mediated by electric
dipole transitions was discussed. These results are modified when one of the
optical transitions involves an electric quadrupole transition. To derive the
symmetry of the corresponding “allowed” phonons in Cu2O one can start with
the expression (7.67) and note that the matrix element theorem requires that
the symmetry of the state excited by the electric dipole transition has the sym-
metry of an electric dipole (°�

15). Similarly, the state involving the quadrupole
transition must have the symmetry of the quadrupole (°�

25). Use the matrix
element theorem to determine the symmetries of the Cu2O phonons whose
�e�ion matrix elements coupling those states are nonzero.
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7.11 Raman Scattering by Acoustic Phonons in Cu2O
a) Calculate the final state wavevectors K2 of the 1s exciton (with initial
wavevector K1) in Cu2O after the emission of an LA phonon by solving (7.77).
Show that the magnitude of the LA phonon wavevector qLA varies between 0
and 2K1 � (2MvLA/�).

b) Use the Golden Rule to calculate the exciton relaxation rate Ùrel due to
emission of an LA phonon with wavevector qLA. Show that the exciton–LA-
phonon interaction matrix element is proportional to qLA while the density
of final states introduces another term proportional to qLA. As a result Ùrel is
proportional to q2

LA.

7.12 Raman Scattering Under Uniaxial Stress
Using the results of Prob. 6.23 on the effect of uniaxial strain on the zone-
center optical phonons in uniaxially strained diamond and zincblende semi-
conductors, calculate the form of the Raman tensors and the selection rules
involving the zone center optical phonons in uniaxially strained Si and GaAs.
Assume that:
(a) the uniaxial stress is along the [001] axis and the light is incident on the
(100) face
(b) The uniaxial stress is along the [111] axis while the light is incident on a
(1, �1, 0) face.

7.13 Second Order Raman Scattering
Consider the second-order Raman spectra of silicon. They can be separated
into components of °1, °12, and °25′ , symmetry. Describe a procedure to de-
termine experimentally these three components by performing measurements
with several polarization configurations.

7.14 Deformation Potential and Fröhlich Interaction Scattering
Calculate the scattering probability (in arbitrary units) for backscattering by
LO phonons on a (100) surface of GaAs for incident and scattered polar-
izations parallel (both) either to [011] or to [011] using either the ordinary
Raman tensor or the (diagonal) Raman tensor for scattering via Fröhlich in-
teraction.

7.15 “Reduced” Raman cross section and Phonon Density-of-States
Explain qualitatively why the “reduced” Raman cross section of overtone scat-
tering in Ge shown in Fig. 7.23 is smaller than the phonon density-of-states
at low frequencies. (Hint: the electron–phonon interaction matrix element for
the low frequency acoustic phonon modes is proportional to the phonon wave
vector).

7.16 Brillouin Scattering and Acoustic Phonon Velocity
Brillouin scattering can be utilized to determine the acoustic phonon veloc-
ity Óac by using (7.53) provided the refractive index ni of the medium at the
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incident photon frequency is known. Show that it is possible to choose an ex-
perimental scattering geometry for which Óac can be determined from Brillouin
scattering without knowing ni. (Hint: When a photon enters one medium from
another, the component of its wave vector parallel to the interface has to be
conserved. If the scattering geometry is such that the component of the photon
wave vector perpendicular to the interface is not changed during the scatter-
ing then the phonon wave vector will be determined entirely by the change
in the component of the photon wave vector parallel to the interfaces of the
sample. These parallel components of the incident and scattered photons in-
side the sample can be determined without knowing the refractive index of
the sample.)

S UMMARY

In this chapter we have studied light emission processes in semiconductors.
In photoluminescence, external radiation excites electron–hole pairs in the
sample. These relax to lower energy states by giving up their excess energy
to phonons. As a result, the emission produced by the relaxed electron–
hole pairs is characteristic of the bandgap of the semiconductor or of gap
states associated with defects. Therefore, luminescence is a very useful tech-
nique for studying excitons, bound excitons, donors, acceptors and even
deep centers (such as isoelectronic traps). Some of the radiation passing
through a medium is always scattered by fluctuations in the medium. Such
light scattering can also be understood in terms of spontaneous emission
from polarizations induced in the medium by the incident radiation. When
the induced polarization is modulated by phonons (both optical and acous-
tic) the incident light is inelastically scattered. These emission processes,
known as Raman and Brillouin scattering, are very powerful tools for de-
termining the frequency and symmetry of vibrational modes in condensed
media. Their excitation spectroscopies (known as resonant Raman or reso-
nant Brillouin scattering), in which one measures the scattering cross sec-
tion as a function of the incident photon energy, are also extremely useful.
We have shown that they can be used to determine electronic excitation
energies, electron–phonon interaction and dispersion of excitons. Since real
electron–hole pairs are excited in resonant Raman and Brillouin scattering
as well as in photoluminescence, the distinction between the two starts to
blur, leading to the suggestion that resonant light scattering processes, es-
pecially multiphonon ones, can be regarded as a form on nonthermalized
luminescence or hot luminescence.
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The reader will have noticed, especially in Chaps. 6 and 7, that a great deal of
the information thus far presented has been obtained by spectroscopic tech-
niques. By this is meant experiments in which the number of elementary exci-
tations in a given infinitesimal energy interval (density of excitations) is mea-
sured. Among the excitations we have discussed are phonons, which have low
energies, in the range of zero to 0.1 eV. Excitations of electrons from occupied
valence to the empty conduction bands, and the corresponding excitons, have
energies in the 0.1–10 eV range, an energy range which includes visible pho-
tons (1.8–3.5 eV).

We may ask whether excitations at higher energies play any role in semi-
conductor physics. Indeed they do. As an example we mention the collective
plasma oscillations of all the valence electrons which occur at the angular fre-
quency (known as the plasma frequency, see Problem 6.3)

ˆ2
p �

4N˘e2

4Â0m
, (8.1)

where N˘ is the density of valence electrons and m the free electron mass.
The plasma oscillations with frequency defined by (8.1) lead to quantized

excitations, known as plasmons, with a quantum of energy Ep � �ˆp.1 For
a typical tetrahedrally coordinated semiconductor with N˘ � 4/atom we find
from (8.1) a plasmon energy for the valence electrons in the 15–16 eV range.
This range of photon energy is known as the vacuum ultraviolet (VUV) region
because air absorbs UV photons with energies higher than 6 eV. Thus, optical
experiments in this photon energy range require spectrometers with their com-
ponents in vacuum. The constituent atoms in the semiconductors also possess
core electrons, which have a much higher binding energy than their valence
counterparts (e. g., 100 eV for the 2p electrons of Si, 30 eV for the 3d electrons

1 Note that these valence electron plasmons differ from the low frequency free carrier
plasmons defined in Sect. 6.5.1

P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, Graduate Texts in Physics, 4th ed., 
DOI 10.1007/978-3-642-00710-1_8, © Springer-Verlag Berlin Heidelberg 2010 
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of Ge; for a table of core-electron binding energies see [8.1, 2]). These core
levels have properties very similar to those in the isolated atoms and therefore
contain relatively little (but nonnegligible) information about the properties of
semiconductors. Their spectroscopic strength and small shifts from one mate-
rial to another containing the same atoms, however, can be used for chemical
analysis and materials characterization [8.3, 4].

The excitations just mentioned are usually investigated with spectroscopic
techniques involving photons and/or electrons. A beam of one of these types
of particles, usually with a well-defined energy (i.e., monochromatic), impinges
on the sample. The energy of these particles is typically in the range 10–
1500 eV. As a result of the interaction of one of these particles with the sample
an electron or a photon whose energy is less than that of the incident particle
is emitted. The difference in energy between the incoming and outgoing par-
ticles represents the energy of one or more elementary excitations created by
the incident particle in the solid.

Figure 8.1 presents a schematic diagram of these types of spectroscopies.
The photon → 0 case represents the annihilation of a photon by creating an
excitation, such as the absorption of light by the solid discussed in Chap. 6
for photons in the infrared (IR), visible, and near UV range. In the vacuum
UV (�ˆ � 6 eV) conventional gas discharge sources are not as bright as the
light emitted by electrons when bent in the magnetic field of an electron syn-
chrotron or storage ring [8.5, 6], which is known as synchrotron radiation. This
radiation, available nowadays at a few dedicated centers throughout the world,
extends as a continuum from the far IR to the X-ray region, the upper pho-
ton energy cutoff (up to several tens of keV) depending on the energy of the
emitting electrons and the bending magnetic fields. It is strongly collimated
and can be extracted with either linear or circular polarization. Figure 8.2

photon → 0
absorption, reflection
photon → photon
Raman scattering
Compton scattering
X-ray fluorescence
(XES)
photon → electron
photoelectron spectroscopy
(XPS, UPS)
photon → electron + electron
Auger spectroscopy
electron → electron
characteristic energy loss
(EELS)
electron → electron + electron
Auger electron spectroscopy
electron → photon
inverse photoemission
(BIS)
appearance potential spectroscopy
(APS)

Source

Source

Analyzer

Analyzer

Sample

Photons Photons

Electrons Electrons

Fig. 8.1. Schematic diagram of spectroscopic methods involving photons and electrons
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Fig. 8.2. Absorption spectra of GaP, GaAs, and Ge obtained with synchrotron radiation.
The arrows labelled D and P indicate transitions from either d- or p-like core levels. The
subscripts III, IV, V represent elements of group III, IV, V, respectively, and ¢p stands
for spin–orbit splitting [8.7]

shows the absorption spectra of Ge, GaAs, and GaP in the 20–160 eV region
[8.7] as an example of the use of synchrotron radiation in photon absorption
spectroscopy of semiconductors. At around 20 eV these spectra display the tail
of the valence-to-conduction band transitions and transitions involving the 3d
core levels of Ga(DIII). The transitions originating at the 3d core levels of Ge
and As are seen at ∼ 32 eV (DIV) and 43 eV (DV), respectively. At higher
energies, peaks related to the 3p core levels of Ge, Ga, and P are observed
(denoted by PIV, PIII, and PV, respectively). These core levels are often inves-
tigated by photoelectron spectroscopies, as discussed below.

Monochromatized synchrotron radiation is also often used as a source in
spectroscopies in which a photon is absorbed and an electron is emitted, a pro-
cess known as photoemission. The peaks in the energy spectra of the emitted
electrons exhibit shifts with respect to the energy of the incident photon cor-
responding to the binding energies of core electrons in the respective atoms.
For small loss energies, details of the occupied valence electron states are also
obtained.

A complementary family of spectroscopies is bremsstrahlung isochromat
spectroscopy (BIS), also called inverse photoemission (Fig. 8.1). This involves
bombarding the sample with monochromatic electrons, which are injected with
negligible energy loss into corresponding energy states in the empty conduction
bands. They then make a transition to empty states of lower energy, emitting
a photon in order to conserve energy. The spectrum of the emitted photons
thus yields detailed information on the empty conduction states, complemen-
tary to the information on occupied valence states obtained in photoemission.
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Information on elementary excitations involving valence and core levels
can also be obtained by bombarding a sample with electrons and examining
the energy spectrum of the electrons that are emitted in this process. Some
of the incident electrons manage to emerge after having lost energy to a sin-
gle elementary excitation. The energy distribution of the transmitted or re-
flected electrons thus contains peaks which correspond to excitations in the
solid. This technique is called electron energy loss spectroscopy (EELS) [8.8]
and is particularly suitable for investigating the valence plasmons mentioned
at the beginning of this section. In general, plasmons cannot be excited in opti-
cal absorption since they are longitudinal excitations (i. e., the electrons vibrate
along the direction of propagation) while photons are transverse (the electric
field is perpendicular to the direction of propagation, see Problem 6.3). Note
that the EELS spectra are proportional to the imaginary part of Â�1 (the loss
function), where Â is the dielectric function, which determines the optical be-
havior [8.9] as shown already in Chap. 6. Figure 8.3 shows the EELS spectrum
of GaP obtained with 56 keV electrons. The strongest feature is the peak at
¢E � 16 eV, which corresponds to one-plasmon excitations. Excitations of two
plasmons are observed at ¢E � 32 eV. This spectrum also displays peaks re-
sulting from excitation of electrons to the conduction bands from the valence
bands and from the Ga 3d core levels.

Among the other spectroscopic techniques sketched in Fig. 8.1 we mention
explicitly Auger electron spectroscopy (AES) and X-ray fluorescence (or emis-
sion) spectroscopy (XES). In AES a hole is produced in a core level when an
electron is ejected by an incoming electron or photon (process 1© in Fig. 8.4).
This hole is then filled by an electron from a higher occupied level (process
2©), the liberated energy being used up by the emission of another electron

(process 3©). The Auger spectrum is basically the energy distribution of the
electrons emitted in process 3. It contains information on the binding energy
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3

1

2

Vacuum

Valence
bands

Core
levels

e– e– Fig. 8.4. Schematic diagram of the processes
involved in Auger electron spectroscopy. The
electrons in step (1) are expelled by either an
impinging electron or a photon. The Auger
spectral information is obtained by analyzing
the energy of the electrons emitted via pro-
cess (3). Step (3) may involve either a va-
lence or a core electron (the latter has been
assumed in the figure)

of the core electrons, somewhat modified by the complex many-body interac-
tions between electrons occurring during the process [8.10].

In XES, a core or valence hole is produced in a process similar to 1© in
Fig. 8.4 (excitation by either photons or electrons). The hole is then filled by
an electron with higher energy, the energy difference being released by emis-
sion of a photon whose energy is typically in the X-ray range. That photon
contains information on binding energies of electrons in the valence band or
core levels. Both AES and XES are standard characterization methods for
semiconductors, in particular thin films and other microstructures.

A parameter of paramount importance in the spectroscopies under discus-
sion is the sampling depth. In spectroscopies involving the emission of pho-
tons, the sampling depth is given by the inverse of the absorption coefficient
of those photons, usually on the order of or larger than ∼ 200 Å (Fig. 8.2).
Hence, the sampling depth encompasses several hundred monolayers and the
spectra should be representative of the bulk solid provided a few precautions
are taken to keep the surface clean. If the emitted particles are electrons, the
sampling depth becomes the escape depth of those electrons, which depends
on their energy. The escape depth of such electrons plotted against energy
falls on a nearly universal curve for most solids, as illustrated in Fig. 8.5, and
can be as small as 5 Å for energies in the 50–100 eV range. For such small
escape depths the information obtained is characteristic of the surface rather
than the bulk. Ultraclean, well-characterized surfaces [8.11, 12] are required if
meaningful information is to be obtained.

8.1 Photoemission

Photoemission is an old trade. In 1887 Hertz observed that a spark between
two electrodes occurs more easily if the negative electrode is illuminated by
UV radiation [8.13a]. A few years later J.J. Thompson [8.13b] demonstrated
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ues for some of the most common semiconductors are also shown [8.11]

that the effect was due to emission of electrons by the electrode while under
illumination. The correct interpretation of this effect was given by Einstein
[8.14] (who was awarded the Nobel Prize in 1921 especially for his photo-
emission work). He postulated that light was composed of discrete quanta of
energy EL, this energy being proportional to ˆL, the frequency of the light:
EL � �ˆL. This energy, minus a binding energy I required to escape the solid,
is taken up by the photoemitted electron, which thus escapes with a maximum
energy Ee,

Ee � �ˆL � I, (8.2)

where I is called the photothreshold (or ionization) energy. The accuracy of
(8.2) has been demonstrated by many researchers by surrounding the pho-
toemitter (a conductor) by a screen to which a negative (retarding) potential
Vr is applied. For |Vr | � Ee the photoinduced current should vanish. A plot
of the potential at which the photocurrent vanishes versus ˆL should yield a
straight line if (8.2) is valid. An early proof of this assertion is shown in Fig. 8.6.

The photothreshold energy of semiconductors with clean surfaces lies typ-
ically in the range of 5–7 eV. It can be lowered considerably by depositing a
monolayer of cesium on the clean surface. In the case of GaAs such procedure
leads to values of I as low as 1.4 eV, thus making this semiconductor useful as
the photocathode in photomultiplier tubes operating in the near IR and visi-
ble region [8.16].

In recent years very sensitive devices have been built which enable one
to measure the photocurrent for ˆL near the photothreshold (�ˆL � I) [8.17].
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For ˆL above that threshold the measured photocurrent j(ˆL) can usually be
represented by a threshold function ([8.18]; see also Fig. 1.4 in [8.1])

j(ˆL) � A(�ˆL � I)· (8.3)

where · has values of the order of 1, depending on the type of transitions involved
(direct or indirect) and on surface conditions (clean, specular, rough). Small pho-
tocurrents observed for �ˆL � I are attributed to defects in the case of crystalline
materials. In amorphous semiconductors they correspond to residual states that
exist within the gap. Photothreshold spectroscopy is probably the most precise
and direct way to investigate such states: spectrometers have been built with a dy-
namic range of 108 in the measurement of j(ˆL). Such large dynamical ranges en-
able one to measure densities of gap states as low as 1015 (eV cm3)�1 [8.19]. Typi-
cal photoyield spectra near threshold are shown in Fig. 8.7 for a cleaved Si surface.

It has been mentioned above that a monolayer of an alkali metal, for
example Cs, can produce enormous changes in I. The same applies to
other surface contaminants. Hence it is necessary to maintain the sample
in ultrahigh vacuum (UHV) in all photoemission experiments. Assum-
ing that a gas surrounds the sample at a pressure p and that any gas
molecule impinging on the sample sticks to it (sticking coefficient equal
to 1) it is easy to show that a coverage of one monolayer is obtained after
1 s for a pressure of 10�6 torr (see Problem 8.1). This unit of exposure,
10�6 torr, is called a Langmuir (L), after I. Langmuir, the winner of
the 1932 Nobel Prize for chemistry. The importance of a very good vac-
uum is illustrated in Fig. 8.7: the yield curve extrapolates to a threshold
I � 4.87 eV for a Si(111) surface within 1 min after cleavage at a pres-
sure of 3.6 × 10�10 torr (0.02 L exposure). An hour of exposure (≈1 L)
to this pressure lowers I by 0.2 eV.
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Fig. 8.8. Diagram of a typical photo-
electron spectroscopy measurement of
j(�ˆL, êL, ıL, ÊL; Ee, êe, ıe, Êe) in which
all of the variables can, in principle, be
swept

The photothreshold spectrometer just mentioned is one of many types of
photoemission spectrometers available for specific functions. The variety of
possible instruments becomes clear when one considers that the photoelectron
current is a function of a large number of variables (Fig. 8.8),

j � j(�ˆL, êL, ıL, ÊL; Ee, êe, ıe, Êe), (8.4)

2 The commonly used units of pressure are the pascal (1 Pa � 1 N/m2) and the bar (1 bar
� 105 Pa). However, for vacuum work the preferred unit is the torr (1 torr � 1 mm of
Hg � 133 Pa).
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where êL, ıL, ÊL represent the polarization, the angle of incidence, and the
polar angle of the photons incident on the sample while êe, ıe, and Êe are the
corresponding parameters (êe is the spin polarization) for the emitted elec-
trons and Ee is the energy of these electrons. The number of variables in (8.4)
and the information thus contained in j when measured as a function of all of
them is a challenge to the imagination of both theorists and equipment man-
ufacturers. While the theorist – with the help of modern computers – can, in
principle, calculate j as a function of all the variables in (8.4), practical spec-
trometers can usually select only a reduced set of independent variables from
the eight in (8.4). Equipment allowing measurements of electron spin polar-
ization is very rare and will not be discussed here [8.20]3. Measurements with
polarized photons are most easily performed with synchrotron radiation [8.5],
which is usually linearly polarized but also has useful circularly polarized com-
ponents. Often the angles ıL and ÊL are kept fixed while the angles ıe and Êe
are varied, resulting in angle-resolved photoelectron spectroscopy (ARPES).
Some spectrometers collect a wide range of ıe’s and Êe’s while keeping a fixed
average value of these angles; this technique is referred to as angle-integrated
[8.22].

Figure 8.9 shows the essential parts of a spectrometer that analyzes the en-
ergy Ee of the emitted electrons. Other than the UHV system (vacuum usually
better than 10�10 torr), its basic parts are the light source, the Ee-analyzer and
the detector. We now give a few details about these components.

Sources: The ideal light source is an electron storage ring (for synchrotron ra-
diation) (see [8.5,6]) followed by a grating monochromator. The spectral reso-
lution of the latter is typically between 0.1 and 0.01 eV: nothing is gained by
making it higher than that of the energy analyzer. Since such rings are avail-

Energy
analyzer

Channeltron,
to recording
electronics

Sample

VS

–Va/2 +Va/2

e–

hˆL

Fig. 8.9. Diagram of a photoelectron
spectrometer using a hemispherical
analyzer, a sample in a Faraday cage
with a retarding/accelerating potential
VS, which is swept to obtain the spec-
tra, and a channeltron as detector

3 Note that GaAs, and other semiconductors, can be used as sources of spin polar-
ized photoelectrons. See [8.21], where a beautiful example of spin-resolved photoelectron
spectroscopy in GaAs is presented.
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able at only a few places in the world, alternative laboratory sources, of the
gas discharge or X-ray type, are used. The former employ discrete lines of a
discharge in a rare gas, most commonly the HeI line at 21.22 eV and also HeII
at 40.82 eV (spectroscopy with such UV photons is called UV photoemission
spectroscopy or UPS). The width of these lines is on the order of 1 meV and
therefore, when using them, the overall resolution is determined by that of the
analyzer.4

X-ray tubes deliver photons with larger �ˆL’s (X-ray photoemission spec-
troscopy or XPS). Again, characteristic emission lines, this time of the metallic
anodes, are used, most commonly the K· line of aluminum at 1486.6 eV. How-
ever, these lines are much broader (∼ 1 eV) than those of the gas discharge
lamps and therefore their width determines the rather poor overall resolution.
The Al K· line has a number of satellites and an asymmetric shape (Fig. 8.10),
which often leads to spurious signals. The use of an X-ray monochromator can
reduce the width to ∼ 0.1 eV and thus solve these problems (Fig. 8.10). This is
done, however, at the expense of considerable loss in intensity and deteriora-
tion of the signal-to-noise ratio. A list of the most common gas discharge and
X-ray lines is given in Table 1.7 of [8.1].

What aspects influence the choice of either the UV gas discharge lamp or
the X-ray source? We have already mentioned the resolution. Another aspect
is the fact that electrons photoemitted by UV photons have energies near the
minimum of Fig. 8.5 and therefore escape depths around 5 Å. Such electrons
sample a region very close to the surface. This may be an advantage if sur-
face effects are to be investigated but may distort spectra related to bulk pro-
cesses. Aluminum K· photons produce electrons with energies around 1.4 keV
and escape depths of about 40 Å. The spectra are then representative of the
bulk. Such photon energies are needed to investigate core levels, such as the
2p levels of Si (binding energy ∼100 eV) or Ge (∼1250 eV). Angle-resolved
photoemission is often performed with gas discharge lamps although, ideally,
one should use synchrotron radiation to achieve a better signal-to-noise-tratio.

Ak K·

After monochromatization

1 eV

0.16 eV

Fig. 8.10. Profile of the AlK·

line used in XPS as produced
by the X-ray tube (width 1 eV)
and after monochromatization
(width 0.16 eV) [8.24]

4 For the purpose of investigating the gaps of high Tc superconductors (∼50 meV) by
photoelectron spectroscopy, very high resolution (≤10 meV) monochromators have been
developed [8.23].
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Electron Analyzers. A wide variety of analyzers are used in photoelectron
spectroscopy, most of them based on electrostatic forces. A hemispherical an-
alyzer is sketched in Fig. 8.9. Cylindrical mirror analyzers and retarding grid
systems are also used. The hemispherical analyzer of Fig. 8.9 admits elec-
trons through a slit and bends them by means of an electrostatic potential
Va applied between the two hemispherical metallic walls. The electrons of a
given energy Ee, determined by Va, are focused on the exit slit and, after ex-
iting, fall on the detector. A typical relative resolution of such a system is
¢Ee/Ee � 10�2, independent of the electron energy. In order to keep the ab-
solute resolution high (i. e., ¢Ee small) and constant it is customary to keep
Ee at a constant, low value. This is achieved by accelerating or decelerating
the electrons by means of a potential VS applied between a Faraday cage sur-
rounding the sample and the entrance slit. Photoelectron spectra are obtained
by measuring the current in the detector (or the number of counts if individual
electrons are counted) versus VS.

Detector. The sketch in Fig. 8.9 is meant to indicate that the detector is a
channeltron, which consists of a glass funnel followed by a thin tube whose
interior has been coated with a secondary emitter; the latter produces several
electrons for each of the incident ones. A channeltron is basically an electron
multiplier. Note that the system of Fig. 8.9 is a single-channel system: only one
electron energy is recorded at a given time; most of the signal (electrons) im-
pinging on the inside of the exit slit is thus lost. Even worse, only one set of
angles ıe, Êe is collected at a time. Multichannel systems, using a multichannel
plate followed by a phosphor and a TV camera, allow the simultaneous collec-
tion of the whole spectrum, with considerable improvement (factor of ∼100)
in signal-to-noise ratio. We have also mentioned, and shown in Fig. 8.7, how
sensitive photoelectron spectra are to surface conditions. Multichannel systems
decrease the measurement time and thus help to keep the surface clean while
the data are being gathered (and also to keep the beam-time charges within
the budget if synchrotron radiation is being used!).

Surface Preparation. The best surface preparation technique is probably cleav-
age, provided the material cleaves well and large enough samples are avail-
able. Ge and Si cleave relatively well along (111) surfaces while zinc-blende-
type materials cleave, even better, along (110). If cleaving is not possible, sur-
faces can be cleaned by scraping in vacuum with a diamond file. They can also
be cleaned by ion bombardment followed by thermal annealing. Surfaces of
growth can be measured for samples prepared by epitaxial deposition tech-
niques.

Origin of Energies. We have often discussed the photoelectron energy Ee
without mentioning the origin that is chosen to measure this energy. One
could take as the origin the energy of an electron at rest at “infinity” (i. e.,
away from the spectrometer, in a region without electric fields).
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Vacuum Fig. 8.11. Band diagram of a semiconductor near
the surface, showing the definitions of electron
affinity ¯, work function ˇ, and photothreshold
energy I

Photoelectron spectrometers, however, offer a more easily accessible,
natural origin of energies if conducting samples (such as semiconductors)
are measured. The Fermi levels of two conductors in contact must line
up with each other, hence the Fermi level of the sample and that of the
metal of the sample holder become the same. By replacing the sample
by a metal (or even simply measuring photoemission from the metallic
sample holder) one obtains a spectrum of photoelectrons versus VS with
a sharp step at the Fermi level of the metal, which must be the same as
that of the sample to be measured. Hence the natural origin of energies
in photoelectron spectroscopy is the common Fermi level. The energies
can also be referenced to the vacuum level (a point outside the sample
but close to it) provided the position of the Fermi level with respect to
the vacuum level is known. For �ˆL equal to the photothreshold energy
I the photoelectrons exit with zero energy with respect to the vacuum
level. If the photoelectrons arise from the bulk valence band (i. e., if no
occupied surface states exist, see Sect. 8.3), I represents the energy of
the vacuum level with respect to the top (i. e., the highest energy state)
of the valence band EV. The vacuum level can also be referenced to
the Fermi level. Its energy is then called the work function and will be
represented here by ˇ. The electron affinity ¯ is defined as the energy
of the vacuum level referenced to the bottom of the conduction band Ec
(Fig. 8.11).

Figure 8.12 shows a schematic photoemission spectrum of a semiconductor
versus the potential VS. The potential VS0 at which photoemission disappears
corresponds to the energy of the vacuum level since no electrons can be emit-
ted having an energy in vacuum below that of the vacuum level (this cutoff
gives rise to the peak above VS0 in Fig. 8.12). The top of the valence band
corresponds to VSV while the Fermi level corresponds to VSF. As shown in
Fig. 8.12, VS0 and VSV can be identified with reasonable accuracy in the pho-
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Fig. 8.12. Schematic diagram of a typical angle-integrated photoelectron spectrum j(VS)
in a semiconductor versus the potential VS of Fig. 8.9. Note the points which define the
vacuum level (VS0) and the top of the valence band (VSV). The Fermi level (VSF), as
determined from the spectrum of a metal, is also indicated

toelectron spectra. VSF is determined with a typical accuracy of 0.01 eV by
replacing the sample by a metal as discussed above. Then I, ˇ, and ¯ are ob-
tained with the equations

I � �ˆL � e(VSV � VS0),

ˇ � �ˆL � e(VSF � VS0),

¯ � I � E0,

(8.5)

where E0 is the energy gap of the material and �ˆL the impinging photon en-
ergy.

The most general description of the photoemission process consists of the
excitation of an occupied electronic state inside the solid, by absorption of
the incident photon, into an empty state outside the solid. This is the so-
called one-step model. The excited electron must have its velocity pointing
away from the solid so that it can be collected by the detector. This process is
constrained by conservation laws. One of them is obviously energy conserva-
tion: the energy of the initial electron plus that of the photon must be equal
to the energy of the emitted electron. As in most processes in crystals, there
is also wavevector conservation, but only for the two components parallel to
the emitting surface (k‖). Parallel to the plane, and assuming a clean, unrecon-
structed surface, the translational symmetry is preserved. Reconstruction may
lower the translational symmetry but usually (not always!) a two-dimensional
translational lattice is left. An example of surface reconstruction is shown in
Fig. 8.24. Perpendicular to the surface, however, there is no translational sym-
metry and the corresponding component of k (k⊥) need not be conserved.

The one-step photoemission process, simple as it sounds, poses consider-
able computational problems when quantitative evaluation is attempted. (The
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interested reader should consult [8.25].) One therefore often resorts to an ap-
proximation, the so-called three-step model [8.26]. This model assumes exci-
tation of an electron, by the photon, from an occupied valence state to an
empty conduction state (step 1) followed by ballistic transport (i. e., without
scattering) to the surface (step 2) and transmission across the surface (step 3).
Step 1 is thus closely related to the optical absorption processes described in
Sect. 6.2. The conservation laws mentioned above also apply to the three-step
model, although conservation of all three components of k is usually assumed
for the first and second step.

8.1.1 Angle-Integrated Photoelectron Spectra of the Valence Bands

For angle-integrated photoelectron spectroscopy the analyzer must accept
electrons over a wide range of ıe’s and Êe’s, so that, the conservation of k‖
does not restrict the valence states being probed. It is easy to see (Problem
8.3) that in the case of XPS (e. g., excitation with Al K· radiation at 1487 eV),
even for the small ranges of ıe and Êe (∼5) used in angle-resolved UPS, k‖
conservation does not play any role, since ke is smeared out over the whole
Brillouin zone by the angular resolution. Angle-integrated photoemission is
also obtained automatically when measuring polycrystalline samples. In the
interpretation of angle-integrated photoemission spectra, the three-step model
is usually assumed. If a small energy range of initial electrons is considered,
such as that corresponding to the width of the valence bands of semiconduc-
tors (∼10 eV), one can often assume that the transport to and the transmission
through the surface are independent of the initial energy. In this case, because
one collects electrons with energies between Ee and Ee � ¢Ee after the ana-
lyzer (where ¢Ee is the overall spectral width of the instrument, i. e., photon
linewidth plus spectrometer width), the photoelectron current j must be pro-
portional to the density of initial (i. e., valence) states NV(E) multiplied by a
transition probability P(E):

j(Ee � �ˆL) � NV(Ee � �ˆL)P(Ee), (8.6)

where Ee is the photoelectron energy measured with respect to the Fermi level
or the top of the valence band or the vacuum level. The energy in the argu-
ment of NV and P must, of course, be referenced to the same origin. Expe-
rience and explicit calculations (Fig. 8.13) show that P(E) is not strongly de-
pendent on E. (This is not true when d-electrons are involved in the valence
bands, such as for CuCl. See [8.27].)

We show in Fig. 8.13 the photoemission spectra of germanium measured
with monochromatized Al K· radiation (XPS) and with 25 eV monochroma-
tized synchrotron radiation (UPS). The electron energy scale has been chosen
to represent initial (valence) state energies with the zero at the top of the va-
lence band. Also included in this figure are the results of two band structure
calculations of the XPS spectrum, one (dashed line) is simply based on the
density of valence states, i. e., assumes that P is independent of EV, while the



8.1 Photoemission 441

Germanium

Calculated
spectrum

DOS

UPS

XPS

III
II I

–20 –15 –10 –5 0

Initial state energy

E
le

ct
ro

n 
co

un
ts

Fig. 8.13. XPS and UPS spectra of the valence bands of germanium. The dashed line rep-
resents the calculated density of states while the solid line gives the density of states mul-
tiplied by the transition probability of step 1 in the three-step model for XPS [Ref. 8.2,
p. 56]

other (solid line) includes the calculated dependence of P on EV [8.28]. Com-
parison of the two calculated curves gives an idea of possible effects of the
energy dependence of P(EV). Note, however, that the curve which includes
P(EV) actually agrees less well with the experimental XPS spectrum than that
obtained under the assumption P(EV) � constant.

We compare next the spectra of Fig. 8.13 with the valence band structure
of germanium. For the sake of reference we use Fig. 2.24, obtained for silicon,
which is very similar to the corresponding germanium results (see also Figs.
2.25 and 8.19 for the band structure of germanium). Three sets of bands can
be identified in Fig. 2.24, leading to three well-separated peaks in the density
of states (DOS). The uppermost peak is related to the two uppermost valence
bands, of nearly pure 4p atomic composition (Sect. 2.7). A second lower peak
follows, related to a strongly hybridized 4p–4s band. The lowest peak (band)
is 4s-like, with some p admixture away from °. These peaks correspond rather
well to the structures labeled I, II, and III in Fig. 8.13. Note that peak I has
twice the weight of either peak II or peak III. This is related to the double
degeneracy of the two uppermost valence bands along the [111] and [100] di-
rections (and near degeneracy along most of the Brillouin zone). In the tight-
binding scheme (Sect. 2.7.2) this corresponds to the double degeneracy of the
p orbitals perpendicular to those k directions. Note that for k along [111] these
orbitals do not mix with the s-orbitals of the nearest neighbor along k. A p-
orbital pointing along the k direction strongly interacts with the s-orbital in the
nearest neighbor atom, thus leading to the two lower bands and DOS peaks
(Fig. 2.23).
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As further examples we show in Fig. 8.14 angle-integrated XPS (Al K·)
and UPS (HeI) spectra of four III–V semiconductors.

Note that the energy scale here represents “binding energy”, i. e., the
initial energy of Fig. 8.13 with the opposite sign. These two types of en-
ergy scales are used at random in the literature.

These also have three peaks, similar to those of Fig. 8.13 but with one im-
portant difference: the splitting between peaks II and III is larger (∼5 eV for
GaAs, 3 eV for Ge). This is related to the splitting of the doubly degenerate
valence band at the X1 point of the germanium structure (Fig. 2.24) by the an-
tisymmetric or ionic potential of the zinc-blende structure (X1–X3 splitting in
Fig. 2.28). Note that the II–III splittings of Fig. 8.14 are about 5 eV, very close
to the pseudopotential theory values of Fig. 2.28. It has been suggested that
this splitting, after subtracting that of the corresponding group IV material,
can be taken as a measure of the ionicity of the compound [8.29].
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Fig. 8.14. XPS spectra of GaP, GaAs, GaSb, and
AlSb (solid lines) and UPS angle-integrated spec-
tra (�ˆL � 21.2 eV, dashed lines). The notation Ii

denotes structures corresponding to critical points
[Ref. 8.2, p. 57]
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8.1.2 Angle-Resolved Photoelectron Spectra of the Valence Bands

In order to perform angle-resolved photoelectron spectroscopy (ARPES) it is
necessary to measure j(�ˆL, EL, ıe, Êe). As usual in spectroscopy, j cannot be
measured for exact values of ıe and Êe but the detector accepts a range of
these parameters represented by ıe ± ¢ıe/2 and Êe ± ¢Êe/2. The angular res-
olutions ¢ıe and ¢Êe are typically a few degrees.

Similarly to what was discussed in Sect. 8.1.1 for the dependence of j on
EL, two types of schemes are possible: single channel and multichannel. The
single-channel detectors gather at a given time only the electrons within the
range ıe ± ¢ıe/2 and Êe ± ¢Êe/2, for a fixed pair of angles ıe, Êe which is
varied after each complete j(Ee) run. Hence, most of the signal generated at a
given time is lost. Nevertheless, most available data have been obtained with
single-channel systems.

The standard single-channel detector consists of a miniature electrostatic
analyzer with a channeltron detector attached to it (Fig. 8.9), mounted on a
rotatable table so that ıe can be changed. The azimuthal angle Êe is varied by
rotating the sample about an axis perpendicular to the photoemitting surface
[8.30]. ARPES spectrometers based on movable hemispherical analyzers are
available commercially.

Multichannel systems measuring simultaneously ıe and Êe deliver a very
large set of data in a short time. The data collection time is thus reduced to a
minimum, shifting emphasis to the nontrivial task of the analysis of the large
number of data being simultaneously gathered. This feature can be important
when using synchrotron radiation (beam time is often scarce and/or expensive)
and when surface contamination has to be kept to a minimum.

A diagram of an angle-resolving multichannel system based on retard-
ing grids, a channel plate, and a television camera or another similar two-
dimensional detector is shown in Fig. 8.15. The angular resolution is deter-
mined by the distance between pixels in the channel plate plus crosstalk be-
tween pixels and aberrations in the electron optics. Toroidal energy analyzers,
used in conjunction with synchrotron radiation, have been employed for si-
multaneous collection of all ıe’s [8.31].

The usefulness of ARPES is based on conservation of k‖, the wave vector
component parallel to the emitting surface. Like k conservation in a three-
dimensional crystal, k‖ conservation must be understood modulo G‖, where
G‖ is a vector of the reciprocal lattice of the two-dimensional space group
that leaves the surface invariant.5 G‖ need not be considered if we confine the
emitted k‖ to the first Brillouin zone of the surface. In principle, the compo-
nent of k perpendicular to the surface (k⊥) is not conserved in the general
one-step model. In this case we have two equations expressing the conserva-
tion of the two components of k‖ and one expressing conservation of energy.
The experimental data are the energy Ee of the emitted electrons and the

5 Here we assume that the surface space group is a subgroup of that of the bulk. Diffi-
culties may arise in defining such a group if the surface is reconstructed.
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Fig. 8.15. Angle-resolved multichannel (Êe, ıe) photoemission system based on hemi-
spherical low energy electron diffraction (LEED) electron optics [8.31]

three components of their wave vector, which we express as K (lowercase let-
ters are reserved for k vectors inside the solid). The three components of K
can be obtained from ıe, Êe, and Ee under the reasonable assumption of a
free-electron-like dispersion relation [Ee � �2K2/(2m)] for the electrons in
vacuum. With these three conservation equations it is possible to determine
three unknowns, namely Ee, ıe, and Êe, i. e., the photoemission spectrum, if
the band structure of the solid is known. Since k⊥ does not appear in the con-
servation equations, no information about it is obtained in this way and the
bulk valence band structure EV(k) cannot be determined from the ARPES
spectrum of one given surface.

We should mention at this point the role of the surface reciprocal lattice
vectors G‖. For a given ˆL and Ee the photoemitted electrons form a cone,
which can be expressed as ıe � F0(�ˆL, Ee, Êe), where we assume that the
function F0 corresponds to G‖ � 0. Since ıe and Êe are obtained from the
direction of K‖, a different relationship between ıe and Êe is found for each
nonvanishing vector G‖:

ıe � FG‖(�ˆL, Ee, Êe). (8.7)

We thus obtain a manifold of photoemission cones, which are known as Mahan
cones [8.32]. Equation (8.7) is based only on conservation laws, which yield no
information about the strength of the photoemission current j(�ˆL, Ee, ıe, Êe).
An evaluation of the relative strengths of jG‖ for the various Mahan cones
is a rather involved theoretical problem that will not be treated here. Fortu-
nately, as might be expected, the first few cones (corresponding to G‖ � 0
and the lowest values of |G‖|) dominate. Moreover, large values of |G‖| (i. e.,
large ıe) cannot be reached owing to mechanical and photon energy limitations.
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In spite of the essential impossibility of determining the bulk band struc-
ture from the ARPES spectra, progress can be made in some cases by making
appropriate approximations. Such is the case of layered structures, i. e., three-
dimensional solids composed of layers well separated from each other but held
together through van der Waals interaction (Chap. 1). The interaction between
electrons in neighboring layers is very weak so that the layers in a stack can be
treated as independent, i. e., as two-dimensional crystals. The electron energy
is independent of k⊥ and the resulting two-dimensional bands can be directly
obtained from the angle-resolved spectra.

In truly three-dimensional crystals, additional information, allowing the de-
termination of E˘(k), can be found by measuring the photoemission from two
or more different surfaces. The component of k perpendicular to one surface
has a component parallel to the other surface. Additional conservation equa-
tions are obtained that lead to the full band structure E˘(k) provided one
can identify peaks corresponding to the same initial state in the photoelectron
spectra of the two surfaces. This technique, however, is cumbersome and has
been used rarely for semiconductors. A more fruitful approach arises from the
three-step model, in which the three-dimensional k is conserved in the first
step (a valence to conduction band excitation). The additional conservation
equation for k⊥ enables one to determine k⊥ provided that the final state is
free-electron-like. This technique has been widely and rather successfully used
to determine the k-dependent band structure of semiconductors. We present
below a few examples of band structure determinations with ARPES (Sect.
8.3.2).

Two-Dimensional Crystals. Two-dimensional semiconductors (Chap. 1) are
ideally suited for band structure determinations by ARPES. Among those that
have been investigated we mention the transition metal dichalcogenides (e. g.,
TaSe2); the In and Ga chalcogenides (InS, GaSe, InSe); GeS, GeSe, SnS, SnSe,
and the semimetal graphite. We should also point out that the surfaces of
semiconductors have electron states confined to the first one or two monolay-
ers (surface states). They correspond to two-dimensional energy bands (surface
bands) which can also be measured by ARPES.

The procedure for the determination of the band structure of a two-
dimensional semiconductor is as follows. The spectrum of j(Ee) is measured
for a fixed set of all other parameters in (8.4), in particular �ˆL, ıe, and Êe.
Peaks in this j(Ee) spectrum are assumed to correspond to emission from a va-
lence band state of well-defined k‖ and E˘. From the peak (final state) energy
Ee referred to the vacuum level we find K‖ with the relation

Ee(�ˆL, ıe, Êe) �
�2(K2

⊥ � K2
‖)

2m
�

�2K2
‖

2m
(1 � cot2 ıe). (8.8)

This equation determines the magnitude of K‖. Its direction is given by the
azimuthal angle Êe. The vector K‖ is equal to k‖ after subtraction of the recip-
rocal lattice vector G‖ required to bring k‖ into the reduced two-dimensional
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Brillouin zone. We have thus determined k‖ for the initial (valence) state. The
full valence band structure

E˘(k‖) � �ˆL � Ee(�ˆL, ıe, Êe)

can be obtained by varying ıe and Êe with fixed �ˆL. Hence, the procedure
is particularly appropriate for the discrete lines of a gas discharge lamp. Note
that, because of the existence of more than one Mahan cone, i. e., the possi-
bility of obtaining the same k‖ with more than one set of ıe’s and Êe’s (by
subtracting the required G‖’s), the measurement even possesses redundancy:
the same valence bands should be obtained for different G‖’s, a fact which
offers a stringent test of the accuracy of the procedure. In order to illustrate
this, Fig. 8.16 shows the peaks in j(Ee, ıe) observed for the two-dimensional
semimetal graphite. Figure 8.17 displays the band structure of graphite ob-
tained by this procedure, compared with the results of band structure calcu-
lations [8.34]. The Û1 bands result from the s orbitals of carbon, Û2 and Û3
are generated by in-plane bonding p-orbitals while 1 bands are generated
by out-of-plane bonding p-orbitals. The material is a semimetal because the
bonding and antibonding  bands (only the former are shown in Fig. 8.17)
are degenerate by symmetry at the P point (Problem 8.7). For data specific to
semiconductors consult [8.22, 35]. This technique has been successfully applied
to high Tc superconductors, which are also two-dimensional crystals [8.36].

Three-Dimensional Semiconductors. The most commonly used method of de-
termining valence band structures of three-dimensional semiconductors with
ARPES is based on the assumption of conservation of the three components
of k, which follows from the three-step model. A large number of diamond-
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and zinc-blende-type semiconductors have been measured this way [8.22, 37].
The additional assumption is made that the conduction bands (i. e., the final
states) are free-electron-like at the high energies resulting in the �ˆL-induced
transitions, and thus can be expressed by the parabola Ec � �2k2/(2m). Since
the parabola represents simply a fit to the higher conduction bands, its bottom
does not correspond to the bottom of the real conduction bands. Around this
bottom the bands deviate strongly from free-electron behavior, as discussed
in Chap. 2. Hence the bottom of the free electron parabola defined above is
simply a fit parameter without any clear physical significance.

This type of ARPES is usually performed for ıe � 0 (normal emission).
Hence k‖ of the initial states is either zero or one of the two-dimensional
reciprocal lattice vectors G‖. The energy Ee is converted into an energy inside
the solid, referenced to the bottom of the fitted internal free-electron parabola
by subtracting a constant E0. We reference Ee to the top of the valence band
(i. e., to the point where the emission spectra start), so that E0 represents the
energy of the bottom of the free-electron parabola for electrons in vacuum,
with respect to the top of the valence band (Fig. 8.18). The value of k⊥ that
corresponds to the energy of a given peak in Ee, i. e., to E˘ � �ˆL � Ee, is
obtained from

k⊥ �

(
2m
�2

)1/2

(Ee � E0)1/2 � G⊥, (8.9)

where G⊥ is the component perpendicular to the surface of a reciprocal lattice
vector required to bring k⊥ to the reduced Brillouin zone. Equation (8.9) and
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ing �ˆ1 while it decreases with increasing
�ˆ2. This fact can be used to select the cor-
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E˘ � �ˆL � Ee (8.10)

determine the valence band structure E˘(k⊥) in the direction of the Brillouin
zone perpendicular to the surface, provided E0 is known. This E0 can be used
as an adjustable parameter so as to fit a calculated band structure when it is
available. Values of E0 in the 5–9 eV range are obtained for diamond- and
zinc-blende-type materials although, as already mentioned, not much physi-
cal meaning is to be attached to this parameter, which results from having
made the free-electron-like final state approximation. An analysis of normal-
emission ARPES data using the corresponding calculated conduction band
structure instead of the free-electron-like final states is given in [8.38] for sev-
eral III–V semiconductors.

The determination of E˘(k⊥) using (8.9) and (8.10) requires the availabil-
ity of several photon energies �ˆL. Each frequency will typically lead to a few
peaks in Ee (usually three or four) and thus to a corresponding number of
band structure points. A reasonably dense mesh is obtained by using all avail-
able rare gas discharge lines (about 20 lines in the 10–50 eV range) provided
the light is passed through a monochromator. Better results are, of course, ob-
tained with continuously tunable synchrotron radiation.

In the procedure just discussed one has to make use of available band
structures to determine E0. If a wide �ˆL range of continuously tunable radi-
ation is available, one can obtain the whole E˘(k⊥) from two conduction band
branches differing by a G⊥ (Ec1 and Ec2 in Fig. 8.18). We see from Fig. 8.18
that if E0 is decreased k⊥ increases for the Ec1 state (i. e., the �ˆ1 transition)
while it increases for the Ec2 state (i. e., �ˆ2 transition). By trial and error it is
possible to determine a value of E0 which leads, from the measured spectrum,
to the same k⊥ for a given initial E˘, independently of the Ec branch used.
This procedure, first followed by Middlemann et al. [8.39], leads to determina-
tion of E˘(k⊥) without any prior knowledge of E0 and the band structure.
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The method just sketched has been impressively implemented by Chen et
al. [8.40] for Ge, using a cylindrical ([110]-axis) crystal, so as to be able to
measure several directions of k⊥(¢, §, ™) by simply rotating the cylinder about
its axis. The results are shown in Fig. 8.19. They agree extremely well with the
pseudopotential band structure calculations of Chelikowsky and Cohen [8.41].

As discussed above, many valence band structures of semiconductors have
been determined by the normal emission, k-conservation method based on the
three-step model. This scheme is referred to as the direct-transitions scheme
because of the assumption of k-conservation in the photon absorption step
(step 1), (see Sect. 6.2). This assumption, however, cannot be exact: the pres-
ence of the surface implies at least partial lifting of k⊥ conservation. Hence,
we now consider the opposite case, in which k⊥ is not conserved at all, while
staying within the three-step model. The new situation is called the indirect-
transitions model by analogy to the k-nonconserving indirect transitions of
Sect. 6.2. For initial states with a given k‖, which will be conserved in the
photoemission process, k⊥ need not be conserved. To a first approximation we
thus assume that we detect all valence electrons which have a given k‖ (deter-
mined by Ee, Êe, and ıe) and all possible values of k⊥. Since E˘ � �ˆL � Ee,
for constant resolutions ¢ˆL and ¢Ee we collect all electrons with the energy
E˘ ± ¢E˘/2, where ¢E˘ is assumed to be constant. The collected electrons,
all with fixed k‖6 and variable k⊥, can be represented by a one-dimensional
band structure E˘, k‖(k⊥). The number of electrons collected corresponding to
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Fig. 8.19. Valence band structure of Ge determined by angle-resolved UPS, compared
with the results of a theoretical prediction (solid lines) [8.41]. Large (small) circles denote
large (small) peaks [8.40]

6 Note that, when sweeping Ee, strictly speaking we must vary ıe in order to keep k‖ ∝
E1/2

e sin ıe constant. This is easy in a computer-controlled system.
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initial states within the interval ¢E˘ around E˘ will thus be proportional to
the one-dimensional density of states, N˘, k‖(k⊥):

j(Ee, Êe, ıe) ∝ N˘, k‖(k⊥) �
1


(
dE˘, k‖(k⊥)

dk⊥

)�1

. (8.11)

N˘, k‖ can be easily computed if the band structure is known. It will show sin-
gularities wherever the derivative of (8.11) vanishes, i. e., wherever the slope of
E˘, k‖ is zero. This happens at the critical points of the one-dimensional band
structure, e. g., for k‖ � k⊥ � 0, and also, sometimes, when k⊥ crosses the
edges of the Brillouin zone. Fortuitous one-dimensional critical points can also
occur inside the reduced zone. Under these assumptions the measured spec-
trum will show peaks at the values of Ee calculated using (8.10) from the E˘’s
of such one-dimensional critical points.

We have considered two extreme cases: full conservation of k⊥ and no
conservation at all. The truth will, of course, lie somewhere in the middle: k⊥
will be conserved to within a “resolution” ¢k⊥, i. e., the final state in step one
will be within the range k⊥ ± ¢k⊥/2. Let us now estimate ¢k⊥. Photoemitted
electrons with the energy Ee have a decay length ‰ inside the crystal given in
Fig. 8.5. Hence these electrons can be represented by the wave functions

Ê(r) ∼ ei(k‖·r‖)ei(k⊥�ik′⊥)r⊥ � ei(k·r)ek′⊥r⊥ , (8.12)

where r‖ and r⊥ are components of r parallel and perpendicular to the sam-
ple surface, r⊥ being positive when pointing towards vacuum. Equation (8.12)
shows that the finite escape depth ‰ can be represented by an imaginary part
of k⊥, k′⊥, with 2k′⊥ equal to ‰�1. It is easy to prove that such an imaginary
part of k⊥ blurs the requirement of k⊥ conservation as represented by the
delta function ‰(kf

⊥ � ki
⊥) into the Lorentzian probability distribution

L(ki
⊥, kf

⊥) ∼ k′⊥
(ki
⊥ � kf

⊥)2 � k′⊥k′⊥
, (8.13)

which has the full-width at half-maximum (FWHM) ¢k⊥ � 2k′⊥ � ‰�1 (note
that 2k⊥ ≈ ki

⊥� kf
⊥). For Ee � 40 eV, ‰ � 5 Å and ¢k⊥ � 0.2 Å�1, which rep-

resents one-fifth of the °–X distance of the Brillouin zone of germanium. A
one-dimensional critical point falling within this range around one of the k⊥’s
of (8.9) is thus expected to dominate the energy distribution curve. Whether
this is the case can be easily tested by changing �ˆL. For direct k⊥-conserving
transitions the E˘ calculated with (8.10) from the Ee of a given spectral peak
will vary with �ˆL. For indirect transitions the spectra reproduce singularities
in the one-dimensional density of states which occur at fixed values of E˘,
hence (8.10) will give values of E˘ independent of �ˆL (Ee must change so as
to exactly cancel the change in �ˆL).

The ARPES spectra of real semiconductors contain, of course, a mixture
of k⊥-conserving and one-dimensional density-of-state peaks. In Ge and zinc-
blende semiconductors mainly the former are seen, while the latter explain
most (but not all) of the peaks observed in the lead chalcogenides [8.42].
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It is not completely clear why opposite models should apply to these two
families of semiconductors. However, one may guess that the indirect transi-
tion model will apply better the larger the number of one-dimensional critical
points within the Brillouin zone. Higher symmetry leads to a larger number of
such critical points (Problem 8.9). The lead chalcogenides have the Oh point
group while the point group of zinc-blende is Td, which has fewer symme-
try operations than Oh. Also, for zinc-blende usually a [110] cleavage face
is measured while for the lead chalcogenides a [100] face, the cleavage face
of this structure, is investigated. The latter has more one-dimensional criti-
cal points than the former because of the higher symmetry. Finally, the lead
chalcogenides have accidental critical points along the ¢ and ™ directions (see
Fig. 1 in [8.42]) which increases the probability of indirect transitions. In order
to illustrate these points we show in Fig. 8.20 the k-space region (involving
two adjacent bulk Brillouin zones) that is accessible to photoemission from a
(100) surface of PbS for k‖ along (001). Figure 8.20c shows the correspond-
ing k‖ dependence of the measured one-dimensional critical points, while Fig.
8.20b gives the results of band structure calculations, which are in quite satis-
factory agreement with the experimental data of (c).

8.1.3 Core Levels

The first core levels of Ge (3d) in order of increasing binding energy (BE) are
∼30 eV below the top of the valence band (see Table in [8.1, 2]). Silicon has
no d core levels; its first core levels (2p) have BE of ∼100 eV. In the III–V
compounds, the uppermost d core levels split into those of the cation (BE
∼18 eV) and those of the anion (BE ∼30 to 40 eV). In the II–VI compounds
that splitting increases (cation ∼10 eV; anion ∼40 to 55 eV). Note that for the
II–VI compounds the 3d and 4d levels touch the s-like bottom of the valence
bands; the d–s mixing is, however, negligible because of the small extent of
the d wave functions. In the I–VII compounds (e. g., CuCl) the 3d levels of
the copper overlap the upper (p-like) parts of the conduction bands, resulting
in a considerable mixing which is responsible for a number of interesting ef-
fects, such as the sign reversal of the spin–orbit splitting at ° in CuCl [8.27].
Note that Al, P and S, like Si, have no d core levels.

The p-like core levels split under the action of spin–orbit interaction into
atomic-like j � 3

2 and j � 1
2 components (splitting ¢p � 0.6 eV for 2p lev-

els in Si, 4 eV for 3p levels in Ge; note that these splittings increase rapidly
with atomic number). The d core levels of the atoms have an orbital degen-
eracy of 5 (l � 2). They thus split into j � 5

2 and j � 3
2 under the action

of spin–orbit interaction. When the atom is placed in a cubic (or tetrahedral)
environment, however, the fivefold orbital degeneracy has to split since the
Oh or Td point group only allows at most threefold degeneracy. In the case
of zinc-blende the d orbital levels split into °3 (twofold) and °4 (threefold,
see Problem 8.10). This splitting, however, is at most a few tenths of an eV in
the case of core levels, i. e., smaller than the spin–orbit splitting (∼ 1 eV). The
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Fig. 8.20. (a) Extended zone scheme of the fcc structure appropriate to the photoemis-
sion studies of PbS described in (c) where critical points obtained along the °–X, ¢–W
and X–W–X vertical red lines are represented. (b) Calculated dependence of the ener-
gies of critical points along the three vertical red lines of (a). (c) The right frame repre-
sents experimental data for the critical points measured by angular resolved photoemis-
sion (HeI lamp, �ˆ � 21.2 eV) with k‖ along [001]; curves have been drawn througth the
data as similar as possible to the calculations in (b). The left frame describes data for k‖
along [011] [8.42]

crystal-field splitting must therefore be applied to the j � 5
2 (sixfold) and the

j � 3
2 (fourfold) levels after splitting them through spin–orbit interaction. The

j � 3
2 level does not split under the action of the crystal field. The j � 5

2 level,
however, splits into °8 and °7 (Problem 8.10), this crystal-field splitting being,
of course, rather small.

Note that the outermost cation d levels of germanium and zinc-blende-
type semiconductors can all be investigated with conventional gas discharge
lamps (except for Sb, the anions require synchrotron radiation or X-rays
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Fig. 8.21. 4d core level spectra of metallic Cd
(dashed line) and CdTe (solid line) obtained
by means of UPS (HeI). Both BE’s are refer-
enced to the top of the valence band of CdTe.
This figure reveals a core shift of 1.44 eV (the
Cd levels are deeper in CdTe than in metallic
Cd) [8.43]

sources). Figure 8.21 shows angle-integrated photoelectron spectra of the 4d
levels of Cd in CdTe and in the metallic element, with the binding energies
referenced to the top of the valence band of CdTe. Two peaks (j � 5

2 and
3
2 ) are observed with the expected 3

2 intensity ratios. Note that the spin–orbit
splitting seems to be larger in the case of the element than for the compound,
for which it is actually close to that of the isolated atom. This has been in-
terpreted as a result of Cd 4d – Cd 4d overlap among the nearest neighbors
in metallic Cd (i. e., band formation). Such overlap is not expected for CdTe,
where the nearest neighbor of Cd is Te. A recent experimental and theoretical
study of band formation by the Cd 4d states of CdSe can be found in [8.44].

The most interesting feature of Fig. 8.21 is the shift of the cation core
levels of CdTe towards higher BE with respect to the element. Likewise, the
levels of Te (anion) are shifted towards lower BE [8.43]. (These so-called core
shifts are usually the same for all the core levels of one given atom.) A simple
qualitative explanation of this rather general fact is based on the ionicity of
the compound: the cation loses electrons to the anion. The removal of elec-
trons from the neighborhood of the cation lowers the energy of repulsion seen
by the core electrons of the cation, hence the binding energy increases. The
opposite can be said for the core levels of the anions. This simple argument,
however, encounters some difficulties when examined more quantitatively. If
we remove a charge q (negative for cations, positive for anions) from an atom
we expect a change in the BE of its core levels equal to �q/r, where r rep-
resents an average distance from the valence electrons to the core. For a di-
atomic crystal the removed electrons are placed on the other sublattice site,
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giving rise to a Madelung energy contribution to the BE. Thus we find the
total core BE shift with respect to the neutral element to be

¢E � q

(
·M

R
�

1
r

)
, (8.14)

where ·M is the Madelung constant (·M � 1.64 for the zinc-blende structure)
and R the nearest neighbor distance. Taking for the case of zinc-blende r �
R/2, we find from (8.14)

¢E � �5.2q/R (8.15)

with q expressed in electron charges, R in angstroms, and ¢E in eV. For a
typical value of q � 1 (as expected for II–VI compounds, see [8.45]) and R �
2.8 Å we find from (8.15) the core shift ¢E � �1.8 eV for the core levels
of Cd in CdTe, in rather good agreement with the data of Fig. 8.21 (¢E �
�1.44 eV). This agreement is, however, somewhat deceptive: because of the
near cancellation between the two terms in (8.14), a small change in the rather
arbitrarily chosen value of r results in a large variation of ¢E, possibly even a
sign reversal.

In order to quantify more precisely the value of r, it has been suggested
that

r � rm/A(°) (8.16)

be used [Ref. 8.2, p. 128], where rm is the interatomic distance in the cation in
metallic elemental form and A(°) a geometrical factor obtained by assuming
that the relevant valence electrons are evenly distributed in a spherical shell
of outer and inner radii rm/2 and °rm/2 (° ≤ 1). The derivation of A(°) is left
for Problem 8.11. Here we simply state that for ° � 0.5 we obtain A(°) � 2.6.
This ° gives values of the cation core shifts of zinc-blende-type semiconduc-
tors (2.2 eV for CdTe) in semiquantitative agreement with the experiments.
We should mention that the charge transferred away from the cation can be
related to an ionicity fi through [Ref. 8.2, p. 129]

q � N � 8
(

1 �
1
Â0

) (
1 � fi

2

)
(8.17)

where N � 3, 2, 1 for the III–V, II–VI, and I–VII compounds, respectively, and
Â0 is the low frequency (static) dielectric constant.

We have often mentioned the sensitivity of UPS to surface conditions.
Around the minimum in Fig. 8.5 the escape depth under normal takeoff is
∼5 Å, hence for a typical semiconductor the first two monolayers should con-
tribute about half to the total emission. For those monolayers ·M should be
smaller than for the bulk since several terms are missing in the slowly con-
vergent Madelung sum. Hence, according to (8.14), the BE of the cations will
be larger at the surface, and that of the anions smaller. Consequently, it is
possible to decompose the observed core spectra into two components, one
corresponding to the surface, the other to the core. This is illustrated in Fig.
8.22 by plotting the spectra of the 3d levels of As (a spin–orbit doublet) in
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Fig. 8.22. Spectra of the 3d core levels
of As measured on an InAs(110) sur-
face with synchrotron radiation (105 eV
excitation) using two different azimuthal
angles, ıe � 0 and 60. Note the de-
composition of the j � (5/2, 3/2) doublet
into a surface and a bulk component:
the former is stronger for the larger ıe

[8.46]

InAs, as measured with synchrotron radiation (�ˆL � 105 eV). Note that
these spectra can be decomposed into two doublets of comparable strengths.
In order to ascertain which of the two is due to the surface, one varies the
takeoff angle ıe. The escape depth should be that of Fig. 8.5 multiplied by
cos ıe, hence for ıe � 60 the spectra should contain a larger surface contri-
bution than that for ıe � 0. By inspection of Fig. 8.22 we identify the surface
doublet as the lower BE doublet, in agreement with the above predictions
based on a reduction of ·M at the surface.

We mention next the effects of surface oxidation on core level spectra.
Oxygen is very strongly electronegative and therefore oxidation leads to large
values of q(∼ 2) when estimated with (8.14) or simply assuming that oxygen
is always in the O2� configuration. The signature of surface oxidation is the
appearance of cation satellites at larger binding energy. If the oxidation pro-
ceeds very far, a shift of the whole core level peaks, by about 1 eV, is found.
For a detailed, more quantitative discussion of this topic see [8.47].

We close this section by mentioning that measurements of core level en-
ergies with respect to the top of the valence band can be very useful in the
determination of valence band offsets in semiconductor heterojunctions (Chap.
9). For details see [8.48].
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8.2 Inverse Photoemission

In the previous sections we have shown how photoelectron spectroscopy can
be used to determine the band structure of occupied states. The dispersion of
the empty conduction bands in k-space can also be determined by using the
inverse procedure, i. e., inverse photoemission. Several versions of this tech-
nique exist. In the simplest one, electrons with a well-defined energy Ee im-
pinge on the sample and place themselves at the corresponding conduction
band energy. They then scatter inelastically to a point of lower energy in the
conduction band. The energy difference between the initial and the final state
of an electron is taken up by the emission of a photon. A narrow-band-pass
photon detector, with a fixed central energy of ∼9.2 eV, is then used while
the incident electron energy Ee is swept to obtain a spectrum. For this reason,
the spectra are known as bremsstrahlung isochromat spectra (BIS).7 In a more
elaborate version, the emitted photons are dispersed by a grating and detected
by a multichannel detector (e. g., a television camera or similar). The latter
version is used in an angle-resolved manner by varying the angles (ıe, Êe) of
the incident electron beam. In the spectrometer used by Ortega and Himpsel
[8.28] an energy resolution of 0.3 eV is obtained in the 8–20 eV photon energy
range, with an angular resolution corresponding to ¢k‖ ∼ 0.1 Å.

The basic principles of inverse photoemission measurements are the same
as those discussed in Sect. 8.1.2, but reversed. One can also in this case ob-
serve either direct or indirect transitions, the latter related to singularities in
the one-dimensional density of conduction states. The direct transitions are
treated by fitting a free-electron parabola to the initial state, with the bottom
at the adjustable energy E0. This free-electron parabola, when folded to the
reduced zone, determines the possible values of k⊥ for a given, conserved k‖.
Also here, k‖ is often taken to be zero (normally incident electrons). Because
of the folding of the extended to the reduced zone, the value of k⊥ is not
uniquely determined: the various possible values correspond to various recip-
rocal lattice vectors G‖, i. e., to inverse Mahan Cones. Normally the primary
cone (G‖ � 0) is preferentially excited, a fact that is used to simplify the
analysis of the spectra. Once k⊥ is determined, the conduction band structure
Ec(k‖, k⊥) is found,

Ec � Ee � �ˆL, (8.18)

where �ˆL is the energy of a given feature in the spectrum of emitted pho-
tons. Care has to be taken to properly reference Ee and Ec to the same origin
of energies, usually the Fermi level or the top of the valence band.

An example of the power of this method is given in Fig. 8.23, which shows
the complete (conduction and valence) band structure of Ge obtained by in

7 Bremsstrahlung means in German “braking radiation”. This term refers to the electro-
magnetic radiation emitted when electrons are stopped (braked) by a solid.
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verse photoemission plus angle-resolved photoemission, compared with the re-
sults of ab initio band structure calculations which take the gap problem men-
tioned in Sect. 2.5 properly into account. The agreement between experimen-
tal and theoretical results is rather convincing.

8.3 Surface Effects

We have already shown in Fig. 8.22 that electronic states near the surface,
if different from those of the bulk, can significantly affect the photoemission
spectra. Therefore, direct and inverse photoelectron spectroscopy in their var-
ious forms are ideal techniques for investigating and characterizing surfaces:
recall for instance the extreme sensitivity of UPS to surface contamination
(Fig. 8.7). In this book we do not discuss surfaces in depth. The interested
reader will find such discussion in [8.11]. We do, however, present in this sec-
tion a few concepts and facts related to surfaces that are necessary in order to
understand direct and inverse photoelectron spectroscopy and other subjects
covered in this book for which surfaces are relevant.

8.3.1 Surface States and Surface Reconstruction

We first consider a clean semiconductor surface. The basic effect of cleaving
and removing half of the crystal is to break bonds, which are left as singly
occupied atomic orbitals known as dangling bonds. If one focuses on a mono-



458 8. Photoelectron Spectroscopy

layer of such bonds they should form two-dimensional bands Es(k‖) because
of the translational symmetry along the surface. If these bands overlap in en-
ergy with the continuum of either empty or occupied bulk states they are
broadened by interaction with those bulk states. They may, however, still be
identifiable as surface resonances using two-dimensional photoelectron tech-
niques, provided their broadening is not too large.

Those surface bands may lie, at least in part, in the forbidden energy gap.
In this case one talks about surface states. Dangling bonds occupied by only
one electron should give rise to partly occupied, i. e., metallic, surface bands.
In the one-dimensional case half-filled (metallic) bands usually undergo the so-
called Peierls transition: they split into two, one fully occupied the other
empty, by doubling the size of the primitive cell (reconstruction). In doing so,
the energy is lowered since the occupied bands go down in energy while the
empty ones go up: the metal becomes an insulator.

The Peierls transition occurs, strictly speaking, only in one-dimensional
metals. The higher the dimensionality, the less likely it is to find a similar
phenomenon. In two-dimensional systems (such as surfaces), however, it is
sometimes also possible to lower the energy through reconstruction (surface
reconstruction). This reconstruction, which can be rather involved, is specific
to the system under consideration and can be observed directly, in real space,
by scanning tunneling microscopy (STM).8 As an illustration, Fig. 8.24 shows
the c(8 × 2) reconstruction as directly observed for a (111) Ge surface by
STM. (The notation 8 × 2 refers to the fact that this unit cell contains 8 × 2
unit cells of the unreconstructed surface; c means that it is centered. Note
that it has orthorhombic symmetry.) Also shown is a schematic diagram of
this reconstruction, which takes place by a principle somewhat different from
the Peierls distortion mentioned above. The cleaved (111) surface has a large
number of dangling bonds, one per atom at the first monolayer. Many of these
dangling bonds can be saturated by capping groups of three atoms of the first
monolayer with adatoms (thick rings in Fig. 8.24b), thus producing the recon-
structed structure of Fig. 8.24a,b. In this manner six of the eight atoms are
capped with two adatoms in the primitive cell of Fig. 8.24b, thus eliminating
six out of eight dangling bonds but also introducing two new ones associated
with the adatoms, which are assumed to retain a tetrahedral bonding config-
uration. Hence by the reconstruction with adatoms we eliminate half of the
dangling bonds, lowering the energy by the bond energy of one half of the
surface atoms (∼4 eV/atom).

8.3.2 Surface Energy Bands

The surface energy bands Es(k‖) can be measured by means of photoemission
(occupied states) and inverse photoemission (empty states), as discussed in
Sects. 8.1 and 8.2. Inverse photoemission, however, has thus far not been as
fruitful for surface studies as its direct counterpart.

8 Invented by G. Binnig and H. Rohrer, Nobel Laureates for Physics 1987.
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Fig. 8.24. (a) Scanning tunneling microscope image of a Ge(111)-c(2 × 8) surface. (b)
Diagram of the reconstruction implicit in (a) drawn to the same scale. Note that the red
circles in (b) and the bright spots in (a) correspond to adatoms [8.50]

As an example, Fig. 8.25 shows direct photoemission results obtained by
several investigators for the c(2 × 8)(111) surface of Ge plotted in the Bril-
louin zone of the unreconstructed surface. We note in these data that all oc-
cupied surface bands lie below the top of the valence bands and thus represent
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surface resonances. It is worthwhile noting (see next section) that the widths
of these bands (∼0.5 eV) are narrower than those of the corresponding bulk
bands (∼2 eV). Because of Fermi level pinning (see next section) there must
be empty surface states located ∼0.1 eV above the top of the valence band. A
few points in the surface band structure have been calculated in [8.51]. They
agree qualitatively with the more complete data of Fig. 8.25.

The c(2 × 8) structure just discussed is obtained after cleaving and an-
nealing the Ge(111) surface. Immediately after cleaving, the metastable 2 × 1
surface is obtained. For this reconstruction, which we do not discuss here in
detail, band structure calculations, ARPES, and inverse photoemission mea-
surements are available. These results are compared in Fig. 8.26. We see that
a downshift in the energy of the calculated bands by ∼0.5 eV suffices to bring
them in reasonable agreement with the experiments. A surface gap between
occupied and empty states of about 0.5 eV appears. This gap has been ob-
served in Si by means of unconventional optical absorption techniques [8.52].

8.3.3 Fermi Level Pinning and Space Charge Layers

We have seen Sect. 8.3.2 that surface energy bands may or may not exist
within the gap. If the gap is free of surface states (this is the case for a
clean, cleaved GaAs surface) the position of the bulk bands with respect to
the Fermi energy is constant from inside the crystal all the way to the sur-
face, as shown in Fig. 8.27a. If surface bands exist in the gap they are rather
narrow (Figs. 8.25 and 8.26) and consequently their surface density of states
must be very high. This is depicted in Fig. 8.27b for a p-type and Fig. 8.27c for
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Fig. 8.26. Measured (dots) and calcu-
lated (solid lines) dispersion of the oc-
cupied and empty dangling bond sur-
face bands of a Ge(111)-(2 × 1) sur-
face. The rectangular inset represents
1/4 of the (2×1) surface Brillouin zone
and defines the notation used for the
k‖ points at the edge of this zone [Refs.
8.11, Fig. 10.6; 12, Fig. 6.36]

an n-type semiconductor. Because of the high density of surface states (1015–
1016/eV cm2) the surface states pin the Fermi level in the manner shown in
these figures. An n-type doping producing ∼1018 electrons/cm3 leads to a car-
rier density at the surface of ∼1010 electrons/cm2. Hence the Fermi level can
only penetrate into the surface bands by an amount

1010 electrons/cm2

1015 eV/cm2 � 10�5 eV.

This means that the Fermi level barely penetrates into the band of empty sur-
face states. This is the origin of the phenomenon known as Fermi level pin-
ning illustrated in Fig. 8.27c. Likewise, for a bulk p-type material (Fig. 8.27b)
the Fermi level is pinned against the top of the occupied surface states (or the
top of the bulk valence bands if these states are resonances inside the bulk
valence band). Because of the small surface gap (∼0.2 eV) one often speaks,
in both the n- and p-type cases, of a Fermi level pinned at a unique pinning
energy. A list of pinning energies measured for germanium- and zinc-blende-
type semiconductors can be found in [Ref. 8.11, Table 1.1].

The phenomenon of Fermi level pinning leads to the band bendings dis-
played in Figs. 8.27b–d (note that in Fig. 8.27a, with no pinning, there is no
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Fig. 8.27a–d. Examples of surface depletion and enrichment layers. (a) No Fermi level
(EF) pinning: no enrichment/depletion layer. (b) p-Type semiconductor with EF pinning:
hole depletion layer. (c) n-Type semiconductor with EF pinning: electron depletion layer.
(d) Near-intrinsic semiconductor with EF pinning close to the valence band: hole enrich-
ment layer

band bending). These surface band bendings result from the fact that in equi-
librium the Fermi level EF must remain constant from bulk to surface: the
band edges must then vary so as to be compatible with the EF pinning at the
surface and the bulk EF well away from it. A surface depletion layer results
in the cases of Fig. 8.27b and c. Figure 8.27d represents a surface enrichment
layer: the surface has, at finite temperature, more carriers (holes) than the
bulk. The band edge profiles of Figs. 8.27b–d represent electrostatic potentials,
which can be calculated by solving the equations of semiconductor statistics
together with Poisson’s equation for the relationship between potential and
charge. This calculation can be greatly simplified by assuming a space charge
layer with a constant charge density Ú extending all the way from the surface
to a point at a distance d from the surface and being zero beyond d. Poisson’s
equation can then be written as

d2ˇ
dz2 �

�4Ú
4 Â0Â0

, (8.19)
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where ˇ is the electrostatic potential and Â0 the static dielectric constant.
Equation (8.19) can be rewritten as

d

(
dˇ(z)

dz

)2

� �
8Ú

4Â0Â0
dˇ (8.20)

and integrated to yield(
dˇ(z)

dz

)2

� �
8

4Â0Â0
Úˇ(z). (8.21)

The integration constant in (8.21) has been determined by setting ˇ(d) � 0
and the electric field �(d) � �(dˇ/dz)z�d � 0. A second integration leads to

ˇ �
2Ú

4Â0Â0
(z � d)2, (8.22)

from which we obtain by setting ˇ(0) � ˇ0 the thickness of the space-charge
layer as a function of the charge density:

d �

(
ˇ0Â0

2Ú

)1/2

, (8.23)
4Â0

where ˇ0 represents the total band bending.
Equations (8.22) and (8.23) enable us to plot the potential profile provided

we make a reasonable assumption for the average charge density Ú. In mod-
erately doped semiconductors with pinning away from the band edges, it is
conventional to assume that Ú in the space charge layer is equal to the bulk
carrier density. For the typical values Ú � 1016 electrons/cm3, Â0 � 10, and
ˇ0 � 1 eV, we obtain with (8.23) d � 1300 Å. For the typical highest car-
rier concentrations of 1020 cm�3 found in semiconductor we calculate with the
same parameters d � 13 Å.

The reader may wonder whether the variation of ˇ(z), and thus of the
bulk band energies Ec, ˘(z), near the surface will smear out the photoelectron
spectra of both valence bands and core levels. For not too high doping levels
(up to ∼1018 cm�3 when using UPS, 1017 cm�3 for XPS) no such smearing oc-
curs since the escape depth of the electrons is much smaller than d. We thus
measure in these cases the bands and core levels referenced to the Fermi level
at the surface. At higher dopings than these, the escape depth becomes close
to or even larger than d. The measured bands and core levels should shift
with respect to EF and tend, at the highest, possible doping levels, towards
the bulk values. These facts offer the possibility of determining the profiles
ˇ(z) sketched in Fig. 8.27 by measuring the spectra of sharp core levels for
several �ˆL’s corresponding to a range of escape energies. For this purpose,
tunable synchrotron radiation is a must.

This method of measuring ˇ(z) is illustrated in Figs. 8.28 and 8.29. Fig-
ure 8.28 displays 2p core levels of Si (BE ≈ 100 eV), measured with re-
spect to the Fermi level, for three differently doped samples (intrinsic, 8 ×
1018 electrons/cm3, 1.6×1020 holes/cm3) with a range of �ˆL’s. While the peaks
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of the intrinsic sample do not shift with �ˆL, those of n-type sample shift
clearly towards lower binding energies when we increase �ˆL and thus ap-
proach the minimum of Fig. 8.5. The opposite is seen for the heavily doped
p-type sample. The binding energies obtained from the data of Fig. 8.28 are
plotted in Fig. 8.29 versus �ˆL and also versus the corresponding escape depth
(∼ z). A clear replica of the dependence of ˇ on z depicted in Fig. 8.27b, c,
is obtained. In Fig. 8.29 we see a confirmation of the existence of a gap, of
about 0.3 eV, between the occupied and the empty surface states of a cleaved
Si(111) surface.

We conclude this chapter by mentioning the obvious fact that the surface
Fermi level pinning depends strongly on the type of surface and surface re-
construction, quality of cleave, and surface contamination. A GaAs freshly
cleaved (110) surface, for instance, shows no pinning. Upon exposure to oxy-
gen, a small fraction of a monolayer coverage suffices to produce pinning with
EF ≈ 0.5 eV above the top of the valence band at the surface.
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Fig. 8.28a–c. Angle-resolved UPS spectra of the core levels of near-intrinsic and heavily
doped Si obtained for several �ˆL’s with synchrotron radiation. The data illustrate the
shift of the bulk bands with respect to the Fermi level due to surface pinning [8.53]
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Fig. 8.29. The peak positions from Fig. 8.28 plotted versus the energy of the exciting pho-
tons �ˆL and the corresponding escape depth (see Fig. 8.5). The data reproduce the be-
havior of the potential in the space-charge layer and reveal the existence of a surface
energy gap of about 0.3 eV [8.53]

PROBLEMS

8.1 Surface Exposure to Gasses: Langmuir
Calculate the number of air molecules (O2, N2) that impinge per second on
a solid surface of unit area at 300 K and a pressure of 10�6 torr. This unit of
exposure is referred to as one Langmuir (L). Assuming a sticking coefficient of
one for the atoms in the first surface monolayer (zero for all others), calculate
the coverage (in terms of numbers of monolayers) of silicon (111), (100), and
(110) clean surfaces after 1 L exposure to air.

8.2 Spherical Electron Analyzer
Calculate the band pass energy Ee (in eV) and the resolution ¢Ee (in eV/mm)
of a hemispherical analyzer (Fig. 8.9) with sphere radii Ra �¢Ra and Ra �¢Ra.

8.3 Angle Integrated Photoemission
Show that angle-integrated photoemission from valence bands is obtained
for Al K· radiation even when using a detector with angular resolution
(ıe/¢ıe) � 5 (take ıe � 45◦).

8.4 Fourier Transform of a ‰-Function
Show that

�∞∫
�∞

eikrdr � 2Re



∞∫

0

eikrdr


 � 2‰(k)
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where ‰(k) is the Dirac delta function. Show also that

�



∞∫

0

eikre�·rdr


 �

·
k2 � ·2 .

8.5 Surface Space Groups and Surface Brillouin Zones
Discuss the two-dimensional space groups of unreconstructed (100) and (111)
surfaces of the diamond and zinc-blende structures. Draw the corresponding
two-dimensional Brillouin zones. Give the irreducible representations of the
groups of the k vector at the center of the two-dimensional Brillouin zone.

8.6 Angular Resolved Photoelectron Spectroscopy (ARPES) of GaAs
Consider ARPES from the (100) surface of GaAs for �ˆL � 25 eV. Using the
band structure of Fig. 2.14 plot the dependence of ıe on the energy Ee of the
photoemitted electrons for k‖ along [010] and along [011]. Assume that the
free-electron parabola has its bottom 9 eV above the top of the valence band.

8.7 LCAO Band Structure of Graphite
Draw the primitive cell and the Brillouin zone and write down the Hamilto-
nian matrix of the electrons for a two-dimensional graphite layer in the LCAO
basis (Sect. 2.7) which includes one 2s and three 2p orbitals for each atom and
only nearest-neighbor interactions. If you have a PC with a matrix diagonal-
ization subroutine, calculate the corresponding energy bands using the tight
binding parameters given in [8.45] (for additional help see Sect. 2.7 of this
book).

8.8 UPS Spectra of Germanium
Using the band structure of germanium given in Fig. 8.19 and E0 � 8.8 eV,
calculate the dependence of the Ee of photoemission peaks on �ˆL obtained
for k⊥ along [100] and [111] in the 20–40 eV range of �ˆL.

8.9 One-Dimensional Critical Points in Photoemission
Investigate which regions of the square and the hexagonal faces of the fcc
Brillouin zone have symmetry-induced one-dimensional critical points [zero
slope of E(k⊥), where k⊥ is the component of k perpendicular to the face un-
der consideration] in the case of (a) the zinc-blende structure, (b) the rocksalt
structure, and (c) the germanium structure.

8.10 Spin-Orbit Splittings of d-States in Cubic or Tetragonal Fields
Investigate the splitting of orbital d levels under the action of a field of either
cubic or tetragonal symmetry. Investigate also the effect of such fields on the
spin–orbit-split j � 5

2 and j � 3
2 components of such levels.

Hint: The characters for the point group of all rotations in three-dimensional
space are given by
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¯j(·) �
sin

(
j � 1

2

)
·

sin 1
2 ·

, (8.24)

where · is the rotation angle (see Problem 4.2).

8.11 Potential at the Center of a Uniformly Charged Shell
Derive the potential seen at the center of a uniformly charged shell of charge
1 and inner and outer radii equal to °rm and rm (° � 1). The origin of poten-
tial is taken to be at infinity.

8.12 Potential at a Space-Charge Surface Layer
Consider an air-exposed surface of a degenerate n-type GaAs sample
(1018 electrons/cm3) at 300 K. The Fermi level should be pinned at 1 eV be-
low the bottom of the conduction band. Write down the equations which de-
termine the profile of the potential ˇ(z) at the surface depletion layer without
making the constant charge density approximation used to derive (8.22) for
T � 0 [hint: express Ú as a function of ˇ in (8.20) using the relation for the
carrier density versus Fermi energy]. Solve the equations (numerically if need
be) and plot ˇ(z). How should the equations be modified for temperatures
high enough that the condition kT � EF is no longer valid?

8.13 Atomic Scattering from Surfaces
Neutral atoms and ions with kilovolts of energy are strongly scattered by
atoms so they have penetration depths of typically less than a monolayer into
a crystal. As a result, they are very useful in determining the structure of sur-
faces via elastic scattering and surface phonon dispersions via inelastic scatter-
ing.

a) Calculate the de Broglie wavelength of He atoms with a kinetic energy
of 10 keV and discuss why their scattering by surface atoms can be treated
classically.

b) Calculate the minimum kinetic energy of a mono-energetic beam of He
atoms required to study the surface phonon of an un-reconstructed [111] Ge
crystal at the Brillouin zone edge.

c) Suppose electrons are going to be used to determine the surface dispersion
of phonons via high resolution electron energy loss spectroscopy (HREELS).
Discuss what range of kinetic energies one should choose for the incident elec-
trons.

Hints: see the following references:
H. Lüth: Surfaces and Interfaces of Solid Materials, 3rd Edition (Springer,
Berlin, Heidelberg, 1998) Chapters 4 & 5.
J.P. Toennies: The study of the forces between atoms of single crystal surfaces
from experimental phonon dispersion curves, in Solvay Conference on Surface
Science, edited by F.W. de Wette (Springer, Berlin, Heidelberg, 1988) p. 248.
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S UMMARY

We have briefly discussed a wide range of spectroscopic techniques that
involve the use of electrons and/or photons. These techniques yield very
detailed information about occupied and empty electron energy bands and
also core levels of semiconductors. The angle-resolved versions of photo-
emission and inverse photoemission have produced convincing pictures of
the E(k) dependence of bulk electronic states. They also have yielded infor-
mation on surface states. We presented spectra of excitations of core levels
and discussed the information that can be obtained from them. We also
introduced the concepts of surface reconstruction, electronic surface states,
and surface energy bands, and presented a few phenomena related to them,
such as Fermi level pinning. This led to a brief discussion of the techno-
logically important concepts of charge depletion and enrichment layers at
semiconductor surfaces.



9. Effect of Quantum Confinement on Electrons
and Phonons in Semiconductors

C ONTENTS

9.1 Quantum Confinement and Density of States . . . . . . . . . . . . . . . . . . . . 470
9.2 Quantum Confinement of Electrons and Holes . . . . . . . . . . . . . . . . . . 473
9.3 Phonons in Superlattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
9.4 Raman Spectra of Phonons in Semiconductor Superlattices . . . . . 511
9.5 Electrical Transport: Resonant Tunneling . . . . . . . . . . . . . . . . . . . . . . . . 525
9.6 Quantum Hall Effects in Two-Dimensional Electron Gases . . . . . . 533
9.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

In Chap. 5 we studied the Gunn effect as an example of negative differential
resistance (NDR). This effect is observed in semiconductors, such as GaAs,
whose conduction band structure satisfies a special condition, namely, the ex-
istence of higher conduction minima separated from the band edge by about
0.2–0.4 eV. As a way of achieving this condition in any semiconductor, Esaki
and Tsu proposed in 1970 [9.1] the fabrication of an artificial periodic struc-
ture consisting of alternate layers of two dissimilar semiconductors with layer
thicknesses of the order of nanometers. They called this synthetic structure a
superlattice. They suggested that the artificial periodicity would fold the Bril-
louin zone into smaller Brillouin zones or “mini-zones” and therefore create
higher conduction band minima with the requisite energies for Gunn oscilla-
tions.

With the development of sophisticated growth techniques such as molec-
ular beam epitaxy (MBE) and metal–organic chemical vapor deposition
(MOCVD) discussed in Sect. 1.2, it is now possible to fabricate the super-
lattices (to be abbreviated as SLs) envisioned by Esaki and Tsu [9.1]. In fact,
many other kinds of nanometer scale semiconductor structures (often abbre-
viated as nanostructures) have since been grown besides the SLs. A SL is only
one example of a planar or two-dimensional nanostructure. Another exam-
ple is the quantum well (often shortened to QW). These terms were intro-
duced in Sects. 1.2 and 7.1.5 but have not yet been discussed in detail. The
purpose of this chapter is to study the electronic and vibrational properties
of these two-dimensional nanostructures. Structures with even lower dimen-
sion than two have also been fabricated successfully and studied. For example,

P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, Graduate Texts in Physics, 4th ed., 
DOI 10.1007/978-3-642-00710-1_9, © Springer-Verlag Berlin Heidelberg 2010 
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one-dimensional nanostructures are referred to as quantum wires. In the same
spirit, nanometer-size crystallites are known as quantum dots. There are so
many different kinds of nanostructures and ways to fabricate them that it is
impossible to review them all in this introductory book. In some nanostruc-
tures strain may be introduced as a result of lattice mismatch between a sub-
strate and its overlayer, giving rise to a so-called strained-layer superlattice. In
this chapter we shall consider only the best-studied nanostructures. Our pur-
pose is to introduce readers to this fast growing field. One reason why nanos-
tructures are of great interest is that their electronic and vibrational proper-
ties are modified as a result of their lower dimensions and symmetries. Thus
nanostructures provide an excellent opportunity for applying the knowledge
gained in the previous chapters to understand these new developments in the
field of semiconductors physics.

Due to limitations of space we shall consider in this chapter only the ef-
fects of spatial confinement on the electronic and vibrational properties of
nanostructures and some related changes in their optical and transport prop-
erties. Our main emphasis will be on QWs, since at present they can be fab-
ricated with much higher degrees of precision and perfection than all other
structures. We shall start by defining the concept of quantum confinement
and discuss its effect on the electrons and phonons in a crystal. This will be
followed by a discussion of the interaction between confined electrons and
phonons. Finally we shall conclude with a study of a device (known as a res-
onant tunneling device) based on confined electrons and the quantum Hall
effect (QHE) in a two-dimensional electron gas. The latter phenomenon was
discovered by Klaus von Klitzing and coworkers in 1980 and its significance
marked by the award of the 1985 Nobel Prize in physics to von Klitzing for
this discovery. Together with the fractional quantum Hall effect it is probably
the most important development in semiconductor physics within the last two
decades.

9.1 Quantum Confinement and Density of States

In this book we have so far studied the properties of electrons, phonons and
excitons in either an infinite crystal or one with a periodic boundary condition
(the cases of surface and interface states in Chap. 8 being the only exceptions).
In the absence of defects, these particles or excitations are described in terms
of Bloch waves, which can propagate freely throughout the crystal. Suppose
the crystal is finite and there are now two infinite barriers, separated by a dis-
tance L, which can reflect the Bloch waves along the z direction. These waves
are then said to be spatially confined. A classical example of waves confined
in one dimension by two impenetrable barriers is a vibrating string held fixed
at two ends. It is well-known that the normal vibrational modes of this string
are standing waves whose wavelength Ï takes on the discrete values given by
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Ïn � 2L/n, n � 1, 2, 3 . . . . (9.1)

Another classical example is a Fabry-Perot interferometer (which has been
mentioned already in Sect. 7.2.6 in connection with Brillouin scattering). As a
result of multiple reflections at the two end mirrors forming the cavity, electro-
magnetic waves show maxima and minima in transmission through the inter-
ferometer at discrete wavelengths. If the space inside the cavity is filled with
air, the condition for constructive interference is given by (9.1). At a transmis-
sion minimum the wave can be considered as “confined” inside the interfer-
ometer.

For a free particle with effective mass m∗ confined in a crystal by impen-
etrable barriers (i. e., infinite potential energy) in the z direction, the allowed
wavevectors kz of the Bloch waves are given by

kzn � 2/Ïn � n/L, n � 1, 2, 3 . . . , (9.2)

and its ground state energy is increased by the amount ¢E relative to the
unconfined case:

¢E �
�2k2

z1

2m∗ �

(
�2

2m∗

) (
2

L2

)
. (9.3)

This increase in energy is referred to as the confinement energy of the particle.
It is a consequence of the uncertainty principle in quantum mechanics. When
the particle is confined within a distance L in space (along the z direction
in this case) the uncertainty in the z component of its momentum increases
by an amount of the order of �/L. The corresponding increase in the parti-
cle’s kinetic energy is then given by (9.3). Hence this effect is known also as
quantum confinement. In addition to increasing the minimum energy of the
particle, confinement also causes its excited state energies to become quan-
tized. We shall show later that for an infinite one-dimensional “square well”
potential the excited state energies are given by n2¢E, where n � 1, 2, 3 . . . as
in (9.2).

It is important to make a distinction between confinement by barriers and
localization via scattering with imperfections. Free carriers in semiconductors
are scattered by phonons and defects within an average scattering time 〈Ù〉 in-
troduced in Sect. 5.2. We can define their mean free path 〈 l 〉 as the product
of their average velocity and 〈Ù〉. Such scattering can also decrease the uncer-
tainty in a particle’s position and hence increase its momentum uncertainty.
This results in an uncertainty in its energy of an amount given by (9.3) with
L2 � 〈l 2〉. This effect is typically associated with defects or disorder in solids
and is not the same as the quantum confinement effects of interest in this
chapter. One way to distinguish between these two cases is to examine the
wavevector kz along the confinement direction. The wavevector of a particle
confined in a quantum well, without scattering, is discrete as it corresponds to
a standing wave, and is given by (9.2). Scattering at defects dephases a wave
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so that its amplitude decays exponentially within the mean free path 〈 l 〉. The
Fourier transform of such a damped wave involves kz, which is not discrete
but has a Lorentzian distribution with a width equal to 1/〈 l 〉. Tiong et al.
[9.2a] have proposed a model to estimate 〈 l 〉 for phonons from the frequency
shift and broadening of optical phonons localized by defects introduced by ion
implantation.

Most excitations have a finite lifetime. Optical phonons, for instance, decay
via interactions with other phonons (through anharmonicity) [3.3] or defects.
As a result, their energies have an imaginary part represented by the damping
constant ° (see for example Sect. 6.4). The effect of ° is to introduce a width
to the energy levels. Therefore, in order to see confinement effects it is neces-
sary for the confinement energy to be at least ° . Equivalently, this translates,
via (9.3), into a maximum value in L for observing confinement effects. In
other words, when L is too large the excitation will decay before even reach-
ing the barrier. Since the confinement energy is inversely proportional to m∗,
it is more difficult to observe quantum confinement effects in heavier particles.
Typically the sample has to be cooled to low temperature (so as to decrease
°) in order to observe a small confinement energy.

The confinement behavior of excitons is different from both electrons and
phonons since they consist of an electron plus a hole separated from each
other by a Bohr radius a0 (Sect. 6.3.1). When L is much larger than a0, the
exciton can move between the barriers like a free particle with total mass M
(equal to the sum of the electron and hole masses [9.2b]). The maximum value
of L for confinement is determined by the exciton mean free path. When L
is smaller than a0, the exciton properties are modified by the confinement of
its constituent electron and hole. For example, the exciton binding energy will
be increased since the electron and hole are forced to be closer to each other.
In the limit of a two-dimensional exciton, the binding energy is increased by
a factor of four relative to the three-dimensional case [(6.95) in Sect. 6.3.3].
Sometimes the confinement potential (if assumed to be infinite) has a larger
effect on the two constituent particles than their Coulomb interaction. In such
cases it is more convenient to regard the heavier of the two particles as being
trapped inside the potential well (since its wavefunction will be more confined
in the center of the well) while the other particle is attracted to it via the
Coulomb interaction. Similarly, we expect donor and acceptor binding ener-
gies to be enhanced when such impurities are confined to a distance smaller
than their Bohr radii.

In addition to changing the energies of excitations, confinement also mod-
ifies their density of states (DOS). We have already considered the effect of
dimensionality on DOS in the vicinity of critical points in Chap. 6 (Table 6.1).
In general, reducing the dimensionality “enhances” the singularity in the DOS
at a critical point. For instance, on reducing the dimension from three in bulk
samples to two in a QW, the electronic DOS at the bandgap Eg changes from
a threshold depending on photon energy �ˆ as (�ˆ�Eg)1/2 to a step function.
Since the transition probabilities calculated using the Fermi Golden Rule in-
volve the density of final states, confinement can have an important impact on
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the dynamics of scattering processes in semiconductor devices. For example,
it has been demonstrated that laser diodes fabricated from QWs have higher
efficiency and smaller threshold current than corresponding bulk laser diodes
[9.3]. It has been predicted that quantum dot lasers (zero-dimensional) should
have even smaller threshold currents. In addition, their lasing frequencies will
be much less sensitive to temperature change. In this book we shall not con-
sider these effects of confinement on devices. Interested readers should refer
to other books specializing on this topic [e.g. 9.4, 5].

9.2 Quantum Confinement of Electrons and Holes

As an illustration of how electrons are confined in semiconductors and how
to calculate their properties, we shall consider the case of a single QW. Its
structure is a “sandwich” consisting of a thin layer (thickness L) of a semicon-
ductor material (denoted by A) between two layers of another semiconductor
B (of equal thicknesses L′). The direction perpendicular to these layers will be
referred to as the z axis. There are more complex structures, consisting of sev-
eral repeating units of the form B/A/B/A/B/A/B/A... (where L′ � L), which
are known as multiple quantum wells or MQWs. Superlattices and MQWs are
similar in construction except that the well separations in a MQW are large
enough to prevent electrons from tunneling from one well to another. The
barrier width L′ in a SL is thin enough for electrons to tunnel through so that
the electrons “see” the alternating layers as a periodic potential in addition to
the crystal potential.

We shall assume that the bandgap of the well A (EgA) is smaller than that
of the barriers B (EgB � EgA) in a single QW. Owing to this bandgap dif-
ference, the conduction and valence band edges of A and B do not align with
each other. The difference between their band edges is known as the band off-
set and has already been introduced in Sect. 5.3. This band offset produces the
potential responsible for confining the carriers in one layer only. Thus the con-
trol and understanding of this band offset is crucial in the fabrication of quan-
tum confinement devices. While our understanding of what determines the
band offset of two dissimilar semiconductors is still not perfect, great progress
has been made in the fabrication techniques to control the shape of the
bandgap discontinuity. For example, in the well-studied GaAs (�A) / GaAlAs
(�B) system the interfaces between A and B have been shown by high res-
olution transmission electron microscopy to be as narrow as one monolayer
(Fig. 9.1). Extensive comparisons between experimental results and theoret-
ical calculations have also shown that the band edge discontinuities can be
rather abrupt, making a simple square well a good approximation for the con-
finement potential in most QWs. As a result we shall not discuss further the
various theories proposed to explain the band offset, instead we shall assume
that its value is known from experiment. Dingle et al. [9.6] have defined a
factor Q equal to the ratio between the conduction band offset (¢Ec) and the
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Fig. 9.1. High resolution transmission electron micrograph (TEM) showing a GaAs/AlAs
superlattice for a [110] incident beam. (Courtesy of K. Ploog, Paul Drude Institute,
Berlin.) In spite of the almost perfect interfaces, try to identify possible Al atoms in Ga
sites and vice versa

bandgap difference (¢Eg) as a way to characterize the band offset. For exam-
ple, in the technologically important GaAs/GaAlAs and InGaAs/InP QWs the
values of Q have been determined to be 0.6 [9.7] (this was pointed out already
in Sect. 5.3) and 0.3 [9.8], respectively.

9.2.1 Semiconductor Materials for Quantum Wells and Superlattices

Although a square confinement potential is not the only kind existing in
nanostructures, it is nevertheless the most common one. The achievement of
a sharp interface imposes very stringent requirements on the growth condi-
tions, such as purity of the source materials, substrate temperature and many
others too numerous to list here. However, ultimately the quality of the in-
terface between two dissimilar materials A and B, known as a heterojunction
(Sect. 5.3), is determined by their chemical and physical properties. Of these
perhaps the most important is the difference in their lattice constants. When
these are nearly the same, it is easy for all the atoms of A to be aligned
perfectly with those of B. This lattice alignment is known as pseudomorphic
growth (see Chap. 1) and is highly desirable for achieving high-quality het-
erojunctions. There are only a few such lattice-matched systems. Figure 9.2
plots the low temperature energy bandgaps of a number of semiconductors
with the diamond and zinc-blende structures versus their lattice constants.
The shaded vertical regions show the groups of semiconductors with similar
lattice constants. Materials within the same shaded region but having differ-
ent bandgaps can, in principle at least, be combined to form heterojunctions
with a particular band offset. This choice of band offsets can be widened by
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Fig. 9.2. A plot of the low temperature energy bandgaps of a number of semiconduc-
tors with the diamond and zinc-blende structure versus their lattice constants. The shaded
regions highlight several families of semiconductors with similar lattice constants. Semi-
conductors joined by solid lines form stable alloys. [Chen A.B., Sher A.: Semiconductor
Alloys (Plenum, New York 1995) Plate 1.] Note that the negative gap of HgSe is contro-
versial [2.28]. Broken lines indicate that the bandgap is indirect. Note the value of 0.77 eV
reported recently for the gap of InN and given in the inside cover table

growing binary (such as SiGe), ternary (such as AlGaAs) and quarternary
(such as GaInAsP) alloys. The solid lines in Fig. 9.2 joining together some
of the semiconductors indicate that these materials form stable alloys over the
entire alloy range (such as InGaAs, GaAlAs and InGaP). Using Fig. 9.2 as a
guide it is possible to “tailor” a heterojunction to have a desired band offset
or a QW to have a given shape of confinement potential. This is the basis of
what Capasso [9.9] has called bandgap engineering.

One example of such band gap engineering which has resulted in a de-
vice far superior to the conventional device without the use of heterojunctions
is the Double Heterojunction (DH) laser. The semiconductor laser diode, as
first invented by three groups independently, was based on a junction formed
between p-type and n-type GaAs (such junctions formed between the same
material with different dopings are known as homojunctions). The efficiency
of such lasers was not very high and consequently they were difficult to oper-
ate in the continuous wave (CW) mode and had also short lifetimes. A major
improvement in the design of the laser diode was the use of two heterojunc-
tions in the active region. It resulted in highly efficient CW lasers with long
lifetimes. These DH lasers have become part of home and office appliances
like compact disc players, laser printers and CD-ROM players in computers.
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Fig. 9.3. (a) Structure of a double heterojunction (DH) laser. (b) Dependence of the band
edge energies along the growth direction x. (c) Dependence of the refractive index along
x. (d) x-dependence of the electric field confined mainly to the GaAs layer



9.2 Quantum Confinement of Electrons and Holes 477

The idea of using heterojunctions, such as the one formed between GaAs and
AlGaAs, as efficient injectors of carriers was proposed by H. Kroemer in the
1960’s [9.10]. The idea of using two such heterojunctions to form a DH laser
was championed by Zh. I. Alferov and his colleagues at St. Petersburg, Rus-
sia [9.11, 12]. For their contributions to the DH laser, Kroemer and Alferov
shared the 2000 Nobel Prize in Physics with J.S. Kilby (who is credited as be-
ing the co-inventor of the integrated circuits). The basic idea behind the DH
laser is shown in Fig. 9.3. Fig. 9.3(a) shows the schematic structure of the laser.
Fig. 9.3(b) shows schematically the energy band diagram in the vicinity of the
two heterojunctions. Note that the junction is under forward bias (the poten-
tial difference across the diode is equal to the difference in energy between
the Fermi levels on the two sides of the junction) to inject electrons and holes
from AlGaAs into the GaAs layer. This figure shows how the electrons and
holes are confined inside the GaAs region by the larger band gap AlGaAs
layers. Such confinement has the effect of preventing carriers from diffusing
away from the junction area and hence increase their chance of recombin-
ing radiatively. The advantage of the DH idea is not limited to the confin-
ment of carriers in the active region. Fig. 9.3(c) shows that a discontinuity also
exists in the refractive index at the heterojunctions. The refractive index of
GaAs is larger than that of AlGaAs. As a result, photons impinging at the
junction with angles larger than the critical angle suffer total internal reflec-
tion. Thus the AlGaAs/GaAs/AlGaAs DH forms also a waveguide which chan-
nels photons within the GaAs layer where they help to stimulate radiative re-
combination of injected electron-hole pairs. The enhancement in the electric
field of the electromagnetic wave within the DH is shown schematically in Fig.
9.3(d). The combined effects of the DH on the electronic and optical properties
of the diode contribute to its much lower threshold current density for laser
operation.

Having the same lattice constants is not a necessary condition for pseudo-
morphic growth of one semiconductor (epitaxial layer or epilayer in short) on
another (substrate). It is possible to force the epilayer to have the same lat-
tice constant parallel to the substrate even though it may be different in the
bulk. The result is a strained but otherwise perfect epilayer. However, there is
a limit to the thickness of a strained layer one can grow while maintaining a
perfect lattice. As the strain energy increases with the thickness, beyond some
thickness known as the critical layer thickness, the epilayer can lower its to-
tal energy by relieving the strain via the creation of misfit dislocations. In a
simple-minded approach, one can assume that the dislocation energy is pro-
portional to the number of atoms in the dislocation. Since dislocations tend
to start at the interface and then propagate upwards, their energy is propor-
tional to the layer thickness. For very thin layers, the strain energy may be
smaller than the dislocation energy and the epilayer grows pseudomorphically
while maintaining a perfect lattice without dislocations. As the strain energy
increases with the volume of the strained epilayer, for a thicker film it will
cost less energy to generate misfit dislocations than to strain the entire film.
Hence, films thicker than the critical layer thickness are dislocated but not
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strained. The critical layer thickness for two dissimilar materials obviously de-
pends on their lattice constant difference. By keeping the superlattice layers
thinner than the critical layer thickness it is possible, in principle, to grow
a strained-layer superlattice (SLS) from any two semiconductors without re-
gard to their lattice constants. One example is the Si/Ge SLS, where the lat-
tice mismatch is about 4%. We shall not consider SLSs further in this book.
Readers are referred to [9.13] and [6.88] for more details of the properties of
SLSs.

Finally, if there are interface states within the gap of one of the two mate-
rials forming the QW they can pin the Fermi level and give rise to band bend-
ing (Sect. 8.3.3). While band bending is sometimes desirable or unavoidable
(say, as a consequence of doping), in general it makes the confinement poten-
tial more complicated to treat theoretically and therefore we shall assume that
it is absent unless otherwise noted.

9.2.2 Classification of Multiple Quantum Wells and Superlattices

Since the idea of growing SLs and QWs was introduced in order to make elec-
tronic devices, it is now customary to classify these structures according to the
confinement energy schemes of their electrons and holes. Given two semicon-
ductors A and B (with EgB � EgA) forming the MQW B/A/B/A/B/A/B/A...,
one can obtain three scenarios as shown schematically in Fig. 9.4. These con-
finement schemes are usually labeled type I and type II. In type I MQWs
or SLs the electrons and holes are both confined (the energy of the con-
fined particles is represented by the red broken lines) within the same lay-
ers A (forming the well). Type I MQWs are formed by GaAs/GaAlAs pro-
vided the GaAs layer thickness is larger than 2nm or the Al mole fraction less
than 0.3.

A type IIA MQW can be called “spatially indirect bandgap” semiconduc-
tor: While the electrons are confined in one layer, the holes are confined in a
different layer. Type IIA MQWs or SLs are formed by GaAs (A) and AlAs
(B) when the GaAs layer thickness is smaller than 2 nm. The small well width
causes the electron energy in GaAs to lie above the weakly confined (be-
cause of the large effective mass) conduction band minimum in AlAs (which
occurs at the X point of the Brillouin zone). As a result, the electrons are
confined in the AlAs layers while the holes are still confined in the GaAs
layers.

A type IIB MQW behaves like zero-gap or small-gap semiconductors since
there is either only a very small energy gap between the electrons in layer A
and the holes in layer B or none at all. The supperlattice InAs/GaSb is an ex-
ample of Type IIB behavior.

One may also find occasionally in the literature a superlattice formed by a
semiconductor and a zero-gap semiconductor. This is referred to as a type III
superlattice [9.14]. Finally MQWs and SLs can also be formed by two identical
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Fig. 9.4. Schematic diagrams of three arrangements of the confinement of electrons and
holes in MQWs and superlattices formed by two semiconductors A and B with bandgaps
EgA and EgB, respectively. In type I samples both the electrons and holes are confined
in the same layer A. The energies of the confined particles are represented by red lines.
In type IIA systems the electrons and holes are confined in different layers. Type IIB
samples are a special case of type IIA behavior. They are either small gap semiconductors
or semimetals

semiconductors but doped differently. For example, a SL formed by doping
the layer A n-type and the layer B p-type is known as a doping superlattice
(or nipi structure, where i stands for an intrinsic layer between the n- and
p-type layers) [9.15]. Isotope superlattices have also been investigated [9.16].

9.2.3 Confinement of Energy Levels of Electrons and Holes

To understand the electronic levels of a QW we shall start by assuming a sim-
ple square well potential defined by
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V(z) �

{
0 for (�L/2) � z � (L/2),
V0 for z � (L/2) or z � (�L/2),

(9.4)

where L and V0 are, respectively, the width and height of the well. Notice that
the height of the well is equal on both sides and, consequently, the well poten-
tial (9.4) has reflection symmetry with respect to its center. To take advantage
of this symmetry we have chosen the origin at the center of the well. As a
result, the eigenstates of electrons in the well have definite parity under the
operation of reflection with respect to the z � 0 plane. Consequently there
are also selection rules (in addition to those imposed by the crystal symme-
try) governing the interaction of electrons and phonons in QWs with external
perturbations. Care should be exercised when using these results based on the
reflection symmetry. In the most common case of a GaAs QW surrounded by
AlAs barriers grown on a (001)-oriented GaAs substrate, strictly speaking, the
noncentrosymmetric GaAs crystal has no mirror planes perpendicular to the
growth axis. Nevertheless, a parity-like symmetry exists with respect to the
two-fold rotations about the [100] and [010] axes (Sect. 2.3.2). The assumption
of a mirror plane through the center of a symmetric QW remains, however,
valid within the effective mass approximation commonly used in the literature
(which neglects the details of the microscopic electron band structure). Asym-
metric QWs, in which parity is not a good quantum number, can be fabricated
by choosing two different barriers on the two sides of the QW, but they will
not be studied here.

a) Confinement of Electrons in Quantum Wells

In order to start with the simplest case, we shall consider an electron in a
Type I QW constructed of two semiconductors with similar parabolic conduc-
tion bands. Furthermore, we assume that the growth direction (z axis) is par-
allel to one of the principal axes of the effective mass tensor in both materials.
As we discussed in detail in Sect. 4.2.1, the energy and wavefunction of this
electron can be calculated with the effective mass approximation provided the
potential V(z) satisfies the conditions enumerated in Sect. 4.2.1. This means,
in principle, that the well width has to be much larger than one monolayer
(for calculations of energy levels in ultrathin QWs see [9.17, 18]). With this
approximation the electron wavefunction can be written in a form similar to
(4.12). The Wannier functions and envelope functions inside the well will be
denoted by anA and CnA, respectively, while the corresponding functions in the
barrier will be denoted by anB and CnB. This approximation is often referred
to as the envelope function approximation in the QW literature. The electron
wavefunction in the QW can be expressed as

æ(r) �

{
N�1/2 ∑

CnA(Ri)anA(r � Ri) for (�L/2) ≤ z ≤ (L/2),

N�1/2 ∑
CnB(Ri)anB(r � Ri) for z � (L/2) or z � (�L/2).

(9.5)

Similarly, the equations of motion for the envelope functions inside and out-
side the well are different. For isotropic effective masses (to be denoted by
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m∗
A and m∗

B for the well and barriers, respectively) these equations are[
�

(
�2

2m∗
A

)
�2

�R2

]
CA(R) ≈ [E � EcA]CA(R)

for (�L/2) ≤ z ≤ (L/2)

(9.6a)

and [
�

(
�2

2m∗
B

)
�2

�R2 � V0

]
CB(R) ≈ [E � EcA]CB(R)

for z � (L/2) or z � (�L/2),

(9.6b)

where EcA is the conduction band edge in the well (without loss of generality
it will be taken to be zero).

Since the confinement potential depends on z only, (9.6a and b) are sep-
arable into two equations, one depending on z and the other depending on x
and y only. The wavefunctions C(A or B)(x, y, z) can then be expressed as the
products of the solutions of these two equations:

C(A or B)(x, y, z) � ˇ(A or B)(x, y)„(A or B)(z). (9.7a)

The equation for ˇ(A or B)(x, y) is that of a free particle, and hence its solutions
are plane waves of the form

ˇ(A or B)(x, y) ∝ exp[±i(kxx � kyy)], (9.7b)

where kx and ky are components of the Bloch wavevectors parallel to the well.
Since translational invariance in the xy plane is preserved, all theorems con-
cerning k-conservation derived for bulk crystals apply to kx and ky but not to
the z component.

Notice that the mass changes from m∗
A inside the well to m∗

B outside it.
However, the boundary condition that the wavefunctions must be continuous
across the QW interface requires that both kx and ky be the same inside and
outside the well. The equations for „(A or B)(z) are

�

(
�2

2m∗
A

) (
d2

dz2 � k2
x � k2

y

)
„A(z) ≈ E„A(z)

for (�L/2) ≤ z ≤ (L/2)

(9.8a)

and [
�

(
�2

2m∗
B

) (
d2

dz2 � k2
x � k2

y)

)
� V0

]
„B(z) ≈ E„B(z)

for z � (L/2) or z � (�L/2).

(9.8b)

Except for the fact that the masses m∗
A and m∗

B may be different, (9.8)
at kx � ky � 0 is identical to the quantum mechanics textbook case of a
particle confined in a one-dimensional square well. The solutions for the case
m∗

A � m∗
B can be found, for example, in [Ref. 9.19, p. 34]. Here we shall try to

summarize the results only.
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In general there are two kinds of solutions to (9.8). When {E �
[�2/(2m∗

B)](k2
x � k2

y)} � V0, the solutions are plane waves and their energy
spectrum is continuous. In this case the particle has sufficient kinetic energy
to overcome the barrier and is therefore not confined inside the well. These
continuum solutions, while important, are not of interest to us at this point.

For {E � [�2/(2m∗
B)](k2

x � k2
y)} � V0 the solutions to (9.8b) are exponential

functions of the form

„B(z) � ·1eÙz � ·2e�Ùz, (9.9a)

where Ù is a positive real number given by[
E �

(
�2

2m∗
B

)
(k2

x � k2
y � Ù2)

]
� V0. (9.10)

In order that „B(z) be finite at z � ±∞,

„B(z) �

{
·1eÙz for z � (�L/2),
·2e�Ùz for z � (L/2).

(9.9b)

The wavefunction ˇB(x, y)„B(z) describes a wave traveling parallel to the well
but exponentially decaying into the barriers from the interfaces. Such waves
are known as evanescent waves. The z component of its wavevector is equal
to ±iÙ and therefore is imaginary. Within the well, the solutions to (9.8a) can
be expressed as linear combinations of symmetrized (with respect to reflection
onto the z � 0 plane) wavefunctions, such as cosine (symmetric) and sine
(antisymmetric) functions:

„A(z) � ‚1 cos(kzz) or ‚2 sin(kzz) for (�L/2) � z � (L/2). (9.9c)

The allowed values of E are discrete in this case. These bound state solu-
tions (i. e., the four coefficients ·1, ·2, ‚1 and ‚2) are determined by the usual
requirement that the wavefunctions and their first derivatives be continuous
across the two QW interfaces. In general there are no analytic expressions for
the eigenvalues except when V0 is infinite. In this special case the particle is
completely confined inside the well (and hence m∗

B becomes irrelevant) and
the values of kz are given by the classical expression for standing waves:

kz � n/L where n � 1, 2, 3, . . . . (9.11)

The corresponding energies are

En(kx, ky) �

(
�2

2m∗
A

)[(n
L

)2
� k2

x � k2
y

]
n � 1, 2, 3, . . . . (9.12a)

At kx � ky � 0, the energy levels are equal to

En �
�2

2m∗
A

(n
L

)2
. (9.12b)

Figure 9.5 shows the electron energy levels in the infinite barrier QW. To dis-
tinguish them from the electron energy bands of the corresponding bulk crys-
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Fig. 9.5. Schematic diagram of the energy subbands in an
infinite barrier quantum well versus in-plane wavevector k⊥

tal A, these energy bands of electrons confined in two dimensions are known
as subbands.

When V0 is finite, the subband energies cannot be expressed analytically.
They can be determined either graphically or numerically with the help of a
computer. The former procedure for the special case of m∗

A � m∗
B can be

found in quantum mechanics textbooks. In the case m∗
A �� m∗

B the continuity
condition on the derivatives �„A(z)/�z and �„B(z)/�z must be modified to the
so-called Bastard boundary condition [9.20a](

1
m∗

A

) (
�„A

�z

)
�

(
1

m∗
B

) (
�„B

�z

)
at z � ±(L/2). (9.13)

This condition ensures that the particle flux is continuous across the interface
between A and B.

Figure 9.6 shows the calculated bound state energies (for kx � ky � 0) of
an electron in a Ga0.47In0.53As–Al0.48In0.52As QW (grown on a lattice-matched
InP substrate) as a function of well width L. The well depth V0 is equal to
0.5 eV. Notice that the number of bound states lying within the well decreases
as L becomes smaller. For L � 30 Å only one bound state exists. It should
be noted that the “unbound” or continuum solutions are modified by the con-
finement potential and differ from those in the bulk crystals. Discussions of
the case when the effective mass is parabolic but not isotropic can be found
in [9.21].

b) Confinement of Holes in Quantum Wells

As we showed in Sect. 4.2.4, the equation of motion of holes in diamond- and
zinc-blende-type semiconductors under the influence of a Coulomb potential is
rather complicated even within the effective mass approximation. In the case
of shallow acceptors discussed in that section, the solutions are simplified by
the spherical symmetry of the potential. Since the QW confinement potential
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Fig. 9.6. Calculated electron confine-
ment energies in a Ga0.47In0.53As/
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V(z) is not spherical we expect the problem to be more difficult. Indeed nu-
merical calculations are necessary to obtain meaningful results. An example
of hole subbands obtained by such calculations is shown by the solid curves in
Fig. 9.7 for a GaAs/Ga0.7Al0.3As QW with well widths of 100 and 150 Å [9.22].
The labeling of the bands suggests that they arise from either the heavy hole
(HH) or light hole (LH) bands of the bulk. We shall see that, strictly speaking,
this is not the case since the bulk valence bands are heavily mixed by V(z).
These subbands can be qualitatively understood in the following way.

Let us assume that the spin–orbit splitting of the hole bands is so large that
only the J � 3/2 heavy (Jz � ±3/2) and light (Jz � ±1/2) hole bands need
be considered. Furthermore, the axis of quantization for J is chosen to be
along the growth direction. Their dispersions in the bulk crystal can be cal-
culated from the Luttinger Hamiltonian �L in (2.70), to which the confine-
ment potential V(z) must be added. The resultant Hamiltonian contains, in
general, terms of the form JxJy(�/�x)(�/�y) etc. from the expansion of (J · ∇)2.
The Schrödinger equation corresponding to this Hamiltonian is not separable.
Since these “off-diagonal” terms arise from the warping of the valence bands
and are not important for understanding qualitatively the effect of confine-
ment on the valence band dispersion, we shall make the ad hoc assumption
that they are negligible. In most semiconductors these terms are small (excep-
tions being Si, SiC, and diamond; see Table 4.3) and can be introduced later
as weak perturbations. Within this approximation the hole Hamiltonian in a
QW can be written as:



9.2 Quantum Confinement of Electrons and Holes 485

E
ne

rg
y 

 [
m

eV
]

0

–10

–20

–30

HH0

LH0

HH1

L=150 Å

0 0.5 10 0.5 1

0

–10

–20

–30

–40

–50

E
ne

rg
y 

[m
eV

]

ky [π × 106 cm–1]

L=100 Å

HH1

LH0

HH0

(a) (b)

ky [π × 106 cm–1]

Fig. 9.7. Hole subband energies in a GaAs/Ga0.7Al0.3As QW calculated by Bastard and
Brum [9.22] within the envelope-function approximation for well widths of (a) 100 and
(b) 150 Å, respectively. The labels HH and LH denote the subbands arising from the
heavy and light hole valence bands in the bulk, respectively (red curves). The black curves
represent the subband energies calculated when the mixing between the heavy and light
hole bands is neglected

�QW �

(
�2

2m

)[(
Á1 �

5Á2

2

)
∇2 � 2Á2(∇2

xJ2
x � c.p.)

]
� V(z) (9.14)

The corresponding Schrödinger equation is now separable into two equations
as in (9.6). The Hamiltonian for motion in the z direction becomes(

�2

2m

)[(
Á1 �

5Á2

2

)
� 2Á2J2

z

] (
�

�z

)2

� V(z) (9.15a)

This equation suggests that the Jz � 3/2 state (we shall avoid using the labels
“heavy” and “light” because they are no longer meaningful as we shall see
later) behaves, for the purpose of calculating the confinement properties with
the Hamiltonian in (9.15a), as if its effective mass mhz were equal to [cf.
(2.67)]

(mhz)�1 � (Á1 � 2Á2)/m, (9.16a)

while the Jz � 1/2 state acts as if it had the lighter mass mlz

(mlz)�1 � (Á1 � 2Á2)/m. (9.16b)

Since the confinement energy is inversely proportional to the effective mass,
see (9.12), it is larger for the Jz � 1/2 state than for the heavy Jz � 3/2 state.
This situation is shown schematically in Fig. 9.8a.
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The Hamiltonian for the motion perpendicular to the confinement poten-
tial (say along the y axis) is given by(

�2

2m

)[(
Á1 �

5
2

Á2

)
� 2Á2J2

y

] (
�

�y

)2

. (9.15b)

The expectation values 〈3/2, 3/2|J2
y |3/2, 3/2〉 and 〈3/2, 1/2|J2

y |3/2, 1/2〉 are equal
to 3/4 and 7/4, respectively. When these values are used to calculate the ex-
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pectation values of the Hamiltonian in (9.15b), we find that the Jz � 3/2 state
behaves as if it had the mass

(mhy)�1 � (Á1 � Á2)/m (9.17a)

in the y direction while the Jz � 1/2 state has the mass

(mly)�1 � (Á1 � Á2)/m. (9.17b)

Table 4.3 shows that Á1 � Á2 and both are positive in most zinc-blende-
type semiconductors. Thus we arrive at the somewhat paradoxical result that
the Jz � 3/2 state (heavy hole in the bulk along the direction of quantiza-
tion and also in calculating the confinement properties) has a smaller mass
in the x and y directions than the Jz � 1/2 state (or light hole in the bulk).
This phenomenon is known as mass reversal. It was first encountered in cy-
clotron resonance experiments in p-type Si under compressive [001] uniaxial
stress [9.23]. In that case the uniaxial stress splits the degeneracy of the heavy
and light hole bands at the Brillouin zone center (see Problem 3.8c) and the
bands become parabolic. The sign of the deformation potential b is such that
the Jz � 1/2 state (with the larger mass now!) has a higher energy than the
Jz � 3/2 state [3.30]. As a result the two bands do not cross, as shown in Fig.
9.8b. However, in a QW the hole bands cross each other as shown in Fig. 9.8a
and also in Fig. 9.7 as the black curves. When the “off-diagonal” terms are in-
cluded, the two bands are mixed together and level-anticrossing (see also Sect.
6.4) results whenever they might intersect each other. This is shown schemati-
cally in Fig. 9.8a. While compressive uniaxial stress along high-symmetry direc-
tions of diamond- and zinc-blende-type semiconductors simplifies the J � 3/2
valence bands in the k direction perpendicular to the stress, by lifting their
degeneracy and removing their warping, the confinement potential of a
QW complicates the valence band structures by inducing mixing and level-
anticrossing. In spite of the ambivalent meaning of heavy and light masses,
the terms “heavy hole” and “light hole” are often used in the literature to
designate the subbands in QWs arising from the J � 3/2 valence bands.

c) Electrons and Holes in Superlattices

In principle, the energy of electrons and holes in superlattices can be calcu-
lated in the same way as for QWs provided one uses the appropriate boundary
conditions. The periodicity of the superlattice (with period equal to the sum
of the widths of a well and a barrier and represented by d) imposes the same
boundary conditions on the electron and phonon wavefunction as the periodic
potential of a one-dimensional crystal. As a result, it should be possible to ex-
press the envelope wave function „(z) for an electron in the conduction band
in the form of Bloch waves propagating along the direction of growth of the
SL. For the simple case of kx � ky � 0 in a GaAs/Al1�xGaxAs SL (where for
0.15 � x � 0.30 one can approximately assume that the electron has isotropic
effective masses m∗

A � m∗
B) the wave equation of the electron in the z di-

rection reduces to that of a one-dimensional periodic square-well potential,
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better known as the Kronig–Penney model. The solutions of this problem are
discussed in many quantum mechanics textbooks (see, e. g. [9.24]). We shall
not go into the details of the solutions of the wave equation for the envelope
function. It suffices to point out that for a SL consisting of wells and barriers
with widths a and b, respectively, and barrier height V0, the electron energy
E is related to the Bloch wavevector kz � k (dispersion) via transcendental
equations of the form

cos(kd) � cos(k1a) cos(k2b) �
k2

1 � k2
2

2k1k2
sin(k1a) sin(k2b) (9.18a)

for E � V0

and

cos(kd) � cos(k1a) cosh(κb) �
k2

1 � κ2

2k1κ
sin(k1a) sinh(κb) (9.18b)

for E � V0,

where k1, k2 and κ are defined by

E � �2k2
1/(2m∗

A), (9.19a)

E � V0 � �2k2
2/(2m∗

A) for E � V0, (9.19b)

V0 � E � �2κ2/(2m∗
A) for E � V0. (9.19c)

The transcendental equations (9.18a and b) are usually solved numerically. As
a comparison of the energies in a QW and in a SL we show in Fig. 9.9 the evo-
lution of electron energies in a one-dimensional MQW (shown schematically
in the inset of Fig. 9.9) with a potential barrier height of 0.4 eV as a func-
tion of the barrier width (chosen to be equal to the well width). As the bar-
rier width decreases the neighboring quantum wells interact with each other
and the MQW becomes a SL: its discrete energy levels broaden into bands
known as minibands. It should be remembered that the envelope-function ap-
proximation breaks down when the layers are only a few monolayers thick.
To calculate the electron energies in these so-called short-period superlattices,
one has to apply standard band structure calculation techniques to an “ar-
tificial” three-dimensional crystal generated with a “supercell” consisting of
one period of the superlattice. The electron energies in short-period SLs have
been calculated this way using either pseudopotential or tight-binding meth-
ods as described in Chap. 2. Figure 9.10 shows the hole miniband energies
in a GaAs/Ga0.7Al0.3As SL calculated by Chang and Schulman [9.26] using a
LCAO model (see Sect. 2.7), although the GaAs and GaAlAs layers (68 and
71 monolayers thick, respectively) are more than a few monolayers thick. Note
that one monolayer of GaAs has a thickness of 2.827 Å, very close to that of
GaAlAs. Figure 9.10 clearly displays several lh–hh anticrossings of the type
discussed above.
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9.2.4 Some Experimental Results

At the time of writing of this book the theoretically predicted energies of sub-
bands and minibands in QWs and SLs had been extensively verified exper-
imentally. It is impossible to review all the results in this chapter. Instead,
we shall present some typical results for type I QWs based on the well-
studied GaAs/AlGaAs system. The excellent agreement between theory and
experiment provides another stringent proof of the high degree of perfection
achieved in growing these nanostructures. Many of these results have been ob-
tained by transport (tunneling experiments to be described later in this chap-
ter) and optical techniques (such as absorption, both interband and intersub-
band, photoluminescence, luminescence excitation and Raman spectroscopies,
which have been described in Chap. 6 and 7).

The first convincing evidence of confinement of the electrons and holes
in QWs was provided by optical absorption measurements. In Fig. 7.16a we
have already shown such a spectrum for a 20 nm GaAs QW as reported by
Dingle [9.27]. While absorption spectra are representative of the joint den-
sity of states of electrons and holes (often modified by excitonic effects which
are enhanced in two dimensions as mentioned in Sect. 9.1), the spectrum in
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Fig. 7.16a nevertheless shows two important features of quantum confinement.
The first is a confinement-induced blue shift of the exciton peaks with respect
to those in bulk GaAs. This may not be obvious from a comparison of Fig. 6.25
with Fig. 7.16a because of the rather large width of the QW in Fig. 7.16a. It
becomes clearer in the narrower QW shown in Fig. 7.16b. The second feature
is the appearance of a series of peaks (corresponding to the quantized levels
with quantum numbers n � 1, 2, etc.) whose separation changes with the well
width as predicted by (9.12b). These exciton peaks (labeled n � 1 and 2) ex-
hibit a doublet structure due to the splitting of the valence bands heavy and
light hole components caused by the confinement potential. Figure 9.11 shows
a more detailed comparison of the predicted and observed optical transition
energies between the subbands of the heavy and light holes and those of the
electron in a 316 Å wide GaAs/AlGaAs QW measured by Dingle [9.27]. The
interpretation of the experimental spectrum is simplified by the electric dipole
selection rules. As pointed out by Dingle et al. [9.6], for infinite well depth the
electron and hole subband quantum numbers have to be the same in an elec-
tric dipole transition because of the orthogonality of the envelope functions.
This rule is relaxed in wells of finite height where the Hamiltonians for elec-
trons and holes become different and their respective wavefunctions need not
be orthogonal to each other. In symmetric wells, however, parity conservation
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left panel. From [9.27]. Note that the value of the band offset assumed by Dingle for
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(Sect. 9.2.3) still implies allowed transitions only between subbands with the
same parity. However, transitions between subbands with the same quantum
number tend to be stronger even for finite wells (Fig. 9.11). Similar excitonic
peaks associated with the quantized electron and hole levels in QWs have also
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been observed by photoluminescence and the corresponding excitation spec-
troscopy. Examples of such PLE spectra in two QWs of widths equal to 5 and
10 nm have already been shown in Fig. 7.16b and discussed in Sect. 7.1.5.

The results just mentioned exemplify the separate quantization of elec-
trons and holes. Evidence for confinement of excitons, of the type mentioned
in Sect. 9.1, has also been reported. See [9.2b] and references therein.

In both absorption and PLE measurements the intersubband energy sep-
arations are measured rather than the energy of an individual subband. Fur-
thermore, no information on subband dispersion is obtained. Kash et al. [9.29]
have utilized a kind of “hot luminescence excitation spectroscopy” to deter-
mine directly the hole subband dispersion in QWs. The principle behind their
experiment was first demonstrated in bulk GaAs by Fasol et al. [9.30]. We
shall consider here only the case of a QW, although similar results are ob-
tained for bulk materials. In Fig. 9.12a an incident tunable laser (�ˆlaser) ex-
cites an electron from the heavy hole subband into the lowest energy electron
subband. Energy and wavevector conservation requires that

�ˆlaser � E1e(k‖) � E1h(�k‖) � Eg, (9.20a)

where E1e(k‖) and E1h(k‖) are the kinetic energies of motion of the electron
and hole, respectively, in the plane of the QW, k‖ is their wavevector parallel
to the QW (equal for electrons in the valence and conduction bands in ver-
tical transitions) and Eg is the energy gap separating the electron and hole
subbands. The GaAs layers in the GaAs/AlGaAs QW used in the experiment
of Kash et al. [9.29] have been doped with Be (concentration of the order
of 1018 acceptors/cm3). These acceptors capture radiatively electrons from the
subband before they relax. The energy of the emitted photon (�ˆPL) in this
“hot luminescence” (Sect. 7.1) process is given by

�ˆPL � E1e(k‖) � Eg � Ea, (9.20b)

where Ea is the binding energy of the Be acceptor level in GaAs. In prin-
ciple, the energy E1e(k‖) of the “hot” electron can be deduced from the hot
luminescence spectra. From this energy the wavevector k‖ of the electron (and
hence that of the hole) can be calculated using (9.12), assuming that the elec-
tron effective mass m∗ in GaAs is known. Using E1e(k‖), the corresponding
hole energy E1h(�k‖) can be calculated from (9.20a) as a function of k‖. In
this way both the heavy and light hole dispersions can be determined from
the variation of �ˆPL with �ˆlaser.

In practice, this procedure is complicated by the fact that the heavy and
light hole dispersions are not isotropic. The incident laser photon will excite
electrons with a distribution of k‖ subject to the energy conservation condi-
tion. In bulk semiconductors the electron wavevector k in (9.20b) will be av-
eraged over all directions so that only a “spherically averaged” valence band
dispersion is determined this way [9.30]. To overcome this difficulty in QWs,
Kash et al. [9.29] measured the difference I‖ � I⊥ between the intensities for
emission polarized parallel (I‖) and perpendicular (I⊥) to the incident laser.
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Fig. 9.12. (a) Schematic subband structure in a GaAs/AlGaAs QW showing hot lumi-
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along the [10] and [11] QW directions. The filled circles are the experimentally deter-
mined data points. The open circles in (b) were measured in an asymmetrically coupled
double-QW sample consisting of a 51 Å GaAs well which was separated by a thin barrier
from an adjacent undoped 153 Å QW. The latter QW acts as a sink for the thermalized
electrons and holes and hence suppresses the thermalized luminescence background from
the 51 Å well with the higher energy band gap
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By considering the optical transition probabilities for light polarized along the
[100] and [110] directions (in the plane of the QW), they showed that I‖ � I⊥
is dominated by transitions originating from electrons with k‖ parallel to the
laser polarization. This result allowed them to determine the anisotropic hole
dispersion in three GaAs/Al0.315Ga0.685As QWs with different well thicknesses.
Their results for k‖ parallel to the [10] and [11] QW directions are shown
in Figs. 9.12b–d as the filled circles. The corresponding theoretical dispersion
curves are shown as the solid and dashed curves in the same figures. For small
values of k‖ the weak hot luminescence is masked by the strong thermalized
luminescence. To eliminate this background Kash et al. [9.29] grew also a 51 Å
well with an adjacent undoped 153 Å thick QW. This thicker well has sub-
bands with lower electron energy than those in the doped one. If these two
QWs are separated by a thin (26 Å) barrier then carriers can tunnel (to be
discussed in more detail in Sect. 9.5) from the Be-doped well into the undoped
well. This provides an efficient nonradiative decay path for photoexcited car-
riers in the doped well and suppresses its thermalized emission (Sect. 7.1.1).
The hot luminescence in the doped well is not affected since these emission
processes occur on a much shorter time scale. The data represented by open
circles in Fig. 9.12 were measured in this asymmetrically coupled QW. We
see that the experimental points reproduce well the “mass reversal” predicted
by theory as a result of the anticrossing between the heavy and light hole
bands.

In doped QWs (where some of the electron or hole subbands are already
populated) it is possible to observe the subband structure via infrared (inter-
subband) absorption and Raman spectroscopies. The principle of the former
technique is analogous to the infrared absorption of electrons bound to donors
and acceptors discussed in Sect. 6.5.2. These absorption processes can be ex-
ploited in the fabrication of infrared detectors in a way similar to those cor-
responding to carriers bound to impurities in bulk materials. In the case of a
QW there is the additional advantage that the spectral range of the detector
response can be easily tuned by changing the well width. The subband sepa-
ration in QWs can be determined directly via electronic Raman scattering, a
topic which is omitted from this book because of its specialized nature. Read-
ers interested in this topic are referred to the review article by Pinczuk and
Abstreiter [9.31].

9.3 Phonons in Superlattices

9.3.1 Phonons in Superlattices: Folded Acoustic and Confined Optic Modes

In Sect. 9.2 we discussed the effect of confinement on electrons in a quantum
well. This effect appears when the allowed electronic energies in the well cor-
respond to forbidden energies in the barrier (i. e. gap states). Like electrons,
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phonons can also be represented as Bloch waves with energy (i. e. frequency)
dispersion relations which give the values of the allowed energies versus Bloch
wavevector. The question thus arises as to whether confinement effects can
also appear for phonons in QWs, MQWs and superlattices.

In order to answer this question we reproduce in Fig. 9.13 the phonon dis-
persion relations of GaAs and AlAs, the most common constituents of such
structures. We note that the optical branches are rather similar to electronic
bands. The energy, for instance, varies quadratically with k-vector around crit-
ical points, including the ° point (i. e. the center of the Brillouin zone, abbre-
viated as BZ). The acoustic branches, however, have rather different features:
they extend down to zero frequency for any material at k � 0, a result of
the fact that an acoustic phonon with k � 0 (i. e. infinite wavelength) corre-
sponds to a uniform translation of the crystal. For such a translation no restor-
ing forces appear since the distances between atoms do not change. Another
feature peculiar to acoustic phonons is that their dispersion relations around
° are linear (not quadratic) in k.
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Fig. 9.13. Dispersion relations (solid curves) calculated by Giannozzi et al. [9.32] for bulk
GaAs and AlAs. Note the strong overlap in frequency of their acoustic modes, which con-
trasts with the lack of overlap of the optical ones. The diamonds represent experimental
data for GaAs
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These peculiarities in the dispersion relations of acoustic phonons usually
prevent their confinement: for any system of two given materials there are
propagating acoustic modes in both of them within the range of frequencies
from zero to the maximum frequency of the elastically softer of the two of
them (GaAs in the case of Fig. 9.13). Note that for GaAs/AlAs systems the
maximum acoustic frequency of both constituents is nearly the same, so that
there is hardly any frequency range in which propagating acoustic modes ex-
ist only for one of the two components. In the limit in which elasticity theory
holds, the acoustic phonons in a superlattice will correspond to elastic waves
propagating with a dispersion relation ˆ � ˘k where ˘ is an average of the
sound velocity of the two media. For k along the axis of growth, and a super-
lattice consisting of a repetition of a thickness dA of medium A followed by
dB of medium B (the period d � dA � dB), it is easy to see what this average
is. The time of propagation along d is t � dA/˘A � dB/˘B, hence the average
speed of sound is

˘ �
d
t

� d

(
dA

˘A
�

dB

˘B

)�1

. (9.21)

The details of the propagation of acoustic phonons in layered structures
have been discussed by Rytov [9.33], who pointed out that the work is also
relevant to the propagation of seismic waves.

Let us now consider the optic modes in Fig. 9.13. Note that they form
narrow bands, centered around 280 cm�1 in GaAs and 380 cm�1 in AlAs.
For many of the optical mode frequencies of GaAs there are no propagating
modes in AlAs and confinement effects must result. Contrary to the case of
electrons, however, in the case of Fig. 9.13 we can have modes that propagate
in any one of the two constituents and not in the other: there are GaAs-like
modes, for which the AlAs layers act as barriers, and AlAs-like modes, for
which GaAs acts as the barrier. Such confined optical modes have been pro-
fusely studied in recent years [9.34, 35].

In order to illustrate these effects in the simplest possible case let us con-
sider a superlattice with a period composed of two layers of element A of
atomic mass mA and two of element B of mass mB (A and B could be Si and
Ge, respectively). The unit cell of such a periodic structure is shown in Fig.
9.14. We shall treat only modes that propagate along the axis of growth and
assume that we only have restoring forces between neighboring planes with
the same restoring force constant f between Ge–Ge, Ge–Si, and Si–Si planes.
The equations of motion for phonons with wavevector k propagating along
the superlattice axis are

�mAˆ2˘ � f [(x � ˘) � (ue�idk � ˘)],

�mBˆ2x � f [(y � x) � (˘ � x)],

�mBˆ2y � f [(u � y) � (x � y)],

�mAˆ2u � f [(˘eidk � u) � (y � u)].

(9.22)

In order for this set of homogeneous linear equations (in the displacements
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˘, x, y, u) to have nonvanishing solutions its determinant must vanish. This
leads to a secular equation of fourth degree in ˆ2 for a general k. This equa-
tion can be broken up in two quadratic equations which can be easily solved
algebraically for k � 0 (this can also be done at the edge of the so-called mini-
BZ, k � /d, see Problem 9.3). The four allowed frequencies at k � 0 include
ˆ2 � 0 (the acoustic modes of the superlattice) and

ˆ2 � f

(
1

mA
�

1
mB

)
, (9.23)

ˆ2 � f
3(mA � mB) ±

√
9(mA � mB)2 � 4mAmB

2mAmB
. (9.24)

The two separate quadratic eigenvalue equations are most easily obtained by
considering that the phonon displacements (eigenvectors) are either odd or
even with respect to the center of the supercell in Fig. 9.14. Since odd and
even eigenvectors do not mix, one can separate (9.22) into two uncoupled sets
of equations, leading to (9.23) for the odd parity eigenvector (plus ˆ2 � 0)
and to (9.24) for the even parity one (see Problem 9.3). We have evaluated
(9.23) and (9.24) for mB � 2.6mA as appropriate to a Ge2Si2 superlattice and
choosing f /mA � (520 cm�1)2, so as to approximately reproduce the phonon
frequency at k � 0 for the bulk materials. One finds from (9.23) ˆ � 348 cm�1

and from (9.24) ˆ � 516 cm�1 and ˆ � 266 cm�1. The uppermost mode is
very close to the k � 0 mode of bulk Si (520 cm�1) while the two lower ones
are close to that of bulk Ge (300 cm�1). The dispersion relations obtained for
this superlattice are plotted in Fig. 9.15 for an arbitrary value of k in the first
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Fig. 9.15. Dispersion relations cal-
culated for the Si2Ge2 superlattice
of Fig. 9.14. Note the nearly dis-
persionless nature of the two up-
per (confined) branches in contrast
to the folded behavior of the two
lower (acoustic) ones

BZ of the superlattice (the mini-BZ). Note that the k-vector at the edge of
this BZ is half that for the corresponding X point of Si (2/d, where d ≡ a0).
Thus, there are twice as many branches in the dispersion relations of Fig. 9.15
as in those of either Si (Fig. 3.1) or Ge. One expresses this fact by saying that
the dispersion relations (or the BZ) have been folded. For mA � mB, instead
of Fig. 9.15 one would obtain the °–X dispersion relation of the bulk lon-
gitudinal phonons folded through the middle of the °–X line. The existence
of a superlattice with mA �� mB introduces splittings of the folded bands at
k equal to 0 and /d. These splittings are similar to those introduced in the
free-electron bands (Fig. 2.8) by the presence of a periodic potential: the mass
modulation along the growth direction in the superlattice is the counterpart of
the periodic potential.

It follows from the discussion above that the lowest two branches of Fig.
9.15 can be described as the folded LA dispersion relation of the two bulk
constituents, averaged according to (9.21) and with a gap at k � /d due to the
mass modulation. The upper two branches, which could be labeled as folded
optic phonons, cannot be described as average optic bands of the two con-
stituents: the upper one is nearly flat and its frequency corresponds to that
of bulk Si at ° while the lower one is rather close to that of bulk Ge at °.
Hence no averaging seems to take place for optic phonons, a phenomenon
encountered rather generally in superlattices, the more so the larger the thick-
nesses of the individual layers. This illustrates rather vividly the conjecture
made above that the optic modes exist in one of the components but not
in the other. They are thus referred to as confined modes. Such confinement
is clearly evidenced by the displacement pattern shown in Fig. 9.14 for the
516 cm�1 mode: the Ge atoms barely move. The confinement is less complete
for the Ge-like modes, which become more confined when the Si layers, which
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act as barriers, are thicker. For detailed calculations of phonon spectra of more
complex Ge-Si superlattices see [9.36, 37].

9.3.2 Folded Acoustic Modes: Macroscopic Treatment

The dispersion relations of folded acoustic modes, including the splittings at
the center and the edge of the mini-BZ, can be easily calculated in the so-
called elastic limit, which corresponds to the frequency range in which the
dispersion relations of the constituents can be assumed to be linear. We have
already shown that for waves propagating along the growth direction (which
we shall assume to be [001] unless otherwise specified) the velocity of the long
wavelength folded modes is given by (9.21). For the purpose of calculating the
full dispersion relations we consider in both constituent media elastic waves
with the same frequency ˆ, of the type given in (3.17) for the atomic displace-
ment and (3.19) for the strain tensor. We note that the components of the
wavevector q perpendicular to the growth axis (qx, qy) must be the same in
both media, as in the case of electron wavefunctions discussed in Sect. 9.2.3.
The components of q along z(qz), however, must change from one medium
into the other so as to obtain the same ˆ for different speeds of sound. How-
ever, the superlattice as a whole has translational symmetry along the z direc-
tion with translational vectors of length nd (n � ±1,±2, . . .). We can therefore
express the displacement (‰R) of atoms in each layer in the form of a Bloch
wave. For each period containing two layers A and B at n � 0

‰R0(x, y, z) �

{
‰RA exp[i(qxx � qyy)] exp[i(qzAz � ˆt)], 0 � z � dA,
‰RB exp[i(qxx � qyy)] exp[i(qzBz � ˆt)], dA � z � dB,

(9.25a)

and, correspondingly, for a period placed at a finite value of n

‰Rn(x, y, z) � ‰R0(x, y, z � nd)ei(nkd), nd � z � (n � 1)d, (9.25b)

where dA,B are the thicknesses of the constituent layers, d � dA � dB, ˘A,B
the respective sound velocities, qzA � ˆ/˘A and qzB � ˆ/˘B. We shall now
sketch how to obtain the dispersion relation ˆ(qx, qy, k) for the folded acous-
tic modes.

We take in each medium two waves with the same frequency ˆ and
wavevectors ±(qx, qy, qzA), ±(qx, qy, qzB) in media A and B, respectively. We
thus have as unknowns the four amplitudes of these waves. For a general
propagation direction we must consider all three possible polarizations for the
acoustic waves, i. e., a total a 12 amplitude coefficients, which have to be deter-
mined by appropriate boundary conditions. At an interface the displacements
must be continuous (three conditions) and also the strain components perpen-
dicular to the interface, which are related to the gradient of the displacements
(three additional conditions). We must apply these boundary conditions at one
AB and also at one BA interface, hence a total of 12 linear homogeneous
equations in the twelve amplitude coefficients results. It is easy to see that the
boundary conditions at all other equivalent AB and BA interfaces are auto-
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matically satisfied because of the choice of Bloch waves along z. The resulting
12 × 12 secular equation leads to the dispersion relation for ˆ(qx, qy, k).

The 12 × 12 secular equation is usually rather complicated and must be
solved numerically in the general case. In particular, in cases of high symme-
try, such as for either qx � qy � 0 or for qy � k � 0 in the [001] superlattices
treated here, the longitudinal and transverse modes do not mix and the set
of 12 equations breaks up into three uncoupled sets of 4 equations, leading to
4×4 secular equations which, for qx � qy � 0, can be expressed in the implicit
form [9.33, 34]

cos(kd) � cos
(

ˆdA

˘A

)
cos

(
ˆdB

˘B

)
�

1
2

(
ÚB˘B

ÚA˘A
�

ÚA˘A

ÚB˘B

)
sin

(
ˆdA

˘A

)
sin

(
ˆdB

˘B

)
,

(9.26)

where ÚA,B are the mass densities of the layers A and B, respectively.
Notice the similarity of (9.26) to (9.18a), the secular equation which de-

termines the energy bands of electrons in a Kronig–Penney potential within
the effective mass approximation. The similarity between (9.26) and (9.18a)
is typical of problems involving wave propagation in stratified media. These
equations allow us to obtain the Bloch vector k along the propagation direc-
tion as a function of the frequency ˆ.

Equation (9.26) can be rewritten in the slightly modified form

cos(kd) � cos
[

ˆ
(

dA

˘A
�

dB

˘B

)]
�

Â2

2
sin

(
ˆdA

˘A

)
sin

(
ˆdB

˘B

)
, (9.27)

where

Â �
ÚB˘B � ÚA˘A

(ÚB˘BÚA˘A)1/2 , (9.28)

which clearly shows that whenever the acoustic impedances ÚB˘B and ÚA˘A
are equal, i. e. for Â � 0, the dispersion relation is simply that of a medium
with the average velocity given in (9.21).

9.3.3 Confined Optical Modes: Macroscopic Treatment

The confinement of optic modes is mathematically expressed by imposing the
boundary condition requiring that the vibrational amplitudes vanish in the im-
mediate vicinity of the layer boundaries A–B and B–A. Under these condi-
tions we find A-like and B-like confined optical modes whose frequencies can
be read off from the corresponding bulk dispersion relations as a function of
the discrete effective k-vectors:

km �


dA,B
m, m � 1, 2, 3, . . . . (9.29)
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This equation can be applied to either LO or TO modes. The corresponding
atomic displacements alternate in sign between one atomic layer and the next,
as required for optical modes, with their magnitudes determined by the enve-
lope functions

um(z) � cos kmz, m � 1, 3, 5, . . . ,

um(z) � sin kmz, 2, 4, 6, . . . .
(9.30)

where z indicates the position of an atomic plane along the superlattice axis
and z � 0 is taken at the mid-point of a layer.

While (9.29) usually gives a good approximation to the effective wavevec-
tors, in the special case of short superlattices (only a few atomic monolay-
ers) one must consider whether the best possible approximation is obtained
by making the wavefunction zero exactly at the boundary of each material
layer. A glance at Fig. 9.16 shows that a more reasonable choice would be to
make the envelope function zero at the first atoms of the “other kind” (i. e.
the A atoms for the B-like vibrations and vice versa). Molinàs-Mata and Car-
dona have made a detailed study of this point for GenSim superlattices [9.36].
The case of GaAs is illustrated in Fig. 9.16. The vibrational amplitudes fol-
low the patterns of (9.30) but the effective km’s must be made slightly smaller
than those of (9.29): the amplitudes do not vanish at the nominal AlAs layer
boundary but at the first Ga layer outside that boundary. This is easy to un-
derstand: The boundary is formed by As-layers, which should still vibrate at

GaGaGaGaGaGaAl Al Al Al Al Al

Confined LO Modes,  kx = 0, kz → 0

B2    Symmetry                AlAs-like

U
z

LO1

LO3LO5

1

0

–1

Fig. 9.16. Displacement pattern for AlAs-like confined LO modes in a (GaAs)5/(AlAs)5

superlattice. The triangles represent the magnitude of the displacement of the As atoms
while the circles represent that for Ga and Al. From [9.38]
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AlAs frequencies, while Ga, with a much heavier mass than Al, will not. This
fact can be accounted for by replacing the layer thickness dA,B in (9.29) by
dA,B � a0/4, where a0 is the bulk lattice constant, which corresponds to four
atomic layers for diamond and zinc-blende-type materials [9.39].

9.3.4 Electrostatic Effects in Polar Crystals: Interface Modes

The existence of modes confined around the surface of a polar crystal (surface
plasmons, surface optical phonons) was mentioned in Problem 6.11. Here we
discuss analogous phenomena which arise at interfaces between two semicon-
ductors (heterojunctions) of which at least one is polar. We treat first the case
of a single planar heterojunction, then a double heterojunction (i. e., a QW)
and finally the case of a periodic MQW or a superlattice. Note what while in
the case of electrons a clear distinction can be made between MQWs (with
negligible dispersion for wavevectors along the growth direction) and SLs,
this distinction cannot be made with respect to phonons: the folded acoustic
branches always show dispersion, even for large periods, while the optical ones
do not, even for relatively small periods. We thus refer only to the electronic
behavior when classifying periodic structures as either MQWs or superlattices.

In our treatment of phonons for such two-dimensional structures we shall
neglect the so-called retardation effects (see Problem 6.11b for the effect of
retardation on surface modes). This implies that the wavelengths of the exci-
tations under consideration are assumed to be small compared with the wave-
lengths of photons having the same frequency and thus the wave nature of
the electric fields which accompany the ionic motion can be neglected. These
fields are therefore assumed to be of electrostatic origin, i. e., they obey only
the Gauss equation (6.106) and the corresponding Maxwell equation (6.112c)
in which the time derivative is set equal to zero in order to neglect electro-
magnetic wave propagation effects:

∇∇× E � 0. (9.31)

Equation (9.31) implies that the field E can be derived from a scalar potential
ˇ(r), which, on account of (6.106), must fulfill Laplace’s equation

∇∇2ˇ(r) � 0 (9.32)

and the standard boundary conditions of continuity of D⊥ � ÂE⊥ for the com-
ponents of the electric displacement D⊥ normal to the interface and the conti-
nuity of the parallel component of the field E‖. We treat next a single interface
between two semiconductors A and B with isotropic dielectric functions ÂA(ˆ)
and ÂB(ˆ):

E‖A � E‖B, (9.33a)

ÂAE⊥A � ÂBE⊥B. (9.33b)

We neglect for the time being the mechanical boundary conditions on the vi-
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brational amplitude u and the corresponding stress (the justification will be
given at end of this section), solve (9.32) in both media and apply the electro-
static boundary conditions (9.33) keeping in mind that E � �∇∇ˇ. We assume
that the interface is the plane z � 0, with z � 0 representing medium A, and
consider a solution of (9.32) of the form

ˇA � Aeiqxxe�qxz, for z ≤ 0 (9.34a)

ˇB � Beiqxxe�qxz, for z ≥ 0, (9.34b)

where we have chosen the x axis to be along the direction of the in-plane q
and use q2

z � q2
x as follows from (9.32). Note that (9.34) reflects the existence

of translational symmetry (i. e. the fact that the ˇ’s must be Bloch functions)
along x and y and the absence along z. In (9.34) ˇA and ˇB are concentrated
near the interface since they decay exponentially away from z � 0. Modes
described by such functions are known as interface modes.

Boundary condition (9.33a) applied to (9.34) leads to A � B, while (9.33b)
leads to the “secular equation” for the frequency ˆIF of the interface modes

ÂA(ˆIF) � �ÂB(ˆIF). (9.35)

This equation has solutions only if there are frequencies for which the two
dielectric functions ÂA and ÂB have opposite signs.

As discussed in Sect. 6.5.1, Â can be negative in heavily doped semicon-
ductors for 0 � ˆ � ˆp. In this case (9.35) leads to interface plasmons. For
a discussion of plasmons in QWs and MQWs see [9.31]. The dielectric con-
stant also becomes negative in polar semiconductors for ˆTO � ˆ � ˆLO, see
(6.110). In this case (9.35) can have solutions provided ˆ is within this range
(ÂA � 0) in material A while for material B ÂB � 0. Hence in the case of
interfaces between a polar (e. g. GaAs) and a nonpolar (e. g. Ge, Si) semicon-
ductor we expect one interface mode at a frequency ˆTO � ˆIF � ˆLO (Fig.
9.17) while for an interface between, for example GaAs and AlAs we expect
two, one GaAs-like and the other AlAs-like.

We consider next the case of a QW of material B with material A as a bar-
rier (Fig. 9.18). Because of the reflection symmetry about the bisecting plane
(labeled R in Fig. 9.18), the solution of (9.32) must be either odd or even
with respect to that reflection. The parities are indicated in Fig. 9.18: the plus
(minus) sign corresponds to the even (odd) function. Because of this choice of
ˇ(r), the boundary conditions only need to be applied at one of the interfaces,
the other being then automatically satisfied. We thus find for the AB interface
at the left of Fig. 9.18:

A � B[1 ± e�qxd],

AÂA(ˆ) � �BÂB(ˆ)[1 ∓ e�qxd]
(9.36)

(where A and B are defined in Fig. 9.18). The corresponding secular equation
leads to the two branches
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Fig. 9.17. Schematic diagram showing how the solution ˆIF of (9.35) is obtained for an
interface between a polar semiconductor A (e. g. GaAs) and a nonpolar one B (e. g. sili-
con) from the plots of ÂrA and �ÂrB as a function of ˆ
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Fig. 9.18. Sketch of a single quantum well B with barriers of material A and the wave-
functions (solid curve) needed to obtain the even (� sign) and odd (� sign) interface
mode potentials
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ÂA(ˆ) � �ÂB(ˆ)

⎧⎪⎪⎨⎪⎪⎩
tanh

qxd
2

coth
qxd

2

(9.37a)

(9.37b)

These modes were predicted by Fuchs and Kliewer [9.40]. Note that (9.37)
reduces to (9.35) for qx → ∞ [in this case the two interfaces do not inter-
act with each other because of the strong surface confinement of ˇ(z)]. For
qx → 0 we recover as solutions of (9.37) ˆ � ˆTO,B and ˆ � ˆLO,B. Disper-
sion relations similar to those resulting from (9.37), but in this case for two
different barriers: air and AlAs surrounding a GaAs QW, are plotted in Fig.
9.19 together with experimental results obtained using Raman spectroscopy by
Nakayama et al. [9.41]. For a discussion of the corresponding ˇ(x, z) see Prob-
lem 9.6.

We discuss next the “electrostatic” modes of a periodic MQW (or super-
lattice) made out of layers of thickness dA of material A and dB of material
B. As in the treatment of folded acoustic phonons, see (9.25), we impose the
Bloch condition of the potential ˇ(x, z) given for one layer B and its A neigh-
bors in Fig. 9.18. In this manner we only have to deal with two boundary con-
ditions (for E‖ and D⊥) at an AB and two at a BA interface. They suffice to
determine the two coefficients related to the exp(±qxz) waves of materials A
plus two similar coefficients for material B. One obtains the typical secular
equation (see (3.41) of [9.34] and references therein):

cos(kd) � cosh(qxdA) cosh(qxdB) � D(ˆ) sinh(qxdA) sinh(qxdB) (9.38)
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Fig. 9.19. AlAs-like interface modes of an air/GaAs (60 nm)/AlAs (500 nm) two-
heterojunction system. The points were obtained in Raman measurements in which the
laser was incident at an angle £ to the normal while the scattered light was collected in
the normal direction. The solid lines were obtained with an expression similar to (9.37)
but taking into account the asymmetry of the system (air/GaAs/AlAs). From [9.41]
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with

D(ˆ) �
1
2

(
ÂA(ˆ)
ÂB(ˆ)

�
ÂB(ˆ)
ÂA(ˆ)

)
.

Equation (9.38) enables us to calculate the magnitude k of the superlattice
Bloch wavevector (along the direction of growth) as a function of ˆ and qx.
We recall that (9.38) has resulted only from the electrostatic boundary con-
ditions and does not guarantee the fulfillment of the appropriate mechanical
boundary conditions. We shall come back to this point below. We should also
point out the close similarity between (9.38), (9.26) and (9.18a). They have
a canonical structure common to all problems involving wave propagation in
stratified media.

It is instructive to consider several limiting cases of (9.38), first of all the
limit of in-plane propagation in which k � 0 but qx �� 0. It is easy to see that
(9.38) reduces to the two branches

�
ÂA(ˆ)
ÂB(ˆ)

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tanh

(
qxdA

2

)
coth

(
qxdB

2

)
,

tanh
(

qxdB

2

)
coth

(
qxdA

2

)
.

(9.39a)

(9.39b)

For an evaluation and discussion of these equations see Problem 9.7.
We consider next the case in which the magnitude of the total wavevector

(q2
x � k2)1/2 tends to zero. We define an angle £ between that wavevector and

the superlattice axis: tan £ � qx/k. In this case the secular equation (9.38)
reduces to

〈Â(ˆ)〉 〈Â�1(ˆ)〉 � � tan2 £, (9.40)

where 〈. . .〉 represents the average of the functions over one period of the
MQW, weighted with the corresponding thicknesses dA and dB. Replacing
ÂA(ˆ) and ÂB(ˆ) from (6.110) into (9.40), we find a quadratic equation for
ˆ2(£) leading to two branches of the dispersion relation. The solutions are
represented schematically in Fig. 9.20 for the three cases dB � dA, dB � dA
and dB � dA. This figure reveals that even for (qx, k) → 0 the frequency is
dispersive as a function of the angle £, a fact which is related to the singular
nature of the Coulomb interaction encountered already in Chap. 3.

Let us consider the case of in-plane propagation, i. e., £ � /2 in (9.40).
This equation then breaks up into [9.42]

〈Â(ˆ)〉 �
dAÂA(ˆ) � dBÂB(ˆ)

d
� 0, (9.41a)

〈Â(ˆ)�1〉 �
1
d

(
dA

ÂA
�

dB

ÂB

)
� 0. (9.41b)

For dA � dB both equations (9.41a, b) reduce to (9.35) and the two resonance
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Fig. 9.20. Schematic diagram of the angular dispersion of “interface” electrostatic modes
of superlattices as obtained with (9.40) for dB � dA, dB � dA and dB � dA. Here ˆx
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and ˆx

TO represent in-plane propagating modes

frequencies, in the case of vanishing wavevector with £ � /2, become equiv-
alent to that of the interface phonons for a single interface, as shown in Fig.
9.20. The degenerate frequencies split for dA �� dB, following the pattern given
in Fig. 9.20.

It is interesting to note that (9.41a, b), valid for £ � /2, can be obtained
directly by applying the E‖ and D⊥ boundary conditions to the case kx → 0
(which implies infinite wavelengths along x). In this case, and using the ˇ(x, z)
given in Fig. 9.18 for layer B, we can see that Ex is uniform for the even solu-
tion while for the odd one Ez is uniform. In the former case we find from the
boundary conditions for E‖

E‖A � E‖B,

which, on averaging over A and B (a period), leads to

〈D‖〉 � 〈Â(ˆ)〉E‖. (9.42a)

Hence the MQW can be regarded as a crystal with an effective dielectric func-
tion 〈Â(ˆ)〉. We find the “longitudinal” modes of the effective medium at the
frequency defined by (9.41a). In the “odd” case E⊥ is uniform and the conti-
nuity of D⊥ leads to

〈E⊥〉 �

〈
1

Â(ˆ)

〉
E⊥. (9.42b)

The corresponding frequency is indeed given by (9.41b). This leads us to con-
sider the MQW as a crystal with the bulk symmetry of the constituents lowered
by the layering: For GaAs/AlAs systems grown along (001) the Td cubic point
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group of the bulk is lowered to the tetragonal D2d. The transverse effective
charge e∗ of (6.119) is thus expected to be anisotropic, different along [001] and
[100]. This is evidenced by the different LO–TO splittings [see (6.108), where
Q2 � e∗2/4Â0Â∞], which are always smaller for £ � /2 than for £ � 0. Figure
9.21 gives a simple qualitative explanation for this fact. In (a) the depolarizing
field effect, which leads to an LO–TO splitting equal to that of the bulk, is illus-
trated for propagation along z. In (b) we depict the case of LO modes propagating
along x. We see that while depolarizing fields are generated at layer A for A-like
modes, they are not at B layers. Consequently, the depolarizing field and the con-
comitant LO–TO splitting are decreased with respect to the bulk, in agreement
with the angular dispersion of Fig. 9.20.

The picture of the angular dispersion of the LO–TO splittings given above,
similar to that found in conventional noncubic polar crystals, enables us to
reach a few more plausible conclusions. The “interface” effects should only
appear for IR-active modes. In terms of (9.30) these modes correspond to
odd values of m: for even modes the displacements, and therefore the induced
dipole moments (i. e., the average effective charges) average to zero in one
layer. The largest effective charges (� the bulk ones) are obtained for m � 1.
For odd m ≥ 3 the effective charge is reduced by a factor of 1/m and the cor-
responding LO–TO splitting by a factor of 1/m2. Hence the “interface mode”
effects are expected to be very small, often negligible, for m ≥ 3.

We finally come back to the justification of having neglected the me-
chanical boundary conditions and the possible effects of this assumption. For
£ � /2 and qx → 0 the even mode of Fig. 9.18 leads to ˇ(z) and ux constant
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Fig. 9.21. Schematic diagram of electrostatic effects on phonons propagating (a) along
and (b) perpendicular to the MQW axis for A-like modes. The effects are much smaller
in case (b) because no polarization charges appear in material B in the frequency range
of the A-like modes



9.3 Phonons in Superlattices 509

throughout the B-layer (LO-like mode). The odd mode leads to a constant
uz (TO-like). Since the atomic displacement u must be zero in the A-layer
for B-like modes, we are confronted with a flagrant violation of the required
continuity of u at the interfaces. Actually, microscopic calculations (and also
macroscopic ones using the techniques of Trallero-Giner et al. [9.43]) show
that in the interior of a layer u is nearly constant for the m � 1 interface
modes, while it becomes rounded off towards zero when approaching the layer
boundary (Fig. 9.22b). The physical origin of this change can be understood in
the following way. Let us consider the bulk TO dispersion relation and expand
it around q � 0 to terms of order q2:

ˆTO � ˆTO,0 � C(q2
x � q2

y � q2
z). (9.43)

Taking an imaginary qz � ±i|qz| allows us to obtain values of ˆTO equal to
ˆIF for phonon envelope functions which decay rapidly (within a couple of
monolayers) exponentially around the interfaces. Their amplitudes can be cho-
sen to bring the nearly flat envelope function of ˆIF to zero, thus fulfilling one
of the mechanical boundary conditions.

IF –LO

(c)

3

IF +LO

(d)

3

Ga, Al
As

IF

(b)

TO1

(a)

B(GaAs)                        A(AlAs)

Fig. 9.22. (a) Envelope function for the
TO1 confined modes (i. e., £ � 0) of a
(GaAs)9(AlAs)10 superlattice grown along
[111]. (b) The equivalent modes for £ � /2
showing the typical flat-top pattern of these
so-called interface modes. [Note that, in spite
of their name, these modes are not confined
to the neighborhood of the interfaces since
qx is infinitesimally small. However, the “in-
terface” label may still be justified since they
come closer to the interfaces than the con-
fined mode shown in (a).] (c, d) The enve-
lope function for the £ � /2 LO-like, IF
and m � 3 modes, showing that they can
be decomposed into a mixture of a flat-top
mode of the (b) type and an m � 3 confined
mode. From [9.44]
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For details about the stress boundary conditions and the corresponding an-
alytic envelope function see [9.45]. It is obvious that the dispersion relation of
interface modes obtained from (9.38) is going to be changed somewhat when
the mechanical boundary conditions are imposed and the exponentially decay-
ing TO modes (plus oscillating LO modes of large qz which may also occur
at the frequency ˆIF) are included. From the discussion above it is easy to
discern the qualitative nature of the changes (for an illustration see Fig. 9.23).
when £ is varied continuously from 0 to /2, the long wavelength m � 1
modes of (9.30) become the main interface modes and the envelope function
evolves from the sinusoidal one of Fig. 9.16 to the flat top one typical of IF
modes, shown in Fig. 9.22b. This evolution is due to the long-range electro-
static fields. Hence the IF modes will mix, through the boundary conditions,
with all IR-active confined modes, i. e., those with m � 3, 5, 7, . . . . As a result
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Fig. 9.23. The thick black curves represent the IF modes obtained with (9.38), i. e., ne-
glecting the mechanical boundary conditions (BCs). The red curves were obtained with
due consideration of mechanical BCs. The experimental points were obtained with Ra-
man spectroscopy. Note the weak anticrossings with even confined modes due to having
assumed a small nonvanishing component of in-plane wavevector. From [9.46]
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of the mixing, anticrossings will appear in the dispersion relations, as shown
in Fig. 9.23 for a (GaAs)12(AlAs)12 MQW. The black dots in this figure in-
dicate experimental data measured by Raman spectroscopy [9.46]. The black
curve was calculated with (9.38), i. e., without mechanical boundary conditions,
the red curves display full calculations including confined modes and mechan-
ical boundary conditions. They display rather strikingly the anticrossings men-
tioned above (LO1–LO3, LO3–LO5, TO1–LO7) and represent the experimen-
tal points rather well.

9.4 Raman Spectra of Phonons in Semiconductor Superlattices

Raman spectroscopy has proven to be by far the most powerful technique for
investigating vibrational excitations in superlattices. These types of samples do
not usually have enough volume to allow inelastic neutron scattering experi-
ments. Infrared spectroscopy has also been used by a few researchers but it
is seriously hampered by the fact that at the main Reststrahlen band the re-
flectivity is close to one, and weaker structures (such as those corresponding
to m � 3, 5, 7, . . .) cannot be easily seen. To a first approximation the reflec-
tion spectra can be understood as those of a uniaxial crystal with the average
dielectric constants which follow from (9.42), see also (9.41) [9.47, 48];

〈Âz〉�1 �
1
d

(
dA

ÂA
�

dB

ÂB

)
,

〈Âx〉 �
1
d

(dAÂA � dBÂB).

(9.44)

Reflectance derivative spectroscopy, see (6.61), however, has helped to resolve
weak structures in the IR spectra produced by the m � 3, 5, . . . confined
modes [9.49]. Because of the relatively small amount of information obtained
from the IR measurements, as compared with overwhelming Raman results,
we shall not discuss the former any further. Let us, however, note that IR
measurements may be useful in cases in which the TO phonons are forbidden
by symmetry, such as that of backscattering on [001] superlattices.

9.4.1 Raman Scattering by Folded Acoustic Phonons

We mentioned in Sects. 9.1 and 9.2 that the acoustic phonons of a MQW or
superlattice can be obtained from those of the bulk materials by performing
the following operations:

• averaging the acoustic dispersion relations for each q,
• folding them, as many times as needed, to the mini-BZ,
• opening the gaps induced at the zone center and zone edge by the mis-

match of acoustic impedances.
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In the case of Ge2Si2 (Fig. 9.15) only one gap appears at the edge of the BZ.
Note that this edge corresponds, in general, to a longitudinal k vector of mag-
nitude /d, while in the bulk crystal for a [001] direction the corresponding
wavevector is 2/a0, twice as large as that in Fig. 9.15.

As implied in (7.36), in the bulk case one can usually assume that the
wavevector of Raman-active phonons is very small, i. e., only zone-center
phonons can be Raman active. The justification given was the usual one within
the dipole approximation: the wavelength of the light is much larger than the
relevant characteristic lengths of the material (i. e., the exciton radius and/or
the lattice constant). The q ≈ 0 restriction remains valid in short period super-
lattices but must be modified for d sufficiently large. We define the reduced
magnitude of the scattering wavevector q̃ for backscattering as

q̃ �
4n/ÏL

/d
�

4nd
ÏL

. (9.45)

Note that for typical values of the refractive index n � 3.5 and a laser wave-
length ÏL � 500 nm we have q̃ � 1 for d � 36 nm, which corresponds to 130
monolayers of GaAs. In this case the scattering will be produced by phonons
at the edge of the mini-BZ. By varying either d or ÏL it is thus possible to
cover the whole range of reduced wavevector q̃ and even to reach the edge of
the mini-BZ. This fact is illustrated in Fig. 9.24 for an [001] supperlattice with
the complicated period (AlAs)99[(GaAs)17(AlAs)4]5, measured in the range
730 ≤ ÏL ≤ 830 nm, which exhibits the lowest and the first folded LA (FLA)
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Fig. 9.24. Phonon dispersion relations of a superlattice with the period AlAs99[(GaAs)17-
(AlAs)4]5 obtained by Raman spectroscopy. The rather complicated period was chosen
so as to increase the splitting at the edge of the mini-BZ. The reduced energy is plotted
versus reduced wavevector. The red line represents the dispersion calculated with Rytov’s
equation, (9.26). The black line gives the dispersion obtained with an average sound ve-
locity, and hence exhibits no gap. From [9.50]
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phonon branches and clearly demonstrates the existence of a gap at the edge
of the mini-BZ [9.50]. Note the excellent agreement with the data points of
the fit with the theoretical curve in which only the elastic constant C11 of AlAs
was adjusted. (It was not well known experimentally when this work was per-
formed. Hence the spectra provide a way to determine elastic constants.)

We discuss next the mechanisms responsible for the scattering efficiency
of folded acoustic phonons. In principle the Raman tensor is related to (7.36),
where instead of derivatives with respect to phonon amplitude Q we should
consider derivatives with respect to strain eij. Note that for long wavelength
acoustic phonons eij ∝ iqiQj. The derivative of ¯ with respect to Qj is linear in
qi on account of translational invariance; the derivatives of ¯ with respect to
eij are thus q-independent in the elastic limit.

The derivatives of ¯ with respect to the strain are the components of a
fourth-rank tensor, the so-called elasto-optic coefficients. As in the case of
‰Â(3)

ijkl (see Problem 6.14), in a cubic crystal there are three independent elasto-
optic coefficients. We must point out, however, that the “Raman tensor” of
(7.36) for folded acoustic modes is not simply a derivative with respect to
a uniform strain but rather involves an integral over the period d, since the
strain is not uniform within one period. This is clearly illustrated for the
266 cm�1 acoustic folded mode of Fig. 9.14: the strain between Ge and Si
planes is nearly zero while that between Ge and Ge has the opposite sign
to that between Si and Si. The corresponding Raman tensor is thus obtained
by averaging the photoelastic response over a superlattice period. We write, in
short-hand notation, the corresponding Raman tensor RFA as [9.51, 52]

RFA ∝
d∫

0

�¯̄
�e

· e(z)dz. (9.46)

Let us consider acoustic phonons at the folded gap for q̃ � 0. The cor-
responding strains are either odd or even with respect to the bisecting plane
of one of the layers. The same fact holds true for q̃ � 1, but in this case the
phonons are odd (even) with respect to the A bisector or even (odd) with re-
spect to the B bisector plane (see Problems 9.4 and 9.8). For the odd phonons
(9.46) vanishes while for the even ones it does not. Hence, in the case of
phonons with q̃ � 0, only one of the two components of a folded doublet
should appear in the Raman spectrum. It is easy to see that for q̃ �� 0 both
components appear (Problem 9.8).

We close this discussion by mentioning that a nonvanishing RFA may re-
sult, in (9.46), from either a difference in elasto-optic coefficients of the two
constituents or from deviations from the simple plane-wave behavior of e(z)
expected for homogeneous media. The latter will be large only if large dif-
ferences in the density Ú or in the elastic constants exist. This is seldom the
case when the constituent materials grow well epitaxially one on top of the
other (the largest differences may appear for Ú in the Ge–Si systems). Because
of interband resonances in one material but not in the other, however, the
elasto-optic coefficients may differ by orders of magnitude. Hence they usu-
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ally determine the RFA (which will, in general, have complex components!).
The observed Raman efficiencies can thus be used to determine elasto-optic
coefficients [9.53, 54]. Differences in the dielectric functions of the two media
can also contribute to the scattering by folded acoustic modes [9.52]. This ef-
fect, however, is also expected to be small.

We discuss next resonance effects in the scattering by folded acoustic
modes. Figure 9.25 displays scattering spectra for a (GaAs)16(AlAs)15 MQW.
Each curve is labeled by an energy ¢�ˆ � �(ˆL �ˆe1,h1) which represents the
detuning between the laser frequency and the transition frequency between
the first confined heavy hole and electron states (�ˆe1,h1 � 1.7 eV at 10 K).
Surprisingly, we do not see a resonance enhancement of the folded LA dou-
blet (the two gray-shaded peaks of Fig. 9.25). Instead we see the emergence
of a broad resonant background (shaded red in Fig. 9.25). This phenomenon
has been attributed to inhomogeneous broadening of the ˆe1,h1 frequency by
random fluctuations of the layer thicknesses [9.55].
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Fig. 9.25. Effect of resonance on the LA
phonons of a (GaAs)16(AlAs)16 MQW around
the lowest 1h → 1e GaAs-like confined tran-
sition. The red-shaded background is due to
LA scattering without wavevector conserva-
tion (because of the inhomogeneous broaden-
ing). The gray-shaded sharp peaks correspond
to folded doublets. Note the strong resonance
of the background as opposed to that of the
folded doublets. The measurements were per-
formed in the presence of a magnetic field in
order to enhance the resonant behavior. From
[9.55]
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This is a good time to make a digression and introduce the concepts of ho-
mogeneous and inhomogeneous energy (or frequency) broadening. By homo-
geneous broadening we understand that which appears as an imaginary energy
(or frequency) in the denominator of a Lorentzian resonance such as the Á in
(6.117), °q in (7.54) and °a in (7.60). It is the result of a finite lifetime Ù � Á�1

of the corresponding excitation, usually attributed to decay into other excita-
tions. An inhomogeneous broadening, in contrast, results from a collection of
oscillators such as that in (6.117) but with a distribution in frequencies around
a central one ˆg. In the simplest case of a random distribution, a Gaussian
law

p(ˆ) ∝ exp

(
�

∣∣∣∣ˆ � ˆg

g

∣∣∣∣2
)

dˆg (9.47)

is likely to be followed by p(ˆ), the number of oscillators of frequency be-
tween ˆ and ˆ � dˆg. In (9.47) g represents the inhomogenous width. The os-
cillators with probability p(ˆ) may also be affected by a homogeneous width
Á, often smaller than g. MQWs are expected to show considerable inhomoge-
nous broadening of their electronic transition frequencies (such as ˆe1,h1) on
account of the random fluctuations of the layer thicknesses which can occur
along the direction of growth or also within the plane of individual layers.
A careful examination of the two interfaces in Fig. 9.1 shows that while they
are very flat, atoms of both kinds, Al and Ga, can be found on both sides of
a given interface. It is therefore reasonable to assume that there is a layer
thickness fluctuation of the order of one monolayer of GaAs, i. e., a0/2 or
‰ � ±a0/4. Equation (9.3) enables us to estimate the corresponding inhomo-
geneous broadening g (under the assumption of an infinite potential barrier):

g � 2
‰
d

¢E. (9.48)

For ¢E � 180 meV, d � 44 Å, and ‰ � ±1.4 Å we find with (9.48) that g �
10 meV.

We return to Fig. 9.25. As we shall see below, the homogeneous width Á of
the 1h → 1e transitions is � 0.8 meV, much smaller than the inhomogeneous
one g. Under these conditions, and for a laser frequency in the range

ˆe1,h1 � g � ˆL � ˆe1,h1 � g, (9.49)

(7.50a) will be resonant for a subset of GaAs wells distributed at random. To a
first approximation, only these random layers should be included in the sum of
(7.50a). As a result of the “randomicity” of the terms in the sum, there is ef-
fectively no translational invariance and no reason why the wavevector should
be conserved in the scattering process. Hence, acoustic phonons of an arbi-
trary q can participate in the scattering, and the scattering continuum shown
by the red-shaded portions of Fig. 9.25 is obtained. Outside the range of (9.49)
the gap fluctuations g are relatively unimportant and q-conservation is recov-
ered.

Figure 9.26 displays the inverse ratio of the discrete folded doublet inten-
sities IF to that of the background IB at the same Raman shift. The red curve
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Fig. 9.26. Ratio of the background intensity
IB to that of the folded LA doublets of Fig.
9.25 as a function of detuning from the 1h →
1e transition. The curve represents a fit to the
experimental points from which an inhomoge-
neous broadening g � 2.50 meV and a homo-
geneous one Á � 0.76 meV are found. From
[9.55]

represents a fit to the experimental points performed by Ruf et al. [9.55]. One
can show (Problem 9.9b) that the width of this fitting curve (≈12 meV) is ap-
proximately 4g, i. e., g � 3 meV. From the detailed fit Ruf et al. [9.55] obtained
g � 2.5 meV. By dividing g by the maximum value of IB/IF � 3.3 one obtains
the homogeneous width of the transition Á � 0.76 meV.

9.4.2 Raman Scattering by Confined Optical Phonons

In order to discuss the Raman scattering by confined optical modes, we dis-
play in Fig. 9.27 the displacement patterns and electrostatic potentials of LO
modes in a [001] polar superlattice for m � 1, 2, 3, 4 and kx, y � 0. Note the
out-of-phase character of ˇ and uz. Note also that uz vanishes at the layer in-
terfaces as required by the mechanical boundary conditions.

As shown in (7.5a), phonon Raman scattering takes place through
electron–phonon interaction. Two kinds of interactions are possible: one, in-
duced by the atomic displacement, does not require the material to be po-
lar. For MQWs it is derived from the analogous effect in the corresponding
bulk material. In the Ge/Si or GaAs/AlAs systems, it is determined by ten-
sors of the form (7.39) and for backscattering on a [001] face allows only LO
scattering. If the laser and scattered polarizations êL and êS are parallel to
the crystal axes (either x̂ or ŷ), this LO scattering requires crossed polariza-
tions. For even m the oscillations in uz cancel exactly in the calculation of the
deformation potential matrix element of the electron–phonon interaction and
the scattering remains forbidden. For m � 1, however, no cancellation occurs
while for m � 3, 5, . . . the cancellation is only partial: the scattering intensities
for the m � 1, 3, 5, . . . confined modes should be approximately proportional
to 1, 3�2, 5�2, . . . .
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Fig. 9.27a, b. Schematic diagrams of the dependence on z of the displacement uz and the
electrostatic potential ˇ for confined LOm (m � 1 to 4) modes with kx, y � 0 in a [001]
polar superlattice

The coupling via matrix elements of the electrostatic potential ˇ (Fröhlich
interaction) has been discussed in Chap. 7 in connection with forbidden scat-
tering by LO phonons for parallel êL and êS see (7.70b). In that case, which
applies to bulk materials, the electron–phonon interaction resulted from the
long-range nature of the Coulomb interaction. The corresponding q�1 sin-
gularity was lifted by the combined effects of the LO phonon on the con-
duction and valence bands, which are equal and have to be subtracted from
each other. A nonsingular residual effect is left, which is proportional to the
difference of the electron and hole inverse masses and to the transverse charge
of the phonons e∗, see (7.70), (3.39) and (6.119). Since superlattices can also be
regarded as crystals, this type of “forbidden” scattering should also appear for
the IR-active modes, i. e., for the LOm phonons with m odd. The effect should
decrease with increasing m (∝ m�2) and should vanish for backscattering
along the axis of growth in the large period case since the energy bands along
z become completely flat (the inverse masses along z vanish). For backscatter-
ing with in-plane propagation (i. e., light incident on the edge of the MQW)
a similar effect should also exist: the Raman tensor should be proportional
to the difference of the in-plane electron and hole inverse masses which does
not vanish even in the large period case. Very few experiments have been per-
formed in this configuration (for examples see [9.56, 57]).

So far we have not found a mechanism that allows scattering by the
LO modes of even m. It is easy to see, however, that these modes belong
to the completely symmetric representation A1 of the D2d point group of
a GaAs/AlAs superlattice. The corresponding Raman tensor has the form
(Problem 9.10)
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RLO(A1) �

⎛⎝ a 0 0
0 a 0
0 0 b

⎞⎠ . (9.50)

The tensor (9.50) vanishes in the case of the optical phonon in bulk GaAs.
It can be seen that its origin in the MQWs is the electron–phonon coupling
induced by the matrix elements of ˇ(z) (Fig 9.17): the diagonal matrix element
of ˇ(z) with respect to confined electronic wavefunctions Ên(z)

Mep �

d∫
0

Ê∗
n(z)ˇm(z)Ên(z)dz, (9.51)

vanishes for m odd but not for m even. However, it decreases rapidly with in-
creasing m. The matrix element in (9.51) has been derived from the Fröhlich
electron–phonon interaction although the corresponding potential in QW is
not long range: it is nonzero only inside of a monolayer of one type of mate-
rial and vanishes outside as a result of the oscillations in ˇ(z). Note that the
Raman tensor (7.50a) will contain two cancelling terms including matrix ele-
ments of the type (9.51): one for the conduction band and one for the valence
band. The cancellation will be exact for infinite electron barriers. However,
since these barriers are not infinite a net coupling will usually be obtained.

From the preceding discussion we conclude that for êL ‖ x̂, êS ‖ ŷ (crossed
polarizations), the m � 1, 3, 5, . . . modes should be observed while for parallel
êL ‖ êS polarizations m � 2, 4, . . . should appear (Problem 9.12). The former
case is illustrated in Fig. 9.28 for a (GaAs)16(AlAs)16 superlattice. Notice the
peaks which correspond to the m � 1, 3, . . . , 11 phonons. Their frequencies
have been plotted in the inset versus effective wavevector km, see (9.29), and
compared with the dispersion relation of bulk GaAs; the agreement is excel-
lent. The circles in the inset represent peaks obtained for parallel polarization.
Those with the two highest frequencies correspond to LO2 and LO4 confined
modes. The rest is believed to be related to anticrossings of interface modes
with confined modes [9.58]. This will be discussed in the next section.

9.4.3 Raman Scattering by Interface Modes

The observation of interface modes by Raman spectroscopy requires an in-
plane component of the scattering wavevector, so as to operate with an angle
£ � 0 (Fig. 9.20). While this has been performed recently in a controlled
manner with light incident on the edge of the superlattice (see experimen-
tal points in Fig. 9.23) the first observations of interface modes [9.42, 59] were
performed in a backscattering configuration along the z direction, the required
in-plane wavevector being supplied by the roughness of individual interfaces
(which is responsible for the violation of the in-plane translational invariance).
Figure 9.29 shows the observations of Sood et al. [9.59] for the AlAs-like
modes of GaAs/AlAs MQWs. The broad band centered between the bulk
LO and TO frequencies is characteristic of interface modes in symmetric (i. e.,
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Fig. 9.28. Raman spectrum of a (GaAs)16(AlAs)16 superlattice obtained for cross polar-
ization under nonresonant conditions. The solid points in the inset represent the frequen-
cies of these modes versus equivalent bulk wavevector km. The solid line represents the
LO dispersion of bulk GaAs. The circles represent points obtained for parallel polariza-
tions, possibly related to even m modes. From [9.58]

dA � dB) structures: the peak occurs at the solution of (9.35). In the asymmet-
ric case one must use (9.41) in order to obtain the long-wavelength solutions
for £ � /2. Contrary to the symmetric (dA � dB) case, two different modes
appear for dA �� dB. They are responsible for the two structures seen in the
spectra shown in the lower part of Fig. 9.29. Either the upper or the lower of
the two structures dominates, depending on whether dB � dA or dB � dA.
The dominating structure corresponds to that labeled ˆx

LO in Fig. 9.20.
As we have seen, the spectra of Fig. 9.29 can be qualitatively explained on

the basis of simple electrostatic interface modes of the type predicted by (9.38)
without interaction with the m � odd confined modes. The reason why this
interaction can be neglected is that the dispersion relations of optical modes
(both LO and TO) in AlAs are very flat (Fig. 9.13) and therefore anticrossings
are only important in the close neighborhood of the bulk ° � 0 TO and LO
phonons (note that some structures appear in this region in Fig. 9.29). In the
case of GaAs, however, the bulk dispersion relations are broader. [The dif-
ference in the dispersion relations of GaAs and AlAs (Fig. 9.13) is due to the
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Fig. 9.29. Raman spectra in the frequency
range of the optical phonons of bulk
AlAs obtained at resonance in the êL ‖ êS

configuration for three GaAs/AlAs (A/B)
with different layer thickness ratios [9.59].
T � 10 K

fact that the masses of Ga and As are very close while those of Al and As
are rather different. This raises the optical phonons and lowers the acoustic
ones for AlAs at the edge of the BZ.] The broader dispersion relations cause
a number of anticrossings to occur throughout the whole region between the
bulk TO and LO frequencies, as shown in Fig. 9.23 for the GaAs-like optical
modes of a (GaAs)12(AlAs)12 MQW. As a result of the gaps related to the
anticrossings, a number of structures appear between the bulk LO and TO
peaks; they are displayed in Fig. 9.30. The experimental spectra in this figure
were obtained in backscattering configuration for êL ‖ êS ‖ [100]. They are
thus, in principle, expected to show the confined modes for even values of m
with an intensity which should decrease strongly with increasing m. The LO2
and LO4 modes appear clearly in the experimental spectra of Fig. 9.30 and
their intensities have the expected behavior. The other peaks (labeled IF in
the figure) have also been assigned in the past to LO6, LO8, LO10, . . . . They
have been plotted in the inset of Fig. 9.28 under this assumption: except for
the lowest one, they fit the bulk dispersion relation rather well. Their inten-
sities, however, do not decay with increasing m in the expected manner. This
has led Shields et al. [9.58] to conjecture that they are not related to even-m
confined modes but to anticrossing IF-odd-m confined modes of the type of
Fig. 9.23. The regions in this figure where the dispersion relations are flat act
as “van Hove singularities”, giving rise to very large densities of states. This
is exhibited clearly by the calculated curves of Fig. 9.30; the peaks labeled
IF can be shown to correspond to flat regions of the anticrossing dispersion
curves [9.58].
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for outgoing resonance with the e1�lh1 transitions at 10 K, in parallel polarization ge-
ometry. The spectra are normalized to have the same height and shifted vertically for
clarity. From [9.58]

9.4.4 Macroscopic Models of Electron–LO Phonon (Fröhlich) Interaction
in Multiple Quantum Wells

In Sect. 9.3.3 we discussed how optical phonons in MQWs and SLs formed by
two materials with nonoverlapping optical phonon energies, such as GaAs and
AlAs, are confined in their respective layers. In addition, interface modes are
formed whose displacement decays exponentially (although in some cases very
slowly) away from interfaces. In Chap. 5 we studied the important role played
by the Fröhlich electron–LO phonon interaction in determining the mobility
of electrons in semiconductors such as GaAs. It is natural now to ask how the
Fröhlich interaction is modified in MQWs and in SLs. To answer this question,
we shall consider only the case of MQWs and SLs constructed from GaAs and
AlAs.

As shown in Sect. 3.3.5, the Hamiltonian for the Fröhlich interaction can
be expressed essentially in terms of a scalar electrostatic potential multiplied
by the electronic charge. In principle, this potential can be calculated using
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microscopic lattice dynamical models with suitable boundary conditions. In
practice these calculations are very time consuming and require high speed
supercomputers. In addition, the results are specific to a particular well width
and barrier thickness. Thus it is desirable to find simple, albeit approximate,
expressions of the scalar potential that can be applied to samples with dif-
ferent well widths. Several such “macroscopic” models have been proposed.
These models are called macroscopic because at their starting point they of-
ten assume the sample to be a continuum. Their main difference lies in their
treatment of the boundary conditions imposed on the optical phonons at inter-
faces of the MQW or SL. Depending on the boundary conditions they adopt,
some of these macroscopic models have been labeled as “mechanical models”
or “dielectric continuum models”.

Roughly speaking the “mechanical models” require that the atomic dis-
placements of the confined LO phonon vanish at the interface, even if this
condition may lead to violations of Maxwell’s equations at that interface. An
example of the displacement pattern and electrostatic potential of confined
LO phonons that satisfy such mechanical boundary conditions is shown in Fig.
9.27. Notice that the electrostatic potential ˇ does not vanish at the interface.
For a phonon confined in medium A with nonzero qx, we can write the scalar
potential as

ˇ(x, z) � ˇ0 exp(iqxx) cos(kmz) when m is even, or

� ˇ0 exp(iqxx) sin(kmz) when m is odd.
(9.52)

The component of the electric field parallel to the interface (Ex) is given by

Ex � �dˇ/dx � (�iqx)ˇ(x, z) (9.53)

and does not vanish at the interface (since ˇ is not zero there) as required
by the continuity of the tangential components of the electric field across
the boundary of two dielectric media (note that Ex is zero in medium B if
the phonon is confined to A). Since such models do not take into account
Maxwell’s equations, they do not include the details of interface modes with-
out additional ad hoc assumptions.

On the other hand, the “dielectric continuum models” use Maxwell’s equa-
tions as their starting point and obtain the interface modes as part of the solu-
tions of the Laplace equation (9.32). As pointed out in Sect. 9.3.4, while such
models violate the mechanical boundary conditions (requiring the atomic dis-
placements of confined phonons to vanish at the interface), for the interface
modes they provide rather good approximations to the microscopic results be-
cause the atomic displacements in reality are nonzero until very close to the
interfaces.

A macroscopic model which tries to mimic the results of microscopic cal-
culations has been proposed by Huang and Zhu [9.60]. They performed a
model microscopic lattice dynamical calculation to determine the atomic dis-
placement and electrostatic potential. They noticed that the dielectric contin-
uum model provided a rather good approximation to the microscopic result,
except for the violation of the mechanical boundary conditions. Especially the
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interface modes were very well reproduced by that model. To take care of
both the mechanical and Maxwell’s boundary conditions it is necessary for
both ˇ and its derivative dˇ/dz to vanish at the interfaces. Huang and Zhu
[9.60] noted that this can be achieved by subtracting an appropriate constant
from those ˇ with even symmetry (with respect to reflection onto a plane pass-
ing through the center of a layer) or an appropriate term linear in z from
those that have odd symmetry. In this manner they arrive at the following ap-
proximate expressions for ˇ:

ˇm(z) � cos
(

mz
(n � 1)a

)
� (�1)m/2, m even, (9.54a)

ˇm(z) � sin
(

Ìmz
(n � 1)a

)
�

(
Cmz

(n � 1)a

)
, m odd. (9.54b)

In these expressions a represents the distance between atomic planes in either
GaAs or AlAs and na the layer thickness dA or dB in (9.29). The constants
Ìm and Cm are determined by the conditions that both ˇm and dˇm/dz vanish
at the interface taken to be at z � ±(n � 1)a/2. These boundary conditions are
satisfied when Ìm and Cm are solutions of the two equations

tan(Ìm/2) � Ìm/2 (9.55a)

and

sin(Ìm/2) � �Cm/2. (9.55b)

Some solutions of these two transcendental equation are
Ì3 � 2.86064; Ì5 � 4.918; Ì7 � 6.95 and

C3 � 1.9523; C5 � �1.983; C7 � 1.992.

The electron–LO phonon interaction obtained with the potentials in (9.54) will
be referred to as the Huang–Zhu model.

In Fig. 9.31 the potentials associated with the lowest order confined LO
phonons and interface modes in a GaAs/AlAs superlattice obtained with the
three macroscopic models discussed above are compared with those obtained
by an ab initio microscopic model [9.61]. We see that the Huang–Zhu model
does approximate the microscopic model best, with the dielectric continuum
model a close second. Rudin and Reinecke [9.62] have computed the total
scattering rate of electrons in GaAs/AlAs quantum wells by the electrostatic
potential of LO phonons as a function of well width using these three macro-
scopic models. Their results are shown in Fig. 9.32. While there are differ-
ences between the scattering rates computed from these models, the differ-
ence between the dielectric continuum model and the Huang-Zhu model dis-
appears for small well widths. For very small well widths the scattering rate
is dominated by the interface modes and these modes are nearly identical in
these two models. Using a rather involved optical technique, Tsen et al. [9.63]
have studied experimentally the relative strength of electron LO–phonon
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Fig. 9.31. A comparison between the atomic displacements (uz) and electrostatic poten-
tials ˇ associated with the lowest confined and interface phonons in GaAs/AlAs calcu-
lated by three “macroscopic” models (a–c) with those computed by a microscopic calcu-
lation (d). [9.61]

interaction in a series of ultrathin GaAs/AlAs QWs and compared their re-
sults with the predictions based on the macroscopic models. These authors
used a beam of picosecond laser pulses to excite electrons into the sub-
band states with 200 meV of excess energy above the subband minimum.
These energetic electrons relax via electron–LO phonon interaction and emit
a nonequilibrium population of LO phonons with lifetimes of the order of
10 ps. Using a second, weaker, and delayed picosecond laser pulse train, tuned
to resonate with the lowest energy subband, these authors probed the phonon
population of various confined and interface LO modes via Raman scattering.
They found that their experimental results agreed best with the predictions of
the Huang–Zhu model.
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Fig. 9.32. The total intrasubband (1 → 1 subbands) scattering rate of an electron by con-
fined and interface LO phonons as a function of well width in a GaAs/AlAs quantum
well calculated with the three “macroscopic” models shown in Fig. 9.31 and discussed in
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in (black curve) represents scattering by interface modes. W1, W2, and W3 (red
curves) represent contributions from confined modes calculated with the three different
models discussed in the text: W3 corresponds to the Huang-Zhu model, W1 to electro-
static boundary conditions and W2 to the use of mechanical boundary conditions only.
From [9.62]. For additional information see [9.61] and Problem 9.13

9.5 Electrical Transport: Resonant Tunneling

In the final two sections we shall discuss some electrical transport measure-
ments involving quantum wells and heterojunctions. Since this is a very ac-
tive and prolific field we have to limit ourselves to only two topics: resonant
tunneling and the quantum Hall effect. They are chosen because they both
specifically make use of the properties of quantum confined electrons. In this
section we shall discuss the phenomenon of resonant tunneling while leaving
the quantum Hall effect to the last section.

Tunneling of a particle through a barrier is one of the most studied phe-
nomena in quantum mechanics. For a particle tunneling in one dimension the
theory can be found in almost all quantum mechanics textbooks. Tunneling
plays an important role in many semiconductor devices. In particular, the tun-
nel diode or Esaki diode discovered by Esaki in 1958 [9.64] involves tunneling
through a forward-biased heavily doped (degenerate) junction in germanium.
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One important characteristic of the Esaki diode is that it exhibits negative dif-
ferential resistance (NDR), making possible its application as a high frequency
(microwave) oscillator (Sect. 5.4.2). The properties of the original Esaki diode
were determined (and hence also limited) mainly by the band structure of
the bulk semiconductor. In 1973 Tsu and Esaki [9.65] suggested that NDR
can also be achieved in a superlattice. However, it took more than ten years
before high quality QW samples exhibiting NRD could be fabricated [9.66].
Even in that case the sample involved a QW rather than a superlattice. NDR
in a GaAs/AlAs superlattice was reported several years later [9.67]. Since this
pioneering work NRD has been observed in many structures involving QWs
and superlattices. To illustrate the physics we shall consider only the simplest
structure consisting of a QW sandwiched between two barriers, often referred
to as a double-barrier QW structure. Readers interested in transport in super-
lattices should consult the review by Palmier [9.68].

9.5.1 Resonant Tunneling Through a Double-Barrier Quantum Well

Figure 9.33a shows schematically the band diagram of a typical double-barrier
QW structure in the growth direction (z axis). In this case the QW formed by
a layer of lightly doped (carrier concentration ND2) GaAs is surrounded by
two undoped GaAlAs barriers. It is assumed that the barrier height and well
width (W2) are such that only one subband (E1) is formed in the well. This
three-layer structure is further “sandwiched” by two more heavily n-doped
GaAs layers (EF represents the Fermi energy) to provide electrical contact.
The device shown in Fig. 9.33a is an n-type device, although p-type tunnel-
ing devices can be constructed similarly. Figures 9.33b and c show the band
scheme when a bias voltage is applied to the device. Under the applied field
electrons can tunnel from the GaAs layer on the left (the emitter) to that
on the right (the collector). Qualitatively we expect that the tunnel current
will be small initially and will increase with the applied voltage. This is shown
schematically in Fig. 9.33d near the origin. As the bias voltage reaches the
value 2E1/e, EF in the emitter is resonant with the subband E1 in the well (this
statement is true only when the two barriers have equal width). This is shown
in Fig. 9.33b. Under this condition electrons which tunnel into the well can, in
principle, be captured in the well to be released again so as to tunnel through
the second barrier. We may expect the tunnel current to increase strongly at
this voltage. This phenomenon is known as resonant tunneling. Once the volt-
age exceeds 2E1/e (Fig 9.33c) the tunnel current will decrease drastically, giv-
ing rise to a region with a negative differential resistance as shown in Fig.
9.33d.

The tunnel current in the above double-barrier QW structure can be cal-
culated as a function of bias voltage by using the following approximate treat-
ment. For simplicity we shall assume that the emitter, well, and collector are
fabricated from the same material (such as GaAs in Fig. 9.33) and electrons
in both behave like free carriers with isotropic effective mass m∗

A. An electron
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with wavevector k in the emitter will tunnel through the barrier into the col-
lector without scattering, i. e., there will be neither loss in energy nor change
in in-plane wavevector (note that the wavevector along the growth direction
z is not conserved since the device is not translationally invariant along this
direction). We shall neglect the Coulomb interaction between electrons, which
produces an “image potential” on the tunneling electron. We shall also ignore
band-bending induced by the bias voltage at the interface of the emitter and
collector with the barriers (this has been assumed in drawing Figs. 9.33b and
c). These simplifying assumptions allow us to reduce the three-dimensional
problem to a one-dimensional one.
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Fig. 9.33a–d. Spatial variation of the electron energy in a GaAs/GaAlAs/GaAs/GaAlAs/-
GaAs double-barrier QW resonant tunneling device for three bias conditions: (a) zero
bias; (b) bias voltage Vb � 2E1/e and (c) Vb � 2E1/e, E1 being the energy of the electron
subband inside the GaAs QW. (d) Schematic I–V characteristic of the device depicted in
(a) showing a region of NDR for bias voltage just above 2E1/e. [9.66]
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Let the growth direction be denoted as the z direction, like in Fig. 9.33.
Since the potential V(z) (which is a function of the bias voltage Vb) seen by
the tunneling electron in Fig. 9.33 depends on z only, the Schrödinger equa-
tion becomes separable into two equations by expressing the wavefunction as
the product of two functions like in (9.7a). The solutions in the x and y di-
rections are plane waves as in (9.7b) and will not be considered further. The
eigenvalues for these solutions are given by Ex,y � [�2/(2m∗

A)](k2
x � k2

y). The
Schrödinger equation for motion in the z direction is[

�

(
�2

2m∗
A

) (
d2

dz2

)
� V(z)

]
„A(z) � Ez„A(z) (9.56a)

for z outside the barriers and[
�

(
�2

2m∗
B

) (
d2

dz2

)
� V(z)

]
„B(z) � Ez„B(z) (9.56b)

for z inside the barriers, m∗
B being the electron effective mass inside the two

barriers layers (assumed to be isotropic). The total energy E of the tunneling
electrons is given by E � Ex,y � Ez. Except for the fact that the electron mass
is different inside and outside the barriers, (9.56) corresponds to the famil-
iar one-dimensional tunneling problem whose solutions can be found in many
quantum mechanics textbooks. Instead of repeating these calculations here, we
shall simply outline the procedure below. The details can be found in [9.5, p.
524] for example.

We are interested only in the case where the electron energy Ez is smaller
than the height of both barriers even in the presence of a positive bias voltage.
Under such circumstances the electron wavefunction can be written as the sum
of incident and reflected plane waves in the emitter and well regions. Within
the barriers the wavefunctions have purely imaginary wavevectors, i. e., they
are exponential functions. In the collector region the wavefunction consists of
a plane wave traveling to the right only, since it is assumed to extend to infin-
ity on the right and therefore there is no reflected wave. At the interface one
applies the usual continuity conditions to the wavefunction and its first deriva-
tive with respect to z, i. e. (9.13). From these conditions the coefficients of the
incident and reflected wavefunctions in one region are related to those of the
adjacent regions via a 2 × 2 matrix, known as a transfer matrix [9.69].

As an example we shall assume that the potential can be divided into n�1
regions defined by z � [�∞, z1], [z1, z2], . . . , [zn,∞] such that the potential Vi

inside region i is constant. The emitter and the collector correspond, respec-
tively, to the regions 1 and n � 1. In real situations where the potential is not
constant within a certain region, one divides this region into many smaller re-
gions until the potential can be approximated by constants inside each small
region. Let Ai and Bi represent the amplitudes of the waves traveling to the
right and to the left, respectively, in region i. We shall denote the generalized
wavevector in the region i by ki:

�2k2
i

2m∗
i

� Ez � Vi, (9.57)
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where m∗
i is the electron mass in region i. From (9.57) it is clear that ki is

imaginary or real depending on whether region i is a barrier (Vi � Ez) or
not. When ki is imaginary the wave is evanescent as discussed in Sect. 9.2.3.
The coefficients (A1, B1) and (An�1, Bn�1) in the emitter and collector regions,
respectively, are related by(

A1
B1

)
� M1M2 . . . Mn

(
An�1
Bn�1

)
, (9.58)

where the elements Mp(·, ‚) (·, ‚ � 1 or 2) of the transfer matrices are given
by

Mp(1, 1) �

(
1
2

�
kp�1m∗

p

2kpm∗
p�1

)
exp[i(kp�1 � kp)zp], (9.59a)

Mp(1, 2) �

(
1
2

�
kp�1m∗

p

2kpm∗
p�1

)
exp[�i(kp�1 � kp)zp], (9.59b)

Mp(2, 1) �

(
1
2

�
kp�1m∗

p

2kpm∗
p�1

)
exp[i(kp�1 � kp)zp], (9.59c)

Mp(2, 2) �

(
1
2

�
kp�1m∗

p

2kpm∗
p�1

)
exp[�i(kp�1 � kp)zp]. (9.59d)

From these results the transmission coefficient of the potential for an electron
with energy Ez can be calculated:

T(Ez) �

∣∣∣∣An�1

A1

∣∣∣∣2

(9.60)

Figure 9.34 shows the dependence of T(Ez) on Ez for an electron tunneling
through a double barrier structure with a barrier height of 1.2 V at zero bias
and at an applied bias of 0.1 V. Note that the potential is no longer con-
stant inside the barriers when a bias voltage is applied (Figs. 9.33b and c).
As pointed out above, the transfer matrix method can still be applied by ap-
proximating the slowly varying potential with several constant potential steps.
Notice that, in the zero bias case, the transmission coefficient reaches unity at
the Ez values of 0.25 and 0.83 eV. At these electron energies resonant tunnel-
ing occurs. At a nonzero bias voltage the transmission coefficient is no longer
unity even under resonant tunneling conditions.

9.5.2 I–V Characteristics of Resonant Tunneling Devices

Experimentally one does not measure directly the tunneling probability rep-
resented by T(Ez). Instead, the dependence of the tunneling current on the
bias voltage (the so-called I–V characteristics of a resonant tunneling device)
is usually obtained. However, if T(Ez) is known as a function of Ez, the
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[9.5]

total tunneling current I can be calculated by summing the tunneling proba-
bility over the electron distribution in the emitter using the following expres-
sion:

I �
e

43�

∞∫
0

dkxdky

∞∫
0

dkzT(Ez)[f (E) � f (E′)]
(

�E
�kz

)
, (9.61)

where e is the absolute value of the charge of the electron, f (E) the electron
occupancy (given by the Fermi–Dirac distribution function under equilibrium
conditions) in the emitter region, and f (E′) the corresponding occupancy in
the collector region. The term [f (E) � f (E′)] ensures that the electron is tun-
neling from an occupied state to an empty state. Under the assumption of no
scattering, the electron energy E′ in the collector region is related to that in
the emitter by

E′ � E � eVb. (9.62)

In the above discussions we have assumed the bias voltage Vb to be positive.
For negative bias the role of the emitter and collector is reversed.

Figure 9.35 shows the I–V characteristics (a) and the conductance (b),
dI/dV, of the resonant tunneling diode fabricated by Sollner et al. [9.66] and
depicted in Fig. 9.33a. The parameters of this double-barrier structure are
W1 � W2 � W3 � 50 Å, ND1 � ND3 � 1018 cm�3 and the bulk equivalent
electron concentration inside the well ND2 � 1017 cm�3. The Ga0.75Al0.25As
barriers are supposed to be undoped and presumed to be semi-insulating due
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Fig. 9.35. (a) Current versus volt-
age and (b) conductance (dI/dV)
versus voltage curves at three tem-
peratures obtained by Sollner et
al. [9.66] from the double barrier
QW device shown in Fig. 9.33. The
parameters of this double-barrier
structure are W1 � W2 � W3 �

50 Å, ND1 � ND3 � 1018 cm�3 and
the bulk equivalent electron con-
centration inside the well ND2 �

1017 cm�3. The Ga0.75Al0.25As bar-
riers are assumed to be undoped

to compensation of background shallow donors by other defects located close
to the middle of the gap. Only the 25 K curve clearly exhibits a distinct region
of NDR. At room temperature a hint of a NDR region is shown by the con-
ductance curve under reverse bias. The I–V characteristic is not completely
symmetric with respect to zero bias, although it should be if there were no
band bending. While the above theory gives a qualitative explanation of the
experimental results in Fig. 9.35, obtaining a good quantitative agreement is
much more difficult.

One experimental parameter relevant to device applications is the so-
called peak-to-valley current ratio. This is defined as the ratio of the current
at the resonant tunneling peak energy to that at the minimum (or valley)
before the current starts to increase again with voltage. This ratio is about
6 for a negative bias and 4 for a positive voltage at 25 K in the device il-
lustrated in Fig. 9.35. The magnitude of this ratio is determined by scatter-
ing of the tunneling electrons within the well by phonons, interface rough-
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ness and other defects. The importance of scattering by phonons is shown
by the rapid degradation of the peak-to-valley ratio in Fig. 9.35 as the tem-
perature is increased. Scattering by interface roughness invalidates the one-
dimensional approximation discussed above. Its effect on resonant tunneling
devices fabricated from GaAs/GaAlAs has recently been modeled numerically
[9.70]. Much larger peak-to valley ratios have been achieved in resonant tun-
neling devices based on other materials. For example, Fig. 9.36 shows a device
constructed out of In0.53Ga0.47As (emitter and collector), AlAs (barriers) and
InAs (well). Its peak-to-valley ratio is equal to 30 at room temperature and as
large as 63 at 77 K (Fig. 9.37).
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9.6 Quantum Hall Effects in Two-Dimensional Electron Gases

Since the discovery of the quantum Hall effect (QHE) in a two-dimensional
electron gas in a Si metal-oxide-semiconductor (MOS) structure by von
Klitzing et al. in 1980 [9.72], the study of the properties of lower dimensional
electrons in heterostructures under high magnetic fields has “mushroomed”
into one of the most exciting areas of semiconductor physics. The QHE was
soon joined by the discovery of what is now known as the fractional QHE by
Tsui et al. in 1982 [9.73] (as a result the original QHE is referred to as the
normal QHE or integral QHE). There are still many unanswered questions
regarding the fractional QHE at the time of writing this book and the field
continues to evolve at a fast pace. Hence we shall limit our discussions to the
more established and better known integral QHE. In the rest of this section
QHE will be understood to mean the integral QHE unless otherwise stated.

In Sect. 5.4 we discussed the transport properties of a three-dimensional
free electron gas in the presence of an applied electric and magnetic field us-
ing a classical approach. In Sect. 5.5.2 we described the Hall effect and defined
the Hall coefficients RH in (5.81). We shall now consider this Hall effect again
but under quite different conditions. Firstly, the electron gas is free to move
only in a plane (two dimensions) perpendicular to the applied magnetic field
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B. Secondly, the magnetic field and the sample quality satisfy the strong field
condition which requires that ˆcÙ � 1 (Sect. 5.5 for definitions of ˆc and Ù).
Under these conditions, the classical approximations of Sect. 5.5 are no longer
valid. In this section we shall begin by describing quantum mechanically the
properties of a three-dimensional electron gas in a magnetic field using the
theory developed by Landau [9.74]. This will be followed by a description of
the experiment of von Klitzing et al. [9.72]. A theoretical interpretation of
these remarkable results is presented in a short note written by Dung-Hai Lee
(Sect. 9.6.4).

9.6.1 Landau Theory of Diamagnetism
in a Three-Dimensional Free Electron Gas

Let us assume that a three-dimensional free electron gas, with an isotropic
effective mass m∗, is moving in a time-independent and uniform magnetic field
B applied along the z direction. The magnetic field affects both the orbital
motion and the spin dynamics of the electrons. For simplicity we shall neglect
the interaction between the electron spin and the magnetic field since it is not
relevant for the QHE (although this is not true for the fractional QHE). The
Hamiltonian for an electron moving under the combined influence of external
electric and magnetic fields has already been given in (6.25). For a uniform dc
magnetic field (6.25) simplifies into

� �
1

2m∗

(
p �

eA
c

)2

, (9.63)

where e is the magnitude of the electronic charge, p is the electron momentum
operator and A is the vector potential associated with the magnetic field (for
SI units in this and following equations delete c). The solution of this Hamil-
tonian can be found in textbooks on either quantum mechanics (e. g. [9.75])
or solid state physics (e. g. [9.77]). Here we shall just summarize the results.

Landau simplified (9.63) by introducing the Landau gauge in which:

A � (0, Bx, 0) (9.64)

[in (6.23) we have defined another gauge; namely, the Coulomb gauge]. One
can readily show that (9.64) satisfies the requirement that B � curlA. Us-
ing (9.64) the Schrödinger equation corresponding to the Hamiltonian � be-
comes[

�2

�x2 �

(
�

�y
�

ieB
�c

x

)2

�
�2

�z2 �
2m∗E

�2

]
æ(x, y, z) � 0. (9.65)
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This equation is separable into two equations, one for the motion along the z
direction and the other for that in the xy plane. The motion in the z direction
is that of a free particle with energies and wavefunctions given, respectively,
by

Ez �
�2k2

z

2m∗ (9.66a)

and

„(z) � exp(± ikzz). (9.66b)

This result is consistent with the classical result that the electron motion par-
allel to the magnetic field is unchanged and remains free-electron-like. The
equation for motion in the xy plane (i. e., in the plane perpendicular to the
magnetic field) can be solved by writing the wavefunction in the form

ˇ(x, y) � u(x) exp(ikyy) (9.67)

Substituting (9.66b and 67) into (9.65), the wave equation for u(x) can be ex-
pressed as(

�
�2

2m∗

)
�2u(x)

�x2 �

(
m∗

2

) (
eB

m∗c
x �

�ky

m∗

)2

u(x) � E′u(x), (9.68)

where E′ � E � Ez. Equation (9.68) resembles the Schrödinger equation for a
one-dimensional simple harmonic oscillator with resonant frequency ˆc (i. e.,
the cyclotron frequency) and equilibrium position

x0 �
�ky

m∗ˆc
. (9.69)

The eigenvalues E′ of (9.68) are given by the well-known expression for simple
harmonic oscillators

E′ � (n � 1
2 )�ˆc with n � 1, 2, . . . . (9.70)

For reasons which will become clear later we have chosen the quantum num-
ber n to start from 1, rather than from zero as is usually done in the case of
simple harmonic oscillators. These quantized energy levels are known as Lan-
dau levels. In the three-dimensional case the electron energy E � E′ � Ez

forms bands (the energies are independent of ky, i. e., one dimensional in re-
ciprocal space) as shown in Fig. 9.38a. The corresponding density of states is
shown in the same figure.

Since the electron bands in the absence of magnetic fields are three di-
mensional in reciprocal space and the total number of degrees of freedom of
an electron is not affected by the magnetic field, each Landau level must be
strongly degenerate. The degeneracy ˙ (which is equal for all Landau levels)
multiplied by the number of Landau levels must be equal to the number of
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of states (DOS) of a free electron in an external magnetic field in three dimensions. (b)
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degrees of freedom in the absence of the magnetic field. It can be shown that
˙ is equal to

˙ �
1

2�
m∗ˆcLxLy �

1
2

LxLy

l2
B

, (9.71)

where Lx and Ly are the dimensions of the sample in the x and y directions,
respectively, and lB � [�c/(eB)]1/2 (c � 1 for SI units) is the so-called Landau
magnetic length. (The reader should show that this length equals the radius of
the classical orbit which corresponds to the n � 1 Landau level).
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The results just obtained can also be expressed in the following, somewhat
different way [9.76]: the cyclotron orbits of electrons in the presence of a mag-
netic field are quantized in k-space into orbits that contain integral multiples
of the area

� � 2eB/(c�). (9.72)

In summary, the net quantum mechanical effect of a uniform DC magnetic
field on the motion of an electron in three dimensions can be described as
the quantization of the cyclotron orbits into “simple-harmonic-oscillator-like”
Landau levels. Each cyclotron orbit encloses in k-space integral multiples of
the area defined by (9.72) in the plane perpendicular to the magnetic field.
The electron moves like a free particle only along the direction parallel to the
magnetic field. As a result, its density of states shown in Fig. 9.38a resembles
that of a one-dimensional particle (Fig. 6.9) for each Landau level. The degen-
eracy of a Landau level n is independent of n and given by (9.71).

In the presence of a weak applied electric field in addition to the strong
magnetic field, we expect the fast cyclotron motion of the electron to be un-
changed in the lowest order of approximation. The main effect of the electric
field is to induce a drift motion in the equilibrium position x0 or “guiding cen-
ter” of the cyclotron orbits. The drift motion of this guiding center referred
to as the “guiding center orbit”, under the combined effect of the electric and
magnetic fields, can be treated by the classical approach given in Sect. 5.5.
With this simplified approach we can again obtain the same magneto-conduc-
tivity tensor and Hall coefficient as in Sect. 5.5.

9.6.2 Magneto-Conductivity of a Two-Dimensional Electron Gas:
Filling Factor

If the electrons are now constrained (i. e., confined) to move only in a plane
perpendicular to the magnetic field, their “free-electron-like” motion parallel
to the magnetic field will be suppressed. Their allowed energies become dis-
crete and are given by E′ (9.70). The corresponding density of states would
be a collection of delta functions separated by energy gaps equal to �ˆc as
shown in Fig. 9.38b. The existence of these energy gaps between Landau lev-
els means that when the Fermi level lies between two Landau levels this
two-dimensional electron gas (2DEG) behaves like a semiconductor with a
bandgap equal to �ˆc. At temperatures T � (�ˆc/kB) this “semiconductor”
is insulating, i. e., the diagonal elements of the magneto-conductivity tensor
Ûxx � Ûyy tend to zero. It is interesting to note that when the diagonal ele-
ments of the magneto-conductivity matrix vanish, the diagonal elements of its
inverse matrix (known as the magneto-resistivity tensor Ú) also vanish (Prob-
lem 9.14). However, when the diagonal elements of the resistivity tensor Úxx

and Úyy of a 2DEG are equal to zero this does not mean that the sample has
become superconducting. If the off-diagonal elements Úxy and Úyx are nonzero
the sample is still dissipative.
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Let us now assume that T � 0 and the concentration Ne of the 2DEG
is such that the Fermi level lies just above the Landau level with quantum
number n. Since the degeneracy of each Landau level is ˙ (remember that we
have neglected the spin of the electron), the total number of electrons in these
n Landau levels is

Ne � n˙. (9.73)

Substituting in the expression for ˙ from (9.71) we obtain

Ne � nBLxLy(e/hc). (9.74)

The quantity hc/e (c � 1 for SI units) is the smallest unit of magnetic flux
which can be enclosed by an electron orbit, known as the flux quantum (usu-
ally represented as º0), while BLxLy is the total magnetic flux º passing
through the 2DEG of area BLxLy. Thus (9.74) can be rewritten as

Ne � n(º/º0). (9.75)

Let Nº � º/º0 denote the total number of flux quanta enclosed by the
2DEG. It is customary to define Ó � Ne/Nº as the filling factor of the 2DEG.
According to (9.75), Ó equals the n of the maximum occupied Landau level
when the Fermi level lies between n and n � 1. The reciprocal (Ó)�1, is the
average number of flux quanta enclosed by each electron in the sample. Ex-
periments in which Ó ≥ 1 are said to be in the integral QHE regime; oth-
erwise (Ó � 1) they are in the fractional QHE regime. When the filling fac-
tor of a 2DEG equals an integer n, its Fermi level lies between the nth and
(n � 1)th Landau levels (if we had labeled the lowest Landau level as having
the quantum number n � 0 rather than n � 1, the filling factor would dif-
fer from n by 1) and the diagonal elements of its magneto-resistivity tensor
vanish. This simple-minded picture (which assumes no disorder in the sam-
ple) suggests that the diagonal elements of the magneto-resistivity tensor of a
2DEG should vanish periodically as a function of magnetic field, a fact which
has been experimentally observed by von Klitzing et al. [9.72]. However, their
results also contain many interesting surprises, as will be described in the next
section. These experimental results cannot be explained without including the
effects of disorder on the electron transport in a 2DEG.

In the derivation of (9.70) we have neglected the electron spin which, in
the case of free electrons in a magnetic field, induces a splitting of the Landau
levels by ¢E � ± 1

2 gÌBB, where ÌB is the Bohr magneton and g � 2, the elec-
tron g-factor. In a semiconductor ¢E is determined by an effective g-factor g∗

which can differ considerably from g � 2 (g∗ � 0.4 for electrons in GaAs). See
Problem 9.16.

9.6.3 The Experiment of von Klitzing, Pepper and Dorda

The geometry of the sample used by von Klitzing et al. [9.72] is shown in
Fig. 9.39a. It consisted of a Si metal–oxide–semiconductor field effect transis-
tor (or MOSFET). The cross section of the sample is shown schematically in
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Fig. 9.39. (a) Top view of the MOSFET Hall “bar” used in the experiment of von Klitz-
ing et al. [9.72] (b) Cross-sectional view of the sample in (a) along the surface channel
showing the two-dimensional electron gas (2DEG) under the gate. (c) The spatial varia-
tion in electron energy across the MOSFET when the gate voltage is biased such that an
inversion layer is formed at the Si substrate and the oxide interface

Fig. 9.39b. The two-dimensional electron gas which is the “heart” of the exper-
iment is confined in an inversion layer (Chap. 8) at the interface between the
silicon dioxide (SiO2) and the p-type Si substrate. The band bending at this
interface, when the substrate is biased to produce an inversion layer, is shown
in Fig. 9.39c. The substrate, SiO2 layer and top metal electrode (known as
the gate) form a parallel plate capacitor. The total amount of charge on
these electrodes is proportional to the gate voltage Vg. As a result, the areal
charge density Ne can be varied continuously by changing Vg. In the experi-
ment a constant DC magnetic field was applied perpendicular to the sample
along the z direction. A constant current was maintained in the sample in the
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x direction via an applied potential while the voltage drops across the sample
in the x and y directions (denoted by Uxx and Uxy, respectively) were mea-
sured. Uxx is proportional to the longitudinal resistivity Úxx while Uxy is pro-
portional to the transverse resistivity Úxy (albeit with a different constant of
proportionality) and hence to the Hall coefficient, see (5.81).

The raw data obtained by von Klitzing et al. are reproduced in Fig. 9.40.
Note that Uxx, Uxy and Ne are denoted by Ux, UH and N respectively in this
figure. We notice that Uxx (Ux in the figure) vanishes regularly for certain val-

Fig. 9.40. Original curves showing QHE plateaus and notes which led to the discovery of
the quantum Hall effect. The Hall voltage UH and the voltage Ux in the current direction
of a silicon MOSFET are measured as a function of the gate voltage Vg at a fixed mag-
netic field. The gate voltages for integer filling factors 2, 4, and 6 are marked by arrows
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ues of the gate voltage, which can be interpreted as the result of the filling
factor being equal to integral values 2, 4 and 6, in agreement with the the-
ory in Sect. 9.6.2. The unexpected result is that Uxy (UH in Fig. 9.40) exhibits
plateaus whenever Uxx vanishes. Furthermore, the values of the transverse re-
sistance (also known as the Hall resistance) at these plateaus equals 25.813 kø
divided by consecutive integers. As indicated by the handwritten notes of von
Klitzing in Fig. 9.40 this “quantum of resistance” is defined in terms of the fun-
damental constants h/e2. Since 1980 the value of h/e2 has been measured to an
accuracy of 2 parts in 107 and is now used as a standard for resistance. The
explanation of these plateaus in the Hall resistance (or Hall plateaus) is not
obvious from the magneto-transport properties of a 2DEG discussed in the
previous section. In the following section we have invited Dung-Hai Lee to
present a simplified but physical explanation of this intriguing phenomenon.

9.6.4 Explanation of the Hall Plateaus in the Integral Quantum Hall Effect

The explanation of the integral QHE that we are going to present is based on
a model of a noninteracting 2DEG. Our current understanding is that while
electron–electron interaction is crucial to the fractional QHE, the integral
QHE will survive even if this interaction is absent. What is indispensable for
explaining the integral QHE is the presence of disorder. In real samples some
defects and imperfections will always be present. As a result of the disorder-
induced potential, the delta functions in the DOS of the 2DEG shown in Fig.
9.38b will be broadened into peaks with nonzero widths. Nonzero tempera-
ture and finite sample size also affect this broadening. The tails of these peaks
correspond to tail states known to exist within the bandgap of a bulk disor-
dered semiconductor. Electrons near the main peaks are mobile or delocalized
and can be considered analogous to the free carriers in the bands of three-
dimensional semiconducting crystals. Electrons in the tails of the peaks are
immobile or localized and therefore do not contribute to the conductivity. The
boundary between the localized and delocalized states is known as the mobil-
ity edge. The mobility edges and the localized states (shaded regions) associ-
ated with Landau levels of electrons in two dimensions are shown schemati-
cally in Fig. 9.38b. Mobility edges are important only for states induced within
energy gaps by disorder. Since there are no energy gaps between Landau lev-
els in a three-dimensional electron gas, disorder is not as important in three-
dimensional magneto-transport as in two dimensions. Note that the concept of
a mobility edge had been used earlier for amorphous (i. e., extremely disor-
dered) semiconductors [9.77, 78].

To understand the effect of disorder on the motion of electrons in the
presence of a strong magnetic field we shall assume, for simplicity, that the
potentials induced by the defects Vdis vary slowly in space, i. e.,

|∇Vdis|lB � �ˆc, (9.76)

where lB is the magnetic length defined below (9.71). Within this approxima-
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tion, the electronic motion can be understood classically as consisting of two
parts: a very fast cyclotron motion and a slow drift of the guiding center (Sect.
9.6.1) along the equipotential contours defined by the total potential V (the
sum of any applied electric potential and Vdis). The direction of this drift is
determined by that of the Lorentz force: ∇V × B.

A simple way to convert this classical picture to a quantum mechanical
one is via the Bohr–Sommerfeld quantization condition [9.76] which requires
that the areas enclosed by the cyclotron orbits in k-space be in multiple units
of �, see (9.72), while in real space they enclose an integral number of flux
quanta. These conditions are not affected by the presence of disorder within
the approximation of (9.76). For simplicity we shall assume that the electron
concentration (and hence EF) is fixed while the magnetic field strength is var-
ied. Although this is different from the experimental conditions of von Klitz-
ing et al. (Fig. 9.40), it has been shown that identical Hall plateaus are ob-
served in this experimental configuration. This is not surprising considering
the fact that the Hall field, defined in (5.80a), depends on the magnetic field
and the inverse of the carrier concentration in a similar manner.

We shall further assume that the fluctuations in Vdis are less than (1/2)�ˆc.
Note that because of broadening in the DOS introduced by disorder the Fermi
energy EF may lie anywhere between two Landau levels, and not just midway
between them as in the case of no disorder. The guiding centers are assigned
the quantum number (n0) of the Landau level nearest to EF. Except for the
special case where EF lies exactly midway between two Landau levels, n0 is
determined unambiguously. At T � 0, potential contours with E � EF con-
tain guiding center orbits which are occupied by electrons while those with
E � EF contain empty orbits. Thus, near a minimum in the potential V all
equipotential contours with energy value smaller than EF will be occupied.
In the literature, a region filled with occupied guiding center orbits is known
as a quantum Hall droplet. Electrons that reside on the outermost orbits are
known as edge-electrons. Since these electrons are located at the Fermi level
they are the only ones significant for charge transport. The effect of increasing
B is to increase �ˆc and decrease lB hence shrinking the size of the quantum
Hall droplets. In Fig. 9.41a we depict the edge electrons (indicated by arrows)
and the corresponding Hall droplets (shaded region) in the case that the mag-
netic field is strong enough for the Fermi level to lie in the localized region be-
low the first Landau level, as shown in the DOS diagram in Fig. 9.41a. When
the field is decreased sufficiently for EF to lie at energies immediately above
the delocalized regime, as shown in the DOS plot in Fig. 9.41c, the size of the
Hall droplets has grown to the point where they fill most of the sample, leav-
ing only small pockets of the sample (hole droplets) containing no occupied
orbits.

The schematic pictures of the edge electron orbits in Fig. 9.41 allow us to
understand the appearance of the Hall plateaus. For large B, the quantum Hall
droplets in Fig. 9.41a are small and well separated from each other in the val-
leys of the disorder potentials. Hence the orbits of the edge-electrons do not
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Fig. 9.41a–c. Schematic picture of the quantum Hall droplet (shaded areas), orbit of the
edge electrons (curve with arrows) and density of states (DOS) for three positions of the
Fermi energy EF relative to the mobility edge. (a) EF below the mobility edge in the
localized region (shaded region in the DOS plots); (b) EF in the delocalized regime and
(c) EF in the localized region again but now above the delocalized states. The DOS are
representative of a finite size sample at T � 0

overlap, these electrons are localized and Ûxx � Ûxy � 0. As B is decreased
the quantum Hall droplets expand and eventually some of the droplets will
overlap. However, Ûxx and Ûxy remain zero as long as the number of droplets
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that overlap is too small for a conducting path to form between the electrodes
(the latter situation is called percolation). Finally, when B is decreased suffi-
ciently that a large number of droplets have merged, the electrons can perco-
late from one electrode to the other. At the same time, the outermost guiding
center orbit migrates to the physical boundary of the sample. This is shown in
Fig. 9.41c. When this happens the longitudinal resistivity Úxx (and similarly Ûxx)
becomes zero while Ûxy takes the value e2/h. As a matter of fact, Ûxy/(e2/h) acts
as a counter of the number of edge channels in this percolation process. Thus
the transverse conductivity Ûxy switches from the Ó � 0 plateau where Ûxy � 0
to the Ó � 1 plateau where Ûxy � e2/h as shown in Fig. 9.42. The regions la-
beled a and c in this figure correspond to the situations shown in Figs. 9.41a
and c, respectively. The corresponding behaviour in Ûxy (or UH) as a function
of electron density Ne (or Vg in the experiment of von Klitzing et al.) is shown
in Fig. 9.42b. The regions labeled a and c in this figure correspond to those in
Fig. 9.42a. Repeating the above process for the Ó � z Landau level explains
the Hall plateaus associated with higher integral values of Ó.

The transition region between two Hall plateaus is quite interesting. At
the edge of the Ó � 0 plateau, when Ûxx is about to become nonzero, the
largest electron droplet size diverges. On the other hand, near the Ó � 1
plateau, when Ûxx is about to become zero, the largest “hole” droplet size di-
verges. We have tried to show schematically the edge electron orbits in Fig.
9.41b. For very large samples at T � 0 this transition is extremely sharp and
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Fig. 9.42. (a) Schematic plots showing the switching of the off-diagonal element of the
magnetoconductivity tensor Ûxy from one Hall plateau to another as a function of the
magnetic field (B) while keeping the electron density Ne constant. (b) Similar switching
of the Hall resistance Úxy as a function of the electron density (Ne) (or the gate voltage
Vg as in experiments using MOSFETs) under constant magnetic field. The regions labeled
a, b and c in these figures are supposed to correspond to the situations depicted in Fig.
9.41a, b and c, respectively. The broken curves correspond to T � 0 and an infinitely large
two-dimensional sample while the solid curves are valid for the more realistic situation
involving a finite sample size and a temperature T � 0
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should be treated as a phase transition. The boundary between the Hall elec-
tron and hole droplets should be fractal and cannot be represented by the
simple curves shown in Fig. 9.41b. The corresponding transitions between the
Hall plateaus should also be infinitely sharp, as shown by the broken curves
in Figs. 9.42a and b. However, due to finite sample size and nonzero temper-
ature effects these transitions are broadened (region labeled b in Figs. 9.42a
and b) into the solid curves in these figures. The preceding percolation picture
de-emphasized the importance of quantum tunneling in the process of tran-
sition between plateaus. It turns out that ignoring these tunneling processes
does not jeopardize our understanding of the existence of the Hall plateaus,
although it does influence our ability to predict the precise nature of the tran-
sition. Moreover, according to our present understanding, the details of these
transition regions may also be affected by electron–electron interaction. A dis-
cussion of this topic is beyond the simple, heuristic approach adopted here.

The above picture constitutes our basic paradigm for explaining the Hall
plateaus in a two-dimensional electron gas. We emphasize that this picture ig-
nores electron–electron interaction. Since this interaction is responsible for the
plateaus in the fractional quantum Hall regime, our model cannot account for
the plateaus observed for fractional filling factors or the transitions between
them. At the time of writing of this book, there is still no detailed theory of the
critical nature of the transitions between the fractional Hall plateaus. One way
to understand these fracitonal Hall plateaus is presumably to imagine a new
kind of fractional quantum Hall droplets which also possess edge states. The
fractional QHE would then be attributed to the emergence of these edge states
at the boundary of the sample as in the case of the integral QHE [9.79, 80]1.

9.7 Concluding Remarks

The discussion of the QHE is an appropriate point to conclude this book.
Its discovery illustrates how new, unexpected and exciting physics can arise in
the field of semiconductors. Whenever new semiconducting materials become
available, whether these new materials are purer or belong to a new family or
have an artificial structure, they have often led to the discovery of new phe-
nomena and also novel applications. The fabrication of synthetic layered struc-
tures, such as quantum wells and superlattices discussed in this chapter, is an
excellent example. While these structures were originally proposed for device
applications, they turned out to have impact far beyond anyone’s imagination.
They have become the driving force for many new developments outside semi-
conductor physics and devices, in materials science, surface physics, molecular
physics, and chemistry. Considering the fact that many new methods of grow-
ing and fabricating semiconductors are being explored and developed at major

1 For the discovery [9.81] and the development of the theory [9.82] of the fractional QHE
Störmer, Tsui and Laughlin were awarded the Physics Nobel Prize in 1998.
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laboratories around the world, it is safe to predict that semiconductor physics
has not yet reached saturation but is still growing at a healthy rate. Hopefully
this book will serve as a link between the past, centered on the bulk proper-
ties of semiconductors, and the future in which various nanostructures, such as
quantum wires and quantum dots, are bound to play an increasingly important
role.

PROBLEMS

9.1 Particle in a One-Dimensional Square Well Potential
With the help of a personal computer and a conputational program such as
Mathcad2 or Mathematica3, calculate:

a) The energies of the bound states of a particle with isotropic mass m∗ equal
to 0.045 times the free electron mass (to emulate the effective mass of a con-
duction band electron in a Ga0.47In0.53As alloy) confined in a one-dimensional
square well potential of height 0.5 V. Assume that the mass of the particle in
the barrier is the same as in the well. Perform the calculation for well widths
equal to 50, 100 and 150 Å and compare your results with those shown in
Fig. 9.7 based on a more rigorous calculation for GaAs/Ga0.7Al0.3As QW by
Bastard and Brum [9.20].

b) The probabilities of finding the particle inside the well for these bound
states.

c) Repeat the calculation for a 50 Å well but now assuming that the particle
mass in the barrier is equal to only one–half of its value inside the well. Can
you predict whether the binding energies of the bound states are now larger
or smaller than before based on (9.13) alone?

9.2 Particle in a One-dimensional Periodic Square Well
(or Kronig–Penney) Potential

With the help of a personal computer and a computational program such as
Mathcad or Mathematica, calculate the eigenvalues of a one-dimensional peri-
odic square well potential of height 0.4 eV as a function of the wavevector k
for a few discrete values of k between 0 and /a, where a � 30 Å is the width
of both the well and the barrier. Plot the band structure of the minibands and
compare the energies of the band extrema and the widths you obtain with
those given in Fig. 9.9.

9.3 Transverse Phonons in Tetrahedral Structures
Discuss why (9.22) is valid for the longitudinal but not for the transverse
phonons of a Si2Ge2 superlattice grown along [100]. What modifications are

2 Mathcad is a trademark of MathSoft, Inc.
3 Mathematica is a trademark of Wolfram Research, Inc.
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needed in order to obtain the corresponding equations for the transverse
modes?

Hint: examine a stick-and-ball model of the GaAs structure.

9.4 Longitudinal Phonons in Superlattices
Derive (9.23 and 24) by substituting into (9.22) displacement patterns either
odd or even with respect to the B-B midpoint of Fig. 9.14.

Show that for k � /d the displacement patterns are also either odd or
even with respect to the B-B midpoint but, contrary to the k � 0 case, a pat-
tern odd (even) with respect to the B-B midpoint is even (odd) with respect
to the A-A midpoint. Derive the following expression for the four eigenfre-
quencies at k � /d:

ˆ2 � f
(3mB � mA) ±

√
(3mB � mA)2 � 8mAmB

2mAmB

and a similar expression obtained by permuting mA and mB.

9.5 Splittings of Acoustic Modes in Superlattices
Using (9.27) find an expression for the splitting of the folded acoustic phonon
bands at the center and edge of the mini-BZ as a function of Â.

9.6 Electrostatic Potential in Interface Modes
Plot the potential ˇ(x) versus x for the interface modes which correspond to
the QW described in the caption of Fig. 9.19 for several values of kx. Discuss
the dependence on kx. Show that the corresponding field E is neither longitu-
dinal nor transverse with respect to the (in-plane) propagation direction.

9.7 Angular Dispersion of Interface Modes
a) Plot the dispersion relations ˆ(qx) obtained from (9.39a) for GaAs/AlAs
MQWs using as the abscissa the reduced variable q̃ � dqx/ instead of qx and
dA/dB as a parameter. Discuss the dependence of these dispersion relations on
dA/dB.

b) Repeat part (a) but for Ge/GaAs MQWs. [Remember that Ge has no in-
frared active phonons and hence its Â(ˆ) is not dispersive in the infrared.]

9.8 Selection Rules for Scattering by Folded Acoustic Modes
Show that while at q̃ � 0 only one component of a folded acoustic doublet
should be observed in Raman scattering, for q̃ �� 0 both components should
appear. What happens for q̃ � 1? (Fig. 9.24).

9.9 Effects of Thickness Fluctuations on Resonant Light Scattering
In Sect. 9.4.1 we showed that the scattering by acoustic phonons in an in-
homogeneously broadened MQW displays mainly a broad, luminescence-like
background (Fig. 9.25).
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a) Discuss why a similar phenomenon does not appear in the case of scattering
by optic phonons.

b) Derive an expression for the fitting curve in Fig. 9.26 as a function of the in-
homogeneous gap fluctuations. Show that the width of this curve (≈ 12 meV)
is approximately four times the inhomogeneous width g.

9.10 Point Group and Selection Rules for [001] Superlattices
Find the irreducible representations to which LO and TO phonons belong in
the case of GaAs/AlAs superlattices grown along [001] for both even and odd
m’s. The point group is in this case D2d and its character table is

A1 1 1 1 1 1
A2 1 1 1 �1 �1
B1 1 �1 1 1 �1
B2 1 �1 1 �1 1
E 2 0 �2 0 0

E 2S2
4 Cz

2 2C2 2Ûd

Show that the LO modes for even m have the Raman tensor given in (9.50).

Hint: See [9.83].

9.11 Point Groups of AB/CD Zincblende-type Superlattices
Find the point group to which a GaAs/AlSb superlattice grown along [001]
belongs. Note that there are three possible inequivalent structures of this type
depending on whether: the interfaces between GaAs and AlSb layers are
(a) GaSb layers, (b) AlAs layers, (c) alternately AlAs and GaSb layers.

9.12 Selection Rules for Backscattering by LO-Phonons
Derive the selection rules for backscattering by LO phonons for êL and êS
polarized (parallel and crossed) along [110] and [110] in a GaAs/AlAs MQW
grown along [001].

9.13 Dependence of Electron–Phonon Interaction of Quantum Well Width
a) Explain qualitatively the following features found in the theoretical curves
of Fig. 9.32, which show the dependence of the strength of the interaction be-
tween electrons in quantum wells with various interface and confined optical
phonon modes:

1) There is very little difference between the curves labeled W1 and W3
which were calculated, respectively, using the “dielectric continuum model”
and the “Huang-Zhu model”. On the other hand, the curve labeled W2,
which has been calculated with the “mechanical model”, corresponds to much
smaller scattering rates than both the W1 and W3 curves.
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2) The theoretical scattering rates in all the three curves labeled W1–W3
for confined optical phonon modes decrease as the quantum well width is de-
creased. On the other hand, the scattering rate for the interface phonon mode
(curve labeled W�

in ) increases as the quantum well width is decreased.

b) Based on the deformation potential type of electron–phonon interaction
and its dependence on phonon wave vector in bulk semiconductors, explain
qualitatively how you expect the deformation potential electron–phonon in-
teraction to depend on quantum well width for

1) confined transverse optical phonons and
2) folded longitudinal acoustic phonons.

9.14 Tunneling Through a One-Dimensional Barrier
Use the transfer matrix formalism in (9.58, 59) and a computer to calculate the
transmission coefficient of an electron tunneling through the one-dimensional
barrier in Fig. 9.34 as a function of its energy. Do this first for the case of
zero bias and then for the case of a 0.1 V bias. In the latter case you have
to approximate the biased potential by a series of square potentials. Start by
choosing a relatively small number of square wells (say four) and find out
how accurately you can reproduce the result in Fig. 9.34. Then double the
number of wells and see how closely your results have converged to those in
Fig. 9.34.

9.15 Magnetoconductivity Tensor and Magnetoresistivity Tensor of a 2DEG
Show that the magnetoconductivity tensor of a two-dimensional electron gas
(2DEG) in the xy-plane with a magnetic field perpendicular to that plane is
given by

Û �

(
0 Ûxy

Û∗
xy 0

)
when the filling factors of the Landau levels are integers. Show that the corre-
sponding magnetoresistivity tensor is given by

Ú �

(
0 1/Û∗

xy
1/Ûxy 0

)
.

9.16 Effective g-Factor of Conduction Band Electrons
in Zinc-Blende-Type Semiconductors

In studying the quantum Hall effect in Sect. 9.6 we have completely neglected
the electron spin. In principle, an applied magnetic field will act on the mag-
netic moment of the electron. In the case of electrons in atoms their magnetic
moment has two origins: one due to the orbital motion of the electron and
the other due to its spin. This interaction between the applied magnetic field
and the magnetic moment of the electron results in splittings of the electron
energy levels, an effect known as the Zeeman effect. For electrons in semi-
conductors like GaAs the magnetic-field-induced Zeeman splitting of the elec-
tron energy level can be greatly reduced as result of spin–orbit coupling. This
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problem asks you to show how a conduction electron will appear to have an
effective g-factor whose magnitude can be larger or smaller than that of a free
electron (g � 2). Before attempting this problem the reader should consult the
Appendix: Appendix 9.1 Effective g-Factor (g∗) of Electrons in Semiconductors
to be found at the Web Site:

Assume that a zinc-blende-type semiconductor can be modeled by three
bands around its band gap at k � 0. One of them is a spin-degenerate con-
duction band of °6 symmetry. The other two are valence bands of symmetries:
°8 (corresponding to the J � 3/2 bands) and °7 (corresponding to the J � 1/2
split-off band). The band gap energy (i.e., the separation between the conduc-
tion band and the °8 valence band) will be denoted by E0 while the spin–orbit
splitting between the two valence bands is ¢0 (see Table 6.2).

a) Using the effective mass approximation, show that the conduction electron
behaves under an applied magnetic field as if its g-factor had the effective
value:

g∗ � 2 �
4P2¢0

3mE0(E0 � ¢0)

The matrix element P2 is defined in (2.42).

b) Use (2.43) to express g∗ in terms of the conduction effective mass m∗
c in-

stead of P2. Look up the values of E0, ¢0 and m∗
c for GaAs, GaN, InSb and

ZnSe in Table 2.2. From these values calculate the theoretical values of g∗ and
compare them with the experimental values:

GaAs 0.44
GaN(Wurtzite)a 1.9510(||), 1.9483( | )
GaN(Zincblende)b 1.9533
InSb –51
ZnSe 1.15

Semiconductor Experimental Value of g*

–

a W.E. Carlos, J.A. Freitas, Jr., M. Asif Khan, D.T. Olson, J.N. Kuznia: Electron-spin-
resonance studies of donors in wurtzite GaN, Phys. Rev. B 48, 17878–17884 (1993). ‖ and
⊥ denote a magnetic field perpendicular and parallel to the c-axis of the wurtzite lattice.
b M. Fanciulli, T. Lei, T.D. Moustakas: Conduction-electron spin resonance in zinc-blende
GaN thin films. Phys. Rev. B 48, 15144–15147 (1993)

For more recent work on the g∗-factor in semiconductors, see: M. Willatzen,
M. Cardona, N.E. Christensen: Spin–orbit coupling parameters and electron g
factor of II-VI zinc-blende materials. Phys. Rev. B51, 17992–17994 (1995).

http://Pauline.Berkeley.edu/textbook/Appendices/Effective-g-factor.pdf.
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S UMMARY

In this chapter we studied the effect of quantum confinement on electrons
and phonons in semiconductors in synthetic layered structures, known as
quantum wells and superlattices, that are usually fabricated with the tech-
nique of molecular beam epitaxy. Due to limited space, we have considered
mainly the most studied systems composed of lattice-matched GaAs, AlAs
and their alloys. However, this system is versatile enough to demonstrate
much of the physics involved, such as formation of electronic subbands and
minibands, the confinement of optical phonons, folding of acoustic phonons
and the introduction of interface modes. We also illustrated the effect of
confinement on the transport properties of carriers in these materials by
studying the phenomena of resonant tunneling and the integral quantum
Hall effect. The fractional quantum Hall effect has become one of the most
exciting areas of current research.



Appendix A:
Pioneers of Semiconductor Physics Remember...

Semiconductor physics has a long and distinguished history. The early devel-
opments culminated in the invention of the transistor by Bardeen, Shockley,
and Brattain in 1948. More recent work led to the discovery of the laser diode
by three groups independently in 1962. Many prominent physicists have con-
tributed to this fertile and exciting field. In the following short contributions
some of the pioneers have recaptured the historic moments that have helped
to shape semiconductor physics as we know it today. They are (in alphabetical
order):

Elias Burstein
Emeritus Mary Amanda Wood Professor of Physics,
University of Pennsylvania, Philadelphia, PA, USA.
Editor-in-chief of Solid State Communications 1969–1992;
John Price Wetherill Medal, Franklin Institute 1979;
Frank Isakson Prize, American Physical Society, 1986.

Marvin Cohen
Professor of Physics, University of California, Berkeley, CA, USA.
Oliver Buckley Prize, American Physical Society, 1979;
Julius Edgar Lilienfeld Prize, American Physical Society, 1994.

Leo Esaki
President, Tsukuba University, Tsukuba, Japan.
Nobel Prize in Physics, 1973.

Eugene Haller
Professor of Materials Science and Mineral Engineering,
University of California, Berkeley, CA, USA.
Alexander von Humboldt Senior Scientist Award, 1986.
Max Planck Research Award, 1994.

Conyers Herring
Professor of Applied Physics, Stanford University, Stanford, CA, USA.
Oliver Buckley Prize, American Physical Society, 1959;
Wolf Prize in Physics, 1985.

P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, Graduate Texts in Physics, 4th ed., 
DOI 10.1007/978-3-642-00710-1, © Springer-Verlag Berlin Heidelberg 2010 
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Charles Kittel
Emeritus Professor of Physics, University of California, Berkeley, CA, USA.
Oliver Buckley Prize, American Physical Society, 1957;
Oersted Medal, American Association of Physics Teachers, 1978.

Neville Smith
Scientific Program Head, Advanced Light Source,
Lawrence Berkeley Laboratory, Berkeley, CA, USA.
C.J. Davisson and L.H. Germer Prize, American Physical Society, 1991.

Jan Tauc
Emeritus Professor of Physics and Engineering, Brown University,
Providence, RI, USA.
Alexander von Humboldt Senior Scientist Award, 1981;
Frank Isakson Prize, American Physical Society, 1982.

Klaus von Klitzing
Director, Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany.
Nobel Prize in Physics, 1985.
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Ultra-Pure Germanium:
From Applied to Basic Research or
an Old Semiconductor Offering New Opportunities
Eugene E. Haller
University of California, Berkeley, USA

Imagine arriving one morning at the laboratory and somebody comes to ask
you if single crystals of germanium with a doping impurity concentration in
the 1010–1011 cm3 range can be grown! You quickly compare this concentra-
tion with the number of Ge atoms per cm�3, which is close to 4 × 1022. Well,
you pause and wonder how anybody can ask if a 99.999999999% pure sub-
stance can be made. The purest chemicals available are typically 6 or 7 nines
pure. Robert N. Hall of the General Electric Company proposed in 1968 [1]
that such crystals could be grown and that they would be most useful in fab-
ricating very large volume (up to 400 cm3) p-i-n junctions working as gamma-
ray detectors [2].

When I arrived at Berkeley as a postdoc I joined the group of F.S. (Fred)
Goulding, who headed one of the leading groups of semiconductor detector
and electronics experts at the Lawrence Berkeley Laboratory (LBL), then
called the Radiation Laboratory. There I met W.L. (Bill) Hansen, who had
started the race towards the ultra-pure Ge single-crystal goal believed to be at-
tainable by Hall. Bill was extremely knowledgeable in chemistry, physics, and
general laboratory techniques. In addition, he was the fastest-working experi-
mentalist I had ever encountered. Somewhat overwhelmed, I started to work
with Bill and Fred on these Ge crystals. When Bill tried out various Czochral-
ski crystal growth configurations [3], he rigorously pursued ultra-purity by us-
ing the simplest crystal growth design, the purest synthetic silica (SiO2) con-
tainer for the Ge melt, and hydrogen gas purified in a Pd diffusion system. I,
on the other hand, tried to build up an arsenal of characterization techniques
which would allow us to find out within hours the purity and crystalline per-
fection we had achieved. The IEEE meetings on nuclear science, which were
held every fall, provided the forum where we “crossed swords” with Hall [4–
7]. It was a close race. Hall had the advantage of enormous experience, which
started way back when Ge was first purified and single crystals were grown
for transistors. We had the advantage of blissful ignorance but also excellent
and helpful colleagues. Furthermore, nobody could match Bill’s agility in try-
ing out new purification and crystal growth methods. One major development
for us was learning, through Hall, about a super-sensitive photoconductivity
technique which was capable of identifying extremely small numbers of im-
purities in Ge single crystals. The technique had been discovered by Russian
scientists at the Institute of Radio-engineering and Electronics in Moscow [8,
6.85]; see Figs. 6.39 and 6.40. They found that a two-step ionization process of
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shallow hydrogenic donors or acceptors in a very cold crystal would lead to
photoconductivity peaks which were very sharp and unique for each dopant
species. Paul Richards, of the Physics Department at the University of Califor-
nia at Berkeley, had a home-built Fourier-transform far-infrared spectrometer
and the necessary liquid helium temperature dewar. By the end of the first day
of experimenting we had a spectrum of a p-type high-purity Ge crystal with
only 1010 cm�3 net amount of acceptors and we knew also that phosphorus
and aluminum were the major residual impurities.

In parallel with a number of novel and interesting physics studies we fabri-
cated gamma-ray detectors at LBL. We broke records in the resolution of the
gamma-ray photopeaks with our ultra-pure crystals [2]. Soon the commercial
detector manufacturers became interested and started their own ultra-pure Ge
crystal-pulling programs. In a few years several companies in the US and in
Europe succeeded in developing large-diameter (� 8 cm) single crystals with
incredibly good yield, excellent purity (� 2 × 1010 cm�3) and very small con-
centrations (108 cm�3) of deep-level defects which would detrimentally affect
the charge collection in large-size coaxial p-i-n diodes. In order to achieve the
best spectral resolution, electrons and holes had to have mean-free-paths of
up to several meters. Most semiconductor physicists simply shook their heads
and could not comprehend these numbers.

How pure is ultra-pure Ge? The person who cares only about electrically
active impurities would say that crystals with a few 1010 cm�3 of impurities
are routinely grown. But are there other inactive impurities? Yes, of course
there are. Hydrogen, oxygen, silicon and carbon are usually present at con-
centrations of up to 1014 cm�3, depending on the crystal growth conditions.
These impurities do not interfere with Ge’s operation as radiation detectors
provided certain rules are followed: no heating to temperatures above 350�C
and no rapid temperature changes. Can we reduce the concentration of these
four electrically inactive impurities? Yes, we can, but we pay a price. Elimi-
nating hydrogen by growing in vacuum leads to the introduction of impurities
which can no longer be “flushed” out of the crystal puller. Furthermore, hy-
drogen will passivate the very small concentrations of deep-level defects and
impurities which are always present. Free oxygen and silicon are generated
by the reduction of the ultra-pure silica crucible by the liquid Ge. We do not
know of any substance which can replace silica with, perhaps, the exception of
graphite. Numerous attempts to grow ultra-pure Ge in graphite crucibles have
failed so far because the resultant crystals contain too many Al acceptors.

Most recently, the interest in Ge has sharply increased because isotopically
pure Ge can be obtained from Russia. Isotopically pure Ge bulk crystals [9–
12] and isotope superlattices [13] have been grown. New phonon physics and
electronic transport studies are currently being pursued by several groups with
these isotopically controlled crystals and multilayers.

Have we arrived at the ultimately ideal material: isotopically and chemi-
cally pure and crystallographically perfect Ge single crystals? Perhaps the an-
swer is no, but I certainly do not know of another parameter that can be con-
trolled.



Ultra-Pure Germanium 557

References

1 R.N. Hall: in Proc. of the 12th Int. Conf. on Physics of Semiconductors, ed. by M.H.
Pilkuhn (Teubner, Stuttgart 1974), p. 363

2 E.E. Haller, F.S. Goulding: Handbook on Semiconductors, Vol. 4, ed. by C. Hilsum
(Elsevier, New York 1993), Chap. 11, p. 937–963

3 W.L. Hansen, E.E. Haller: Mater. Res. Soc. Proc. 16, 1 (1983)
4 R.N. Hall, T.J. Soltys: IEEE Trans. Nucl. Sci. NS-18, 160 (1971)
5 E.E. Haller, W.L. Hansen, F.S. Goulding: IEEE Trans. Nucl. Sci. NS-20, 481 (1973)
6 E.E. Haller, W.L. Hansen, G.S. Hubbard, F.S. Goulding: IEEE Trans. Nucl. Sci. NS-

23, 81 (1976)
7 E.E. Haller, W.L. Hansen, F.S. Goulding: Adv. Phys. 30, 93 (1981)
8 E.E. Haller: Physics 146B, 201 (1987)
9 E.E. Haller: Semicond. Sci. Technol. 5, 319 (1990)

10 E.E. Haller: Solid State Phenom. 32–33, 11 (1993)
11 G. Davies, J. Hartung, V. Ozhogin, K. Itoh, W.L. Hansen, E.E. Haller: Semicond. Sci.

Technol. 8, 127 (1993)
12 H.D. Fuchs, P. Etchegoin, M. Cardona, K. Itoh, E.E. Haller: Phys. Rev. Lett. 70, 1715

(1993)
13 J. Spitzer, T. Ruf, M. Cardona, W. Dondl, R. Schorer, G. Abstreiter, E.E. Haller:

Phys. Rev. Lett. 72, 1565 (1994)



558 Appendix A

Two Pseudopotential Methods:
Empirical and Ab Initio
Marvin L. Cohen
University of California, Berkeley, USA

It took a relatively long time to develop methods capable of determining the
detailed electronic structure of solids. In contrast, for gases, unraveling the
mysteries of atomic energy levels went hand in hand with the development of
quantum theory. Atomic optical spectra yielded sharp lines that could be in-
terpreted in terms of excitations of electrons from occupied to empty states.
These studies provided important tests of the theory. However, compared to
atomic spectra, solid-state spectra are broad, since the interactions between
the atoms spread the allowed occupied and empty energy levels into energy
bands. This made interpretation of spectra in terms of electronic transitions
very difficult. Trustable precise electronic energy band structures were needed
to interpret solid-state spectra, but these were difficult to obtain.

In principle, the Schrödinger equation can describe the behavior of elec-
trons in solids; but without approximations, solutions for the electronic energy
levels and wavefunctions are extremely difficult to calculate. Despite consider-
able effort, the situation around 1960 was still unsatisfactory. Creative models
of solids had been introduced to explain many physical phenomena such as
electronic heat capacities and superconductivity with spectacular success. How-
ever, calculations capable of yielding band structures and other properties for
specific materials were not available.

An important intermediate step was the introduction of the empirical
pseudopotential model (EPM). Pseudopotentials had been around since 1934,
when Fermi introduced the concept to examine the energy levels of alkali
atoms. Since he was interested in highly excited atoms, he ignored the oscil-
lations of the valence electron wavefunctions in the regions near the nucleus.
By assuming a smooth wavefunction responding to a weak potential or pseu-
dopotential, Fermi could easily solve for the outer electron energy levels.

Since most solid-state effects, such as bonding, are principally influenced
by the changes in the outermost electrons, this picture is appropriate. For the
EPM it is assumed that the solid is composed of a periodic array of positive
cores. Each core has a nucleus and core electrons. Each of the outer valence
electrons moves in the electrostatic potential or pseudopotential produced by
the cores and by the other valence electrons. In this one-electron model, each
electron is assumed to respond to this average periodic crystalline pseudopo-
tential. The periodicity allows Fourier decomposition of the potential and the
EPM fits data to obtain Fourier coefficients. Usually only three coefficients per
atom are needed.
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The EPM stimulated interactions between theorists and experimentalists
and the result was one of the most active collaborations in physics. Not only
were optical and photoemission spectra of solids deciphered, the activities re-
sulted in new experimental techniques and a much deeper understanding of
the behavior of electrons in solids. The meeting ground between experiment
and theory is usually response functions such as dielectric functions or reflec-
tivity. In the early phases of this work the actual energy band structures, which
are plots of energy versus wavevector, were the domain of theorists. However,
the introduction of angular resolved photoemission spectroscopy (ARPES)
gave energy bands directly and provided further tests of the EPM.

The EPM band structures obtained in the 1960s and 1970s are still used to-
day. In addition, the EPM produced the first plots of electronic charge density
for crystals. These plots displayed covalent and ionic bonds and hence gave
considerable structural information. Optical constants, densities of states, and
many other crystal properties were obtained with great precision using EPM-
derived energy levels and wavefunctions.

Despite the success of the EPM, there was still considerable motivation to
move to a first-principles or ab initio model. The approach chosen was sim-
ilar to Fermi’s. Instead of an EPM potential, the interaction of the valence
electron with the core was described using an ab initio pseudopotential con-
structed from a knowledge of atomic wavefunctions. The valence electron–
electron interactions were modeled using a density functional theory which,
with approximations, allows the development of an electron–electron potential
using the electronic charge density. However, the latter approach is appropri-
ate only for calculating ground-state properties. Excited states such as those
needed to interpret atomic spectra require adjustments to this theory. These
adjustments are complex and require significant computer time compared to
the EPM, but they are successful in reproducing the experimental data and
the approach is completely ab initio.

One of the most important applications of the ab initio pseudopotential
model was the determination of structural properties. It became possible to
explain pressure-induced solid–solid structural transitions and even to predict
new structural phases of solids at high pressure using only atomic numbers
and atomic masses. Bulk moduli, electron–phonon coupling constants, phonon
spectra, and a host of solid-state properties were calculated. The results al-
lowed microscopic explanations of properties and predictions. An example was
the successful prediction that semiconducting silicon would become a super-
conducting hexagonal metal at high pressure.

The two types of pseudopotential approaches, empirical and ab initio, have
played a central role in our conceptual picture of many materials. Often the
resulting model is referred to as the “standard model” of solids. Unlike the
standard model of particle physics, which is sometimes called a theory of ev-
erything, the standard model of solids is most appropriate for those solids with
reasonably itinerant electrons. Despite this restriction, the model is extremely
useful and a triumph of quantum theory.
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The Early Stages of Band-Structures Physics
and Its Struggles for a Place in the Sun
Conyers Herring
Stanford University, Stanford, USA

It is universally recognized today that among the components necessary for
a theoretical understanding of the properties of semiconductors, their specific
electronic band structures have an extremely fundamental place. Textbooks
on semiconductors typically have, among their earliest chapters, one on band
structure, which contains diagrams of energy versus wavevector for important
semiconductors, usually obtained from first-principles numerical calculations.
But obviously these calculations would not be so conspicuously featured if
they did not agree with a great body of experimental information. What the
present-day student may not realize is that, despite the spurt of activity in
the early post-transistor years – roughly 1948–1953 – the workers of this pe-
riod had almost no knowledge of band structures, and had to muddle through
as best they could without it. The evolution of this aspect of semiconductor
physics provides a thought-provoking perspective on how science moves to-
ward truth by erratic diffusional steps, rather than with military precision.

The possible range of band structures had, of course, long been known in
principle. The standard generalities about Bloch waves and their energy spec-
tra had been known for a couple of decades; symmetry-induced degeneracies
had been classified; early band-structure calculations, though not quantitatively
reliable, had suggested that degenerate and multi-valley band edges might of-
ten occur. The trouble lay elsewhere. When so many possibilities for exciting
work were opening up, people tended to avoid projects that would be tedious
and time-consuming. Band-structure theorists, equipped only with mechanical
calculators, often opted to use incomplete boundary conditions or limited basis
sets. Experimentalists, despite rapid improvements in purity and perfection of
materials, continued to focus mostly on properties whose interpretation did not
depend critically on anisotropies and other special features of the energy bands.
Much of the blame for this neglect must be cast on the theorists, not only for
their failure to agree on calculated band structures, but also because, for too long,
they shied away from the tedium of making detailed calculations of properties
such as magnetoresistance for various kinds of nonsimple band structures.

My own experience provides a typical example. In December 1953 I deliv-
ered an invited paper at an APS meeting with the title “Correlation of Elec-
tronic Band Structures with Properties of Silicon and Germanium”. In it I
tried to reason as logically as possible from the existing experimental and the-
oretical literature, to draw plausible conclusions about the possible band-edge
symmetries for these elements. While I got a few things right, it was distress-
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ing to learn over the next year or so that most of my inferences were wrong.
How did I go astray?

My first step, safe enough, was to classify the possible types of band-edge
points: those at wavevector k � 0, and those at k �� 0 (multi-valley); for each
of these the states could be degenerate (two or more states of the same en-
ergy and k) or nondegenerate. In surveying the experimental and theoretical
evidence bearing on the choices among these numerous alternatives, I began
by trying to limit the possible choices to those that could occur for band struc-
tures qualitatively similar to that newly calculated by Herman [1] for diamond,
which seemed more reliable than any others that had been made for any ma-
terial with this crystal structure. Using the “k · p method” for qualitative es-
timations of the energy-band curvatures on moving away from k � 0, this
meant that I neglected perturbations of the p-like k � 0 states °25′ , °15 by the
anti-bonding s-like level °2′ , which is quite high in diamond but, contrary to
my assumption, much lower in silicon and germanium. This neglect turned out
to make me omit the possibility of conduction-band edges on the [111] axes in
k-space for n-germanium, and to retain the possibility of valence-band edges
on the [100] axes for p-silicon.

From this flawed start I tried to narrow the possibilities further by appeal-
ing to experimental evidence, and especially to magnetoresistance. The near-
vanishing of longitudinal magnetoresistance in [100]-type directions was ob-
viously consistent with multi-valley band-edge regions centered on the [100]-
type axes in k-space, and this proved to be the correct identification for n-type
silicon. But, lacking explicit calculations, I assumed that the energy surfaces of
a degenerate hole band at k � 0 would be so strongly warped as to preclude
the near-zero [100] longitudinal magnetoresistance observed for p-silicon. So
my predictions were all wrong here. Finally, I had the tedious task of calcu-
lating the complete anisotropy of magnetoresistance for multi-valley models,
which a few months later were shown to give strong evidence for [111]-type
valleys for n-germanium.

What all this illustrates is that to achieve an acceptable understanding of
band structures, each of three types of information sources had to reach a
certain minimum level of sophistication. Band calculations from first princi-
ples had to be made with accuracy and self-consistency in an adequately large
function space. Experimental measurements of properties sensitive to band
structure had to be made under well-controlled conditions. And theoretical
predictions of these properties for different band structure models had to be
available. There were gaps in all three of these sources up to the end of 1953;
it is thus not surprising that Shockley, in writing what was intended as a basic
text for the coming semiconductor age [2], stated, in spite of his awareness of
the diversity of possible band structures, that the theoretical reasoning in the
book would all be based on the simple model with an isotropic effective mass.
Remarkably, in a year or so starting in 1954, each of the three sources filled
itself in sufficiently so that they could pull together (e. g., better theoretical
bands [3], cyclotron resonance [4], magnetoresistance theory [5]) and band-
structure physics became a solid and accepted component of basic knowledge.
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Cyclotron Resonance and Structure of Conduction
and Valence Band Edges in Silicon and Germanium
Charles Kittel
University of California, Berkeley, USA

A prime objective of the Berkeley solid-state physics group (consisting of
Arthur Kip and myself) from 1951 to 1953 was to observe and understand cy-
clotron resonance in semiconductors. The practical problems were to gain reli-
able access to liquid helium, and to obtain an adequate magnet and sufficiently
pure crystals of Ge and Si. The liquid helium was obtained from the Shell Lab-
oratories and later from the Giauque laboratory on campus. The magnet was
part of a very early cyclotron (from what one may call the Ernest O. Lawrence
collection), and the dc current for the magnet came from recycled US Navy
submarine batteries. The semiconductor crystals were supplied by the Sylva-
nia and Westinghouse Research Laboratories, and later by the Bell Telephone
Laboratories. I think the microwave gear came from war surplus at MIT Ra-
diation Laboratory. Evidently, very little of the equipment was purchased.

The original experiments were on Ge [1], both n-type and p-type. There
were too few carriers from thermal ionization at 4 K to give detectable signals,
but the carriers that were present were accelerated by the microwave electric
field in the cavity up to energies sufficient to produce an avalanche of carriers
by impact ionization. This was true cyclotron resonance! A good question is,
why not work at liquid hydrogen temperature, where the thermal ionization
would be adequate? Hydrogen was then, and perhaps is still now, considered
to be too hazardous (explosive) to handle in a building occupied by students.

A better question is, why not work at liquid nitrogen temperature, where
there are lots of carriers and the carrier mobilities are known to be much
higher than at the lower temperatures? Cyclotron resonance at liquid nitrogen
temperature had been tried at several other laboratories without success. The
reason for the failures is that the plasma frequencies, being mixed with the
cyclotron frequencies to produce a magnetoplasma frequency, are too high at
the higher carrier concentrations – you are not measuring a cyclotron reso-
nance but instead a magnetoplasma resonance [2]. Indeed, one can follow the
plasma displacement of the original cyclotron lines when the cavity is allowed
to warm up. In radio wave propagation in the ionosphere this effect is called
magneto-ionic reflection, a subject I had learnt from the lectures of E.V. Ap-
pleton at Cambridge.

A better way to produce carriers at 4 K was suggested by the MIT group.
They irradiated the crystal with weak light sufficient to excite both electrons
and holes. With this method both electrons and holes could be excited in the
same crystal. Alternatively, one can excite a known carrier type by infrared
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irradiation of n- or p-type material. By modulating the optical excitation the
detection of the absorption signal was made highly sensitive [3]. In addition,
if there is any doubt about the sign of the carriers, circularly polarized mi-
crowaves can be (and were) used to distinguish the sense of rotation of the
carriers in the magnetic field.

The most surprising result of the original experiments was the observation
of two effective masses (m∗) for the Ge holes: m∗/m0 � 0.04 and 0.3, both ap-
proximately isotropic. Frank Herman and Joseph Callaway had calculated that
the top of the valence band in Ge occurs at the center of thr Brillouin zone
and is threefold degenerate (sixfold with spin), corresponding to p bonding or-
bitals on the Ge atoms. This would have given rise to three hole masses. We
suggested [4,5] that the spin–orbit (s.o.) interaction splits the p orbitals into
fourfold degenerate (related to p3/2 orbitals) and twofold degenerate (related
to p1/2 orbitals) bands at the zone-center. We found that the most general form
of the energy of the upper valence bands in the diamond structure to second
order in wavevector k is (2.62)

E(k) � Ak2 ± [B2k4 � C2(k2
xk2

y � k2
yk2

z � k2
zk2

x)]1/2.

This was perhaps the first application of the spin–orbit interaction in semicon-
ductors.

The “s.o. split-off” or lower band in Ge is 0.30 eV below the top of the
valence band edge. This s.o. splitting and the lower band itself are explored
best by optical absorption. The analysis by Kahn [6] of the available experi-
ments was an important confirmation of our model developed from cyclotron
resonance.

One of the early applications of the results of cyclotron resonance experi-
ments in Si and Ge was to the theory of the ionization energies of the shallow
donor and acceptor states in these materials. The approximate ionization en-
ergies are 0.04 eV for electrons and 0.05 eV for holes in Si, and 0.01 eV for
both electrons and holes in Ge. The near equality of the ionization energies
for both electrons and holes was astonishing, at the time, because their band
edge structures were known to be completely different (thanks to cyclotron
resonance). The problem was discussed in the summer of 1954 with visitors
to Berkeley, notably Freeman Dyson and Joaquin Luttinger. The near equal-
ity turns out to be merely a matter of coincidence after the electron and hole
ionization energies are calculated separately.

The donor ionization energy was calculated first at Berkeley [7]. We used
the hamiltonian for an ellipsoidal energy surface at any of the degenerate
band edges for electrons and the dielectric constant of the bulk crystal. The
calculated energies are in good agreement with experiment, at least for donors
with atomic numbers close to that of the host crystal. For heavier donors, cen-
tral cell corrections must be made. The acceptor problem is more difficult be-
cause of the fourfold degeneracy of the valence band edges at the zone center,
and is reviewed by Walter Kohn [8], with satisfying results.
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Optical Properties of Amorphous Semiconductors
and Solar Cells
Jan Tauc
Brown University, Providence, USA

In the early 1960s the foundations for an understanding of the optical prop-
erties of crystalline semiconductors were established. They were based on the
existence of long-range order and k-vector conservation, which led to sharp
structures in the spectra associated with the Van Hove singularities. My group,
working in the Institute of Solid State Physics of the Czechoslovak Academy
of Sciences in Prague, was making contributions to this ongoing effort which
flourished throughout the 1960s. While on leave at Harvard in 1961–1962, I
started thinking about what the optical properties should be like when long-
range order is absent, and I began working on this problem after my return to
Prague.

There is a huge group of materials, called glasses, that lack long-range or-
der; they are produced by quenching the melt, which of course does not have
long-range order. In these materials the liquid has the same short-range order as
the solid phase. This is not the case for semiconductors with tetrahedral bond-
ing. The efficiency of this bond in lowering energy depends on the geometrical
rigidity of the structure; once it is loosened at high temperature, the energeti-
cally favorable phase is a metallic one (some kind of close packing). So even if it
were possible to quench, say, liquid Ge (which it is not), the short-range order of
this “glass” would be completely different from crystalline Ge, and therefore a
comparison of the optical properties would be meaningless. There are, however,
ways to prepare amorphous Ge (a-Ge) (and other tetrahedral semiconductors)
with the same short-range order as crystalline Ge (c-Ge) as a thin film, for ex-
ample by condensing evaporated Ge on a cold substrate.

In Prague, we first worked on the optical properties of some liquids, which
clearly demonstrated the fact that the main optical properties depend on the
short-range order. A breakthrough came when we learned that Radu Grig-
orovici had prepared thin films of a-Ge at the Institute of Physics of the Ro-
manian Academy of Sciences. A close, fruitful and friendly collaboration soon
developed, and for some years Radu regularly visited Prague. We spent long
hours and days discussing amorphous semiconductors with tetrahedral bond-
ing. At that time, we did not know of anyone else who would be interested
in amorphous semiconductors of this kind (there was an important group in
Leningrad which had been studying amorphous chalcogenide semiconductors
since the 1950s, but these are real glasses and very different from tetrahedral
semiconductors). Radu was interested in the preparation, structure and elec-
tronic transport, while we in Prague worked on the optical properties.
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From the reflection spectra, using Kramers-Kronig analysis, we determined
the optical constants of a-Ge in the spectral range up to 12 eV and con-
firmed the expectation that there should be no sharp structures [1]. Instead
of the three prominent peaks in the fundamental absorption band observed
in c-Ge, there is just one band, which has the remarkable feature of having
much larger absorption in the low energy region (a “red shift”). From the
transmission spectra we determined the dependence of the absorption coef-
ficient · on photon energy in the absorption edge region. The data gave a
straight line when

√
ˆ· was plotted as a function of photon energy �ˆ[

√
ˆ· �

const. × (�ˆ � Eg)]. This plot defines an energy Eg, which it is natural to call
the optical gap. Of course, it was the most obvious plot to try: if the k-vector
is not conserved, if the density of electron states close to the valence and con-
duction band extrema is proportional to the square root of energy as in the
crystal, and if the matrix element is a constant then · ∝ (�ˆ � Eg)2/ˆ, as is
the case for phonon-assisted indirect transitions in crystalline semiconductors.
In fact, in amorphous semiconductors there was no rigorous theoretical justifi-
cation for this law at that time (and there is no generally accepted one today),
so it must be considered as empirical. It is, however, most amazing that this
plot works in many amorphous semiconductors. In the literature, this kind of
edge is sometimes referred to as a “Tauc edge” and used as a definition of the
“optical” gap, which is usually somewhat different from the gap determined
from electrical conductivity measurements (“electrical gap”).

The “red shift” mentioned above is observed also in a-Si and is the basis
for the usefulness of this material for solar cell. Although Radu and I, during
our walks in Prague (which was run down at that time but still beautiful), con-
sidered various possible applications of these materials, the truth is that they
are useless as electronic materials because they are full of defects which act as
traps, preventing n- and p-type doping. A prominent defect is a Si atom with
only three neighbors, i. e., with an unpaired electron (a “dangling bond”). Our
walks ended in 1968 after the tragic political events which put an end to what
has since become known as the “Prague Spring”.

In the 1970s the oil crisis hit the world, and thinking about renewable
energy sources became popular. Among these, solar cells appeared very at-
tractive. Cells made of c-Si are very good but too expensive for large scale
deployment. The reason is that c-Si is an indirect-gap semiconductor and the
absorption coefficient is small in the spectral region of the solar flux. To ab-
sorb it, the cell must be relatively thick (∼ 100 Ìm), which requires a large
amount of a rather expensive material, in addition to the expensive technol-
ogy (crystal growing, wafer cutting, polishing, etc.). Because of the red shift,
a-Si absorbs solar light much more efficiently: the cells can be made much
thinner, and thin film technology is much cheaper.

A discovery dramatically improved the electronic properties of a-Si. It
started with the work of Chittick and coworkers at Standard Telecommuni-
cations Laboratories in England in the late 1960s. A standard procedure for
the crystal growth of a silicon layer on a Si substrate is the decomposition of
SiH4 gas by the high temperature of the substrate. Instead, Chittick et al. [2]
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studied the decomposition of SiH4 by radio frequency glow discharge, which
enabled them to deposit silicon on a cool noncrystalline substrate. They pro-
duced thin amorphous Si films whose electronic properties were radically im-
proved through a reduced defect state density in the gap. They showed that
the resistivity of these films could be lowered by two orders of magnitude by
adding PH3 gas to SiH4 – the first demonstration of doping of an amorphous
semiconductor. Their company did not let them continue the work. What is
quite amazing is that Chittick told many of us about this work in 1969 and
no one grasped the enormous significance of his result except Spear and Le
Comber at the University of Dundee. They reported in 1975 [3] n- and p-
doping and in 1976 production of p-n junctions. It was first believed that the
good properties were due to an exceptionally gentle deposition technique, but
the work of W. Paul and others showed that they were due to the presence of
hydrogen in the films. Hydrogen in a-Si:H reduces the defect state density by
compensating the dangling bonds.

The gap of a-Si:H (about 1.8 eV) is larger than that of a-Si (1.4 eV) but
the spectrum is also red-shifted with respect to c-Si, and therefore the films
can be quite thin (1 Ìm) and still absorb a substantial part of the solar spec-
trum. One would think that with all these clues in hand someone would go
ahead and design an a-Si:H solar cell. It did happen, but not in this way. Carl-
son and Wronski [4] discovered such cells independently at RCA in thin-film
solar cells made of polycrystalline Si. They observed that when the substrate
was cold enough the cells had a better efficiency and found that these bet-
ter cells were amorphous rather than polycrystalline; only then did they real-
ize the connection of their discovery to the current research on a-Si:H. These
cells are today produced for small-scale applications and still remain a primary
candidate for large-scale photovoltaic energy conversion plants which may be
needed someday.
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Optical Spectroscopy of Shallow Impurity Centers
Elias Burstein
University of Pennsylvania, Philadelphia, USA

In the fall of 1948, Frank Isakson, head of the Physics Section of the Office
of Naval Research, was a frequent visitor at the Naval Research Laboratory,
where I was a member of the Crystal Branch. During one of our frequent dis-
cussions of projects of mutual interest, he informed me about the Navy’s in-
terest in developing an infrared (IR) photoconductor with a response beyond
7 Ìm, the long wavelength limit of PbS films, an intrinsic photoconductor de-
veloped in Germany during World War II. The properties of the III–V semi-
conductors were still unknown at that time. In the summer of 1949 I had the
good fortune of being able to attend the annual Modern Physics Symposium
at the University of Michigan, one of a series of symposia that started in 1928.
The lecturers that summer were Luis Alvarez (High Energy Physics), Richard
Feynman (Path Integral Method), Frederick Seitz (Solid State Physics) and
Gordon B.B. Sutherland (Infrared Spectroscopy of Solids).

In his lectures on semiconductors, Seitz discussed the nature of the impu-
rity levels in Si and Ge and summarized the thermal ionization energies of
group III acceptors and group V donors that had been obtained by Pearson
and Bardeen at Bell Telephone Laboratories [1] from data on the temperature
dependence of the carrier densities derived from resistivity and Hall measure-
ments. He also discussed their conclusions that the ionization energies of the
group III acceptors (0.048 eV) and group V donors (0.045 eV) were in reason-
able agreement with a simple effective-mass hydrogen model. It was at that
point in the lecture that the idea came to me to make use of the photoioniza-
tion of un-ionized hydrogenic impurity centers in Si and Ge as the basis for
IR detectors.

Shortly after returning to Washington, DC, I went to see John Bardeen,
who provided me with several Si samples. Together with John J. Oberly, James
W. Davisson and Bertha Henvis, I started measurements of the low tempera-
ture IR absorption spectra of the Si samples. I wanted to study the absorption
spectra associated with photoionization of un-ionized impurity centers before
making an effort to observe the photoconductive response. Our first measure-
ments, using a Perkin-Elmer model 12C spectrometer with interchangeable
NaCl, KBr, KSR-5(TlBr+I) prisms and mirror optics, were carried out at 77 K,
since a simple calculation based on the thermal ionization energy of impuri-
ties indicated that over 90% of the impurity centers would remain un-ionized
at this temperature.
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The observed spectrum for a boron-doped Si sample was quite striking,
since it exhibited peaks corresponding to transitions from the ground state to
excited states of the acceptor centers, as well as the onset of a photoionization
continuum [2,3] (Fig. 1). Moreover, the positions of the excitation peaks cor-
responded closely to the 1s–2p, 1s–3p and 1s–4p transitions of a hydrogenlike
center and yielded an ionization energy of 0.046 eV, in good agreement with
the thermal ionization data [4]. However, the oscillator strengths of the ab-
sorption peaks are markedly different from those for a hydrogenic center. In
particular, the oscillator strength of the 1s–2p peaks is an order of magnitude
smaller than that for a hydrogenic center. The widths of the excitation peaks
decrease on cooling to liquid helium temperature, but there is no appreciable
shift in the peak positions, indicating that Franck–Condon effects are small.
Our data showed no obvious evidence of transitions from the ground state of
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the split-off valence band, which is not unexpected since the spin–orbit inter-
action is small in Si and the optical spectra are broadened appreciably.

Efforts to detect photoconductivity in n- and p-type Si at 77 K were un-
successful, due to the presence of large numbers of thermally excited carriers.
However, a photoconductive response was observed at liquid helium temper-
ature. The spectral response of relatively pure n-Si is shown in Fig. 2 [5]. The
dips in the photoconductive response between 8 and 24 Ìm correspond to lat-
tice vibration absorption peaks. The data yielded a donor optical ionization
energy of 0.04 eV. Photoconductivity studies were later carried out at liquid
helium temperature on Ge doped with group III and V impurities. The photo-
conductive response was found to extend out to 38 Ìm, the limit of measure-
ment at that time [6].

Fairly complete optical studies were carried out for the group III accep-
tors (B, Al, Ga and In) and for the group V donors [7,8]. Absorption spectra
for the group III centers are shown in Fig. 1. The variations in the ionization
energy (Fig. 3) are accompanied by changes in the character of the excitation
and photoionization absorption spectra. The positions of the excitation bands
for Al, Ga and In centers, unlike B, do not correspond to a hydrogenic model,
their oscillator strengths also differ appreciably from those of a hydrogenic
model (Fig. 3). These deviations, which become more pronounced on going
from B to In, are due to central cell corrections. The states with s charac-
ter have their energies and wavefunctions rather strongly modified, since their
wavefunctions are relatively large at the impurity atoms. The states with p
characters, whose wavefunctions are small at the center of the impurity atom,
are affected to a lesser degree. The agreement between the experimental ion-
ization energy for B and the predictions of the hydrogenic model is probably
due to a cancellation of different effects.
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The optical ionization energies for donors in Si were found to be 10%
larger than the thermal ionization energies, due in part to the presence of
low-lying excited states that were not taken into account in the calculation
of the activation energies. The positions of the ground state relative to the
conduction band are appreciably different for the three donors P, As and Sb,
again due to central cell effects. However, their excited p-states are observed
at about the same positions relative to the conduction band (see Fig. 3 and
[7]). Moreover, they are in good agreement with the results of the effective
mass formulation of the donor p levels by Kohn and Luttinger [9], which takes
into account the fact that the conduction band of Si has six nondegenerate
minima along the [100] and equivalent directions.

The data obtained in these early investigations were limited by the rela-
tively low quality of the Si Samples, the poor resolution of the spectrometers
and by the electronics. There has been major progress in the IR spectroscopy
of shallow impurity levels in semiconductors since then, made possible by
significant improvements in crystal quality, spectrometers and detectors, by
the development of photothermal conductance spectroscopy, which has much
higher sensitivity than IR detectors, and by the availability of tunable IR lasers
[10].
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On the Prehistory
of Angular Resolved Photoemission
Neville V. Smith
Lawrence Berkeley Laboratory, Berkeley, USA

Band mapping using angle-resolved photoemission started in the early 1970s.
Interest in the angular dependence of the photoelectric effect, however, goes
back much further. Figure 1 shows an apparatus used in the 1920s by Her-
bert Ives and coworkers [1] at the Bell Telephone Laboratories. These work-
ers were definitely not concerned with band structures. Wave mechanics was a
newfangled concept, and solid-state physics had yet to be invented. They were
concerned rather with optimizing the efficiency of photocathodes for use in
television and eventually videotelephony.

The sample (C) sits at the center of a spherical collector (B). Application
of retarding potentials to the collector permits measurement of the photoelec-
tron energy spectra. A finger (F) moving around a slot in the collector permits
measurements as a function of angle of emission. We recognize here a resem-
blance to modern experimental methods. More striking is the resemblance to
the apparatus used by Clinton Davisson and Lester Germer in establishing the
wave nature of the electron [2]. This is not surprising. These scientists were all
working at the same time in the same building in Manhattan.

It is diverting to speculate on the interactions between Ives and Davisson.
It seems likely, on the artistic evidence, that they were using the services of
the same glass blower! But what did they talk about? Would they have been
pleased to know that their separate lines of research would converge half a
century later into the indispensable technique of band mapping?

Evan Kane proposed in a prescient paper published in 1964 that bands
could in principle be mapped using the angular dependence of photoemission
spectra [3]. A decade elapsed, however, before bands were actually mapped
[4]. Mort Traum and I approached this problem in the early 1970s but with
some hesitance. There were persuasive proponents of the view that photoelec-
trons would be so thoroughly scattered before emerging from the sample that
all memory of angular information would be lost. We were so intimidated by
this that we built only a minimal apparatus, essentially the same as that of
Ives but with a channel electron multiplier in place of the finger F. To cir-
cumvent the indeterminacy of k⊥, we looked at two-dimensional materials,
the layer compounds TaS2 and TaSe2. Frank DiSalvo was manufacturing sin-
gle crystals of these compounds in his laboratory a few doors down the cor-
ridor. Len Mattheiss was calculating their band structures just a few further
doors down the corridor, and we found beautiful agreement with his predict-
ions [5].
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Fig. 1. Apparatus used by Ives et al. [1]

With these shortcuts and fine collaborators we were able to perform the first
demonstration of band mapping [4]. In hindsight, it is embarrassing to contem-
plate our hesitance and timidity. It is all now so obvious and commonplace.
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The Discovery and Very Basics
of the Quantum Hall Effect
Klaus von Klitzing
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany

The discovery of the quantum Hall effect (QHE) was the result of basic re-
search on silicon field effect transistors – the most important device in mi-
croelectronics. Unlike in other conductors, the electron concentration in these
devices can be varied in a wide range just by changing the gate voltage. There-
fore this system is ideal for an investigation of the Hall effect at different car-
rier densities by analyzing the Hall voltage as a function of the gate voltage.
The experimental curves together with the notes of February 4, 1980, which
characterize the birthday of the quantum Hall effect, are shown in Fig. 9.39.
As expected qualitatively from the classical Hall effect, the Hall voltage UH
varies (at a fixed magnetic field B � 18 T) inversely proportional to the num-
ber N of free electrons (or gate voltage Vg). However, plateaus are visible
if the ratio of the number N of electrons to the number Nº of flux quanta
within the area of the device is an integer. For one electron per flux quan-
tum (this corresponds to a fully occupied lowest Landau level with the fill-
ing factor 1) the Hall voltage divided by the current has the fundamental
value RK � h/e2 � (25812.807 ± 0.005) ø. This Hall plateau is barely visible
in the upper left corner of Fig. 9.39 and distorted by the large device resis-
tance due to localization phenomena at this relatively small electron density.
The plateaus at 2 or 4 times larger electron concentration are much better
resolved. Today, electronic systems with higher quality are available so that
measurements at much smaller electron densities with filling factors smaller
than one are possible. This is the region where the fractional quantum Hall
effect is observed [9.70].

A special situation seems to be present if two flux quanta are available
for one electron (filling factor 1/2): Quasiparticles (composite fermions) are
formed which behave like electrons moving in an effective magnetic field
B∗ � 0. The Shubnikov–de Haas oscillations of these composite fermions are
equivalent to the structures of the fractional quantum Hall effect.

Already the first publication on the QHE [1] with the original title “Re-
alization of a Resistance Standard Based on Fundamental Constants” indi-
cated that an application similar to the Josephson effect may be possible. To-
day, it is known that different materials (silicon field effect transistors, GaAs/
AlGaAs heterostructures) show the same value for the quantized Hall resis-
tance within the experimental uncertainty of 3.5 × 10�10, and since 1990 all
calibrations of resistances are based on the quantum Hall effect with a fixed
value RK�1990 � 25812.807 ø for the von Klitzing constant RK.
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Different approaches can be used to deduce a quantized value for the Hall
resistance. The calculation shown in Fig. 9.39, which led to the discovery of the
QHE, is simply based on the classical expression for the Hall effect. A quan-
tized Hall resistance h/e2 is obtained for a carrier density corresponding to the
filling factor one. It is surprising that this simple calculation leads to the cor-
rect result. Laughlin was the first to try to deduce the result of the QHE in
a more general way from gauge invariance principles [2]. However, his device
geometry is rather removed from the real Hall effect devices with metallic
contacts for the injection of the current and for the measurement of the elec-
trochemical potential.

The Landauer–Büttiker formalism, which discusses the resistance on the
basis of transmission and reflection coefficients, is much more suitable for an-
alyzing the quantum Hall effect [3]. This formalism was very successful in ex-
plaining the quantized resistance of ballistic point contacts [4] and, in a simi-
lar way, the quantized Hall resistance is the result of an ideal one-dimensional
electronic transport. In a classical picture this corresponds to jumping orbits of
electrons at the boundary of the device. In the future, the textbook explana-
tion of the QHE will probably be based on this one-dimensional edge channel
transport (see Fig. 9.40).
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The Birth of the Semiconductor Superlattice
Leo Esaki
University of Tsukuba, Tsukuba, Japan

In 1969, research on artificially structured materials was initiated when Tsu
and I [1,2] proposed an engineered semiconductor superlattice with a one-
dimensional periodic potential. In anticipation of advances in controlled epi-
taxy of ultrathin layers, two types of superlattices were envisioned: doping and
compositional, as shown in Fig. 1.

Before arriving at the superlattice concept, we had been examining the
feasibility of structural formation of potential barriers and wells that were thin
enough to exhibit resonant tunneling [3]. A resonant tunnel diode [4,5] ap-
peared to have more spectacular characteristics than the Esaki tunnel diode
[6], the first quantum electron device consisting of only a single tunnel bar-
rier. It was thought that advanced technologies with semiconductors might be
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ready for demonstration of the de Broglie electron waves. Resonant tunnel-
ing (see Sect. 9.5) can be compared to the transmission of an electromagnetic
wave through a Fabry–Perot resonator. The equivalent of a Fabry–Perot reso-
nant cavity is formed by the semiconductor potential well sandwiched between
the two potential barriers.

The idea of the superlattice occurred to us as a natural extension of
double-, triple- and multiple-barrier structures: the superlattice consists of a
series of potential wells coupled by resonant tunneling. An important param-
eter for the observation of quantum effects in the structure is the phase-
coherence length, which approximates the electron mean free path. This de-
pends on the bulk quality as well as the interface quality of crystals, and also
on the temperatures and values of the effective mass. As schematically illus-
trated in Fig. 2, if characteristic dimensions such as superlattice periods or well
widths are reduced to less than the phase-coherent length, the entire electron
system will enter a mesoscopic quantum regime of low dimensionality, on a
scale between the macroscopic and the microscopic. Our proposal was to ex-
plore quantum effects in the mesoscopic regime.

The introduction of the one-dimensional superlattice potential perturbs the
band structure of the host materials, yielding a series of narrow subbands and
forbidden gaps which arise from the subdivision of the Brillouin zone into
a series of minizones. Thus, the superlattice was expected to exhibit unpre-
cedented electronic properties. At the inception of the superlattice idea, it was
recognized that the long, tailormade lattice period provided a unique opportu-
nity to exploit electric-field-induced effects. The electron dynamics in the super-
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lattice direction was analyzed for conduction electrons in a narrow subband of
a highly perturbed energy–wavevector relationship. The result led to the pre-
diction of a negative differential resistance at a modestly high electric field,
which could be a precursor of Bloch oscillations. The superlattice allows us to
enter the regime of electric-field-induced quantization: the formation of Stark
ladders [7,8], for example, can be proved in a (one-dimensional) superlattice
[9], whereas in natural (three-dimensional) crystals the existence and nature of
these localized states in a high electric field have been controversial [10,11].

This was, perhaps, the first proposal which advocated using advanced thin-
film growth techniques to engineer a new semiconductor material designed
by applying the principles of quantum theory. The proposal was made to the
US Army Research Office (ARO), a funding agency, in 1969, daringly stat-
ing, with little confidence in a successful outcome at the time, “the study of su-
perlattices and observations of quantum mechanical effects on a new physical
scale may provide a valuable area of investigation in the field of semiconduc-
tors”.

Although this proposal was favorably received by ARO, the original ver-
sion of the paper [1] was rejected for publication by Physical Review on the
referee’s unimaginative assertion that it was “too speculative” and involved
“no new physics”. The shortened version published in IBM Journal of Re-
search and Development [2] was selected as a Citation Classic by the Institute
for Scientific Information (ISI) in July 1987. Our 1969 proposal was cited as
one of the most innovative ideas at the ARO 40th Anniversary Symposium in
Durham, North Carolina, 1991.

At any rate, with the proposal we launched a program to make a “Gedanken-
experiment” a reality. In some circles, the proposal was criticized as close to
impossible. One of the objections was that a man-made structure with com-
positional variations on the order of several nanometers could not be ther-
modynamically stable because of interdiffusion effects. Fortunately, however,
it turned out that interdiffusion was negligible at the temperatures involved.

In 1970, Chang, Tsu and I [12] studied a GaAs–GaAs0.5P0.5 superlattice
with a period of 20 nm synthesized by CVD (chemical vapor deposition) by
Blakeslee and Aliotta [13]. Although transport measurements failed to re-
veal any predicted effect, the specimen probably constituted the first strained-
layer superlattice having a relatively large lattice mismatch. Early efforts in
our group to obtain epitaxial growth of Ge1�xSix and Cd1�xHgxTe superlat-
tices were soon abandoned because of rather serious technical problems at
that time. Instead, we focused our research effort on compositional GaAs–
Ga1�xAlxAs superlattices grown by MBE (molecular beam epitaxy). In 1972,
we found a negative resistance in such superlattices [14], which was inter-
preted in terms of the superlattice effect.

Following the derivation of the voltage dependence of resonant tunnel cur-
rents [5], Chang, Tsu and I observed current–voltage characteristics with a
negative resistance [15]. Subsequently, Chang and I measured quantum trans-
port properties in a superlattice with a narrow bandwidth, which exhibited an
oscillatory behavior [16]. Tsu et al. performed photocurrent measurements on
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Fig. 3. Growth in relevant papers at the biennial International Conference on the Physics
of Semiconductors

superlattices subjected to an electric field perpendicular to the plane layers
with the use of a semitransparent Schottky contact, which revealed their mini-
band configurations [17].

Heteroepitaxy is of great interest for the growth of compositional superlat-
tices. Innovations and improvements in epitaxial techniques such as MBE and
MOCVD (metal-organic chemical vapor deposition) have made it possible to
prepare high-quality heterostructures with predesigned potential profiles and
impurity distributions having dimensional control close to interatomic spac-
ing. This great precision has cleared access to the mesoscopic quantum regime
[18,19].

Since a one-dimensional potential can be introduced along with the growth
direction, famous examples in the history of one-dimensional mathematical
physics, including the above-mentioned resonant tunneling [3], Kronig–Penney
bands [20], Tamm surface states [21], Zener band-to-band tunneling [22], and
Stark ladders including Bloch oscillations [7–9], all of which had remained
textbook exercises, could, for the first time, be practiced in a laboratory. Thus,
do-it-yourself quantum mechanics is now possible, since its principles dictate
the details of semiconductor structures [23].
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Our original proposal [1] and pioneering experiments have triggered a
wide spectrum of experimental and theoretical investigations on superlattices
and quantum wells over the last two decades. A variety of engineered struc-
tures now exhibit extraordinary transport and optical properties which do not
exist in any natural crystal. This new degree of freedom offered in semicon-
ductor research through advanced materials engineering has inspired many in-
genious experiments, resulting in observations of not only predicted effects but
also totally unknown phenomena. As a measure of the growth of the field, Fig.
3 shows the number of papers related to the subject and the percentage of
the total presented at the biennial International Conference on the Physics of
Semiconductors. Following 1972, when the first paper [14] was presented, the
field went through a short period of incubation before experiencing a phenom-
enal expansion in the 1980s. It appears that nearly half of all semiconductor
physicists in the world are working in this area. Activity at this new frontier
of semiconductor physics has in turn given immeasurable stimulus to device
physics, provoking new ideas for applications. Thus, a new class of transport
and opto-electronic devices has emerged.
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Appendix B:
Solutions to Some of the Problems

Solution to Problem 2.2

There are many ways to “verify” a character table. One way to do this is to cal-
culate the character table starting with the given basis functions. This is what we
shall do here. This approach can be used to solve both parts (a) and (b).

We note that the character of a class can be obtained by applying one of
the symmetry operations in the class listed in Chapter 2 to the basis function
(or functions), thus finding the transformation matrices and then summing up
their diagonal elements. To do this for all the classes it is convenient to create
first a table listing the effect of the symmetry operations on the spatial coor-
dinates x, y and z.

For the Td group we obtain immediately the following list:

{E}: identity; xyz → xyz
{C2}: 2-fold rotation about the x-axis; xyz → x, �y, �z
{C3}: 3-fold clockwise rotation about the [111]-axis; xyz → yzx
{S4}: 4-fold clockwise rotation about the x-axis followed by a reflection onto

the yz-plane; xyz → �x, z, �y
{Û}: reflection onto the [110]-plane; xyz → yxz

The effects of these operations on the different basis functions are summarized
below:

A1 Irreducible Representation with basis function: xyz
Since all the symmetry operations either do not change the signs or change
the signs in pairs it is clear that all of them leave the function xyz unchanged
and therefore all the characters are equal to unity as expected for the identity
representation. Combining these results we obtain the characters for A1 as:

Classes {E} {C2} {S4} {s} {C3}
Characters of A1 1 1 1 1 1
A2 Irreducible Representation with basis function:
x4(y2 � z2) � y4(z2 � x2) � z4(x2 � y2)
If a symmetry operation simply changes the cyclic permutation of |x|, |y| and
|z| then it will not change the above basis function and the corresponding
character should be unity. This is the case for the operation {E} and the two
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proper rotations: {C2} and {C3}. In the case of the other two improper rota-
tions {S4} and {Û}, the cyclic order of |x|, |y| and |z| is reversed. This changes
the sign of the basis function and therefore the characters are both �1. Com-
bining these results we obtain the characters for A2 as:

Classes {E} {C2} {S4} {Û} {C3}
Characters of A2 1 1 �1 �1 1

E Irreducible Representation with basis functions: f1 � (x2 � y2)
and f2 � z2 � 1

2 (x2 � y2)
The operation {C2} changes only the signs of y and z and therefore leaves
both f1 and f2 unchanged i.e. its character is 2. The operation {C3} changes
the orders of x, y and z. It changes f1 into (y2 � z2) � (� 1

2 )(f1 � 2f2) and f2

into x2� 1
2 (y2�z2) � ( 1

2 )f1�(f2/2). The two diagonal elements are both � 1
2 and

the character is �1. The operation {S4} interchanges y2 and z2. It changes f1
into (x2 �z2) � ( 1

2 )(f1 �2f2) and f2 into y2 � 1
2 (x2 �z2) � (� 3

4 )f1 � (f2/2). Thus,
the two diagonal elements are 1

2 and � 1
2 , respectively and the character is 0.

The operation {Û} interchanges x2 and y2. It changes f1 into (y2 � x2) � �f1
and f2 into z2 � 1

2 (x2 � y2) � f2. The two diagonal elements are �1 and 1,
respectively and the character is 0. Combining the above results we obtain the
characters for E as:

Classes {E} {C2} {S4} {Û} {C3}
Characters 2 2 0 0 �1

The derivation of the characters for the remaining two irreducible representa-
tions are left as exercise.

Solution to Problem 2.4

In this problem we demonstrate that the symmetrized wave functions in Table
2.9 indeed transform according to the irreducible representations given in that
table. The readers should try to verify the symmetry of the wave functions
in Table 2.10. To do this we note that the three functions: {sin x, sin y, sin z}
transform like x, y, z under all the symmetry operations of the Td group. On
the other hand, the functions {cos x, cos y, cos z} are “even” under C2 rotations
so they have the same transformation properties as {x2, y2, z2}. Based on these
observations we see immediately that:

(a) The function sin(2x/a) sin(2y/a) sin(2z/a) transforms like xyz and there-
fore from Table 2.3 it belongs to the °1 representation.

(b) Similarly, the function cos(2x/a) cos(2y/a) cos(2z/a) transforms like
(xyz)2 or (°1)2 and, therefore, belongs to the °1 representation also.

(c) By the same argument, the three functions: {sin(2x/a) sin(2y/a)
cos(2z/a), sin(2x/a) cos(2y/a) sin(2z/a), cos(2x/a) sin(2y/a) sin(2z/a)}
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transform like {xyz2, xy2z, x2yz} � xyz{z, y, x}. Since {xyz} transforms like
°1 and {x, y, z} transform like °4 these three functions transform like °4.

(d) The derivation of the symmetry of the three functions {sin(2x/a)
cos(2y/a) cos(2z/a), cos(2x/a) sin(2y/a) cos(2z/a), cos(2x/a) cos(2y/a)
sin(2z/a)} is left as an exercise.

Solution to Problem 2.6

In this solution we demonstrate how to derive the compatibility relation be-
tween ° and ¢. The reader should repeat the calculation for the remaining
compatibility relations in this problem. First, we need to find the symmetry
operations of the group of ° which are also symmetry operations of ¢. From
Table 2.13 we find the following correspondence between the symmetry oper-
ations in those two groups.

Operation in ° Corresponding Operation in ¢
{E} {E}
{C2} {C2

4}
{Û} {md}
{Û′} {m′

d}
According to the definition on page 45, two representations are compatible
if they have the same characters for the corresponding classes in the above
table. Based on this definition °1 is compatible with ¢1 while °2 is compatible
with ¢2.

For °3 the characters of the above 4 classes are:

{E} {C2} {Û} {Û′}
°3 2 2 0 0

From Table 2.14 we see that the characters of ¢1 � ¢2 are exactly the same
for the corresponding classes of °:

{E} {C2
4} {md} {m′

d}
¢1 � ¢2 2 2 0 0

Hence °3 is compatible with ¢1 � ¢2.
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Solution to Problem 2.8

(a) Before we symmetrize the wavefunctions at the X point, it is important
to note that the pseudopotential form factors in Table 2.21 have been defined
with (1) the origin chosen at the mid-point between the two atoms in the zinc-
blende structure, (2) the cation has been chosen to be the atom a located at
the point (a/8)(111), and (3) the anti-symmetric form factor is proportional to
Va � Vb. The symmetry operations of the group of X have to be defined to
conform to this particular choice of coordinate system (denoted by O and its
axes by x, y, and z in Fig. 1). It should be noted that the symmetry operations
listed on p. 47 and the corresponding character table (Table 2.15) on the same
page have been defined with respect to the coordinate system in which one of
the two atoms in the unit cell has been chosen to be the origin (denoted by O′

and its axes by x′, y′, and z′ in Fig. 1).

y'

x'

x

y

Cation (Atom a)

(1/8)(1,1,1)

(0,0,0)

(–1/8)(1,1,1)

O

O'

Anion
(Atom b)

Prob.2.8-Fig. 1 The relation between the coor-
dinate systems O and O′

Some of the symmetry operations are identical in the two coordinate sys-
tems. for example the identity operation {E} is independent of the choice of
coordinate system. Unfortunately most of the other operations are affected by
the change in coordinate system. To see the relations between symmetry op-
erations in O and O′, we shall consider the operation C2

4 as an example. In O′

this operation is a 2-fold rotation, say about the y′-axis. The same operation in
O will involve:
(i) a translation T to move the origin from that of O to O′,
(ii) a 2-fold rotation with respect to the axis y′ and then
(iii)another translation T�1 to move the origin back to O.
In general any symmetry operation P in O′ will become P′ � T1PT in O. We
shall now symmetrize the X point wave functions in O′ by first forming the
following six linear combinations out of the two |100〉 and four |011〉 wave-
functions:⎧⎪⎪⎨⎪⎪⎩

cos
(

2
a

)
x

i sin
(

2
a

)
x

⎫⎪⎪⎬⎪⎪⎭ �
1
2

{
|100〉 � |100〉
|100〉 � |100〉

}
(2.8.1)
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⎧⎪⎪⎨⎪⎪⎩
cos

(
2
a

)
(y � z)

i sin
(

2
a

)
(y � z)

⎫⎪⎪⎬⎪⎪⎭ �
1
2

{
|011〉 � |011〉
|011〉 � |011〉

}
(2.8.2)

⎧⎪⎪⎨⎪⎪⎩
cos

(
2
a

)
(y � z)

i sin
(

2
a

)
(y � z)

⎫⎪⎪⎬⎪⎪⎭ �
1
2

{
|011〉 � |011〉
|011〉 � |011〉

}
(2.8.1)

We shall denote these six symmetrized wave functions as:

æ1 ∼ cos
(

2
a

)
(y � z)

æ2 ∼ sin
(

2
a

)
(y � z)

æ3 ∼ sin
(

2
a

)
(y � z) � cos

(
2
a

)
(y � z)

æ4 ∼ sin
(

2
a

)
(y � z) � cos

(
2
a

)
(y � z)

æ5 ∼ cos
(

2
a

)
x � sin

(
2
a

)
x

æ6 ∼ cos
(

2
a

)
x � sin

(
2
a

)
x

(2.8.4)

To determine their irreducible representations we shall test their symmetry
by applying the 2-fold rotation C2

4(y′) to all these 6 wave functions. First we
have to find out the effect of this operation on the point (x, y, z) in O. When
refered to O′ this point has the coordinate: x′ � x � (a/8); y′ � y � (a/8) and
z′ � z � (a/8). We may also say that the operation T transforms (x, y, z) to
(x′, y′, z′). The 2-fold rotation then transforms (x′, y′, z′) into (�x′, y′, �z′).

Finaly T�1 transforms this point into
(
� x′ � a

8 , y′ � a
8 , �z′ � a

8

)
�

(
� x � a

4 ,
y, �z � a

4

)
. Thus the net effect of the operation C2

4(y′) on the crystal can be
represented by the change:

(x, y, z) →
(

�x �
a
4

, y, �z �
a
4

)
. (2.8.5)

The effect of this operation on the six wavefunctions æ1 to æ6 can now be
shown to be:

æ1 ∼ cos(2/a)(y � z) → cos(2/a)(y � z � a/4)

� sin(2/a)(y � z) � æ2
(2.8.6a)

æ2 ∼ sin(2/a)(y � z) → sin(2/a)(y � z � a/4)

� cos(2/a)(y � z) � æ1
(2.8.6b)
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æ3 ∼ sin(2/a)(y � z) � cos(2/a)(y � z)

→ sin[(2/a)(y � z) � /2] � cos[(2/a)(y � z) � /2]

� � cos(2/a)(y � z) � sin(2/a)(y � z) � �æ3

(2.8.6c)

æ4 ∼ sin(2/a)(y � z) � cos(2/a)(y � z)

→ sin[(2/a)(y � z) � /2] � cos[(2/a)(y � z) � /2]

� � cos(2/a)(y � z) � sin(2/a)(y � z) � æ4

(2.8.6d)

æ5 ∼ cos(2/a)x � sin(2/a)x

→ cos(2/a)(�x � a/4) � sin(2/a)(�x � a/4)

� � sin(2/a)x � cos(2/a)x � æ5

(2.8.6e)

and æ6 → �æ6. (2.8.6f)

Therefore the characters of these 6 wavefunctions under the operation of C2
4

are: ¯(æ1) � ¯(æ2) � 0; ¯(æ3) � �1; ¯(æ4) � 1; ¯(æ5) � 1; and ¯(æ6) � �1.
if we compare these characters with those in Table 2.15 we conclude that:
(1) æ1 and æ2 form a 2D representation X5;
(2) æ3 and æ6 belong to either the X3 or X4 representation; and
(3) æ4 and æ5 belong to either the X1 or X2 representation.
To narrow down the choice of irreducible representations for wave functions
æ3, æ4, æ5 and æ6 we need to apply another symmetry operation to them.
Let us choose the operation S4. In particular we consider an opeation involv-
ing a 4-fold rotation about the x′-axis. Using the same procedures as for the
operation C2

4(y′), we can show that the effect of this operation on (x, y, z) is
given by:

(x, y, z) →
(

�x �
a
4

, z, �y �
a
4

)
. (2.8.7)

The effect of the operation S4 on the six wave functions is summarized below:

æ1 ∼ cos(2/a)(y � z) → cos(2/a)(z � y � a/4)

� sin(2/a)(z � y) � �æ2
(2.8.8a)

æ2 ∼ sin(2/a)(y � z) → sin(2/a)(y � z � a/4)

� cos(2/a)(y � z) � æ1
(2.8.8b)

æ3 ∼ sin(2/a)(y � z) � cos(2/a)(y � z)

→ sin[(2/a)(z � y) � /2] � cos[(2/a)(y � z) � /2]

� � cos(2/a)(y � z) � sin(2/a)(y � z) � �æ3

(2.8.8c)

æ4 ∼ sin(2/a)(y � z) � cos(2/a)(y � z)

→ sin[(2/a)(z � y) � /2] � cos[(2/a)(y � z) � /2]

� � cos(2/a)(z � y) � sin(2/a)(y � z) � �æ3

(2.8.8d)

æ5 → æ6 (2.8.8e)

æ6 → �æ6 (2.8.8f)
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The characters of these 6 wave functions under the operation S4 are, therefore,
¯(æ1) � 0 � ¯(æ2); ¯(æ3) � �1; ¯(æ4) � 1; ¯(æ5) � 1; and ¯(æ6) � �1.

We note that the characters of æ1 and æ2 are consistent with those of the
irreducible representation X5 we obtained for these two wave functions based
on the operation C2

4(y′). The additional characters now allow us to determine
uniquely the irreducible representation of æ3 and æ6 as X3 and those of æ4
and æ5 as X1. The reader should try to determine the characters for the re-
maining symmetries of the group of X so as to complete the character table
for these 6 wave functions.

(b) To calculate the matrix elements of the above six wave functions we shall
first derive the following results. First we notice that with the conventions in
Section 2.5 the pseudopotential form factor Vg is defined for GaAs by (2.33)
as:

Vg � Vs
g cos(g · s) � iVa

g sin(g · s)

where s � (a/8)(1, 1, 1) and g is a reciprocal lattice vector. If g �
(2/a)(g1, g2, g3) then g · s � (/4)(g1 � g2 � g3). Limiting ourselves to: g �
(2/a)(2, 0, 0); (2/a)(2, 2, 0); (2/a)(1, 1, 1) we obtain

V(220) � Va
(220) cos  � Vs

(220) sin  � �Vs
(220) � �vs

g � V(220) � �vs
g (2.8.9a)

V(220) � V(220) � V(220) � ... � V(022) � vs
g (2.8.9b)

V(200) � �iVa
(200) � �iva

4 and its cyclic permutations (2.8.9c)

V(200) � iva
4 � �V(200) (2.8.9d)

V(111) �
1√
2

(
vs

(111) � iVa
(111)

)
�

1√
2

(vs
3 � iva

3) (2.8.9e)

V(111) � �
1√
2

(vs
3 � iva

3) (2.8.9f)

V(111) �
1√
2

(Vs
3 � iva

3) (2.8.9g)

v(111) �
1√
2

(�vs
3 � iva

3) (2.8.9h)

We shall now demonstrate the calculation of a few selected matrix elements
of the pseudopotential V : 〈æi|V|æj〉 where i and j � 1, ..., 6. In principle there
are 36 matrix elements. The number of inependent elements is roughly halved
by noting that 〈æi|V|æj〉 � 〈æj|V|æi〉∗.

〈æ1|V|æ1〉 �
1
2
〈011 � 011|V|011 � 011〉

�
1
2

(
〈011|V|011〉 � 〈011|V|011〉 � 〈011|V|011〉 � 〈011|V|011〉

) (2.8.10)
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Noting that according to (2.25) 〈abc|V|a′b′c′〉 � V(a�a′,b�b′,c�c′) we find:

〈æ1|V|„1〉 �
1
2

(V(000) � V(220) � V(220) � V(000))

�
1
2

(V(220) � V(220)) � �vs
8

(2.8.11a)

In obtaining (2.8.11a) we have set V(000) � 0. In a similar manner we can
obtain:

〈æ1|V|æ3〉 �
1

2
√

2

{
〈011|V|011〉�〈011|V|011〉�〈011|V|011〉�〈011|V|011〉

�
[
〈011|V|011〉 � 〈011|V|011〉 � 〈011|V|011〉 � 〈011|V|011〉

]}
� 0

(2.8.11b)

〈æ3|V|æ3〉 � vs
8 � 2va

4 (2.8.11c)

〈æ4|V|æ5〉 �
√

2i(vs
3 � va

3) (2.8.11d)

The readers are urged to calculate the rest of the matrix elements in the de-
terminant on p. 94.

(c) Once the 6 × 6 determinant on p. 94 is constructed, it is clear that the
wave functions æ1 and æ2 are coupled. Similarly æ3 and æ6 are coupled and
the same is true for æ4 and æ5. Hence the 6 × 6 determinant can be broken
up into three 2× 2 determinants. As an example the 2× 2 determinant for the
æ4 and æ5 wave functions is given by:∣∣∣∣∣∣∣

4�22

ma2 � E � vs
8 � 2va

4 i
√

2(�va
3 � vs

3)

�i
√

2(�va
3 � vs

3)
2�22

ma2 � E � va
4

∣∣∣∣∣∣∣ � 0 (2.8.12)

(2.8.12) can be expanded into the following quadratic equation:

E2 � E

(
6�22

ma2 � vs
8 � 3va

4

)

�

[
8�22

ma2 �
2�22

ma2 (vs
8 � 4va

4) � 2(vs
3 � va

3)2 � va
4(vs

8 � 2va
4)

]
� 0

(2.8.13)

Solving (2.8.13) we obtain the energies E(X1) given on p. 94. The energies
E(X3) and E(X5) can be obtained similarly.

(d) The energy splittings in Fig. 2.28 are obtained by substituting the fol-
lowing values into the equations for E(X1), E(X3) and E(X5) on p. 94:
a � 5.642 Å and the pseudopotential form factors for GaAs from Table 2.21:
vs

3 � �0.252 Ry, vs
8 � 0 Ry, va

3 � 0.068 Ry and va
4 � 0.066 Ry. Since the split-

ting of 0.74 eV between the X3 and X1 levels is the result of subtracting two
large numbers, it is important to keep at least four significant figures in your
calculations.
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(e) The next higher energy plane wave states at the X point are obtained by
adding the reciprocal vectors [0,±2, 0] and [0, 0,±2] to the vector [±1, 0, 0].
This gives rise to eight additional plane wave states:

|120〉, |120〉, |120〉, |120〉, |102〉, |102〉, |102〉 and |102〉

while the additional form factors are: v11, v12, v16 and v18. These four form fac-
tors correspond to: g11 � (1, 3, 1) etc; g12 � (2, 2, 2) etc; g16 � (0, 4, 0) etc; and
g18 � (2, 4, 0) etc (using the notation on p. 58). For the face-centered cubic
lattice all form factors with reciprocal lattice vector (h, k, l) where the compo-
nents are a mixture of even and odd integers vanish. As a result we only need
to include g11, g12, g16 and g18.

Solution to Problem 2.10

Let us denote the operator exp[�i£ÛÛ · n/2] by O(ı). The operators Ûx, Ûy and
Ûz are the Pauli matrices given in 2.6.2. The coordinate axes are assumed to
be chosen with the z-axis parallel to the spin axis. In other words, the spin
functions (to be denoted by · and ‚) are eigenfunctions of the operator Ûz

with eigenvalues �1 and �1, respectively.

(a) For a 2 rotation about the z axis, we obtain the following results:
O(2)· � exp[�i2Ûz/2]· � �·.
O(2)‚ � exp[�i2Ûz/2]‚ � �‚.
This gives a character of �2 for this symmetry operation.

(b) For the Td group we will demonstrate how to obtain the character for the
operations: {C2x}: 2-fold rotation about the x-axis; and {C2z}: 2-fold rotation
about the z-axis. Normally we expect these two operations to belong to the
same class and, therefore, should have the same character. In this case, be-
cause of the rather unusual nature of the rotation operators when applied to
spin functions (which can change sign upon a 2 rotation), we shall derive the
results for both operators just to be absolutely sure. For {C2z} the axis of ro-
tation is along the z-direction so n · ÛÛ � Ûz. As the spin wave functions are
eigenfunctions of Ûz, we find that:
O()· � exp[�iÛz/2]· � �i·.
O()‚ � exp[�iÛz/2]‚ � i‚.
Thus the character of {C2z} is (�i � i) � 0.

For {C2x} the axis of rotation is along the x-direction so n · ÛÛ � Ûx. We
note that: Ûx· � ‚ and Ûx‚ � · while (Ûx)2· � Ûx‚ � · and similarly
(Ûx)2‚ � Ûx· � ‚. From these results we can conclude that all even func-
tions of (Ûx) will leave · and ‚ unchanged while all odd functions of (Ûx) will
interchange · and ‚.

The rotation operator corresponding to {C2x} is: exp[iÛx/2] �
cos[Ûx/2] � i sin[Ûx/2]. From the above results we can deduce that the spin
wave functions · and ‚ are eigenfunctions of the operator cos(Ûx/2) with
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eigenvalues cos(/2) � 0 since an expansion of the cosine function will contain
only even functions of Ûx. On the other hand, the operator sin(Ûx/2) contain
only odd functions of Ûx and, therefore, will interchange the spin wave func-
tions: sin[Ûx/2]· � ‚ and sin[Ûx/2]‚ � ·.

Hence the character of the rotation matrix corresponding to {C2x} is again
0 in agreement with the character of the rotation matrix corresponding to
{C2z}.

In principle, the characters for the other operators can be obtained sim-
ilarly. In practice, the improper rotations deserve special attention. An im-
proper rotation can usually be expressed as the product of a proper rotation
and the inversion operator I. For example, a reflection onto the xy-plane (or
md) can be thought of as a 2-fold rotation about the z-axis followed by I.
Similarly, the S4 operation can be decomposed into a 4-fold rotation followed
by I. In quantum mechanics the inversion operator is also referred to as the
parity operator. Its eigenvalue is the parity of its eigenfunction. Except in pro-
cesses where particles are created or annihilated, the parity of a vector (like
the spatial coordinate r and the momentum p) are �1. On the other hand, the
parity of the angular momentum l � rxp is �1. Since spin is similar to l we ex-
pect its parity is also �1. It turns out that there is a subtle difference between
ordinary angular momentum and spin. Angular momentum involves rotation
about a fixed axis. Under a reflection onto a plane containing the axis of rota-
tion the sense of rotation will change. For example, the adjacent figure shows
how under reflection a clockwise rotation is changed into a counterclockwise
rotation. The axis of rotation serves also as the axis for quantization of the z-
components of the angular momentum vector(spatial quantization). However,
spin is an intrinsic property of elementary particles and cannot be visualized
in terms of a classical rotation. There is no such thing as “an axis of rotation”
associated with spin. The axis of spatial quantization in the case of spin can be
chosen arbitrarily. The effect of an inversion operation I on the spin functions
· or ‚ can be expressed as: I(· or ‚) � A(· or ‚) where the constant A can
be �1, �1, i or –i.

Reflection Plane

Prob 2.10-Fig. 1 Effect of a reflection on a rotation when the reflec-
tion plane is parallel to the axis of rotation.

This arbitrariness in the constant A does not pose a problem in quantum
mechanics because the effect of I on any matrix element involving the spin
functions will be proportional to |A|2 � 1. For simplicity, we shall choose
A � 1. In other words, the spin wavefunctions are eigenfunctions of the inver-
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sion operator with eignenvalues: 1. Hence, the double group character of the
improper rotations such as S4 can be obtained by first calculating the character
for the corresponding proper rotation. In the book it was pointed out in 2.6.2
that for some symmetry operations Ci both Ci and ÊCi belong to the same
class. It can be shown [see H. Jones: The Theory of Brillouin Zones and Elec-
tronic States in Crystals, p. 251] that this is not true if the trace of the spin op-
erator corresponding to Ci (i.e. Tr[O(Ci)]) is non-zero. In case Tr[O(Ci)] � 0
then Ci and ÊCi will belong to the same class if Ci contains a 2-fold rotation
about an axis perpendicular to the axis n.

Some references on the effect of symmetry operations on spin wave functions:

E. Merzbacher: Quantum Mechanics. (John Wiley & Sons, Inc. New York, 1961).
M. Tinkham: Group Theory and Quantum Mechanics. (McGraw-Hill, New York, 1964).
V. Heine: Group Theory in Quantum Mechanics. (Dover, New York, 1993).

Solution to Problem 2.12

(a) The operator p has three components px, py and pz which transform un-
der the symmetry operations of Td like the components of a vector x, y, and
z. Similarly the °4 conduction and valence bands of the zincblende-type semi-
conductor are three-dimensional whose basis functions transform under the
symmetry operations of Td like the components of a vector x, y, and z. We
shall denote the valence band basis functions as |X〉, |Y〉 and |Z〉 respectively.
The corresponding conduction band basis functions will be denoted by °4c(x),
°4c(y) and °4c(z), respectively. Under a C2 or 180◦ rotation around say the
x-axis the coordinate transformation can be represented as: xyz ⇒ xyz. Thus,
under the C2 operation about the x-axis, any terms of the form xxy, xxz and
yyy etc., which contain only an odd number of y or z will change sign and
therefore vanish. The same will be true for terms of the form xyy, xxx etc
which contain an odd number of x. Similarly all matrix elements of the form
〈X|px|°4c(x)〉, 〈Y|px|°4c(x)〉 etc., can be shown to vanish under appropriate C2
rotations.

(b) In the case of matrix elements of the form 〈X|py|°4c(z)〉 which do not
vanish since they do not transform like the matrix elements considered in (a),
we can show that they transform into each other under the three-fold rota-
tions C3. For example, a 120◦ rotation about the [111] axis will result in the
following coordinate transformation: xyz ⇒ yzx and its effect on the matrix
element 〈X|py|°4c(z)〉 would be to transform it into 〈Y|pz|°4c(x)〉. Since the
crystal is invariant under this C3 rotation we conclude that: 〈X|py|°4c(z)〉 �
〈Y|pz|°4c(x)〉. The other cyclic permutations of 〈X|py|°4c(z)〉 can also be
shown to be equal by using C3 rotations about the other equivalent [111] axes.

(c) This remaining problem is left as an exercise.
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Partial solution to Problem 2.14

In the book the matrix element H′
11 of the k · p Hamiltonian was worked out

for the wave function º1. Here we will work out the matrix element: H′
12.

By definition (2.52):

H′
12 � H12 �

�2

m2E0
〈º1|k · p|°1c〉〈°1c|k · p|º2〉

�
�2

m2E′
0
〈º1|k · p|°4c〉〈°4c|k · p|º2〉

Substituting into the first matrix elements the wave functions º1 and º2 we
get:

〈º|k · p|°1c〉〈°1c|k · p|º2〉 � 〈3/2,3/2|k · p|°1c〉〈°1c|k · p|3/2,1/2〉

�

(
�

1√
3

)
〈X � iY|k · p|°1c〉〈°1c|k · p|Z〉

�

(
�

P2
√

3

)
(ikx � ky)(�ikz)

�

(
�

P2
√

3

)
(kxkz � ikykz)

and

〈º1|k · p|°4c〉〈°4c|k · p|º2〉 � 〈3/2,3/2|k · p|°4c〉〈°4c|k · p|3/2,1/2〉

�

(
�

1√
3

)
〈X � iY|k · p|°4c〉〈°4c|k · p|Z〉

�

(
�

1√
3

)
〈X � iY|kzpz|°4c(x)〉〈°4c(x)|kypy|Z〉

�

(
�

1√
3

)
〈X � iY|kzpz|°4c(y)〉〈°4c(y)|kxpx|Z〉

�

(
�

Q2
√

3

)[
(kz)(�iky) � (ikz)(�ikx)

]
�

(
�

Q2
√

3

)
(kxkz � ikykz)

H12 ∼ 〈3/2,3/2|k · p|3/2,1/2〉 �

〈
�

X � iY√
2

∣∣∣∣k · p

∣∣∣∣
√

2
3

Z

〉
� 0

Hence H′
12 �

(
�

1√
3

)
(M � L)(kxkz � ikykz) �

(
�

N√
3

)
(kxkz � ikykz). The

remaining matrix elements can be obtained in a similar manner.
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Solution to Problem 2.16

(a) The matrix elements of the tight-binding Hamiltonian are given by (2.78).
Examples of the calculation of these matrix elements, such as Hs2,s2, are given
in the book for the diamond structure. The results for the zincblende structure
differ only slightly from that of the diamond structure in that the two atoms
in the unit cell are different. Since the nearest neighbor tetrahedral arrange-
ment is the same in the two structures, one would expect that the definition
of the vectors d1, ..., d4 would be the same. The main difference would be the
matrix elements 〈S1|�int|S1〉 and 〈S2|�int|S2〉 which are no longer equal. Sim-
ilarly 〈X1|�int|X1〉 would not be equal to 〈X2|�int|X2〉 etc. This means that
in Table 2.25 it would be necessary to introduce an energy ES1 for the ma-
trix element 〈S1|�int|S1〉 and a different energy ES2 for the matrix element
〈S2|�int|S2〉. Similarly, one can introduce energies Ep1 and Ep2.

(b) At k � 0, g0(k) � 1 and g1(k) � g2(k) � g3(k) � 0. Hence, the s-band
determinant derived from the modified Table 2.25 for the zincblende crystal is
given by:

∣∣∣∣ Es1 � Es(0) Vss

V∗
ss Es2 � Es(0)

∣∣∣∣ � 0

Evaluating this determinant one obtains a quadratic equation in Es(0):
[Es(0)]2 � Es(0)(Es1 � Es2) � (Es1Es2) � |Vss|2 � 0
The solutions for the s-band energies at k � 0 are therefore:
Es(0) � [(Es1 � Es2)]/2] ± (1/2)[(Es1 � Es2)2 � 4|Vss|2]1/2

The solutions for the p-band energies at k � 0 can be obtained similarly.

Solution to Problem 2.18

In this case the overlap parameter Vxx can be evaluated in the same way as
〈px|H|px〉 in Fig. 2.23 of the book and the result is the same, except for re-
placing the angle £ by £x.

The overlap parameter Vxy can be evaluated, in principle, by drawing the
following diagram and decomposing the figure into a sum of two figures as
shown in Prob. 2.18-Fig. 1.

The first figure on the right is rather simple and easy to calculate since
both orbitals are projected along the vector d. The projections of px and py

along d are simply px cos £x and py cos £y, respectively. The resulting overlap
integral is VppÛ cos £x cos £y.

The second overlap integral is more difficult to evaluate from the second
figure on the right, since the components of px and py perpendicular to d are
not parallel to each other. Instead, we will decompose the unit vector along
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Prob. 2.18-Fig. 1 Decomposition of the overlap integral Vxy into two in which the two p
orbitals are either parallel or perpendicular to the vector d joining the two atoms.

the x-axis into two components: x̂ � x|| � x⊥, where x|| is parallel to d and x⊥
is perpendicular to d. x⊥ is given by:

x⊥ � x̂ � (x̂ · d̂)d̂

where d̂ is a unit vector along d. Defining y|| and y⊥ in similar ways we obtain:

x⊥y⊥ �
[
x̂ � (x̂ · d̂)d̂

][
ŷ � (ŷ · d̂)d̂

]
� �(x̂ · d̂)(ŷ · d̂) � � cos £x cos £y

Using these results it can be shown that the overlap integral from the sec-
ond figure is given by: �Vpp cos £x cos £y. Hence Vxy � (VppÛ � Vpp)
cos £x cos £y.

Solution to Problem 2.20

(a) In the nearly-free electron model the lowest energy bands at the L-point
are those with k � (/a)(1, 1, 1) and (/a)(�1, �1, �1) (see Fig. 2.9). Ac-
cording to group theory, the plane wave states: „1 � exp[ik · x] and „2 �
exp[�ik · x] can be symmetrized into one even parity state with L1 symmetry
and one odd parity state with L2′ symmetry. The proper symmetrization de-
pends on the choice of origin. In order to use (2.22), we have to choose the
origin at the mid-point of the two atoms in the unit cell. The inversion op-
eration we have to apply to „1,2 is then the standard inversion operation I,
without any translation. However, this operation is the equivalent of the spe-
cial operation I′ when the origin is chosen at one of the atoms. For simplicity,
we will neglect the coupling of these two plane waves with the higher energy
states with wave vectors (/a)(3, 1, 1) etc.. As we will show later, the sepa-
ration between the L2′ valence band and the L1 conduction band under the
present approximation is given by the matrix element of the pseudopotential:
(2)1/2|Vs

3|. In the case of Si the magnitude of this term is only ∼4 eV which is
much smaller than the value of ∼12 eV obtained by the full pseudopotential
calculation including the other pseudopotential form factors and also coupling
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to the higher energy plane wave states. However, for the purpose of demon-
strating the symmetry of the L wave functions the present approximation is
adequate.

Based on the above assumption, the only pseudopotential form factor
which couples „1 and „2 is: Vg � Vs

3 cos(g · s) from (2.33) where the vec-
tors g � (2/a)(1, 1, 1) and s � (a/8)(1, 1, 1). Notice that in arriving at (2.33)
we have chosen the origin to be at the mid-point between the two atoms in the
diamond lattice. We note also that the symmetric pseudopotential form factor
Vs

3 is negative for all diamond and zincblende-type semiconductors (see Table
2.21) because of the attractive nature of the potential seen by the electrons.
Thus Vg � Vs

3 cos(g · s) � Vs
3 cos(3/4) � (�1/

√
2)Vs

3 is � 0.
To calculate the eigenvalues and eigenfunctions we will set up the usual

determinant:∣∣∣∣∣∣∣
�2k2

2m
� E Vg

V∗
g

�2k2

2m
� E

∣∣∣∣∣∣∣ and diagonalize it.

The resultant energies are: E± � [�2k2/2m] ± |Vg| � where [�2k2/2m] ± Vg.
The corresponding wave functions are given by: (1/2)1/2[„1 � „2].

For the valence band we have to take the lower energy solution: „v �
C1„1 � C2„2. Substituting back EV � E� into the linear equation for C1 and
C2 we get:
{[�2k2/2m] � E�}C1 � VgC2 � 0 or VgC1 � VgC2 � 0.
Since Vg is � 0, we obtain: C1 � �C2. Thus „V � (1/2)1/2[„1 � „2] or the va-
lence band has odd parity under inversion operation I and hence its symmetry
is L2′ .

(b) To calculate the bonding and anti-bonding s-orbitals within the tight-
binding approximation we will further simplify the results contained in 2.7.2.
First, we neglect the overlap between the s- and p-orbitals. This has the effect
of reducing the 8× 8 matrix in Table 2.25 into a 2× 2 matrix for the s-orbitals
and a 6×6 matrix for the p-orbitals. The effect of this simplification will affect
the accuracy of the bonding and anti-bonding orbital energies but should not
change their parity. Within this approximation there are only 2 orbitals: |S1〉
and |S2〉 corresponding to the s-orbitals of the two atoms inside the primitive
unit cell. The secular equations for their eigenvalues (as obtained from Table
2.25) are now:∣∣∣∣ Es � Ek Vssg1

Vssg∗1 Es � Ek

∣∣∣∣ � 0

According to (2.82a) the factor

g1 � (1/4)
{

exp[�i(d1 · k)] � exp[�i(d2 · k)]

� exp[�i(d3 · k)] � exp[�i(d4 · k)]
}

� cos(k1/2) cos(k2/2) cos(k3/2) � i sin(k1/2) sin(k2/2) sin(k3/2) ,
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where k � (2/a)(k1, k2, k3). For the L point of interest to us here: k1 � k2 �
k3 � 1/2. Thus g1 � cos3(/4) � i sin3(/4) � (1/2

√
2)(1 � i). We can also write

g1 as (1/2) exp(i/4).

Note that:
(1) (2.82a) was obtained by assuming that the origin is located at one of the
atoms (atom 1) in the unit cell and the second atom is located at (a/4)(1,1,1).
(2) Vss is negative for all the diamond-type semiconductors according to Table
2.26.

The eigenvalues of the secular equations given above are: Ek � Es ±
|Vss| |g1|. The lower energy level: E� � Es � |Vss| |g1| is identified as the
bonding state. The corresponding wave function will be denoted by: „B �
A1|S1〉 � A2|S2〉. As in part (a) we substitute Ek � E� into the above deter-
minant and obtain the following linear equation for A1 and A2:

A1|Vss| |g1| � A2Vssg1 � 0.

Solving the above equation for A2/A1 � |g1|/g1 � exp(�i/4) we obtain:

„B � (1/
√

2)[|S1〉 � exp(�i/4)|S2〉].

In principle, the tight-binding wave functions should be expressed in the form
given by (2.74), with the index j running over all the nearest neighbors. To
achieve this we simply note that when k � (/a)(1, 1, 1) we get: ºsk(1) � |S1〉
for atom 1 located at the origin. For atom 2 we get:

ºsk(2) � |S2〉[exp(ik · d1) � exp(ik · fkd2) � exp(ik · d3) � exp(ik · d4)]/4

� |S2〉[exp(i3/4) � 3 exp(�i/4)]/4

� exp(�i/4)|S2〉.
Thus the properly symmetrized tight-binding s-wave function corresponding to
the valence band at the L-point is:

„B � (1/
√

2)[ºsk(1) � ºsk(2)] � (1/
√

2)[|S1〉 � exp(�i/4)|S2〉].

By writing the wave function in this way the antisymmetric nature of the wave
function is not obvious. To determine the parity of this wave function we have
to apply the operation I′ to „B. The effects of I′ on |S1〉 are: (1) inversion and
(2) translation by the vector T � (a/4)(1, 1, 1). As a result of the translation
|S1〉 becomes |S2〉 multiplied by the phase factor exp[ik ·T] � exp(3i/4). This
can be written as:

|S1〉 I′
�→ e3i/4|S2〉

On the other hand, the effect of I′ on |S2〉 is to bring the atom 2 to the origin
or the original position of atom 1 via a translation of (a/4)(�1, �1, �1). This
can be represented as:

|S2〉 I′
�→ e�3i/4|S2〉
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Therefore the result of I′ on „B is to change it to:

(1/
√

2)[exp(i3/4))|S2〉 � exp(�i/4) exp(�i3/4)|S1〉]
� (1/

√
2)[� exp(�i/4))|S2〉 � exp(�)|S1〉]

� �(1/
√

2)[exp(�i/4))|S2〉 � |S1〉]
� �„B.

Thus we find the lower energy bonding s-orbital to have odd parity under I′.
Again the energy separating the bonding and anti-bonding s-orbitals in Si is
only 2|Vss| � 8.13 eV only. But the agreement with the full scale pseudopoten-
tial calculation is better than the result in (a).

(c) One may ask then: what will the electron density look like for the odd
parity (bonding) orbital when k is at the L point? Will this electron density
have a maximum between the two atoms as we would expect for the bond-
ing state? The answer is yes. To understand why the bonding electronic wave
function has odd parity while the anti-bonding electronic wave function has
even parity we will examine the parity of the zone-center acoustic and opti-
cal phonons in the diamond lattice. In Fig. 2.7 we have shown schematically
the displacement vectors for both phonon modes. We notice that the displace-
ment vectors point in the same direction for both atoms within the unit cell
in the case of the acoustic phonon. Clearly, if we extrapolate the atomic dis-
placement to the midpoint between the two atoms it will not be zero. In a
sense the acoustic phonon is the analogue of a bonding electronic state and
yet the acoustic phonon has odd parity under the operation I′. On the other
hand, the displacement vectors for the optical phonon point in opposite direc-
tions at the two atoms inside the unit cell. When extrapolated to the midpoint
of the two atoms in the unit cell we expect the phonon wave function should
vanish as in an anti-bonding state but its parity is even under the operation
I′. The reason why the parity of these phonon modes seems to be opposite to
what one may expect intuitively lies in the translation by T of the lattice un-
der the operation I′. This translation causes the parity of the phonon modes
to change sign. Without this translation the acoustic phonon parity would in-
deed be even while the parity of the optical phonon would be odd. The same
is true for the electron wave functions when k is at the L point. The transla-
tion operation T introduces a phase factor: exp[ik · T] to the electronic wave
functions. When k � (/a)(1, 1, 1) at the L point, this phase vector is equal to
exp(i3/4) and causes the parity of the electron wave function to reverse sign
as shown in (b). Thus the operation T causes both the phonon wave functions
at k � 0 and the electronic wave functions for k � (/a)(1, 1, 1) to reverse
the sign of their parity. This phase factor does not cause a problem when one
consider the “compatibility” between the zone-center and L point electronic
wave functions since this phase factor is zero when k � (0, 0, 0). If we start at
k � 0 we find that the parity of the bonding state (where the electron density
is non-zero at the mid-point between the two atoms in the unit cell) is even.
The parity of the electronic wave function changes sign as k approaches the L
point but the state remains a bonding state.
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Solution to Problem 3.1

We will first choose the oxygen atom to be at the center of the unit cube as
the origin and then label the six atoms in the primitive unit cell as:
Atom [1] = oxygen atom at (0, 0, 0);
Atom [2] = oxygen atom at (a/2)(1, 1, 1), where a is the size of the unit cube;
Atom [3] = copper atom at (a/4)(1, 1, 1);
Atom [4] = copper atom at (a/4)(�1, �1, 1);
Atom [5] = copper atom at (a/4)(1, �1, �1); and
Atom [6] = copper atom at (a/4)(�1, 1, �1).

(a) To determine the characters for representations of the zone center (°)
phonon modes we apply first the symmetry elements of the Td group to the
six atoms and in each case count the number of atoms which are unchanged
by the operation. For example, the symmetry operation C2(z) (a 2-fold ro-
tation about the z-axis) will change atom [2] to the position (a/2)(�1, �1, 1)
which differs from its original position by a lattice vector. Because of the pe-
riodicity of the lattice, the atom [2] is considered unchanged. On the other
hand, atoms [3] and [4] obviously will interchange their positions and similarly
for atoms [5] and [6]. Thus, the total number of atoms unchanged by C2(z) is
2 and hence the character of C2(z) is 2.

Similarly, the 3-fold rotation (C3) about the [111] axis will leave the oxy-
gen atoms unchanged while permuting the position of all the copper atoms,
except atom [3]. Thus its character is 3. The reflection md onto the [110] plane
will leave atoms [1], [2], [3] and [4] unchanged while interchanging atoms [5]
and [6] making its character equal to 4. Using similar method the readers can
show easily that the character of the class {S4} is 2.

Next, we consider the symmetry operation I′ involving inversion followed
by the translation of (a/2)(1, 1, 1). Under this operation the two oxygen atoms
interchange their positions while atom [3] is unchanged. Under I′ the posi-
tion of atom [4] is changed to (a/4)(3, 3, 1). Applying the lattice translation
(a/4)(�4, �4, 0) atom [4] is returned to its original position. Similarly the other
copper atoms are unchanged by I′ so its character is 4.

In summary, the characters of ° for the operations of the Td group and I′

are given by:

{E} {C2} {S4} {md} {C3} {I′}
6 2 2 4 3 4

(b) Based on these characters and Table 2.16 we can determine that ° can be
reduced to the following representations:

2°∗
1 ⊕ °�

2 ⊕ °�
5 .

(c) Again using Table 2.16 we can show that:
(2°�

1 ⊕ °�
2 ⊕ °�

5 ) ⊗ °�
4 � °�

2 ⊕ °�
3 ⊕ 3°�

4 ⊕ °�
5 ⊕ °�

5 .

Reference
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(1963)
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Solution to Problem 3.2(c)

Let us assume that a pair of equal and opposite forces, F and �F, are applied
along the [111] direction: F � (F/

√
3)(1, 1, 1). These forces are applied to a

pair of surfaces of area A whose normals are also oriented along the [111]
directions. It is convenient to use a vector parallel to the normal of a surface
to represent both its area and direction. In the case of the surface of a solid
the convention we shall adopt is: a normal pointing away from the solid is
positive. For example, the surface to which the above force F is applied can be
represented by the vector: A � (A/

√
3)(1, 1, 1). Similarly, the force �F would

now be applied to a surface, represented by the vector �A, on the opposite
side of the solid. The combined effect of F and �F would be to stretch the
solid. Since the forces F and �F lie along the same axis, the solid is said to be
under a tensile uniaxial stress. The magnitude of the uniaxial stress X is equal
to F/A. However, the stress on a solid cannot be represented, in general, by a
scalar or a vector. Instead, we have to define a second rank tensor Xij, known
as a stress tensor, such that when Xij is contracted with the vector A we obtain
the force F. For the present case of F applied along the [111] direction to the
area represented by A, the component of F along the direction x is Fx �
(F/

√
3). We can decompose A into three mutually perpendicular components:

Ax, Ay and Az. The tensor elements X11, X12 and X13 are defined by: Fx/Ax,
Fx/Ay and Fx/Az, respectively. Since Ax � Ay � Az for the area A we have
defined above, we expect that X11 � X12 � X13. Similarly, we find that X21 �
X22 � X23 and X31 � X32 � X33. Finally, since Fx � Fy � Fz we find all the
elements of the stress tensor Xij to be equal: X11 � X22 � X33 ... etc.. Thus,
the second rank tensor Xij is given by:

C

⎛⎝ 1 1 1
1 1 1
1 1 1

⎞⎠
where C is a constant to be determined. To obtain C we note that a contrac-
tion between the stress tensor Xij and the vector A would yield the force F
or

∑
XijAj � Fi. This implies 3C(A/

√
3) � F/

√
3 or C � X/3. Thus, the stress

tensor corresponding to a tensile stress applied along the [111] direction is:(
X
3

) ⎛⎝ 1 1 1
1 1 1
1 1 1

⎞⎠
Notice that our sign convention for the area vector A leads to the following
sign convention for the stress: a tensile stress is positive.

Solution to Problem 3.3

To determine the non-zero and linearly independent components of the com-
pliance tensor Sijkl we apply symmetry operations of the zincblende structure
to Sijkl.
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As an example, consider a C3 rotation about the [111] axis. The change
in the coordinate axes can be represented as: xyz ⇒ zxy. This operation is
basically a cyclic permutation of the coordinates x, y and z. The fact that
the crystal remains unchanged under this symmetry operation implies that:
Sxxxx � Syyyy � Szzzz; similarly Sxxyy � Szzxx � Syyzz and Sxyxy � Szxzx � Syzyz

and so on.
By applying a reflection onto the (110) plane the coordinate axes are

changed as: xyz ⇒ yxz. This operation essentially interchanges x and y so
that: Sxxyy � Syyxx etc and Sxyxy � Syxyx, and so on.

The remaining components which contain three identical indices, such as:
Sxxxz, can be shown to be zero by applying the C2 rotation: xyz ⇒ �x, �y, z.
This operation will change the sign of Sxxxz. The invariance of the crystal un-
der this operation implies that: Sxxxz � �Sxxxz � 0. The other components,
like Sxxzx, Sxzxx etc., can also be shown to vanish by applying this C2 opera-
tion. Similarly, the remaining components Sxxxy etc., can be shown to vanish
by applying other C2 operations.

Solution to Problem 3.5

By applying the symmetry operations of the zincblende structure to the 4th

rank stiffness tensor Cijkl as in Problem 3.3, we can show also that:

Cxxxx � Cyyyy � Czzzz

Cxyxy � Cxzxz � Cyzyz � Cyxyx � Czxzx � Czyzy

Cxxyy � Cyyzz � Czzxx � Cyyxx � Czzyy � Cxxzz

Using the same convention as for the compliance tensor in Problem 3.3, the
stiffness tensor can be contracted into a 6 × 6 matrix:⎛⎜⎜⎜⎜⎜⎝

C11 C12 C12
C12 C11 C12
C12 C12 C11

C44
C44

C44

⎞⎟⎟⎟⎟⎟⎠
The easiest way to obtain the relations between the stiffness and compliance
tensor components would be to assume that a stress belonging to an irre-
ducible representation of the stress tensor is applied to the crystal. To demon-
strate this procedure, we will consider the stress tensor Xij of a zincblende
crystal. There are 6 linearly independent components in this tensor. Since the
dimension of the irreducible representations of the zincblende crystal is at
most three, this tensor is reducible. In 3.3.1 it has been shown that the sec-
ond rank strain tensor eij of the zincblende crystal is reducible to these three
irreducible representations:
eij(°1) � e11 � e22 � e33; eij(°3) � e11 � e22, e33 � (e22 � e11)/2 and eij(°4) � e12,
e23, e31.
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Similarly, we expect the stress tensor of the zincblende crystal to be reducible
to three irreducible representations:
Xij(°1) � X11 � X22 � X33; Xij(°3) � X11 � X22, X33 � (X22 � X11)/2 and
Xij(°4) � X12, X23, X31.
It is easily seen that the °1 component of the stress tensor is a hydrostatic
stress. The two remaining °3 and °4 representations can be shown to corre-
spond to shear stresses applied along the [100] and [111] axes, respectively.

If we apply stresses represented by these irreducible representations to a
zincblende crystal, the resulting strain tensors will also be irreducible and be-
long to the same irreducible representations as the stress tensors. In other
words, the stress and strain tensors of the same irreducible representation
will be related by a scalar. As an example, we apply a hydrostatic stress to
a zincblende crystal. From Problem 3.2 this stress has the form:

X �

⎛⎝ �P 0 0
0 �P 0
0 0 �P

⎞⎠ �

⎛⎜⎜⎜⎜⎜⎝
�P
�P
�P

0
0
0

⎞⎟⎟⎟⎟⎟⎠
where P is the pressure. The resultant strain tensor is given by:

e �

⎛⎜⎜⎜⎜⎜⎝
�P
�P
�P

0
0
0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
S11 S12 S12
S12 S11 S12
S12 S12 S11

S44
S44

S44

⎞⎟⎟⎟⎟⎟⎠

� (�P)(S11 � 2S12)

⎛⎜⎜⎜⎜⎜⎝
1
1
1
0
0
0

⎞⎟⎟⎟⎟⎟⎠
� (�P)(S11 � 2S12)

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠
which belongs to the °1 irreducible representation, as we expect. Thus, the
strain tensor is identical in form to the stress tensor, except for the difference
of a factor of (S11 � 2S12). If we had started with a strain tensor of the above
form we would have ended with the stress tensor:
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X � (�P)(S11 � 2S12)

⎛⎜⎜⎜⎜⎜⎝
1
1
1
0
0
0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
C11 S12 C12
S12 C11 C12
C12 C12 C11

C44
C44

C44

⎞⎟⎟⎟⎟⎟⎠

� (�P)(S11 � 2S12)(C11 � 2C12)

⎛⎜⎜⎜⎜⎜⎝
1
1
1
0
0
0

⎞⎟⎟⎟⎟⎟⎠
� (�P)(S11 � 2S12)(C11 � 2C12)

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠
This stress tensor must equal to the one we started with, so we must have

(S11 � 2S12)(C11 � 2C12) � 1 or (C11 � 2C12) � (S11 � 2S12)�1.

We need to apply uniaxial shear stress along the two symmetry directions:
[100] and [111] to obtain the two remaining relations between Cij and Sij. Us-
ing again the results of Problem 3.2, we obtain the results that S44C44 � 1 for
the [111] stress, while for the [100] stress we obtain (S11 � S12)(C11 � C12) � 1.

Solution to Problem 3.6 (a, b and c)

(a) We shall adopt the convention: subscripts 1,2,3 correspond to x, y and z.
Newton’s equation of motion for a small volume ¢x¢y¢z of the

zincblende crystal along the x-axis can be written as:

ρ(¢x)(¢y)(¢z)
�2u1

�t2 � net Force along the x-axis on a
unit volume (¢x)(¢y)(¢z)

� (¢y)(¢z)
{(

X11 �
�X11

�x
¢x

)
� X11

}
� (¢x)(¢z)

{(
X12 �

�X12

�y
¢y

)
� X12

}
� (¢x)(¢y)

{(
X13 �

�X13

�z
¢z

)
� X13

}
where ρ is the density, u � (u1, u2, u3) is the displacement vector, t is the time
and Xij is the stress tensor. There are two similar equations for u2 and u3. The
above equation can be reduced to:

ρ
�2u1

�t2 �
�X11

�x1
�

�X12

�x2
�

�X13

�x3

These three equations for u can be simplified as: ρ(�2u/�t2) � ∇ · X.
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The stress tensor can be expressed in terms of the strain tensor eij (or ei in
the contracted notation) and the stiffness tensor Cijkl (or Ckl in the contracted
notation). By using the results of Problem 3.5, the stress tensor in zincblende-
type crystals can be expressed as:

Xij �

⎛⎜⎜⎜⎜⎜⎝
C11e1 � C12e2 � C12e3
C12e1 � C11e2 � C12e3
C12e1 � C12e2 � C11e3

C44e4
C44e5
C44e6

⎞⎟⎟⎟⎟⎟⎠
Substituting these stress tensor elements into the above equation of motion
for u1 we obtain the following equation:

ρ
�2u1

�t2 � C11
�2u1

�x2
1

� C44

(
�2u1

�x2
2

�
�2u1

�x2
3

)
� (C12 � C44)

(
�2u2

�x1�x2
�

�2u3

�x1�x3

)
Two similar equations for u2 and u3 can be obtained from the equation of
motions for u2 and u3.

(b) To simulate the LA wave propagating along the [100] direction as a solu-
tion, we assume that u1 � u0 exp[i(kx1 � ˆt)], u2 � 0 and u3 � 0. By sub-
stituting this solution into the above equation for u1 we obtain: ρ(�ˆ2)u0 �
C11(�k2)u0. Therefore, the LA sound velocity along the [100] axis is given by:
vl � (ˆ/k) � [C11/ρ]1/2.

To obtain a solution representing a TA wave (polarized along the [010]
direction) propagating along the [100] direction we assume that u2 �
u0 exp[i(kx1 � ˆt)], u1 � 0 and u3 � 0. Substituting this solution into the
equation of motion for u2 we obtain: ρ(�ˆ2)u0 � C44(�k2)u0. Therefore, the
corresponding TA sound velocity is: vt � (ˆ/k) � [C44/ρ]1/2.

(c) To simulate a LA wave traveling along the [111] direction one has to as-
sume solutions of the form: u1 � u2 � u3 � u0 exp{i[(k/

√
3)(u1�u2�u3)�ˆt]}.

Again by substituting this solution into the equation of motion for u1 one can
obtain the LA sound velocity. The remaining cases are left as exercises.

Solution to Problem 3.7 (b and c)

(b) To determine the linearly independent and non-zero elements of the stress
tensor in the wurtzite crystal we shall start by examining the stress tensor for
a zincblende crystal and ask: what is the difference in symmetry between the
two structures? We notice that if we choose the c-axis of a wurtzite crystal
to be the z-axis then the properties along the z-axis are different from those
along the x- and y-axes while the properties along the x, y and z directions
are the same in the zincblende crystal. This leads us to conclude that in the
wurtzite crystal the coefficients C11 and C22 are equal but they are not equal
to C33. Similarly, C13 � C23 but they are not equal to C12. While C1313 �
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C2323 � C44 but they not necessarily equal to C1212 � C66. To obtain the
relation between C1212 and C1111 � C2222 we have to consider some symmetry
operations that transform x into y, such as a 3-fold rotation. If we rotate the
coordinate axes by 120◦ in the counter-clockwise direction about the z-axis we
will transform the axis (x, y, z) into (x′, y′, z′) with the transformation matrix:⎛⎝ x′

y′

z′

⎞⎠ �

⎛⎝ � 1
2

√
3

2 0
�

√
3

2 � 1
2 0

0 0 1

⎞⎠ ⎛⎝ x
y
z

⎞⎠
or x′i � aijxj.

The effect of this operation on C1212 is given (as corresponds to a fourth
rank tensor) by: C′

1212 � a1ka2la1ma2nCklmn, with summation over repeated in-
dices implied. In principle, the summation has to be performed over all values
of k, l, m and n. This operation is greatly simplified by the observation that
Cklmn is zero for many combination of k, l, m and n. The non-zero summands
are: C1212, C2222, C2121, C1111, C1122, C2211, C1221, C2112, and C1212. In terms of
the contracted notation we obtain:

C′
66 � C66(a2

11a2
22 � a2

12a2
21 � 2a11a22a12a21)

� C11(a2
12a2

22 � a2
11a2

21) � C12(2a11a22a12a21)

Substituting in the transformation coefficients aij, etc. we find:

C′
66 � C66[(1/4)(1/4) � (3/4)(3/4) � 2(1/4)(�3/4)]

� C11[(3/4)(1/4) � (1/4)(3/4)] � C12[(�1/4)(3/4) � (1/4)(�3/4)]

� C66(4/16) � C11(6/16) � C12(�6/16).

Since the crystal is invariant under this operation, we expect C′
66 � C66. By

substituting this result back into the above equation for C′
66 we obtain: C66 �

(1/2)(C11 � C12).

(c) We shall again adopt a coordinate system in which the z-axis is parallel to
the c-axis of the wurtzite crystal. The subscripts 1, 2, 3 will correspond to x, y
and z.

Newton’s Equation of motion for a small volume xyz of the wurtzite crys-
tal along the x-axis can be written as:

ρ(¢x)(¢y)(¢z)
�2u1

�t2 � net Force along the x-axis on a
unit volume (¢x)(¢y)(¢z)

� (¢y)(¢z)
{(

X11 �
�X11

�x
¢x

)
� X11

}
� (¢x)(¢z)

{(
X12 �

�X11

�y
¢y

)
� X12

}
� (¢x)(¢y)

{(
X13 �

�X13

�z
¢z

)
� X13

}
where ρ is the density, u � (u1, u2, u3) is the displacement vector, t is the time
and Xij is the stress tensor. There are two other similar equations for u2 and
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u3. The above equation can be reduced to:

ρ
�2u1

�t2 �
�X11

�x1
�

�X12

�x2
�

�X13

�x3

Using the results of part (b) the stress tensor can be expressed in terms of the
strain tensor eij (or ei in the contracted notation) and the stiffness tensor Cijkl

(or as Ckl in the contracted notation) as:

Xij �

⎛⎜⎜⎜⎜⎜⎝
C11e1 � C12e2 � C13e3
C12e1 � C11e2 � C13e3
C13e1 � C13e2 � C33e3

C44e4
C44e5

C11�C12
2 e6

⎞⎟⎟⎟⎟⎟⎠
Substituting these stress tensor elements into the equation of motion we ob-
tain the following equation:

ρ
�2u1

�t2 � C11
�2u1

�x2
1

�
C11 � C12

2
�2u1

�x2
2

� C44
�2u1

�x2
3

�
C11 � C12

2
�2u2

�x1�x2

� (C13 � C44)
�2u3

�x1�x3
with two similar differential equations for u2 and u3.

Solution to Problem 3.8 (a, c and d)

(a) In Prob. 3.4 (b) it was shown that a tensile uniaxial stress X applied along
the [100] axis of a zincblende crystal will induce a strain tensor of the form:

ẽ �

⎛⎝ S11X 0 0
0 S12X 0
0 0 S12X

⎞⎠ .

This matrix can be decomposed into its irreducible components consisting of
two matrices:
a diagonal matrix (belonging to the °1 irreducible representation) of the form:

ẽhydrostatic �

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ (S11 � 2S12)(X/3)

which represents a hydrostatic strain; and the traceless matrix (belonging to
the °3 irreducible representation):

ẽShear �

⎛⎝ 2 0 0
0 �1 0
0 0 �1

⎞⎠ (S11 � S12)(X/3) .

This decomposition allows us to simplify the evaluation of the strain Hamlto-
nian HPB in (3.23). [note that there is a difference of a factor of 3 in the second
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and third terms containing the deformation potentials b and d in (3.23) in the
first and second editions, depending on definition].

Since the first term in (3.23) contains the trace of the strain tensor,
the traceless shear strain tensor ẽshear does not contribute to this term and
we obtain from the hydrostatic strain tensor ẽhydrostatic a term of the form:
a(S11 � 2S12)X. Similarly, the hydrostatic strain tensor will not contribute to
the shear part of the Hamiltonian HPB. On the other hand, the contribution
of the shear strain tensor to HPB is simply:

(b)(S11 � S12)(X/3)[(J2
x � J2/3)2 � (J2

y � J2/3) � (J2
z � J2/3)]

� (b/3)(S11 � S12)X[2J2
x � J2

y � J2
z]

� b(S11 � S12)X[J2
x � (J2/3)]

Combining the above results we find that the form of the strain Hamiltonian
for uniaxial stress along the [100] direction is:

HPB(X) � a(S11 � 2S12)X � b(S11 � S12)X[J2
x � (J2/3)] .

(c) To calculate the splitting in the J � 3/2 states due to the uniaxial stress
X along the [100] direction we note that the hydrostatic component of the
stress Hamiltonian: a(S11 � 2S12)X will shift all the J � 3/2 states by the same
amount so we can neglect this term in calculating the splitting. From the form
of the shear component of the stress Hamiltonian: b(S11 � S12)X[J2

x � (J2/3)]
it is clear that the two mJ � ±3/2 states will remain degenerate while the
two mJ � ±1/2 states also will not be split by the stress. Thus, we need only
calculate the eigenvalues of b(S11 � S12)X[J2

x � (J2/3)] for the mJ � 3/2 and 1/2
states. Noting that:

〈3/2, 3/2|J2
x |3/2, 3/2〉 � (3/2)2 � 9/4 and 〈3/2, 1/2|J2

x |3/2, 1/2〉 � (1/2)2 � 1/4

while

〈3/2, 3/2|J2|3/2, 3/2〉 � (3/2)(5/2) � 15/4 � 〈3/2, 1/2|J2|3/2, 1/2〉

we obtain the following results:

〈3/2, 3/2|b(S11 � S12)X[J2
x � (J2/3)]|3/2, 3/2〉

� b(S11 � S12)X〈3/2, 3/2|J2
x � (J2/3)|3/2, 3/2〉

� b(S11 � S12)X[(9/4) � (5/4)]

� b(S11 � S12)X

and similarly

b(S11 � S12)X〈3/2, 1/2|J2
x � (J2/3)|3/2, 1/2〉

� b(S11 � S12)X[(1/4) � (5/4)] � �b(S11 � S12)X .

Thus the splitting between the mJ � ±3/2 states and mJ � ±1/2 states induced
by the [100] uniaxial stress is: 2b(S11 � S12)X.

The results for the [111] uniaxial stress can be obtained similarly.
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(d) In case the spin orbit-coupling is zero, the Pikus-Bir Hamiltonian can be
written as:

HPB �a(exx � eyy � ezz) � 3b∗

[(
L2

x �
L2

3

)
exx � c.p.

]

�
6d∗
√

3

(
1
2

(LxLy � Lylx)exy � c.p.
)

.

By repeating the calculation in (a) we obtain for [100] stress:

HPB(X) � a(S11 � 2S12)X � 3b∗(S11 � S12)X[L2
x � (L2/3)] .

The matrix elements corresponding to those in part (c) are:

〈1, 1|L2
x|1, 1〉 � 〈1, �1|L2

x|1, �1〉 � 1 and 〈1, 0|L2
x|1, 0〉 � 0

while

〈1, 1|L2|1, 1〉 � 〈1, �1|L2|1, �1〉 � 〈1, 0|L2|1, 0〉 � 2 .

Clearly, the mL � ±1 states remain degenerate while these two states are split
from the mL � 0 state by the uniaxial stress. Calculating the matrix elements
for the Pikus-Bir Hamiltonian we obtain:

〈1, 1|3b∗(S11 � S12)X[L2
x � (L2/3)]|1, 1〉 � 3b∗(S11 � S12)X[1 � (2/3)]

� b∗(S11 � S12)X
and

〈1, 0|3b∗(S11 � S12)X[L2
x � (L2/3)]|1, 0〉 � 3b∗(S11 � S12)X[0 � (2/3)]

� �2b∗(S11 � S12)X .
Thus the three L � 1 states split into a doublet (mL � ±1 states) and a singlet
(mL � 0) with the energy of the splitting equal to 3b∗(S11 � S12)X.

The reason why the stress induced splitting depends on the angular mo-
mentum can be traced to the degeneracy of the initial states. In case of semi-
conductors with a large spin-orbit coupling we can assume that the spin-orbit
splitting ¢ will be much larger than the stress-induced splitting. Thus the initial
state J � 3/2 before stress is applied is 4-fold degenerate. [100] uniaxial stress
splits these states into two doublets with a splitting equal to 2b(S11�S12)X. On
the other hand, if we neglect spin-orbit coupling then the initial state L � 1 is
six-fold degenerate (including spin). [100] uniaxial stress splits them into two
pairs of degenerate states (one is a spin doublet while the other is a four-
fold degenerate state when spin degeneracy is included) with total splitting
3b∗(S11 � S12)X. Thus, the splitting is larger than that for the J � 3/2 states by
a factor of (3/2) which is equal to the ratio of the degeneracy of their initial
states.

We have assumed in this book the general case where b and b∗, d and d∗

may be different. Usually we can assume that the spin-orbit coupling is not de-
pendent on strain. In this case, within this approximation b � b∗ and d � d∗.
It is with this approximation in mind that the strain Hamiltonians with and
without the spin-orbit coupling are defined with a difference of a factor of 3
in the shear terms.
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Note that in real situations one often has to diagonalize the Pikus-Bir
Hamiltonian by assuming that the unperturbed states include both the J � 3/2
and J � 1/2 states. In this case one can use the large spin-orbit coupling ap-
proximation only for low stress to obtain the linear stress-induced splitting
2b(S11 � S12)X. For high uniaxial stress the mJ � ±1/2 states of both the
J � 3/2 and J � 1/2 states will be coupled by the stress Hamiltonian and one
obtains a nonlinear stress dependence of their energies. Students are urged to
derive the 6×6 matrices for the two cases of a [100] and a [111] uniaxial stress
and then diagonalize these matrices to obtain the stress dependent energies of
the J � 3/2 and 1/2 states.

Solution to Problem 3.9

From (2.84a) and (2.94b) we can express the zone-center conduction and va-
lence band energies Ec and Ev as:

Ec � Es� � Es � |Vss| and Ev � Ep� � Ep � |Vxx| .

If we assume that both |Vss| and |Vxx| depend on the nearest neighbor distance
d as d2 and d is related to the lattice constant a by d � (a/4)

√
3 then

¢Vss

Vss
�

¢Vxx

Vxx
� �2

¢a
a

� �
2
3

¢V
V

where
¢V
V

is the volume dilation.
It can be expressed in terms of the trace of the strain tensor e : ¢V/V �

Trace(e). We can express the above results as:

¢Ec � �

(
2
3

)
|Vss|Trace(e); and ¢Ev �

(
2
3

)
|Vxx|Trace(e) .

The relative deformation potential (ac � av) is then given by: ¢Ec � ¢Ev �
(ac � av)Trace(e) � �(2/3)[|Vss| � |Vxx|]Trace(e). Hence the relative deforma-
tion potential (ac � av) is given by: �(2/3)[|Vss| � |Vxx|].

In the following table we compare the values of (ac � av) in C, Si and Ge
obtained from the tight binding parameters in Table 2.26 and compare them
with experimental values (all energies in units of eV).

|Vss| |Vxx| (ac � av)theoretical (ac � av)experimental

C 15.2 3.0 �12.1
Si 8.13 3.17 �7.53 �10
Ge 6.78 2.62 �6.07 �12

While this approach gives the right order of magnitude and sign for the defor-
mation potentials, it is not accurate enough. As seen in the cases of Si and Ge
the values obtained from the model are smaller than the experimental values
by about a factor of two.
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Solution to Problem 3.11(a,b and c)

(a) By definition, a strain tensor e will induce a change in the vector r inside a
crystal by an amount ¢r given by: ¢r � r ·e. Suppose a pure [111] shear strain
is defined by the strain tensor:

e � ‰

⎛⎝ 0 1 1
1 0 1
1 1 0

⎞⎠
For the vector d1 � (a/4)(1, 1, 1) the change ¢d1 induced by e is equal to:

¢d1 �

(
a‰
4

) ⎛⎝ 0 1 1
1 0 1
1 1 0

⎞⎠ ⎛⎝ 1
1
1

⎞⎠ �

(
a‰
4

)
(2, 2, 2) �

(
a‰
2

)
(1, 1, 1) .

For the vector d2 � (a/4)(1, �1, �1) the change ¢d2 induced by e is equal to:

¢d2 �

(
a‰
4

) ⎛⎝ 0 1 1
1 0 1
1 1 0

⎞⎠ ⎛⎝ 1
�1
�1

⎞⎠ �

(
a‰
4

)
(�2, 0, 0) �

(
a‰
2

)
(�1, 0, 0) .

Thus, an atom located at d1 in the unstrained solid will be displaced, in the
strained solid, to d′

1 � d1 � ¢d1 � (a/4)(1, 1, 1) � (a‰/2)(1, 1, 1) � (a/4)(1 �
2‰)(1, 1, 1) while another atom at d2 will be displaced to d′

2 � d2 � ¢d2 �
(a/4)(1, �1, �1) � (a‰/2)(�1, 0, 0) � (a/4)(1 � 2‰, �1, �1).

The displaced vectors d′
3 and d′

4 can be calculated in a similar manner.
Note that if we define a bond by connecting an atom located at the origin to
the atom at d1 this bond will be stretched by the positive strain. On the other
hand, the bonds to the other 3 atoms will be bent.

(b) From the results in (a) it is clear that the ratio ¢d1/d1 � (2‰) where

¢d2 � |d′
2|2 �|d2|2 �

(a
4

)√
3 � 4‰�

(a
4

)√
3 ≈

(a
4

)√
3
(

1�
2‰
3

)
�

(a
4

)√
3 .

or ¢d2/d2 � �(2‰/3). Furthermore, the direction of d′
2 is no longer parallel to

d2.

(c) To calculate the matrix elements in the strained crystal we will consider
first the matrix element V′

xx. For atom 1 located at d1 we can express the
matrix element V′

xx(1) as:

V′
xx(1) � cos 2ı′

1xV′
ppÛ � sin 2ı′

1xV′
pp

where ı′
1x is the angle between the x-axis and the vector d′

1; V′
ppÛ and V′

pp are
the overlap parameters in the strained crystal. In the case of atom 1 the angle
ı′

1x is the same as in the unstrained crystal so that cos 2ı′
1x � cos 2ı1x � 1/3.

Assuming that the overlap integral scales with atomic separation d as 1/d2,
both V′

ppÛ and V′
pp are related to the overlap parameters VppÛ and Vpp in

the unstrained crystal by the factor [1 � 2(¢dl/d1)] � [1 � 4‰]. Thus, we obtain:

V′
xx(1) � (1/3)[VppÛ � 2Vpp][1 � 4‰]
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The calculation for V′
xx(2) is essentially similar except that the angle ı′

2x is not
equal to ı2x. Instead

cos ı′
2x �

1 � 2‰√
3 � 4‰

.

If we expand cos ı′
2x to the lowest order in ‰ we get: cos 2ı′

2x ∼ (1/3)[1 �
(8‰/3)]. Using this result we can show that:

V′
xx(2) �

[
1 �

2¢d2

d2

] [
VppÛ

3

(
1 �

8‰
3

)
�

2Vpp

3

(
1 �

4‰
3

)]
≈ VppÛ

3

(
1 �

4‰
3

)
�

2Vpp

3

(
1 �

8‰
3

)
Similarly V′

xx(3) � V′
xx(4) can be shown to be given by:

V′
xx(3) ≈ VppÛ

3

(
1 �

8‰
3

)
�

2Vpp

3

(
1 �

2‰
3

)
.

Finally

V′
xx �

4∑
i�1

V′
xx(i) �

VppÛ

3
�

8Vpp

3
� O(‰2) ≈ Vxx .

This proves that the deformation changes V′
xx only by amounts that are of

second order in ‰. This is not true for V′
xy. To calculate the corresponding

results for V′
xy we can first show that: V′

xy(1) � cos ı′
1x cos ı′

1y(V′
ppÛ � V′

pp)
where cos ı′

1x cos ı′
1y � 1/3. Thus we can show that V′

1y(l) ∼ (l � 4‰)(VppÛ �
Vpp)/3 to the lowest order in ‰. The other matrix elements V′

xy(2), V′
xy(3) and

V′
xy(4) can be calculated similarly. In particular the reader should show that:

cos ı′
2y �

�1√
3 � 4‰

so that cos ı′
2x cos ı′

2y � (�1/3)[1 � (2‰/3)] � cos ı′
3x cos ı′

3y and
cos ı′

4x cos ı′
4y � (1/3)[1 � (4‰/3)] all to the lowest order in ‰. Combining these

results one obtains

V′
xy ≈ �

8‰
9

(VppÛ � Vpp) .

In this way one can obtain the 6 × 6 determinant on p. 152. The solutions to
the rest of this problem can be obtained by following the directions given in
the problem.

Solution to Problem 3.15

We note first that the third rank electromechanical tensor (em)ijk is symmetric
with respect to interchange of the indices i and j.

(a) By applying the symmetry operations of the zincblende crystal to this third
rank tensor as in Problem 3.5 we can show that:
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(1) All the components containing two identical indices, such as (em)xxy and
(em)yyy, must be zero by applying the C2 rotations.

(2) This leaves as the only non-zero elements to be those where all the three
indices are different, such as (em)xyz (or (em)14 in the contracted notation).
By applying C3 operations then all the non-zero elements can be shown to
be identical.

The form of the electromechanical tensor in the zincblende crystal can be ex-
pressed as a 3 × 6 matrix of the form:⎛⎝ 0 0 0 (em)14 0 0

0 0 0 0 (em)14 0
0 0 0 0 0 (em)14

⎞⎠
(b) Repeating the calculation by applying the symmetry operations of the
wurtzite structure (assuming that the c-axis of wurtzite is chosen as the z-axis)
we can show that the components (em)ijk containing x and y as indices sat-
isfy the same constraint as in the zincblende crystal. This means: (em)xxx and
(em)yyy are both zero but not (em)zzz (� (em)33). Similarly (em)xxy and (em)yyx

are both zero but not (em)xxz and (em)yyz (these two components are both
equal to (em)15) while (em)zxx and (em)zyy are also not zero (both equal to
(em)31). However, there is now a new symmetry operation involving reflection
onto the zy plane. This symmetry operation will change the sign of x while
leaving those of y and z unchanged. As a result of this symmetry operation,
the components (em)xyz etc., are now all zero. Thus (em) in wurtzite crystals
can be expressed as:⎛⎝ 0 0 0 0 (em)15 0

0 0 0 (em)15 0 0
(em)31 (em)31 (em)33 0 0 0

⎞⎠

Solution to Problem 3.16

Using the result of Prob. 3.15 we will assume that the non-zero and linearly
independent elements of the electromechanical tensor em in wurtzite crystals
have the contracted form:

em �

⎛⎝ 0 0 0 0 e15 0
0 0 0 e15 0 0

e31 e31 e33 0 0 0

⎞⎠
In the contracted notation the strain tensor e corresponding to a phonon with
displacement vector u and wavevector q is given by:
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e �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�ux

�x
�uy

�y
�uz

�z
�uy

�z
�

�uz

�x
�ux

�z
�

�uz

�x
�ux

�y
�

�uy

�x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Once the strain tensor and the electromechanical tensor are known the po-
larization P induced by the strain can be calculated from the definition:
Pi � (e)ijej while the electric field E is related to P by: E � ( 4P

Â ), Â being
the dielectric constant.

To simply the notation we can assume that the z-axis is parallel to the
c-axis of the wurtzite structure and the y-axis lies in the z-q plane so that
q � (0, q sin ı, q cos ı). With this notation we obtain the strain tensor as:

e �

⎛⎜⎜⎜⎜⎜⎝
0

iuyq sin ı
iuzq cos ı

iq(uz sin ı � uy cos ı)
iuxq cos ı
iuxq sin ı

⎞⎟⎟⎟⎟⎟⎠
From this strain tensor we obtain the polarization:

P �
(
e15iqux cos ı, e15iq(uz sin ı � uy cos ı), iq(e31uy sin ı � e33uz cos ı)

)
and hence the electric field.

In particular we are interested in the longitudinal component of this piezo-
electric field since this will couple most strongly to an electron. The longitudi-
nal electric field El is given by the projection of E along q:

El �
E · q

q

�
4iq

Â

[
e15 sin ı(uz sin ı � uy cos ı) � e31uy cos ı sin ı � e33uz cos2 ı

]
From this longitudinal field we can define a scalar potential V such that

Hpiezoelectric � �|e|V

�
4|e|

Â

[
e15 sin ı(uz sin ı � uy cos ı) � e31uy cos ı sin ı � e33uz cos2 ı

]
Note that a factor of 4 may be missing in some earlier editions of the book.
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Solution to Problem 3.17

In real crystals the ionic interaction Hamiltonian (Hion in Eq. (3.1)) is a com-
plicated function of the ion positions Rj. If one expands this Hamiltonian
about the equilibrium positions Rj0 the expansion will contain terms of higher
order than the second order term (‰Rj0)2. These higher order terms are known
as anharmonic terms. When these anharmonic terms are present, the phonon
modes calculated without them are no longer true normal modes of the crys-
tal. One consequence of the lattice anharmonicity is that the phonons will de-
cay via phonon-phonon interaction. For example, the third-order anharmonic
term: (‰Rj0)3 will allow a phonon to decay into two phonon modes. The an-
harmonic terms are important in determining the mean-free path of phonons
and hence the thermal conductivity of a crystal (see, for example, Chapter 5
of C. Kittel, Introduction to Solid State Physics, Wiley & Sons, New York).
Another important effect of the lattice anharmonicity is to cause thermal ex-
pansion of the lattice. This effect will be discussed in part (b) of this problem.
One not so obvious effect of the anharmonic terms is to effect a change of
the phonon frequency with the equilibrium lattice volume. To understand this
result we will consider the simple case of a one-dimensional anharmonic oscil-
lator. The energy of this oscillator can be expanded around any point x0 as a
Taylor series:

E(x) � E(x0) �

(
dV
dx

)
x0

(x � x0) �

(
1
2

) (
d2V
dx2

)
x0

(x � x0)2 � ... (3.17.1)

In this expression V is the potential energy of the oscillator. If x0 is the equi-
librium position of the oscillator, the linear term will vanish for x � x0 and

the second derivative:

(
d2V
dx2

)
x0

becomes the spring constant (to be denoted

by k). Often it is assumed that k is independent of x0. Suppose k is a function
of x0. Since the frequency ˆ of the oscillator is related to k and the reduced
mass m by ˆ � (k/m)1/2, the fact that k changes with x0 implies that the fre-
quency of oscillation also changes with x0.

Next we continue the expansion of E(x) to the third order term: a(x�x0)3,
which represents the anharmonic component of the potential. We assume that
the constant a is small so that for small displacements (x � x0) the potential is
almost harmonic. This is known as the quasi-harmonic approximation. What it
means is that: in the vicinity of x0 the potential is dominated by the quadratic
term: (x � x0)2 and is, therefore, almost harmonic. Suppose we now change
(say via a small pressure) the equilibrium position of the oscillator from x0 to
x0 � ‰. For weak anharmonicity we can assume that the constants k and a of
the potential are not changed by ‰.The energy of the oscillator is now given
by:

E′′(x) � E(x0 � ‰) � (k/2)(x � x0) � (1/3!)a(x � x0)3 . (3.17.2)
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(a) The mode Grüneisen parameter Áˆ of a phonon mode is defined as:
Áˆ � �d(ln ˆ)/d(ln v) where v is the volume of the crystal. In the follow-
ing table we list the mode Grüneisen parameter for various phonon modes in
semiconductors.

Table 1 of Problem 3.17. Mode Grüneisen parameter of phonons in selected diamond-
and zincblende-type semiconductors (TO � transverse optical phonon, LO � longitudi-
nal optical phonon, TA � transverse acoustic phonon and LA � longitudinal acoustic
phonon).

Semiconductors Zone Center Zone Edge Phonons
Phonons
TO LO L X

Si 0.98 0.9(LA) �1.3(TA) 0.9(LA) �1.4(TA)
Ge 1.12 �1.53(TA)
GaAs 1.39 1.23 1.5(TO) �1.7(TA) 1.73(TO) �1.62(TA)
GaP 1.09 0.9 1.5(TO) �0.81(TA) 1.0(LA) �0.72(TA)
InP 1.44 1.24 1.4(TO) �2.0(TA) 1.4(TO) �2.1(TA)
ZnS 0.95 1.0(TO) �1.5(TA) 1.0(TO) �1.2(TA)
ZnTe 1.7 1.2 1.7(LO) �1.0(TA) 1.8(LO) �1.55(TA)

The experimental values contained in this table are obtained from:
B.A. Weinstein and R. Zallen: Pressure-Raman Effects in Covalent and Molecular Solids
in Light Scattering in Solids IV, edited by Cardona and G. Güntherodt (Springer-Verlag,
Berlin, 1984) p. 463–527. Citations to the original publications for these values can be
found in this article’s references.

This table shows that for most diamond- and zincblende-type semiconductors
the value of Áˆ for the optical phonons is around 1, although it can be as large
as 1.7 in ZnTe. However, the value of Áˆ is usually negative for the zone-
edge TA phonons. This is related to the fact that the diamond and zincblende
lattices are unstable against shear distortion except for the restoring forces due
to the bond charges (see Section 3.2.4).

(b) The linear thermal expansion coefficient · of a solid is defined usually as:

· �
1
L

(
�L
�T

)
P

where L is the length of the solid, T the temperature and P

the pressure. It is related to the volume thermal coefficient of expansion ‚ by
the expression:

‚ �
1
v

(
�v
�T

)
P

� 3·

where v is the volume of the solid. To relate ‚ to the mode Grüneisen pa-
rameter of the solid we start with the thermodynamic relation between the
pressure P and the Helmholtz free energy F:

P � �

(
�F
�v

)
T

.

For a semiconductor, where there are no free electrons, the free energy con-
tains mainly two contributions: one, which we shall denote as º, is due to the
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forces holding the atoms together, and a second one stems from the vibra-
tion of the atoms. Since phonons are bosons (like photons), the calculation of
the free energy term due to phonons is the same as that for photons and can
be found in many standard textbooks on statistical mechanics (see, for exam-
ple, C. Kittel and H. Kroemer: Thermal Physics, second edition. Freeman, San
Francisco, 1980. p. 112). The contribution Fvib to the total free energy from
the phonons can be calculated from the partition function Zvib of phonons:
Fvib � �kBT ln Zvib where kB is the Boltzmann’s constant and

Zvib �
∑
i,n

e�(n� 1
2 ) �ˆi

kBT �
∑

i

e�
�ˆi

2kBT
1

1 � e�
�ˆi
kBT

�
∑

i

1

2 sinh
(

�ˆi

2kBT

) (3.17.3)

with the summation i over all the phonon modes.
From this partition function we obtain:

Fvib � kBT
∑

i

ln
[

2 sinh
(

�ˆi

2kBT

)]
(3.17.4)

The energy º is assumed now to be a function of v only. Using (3.17.4) for
Fvib we obtain an expression for P:

P � �

(
dº
dv

)
� kBT

∑
i

coth
(

�ˆi

2kBT

) (
�

2kBT

) (
dˆi

dv

)
(3.17.5)

To simplify this expression we assume that the mode Grüneisen parameters
for all the phonon modes are roughly the same and can be approximated by
an average Grüneisen parameter 〈Á〉 ∼ �d(ln ˆi)/d(ln v) for all phonon modes.
Within this approximation the expression for P simplifies to:

P ≈ �

(
dº
dv

)
�

(
〈Á〉
v

) ∑
i

coth
(

�ˆi

2kBT

) (
�ˆi

2

)
(3.17.6)

The average energy (like the average energy for photons) of a phonon mode
with frequency ˆ is given by:

U(ˆ) � {n�(1/2)}(�ˆ) where n is the phonon occupancy or Bose-Einstein
distribution function (see p. 126), given by: n � [exp(�ˆ/kBT)�1]�1. Using the
result that {n � (1/2)} � (1/2) coth[(�ˆ/2kBT)] we obtain:∑

i

coth
(

�ˆi

2kBT

) (
�ˆi

2

)
� U (3.17.7)

where U represents the internal energy of the crystal due to vibrational modes
only. Hence we arrive at:

P � �(dº/dv) � 〈Á〉U/v (3.17.8)

We can regard this relation between P and v as an equation-of-state of the
crystal.

Using this equation we can obtain the relation between the coefficient of
thermal expansion ‚ and 〈Á〉 under a quasi-harmonic approximation. In this
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approximation we can expand the term º(v) as a function of v about the equi-
librium volume v0 and keep only terms up to the quadratic term:

º(v) ∼ º(v0) � (dº/dv)v0 (v � v0) � (1/2)(d2º/dv2)V0 (v � v0)2 (3.17.9)

By definition, the linear term (dº/dv)V0 vanishes at the equilibrium volume so
we can take the derivative of º(v) with respect to v and obtain:

(dº/dv) ∼ (d2º/dv2)v0 (v � v0) . (3.17.10)

On the other hand, if we have started from (3.17.8) and take the derivative
with respect to v at equilibrium volume then we would obtain:

(dP/dv)V0 ∼ �(d2º/dv2)v0 (3.17.11)

by noting that U is proportional to v. (3.17.11) can be simplified by introduc-
ing the isothermal compressibility Î0 � (1/v0)(dv/dP)T . The bulk modulus B
defined on Page 139 is related to Î by: B � 1/Î. With this simplification we
arrived at:

(dP/dv)T � �1/Î0v0 . (3.17.12)

Combining (3.17.10) – (3.17.12) we obtain:

(dº/dv) � �(dP/dv)V0 (v � v0) � (v � v0)/Î0v0 (3.17.13)

On substituting (3.17.13) back into (3.17.8) we obtain the equation-of-state
within the quasi-harmonic approximation:

P � �(v � v0)/Î0v0 � 〈Á〉U/v . (3.17.14)

This equation was first derived by Mie and later by Grüneisen.
To obtain the coefficient of thermal expansion ‚ � (1/v)(�v/�T)P we take

the partial derivative of (3.17.14) with respect to T while keeping P constant:

0 � �
‚v

Î0v0
� 〈Á〉

{
�

‚U
v

� ‚
(

�U
�v

)
T

�
1
v

(
�U
�T

)
v

}
. (3.17.15)

The quantities inside the braces can be expressed in terms of measurable
quantities, such as the heat capacity. For example, the constant volume heat
capacity Cv is equal to (�U/�T)V . By differentiating the equation (3.17.7) for
U with respect to v, we can show that:

(�U/�v)T � (〈Á〉CvT/v) � (〈Á〉U/v) . (3.17.16)

Actually this calculation is very similar to the one used to derive (3.17.5) by
taking the derivative of Fvib in (3.17.4) with respect to v. Substituting back
(3.17.16) into (3.17.15) we obtain:

‚V
Î0v0

�
〈Á〉‚U

v
� ‚〈Á〉2

(
CVT

v
�

U
v

)
�

〈Á〉Cv

v
(3.17.17)

Since we have assumed a weak anharmonic term we expect that terms
quadratic in 〈Á〉 can be neglected. This means that at P � 0 (when v � v0)
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the above equation can be simplified to:

‚�
〈Á〉CV

V

(
v

Î0v0
�
〈Á〉U

v

)�1

∼ 〈Á〉Cv

v0

(
1
Î0

�
〈Á〉U

v0

)�1

�
〈Á〉CvÎ0

v0
(3.17.18)

This result shows that: the volume coefficient of thermal expansion is directly
proportional to the average mode Grüneisen parameter and hence is a mea-
sure of the anharmonicity of the lattice, provided this anharmonicity is weak.

References
G.P. Srivastava: The Physics of Phonons. (Adamm Hilger, Bristol, 1990) p. 115.
Ryogo Kubo, H. Ichimura, T. Usui, and N. Hashizume: Statistical Mechanics. (North-

Holland Publishing Co., Amsterdam, 1965) p. 163.

Solution to Problem 4.1

(a) We have to first establish the characters of the six wave functions:
X, Y, Z, X, Y and Z with respect to the symmetry operations of the point
group Td. To do this we have to apply to them the symmetry operations be-
longing to the 5 classes of Td. As an example, we will apply the two-fold ro-
tation C2(z) about the z-axis. This operation will leave only the functions Z
and Z unchanged. Thus the character ¯ for C2 is 2. On the other hand, a S4(z)
operation will interchange Z and Z so that the character ¯(S4) � 0. The re-
flection operation onto a [110] plane will not change Z and Z so its character
¯(Ûd) � 2. Finally, a C3 rotation will permute all 6 wave functions so its char-
acter ¯(C3) � 0.

In summary, the characters for the 6 conduction band minima wave func-
tions in Si with respect to the symmetry operations of Td are given by:

{E} {C2} {S4} {Ûd} {C3}
6 2 0 2 0

(b) By inspection one sees that the characters in the above table can be ob-
tained by taking the following direct sum of the irreducible representations of
Td listed in Table 2.3:

A1 ⊕ E ⊕ T2 .

(c) To obtain the proper linear combinations of the 6 Si conduction band wave
functions that transform according to the above irreducible representations,
we note first that a sum of all 6 functions must be invariant under all the
symmetry operations of Td and therefore belongs to the A1 irreducible repre-
sentation. The irreducible representation T2 is three dimensional and the three
basis functions should transform into each other like the coordinate axes x, y
and z. A possible choice for these three functions (with proper normalization)
is clearly: [X � X]/

√
2; [Y � Y]/

√
2 and [Z � Z]/

√
2. Notice that under C2(x)

rotation both y and z will change sign. This is also the case for [Y � Y]
√

2 and
[Z � Z]

√
2. Finally, according to Table 2.3 the E irreducible representation is
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two-dimensional and a possible set of basis function has the form: x2 � y2 and
z2 � [x2 � y2]/2. In this case y2 and z2 will not change sign under C2(x) rota-
tion. To achieve the result with the Si wave functions we find that [Y � Y] and
[Z�Z] will not change sign under the C2(x) rotation. Thus the normalized lin-
ear combination for the E irreducible representations are: {[X�X]�[Y�Y]}/2
and {[2Z � 2Z] � [X � X] � [Y � Y]}/

√
12.

Solution to Problem 4.5

Assume that the imaginary part of an analytic function F(E) is given by:

Im[F(E)] � �[(E � E′)2 � °2]�1 . (4.5a)

Applying the Kramers-Kronig relation (4.56), we find that the real part of
F(E) is given by:

Re[f (E)] �
1


P
∫ ∞

�∞

Im[F(z)]
z � E

dz

�
1


P
∫ ∞

�∞

(�1)
(z � E)[(z � E′)2 � °2]

dz
(4.5b)

One way to calculate this definite integral is to rewrite the integrand as a sum:

1/(z � E)[(z � E′)2 � °2] � [A/(z � E)] � [B/(z � E′ � i°)]

� [C/(z � E′ � i°)]
(4.5c)

where i2 � (�1), A � 1/[(E � E′)2 � °2], B � (�i/2°)[1/(E � E′ � i°)]
and C � (i/2°)[1/(E � E′ � i°)]. For each term in (4.5c) the corresponding
integration in (4.5b) can be performed with the help of a contour integral. As
an example, let us consider:

P
∫ ∞

�∞

dz
z � (E′ � i°)

(4.5d)

First, we will simplify the integral with a change in variable: x � z � E′ so that
(4.5d) becomes:

P
∫ ∞

�∞

dx
x � i°

(4.5e)

The integrand in (4.5e) has a pole at x � i° . To obtain its principal value we
consider an integral over a closed contour C in the complex z′-plane where
z′ � x � iy:
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C

dz′

z′ � i°
(4.5f)

In order to avoid the pole at z′ � i° , we construct the contour C with the
half-circle shown in the following figure:

C

R

-R R

y

x

C consists of two parts: (1) a straight
line along the x-axis connecting (�R,0)
and (R,0) and (2) a semi-circle in the
lower half of the y-plane with radius R
and centered at the origin. Since C does
not enclose any pole we obtain from the
Residue Theorem∮

C

dz′

z′ � i°
� 0 (4.5g)

We now explicitly decompose the integra-
tion over C into one integral over the hor-
izontal axis and one over the semi-circle:

∮
C

dz′

z′ � i°
�

∫ R

�R

dx
x � i°

�

∫ �

0

Rieiı dı
Reiı � i°

(4.5h)

Next we take the limit R ⇒ ∞. The first integral of (4.5h) becomes

P
∫ ∞

�∞

dx
x � i°

which is just what we want to calculate.

In the limit RÊ � ° , the second integral becomes∫ �

0

Rieiı dı
Reiı � i°

⇒
∫ �

0

Rieiı dı
Reiı � i(�) (4.5i)

Substituting these results back into (4.5g) we get:

P
∫ ∞

�∞

dx
x � i°

� i (4.5j)

Similarly we can obtain:

P
∫ ∞

�∞

dx
x � i°

� �i (4.5k)

Finally, to evaluate the integral:

P
∫ ∞

�∞

1
x′ � E

dx′ � P
∫ ∞

�∞

1
x

dx (4.5l)

we have to use a different contour C as shown in the following figure.
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C

R

-R R

y

x

In this case the pole occurs at the origin
so we have to exclude the origin from C
by adding another semicircle with radius
‰. By applying the Residue Theorem we
find that:

∮
C

1
z

dz � 0 (4.5m)

To obtain the integral in (4.5l) we have
to take the limits: R ⇒ ∞ and ‰ ⇒ 0.

We note that the integrals over the two semicircles of radius R and ‰ cancel
each other since the integration over the angle ı is from 0 to � for the larger
semicircle and from � to 0 for the smaller semicircle.

Thus

P
∫ ∞

�∞

1
x′ � E

dx′ � 0 (4.5n)

Putting all these integration results back into (4.5b) we obtain:

Re[f (E)] �
�1


[
�i
2°

(�i)
(E � E′) � i°

�
i

2°
i

(E � E′) � i°

]
�

1
2°

[
1

(E � E′) � i°
�

1
(E � E′) � i°

]
�

(
1
°

)
(E � E′)

(E � E′)2 � °2

(4.5o)

For readers who are familiar with complex analysis and contour integrals,
there is a faster way to obtain the same result. The first step is to make a
transformation: z′ � z � E′ so that the integral in (4.5b) becomes:

Re[f (E)] �
1


P
∫ ∞

�∞

(�1)
(z′ � E′ � E)[(z′)2 � °2]

dz′ (4.5p)

The integrand now has three poles at E � E′, i° and �i° . To calculate the
principal value of the integral one constructs two contours A and B as shown
in the following figures.
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A

R-R

R

y

x
E’-E

B

R-R

R

y

x

E’-E

Let us first consider the contour inte-
gral:∮

A

dz′

(z′ � E′ � E)(z′ � i°)(z′ � i°)

In the limits of R ⇒ ∞ and ‰ ⇒ 0 the
part of the contour integral over the x-
axis will give us the principal value of:∫ ∞

�∞

dz′

(z′ � E′ � E)(z′ � i°)(z′ � i°)

Similarly, when we perform the contour
integral over B in the limits of R ⇒ ∞
and ‰ ⇒ 0, the part of the contour inte-
gral over the x-axis will give us again the
same principal value of the above inte-

gral. On the other hand, the parts of the two contour integrals over the semi-
circles (whether of radius R or ‰) will exactly cancel each other since the di-
rections of the integrations in A and B are opposite. Thus, the principal value
of the integral becomes:∫ ∞

�∞

dz′

(z′ � E′ � E)(z′ � i°)(z′ � i°)

�
1
2

[ ∮
A

dz′

(z′ � E′ � E)(z′ � i°)(z′ � i°)

�

∮
B

dz′

(z′ � E′ � E)(z′ � i°)(z′ � i°)

] (4.5q)

The value of the two contour integrals in (4.5q) can now be obtained by
the Residue Theorem. For example, the contour integral over A is given by
2i times the residue of the integrand at the only pole: i° , and is equal to
(2i)(1/2°)[i° � E′ � E]�1. Similarly the contour integral over B is given by
the residue at the pole: �i° and is equal to (2i)(1/2i°)[�i° � E′ � E]�1.
Substituting these results into (4.5q) one can obtain the same expression as in
(4.5o).

Solution to Problem 5.1

[Note: (5.19) in the first, second and third editions has an error in the sign of
gk. This error has led to errors in the sign of the term qÙkvk ·F in Problem 5.1
in those older editions].

In Sect. 5.2.1 it is shown that, when a small enough electric field F is ap-
plied to a charge distribution with a distribution function f 0

k in the absence of
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F, the change in the distribution function gk is given by (5.19) as:

gk � �

(
�f 0

k

�Ek

)
qÙkvk · F

within the relaxation time approximation. The new distribution function fk is
given by (5.16): fk � f 0

k � gk. Thus

fk � f 0
k � gk � f 0

k (Ek) �

(
�f 0

k

�Ek

)
(qÙkvk · F) ≈ f 0

k (Ek � qÙkvk · F)

The physical meaning of this result is that: under the influence of the field, the
functional form of the final distribution function fk is the same as the initial
distribution function f 0

k (Ek). However, the energy E′
k of each electron is now

equal to its energy in the presence of the field, ie E′
k � Ek � qÙkvk · F. As a

result we can write

fk(E′
k) � f 0

k (Ek) � f 0
k (E′

k � qÙkvk · F)

If we consider the distribution function of the electron as a function of its
velocity vk rather than its energy, then initially f 0

k is symmetric with respect
to vk � 0 in the absence of F. In the presence of F the entire distribution
function would be displaced (without change in shape) along the vk axis by
an amount: qÙkF/m (where m is the electron mass). The entire distribution
appears to have acquired a drift velocity qÙkF/m. Hence f 0

k (Ek � qÙkvk · F) is
known as a drifted distribution.

Solution to Problem 5.2(a)

(a) As an example of the application of the results in Problem 5.1 we will
consider the special case where f 0

k is the Boltzmann distribution function in
the absence of F: f 0

k � A exp[�Ek/kBT]. In addition, we will assume that
the electrons occupy a spherical band with the dispersion: Ek � (1/2)m∗v2

k
where m∗ is the electron effective mass. The resultant distribution is known
as a Maxwell-Boltzmann distribution. Under the effect of the field F the per-
turbed distribution function fk is given by:

fk ≈ f 0
k (Ek � qÙkvk · F)

� f 0
k

(
m∗v2

k

2
� qÙkvk · F

)
� f 0

k

(
m∗(vk � vd)2

2
�

m∗v2
d

2

)

≈ f 0
k

(
m∗(vk � vd)2

2

)
using the result of Prob. 5.1. This result can also be expressed as: fk �
A exp[�m∗(vk � vd)2/2kBT] where vd � qÙkF/m∗ is the drift velocity. This
distribution function is known as a drifted Maxwell-Boltzmann distribu-
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tion. The following figure shows schematically the “undrifted” (solid curve)
and drifted (broken curve) Maxwell-Boltzmann distribution. Note that the
Maxwell-Boltzmann distribution is a Gaussian function of vk.

fk

vk0

o fk

vd

Solution to Problem 5.3(a)

(a) The interaction Hamiltonian between the electron and the longitudinal
acoustic (LA) phonon is given by (3.21):

He�LA � ac(q · ‰‰R)

(where ac is the conduction band deformation potential while q is the phonon
wave vector). Substituting in the phonon displacement vector ‰‰R from (3.22)
one obtains:

He�LA � ac

∑
q′

(
�

2NVρˆ

)1/2

(q · eq′)

·
{

C�
q′ exp[i(q′ · r � ˆt)] � Cq′ exp[�i(q′ · r � ˆt)]

}
In the above expression ρ, N and V are, respectively, the density, the number
of unit cells, and the volume of the crystal. eq is the phonon displacement vec-
tor and C� and C� are, respectively, the creation and annihilation operators
for the phonon. In the case of the LA phonon propagating along high sym-
metry directions, such as along the [100] and [111] axes of the zincblende-type
crystals, eq is parallel to q. Using the Fermi Golden Rule (6.43a) we can cal-
culate the probability for an electron to scatter from state k to k′ via emission
or absorption of a LA phonon:

P(k, k′) � (2/�)
∣∣〈k, Nq|He�LA|k′, Nq ± 1〉

∣∣2
ρf

where Nq is the occupation number of a LA phonon with wave vector q, Eq

is its energy and ρf is the density of final electronic states. The � and � signs
in the above equation represent, respectively, emission and absorption of a
phonon by the electron during the scattering.
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As an example, we will calculate the probability for the scattering process
in which the electron absorbs a phonon. In this case the electron-phonon ma-
trix element is given by (under the simplifying assumption that eq is parallel
to q):∣∣〈k, Nq|He�LA|k′, Nq � 1〉

∣∣2

� (ac)2
∑

q

(
�

2NVρˆ

)
(q · eq)2

∣∣∣〈k, Nq|C�
q exp[i(q · r � ˆt)]k′, Nq � 1〉

∣∣∣2

� (ac)2
∑

q

(
�

2NVρˆ

)
(q)2Nq‰(Ek � Ek′ � Eq)‰(k � k′ � q)

In obtaining the above expression we have used the result that the probability
of absorbing a phonon is proportional to Nq. Substituting this matrix element
into the Fermi Golden Rule we obtain the total scattering rate of the electron
out of the state k via absorption of phonon:

P(k) �

(
2
�

)
(ac)2

∑
k′,q

(
�

2NVρˆ

)
(q)2Nq‰(Ek � Ek′ � Eq)‰(k � k′ � q)

�

(
2
�

)
(ac)2

(
�

2NVρ

) ∑
q

( q
ˆ

)2
Nq‰(Ek � Ek�q � Eq)

It should be noted that the LA phonon frequency ˆ � vsq where vs is the
LA phonon velocity and therefore cannot be taken outside the summation
over q in the above expression. Notice that P(k) is essentially the same as
(5.41). In the high temperature limit, where kBT � �ˆ and Nq � 1, we can
approximate Nq ∼ kBT/(�vsq) so that the q2 term inside the summation sign
is cancelled by the Nq/ˆ term. The final result can be reduced to:

P(k) ∼
∑

‰(Ek � Ek�q � Eq)

except for a constant of proportionality which depends on material proper-
ties, such as the density, sound velocity, and the deformation potential. The
way to calculate the allowed values of q is shown geometrically in Fig. 5.1(a).
The summation over q can be converted into an integral over q as shown in
(5.42a). The resultant expression is:

P(k) �

(
a2

ckBT
82ρ�v2

s

)∫
2q2 dq d cos £‰

[(
�2q
2m∗

)
(q � 2k cos £) � �v2q

]
After integration over cos £ and q the final expression becomes:

P(k) �

(
a2

ckBTm∗

4ρ�3v2
s

) (
q2

max

2k

)
where qmax represents the maximum value of the wave vector of the phonon
absorbed. We will now make the approximation that qmax ∼ 2k as in 5.2.4.
With this simplification the probability of absorbing a phonon is given by:

P(k) �

(
a2

ckBTm∗

2ρ�3v2
s

)
k �

(√
2a2

ckBT(m∗)3/2

2ρ�4v2
s

)
E1/2
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To obtain the total scattering rate of the electron by the LA acoustic phonon
we have to add the rate of phonon emission (which is proportional to Nq � 1)
to the above rate of phonon absorption. For kBT � �ˆ, Nq � 1 so Nq �
1 ∼ Nq. In other words: the rate of phonon emission is the same as the rate
of phonon absorption. Thus the rate of scattering of electron by LA phonon
(1/Ùac) is:

1
Ùac

�

(√
2a2

c(m∗)3/2kBT
�4ρv2

s

)
E1/2

Solution to Problem 5.5

(a) Let Ek, E′
k and ELO be, respectively, the initial and final electron energies,

and the LO phonon energy. In the case of emission of a LO phonon, energy
and wave vector conservation requires that: Ek � E′

k � ELO � �ˆLO and k �
k′ � q where ˆLO and q are, respectively, the LO phonon frequency and wave
vector. For a parabolic band with mass m∗ and a dispersionless LO phonon
these two equations can be combined to yield:

(�2/2m∗)[k2 � (k � q)]2] � �ˆLO

Let £ be the angle between k and q. Then the above equation can be rewrit-
ten as:

(�2/2m∗)[2kq cos £ � q2] � �ˆLO or q2 � 2kq cos £ � (2m∗/�)ˆLO � 0

The roots of this quadratic equation are:

q �

2k cos £ ±

√
(2k cos £)2 �

(
8m∗

�

)
ˆLO

2

� k

⎛⎝cos £ ±

√
cos2 £ �

�ˆLO

Ek

⎞⎠
The maximum and minimum values of q (to be denoted as q2max and q2min)
are obtained when cos £ � 1. They correspond, respectively, to the � and �
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signs in the above solutions: q2max � k[1 � f (Ek)] and q2min � k[1 � f (Ek)]
where f (Ek) � [1 � (�ˆLO/Ek)]1/2.

Note that the above derivation is valid as long as k (and hence Ek) is
not zero. When k � 0 one cannot define the angle £ between k and q. For
LO phonon emission, the minimum value for Ek is ELO so Ek has to be � 0
always. When Ek � ELO, f � 0 and q2max � q2min � k. This can be easily seen
in the following figure.

E

k
0

LO phonon absorption

LO phonon emission

k

q

q 1max

q 1min

q

2min

(b) The above results can be applied to the calculation for the absorption of a
LO phonon by an electron by simply changing q to �q and ELO to �ELO in
the appropriate places. For example, the quadratic equation for q is now:

q2 � 2kq cos £ � (2m∗/�)ˆLO � 0

and the solutions to this quadratic equation become:

q � k

⎛⎝� cos £ ±

√
cos2 £ �

�ˆLO

Ek

⎞⎠
while the maximum and minimum values of q (to be denoted by q1max and
q1min) are given by: q1max � k[1 � f ′(Ek)] and q1min � k[f ′(Ek) � 1] where
f ′(E′k) � [1 � (�ˆLO/Ek)]1/2.

Again, the results are valid as long as Ek � 0. For phonon absorption the
minimum value of Ek is 0. k becomes 0 also when this happens. In this special
case one has to go back to the equation: (�2/2m∗)[k2 � (k � q)]2] � �ˆLO and
substitute in k � 0. The only solution for q is then:

q � [2m∗ˆLO/�]1/2

and therefore both q1max and q1min are equal to [2m∗ˆLO/�]1/2.
Also note that in the above figure both q1min and q2min decrease to 0 when

Ek ⇒ ∞.

(c) In the relaxation time approximation, the momentum relaxation rate
(1/Ùm) is given by:

(1/Ùm) �
∑

[(k′ � k)/k]P(k, k′)
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where P(k, k′) is the probability per unit time for the electron to be scattered
from the initial state k to the final state k′. The summation over k′ can be
converted into an integration over q by invoking wave vector conservation. In
the case of scattering by LO phonons the expression for PLO is then given by
(5.48). The corresponding expression for (k/Ùm) then becomes:

k
Ùm

∝
∫ ∞

0
NLOq2 dq

∫ 

0
d cos £

[
q2

(q2 � q2
0)

]
q cos £‰(Ek′ � (Ek � ELO))

�

∫ ∞

0
(NLO � 1)q2 dq

·
∫ 

0
d cos £

[
q2

(q2 � q2
0)

]
(�q cos £)‰(Ek′ � (Ek � ELO))

To eliminate the integration over cos £ one notes that the ‰-functions can be
written as:

‰[Ek′ � (Ek � ELO)] � (2m∗/�2)‰[(2kq cos £ � q2) � (2m∗/�2)ELO]

and

‰[Ek′ � (Ek � ELO)] � (2m∗/�2)‰[(�2kq cos £ � q2) � (2m∗/�2)ELO]

After integration over cos £, one eliminates the delta functions and obtains:

k
Ùm

∝
∫ q1max

q1min

NLO dq

[
q �

2m∗ELO

�2q

]
�

∫ q2max

q2min

(NLO � 1) dq

[
q �

2m∗ELO

�2q

]
Using the results from (a) and (b) for the limits of integration, we can per-
form the integration over q. The above results have been obtained under the
assumption that the screening wave vector q0 can be set to zero. This assump-
tion is valid when q1min and q2min are both larger than q0 or if the concentra-
tion of electrons is low. [Note that in case of scattering by acoustic phonons
via the piezoelectric interaction it is impossible to neglect q0 since the mini-
mum value of q is zero]. For LO phonons we have shown that both q1min and
q2min can never be zero (except in the limit Ek ⇒ ∞) so this problem will
not arise. To obtain (5.51) we have to perform the integration and put in the
appropriate limits in the above expression. The result is:

1
Ùm

∝ NLO

[
q2

1max � q2
1min

k2 �
ELO

Ek
ln

(
q1max

q1min

)]

� (NLO � 1)

[
q2

2max � q2
2min

k2 �
ELO

Ek
ln

(
q2max

q2min

)]
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The final step involves substituting in the expressions for q1min, q1max, q2min
and q2max from parts (a) and (b) and replacing k2 by (2m∗/�2)Ek to obtain:

1
Ùm

∝ NLO

[(
Ek � ELO

Ek

)1/2

�
ELO

Ek
sinh�1

(
Ek

ELO

)1/2
]

� (NLO � 1)

[(
Ek � ELO

Ek

)1/2

�
ELO

Ek
sinh�1

(
Ek � ELO

ELO

)1/2
]

(d) Readers are urged to substitute the parameters for GaAs into the above
expression to calculate Ùm.

Solution to Problem 5.6

(a) Starting with (5.72) we can write the drift velocity vd of charges q in an
applied electric field F and an applied magnetic field B as:

(m∗/Ù)vd � q[F � vd × B/c] (5.6a)

where m∗ is the carrier effective mass and Ù is its scattering time. Let Ì �
(qÙ/m∗) represent the mobility of the charges. Then (5.6a) can be written as:

vd � Ì[F � vd × B/c] (5.6b)

Let N be the charge density, then the current density J is given by

J � Nqvd � �qÌ[F � vdxB/c] � �q � [F � (J × B/Nqc)] (5.6c)

For a magnetic field B applied along the z-direction (5.6c) can be written as:

Jx � NqÌ[Fx � (JyBz/Nqc)] (5.6d)

Jy � NqÌ[Fy � (JxBz/Nqc)] and (5.6e)

Jz � NqÌFz (5.6f)

The two equations (5.6d) and (5.6e) can be solved for the two unknowns:
Jx and Jy to give:

Jx � NqÌ[Fx � (ÌFyBz/c)]/[1 � (ÌBz/c)2] and (5.6g)

Jy � NqÌ[Fy � (ÌFxBz/c)]/[1 � (ÌBz/c)2] (5.6h)

To simplify the notation we introduce · � NqÌ and ‚ � �·Ì/c so that
(5.6g) and (5.6h) are rewritten as:

Jx � [·Fx � ‚FyBz)]/[1 � (ÌBz/c)2] and (5.6i)

Jy � [·Fy � ‚FyBz)]/[1 � (ÌBz/c)2] (5.6j)
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plus

Jz � ·Fz (5.6k)

If there are both electrons and holes we have to add their contributions to J.
Notice that · depends on the charge as q2 so ·n and ·p will both be positive.
Similarly (5.6i) to (5.6k) are valid for both electrons and holes. Finally, if we
assume that Bz is small then the B2

z terms can be neglected and the answer
for J is:

Jx � (·n � ·p)Fx � (‚n � ‚p)FyBz

Jy � (·n � ·p)Fy � (‚n � ‚p)FxBz

and

Jz � (·n � ·p)Fz

(b) In the Hall configuration Jy � 0 in (5.6j) so that

Fy � �Fx[(‚n � ‚p)Bz/(·n � ·p)] and

Jx � Fx[(·n � ·p)2 � (‚n � ‚p)2B2
z]/(·n � ·p)

The Hall Coefficient is RH � Fy/JxBz � �(‚n �‚p)/[(·n �·p)2 � (‚n �‚p)2B2
z].

Again, at low magnetic field, we can neglect the B2
z term so that

RH � �(‚n � ‚p)/(·n � ·p)2 .

In terms of Nn and Np etc., the Hall Coefficient is equal to:

RH � (1/qc)[Np � (Ìn/Ìp)2Nn]/[(Ìn/Ìp)Nn � Np]2

Solution to Problem 5.7

For samples where the electron distribution is given by f (E) the ensemble
average of the current density is given by (5.88a) to (5.88c):

〈jx〉 � ·Fx � ÁBzFy

〈jy〉 � ·Fy � ÁBzFx

and

〈jz〉 � 〈Û0〉Fx

where F and B are the electric and magnetic fields, respectively; · and Á are
defined in (5.89a) and (5.89b). To obtain the Hall Coefficient RH we set 〈jy〉 �
0 so that Fy � �(Á/·)BzFx. Substituting back into RH � Fy/〈Jx〉Bz we obtain:

RH � (�Á/·2)Fx/[·Fx � ÁBzFy] � (�Á/·2)/[1 � (ÁBz/·)2] .



632 Appendix B

Solution to Problem 6.6

Van Hove singularities in the density-of-states (DOS) occur at energies E0 at
which the gradient of E with respect to the electron wave vector k vanishes
or |∇kE| � 0. This means that E0 is either an extremum (a maximum or min-
imum) or a saddle point as a function of k. In general one can expand E as
a Taylor series of k in the vicinity of E0. Without loss of generality, we can
assume that E0 occurs at k � 0. Since ∇kE vanishes at E0, the expansion has
the form: E � E0 � ·k2 � ... in 1D; E � E0 � ·k2

1 � ‚k2
2 ... in 2D and E �

E0 � ·k2 � ‚k2
2 � Ák2

3 ... in 3D.
In the 1D case, the result is the simplest, since there is only one coeffi-

cient · whose sign will determine whether E0 is a maximum (corresponding to
· � 0) or a minimum (corresponding to · � 0). If E0 is a minimum, there are
no states with E � E0 so the DOS must be zero when E � E0. For E � E0
the derivative |∇kE| is simply 2·|k|. To calculate the DOS we need to evaluate
the integral in (6.52) over the constant energy surface Sk. In 1D a constant en-
ergy “surface” Sk defined by the energy E consists of two points only! These
2 values of k are given by: k � ±(1/·)[E � E0]1/2. Thus an integral over Sk

reduces to a summation over these two points of the integrand: 1/(2·|k|). If
we convert k back to a function of E we find that the DOS is a function of
1/[E � E0]1/2. A similar divergence of the DOS at E0 of the form: 1/[E0 � E]1/2

is obtained when E0 is a maximum. Thus the DOS of a 1D system diverges at
the van Hove singularities. This result has a significant effect on the electronic
and optical properties of quasi-1D materials such as semiconductor nanowires,
and carbon nanotubes etc.
In a 2D system there are two non-zero coefficients · and ‚. As a result, there
are 3 possibilities:
(a) both · and ‚ � 0 so that E0 is a minimum.
(b) both · and ‚ � 0 so that E0 is a maximum.
(c) ·‚ � 0 so that E0 is a saddle point (in this case E increase in one direction

but decreases in the other).
Let us consider the case (a) where E0 is a minimum. As in the 1D case, there
are no states with E � E0 so the DOS must be zero for E � E0. For E � E0
one can scale k1 and k2 so that · � ‚ and the derivative |∇kE| is simply 2·|k|
again. The constant energy “surface” (or, more appropriately, a curve) Sk in
2D is a circle with radius k � (1/·)[E � E0]1/2. The result of an integration of
1/|∇kE| over this circle is simply: 2(k/|∇kE|) � /·. Therefore, the DOS in
2D is a constant independent of k for E � E0.

If E0 corresponds to a maximum, the DOS is again a constant for E � E0.
The case of the saddle point (c) is rather interesting since the constant

energy “surface” is a hyperbola. A hyperbola extends to ±∞ in k-space so,
in principle, the integration of 1/|∇kE| over this hyperbola may diverge. In
reality, the integration over the k-space for a real crystal must be limited to
k � kB (the size of the Brillouin zone). To illustrate this point, let us assume
that the E(k) � E0 � k2

1 � k2
2 after a proper transformation of the coordinate
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axes. For E � E0 the constant energy curve is shown schematically in the
following figure.

k 2

k1
1

2 1 2
2 2

k
1/2

E=E +k – ko 1
2 2

2

The DOS is proportional to:∫
dSk

|∇kE| �

∫ kB

0

√
(dk1)2 � (dk2)2√

k2
1 � k2

2

�

∫ kB

0

dk2

|k1|
�

∫ kB

0

dk2√
k2

2 � (E � E0)

Using the result that:∫
dx√

x2 � a2
� loge

(
x �

√
x2 � a2

)
We obtain the DOS as proportional to:

loge

(
kB �

√
k2

B � (E � E0)
)

� loge

(√
E � E0

)
∼ C � loge

(√
E � E0

)
The dependence on E of the first term in the above expression can be ne-
glected since k2

B � (E�E0). As a result, it can be approximated by a constant
C. The dependence of the DOS is, therefore, determined by the second term
which diverges logarithmically at E � E0.

The results we have obtained in this problem show that the energy depen-
dence of the DOS is strongly dependent on the functional relation between
the energy E and the wave vector k which, in turn, depends strongly on the
dimensionality of the k-space and real space under consideration.

Solution to Problem 6.7

(c) A good starting point to solve this problem would be [6.44], the classic pa-
per by R.J. Elliott, on the intensity of optical absorption by excitons. For direct
excitons the transition probability per unit time (P) for an incident radiation
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of energy density ρ(˘) and frequency ˘ is given by:

P � (1/�˘2)
∣∣〈i|HXR|f 〉

∣∣2‰(Ei � Ef � �˘)ρ(˘)

HXR represents the exciton-photon interaction, |i〉 the initial state with the
exciton in the ground state and |f 〉 the final state of the exciton. Ei and Ef

are, respectively, the exciton initial state and final state energies. For absorp-
tion to the continuum state of the exciton, the exciton wave functions |f 〉 are
expressed in terms of the hypergeometric functions within the hydrogenic ap-
proximation. These continuum wave functions can be decomposed into the
product of a radial wave function R(r) and the spherical harmonic. R(r) is
indexed by the exciton kinetic energy E and wave vector K and has the form:

R(r) �
[

exp(·/2)/V1/2(2l � 1)!
]
|°(l � 1 � i·)|(2Kr)l

· exp(iKr)F(�i· � l � 1; 2l � 2; �2iKr)

In this expression l is the usual angular momentum quantum number of the
exciton. · is a dimensionless quantity related to the exciton kinetic energy
E(K) � (�K)2/2M (M is the exciton mass) and the R∗ exciton Rydberg con-
stant (defined in (6.81)) by

· � (R∗/E)1/2.

° is the Gamma function and F is the confluent hypergeometric function.
Some references in physics textbooks on the hypergeometric functions are:
L.D. Landau and E.M. Lifshitz, Quantum Mechanics, Nonrelativistic Theory
(Addison-Wesley, Reading, MA 1958), Mathematical Appendices.
N.F. Mott and H.S.W. Massey, Theory of Atomic Collisions (Clarendon Press,
Oxford, 1949), second edition, p. 52.

They are defined by an infinite series of the form:

F(a; b; z) � 1 �
a
b

z
1!

�
a(a � 1)
b(b � 1)

z2

2!
� ...

From this definition it is clear that b cannot be 0 or a negative integer. For
b � 0 the series will converge for all finite z provided both a and b are real.
We are, however, only interested in direct and allowed excitonic optical tran-
sitions. As shown in (6.86) the transition matrix element depends on the mag-
nitude of the final exciton wave function |f 〉 at r � 0. For direct and allowed
transitions l � 0. The radial wave function of |f 〉 simplifies to:

R(0) �
[

exp(·/2)/V1/2]|°(1 � i·)|F(�i· � 1; 2; 0)

�
[

exp(·/2)/V1/2]|°(1 � i·)|
The magnitude of this radial function is therefore:

|R(0)|2 � [exp(·)/V] |°(1 � i·)|2

Our problem now is to calculate the magnitude of the Gamma function with a
complex argument. First, we will recall the properties of the Gamma function
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which can be found in standard textbooks on mathematical analysis:

°(1 � n) � n°(n);

°(n)°(1 � n) � / sin(n) provided 0 � n � 1;

and the Weierstrass definition of °(n):

1
°(z)

� zeÁz
∞∏

m�1

(
1 �

z
m

)
e� z

m .

In this definition Á is the Euler constant, equal to 0.5772157...
Next, we use analytic continuation to extend these results to complex ar-

guments. From the above results one can show that:

°(1 � i·) � (�i·)°(�i·)

and hence:

°(i·)°(�i·) �
�

(i·) sin(i·)

From the Weierstrass definition we can show that the complex conjugate of
1/°(i·) is 1/°(�i·). Combining these results together we find the magnitude
of the Gamma function with an imaginary argument:

|°(1 � i·)|2 � |·|2|°(�i·)|2 � ·/ sinh(·).

Substituting this result back into the relation between °(�i·) and °(1 � i·)
we obtain:

|°(1 � i·)|2 � |·|2|°(�i·)|2 � ·/ sinh(·).

Finally, when we substitute this expression for |°(1 � i·)|2 into |R(0)|2 we
obtain:

|R(0)|2 � · exp(·)/[V sinh(·)]

For a given photon energy �ˆ bigger than the energy gap Eg, energy conser-
vation leads to the relation: E � �ˆ�Eg and · � [R∗/(�ˆ�Eg)]1/2. We obtain
(6.153) when we replace · by Ù and use the atomic units for which � � 1.

Solution to Problem 6.11

(a) Let us start with the wave equation for the electric field: ∇2E �
(Â/c2)(�2E/�t2) � 0 in a medium with dielectric constant Â. Without loss of
generality we can assume that the interface corresponds to z � 0 and the vac-
uum is given by z � 0 and the solid fills z � 0. The wave equation applies to
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both media with the appropriate value for Â (keeping in mind that the dielec-
tric constant for a solid is a function of the frequency of the electromagnetic
wave ˆ). As trial we assume a plane wave solution:

E(x, y, z) � E0 exp[i(kxx � kyy � kzz � ˆt)].

Since both media are isotropic we can choose, without loss of generality, the
direction of propagation of the wave to be in the yz-plane. Substituting this
plane wave solution into the wave equation we obtain the dispersion relation:

k2
yn � k2

zn � (ˆ/c)2Ân where n � A ⇔ vacuum and n � B ⇔ solid.

For the special case where ÂB is � 0 and ÂA is � 0, k2
zB � (ˆ/c)2ÂB �k2

yB is also
� 0 and kzB is purely imaginary. We will define kzB � ±i· such that · is � 0.
If we choose kzB � �i· we obtain a solution whose dependence on z varies
as exp(·z). This solution represents a surface wave since its amplitude decays
exponentially to 0 as z decreases from 0 to �∞. However, the condition that
ÂB � 0 is necessary but not sufficient for a surface wave to exist.

To obtain the necessary and sufficient condition we will try to obtain the
relation between the wave vector of the wave ky and its frequency ˆ (ie the
dispersion relation). In the absence of any sources of charge and current at
the interface, Maxwell’s Equations for a nonmagnetic medium can be written
as:

div D � 0; div H � 0; curl E � �(1/c)�H/�t; and curl H � �(1/c)�D/�t,

where E and H are the electric and magnetic field vectors, respectively. In ad-
dition, we have to include the constitutive equation D � ÂBE for the solid.

The boundary conditions imposed on E, D and H by the Maxwell Equa-
tions become:

zx(EA �EB)�0; zx(HA �HB)�0; z · (DA �DB)�0 and z · (HA �HB)�0.

The subscripts A and B now denote the electric and magnetic fields at the
interface, lying within the vacuum and the solid, respectively. For example, EA

represents the electric field at z � 0 � ‰ with ‰ � 0 in the limit ‰ ⇒ 0.
Again we assume plane wave solutions of the form:

E and H ∼ exp[i(kyy � ˆt)] exp[ikzz]

for waves in both media but with the understanding that kzB � �i·, so that
these solutions represent surface waves. To determine the amplitudes of the
waves in the two media we apply the above boundary conditions. As an ex-
ample, we take the simple case of a transverse magnetic solution (a transverse
electric solution will give similar results):

Hy � Hz � 0 and

HxA � CA exp[i(kyAy � ˆt)] exp[ikzAz];

HxB � CB exp[i(kyBy � ˆt)] exp[ikzBz].
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The continuity of the tangential component of H at z � 0 implied by the
equation: zx(HA � HB) � 0 means that kyA � kyB (which we will now denote
as k||) and CA � CB.

The corresponding solution for E can be obtained from the equation:
curl H � �(1/c)�D/�t. Substituting the solution of Ey � F exp[i(k||y �
ˆt)] exp[ikzz] and Ez � G exp[i(k||y � ˆt)] exp[ikzz] for both media A and
B into the boundary conditions we obtain the following relations:

kzCn � (ˆÂn/c)Fn and k||Cn � (�ˆÂn/c)Gn, where n � A or B.

The continuity of Ey at z � 0 implies that

FA � FB or kzA/ÂA � kzB/ÂB,

while the continuity of Ez at the interface is trivially satisfied and generates
no additional nontrivial equation.

When this result is substituted back into the two expressions: k2
|| � k2

zA �

(ˆ/c)2ÂA and k2
|| � k2

zB � (ˆ/c)2ÂB to eliminate kzA and kzB one obtains an
expression containing k|| only:

ÂAÂB

(ˆ
c

)2
� k2

||(ÂA � ÂB)

By taking the square root of both sides of this equation we obtain the disper-
sion of the surface wave:

k|| �
(ˆ

c

) √
ÂAÂB

(ÂA � ÂB)

Since we have assumed ÂB � 0 and ÂA � 0, ÂAÂB is � 0. In order that k||
be real we find that another condition, ÂA � ÂB � 0, has to be satisfied. If
A is vacuum, then ÂA � 1 and we find that the medium B must satisfy the
condition that ÂB � �1.

For metals the dielectric function corresponding to the free electrons can
be written as (see Problem 6.3):

Â � 1
4Ne2

mˆ2 � 1 �
ˆ2

p

ˆ2

where ˆp is the bulk plasmon frequency of the metal. In analogy to the bulk
plasmon oscillation, the frequency ˆsp at which a long wave length plasma os-
cillation can exist on the surface of the metal is known as the surface plasmon
frequency. This frequency is given by:

ˆsp �

√
4Ne2

2m
�

ˆp√
2

We can obtain the surface plasmon dispersion by replacing ÂA with 1 and
ÂB with the expression for the dielectric function of the metal in the surface
electromagnetic wave dispersion. Notice that in the special case of k|| � ∞,
ÂB � �1 and the frequency of the surface electromagnetic wave is equal
to ˆsp. In this limit the photon (or electromagnetic wave in free space) and
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the surface plasmon are completely decoupled since the photon frequency
approaches infinity when the wave vector becomes infinite while the surface
plasmon frequency remains finite. Hence, retardation of the surface plasmon
is completely negligible. When k|| is finite there is coupling between the sur-
face plasmon and the photon and therefore the surface plasmon is known as
a surface-polariton in analogy to the phonon-polariton discussed in 6.4.1.

(c) The dispersion of the surface phonon-polariton can be obtained simply by
substituting ÂA by 1 and ÂB by the expression for the dielectric function of
the optical phonon (6.110b). To obtain the surface phonon frequency without
retardation we again set ÂB � �1. Since ÂB approaches �∞ for ˆ slightly
larger than ˆT and ÂB � 0 as ˆ approaches ˆL, ÂB must be equal to �1 at
some ˆ lying between ˆT and ˆL.

Solution to Problem 6.13

(a) In Figure 3.1 we found that the symmetry of the zone center optical
phonon of Si is °25′ (this is true for any material with the diamond crystal
structure, including Ge and gray tin). From the character table for the ° point
in the diamond structure (Table 2.16) we find that the wave function of the
°25′ optical phonon is triply degenerate. The crystal symmetry is lowered when
the crystal is subjected to a uniaxial strain causing the triply degenerate opti-
cal phonon to split.

For a [100] applied strain the crystal symmetry is lowered from cubic to
tetragonal. Before the crystal is strained the optical phonons whose vibrations
are polarized along the [100], [010] and [001] directions are degenerate. After
the crystal is strained, the vibrations polarized along the [100] axis are ex-
pected to have a different frequency than those polarized perpendicular to the
strain axis. Since the crystal remains invariant under S4 symmetry, operations
of the strained crystal (provided the four-fold axis of rotation is parallel to
the [100] axis) we expect the optical phonons polarized along the [010] and
[001] axes to remain degenerate. Thus we conclude that the optical phonon
in Ge will split into a doublet (polarized perpendicular to the strain axis) and
a singlet (with polarization parallel to the strain axis). The effect of an [100]
uniaxial strain on the symmetry of the q � 0 optical phonons is similar “in a
sense” to making the phonon wave vector q non-zero and directed along the
[100] axis. In both cases the triple degeneracy of the phonon is split. As shown
in Fig. 3.1, when the optical phonons propagate along the ¢ direction their
frequencies split into two, corresponding to symmetries ¢2′ and ¢5. The char-
acter table of the group of ¢ (Table 2.20) shows that ¢2′ is a singlet while ¢5
is a doublet. Using similar arguments we can show that a tensile stress along
the [111] direction will split the optical phonon in Ge into a doublet (§3) and
a singlet (§1). Whether the singlet or triplet phonon state will have a lower
frequency cannot be determined by symmetry alone. This and also the magni-
tude of the splitting between the singlet and triplet states can be determined
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if the phonon deformation potentials are known. See Problem 6.23 (new for
the 4th edition) for a discussion of the strain Hamiltonian for optical phonons.

(b) Along high symmetry directions in a zincblende-type crystal, such as
GaAs, the “nearly zone-center” optical phonons are split by the Coulomb in-
teraction between the transverse effective charges e∗ of the ions into TO and
LO phonons. The polarization of the LO phonon is along the direction of
propagation of the phonon while the TO phonon is polarized perpendicular to
the direction of propagation. When the crystal is subjected to a uniaxial strain,
it is necessary to specify the direction of the uniaxial strain relative to that of
the phonon propagation direction. Since, in many experiments, the strain di-
rection is perpendicular to that of the phonon propagation (the exceptional
case being a forward scattering experiment), let us consider the case of an
uniaxial strain along the [100] direction while the phonon wave vector q is
along the [010] direction. Without strain the TO phonon polarized along the
[100] and [001] directions are degenerate. After the application of the strain
along the [100] direction this degeneracy is removed. The LO phonon which
is polarized along [010] is non-degenerate and, therefore, cannot exhibit any
strain-induced splitting. The spring constant of the LO phonon involves two
contributions: a “short-range mechanical” restoring force which is equal to
that of the TO phonon and a long range Coulomb force which depends on e∗.
If the uniaxial strain does not affect the Coulomb force we expect the strain-
induced shift to be similar to that of the TO phonon along the [001] axis. In
case the strain changes also e∗ then we will find the strain-induced shift of the
LO phonon to be different from that of the [001] polarized TO phonon. Thus
the difference between the stressed-induced shifts of the LO phonon and TO
phonons in zincblende-type semiconductors can be used to study the effect of
strain on e∗. See the following references for further details:
(1) F. Cerdeira, C.J. Buchenauer, F.H. Pollak and M. Cardona: Stress-induced
Shifts of First-Order Raman Frequencies of diamond- and Zinc-Blende-Type
Semiconductors. Phys. Rev. B 5, 580 (1972).
(2) E. Anastassakis and M. Cardona in Semiconductors and Semimetals Vol.
55 (1998).

One should note that it is possible to separate the optical phonons into TO
and LO modes only for q along high symmetry directions. For the zincblende-
type semiconductors the only other direction (in addition to the [100] and
[111] directions) for which this is possible is the [110] direction. How a uni-
axial strain along the [110] direction will affect the optical phonons is left as
an exercise.

Solution to Problem 6.19(a)

Figure 6.44 shows the temperature (T) dependence of the direct band gap
(Eg) of Ge from 0 K to 600 K. This curve is representative of the temperature
dependence of the fundamental band gap of most direct gap semiconductors
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with the diamond- and zincblende-type crystal structure. The main features of
this curve are that: Eg is almost independent of T for T � 100 K and then de-
creases linearly with T at higher temperatures. There are a few notable excep-
tions to this behavior. For example, the direct band gap of IV–VI chalcogenide
semiconductors like PbS, PbSe and PbTe increases with T (see Fig. 6.14(b)).
The band gaps of the chalcopyrite semiconductors AgGaS2 and AgGaSe2 ex-
hibit a small blue-shift with increase in T at T � 100 K before decreasing with
T (see, for example, P.W. Yu, W.J. Anderson and Y.S. Park: Anomalous tem-
perature dependence of the energy gap of AgGaS2, Solid State Commun. 13,
1883 (1973)). Finally, the exciton energy (whose temperature dependence is
similar to the band gap at low T) in cuprous iodide shows a shallow minimum
as a function of T at low temperatures (see: J. Serrano, Ch. Schweitzer, C.T.
Lin, K. Reimann, M. Cardona, and D. Fröhlich: Electron-phonon renormal-
ization of the absorption edge of the cuprous halides. Phys Rev B 65 125110
(2002)).

Because the temperature dependence of Eg shown in Fig. 6.44 is highly
nonlinear, especially around the “knee” at 100 K, it is not possible to derive
(6.161) by simply expanding Eg(T) as a Taylor series in T. Instead, one has
to consider what are the effects of T on Eg. In general, T can change Eg via
one of these two effects. The first effect is associated with thermal expansion,
an effect that results from the anharmonicity of the lattice. In other words, it
involves phonon-phonon interaction (see, for example, C. Kittel: Introduction
to Solid State Physics (Wiley, New York, 1995)). Typically, at T ∼ 300 K this
effect is small since the coefficient of linear expansion is ∼ 5 × 10�6 K�1. For
a semiconductor with these typical parameters: bulk modulus ∼100 GPa and
pressure coefficient dEg/dP ∼ 100 meV/GPa (see Table of Physical Parame-
ters of Tetrahedral Semiconductors in the inside cover), the contribution of
this effect to the temperature coefficient is ∼0.15 meV/K. This is about a fac-
tor of 3 smaller than the typically observed value of dEg/dT ∼ 0.5 meV/K. The
second effect is present even if the size of the unit cell does not change with T
and arises directly from the electron-phonon interaction (whose Hamiltonian
Hep is discussed in Chapter 3). Of the two effects, usually the second effect
has a larger magnitude although they may have different sign. This happens in
the case of the indirect band gap of Si where the gap increases with thermal
expansion. One approach to estimate the electron-phonon effect is to assume
that Hep is weak enough for the change in Eg to be calculated by second-order
perturbation theory (see, for example, Eq. (2.38)). Using perturbation theory
one obtains:

Eg(T) � Eg(0) �
∑
i,k,q

〈g, 0|Hep|i,∓q〉〈i,∓q|Hep|g, 0〉
Eiq � Eg ± �ˆk,q

[
n(ˆk,q) �

1
2
± 1

2

]
In this expression |g, 0〉 represent the electronic initial state of the system
where an electron is in the conduction band and a hole is in the valence
band at zone-center. |i, q〉 represents an intermediate electronic state where
the electron-hole pair has been scattered to the state i by either emitting (�)
or absorbing (�) a phonon with wave vector q and belonging to the branch
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k. �ˆk,q and n(ˆk,q) are, respectively, the energy and occupancy of the this
phonon mode. The summation in the above expression is over all the interme-
diate electron states and phonon branches. Notice that energy does not have
to be conserved in the transition to the intermediate state (this is called a vir-
tual transition) while the wave vector has to be conserved: this has already
been taken into account in the summation. We have purposely put a minus
sign in front of the second term on the right hand side of the above equa-
tion to emphasize that this term is always positive. The reason is that Eg is
the lowest possible energy state of an electron-hole pair in the semiconduc-
tor (when excitonic effects are neglected). Most of the possible intermediate
states will have higher energies than Eg so the energy denominator will usu-
ally be positive (one exception is when the electron or hole scatters back into
the same initial state via the emission of a zone-energy optical phonon). The
above equation can be simplified by considering only electron-hole pair states
near the band gap since the energy denominator will make contributions from
the high energy states negligible. In addition, one can limit the summation to
only intraband scattering processes (ie |i〉 involves the same bands as those
forming the gap). This approach is sometimes referred to as the Fan mecha-
nism after H.Y. Fan (H.Y. Fan: Temperature Dependence of the Energy Gap
in Semiconductors. Phys. Rev. 82, 900 (1951)). Another simplification is to as-
sume that one phonon branch dominates the scattering. For example, the lon-
gitudinal optical phonon in zincblende-type semiconductors tends to have the
strongest interaction with the electron-hole pairs near the band gap via the
Fröhlich interaction. Using this approximation, one can limit the summation
over phonon modes to essentially over one “average phonon mode” with en-
ergy �ˆ. The net result of all the above simplifications is that:

Eg(T) � Eg(0) � A[n(ˆ) � 1] � An(ˆ) � Eg(0) � A[2n(ˆ) � 1]

where the phonon occupancy n(ˆ) is given by:

n(ˆ) �
1

exp(�ˆ/kBT) � 1

kB being the Boltzmann constant and A is a negative parameter. The term
[2n(ˆ) � 1] results from the probabilities for phonon emission (proportional
to n � 1) and absorption (proportional to n). Usually this expression gives a
fairly good fit to the experimental result provided ˆ is adjustable.

One should note that in some special cases the interband scattering con-
tributions to the electron-phonon scattering may become as important as the
intraband scattering. When this happens it becomes difficult to estimate even
just the sign of the electron-phonon effect because the interband scattering
terms can be either positive or negative. In principle, scattering to the lower
energy band tends to increase the gap while scattering to the higher energy
bands will decrease the gap. Which process will win out may depend on the
detailed band structure and the electron-phonon interaction. In other words, it
is difficult to calculate the temperature dependence of the band gap from first
principles.
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How to explain a Positive �Eg/�T?

We note that the above approach based on a second-order perturbation treat-
ment of electron-phonon interaction tends to predict a decrease in Eg with
increase in T. Clearly a different approach is necessary to explain the increase
in Eg with T observed experimentally in the lead chalcogenides (even after
deduction of the effect of thermal expansion) . This approach has been pro-
posed by Antončik [E. Antončik, Czech. J. Phys. 5, 449 (1955)]. The main idea
of this approach is that one starts with the pseudopotential method for calcu-
lating the energy gap Eg at T � 0 (to be more precise, with the atoms at rest,
so as to avoid quantum-mechanical zero-point vibrations) and then calculates
Eg(T) from the temperature dependent pseudopotential form factors Vg. Let
us assume that we define the T � 0 pseudopotential form factors by (2.25):

Vg(0) �
1
ø

∫
ø

V(r) exp[�ig · r]dr

At T �� 0 we would expect that both V(r) and the unit cell volume ø would
change with T. Again, we neglect the effect of thermal expansion on the lat-
tice constant so ø remains unchanged. Under this assumption the effect of T
is simply to cause the atoms to vibrate with amplitude ¢R(t) about the T � 0
equilibrium position R0. In principle, this vibration will cause V to be a func-
tion of time t and hence Vg also becomes time dependent. Since the period
of atomic vibration is typically much shorter than the time of measurement
of Eg in an experiment, Eg can be assumed to depend on the time-averaged
pseudopotential 〈V〉 only. It is not easy to calculate this average 〈V〉 since we
do not know how V will change as a result of the atomic vibration. Even if
we can assume that the ion cores vibrate as a rigid body there is no reason to
assume that the charge distribution of the valence electrons will rigidly follow
the ion cores. One way to understand this is to think of what happens when
we shake an egg. The egg yolk will not necessarily follow the shell rigidly.
For simplicity, one can assume that the whole atom, including all the valence
electrons, will vibrate as a rigid body. This means that when the atom moves
from R0 to R0 � ¢R(t) the pseudopotential changes from V to V ′ where V′

is related to V simply by a displacement of the coordinate system by ¢R(t).
If we define a new coordinate system so that the origin is displaced by ¢R(t)
and a point r in the old system becomes: r′ � r � ¢R in the new system then
V′(r′) � V(r). The new pseudopotential form factor Vg(T) is given by:

Vg(T) �
1
ø

∫
ø

V′(r) exp[�ig · r]dr

�
1
ø

∫
ø

V(r′) exp[�ig · (r′ � ¢R)dr′

�
[exp ig · ¢R]

ø

∫
ø

V(r′) exp[�ig · r′]dr′
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The terms inside the integral are now time-independent and so the time aver-
age of Vg(T) is given by:

〈Vg(T)〉�〈exp(ig · ¢R)〉Vg(0)�〈1 � (ig · ¢R) � (1/2)(ig · ¢R)2 � ...〉Vg(0).

Since g ∼ 1/lattice constant and ¢R � lattice constant, g · ¢R � 1. The above
expansion can be terminated at the first non-zero term beyond 1. The time
average of the first order term involving ¢R is zero for sinusoidal oscillations.
Thus the first non-trivial and non-zero term is the second order term: 〈(g ·
¢R)2〉. It is convenient to write 〈Vg(T)〉 as:

〈Vg(T)〉 ∼ [1 � (1/2)〈(g · ¢R)2〉]Vg(0)

∼ exp[�〈(g · ¢R)2〉/2]Vg(0)

� exp[�g2¢R2/6]Vg(0).

We note that the exponential factor exp[�g2¢R2/3] is known as the Debye-
Waller Factor (see, for example, C. Kittel: Introduction to Solid State Physics
(Wiley, New York, 1995), Appendix A). In studying the effect of temperature
on the x-ray diffraction pattern, it was found that the sharpness of the x-ray
peaks is not changed by the thermal vibration of the atoms. Instead, only the
intensities of the peaks decrease while a constant background increases. The
explanation for this result is that the thermal vibration does not change the
time-averaged lattice constant and hence leaves the sharpness of the diffrac-
tion peaks unchanged. However, the thermal vibration decreases the magni-
tude of the structure factors causing the intensity to decrease by a Debye-
Waller Factor. For the same reason, the magnitude of the pseudopotential
form factors always decreases when the temperature increases. This decrease
can lead to either a decrease or an increase in energy gaps which are formed
when the pseudopotentials are turned on. It is easy to see how this decrease
in pseudopotential form factors with T can cause the band gap Eg to decrease.
What is not so clear is how it may lead to an increase in Eg under some spe-
cial circumstances. In the case of PbTe and PbSe the positive �Eg/�T has been
explained, at least partially, by this “Debye-Waller” mechanism.

Additional References:

Y.W. Tsang and M.L. Cohen: Calculation of the temperature dependence of the energy
gaps in PbTe and SnTe. Phys. Rev. B 3, 1254 (1971).

M. Schlüter, G. Martinez and M.L. Cohen: Pressure and temperature dependence of elec-
tronic energy levels in PbSe and PbTe. Phys. Rev. B 12, 650 (1975).

P.B. Allen and M. Cardona: Temperature dependence of the direct gap of Si and Ge.
Phys. Rev. B 27, 4760 (1988). This paper includes both the Fan and “Debye-Waller”
mechanisms.

M. Cardona and M.L.Thewalt: Isotope effects on the optical spectra of semiconductors.
Rev Mod Phys. 77, 1173 (2005).

Ibrahim et al.: Temperature dependence of the optiocal response: Applications to GaAs
using first-principles molecular dynamics. Phys Rev. B 77, 125218 (2008)

A. Marini: Ab initio finite temperature excitons, Phys. Rev. Letters 101, 106405 (2008).
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Solution to Problem 6.21

The ratio ¢0/¢1 in Table 6.2 is not close to 3/2 for the two compounds GaN
and InP. To understand why the ratio of the spin-orbit (S-O) splittings deviates
from 3/2 for these compounds we have to find the reason why this ratio should
be equal to 3/2 in the first place. Quantum mechanics teaches us that the S-O
coupling is a relativistic effect described by the Hamiltonian: (see (2.45a)):

HS�O � [�/4c2m2][(∇Vxp) · Û]

Where V is the potential seen by the electron, p and Û are, respectively, the
electron momentum operators and the Pauli spin matrices. In atoms the nu-
clear potential has spherical symmetry so one can express the S-O coupling in
terms of the electron orbital angular momentum operator L and spin operator
S as:

HS�O � ÏL · S

where Ï is known as the S-O coupling constant. In cubic semiconductors with
the zincblende and diamond structure we find that the top valence band wave
functions at k � 0 are “p-like”. As a result we can “treat” these wave func-
tions as if they were eigenfunction of L with eigenvalue L � 1. Within this
model, we can define a total angular momentum operator J � L � S. Fol-
lowing the results of atomic physics we symmetrize the k � 0 valence band
wave functions to correspond to J � 3/2 and J � 1/2. Using the relation that
L · S � (1/2)[J2 � L2 � S2] we can show that:

〈J � 3/2|HS�O|J � 3/2〉 � Ï/2 while 〉J � 1/2|HS�O|J � 1/2〉 � �Ï.

The S-O splitting ¢0 given by the separation between the J � 3/2 and 1/2
states is, therefore, 3Ï/2. In atoms the parameter Ï depends on the atomic or-
bitals involved. In crystals, we have pointed out on p. 59 that the conduction
and valence band wave functions contain two parts: a smooth plane-wave like
part which is called the pseudo-wave function and an oscillatory part which
is localized mainly in the core region. Since HS�O depends on ∇V most of
the contribution to Ï comes from the oscillatory part of the wave function.
Hence we expect that HS�O in a semiconductor will depend on the S-O cou-
pling of the core states (p and d states only since s states do not have S-O
coupling) of its constituent atoms. In the cases of atoms with several p and
d core states, the outermost occupied states are expected to make the biggest
contribution to Ï of the conduction and valence bands. This is because the
deeper core states tend to be screened more and hence contribute less to
the valence and conduction electrons. For example, in Ge atoms the deep 2p,
3d and 3p cores states all have larger S-O constants than the outermost 4p
state. However, most of the S-O interaction in the valence band of Ge crystal
at k � 0 comes from the 4p atomic state. For the diamond-type semicon-
ductors, such as Si and Ge, one may expect that S-O coupling in the crys-
tal is related to the S-O coupling of the outermost occupied atomic p states
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by a simple constant Í. The valence electron wave functions in an atom are
normalized to the total number of valence electrons/atom over the entire
space. However, the valence band wave functions in a crystal are normal-
ized over a unit cell by the total number of valence electrons/unit cell. Thus,
the probability of finding a valence electron near the atomic nuclei will be
enhanced in the crystal leading to a stronger S-O coupling. In other words:
¢crystal � Í¢atom with Í � 1. As an example, ¢atom � 0.219 eV for the 4p
electrons in Ge (see, for example, the Atomic Spectra Database at the NIST
website: http://physics.nist.gov/PhysRefData/ASD/index.html). The correspond-
ing ¢0 for the p-like top valence band at k � 0 in Ge crystal is 0.296 eV. Thus,
the enhancement factor Í is about 1.4, which is quite substantial.

For a binary compound semiconductor, like GaAs, we expect that that
S-O coupling for the valence electrons will depend on the S-O coupling of
the outermost filled core electrons in both the cation and the anion. A simple
approach would be to assume that ¢crystal � Í1¢atom1 � Í2¢atom2. If the elec-
tron spends equal time around the cation and the anion one would expect the
ratio Í1/Í2 � 1. In ionic compounds this is usually not the case. For example,
in GaAs the valence electrons spend more time around the As atoms so one
expects that ÍAs/ÍGa � 1. Indeed a ratio of ÍV/ÍIII � 1.86 has been suggested
for III-V compounds. An even larger ratio is expected for the II-VI semicon-
ductors.

So far we have been considering the effect of HS-O on the degenerate p-
like valence band states at the zone center. When the electron wave vector k
increases from the zone center along a general direction, one would not ex-
pect the above model based on a spherical potential to be valid. Hence one
may not be able to predict the contribution of HS-O to the band splitting. Us-
ing the k · p approach, the orbital part of the Hamiltonian of the electron as
given by (2.35) is:

H � H0 � [(�k)2/2m] � (�/m)k · p

Where H0 is the Hamiltonian for k � 0. The k · p term now appears as an
additional contribution to the crystal potential term and as a result HS�O be-
comes k dependent. Instead of changing the crystal potential in response to
the non-zero value of k we can interpret this effect as the electron now mov-
ing with velocity v � �k/m. We will choose a moving coordinate system O′

which is traveling with the electron (the electron rest frame). In this mov-
ing frame O′ the spin-orbit Hamiltonian is again given by: HS�O(v � 0) �
[(/4c2m2][(∇V × p) · Û]. However, the electron momentum p′ in the station-
ary (or laboratory frame) O is now given by p′ � p � �k. Thus the spin-orbit
Hamiltonian in the frame O is:

HS�O(k) � [h/4c2m2][(∇V × p′) · Û]

� [�/4c2m2][(∇V × p) · Û � (∇V × �k) · Û]
In this Hamiltonian V and p both refer to the electron rest frame and, there-
fore, are calculated just as for the zone center electrons. In general, the second
term is much smaller than the first one. The reasoning is like this: when the
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electron is close to the core where V is large the electron wave function ˇ
will be varying rapidly over a distance which is of the order of the Bohr ra-
dius. On the other hand, (1/k) is of the order of the lattice constant which is
much larger than the Bohr radius. Therefore 〈ˇ|p|ˇ〉 ∼ 〈ˇ|∇|ˇ〉 tends to be
much larger than �k (see, for example, E.O. Kane: Energy band structure in
p-type germanium and silicon. J. Phys. Chem. Solids 1, 83 (1956)). When the
second term is neglected we obtain again (2.45a) for the S-O coupling. How-
ever, for a general point k in the Brillouin Zone one finds the k · p term to be
the dominant interaction which mixes the k � 0 electron states so the effect
of HS�O on the electrons is no longer discernible. There are two exceptional
cases though. They are when k is along the [111] or [100] directions.

In Sections 2.4.1 and 2.4.2 we learn that the group of § in both the
zincblende and diamond structure has three-fold rotational symmetry about
the [111] axis. This symmetry is high enough that in the diamond-type semi-
conductor the triply degenerate p-like wave functions at k � 0 splits into a
doublet with symmetry §3 and a singlet with symmetry §1. See Fig. 2.10 for
the band structure in Si neglecting S-O splitting and Table 2.12 for the charac-
ter table (same for diamond and zincblende crystals along the [111] direction
as long as k is inside the Brillouin zone). This degeneracy of the §3 state can
be split by the S-O coupling.

In fact, we can model the valence band electron in this case as a “p-like”
electron in a cylindrical potential. In case of the L � 1 state we expect the
three degenerate states to be split into a doublet with Lz � ±1 and a sin-
glet with Lz � 0 We will assume that the axis of quantization of the angular
momentum vector L to be the [111] axis which will be labeled as the z-axis
to simplify the notation. We can identify the doubly degenerate §3 states as
corresponding to the Lz � ±1 states. The wave functions for the §3 state can
then be represented as [|X〉 � i|Y〉]/

√
2 and [|X〉 � i|Y〉]/

√
2 to correspond to

the Lz � ±1 states. Again |X〉 and |Y〉 are shorthand notations for the two §3
wave functions which transform into each under the symmetry operations of
the group of § like the spatial coordinates x and y. In this coordinate system
the S-O interaction is given by: HS�O � Ï′L · S � Ï′LzSz. We will assume at
first that the spin-orbit coupling constant Ï′ is not the same as Ï. We can show
that:

〈Lz � 1, Sz � 1/2|HS�O|Lz � 1, Sz � 1/2〉 � Ï′/2 while

〈Lz � �1, Sz � 1/2|HS�O|Lz � �1, Sz � 1/2〉 � �Ï′/2.

Similarly 〈Lz � �1, Sz � �1/2|HS�O|Lz � �1, Sz � �1/2〉 � Ï′/2 while
〈Lz � 1, Sz � �1/2|HS�O|Lz � 1, Sz � �1/2〉 � �Ï′/2.

In other words, along the [111] direction the Jz � ±3/2 states are split
from the Jz � ±1/2 states by the spin-orbit coupling. The magnitude of the
S-O coupling ¢1 is equal to Ï′. If Ï � Ï′ then we obtain the “two-thirds rule”:
¢1/¢0 � 2/3.

The reason why one may expect Ï to differ from Ï′ is that the k · p per-
turbation term mixes the k � 0 wave functions. For example, the k · p term
will mix the anti-bonding °15 conduction band wave function with the bonding
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°25′ valence band wave function. The anti-bonding and bonding states sample
different amount of the core potential and hence contribute slightly different
amounts to the S-O coupling. This mixing of the k � 0 wave functions by the
k·p term explains the small deviations from the “two-thirds rule” in Si and Ge.
In case of III-V semiconductors the situation is complicated by the fact that
there are two kinds of atoms which sometimes have quite different atomic S-
O coupling strengths. In a simple-minded approach one can assume that the
coefficients Í1 and Í2 are now k dependent so that we can write:

¢1 � (2/3)[Í1(k)¢atom1 � Í2(k)¢atom2] with ¢0 � Í1(0)¢atom1 � Í2(0)¢atom2.

Assuming that the admixture of anti-bonding states to the §3 wave functions
is small we can expand Í1(k) ∼ Í1(0) � ¢Í1 and similarly Í2(k) ∼ Í2(0) � ¢Í2.
¢Í1 (or ¢Í2) represents the change in Í1 (or Í2) as a result of the variation
in the probability of finding the electron near the atom1 (or atom 2) as k
increases along the [111] direction. To first order, we expect that a decrease in
Í1 will be compensated by an increase in Í2. Thus we conclude that:

¢1/¢0 � (2/3)[1 � ¢Í1(¢atom1 � ¢atom2)/¢0].

This argument shows that when the atomic S-O couplings for the two atoms in
the unit cell are quite different one would expect a larger deviation from the
“two-thirds rule”. Since the size of the atomic S-O coupling depends mainly
on the atomic number Z, we expect the “two-thirds rule” not to be valid when
the cation and anion have significantly different Z. This explains why ¢0/¢1
for GaN and InP are not ∼ 1.5. In both compounds the cation has much larger
Z than the anion. For the same reason one would expect the “two-thirds rule”
not to be valid for BAs where Z for the anion is much larger than that of the
cation. Although there is no experimental determination of the S-O couplings
in BAs, there are reliable theoretical calculations of the band structure of BAs.
See, for example, Gus L.W. Hart and Alex Zunger: Electronic structure of
BAs and boride III-V alloys. Phys. Rev. B 62, 13522 (2000). The theoretical
values of ¢0 and ¢1 are, respectively, 0.22 and 0.1 eV with a ratio of ¢0/¢1 ∼
2.2.
Based on the above analysis, one may expect the same arguments to apply to
the S-O coupling for k||[100]. Along the [100] direction the triply degenerate
p-like wave functions are split into a doublet with symmetry ¢5 and a sin-
glet with symmetry ¢2′ as shown in Fig. 2.10. However, the “two-thirds rule”
does not apply along the [100] direction even in the diamond-type semicon-
ductors. The reason is: the group of X in the diamond structure contains the
non-symorphic operation TÛz. As a result, all the states at the X point are
doubly degenerate (not including the spin degeneracy) as shown on p. 56-57.
This means that the effect of S-O coupling has to vanish at the zone boundary
along the [100] direction. Similarly the ¢5 state has to become doubly degen-
erate as k ⇒ 0. As a result, the splitting of the ¢5 state induced by the S-O
interaction becomes smaller than (2/3)¢0 and dependent on k. This large qual-
itative difference in the effect of HS-O on the valence bands along § and ¢ is
clearly shown in the band structure of Ge in Fig. 2.13.
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Solution to Problem 7.1

For simplicity, we assume that the two levels n and m (with energies En and
Em) are both non-degenerate, although it is rather straightforward to gener-
alize the result to the degenerate case. Let Nn and Nm be, respectively, the
occupancies of these two levels. First, for the sake of argument, let us assume
that there is no stimulated emission. If the rate of spontaneous emission from
level n to level m is Anm then the rate of depopulation of the level n via emis-
sion is: NnAnm since Nn of the level n states are occupied. Similarly, if the
rate of absorption from level m to level n induced by a radiation field of fre-
quency Ó and energy density u(Ó) is uBmn then the rate of depopulation of
level m due to absorption is: uBmnNm. At thermal equilibrium the principle of
detailed balance (see p. 208) requires that the two rates be equal. This means:

NnAnm � uBmnNm or Nn/Nm � uBmn/Anm

At thermal equilibrium the ratio of the occupancies: Nn/Nm has to be equal to
exp[�(En �Em)/kBT] at temperature T according to the Boltzmann’s distribu-
tion law (kB is Boltzmann’s constant). Equating these expressions for Nn/Nm

one obtains:

uBmn/Anm � exp[�(En � Em)/kBT]

Combining these results one obtains:

u(Ó) � [Anm/Bmn] exp[�(En � Em)/kBT]

which, after equating hÓ to (En � Em), disagrees with Planck’s Radiation Law:

u(Ó) �
8hÓ3n3

r

c3{exp[hÓ/(kBT)] � 1}
except for kBT � hÓ.

The way Einstein removed this disagreement between the classical result
and Planck’s Radiation Law is to postulate that, in addition to the sponta-
neous emission processes between level n and m, there are stimulated emission
processes induced by u(Ó). If we denote the rate of stimulated emission as Bnm

then the only change we have to make to include the stimulated emission pro-
cesses is to replace the rate of depopulation of level n by: Nn(Anm � uBnm).
Applying the principle of detailed balance again we obtain:

Nn/Nm � uBmn/(Anm � uBnm).
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Equating the two expressions for Nn/Nm one obtains now:

u(Ó) � Anm/{Bmn exp[(En � Em)/kBT] � Bnm}.

This expression becomes equal to Planck’s Radiation Law when one assumes
that:

Bmn � Bnm and
Anm

Bnm
�

8hÓ3n3
r

c3

Solution to Problem 7.5

According to Problem 3.7 the wurtzite crystal structure possesses 4 atoms
per primitive unit cell (double the number in the zincblende structure). As
a result, there are 9 zone-center optical phonon modes with symmetries:
°1⊕2°3⊕°5⊕2°6 (or A1⊕2B1⊕E1⊕2E2 using the C6v point group notation).
One should note that the E modes are doubly degenerate and not all of these
optical phonons are Raman-active.

To determine the symmetry of the Raman-active phonon modes we note
that, unlike absorption, Raman scattering involves two electromagnetic (EM)
waves: one incident and one scattered wave. If we want to annihilate a pho-
ton and generate a phonon, as in optical absorption, then the phonon must
have the same symmetry as the photon (which belongs to the same represen-
tation as a vector). We have already obtained this result as one of the many
applications of group theory (see Section 2.3.4). In Raman scattering we anni-
hilate the incident photon and create a scattered photon with the generation
or annihilation of a phonon. The symmetry of the phonons involved is going
to be the same as in the case where two photons are annihilated to generate
one phonon (i.e. a two-photon absorption process). The reason is that the ma-
trix elements describing the photon creation and annihilation processes are the
same except for a term involving the photon occupancy factor Np (see Section
7.1). Thus the representation of the phonon (or phonons) involved in Raman
scattering must be contained within the direct product of the representations of
two vectors.

For example, a vector in zincblende-type crystals belongs to the °4 irre-
ducible representation. Thus the representation of the Raman-active phonons
must belong to the direct product:

°4 ⊗ °4 � °1 ⊕ °2 ⊕ °4.

Although the zone-center optical phonons in zincblende-type crystals have °4
symmetry, Raman scattering from phonon modes with the °1 and °2 symme-
try can also be observed in the two-phonon spectra of zincblende-type crystals.
See, for example, Fig. 7.22 for the various symmetry components of the two-
phonon Raman spectra of Si.
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To determine the symmetry of the Raman-active phonons in wurtzite crys-
tals, we need to determine the irreducible representations of a vector in the
wurtzite structure. From Problem 3.7 we find that the character table for the
wurtzite structure becomes identical to that of point group C6v in the limit
when the phonon wave vector approaches zero. Assuming that one chooses
the z-axis to be parallel to the C6 axis of this point group or the c-axis of the
wurtzite structure (this axis will also be labeled as 3 in subsequent tensor sub-
scripts, while the x and y axes will be labeled as 1 and 2, respectively). Since
the largest dimension of irreducible representations in C6v is 2, the representa-
tion of a vector in 3D (with components x, y and z) has to be reducible. One
way this representation can be reduced is to separate {z} from {x, y}. {z}
must belong to the A1 irreducible representation since it is invariant under all
the symmetry operations of C6v. The remaining components {x} and {y} form
a 2D irreducible representation. Whether this irreducible representation is of
symmetry E1 or E2 can be decided by applying to {x, y} the C2 operation (a
rotation by 180◦ about the z-axis): xy → xy. The character for this operation
is �2. Hence {x, y} belongs to the E1 irreducible representation. The above
result can be summarized as: the irreducible representations to which a vector
in the group C6v belongs are A1 and E1.

Based on this result we can predict that the zone-center phonons of sym-
metry °1 and °5 in the wurtzite crystal (corresponding to A1 and E1 represen-
tations, respectively, in C6v) are infrared-active. To obtain the symmetry of the
corresponding Raman active phonons we have to calculate the direct product:
(A1 ⊕ E1) ⊗ (A1 ⊕ E1). By inspection of the character table of C6v in Problem
3.7 it can be shown that: E1 ⊗E1 � A1 ⊕A2 ⊕E2. Thus one obtains the result:
(A1 ⊕ E1) ⊗ (A1 ⊕ E1) � 2A1 ⊕ A2 ⊕ 2E1 ⊕ E2.

In summary, in systems with C6v point group symmetry the Raman-active
phonon modes must belong to the A1, A2, E1 or E2 irreducible representa-
tions. Similarly, the Raman-active zone-center optical phonons in the wurtzite
crystal structure must belong to the °1, °2, °5, or °6 irreducible representa-
tions.

Thus, of all the 9 zone-center optical phonons in the wurtzite structure the
ones with °1 and °5 symmetries are both infrared and Raman active; the two
phonons with °6 symmetry are only Raman-active while the two phonons with
°3 symmetry are neither infrared nor Raman active (such modes are said to
be silent).

To obtain the Raman tensor for the Raman-active phonons we have to
derive, in principle, the form of the phonon displacement vector Qk and the
electric susceptibility tensor ¯ and then apply Eq. (7.37) to obtain the Raman
tensor Rij. In reality, we can choose any basis function in lieu of the phonon
displacement vectors, provided they belong to the same irreducible represen-
tation.

As, an example, let us consider the °1 optical phonon. As shown in Prob-
lem 3.15 the third order electromechanical tensor (em) in the wurtzite crys-
tal has only three linearly-independent and non-zero elements: (em)15, (em)31,
and (em)33. Since the third rank tensor (�¯/�Q) has the same symmetry prop-
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erties as (em) we expect that its linearly-independent and non-zero elements
are: c � (�¯/�Q)15, a � (�¯/�Q)31, and b � (�¯/�Q)33. The number of non-zero
elements for the °1 optical phonon will be further reduced since we can put
Q1 � Q2 � 0 and Q3 � z. Thus the second rank Raman tensor is obtained by
the contraction of (�¯/�Q) with (0, 0, z):

(0 0 z)

⎛⎝ 0 0 0 0 c 0
0 0 0 c 0 0
a a b 0 0 0

⎞⎠ �

⎛⎜⎜⎜⎜⎜⎝
az
az
bz
0
0
0

⎞⎟⎟⎟⎟⎟⎠ ⇔

⎛⎝ a 0 0
0 a 0
0 0 b

⎞⎠ z

The final form of the Raman tensor for the °1 mode, after dividing by the
phonon amplitude z, is therefore:

Rij(°1) �

⎛⎝ a 0 0
0 a 0
0 0 b

⎞⎠
The Raman tensor for the 2D °5 modes can be obtained similarly by assuming
that Q � (x, 0, 0) for one of the two modes and (0, y, 0) for the remaining
mode. The second rank Raman tensor obtained by the contraction of (�¯/�Q)
with (x, 0, 0) is:

(x 0 0)

⎛⎝ 0 0 0 0 c 0
0 0 0 c 0 0
a a b 0 0 0

⎞⎠ �

⎛⎜⎜⎜⎜⎜⎝
0
0
0
0
cx
0

⎞⎟⎟⎟⎟⎟⎠ ⇔

⎛⎝ 0 0 c
0 0 0
c 0 0

⎞⎠ x .

The final form of the Raman tensor for the °5(x) mode, after dividing by the
phonon amplitude x, is therefore:

Rij(°5(x)) �

⎛⎝ 0 0 c
0 0 0
c 0 0

⎞⎠ .

Similarly, the Raman tensor for the °5(y) mode is:

Rij(°5(y)) �

⎛⎝ 0 0 0
0 0 c
0 c 0

⎞⎠ .

Finally, the °6 mode is also doubly degenerate. However, there is an impor-
tant difference between this mode and the °5 mode. While the °5 mode is
infrared-active and can be represented by the components of a vector, the °6
mode is not infrared-active and it cannot be represented by a vector (it can
be represented instead by a pseudovector). As a result, we cannot deduce the
symmetry of the Raman tensor for the °6 mode by taking advantage of the
known symmetry of the third rank tensor in the wurtzite structure. Instead,
we have to derive the symmetry of the Raman tensor by first finding some
basis functions to represent the °6 modes. It is easier to do this for the C6v
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point group. We notice that one important difference between the E1 and E2
irreducible representation is that under a C2 operation the character of the
E1 mode is �2 while the corresponding character for the E2 mode is 2. This
suggests that both basis functions of the E2 mode remain invariant under a
C2 operation, On the other hand, the character for the E2 mode under a C6
operation is �1 while that of the E1 mode is 1.

Functions of x and y that remain invariant under a rotation by 180◦ about
the z-axis (C2 symmetry operation) are: {xy and x2 � y2}. Thus, their charac-
ter is 2 for a C2 operation. To verify that these two functions indeed form an
irreducible 2D representation of E2 symmetry, we consider a 6-fold rotation
about the z-axis. Under this symmetry operation x and y transform according
to: x ⇒ (x/2) � (

√
3y/2) while y ⇒ �(

√
3x/2) � (y/2).

From these two transformation equations we find the character of the 2D
representation {x, y} to be: ( 1

2 ) � ( 1
2 ) � 1 consistent with the fact that the

symmetry of this representation is E1. Under the same symmetry operation
{xy, x2 � y2} transform according to the following equations:

xy ⇒ [(x/2) � (
√

3y/2)][�(
√

3x/2) � (y/2)] �

(
�

1
2

)
xy � (

√
3/4)(x2 � y2)

while

x2 �y2⇒ [(x/2)�(
√

3y/2)]2 �[�(
√

3x/2)�(y/2)]2 �
√

3xy�

(
�

1
2

)
(x2 � y2).

These results show that {xy, x2 � y2} forms a 2D representation whose charac-
ter is �1 under a C6 symmetry operation. It is easy to show that the characters
of {xy, x2 � y2} under the other symmetry operations of the C6v point group
are all consistent with the E2 irreducible representation. Thus {xy, x2 � y2}
form a set of basis functions for the E2 mode.

Next we have to deduce the non-zero and linearly independent elements
of the Raman tensor of a phonon belonging to the E2 irreducible representa-
tion. We will illustrate this process by showing that the Raman tensor compo-
nent R13 has to vanish. For simplicity, we will define f1 � xy and f2 � x2 � y2.
By definition

R13 ∼ (�¯13/�f1)f1 � (�¯13/�f2)f2

Consider the effect of a symmetry operation Ûd (reflection in the plane con-
taining the y and z axes): xyz → xyz. Under this operation f1 ⇒ �f1 while
f2 ⇒ f2. The second rank tensor component (¯13) ⇒ �(¯13). Thus R13 ⇒ �R13
under this symmetry operation and hence R13 � 0. By similar symmetry argu-
ments one can conclude that R23 � 0 also.

Next, we consider the diagonal term: R33 ∼ (�¯33/�f1)f1 � (�¯33/�f2)f2
Under the same operation Ûd, ¯33 is invariant while f1 changes sign. Thus

(�¯33/�f1) changes sign and hence is zero. By considering another reflection
operation in which f2 changes sign we can show similarly that (�¯33/�f2) � 0
and hence R33 � 0.

The derivation of the remaining non-zero components of the Raman ten-
sor for the E2 or °6 mode is left as an exercise.
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A Short Cut to the Calculation of the Raman tensor for the °6 mode

For readers who have worked out Problem 3.7(b) to derive the symmetry
properties of the stiffness tensor for the wurtzite crystal, the above deriva-
tion should look very familiar. The reason is that the stiffness component Cijkl

can be defined as:
Cijkl � �Xij/�ekl where Xij and ekl are, respectively, the second rank, symmetric
stress and strain tensors.

The two functions f1 � xy and f2 � x2 � y2 happen to be related to the
components of the second rank tensor:⎛⎝ xx xy xz

yx yy yz
zx zy zz

⎞⎠
We should note that the above second rank tensor is not symmetric. However,
as we have seen in the case of the strain tensor, we can always symmetrize
this tensor by defining a new function f ′1 � (xy � yx)/2. As long as we consider
symmetry operations within the C6 point group f1 and f ′1 will have the same
symmetry properties. This observation allows us to map f ′1 into exy or e6 and
f2 into exx � eyy or e1 � e2. Now we apply this mapping to the Raman tensor
components. For example, for the mode f1 the Raman tensor should be given
by:

Rij(f1) �

⎛⎜⎜⎜⎜⎜⎝
�¯11

�f1

�¯12

�f1

�¯13

�f1
�¯21

�f1

�¯22

�f1

�¯23

�f1
�¯31

�f1

�¯32

�f1

�¯33

�f1

⎞⎟⎟⎟⎟⎟⎠
Next we can apply the mapping: �¯ij/�f1 ⇔ �¯ij/�f ′1 ⇔ �Xij/�e6 � Ci6 where i �
1...6. From the results of Problem 3.7 we see that the only non-zero element
of the form Ci6 is C66. Thus, based on the results of Problem 3.7 we conclude
that the Raman tensor for the f1 mode has the form:

Rij(°6(xy)) �

⎛⎝ 0 d 0
d 0 0
0 0 0

⎞⎠
To obtain the Raman tensor for the f2 mode we map �¯ij/�f2 into (�Xij/�exx �
�Xij/�eyy) � (�Xij/�e1 � �Xij/�e2). Again using the results of Problem 3.7 we
conclude that all the off-diagonal elements of the Raman tensor vanish. The
only non-vanishing elements are of the form: (�X11/�e1 ��X11/�e2) � C11 �C12
and (�X22/�e1 ��X22/�e2) � C21 �C22 � �(C11 �C12). Thus, the Raman tensor
for the f2 mode is of the form:

Rij(°6(x2 � y2)) �

⎛⎝ e 0 0
0 �e 0
0 0 0

⎞⎠
In Problem 3.7 the stiffness tensor components C66 � (C11 � C12)/2. Similarly,
one can show that d � e.
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Solution to Problem 7.6

Figure 7.26(b) shows the scattering geometry used by Henry and Hopfield in
determining the polariton dispersion of GaP.

(a) From this figure it is clear that the minimum value of the polariton wave
vector q for a given value of kL and the scattering angle ı is: qmin � kL sin ı.

(b) From Pythagoras Theorem one obtains that q2 � a2 � q2
min. or a � [q2 �

q2
min]1/2. Since ks � a � kL cos ı one obtains the result: ks � kL cos ı � a �

kL cos ı � [q2 � q2
min]1/2.

(c) Using the result in (b) we can write:

kL � ks � kL � (kL cos ı � [q2 � q2
min]1/2)

� kL(1 � cos ı) � q[1 � (qmin/q)2]1/2

Since ˆL � hckL and ˆS � hckS (where c is the speed of light inside the
crystal) the Raman frequency ˆL � ˆS � hc(kL � ks) � ˆL(1 � cos ı) �
hcq[1 � (qmin/q)2]1/2. For q � qmin one obtains the dependence of ˆL � ˆS on
q as hcq. This is the reason why the series of broken curves in Fig. 7.26(a) are
“nearly” parallel straight lines for different values of ı. For q near qmin these
lines are not really straight lines since ˆL � ˆS depends on q as [q2 � q2

min]1/2.

Solution to Problem 7.8

(a) The solution to this part of the problem can already be found in Fig.
7.28. The results of translating the various Feynman diagrams into perturba-
tion terms can be found in (7.50). The correspondence between the diagrams
and the terms in (7.50) is simply: (a) ⇔ term 1; (b) ⇔ term 2; (c) ⇔ term 3
etc. Students are urged to work through each diagram to learn the “art” of
translating Feynman diagrams into perturbation theory expressions. In addi-
tion, notice how some of the terms are related by permutation of the time-
order of the vertices. This is a very convenient way to generate all the dia-
grams by first starting with a few diagrams and then use them to generate
all the remaining diagrams via permutation of the order in which the vertices
occur in time.

(b) To write down all the Feynman diagram contributing to a phonon-assisted
optical transition in an indirect bandgap semiconductor, let us start with the
schematic diagram in Fig. 6.16. The Feynman diagram corresponding to the
process labeled as (1) in Fig. 6.16 is:
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The diagram for the process labeled (2) is:

These diagrams translate into perturbation terms similar to that in (6.61).
In both of the above diagrams the vertex for the electron-photon interac-

tion occurs first. We can generate other diagrams in which the electron(hole)-
phonon interaction occurs first. For example, the following is a diagram in
which the electron-phonon interaction excites an electron from an interme-
diate valence band (°v′) to the conduction band (¢c) and then the photon
excites another electron from the final valence band state (°v) to fill the hole
in °v′ .

This diagram can also be translated into an expression similar to (6.61). How-
ever, since the electron-hole pair has to be created via emission of a phonon
the energy denominator in this case has the form: Ecv′ ��ˆphonon and this term
is highly non-resonant.

(c) The Feynman diagrams for two-phonon Raman scattering processes can be
divided into three types. These are labeled (a) to (c) in the following figure.
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All the diagrams have corresponding diagrams in which the holes are scattered
by phonons rather than electrons.

Solution to Problem 7.10

This problem is another illustration of the power of group theory. The yellow
exciton in Cu2O is electric-dipole forbidden. However, optical excitation via
an electric quadrupole transition of representation °�

5 (or °�
25) is allowed. This

opens up the possibility of a resonant Raman process in which the incident
photon excites the yellow exciton via an electric quadrupole transition, the
exciton is scattered via the creation or annihilation of a phonon and finally a
scattered photon is emitted via an electric dipole transition of representation
°�

4 (or °�
15). According to the Matrix Element Theorem the phonon in this

case should have the same representation as the direct product of °�
5 and

°�
4 (see also the solution to Problem 7.5). The character table for the space

group of Cu2O (O4
h) is nonsymmorphic (see Problem 3.1) but its factor group

isomorphic to the factor group of the space group of diamond (O7
h). Thus we

can use the characters for the space group of diamond in Table 2.16 to obtain
the characters of °�

5 ⊗ °�
4 :

{E} {C2} {S4} {Ûd} {C3} {i′} {i′C2} {i′S4} {i′Ûd} {i′C3}
°�

5 3 �1 �1 1 0 3 �1 �1 1 0
°�

4 3 �1 �1 1 0 �3 1 1 �1 0
°�

5 ⊗ °�
4 9 1 1 1 0 �9 �1 �1 �1 0

By inspection we can show that the direct product: °�
5 ⊗°�

4 is reducible to the
direct sum: °�

1 ⊕ °�
3 ⊕ °�

4 ⊕ °�
5 . When combined with the results of Problem

3.1 we find that all the odd-parity phonons in Cu2O should become Raman-
active via this quadrupole-dipole transition mechanism whenever the incident
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or scattered photon is resonant with the electric-quadrupole allowed yellow
exciton. An example of the application of this resonant Raman process involv-
ing the odd-parity °�

3 (or °�
12) phonon mode to map out the yellow excitonic

series in Cu2O is shown in Fig. 7.34.

Solution to Problem 7.12

For a [100] uniaxial stress of magnitude X the strain tensor is given by (as
shown in Problem 3.4):

eij �

⎛⎝ S11 0 0
0 S12 0
0 0 S12

⎞⎠ X

In a diamond-type semiconductor the zone-center optical phonons are three-
fold degenerate at X � 0. Under the [100] uniaxial stress the crystal symmetry
is lowered to tetragonal so we expect the phonon to be split into a singlet and
doublet as discussed also in Problem 6.13. To obtain the magnitude of the
stress-induced shift in the phonon frequencies we will first substitute the ele-
ments of the above strain tensor into the determinant of the secular equation
given in Problem 6.23. We obtain:∣∣∣∣∣∣

(pS11 �2qS12)X �Ï 0 0
0 [pS12 �q(S11 �S12)]X �Ï 0
0 0 [ p( S12 � ... � S12)]X

∣∣∣∣∣∣
The three solutions of the corresponding secular equations consist of a non-
degenerate (singlet) solution:

Ï1 � ˆ2
1 � ˆ2

0 � X(pS11 � 2qS12)

and a doubly degenerate (doublet) solution:

Ï2 � ˆ2
2 � ˆ2

0 � X[pS12 � q(S11 � S12)].

Under the small strain (and therefore low stress) condition we have assumed,
we can approximate Ï � ˆ2 � ˆ2

0 by (ˆ � ˆ0)(ˆ � ˆ0) ∼ 2ˆ0(ˆ � ˆ0). The
shifts of the singlet and doublet optical phonons are thus given, respectively,
by:

¢ˆs �
X

2ˆ0
[pS11 � 2qS12]

and

¢ˆd �
X

2ˆ0
[pS12 � q(S11 � S12)]

The average of the three phonon modes: ¢ˆH � (ˆs �2ˆd)/3 shifts with stress
as: ¢ˆH � (X/6ˆ0)(p � 2q)(S11 � 2S12) while the splitting between the two
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modes ¢ˆ � ˆs�ˆd is given by ¢ˆ � (X/2ˆ0)(p�q)(S11�S12). The stress de-
pendence of the singlet and doublet phonon modes can be expressed in terms
of ¢ˆH and ¢ˆ as:

¢ˆs � ¢ˆH � (2/3)¢ˆ and ¢ˆd � ¢ˆH � (1/3)¢ˆ.

Another way of obtaining the above results is to first decompose the strain
tensor into a hydrostatic component plus a traceless shear component as dis-
cussed in Problem 3.4:

eij �

⎛⎝ S11 0 0
0 S12 0
0 0 S12

⎞⎠ X

� [(S11 � 2S12)X/3]

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ � [(S11 � S12)X/3]

⎛⎝ 2 0 0
0 �1 0
0 0 �1

⎞⎠
It is then straightforward to show that the hydrostatic strain produces the av-
erage shift ¢ˆH while the shear strain splits the degenerate optical phonons
into a singlet and a doublet separated by ¢ˆ. Using the same approach and
the results of Problem 3.4 the splitting of the optical phonons induced by a
[111] oriented stress can be calculated easily.

Note: The Raman tensors of a diamond-type crystal are, in principle, altered
by the application of a uniaxial stress. For low stress one can, however, neglect
the effect of the stress on the magnitude of the Raman tensor. This is partic-
ularly true for a scattering geometry where the Raman tensor is non-zero at
zero stress and is most likely much larger than the strain-induced change.

As an example of the effect of uniaxial strain on Raman modes, we will con-
sider the case of backscattering from a [100] surface of a diamond-type crystal
under a uniaxial stress along the [001] direction. Based on the above discus-
sions we would expect that the optical phonon polarized along the [001] direc-
tion to be the singlet mode while the ones polarized along the [100] and [010]
axes to be the doublet mode. For the singlet mode the non-zero Raman tensor
component are: Rxy and Ryx. For the backscattering geometry from the [100]
surface the light polarization cannot lie along the x-axis or [100] direction so
the singlet mode is always forbidden. For the doublet mode the non-zero Ra-
man tensor components are: Rxz, Rzx, Ryz and Rzy. Thus the doublet mode is
allowed for the scattering geometries: (||,⊥) and (⊥, ||) where || and ⊥ refers
to the [001] stress axis. The reader should work out the Raman selection rules
for backscattering from a surface under [111] stress. The results can be found
also in:
F. Cerdeira, C.J. Buchenauer, F.H. Pollak and M. Cardona: Stress-induced
shifts of first-order Raman frequencies of diamond- and zinc-blende-type semi-
conductors. Phys. Rev. B 5, 580 (1972).
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Solution to Problem 8.1

There are several units of pressure in use nowadays. When we try to inflate
our tires we find that the unit for pressure most commonly used in the US is
pounds per square inch (PSI). When the meteorologists report their weather
forecast they quote the atmospheric pressure in terms of inches of mercury
(Hg). The SI unit for pressure is the Pascal (Pa). However, when one is deal-
ing with vacuum systems and pumps the most common unit for pressure is the
torr. The conversion from torr to Pa and the cgs units (which we use here)
can be found in the inside back cover table.

Let us recall that a torr is the pressure exerted by a column of Hg 1 mm
high. Since the density of Hg � 13.6 g/cm3, and the acceleration due to grav-
ity is 981 cm/sec2, 1 torr � 1.33 × 103 dyn/cm2 in cgs units. Thus, a pressure of
10�6 torr corresponds to 1.33 × 10�3 dyn/cm2.

Next we determine the density of oxygen molecules at this pressure and a
temperature of 300 K using the equation of state of ideal gases:

p � NkBT,

where p is the pressure (in dyn/cm2), N is the number of molecules per cm3,
kB is the Boltzmann’s constant (1.38×10�16 erg/K, from the inside back cover)
and T the temperature in Kelvin. From this equation we obtain N � 3.22 ×
1010 molecules/cm3 for the pressure and temperature under consideration.

Using the kinetic theory of gases (see e.g., F.J. Blatt, Principles of Physics,
(Allyn and Bacon, 1983), p. 262) we find that the pressure p is related to the
average velocity v of one molecule by the equation:

v2 � 3p/NM,

where M is the mass of the molecule (we take M to be the oxygen molecule
mass: � 2 × 16 × 1.67 × 10�24 gm � 5.34 × 10�23 gm). Hence the average
oxygen molecule velocity v � 4.82 × 104 cm/sec. The number of molecules
impinging on a surface area of 1 cm2 per second is obtained by multiplying v
by N. However, one must take into account that the velocity can point along
six different directions: x, y, z, �x, �y, �z. If the surface is perpendicular to say
the z-direction, then only the molecules with velocities along the z direction
will contribute to collisions with the surface. Hence, we have to divide N by 6
in order to obtain the total number of molecules colliding with 1 cm2 of the
surface per second. The result is:

(1/6)v.N � 2.62 × 1014/cm2 sec.

Let us now consider the (001) silicon surface. Since there are two atoms per
unit lattice square on this surface, the surface density of Si atoms is: 2/a2

0,
where a0, the lattice constant, is equal to 0.543 nm. The surface density of
atoms is, therefore, 6.78×1014 atoms/cm2. Assuming that the oxygen molecules
split into two oxygen atoms upon collision with the surface, then after 1 Lang-
muir (L) of exposure the Si surface should be 77.3% covered if the sticking
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coefficient of oxygen atoms to Si atoms is one. Typically an exposure of ∼1 L
is needed to cover a surface with a monolayer of adatoms.

Students are urged to repeat the calculation for a (111) and a (110) Si
surface.

Solution to Problem 8.2

We refer for notation to Fig. 8.9.
The average radius of the analyzer is Ra. The applied voltage is Va, the

kinetic energy of the electrons under consideration is Ee. The electron band
pass energy, being non-relativistic, is obtained by equating the electron cen-
tripetal force mv2/Ra to the force eVa/2¢Ra exerted by the electric field on
the electron (of charge e and mass m):

mv2

Ra
�

eVa

2¢Ra
i.e., Ee �

eVa

4
Ra

¢Ra

For some typical values: Va � 1 V, Ra � 10 cm and ¢Ra � 0.5 cm we find that
Ee � 5 eV.

The resolution of the hemispherical analyzer is defined by the change in
the band pass energy ¢Ee induced by a small change ‰Ra in Ra: From the
above result ¢Ee/‰Ra � (eVa/4¢Ra). In case of the typical hemispherical ana-
lyzer values given above the resolution is 0.05 eV/mm.

Solution to Problem 8.5

A model of the zincblende crystal structure would be helpful in visualizing this
problem

Let us first consider a (100) surface. It involves atoms of only one of the
two sublattices discussed in Chap. 2 as constituting diamond or zincblende
crystals. Hence no operations transforming an atom in one of the sublattices
into one in the other can exist and a single flat surface layer must have a sym-
morphic space group. One may at first sight think that C4, a fourfold rotation
about the [100] axis, is a symmetry operation. This is not the case: the atoms
have tetrahedral, not fourfold symmetry because of the sp3 bonding. The only
symmetry operations of the diamond (Table 2.5) or the zincblende (Table 2.3)
point groups that survive when we consider the (100) surface are: a C2 ro-
tation around the [100] axis and two reflections across the (011) and (01-1)
planes. The point group is C2v whose characters are shown in Table 2.14.

Similar considerations concerning a (111) surface lead to the point group
C3v. Note, however, that there are two possible non-equivalent flat (111) sur-
faces. One of them has “dangling bonds” sticking out of the crystal perpendic-
ular to (111). In the other, each atom has three “dangling bonds” at an angle
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of 19.5◦ with the surface. Show that the former is energetically favorable when
cleaving a crystal parallel to one of the equivalent (111) surfaces.

The primitive translation vectors of a (100) surface are (a/2)(011) and
(a/2)(01-1).

The two corresponding reciprocal lattice vectors can be obtained from
(2.9) by defining a3 � a(001). Using these two vectors it is easy to draw the
corresponding Brillouin zone.

The groups of the k-vector at the center of the Brillouin.zone. are also C2v

and C3v.

Solution to Problem 8.9

Let us start with the simplest case, that of a zincblende crystal (point group at
° : Td).

We will discuss the hexagonal faces first and then the tetragonal faces.
The point in a tetragonal face with the highest symmetry is the X-point:

(2°/a0)(100). The corresponding group of the k-vector is D2d (Table 2.15). The
slope of a given band perpendicular to this face is proportional to the expec-
tation value of px according to (2.35). It is easy to check with Table 2.15 that
px has X3 symmetry. All bands are non-degenerate (we are neglecting spin at
this point) at the X point except those of X5 symmetry which are twofold de-
generate (see Fig. 2.14. In this figure the X5 bands are split into X6 and X7
by spin-orbit interaction. In the absence of spin-orbit interaction these bands
remain doubly degenerate along the ¢ direction because of time reversal in-
variance). Any nondegenerate bands will approach the X-point along ¢ with
zero slope because the product of two nondegenerate representations is the
identity representation, X1 in our case. Since px belongs to X3, its expectation
value for a nondegenerate representation must vanish. Since the X5 degener-
acy does not split along ¢, both bands belonging to it act as a single band
which also end at the X point with zero slope. The only other high symmetry
point on the (100) face is the W-point, (1, 0, 1

2 ). Its point group is S4 [2.4]. It is
easy to see that the matrix elements of px do not vanish by symmetry at this
point and thus no one-dimensional van Hove singularities occur there.

Let us consider now a face perpendicular to the [111] axis. The highest
symmetry point of k-space on this surface is L. The corresponding group is
C3v (see Table 2.12). The component of p along the [111] direction is invari-
ant under all operations of C3v and, therefore, we cannot use an argument
similar to that used for the (100) face to prove that the bands have zero slope
perpendicular to the (111) face. An examination of Figs. 2.14 and 2.15, how-
ever, suggests that this is still the case. In order to prove it, we use the fol-
lowing arguments. Let us move along the § axis, perpendicular to the (111)
face, by an infinitesimally small amount ‰. The resulting point we label as
(/a0)(1 � ‰)(111). Using time reversal symmetry we can show that the energy
of a given band at this point is equal to that at (/a0)(�1 � ‰)(111). Adding to
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the latter k the reciprocal lattice vector (2/a0)(111) we find that the energy at
the point (/a0)(1 � ‰)(111) should be the same as that of (/a0)(1 � ‰)(111).
Hence the slope of the energy vs. ‰ vanishes. There are no other symmetry
points (U, W, or K) for which the slope perpendicular to the (111) faces van-
ishes.

In the case of germanium the group of the k vector at L is isomorphic to
D3d (see p. 55). This group has even higher symmetry than C3v. Hence, the
slope under consideration also vanishes. In the case of the X-point matters
are more complicated because of the non-symmorphic nature of the groups
as discussed in 2.4.2. The relevant k-vector representations are all two-fold
degenerate (X1, X2, X3, X4 in Table 2.19). With the exception of X4 these rep-
resentations split along ¢ becoming non-degenerate. The representations that
split have equal and opposite slopes along ¢ (so that the average slope re-
mains zero). Hence for them no van Hove singularities are obtained. All the
others reach the X point with zero slope.

Solution to Problem 8.10

Let us first consider the case of the d orbital states (l � 2) under a tetrahe-
dral field (point group symmetry Td, which is equivalent to the ° point of a
zincblende crystal). The splitting pattern is the same for a cubic field of point
group symmetry Oh (similar to the ° point of the diamond crystal) although
the corresponding representations may be labeled differently, according to Ta-
bles 2.3 (Td) or 2.5 (Oh). The d-functions are even upon inversion, hence re-
flections and C2 rotations must have the same characters, given by (8.24) when
considering the full rotation group. These characters are, for the five opera-
tions relevant to the Td group:

E C2 S4 Û C3
5 1 �1 1 �1

(8.25)

In order to decompose the fivefold degenerate orbital d states into those be-
longing to irreducible representations of the Td point group we use the or-
thogonality relations (2.11) and the Table 2.3 of characters of the Td group.

Performing the appropriate multiplications and sums, the right hand side
of (2.11) becomes: h (the number of Td group operations � 24) for the °3(E)
and °4(T2) representations and zero for all others. Hence, the fivefold d or-
bital states split into a triplet °4(T2) and a doublet °3(E) in a field of either
tetrahedral or cubic symmetry. In the case of electronic band structures this
will happen for the d states at k � 0.

Let us consider d-orbital states with a spin of 1
2 attached to them (one-

electron states). Multiplication of angular momentum l � 2 (orbit) with
s � 1/2 (spin) gives rise to two sets of states, a sextuplet with J � 5/2 and
a quadruplet with J � 3/2. In order to investigate the effect of a field of ei-
ther Td (the case we are considering here) or Oh symmetry we must use the
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corresponding double groups. These have, besides the operations mentioned
above, rotations by 2 which reverse the sign of the spin (because s � 1

2 ). The
representations of the double group fall into two classes, those with the same
character for E and E (a rotation by 2) and those for which ¯(E) � �¯(E).
The latter operations introduce a set of so-called additional representations.
The counterpart of (8.25) for the double group of the J � 5/2 functions is (use
(8.24)):

E E C2 C2 S4 S4 Û Û C3 C3

J � (5/2) 6 �6 0 0 �
√

2
√

2 0 0 0 0
(8.26)

In order to find out the effect of a Td symmetry field on the (5/2) wave func-
tions. We use the characters of the additional representations of the Td group
given in Ref. 2.4:

E E 3C2 3C2 6S4 6S4 6Û 6Û 8C3 8C3

°6 2 �2 0 0
√

2 �
√

2 0 0 1 �1
°7 2 �2 0 0 �

√
2

√
2 0 0 1 �1

°8 4 �4 0 0 0 0 0 0 �1 1

(8.27)

The numbers on the first row indicate the number of corresponding opera-
tions, which have to be used in the evaluation of (2.11). This evaluation gives
for the product of the J � (3/2) representation and the additional ones of Td:

(5/2) × °6 � 0

(5/2) × °7 � 48

(5/2) × °8 � 48
(48 is the total number of operations of the Td double group)

This implies that the J � 5/2 sextuplet splits into a quadruplet (°8) and a
doublet (°7).

Multiplying the characters of the J � 3/2 representation by those in Table
(8.27) and contracting them as required by (2.11) we obtain:

(3/2) × °6 � 0

(3/2) × °7 � 0

(3/2) × °8 � 48,
Hence the J � 3/2 quadruplet does not split under the action of a field of ei-
ther Td or Oh symmetry.

Another interesting exercise consists of introducing spin, and applying
spin-orbit interaction (2.45a), to the °4 and °3 functions into which J � 5/2
splits. We assume that the orbital splitting is much larger than the spin-orbit
splitting so that no coupling between °4 and °3 takes place. The effect of spin
is obtained by multiplying the orbital representations by °6, the double group
representation which corresponds to J � 1/2. By applying the orthogonality
relation (2.11) one will find that the sextuplet consisting of °4 with either up
or down spin split into a quadruplet (°8) and a doublet (°7). The °3 orbital
doublet becomes a °8 quadruplet and does not split.

An interesting observation is that, in the absence of a Td or Oh field but
in the presence of spin-orbit interaction, the sextuplet (J � 5/2) state is usually
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higher in energy than the J � 3/2 quadruplet. However, if one includes spin in
the split °4 state, it splits further into °8 and °7, the former being below the
latter.

Readers may want to consult:
K. Shindo, A. Morita and H. Kamimura: Spin-orbit coupling in ionic crystals with zinc-

blende and wurtzite structures. Proc. Phys Soc Japan 20, 2054 (1965), and errata in
Proc. Phys Soc Japan 21, 2748 (1966)

For further discussions.
Another exercise will be to show that the spin-orbit interaction does not split the °3

orbital doublet which becomes a °8 quadruplet when spin is included.

Solution to Problem 8.11

The problem is of interest in connection with the calculation of core level
shifts discussed in pages 453 and 454.

We consider a uniformly charged spherical shell with outer radius rm and
inner radius °rm with 0 � ° � 1. We impose the boundary condition on the
potential V → 0 for r (the distance from the center of the shell) → ∞. We
use Gauss’s theorem: the electric field E is directed towards (or away from)
the center of the shell and has, at the distance r from that center and outside
of the shell (r � rm) the magnitude E � q/r2 where q is the total charge in
the shell, taken to be negative for an electron (note that cgs units are used in
this problem). For r � rm the magnitude of the field is q∗/r2, where q∗ is the
charge within a sphere of radius r∗ � rm.

q∗ � q[r3 � (°rm)3]/[r3
m � (°rm)3].

In order to calculate V(r) we integrate the field �E(r) from infinity to rm and
add to the resulting V(rm) � q/rm, the integral of �E(r) between rm and °rm.
The result is:

V(0) �
q
rm

�
q

[r3
m � (°rm)3]

∫ °rm

rm

[
�r �

(°rm)3

r2

]
dr

�
q
rm

�
q

[r3
m � (°rm)3]

[
�

(°rm)2

2
� (°rm)2 �

r2
m

2
� r2

m°3

]
It is of interest to check the value of V(0) for the two extreme cases, ° � 0
(uniformly charged sphere) and ° � 1 (infinitesimal thickness of the shell.
In the former case we find V(0) � q/rm. In the latter case we find V(0) �
(3/2)q/rm.
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Solution to Problem 9.2

This 1D periodic potential (known as the Kronig-Penney Potential) is so well-
known that the solutions can be found in textbooks on Solid State Physics
(see, for example, Ref. [7.14]) or Quantum Mechanics (see, for example,
Ref. [9.19]).

First, to simplify the problem we will assume that the solutions are Bloch
waves of the form: Ê � exp(ikx)u(x) where u(x) is a periodic function.

Next we assume that the origin x � 0 is chosen to be the beginning of one
well. In this coordinate system the potential V(x) � 0 for 0 � x � a (the well)
and V(x) � V for a � x � b. The period of the potential a � b is defined as
d.

The boundary conditions imposed by the periodicity of the potential on
u(x) are: u�(0) � u�(d) and u′

�(0) � u′
�(d).

We have defined u�(0) � u(‰) and u�(d) � u(d � ‰) where, in both cases,
‰ is � 0 and in the limit ‰ ⇒ 0. When the particle is inside the well we expect
its wave function to satisfy the Schrödinger Equation for a free particle (since
V(x) � 0):

Ê(x) � A exp(ik1x) � B exp(�ik1x) (9.2a)

where E � (�k1)2/2m is the particle energy. We will now assume that E � V
so that classically the particle will be confined inside the well. In this case the
particle cannot penetrate into the barrier under the laws of classical physics.
Thus, its wave function has to decay exponentially with distance into the bar-
rier. Let us assume solutions of the form:

Ê(x) � C exp(Îx) � D exp(�Îx) (9.2b)

where V � E � (�Î)2/2m.
By writing u(x) � exp(�ikx)Ê(x) and imposing the boundary conditions

on u(x) and u′(x) at x � 0 and at x � a we can obtain four linear equations
relating A, B, C and D:

A � B � exp(�ikd))[C exp(Îd) � D exp(�Îd)] (9.2c)

ik1(A � B) � Î exp(�ikd)[C exp(Îd) � D exp(�Îd)] (9.2d)

A exp(ik1a) � B exp(�ik1a) � C exp(Îa) � D exp(�Îa) (9.2e)

ik1[A exp(ik1a) � B exp(�ik1a)] � Î[C exp(Îa) � D exp(�Îa)] (9.2f)

These 4 homogenous equations have non-trivial solutions when their determi-
nant vanishes:∣∣∣∣∣∣∣∣

1 1 �ed(Î�ik) �ed(Î�ik)

k1 �k1 � Î
i ed(Î�ik) Î

i ed(Î�ik)

eik1a e�ik1a �eÎa �e�Îa

k1eik1a �k1e�ik1a � Î
i eÎa Î

i e�Îa

∣∣∣∣∣∣∣∣ � 0 (9.2g)
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After a bit of algebra we obtain from (9.2g) the secular equation:

(cos k1a)(cosh Îb) � [(k2
1 � Î2)/2k1Î](sin k1a)(sinh Îb) � cos kd. (9.2h)

This equation contains the unknown k as a function of k1 and Î. Both
k1 and Î are functions of E and are related by: k2

1 � Î2 � 2mV/�2. By
combining k1 and Î in a way so that the above equation (9.2h) contains
only E and k we can obtain the dispersion relation i.e. E as a function
of k. The results in the following figure and table are obtained by using
the program Mathcad. The program codes are shown in a separate file la-
beled as Problem9.2 Codes.mcd which can be downloaded from the website:
http://pauline.berkeley.edu/book/SolutionsNew.html.

Figure 9.2.1 was obtained for a � b � 5 nm and for an effective mass
m � 0.1 times the free electron mass m0.

Electron Energy (eV) 

The Left H
and Side of  Eq. (9.2h) 

Figure 9.2.1 The relation between E and k can be determined by setting the y-axis (equal
to L(E) � Left Hand Side expression of Eq. 9.2h)) to cos(kd) and reading off the value
of E from the x-axis. This process can be greatly simplified if we notice that the curves
in the above figure can be approximated by straight lines. Let E0 be the minimum energy
when L(E) � 1 and W be the band width of the lower energy branch. If we assume that
the curve is a straight line then it can be written as: E � [E0 � (W/2)] � (W/2)L(E) or:

E � [E0 � (W/2)] � (W/2) cos(kd)

In the Table 9.2.1 we show the values of E for some simple values of L(E) and the cor-
responding E0 and W.
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Table 9.2.1 The eigenvalues E of the Kronig-Penney Model for two different sets of val-
ues of the well (a) and barrier width (b) assuming that the effective mass of the electron
in the well and barrier is 0.1m0 (free electron mass). When there are two bands they are
shown in separate columns under the same values of a and b.

cos[k(a � b)] E(a � b � 3 nm) in eV E(a � b � 5 nm) in eV
1 0.13176 0.07563 0.291
0 0.14465 0.07637 0.28154
�1 0.16068 0.07713 0.27352
E0 (eV) 0.13176 0.07563 0.27352
W (meV) 29 1.5 16

Additional eigenvalues for other values of a and b can be calculated similarly.

Solution to Problem 9.4

For the case of k � 0, the equations in (9.22) reduce to:

�mAˆ2v � f [x � 2v � u];

�mBˆ2x � f [y � 2x � v];

�mBˆ2y � f [x � 2y � u]; and

�mAˆ2u � f [v � 2u � y].
One can solve this system of four linear and homogeneous equations by set-
ting its determinant:∣∣∣∣∣∣∣∣

�mAˆ2 � 2f �f 0 �f
�f �mAˆ2 � 2f �f 0
0 �f �mBˆ2 � 2f �f

�f 0 �f �mBˆ2 � 2f

∣∣∣∣∣∣∣∣
equal to zero. A simpler and more elegant way to solve this problem would
be to note that this linear chain of atoms has reflection symmetry with respect
to a plane passing through the center between any two atoms (such as the
midpoint between two B atoms). As a result, the k � 0 phonons must have
definite parity under this reflection operation. The displacement pattern of the
atoms would either remain unchanged or change sign upon reflection. To sym-
metrize the displacement patterns we define new displacement vectors: U, V,
X and Y in terms of the displacements u, v, x and y shown in Fig. 9.14:

U � (u � v), V � (u � v); X � (x � y) and Y � (x � y).

With these new definitions the equations of motion become:

�mAˆ2V � f [�Y � 3V];

�mBˆ2X � f [U � X];

�mBˆ2Y � f [�V � 3Y]; and

�mAˆ2U � f [X � U].
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Now V and Y form two linear homogeneous equations while U and X form
another set of two linear homogeneous equations. The fact that the modes
represented by U and X are decoupled from those represented by V and
Y means that the atoms of both kinds are moving either in phase or out of
phase.

For the X and U modes we obtain the determinant:∣∣∣∣ �mBˆ2 � f �f
�f �mAˆ2 � f

∣∣∣∣
By setting this determinant to be zero we can obtain the equation:

ˆ4 � ˆ2
(

1
mA

�
1

mB

)
f � 0.

By solving this equation we obtain the eigenvalues:

ˆ � 0 and ˆ2 � f [(1/mA) � (1/mB)]. (see(9.23))

By calculating the eigenvectors one can show that: for the ˆ � 0 acoustic
mode X � U i.e. the displacement of the A and B layers are in the same direc-
tion as one may expect for an acoustic mode. Furthermore, this displacement
pattern is odd under reflection. Similarly, one can show that the eigenvector
for the other mode is given by: mAU � �mBX or mA(u � v) � mB(x � y) � 0.
In this mode the A and B layers vibrate against each other but their center of
gravity remains constant. Their displacement patterns are shown in Fig. 9.14 as
that of the 348 cm�1 mode. Again, one can show that this mode is odd under
reflection (since only modes of same parity can be coupled with each other in
the equations of motion).

The determinant of the remaining (even parity) Y and V modes is given
by: ∣∣∣∣ �mBˆ2 � f �f

�f �mAˆ2 � f

∣∣∣∣
The eigenvalues are obtained by the solving the following equation:

ˆ4 � ˆ2
(

1
mA

�
1

mB

)
f �

8f 2

mAmB
� 0

or

ˆ2 � f
3(mA � mB) ±

√
9(mA � mB)2 � 4mAmB

2mAmB

as given in (9.24). The corresponding eigenvectors will give the displacement
patterns of the remaining two modes in Fig. 9.14.

When k � /d, the phase factors exp[±ikd] � exp[±i] � (�1).
Thus, the equations of motion become:

�mAˆ2v � f [x � 2v � u];

�mBˆ2x � f [y � 2x � v];

�mBˆ2y � f [x � 2y � u]; and

�mAˆ2u � f [�v � 2u � y].
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Again by symmetrizing u, v, x and y as in the case of k � 0 one can simplify
the 4× 4 determinant into two 2 × 2 determinants from which the eigenvalues
and eigenvectors can be calculated. The parity of the modes can be deduced
from the eigenvectors afterwards. This is left as an exercise for the readers.

Solution to Problem 9.14

The double barrier structure relevant to Fig. 9.34 is shown schematically be-
low:

d2

V d1

d2

The height of the barrier V � 1.2 eV. The widths of the barrier (d2) and of
the well (d1) are equal to 2.6 and 5 nm, respectively. The zero bias transmis-
sion coefficient T(E) can be calculated with the transmission matrix method
described in section 9.5.1.

To apply the transfer matrix technique we will divide the potential into 5
regions to be labeled as 1, ..., 5 from left to right. To define these 5 regions we
will label the horizontal axis as the x-axis and define the five regions by:

x � [�∞, �d2 � (d1/2)], [�d2 � (d1/2), �(d1/2)], [�(d1/2), (d1/2)],

[(d1/2), d2 � (d1/2)], [d2 � (d1/2),∞].

We will choose the origin for the potential such that the potential Vi is equal
to 0 inside the regions i � 1, 3 and 5 and equal to V in the regions 2 and 4.

The incident wave is assumed to arrive in region 1 from the left while the
transmitted wave emerges into region 5. Let Ai and Bi be the amplitudes of
the incident and reflected wave in region i. In region i � 1, 3 and 5 we can
define the generalized wave vector k1 by:

�2k2
1/2m1 � E (9.14a)

where E is the energy of the incident electron and is assumed to be less than
V in this problem. In regions i � 2 and 4 we will define k2 by:

�2k2
2/2m2 � E � V (9.14b)

m1 and m2 are, respectively, the electron masses in the well and in the barrier.
The wave vector k2 in Eq. (9.14b) is imaginary since E is smaller than the
barrier V. The wave amplitudes An�1 and Bn�1 in the final region is related
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to the waves A1 and B1 via a product of transfer matrices M1, M2, ..., Mn�1:

(
A1
B1

)
� M1M2...Mn

(
An�1
Bn�1

)
(9.14c)

Each transfer matrix Mi is a 2 × 2 matrix of the form:

Mi �

(
Mi(1, 1) Mi(1, 2)
Mi(2, 1) Mi(2, 2)

)
(9.14d)

whose elements are given in Eqs. (9.59a) to (9.59d):

M1(1, 1) �

(
1
2

�
m1k2

2m2k1

)
exp

[
i(k2 � k1)

(
d2 �

d1

2

)]
(9.14e)

M1(1, 2) �

(
1
2

�
m1k2

2m2k1

)
exp

[
�i(k2 � k1)

(
d2 �

d1

2

)]
(9.14f)

M1(2, 1) �

(
1
2

�
m1k2

2m2k1

)
exp

[
i(k2 � k1)

(
d2 �

d1

2

)]
(9.14g)

M1(2, 2) �

(
1
2

�
m1k2

2m2k1

)
exp

[
�i(k2 � k1)

(
d2 �

d1

2

)]
(9.14h)

The transfer matrices M2, M3, and M4 can be obtained similarly. The prod-
uct (Mij) of the four matrices M1, ..., M4 can be calculated with a computer
program, such as Mathematica, Mathcad etc. T(0) can obtained by assuming
that there will be no reflected wave in region 5 so B5 � 0 and A1 � M11A5:
T(0) � |A5/A1|2 � |1/M11|2.

The following plot of T(0) vs E has been obtained by using the pro-
gram Mathcad. The program codes are shown in a separate file labeled
as Problem9.14 Codes.mcd which can be downloaded from the website:
http://pauline.berkeley.edu/book/SolutionsNew.html.
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Note that in obtaining this plot we have assumed that the electron effec-
tive masses in the well (m1) and in the barrier (m2) are equal, respectively, to
0.037 and 0.0023 times the free electron mass.

To calculate the transmission coefficient under applied bias one has to tilt the
barrier and the well and approximate the tilted potential with piece-wise con-
stant potentials. With slight variation in the computer program this computa-
tion can be done easily and is left as an exercise for the students. The students
are also urged to vary the effective masses and other parameters to see their
effects on the transmission curve.

Transmission curve obtained for m1=0.037mo and m2=0.0023mo.

Electron Energy (eV) 



.



Appendix C:
Recent Development

A4.1 A Prototypical Deep Center in N-Type
Zincblende-Type Semiconductors: The DX Center

A4.1.1 Introduction

So far the hydrogenic impurities have been very attractive from the viewpoint
of understanding their properties. By applying the effective mass theory we
have been able to explain the properties of a large family of impurities using
only the physical properties of the host lattice, without regard to the chemi-
cal nature of the impurities. The relevant physical properties of the host are
its dielectric constant and the effective mass parameters of the nearest band
extrema. We have defined deep centers as defects whose properties cannot be
understood within the effective mass theory. We expect, therefore, their prop-
erties to be sensitive to their chemical and physical nature, such as their ionic
radii and/or electronegativities. It has been relatively difficult to explain the
properties of deep centers in terms of those of the host lattice alone. The va-
cancy without lattice relaxation and the isovalent impurities discussed in 4.3.2
and 4.3.3 are two exceptions we have encountered so far. The utility of the
vacancy model is unfortunately reduced by its neglect of lattice relaxation. In
this addition we shall present a class of deep centers known as the DX cen-
ters which was first mentioned in 4.2.2. This family of defects is technologi-
cally important because it has strong effects on the electrical properties of the
host crystal. It has interesting features found in other deep centers, such as
large lattice relaxation, strong electron-phonon coupling, and the existence of
metastable excited states. It is also an interesting example of a many-body ef-
fect known as negative-U, already mentioned in 4.3.

The outline of this addition is as follows. We shall start with some his-
torical background on how the DX centers were discovered and in so doing
summarize also their important features. This is followed by a simple qualita-
tive description of the theoretical model of the DX center first proposed by
Chadi and Chang. This model has successfully explained many of the char-
acteristics of the DX centers. It has also made predictions about properties
which were subsequently verified experimentally. One important prediction of
the Chadi and Chang model (to be abbreviated as the CCM) is that the DX
centers have a negative correlation energy U. We conclude by discussing the
experimental results which have confirmed this prediction.
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A4.1.2 Historical Background

The DX center was discovered in 1979 by Lang and coworkers [Lang79a] in
the ternary alloys n-AlxGa1�xAs with Al concentration x � 0.22. As shown in
4.2.2, Group IV dopants like Te substituting atoms on the Group VI sublattice
of III-V semiconductors like GaAs form hydrogenic donors. Lang et al. found
that the substitutional Te atoms suddenly behave more like deep centers in
AlxGa1�xAs when x is � 0.22. For example, the energy required to thermally
ionize the Te impurities (known as the thermal ionization energy) increases
from the hydrogenic donor binding energy of ∼5 meV by more than one or-
der of magnitude to ∼0.1 eV. The center exhibits a higher-energy, metastable
(or long-lived) and conducting state which can be excited optically. As a result,
samples containing these centers exhibit persistent photoconductivity at low
temperatures (such as T � 100 K), i.e. their conductivity is greatly increased
by light irradiation but, unlike ordinary photoconductivity, the sample remains
in this conducting state for a very long time even after the light is turned
off. These unusual properties of the Te donors in AlGaAs have been demon-
strated by Lang et al. with two different kinds of capacitance transient tech-
niques. These techniques are known as Deep Level Transient Spectroscopy
(or DLTS) and Thermally Stimulated Capacitance (TSCAP). Their results are
shown in Fig. A4.1.
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Fig. A4.1 The DLTS(a) and thermally
stimulated capacitance (TSCAP) re-
sults (b) in AlGaAs:Te obtained
by Lang et al. Reproduced from
[Lang79a].
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A detailed description of these techniques is beyond the scope of this book.
Interested readers are referred to many reviews found in the literature
[Lang74, Sah75, Lang84, Li94]. The basic idea behind these two techniques
involves the use of a semiconductor containing deep centers as the insulat-
ing layer between two conductors to form a parallel-plate capacitor. For ex-
ample, a reverse-biased pn-junction forms such a capacitor [see, for example,
Wang89a]. The highly doped p-type and n-type regions form the conductors
while the depletion layer between them forms the insulator. Unlike a stan-
dard insulator whose thickness is fixed, the thickness of the semiconductor
space-charge layer can be varied by applying an electric field to populate or
depopulate the deep centers. This change in the thickness of the space-charge
layer can be monitored accurately by measuring the corresponding change in
capacitance. A Schottky Barrier formed at a metal/semiconductor junction as
a result of Fermi Level pinning (see 8.3.3) is another example of a variable-
capacitance condenser [see, for example, Wang89b]. In both cases the charge
state of the deep centers in study (assumed to be the only kind in the sample)
affects the junction capacitance. For example, the deep centers can be filled
by applying an appropriate electrical pulse (sometimes referred to as a filling
pulse). Suppose this deep level is normally above the Fermi Level in the de-
pletion layer. A filling pulse will change the band bending so as to lower the
deep level towards the Fermi level. Whenever a deep level is below the Fermi
level it becomes filled with electrons. Since these electrons have to come from
the filled shallow donors in the n-type region, the depletion layer expands.
As a result, the junction width increases and the capacitance decreases. When
the applied field is removed the deep centers return to their equilibrium oc-
cupancy by emission of carriers and, correspondingly, the junction capacitance
increases. However, in many deep centers the rate of this emission is usu-
ally thermally activated and strongly dependent on temperature. The emission
process can be monitored by measuring the junction capacitance either as a
function of time at fixed temperature or for a fixed time interval as a function
of temperatures.

In the case of DLTS experiments one fixes the time interval (known as the
time window) defined by two times t1 and t2 and then measures the difference
in capacitance C given by ¢C � C(t2) � C(t1) while sweeping the temperature.
The resulting ¢C (labeled as the DLTS signal in Fig. A4.1) versus temperature
curves are known as the DLTS spectra. As seen in Fig. A4.1 dips and peaks
can appear in these spectra. A dip in capacitance indicates a sudden decrease
in the capacitance which results when the emission rate of carriers from the
deep centers falls within the time window. Typically by selecting several time
windows appropriately and measuring the corresponding temperature of the
dip in the DLTS spectra one can construct an Arrhenius plot (see 7.1.2 for
definition) for the emission rate of carriers from the deep centers. A variation
of the DLTS technique can be used to measure the capture rate of carriers by
deep centers. Figure A4.2 shows Arrhenius plots for the emission and capture
rates of the deep centers in AlGaAs:Te obtained by Lang et al.. The corre-
sponding activation energies for emission and capture of electrons determined
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from the slopes of these plots are 0.33 eV and 0.26 eV, respectively. Notice
that the emission activation energy Eem is not the same as the capture activa-
tion energy Ecap. Their difference Eem �Ecap is equal to the thermal ionization
energy which is defined as the energy required to thermally ionize carriers out
of the deep center. The relation between the three energies will become clear
when we discuss the large lattice relaxation model.
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Fig. A4.2 The Arrhenius plots
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rates of the deep centers in Al-
GaAs:Te obtained by Lang et al.
Reproduced from [Lang79a].

In the TSCAP measurement shown in Fig. A4.1(b) the total capacitance (as
distinct from the capacitance difference measured in DLTS) is measured as a
function of temperature. An increase in capacitance indicates that a smaller
number of electrons are trapped at the deep centers. The curve labeled as (1)
is the steady-state state zero-bias capacitance curve. This curve is reversible for
increasing and decreasing temperatures. Curves labeled as (2) and (3) are ir-
reversible with respect to temperature cycling. Curve (2) is obtained by first
cooling the sample in the dark from about 200 K to 50 K with a bias of
�1 V. This positive bias causes electrons to be trapped on the deep centers
thus returning them to the neutral charged state. At the lowest temperature
the bias voltage is set to zero so that the electrons want to escape from the
deep centers. However, the emission rate at low temperature is very slow and,
therefore, the deep centers remain in a non-equilibrium state. As the sample
is warmed above 100 K the emission process is thermally activated and be-
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comes much faster than at low temperatures. The result is a sudden rise in
the capacitance. If the sample is now cooled back to 50 K under zero bias,
the capacitance will follow curve (1) rather than retrace curve (2). The rea-
son why electrons are not re-captured into the deep centers under zero bias
is because the electrons have to overcome a barrier of �0.2 eV in order to
be re-captured by the deep centers. Thus, at temperatures below 100 K the
capture rate is too small for a significant number of electrons to return to the
deep centers. Curve (3) is obtained by illuminating the sample with a broad-
band light source after it has been cooled to low temperature in the dark and
under zero bias. The rise in capacitance indicated by the arrow (labeled hÓ)
in Fig. A4.1(b) suggests that the deep centers are photo-ionized. However,
the capacitance remains high even when the light is turned off. This indicates
that carriers have been photo-excited into a metastable state. If the sample is
now warmed up in the dark, the capacitance will follow curve (3). The sudden
decrease in the capacitance at less than 100 K can be explained by the ther-
mal activation of the capture of electrons from the metastable state back onto
the deep centers. At still higher temperatures the emission process becomes
thermally activated and results in the rise of the capacitance. Thus, the results
obtained by Lang et al. for the behavior of Te in AlGaAs are completely dif-
ferent from those expected from shallow donors.

Lang et al. named this newly discovered deep defect the DX center be-
cause they thought that it involved a complex consisting of a donor atom D
and an unknown constituent X. Since this center was first observed in alloys
of AlGaAs only, it was believed that X is an intrinsic defect, such as a vacancy
or an interstitial, which are abundant in alloys. Another characteristic of the
DX centers which distinguishes them from the shallow impurities is that their
optical ionization energy (i.e. the minimum photon energy necessary to ionize
the defect, usually denoted by Eop) is much larger than the thermal ionization
energy. For shallow impurities, these two energies are identical and we have,
therefore, not made a distinction between them. In case of the DX centers Eop
is ∼1 eV as shown in Fig. A4.3.

Lang et al. explained qualitatively many of the unusual properties of the
DX centers with a large lattice relaxation model. We shall discuss this model
in greater detail in A4.1.4. The results of Lang et al. in AlGaAs:Te were soon
confirmed by other authors using different donors. For example, Chand et al.
[Chand84] studied the DX centers in AlGaAs:Si using temperature-dependent
Hall-effect measurements. They determined the thermal activation energy of
the Si DX centers as a function of alloy concentration. They found that the
DX center energy level does not follow the lowest conduction band minima
as a function of Al mole fraction. Instead, it appears to follow the conduction
band minima at the L point of the Brillouin Zone as shown in Fig. A4.4. The
fact that the DX center does not follow the nearest conduction band mini-
mum suggests that it is not a shallow impurity. Lifshitz et al. [Lifshitz80] made
the interesting observation that pressure has the same effect in converting
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Fig. A4.3 The electron photo-ionization cross-section of the DX center in AlGaAs:Te
obtained by Lang and Logan. Reproduced from [Lang79b].

shallow Sn donors in Al0.15Ga0.85As into DX centers as increasing the Al
fraction.1

A.4.1.3 Identification of DX Centers as Substitutional Deep Donors

An important experiment which eventually led to the correct identification of
the DX centers was performed by Mizuta et al. in 1985[Mizuta85]. Unlike Lif-
shitz et al. [Lifshitz80], who started with n-type AlGaAs, these authors applied
hydrostatic pressure to a Si-doped GaAs sample. They found that they could
convert the Si shallow donors into DX centers by applying pressure larger
than 2.4 GPa. Their results are shown in Fig.A4.5. Subsequently many exper-

1 It is interesting to note that William Paul has reported anomalies in the pressure depen-
dence of resistivity in both n-type GaAs and n-GaSb as early as 1961 [Paul61]. In those
early days of semiconductor research, these anomalies (involving a sudden increase by
more than one order of magnitude at the pressure of around 2.5 GPa in case of GaAs)
were explained in terms of the pressure effect on the conduction band minima. Now,
in hindsight, one can attribute these resistivity anomalies to the conversion of shallow
donors to deep DX centers under pressure.
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iments have firmly established that the deep centers induced by pressure in
GaAs have the same properties as the DX center found in AlGaAs and, fur-
thermore, this conversion of shallow donors to DX centers occurred also for
other group IV donors, such as Ge and Sn, and group VI donors like S, Se
and Te. In fact, it has been shown that the effect of a hydrostatic pressure of
0.1 GPa on the DX in GaAs is almost equivalent to adding 1% of Al [Wei89].
It has been known that both pressure and alloying with Al have the similar
effect of lowering the conduction band minima at the X point of the Bril-
louin zone in GaAs relative to the zone-center conduction band valley. With
sufficient pressure or Al concentration GaAs can be converted from a direct
band gap semiconductor into an indirect one. At ambient pressure the DX
level associated with donor atoms in GaAs is actually a resonant state above
the conduction band. As a result of the change in the conduction band struc-
ture caused by alloying or by pressure, the DX level emerges from the con-
duction band into the band gap and becomes the stable ground state of the
donor. Thus, one can conclude that the DX center is the result of a so-called
“shallow-to-deep transformation” of substitutional donors in GaAs induced by
changes in the conduction band structure. In this transformation the chemical
nature of the impurity plays only a secondary role.
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Fig. A4.4 The DX center energy
level (open squares) determined by
Chand et al. from temperature-de-
pendent Hall effect measurement on
Si doped AlGaAs as a function of
the AlAs mole fraction. For compar-
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responding dependence of the direct
band gap energy at the zone center,
the indirect band gap energies be-
tween the conduction valleys at the
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from Chand et al. [Chand84].
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Fig. A4.5 (a)–(d)The Deep Level Transient Spectroscopy (DLTS) results in GaAs:Si mea-
sured at different pressures. From the temperature of the dip in the spectra and experi-
mental conditions it is possible to deduce the thermal ionization energy (EI) of the deep
center. The absence of a dip in the spectra (a)–(c) indicates the absence of any center
with EI larger than 0.2 eV. Spectrum (e) was obtained from a AlGaAs:Si sample under
similar experimental conditions except that no high pressure was applied to that sample.
From the size of the dip in the spectrum (d) an approximate concentration of the deep
center more than 1017 cm�3 could be deduced. The inset shows the appearance of a per-
sistent effect in the photoconductivity in GaAs:Si under pressure exceeding 2.5 GPa. The
solid curves were measured with the sample in the dark before any light illumination
while the broken curves were measured after the sample was illuminated momentarily by
light. Reproduced from Mizuta et al. [Mizuta85].

A.4.1.4 Theoretical Models of the DX Centers

Many theoretical models of the DX centers have been proposed. At one time
there were controversies surrounding the atomic and electronic configurations
of the DX center. One such controversy involves the question of whether
there are large [Lang79a, Chadi88, Khachaturyan89] or small lattice relax-
ations [Hjalmarson86, Henning87, Bourgoin89, Yamaguchi90] associated with
the formation of the DX center. Another issue is whether the DX center has
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a negative on-site Coulomb interaction U (abbreviated as -U) between two
electrons localized on the same impurity (as a result of a large lattice relax-
ation). It is now generally accepted that the model proposed by Chadi and
Chang in 1988 [Chadi88] is the correct one. One modification to this original
model, referred to as the Chadi-Chang model (or CCM), is the idea proposed
by Yamaguchi et al. [Yamaguchi90] that, in addition to the ground state with
large relaxation, the DX center has also a metastable resonant state with small
lattice relaxation and symmetry A1. The existence of this state which is neutral
rather than negatively charged has now been confirmed by several theoretical
calculations [Dabrowski92] and experiments [Suski94].
The CCM which used the approach based on a super-cell self-consistent pseu-
dopotential calculation has two important features:

1. When the DX center becomes the stable ground state of the substitutional
donor impurity in GaAs or AlGaAs (as a result of either high pressure or
alloying), the DX center is formed by one neutral donor capturing an elec-
tron from another neutral donor atom. This process can be represented by the
“reaction”:

2d0 → d� � DX�

where d0 and d� represent, respectively, a fourfold-coordinated substitutional
donors in the neutral and ionized state. The resultant DX center is negatively
charged and contains two electrons localized on the same donor atom. Nor-
mally two electrons will repel each other via the Coulomb interaction U (see
4.3, p. 182). In special cases, such as encountered in the DX center, two elec-
trons can attract each other as a result of electron-lattice interaction. Such
defect centers exhibiting attractive Coulomb interaction between electrons are
referred to as negative-U centers [Baraff80].

2. The DX� defect formation involves a large bond-rupturing displacement of
either the defect atom or the host lattice atoms. For donors on cation sites,
such as SiGa, the donor atom is displaced as shown in Figs. A4.6(a) and (b).
In the case of donors located on anion sites, such as SAs, one of its nearest-
neighbor Ga (or Al) atoms along a bond axes, is displaced. This is illustrated
in Figs. A4.6(c) and (d). Thus the local symmetry of a donor is charge depen-
dent. When the electron occupancy of the donor is 0 or 1, corresponding to
the positively charged d� or neutrally charged d0 states, the local symmetry of
the donor in the vicinity of the donor atom is tetrahedral (i.e., the point group
symmetry is Td) and there is no lattice relaxation. When the electron occu-
pancy is increased to 2, corresponding to the negatively charged DX� state,
the defect symmetry is lowered to trigonal (the point group symmetry is C3v)
as a result of a bond-breaking lattice relaxation.

The reason why a deep and localized state becomes favorable in GaAs
under pressure or alloying with Al is the near degeneracy between the three
conduction minima at ° , L and X. The contribution of all these conduction
minima to the deep DX state manifests itself in its alloy and pressure depen-
dence. Instead of following either the ° , L or X conduction valleys as a func-
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tion of alloying (see Fig. A4.4) or pressure, the deep DX state roughly follows
an average (weighted by the degeneracy of each kind of valley) of the depen-
dence of all the valleys. Because of this degeneracy in reciprocal space, it is
energetically favorable for the electron wave function to become delocalized
in reciprocal space while becoming localized in real space. This localization is
achieved via a large lattice distortion. In other words, the defect electron can
lower its energy by “trading-off” lattice energy with electronic energy. In or-
der to maximize the gain in electronic energy the DX center attracts an extra
electron when it undergoes lattice relaxation so that the total gain in electronic
energy is doubled while the lattice energy spent remains the same. The idea
that the DX center may be a negative-U center was proposed independently
by Khachaturyan et al. [Khachaturyan89].

Fig. A4.6 The displacement of the donor atoms or
the surrounding host atoms in forming the DX cen-
ter. In (a) and (c) the substitutional atoms are in
their neutral states and located in tetrahedral sites.
In (b) the substitutional Si atom is shown displaced
along one of the Si-As bonds into a site where it is
surrounded by only three As atoms. In (d) the sub-
stitutional S atom is not displaced but, instead, one
of its three Ga neighbors is relaxed in a pattern
similar to the Si donor in (b). Reproduced from
[Chadi88].

A4.1.5 Experimental Evidence in Support of the Chadi-Chang Model

The CCM was not immediately accepted because initial attempts to mea-
sure the large lattice relaxation associated with the DX center turned out
to be quite difficult. On one hand, it was possible to introduce only around
1018 cm�3 of such centers. Techniques for measuring lattice displacements such
as x-ray diffraction and extended x-ray absorption fine structures (or EXAFS)
are not sensitive enough for low atomic number atoms like Si. Heavier atoms,
like Sn, induce smaller lattice displacements. On the other hand, measurement
of the -U properties of the DX centers was easier and the correctness of the
CCM became accepted based on its correct prediction of the properties of the
DX centers including their -U nature.

The -U nature of the DX centers has now been established by several ex-
periments. Perhaps the most convincing ones are those based on the concept
of co-doping. As we noted earlier, most DX centers exhibit similar properties,
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independent of their chemical nature. However, there is a “chemical shift” in
their activation energies. For example, Si DX centers have larger activation
energies than Sn. Similarly, S DX centers have larger activation energies than
Te. This chemical shift makes it possible to convert one donor specie into the
deep DX center while a different donor specie remains shallow. When this
shallow-to-deep conversion occurs for one donor specie it can capture free
electrons from the specie which remains shallow. Such a co-doping experiment
was performed by Baj et al. [Baj93]. These authors co-doped a GaAs sample
with both Te and Ge. A hydrostatic pressure of over 1.0 GPa converts Ge into
a DX center while Te remains as a shallow donor level in the gap. Normally
these Ge donors contribute free carriers to the conduction band and the free
electron concentration can be measured accurately by Hall effect (see 5.5.2).
When the Ge donors transform to DX centers there is a drop in the free elec-
tron concentration. This drop should be exactly equal to the Ge concentration
if the deep state captures only one electron per Ge atom. On the other hand,
if the deep state has a negative U then each Ge atom will capture two elec-
trons with the extra electron coming from the Te donors which remain shallow
at 1 GPa. As a result, the total free carrier concentration will decrease by twice
the total number of Ge donors. Such a co-doping experiment can, therefore,
probe not only the negatively charged DX state but also the neutral A1 state
with small lattice relaxation.

To realize the above idea Baj et al. utilized a combination of light irradia-
tion and temperature to control the number of electrons trapped on the DX
centers. The Hall effect is used to measure the free carrier concentration as
a function of pressure at 77 K and 100 K, respectively. Light illumination was
used to excite carriers into the persistent photo-conducting states. Their results
are shown in Figure A4.7. Both curves exhibit a step at a pressure between
0.5 GPa and 1.0 GPa. The step in the 77 K curve is smaller and has a mag-
nitude of ∼ 1 × 1017 cm�3. This step is explained by the trapping of electrons
from the conduction band into the shallower A1 level of Ge. Thus, the con-
centration of Ge impurities is determined accurately to be 1× 1017 cm�3 since
each A1 state captures only one electron. The deeper -U DX level associated
with the Ge impurities does not capture electrons at 77 K because of its large
capture barrier height. However, at 100 K the capture rate of Ge DX cen-
ter becomes much larger. If the DX center were really a -U center, then one
would expect to see a bigger drop in the carrier concentration due to trapping
into the DX state. Indeed Baj et al. found that the step in the 100 K curve
in Fig. A4.7 is ∼ 2 × 1017 cm�3 or exactly twice the Ge impurity concentra-
tion. This experiment unambiguously demonstrates that each DX level of the
Ge impurity in GaAs captures two electrons. The beauty of this experiment
is that the result is independent of the existence of any compensating accep-
tors. Also, no prior information on doping concentrations is needed. The only
requirement is that the concentration of the Te shallow donor which provides
the electrons for the Ge DX centers be higher than that of the Ge donors so
that Te can provide enough electrons to fill the -U DX ground states.
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Fig. A4.7 Plots of the Hall carrier concen-
tration in GaAs co-doped with Ge and Te
measured as a function of hydrostatic pres-
sure at T � 77 and 100 K. The open
symbols are the experimental points. The
solid lines are theoretical fits based on a -U
model. Reproduced from Baj et al. [Baj93].

Many other experiments [Mooney88,90; Calleja90, Wolk92, Zeman95] have
helped to firmly establish the properties of the DX center to the point that
it is one of the best understood deep centers in semiconductors.
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Appendix D:
Recent Developments and References

Chapter 1

Many new techniques for growing semiconductors have been developed re-
cently in response to interests in nanostructures of semiconductors and their
alloys. The following list contains some of these techniques and appropriate
references.

The Vapor-Liquid-Solid (VLS) Method

This is a very popular method for growing one-dimensional structures known
as nanorods or nanowires. It is one of a few techniques that can grow a large
array of nanorods and also nanorods which contain a core different from an
outer shell (core-shell nanowires). This technique usually requires a liquified
metal, such as Au, as a “catalyst”. However, it has also been found that, with-
out a “catalyst”, tapered nanocrystals known as nanoneedles can be grown.

R. S. Wagner and W. C. Ellis: Vapor-Liquid-Solid Mechanism Of Single Crystal
Growth. Appl. Phys. Lett. 4, 89–91 (1964).

L. J. Lauhon, M. S. Gudiksen, D. Wang and C. M. Lieber: Epitaxial core-shell
and core-multishell nanowire heterostructures. Nature, 420, 57–61 (2002).

C. W. Blackledge, J. M. Szarko, A. Dupont, G. H. Chan, E. L. Read, S. R.
Leone: Zinc oxide nanorod growth on gold islands prepared by microsphere
lithography on silicon and quartz. J. of Nanoscience and Nanotechnology, 7,
3336–3339 (2007).

M. J. Tambe, S. K. Lim, M. J. Smith, L. F. Allard and S. Gradecak: Realization
of defect-free epitaxial core-shell GaAs/AlGaAs nanowire heterostructures.
Appl. Phys. Lett., 93, 151917–151919, (2008).

K. Tateno, G. Zhang and H. Nakano: InP nanostructures formed in GaP-
based nanowires grown on Si(111) substrates. J. Crystal Growth, 310, 2966–9
(2008).

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain:
Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown
on silicon. Appl. Phys. Lett. 93, 023116–023118 (2008).
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The “TOPO” and related Method of Growing Nanocrystals

This technique starts with solutions in tri-n-octyl-phosphine oxide (TOPO)
of the desired chemical species for forming the semiconductor, such as Cd
and Se compounds (or precursors) to produce CdSe. After reacting to form
CdSe the size of the resultant nanocrystals is limited due to capping by TOPO
molecules. The size of the almost spherical nanocrystals can be controlled to
certain extent by selecting the temperature of the reagents and by perform-
ing further size sorting afterwards. This method can produce large quantities
of nanocrystals with size spread of �5% for industrial application. Core-shell
nanocrystals have also been successfully grown. The discovery of many other
chemical agents to replace TOPO has greatly broadened the choice of nanos-
tructured semiconductor which can be grown by this technique.

C. B. Murray, D. J. Norris and M. G. Bawendi: Synthesis and Characterization
of Nearly Monodisperse CdE (E=S, Se, Te) Semiconductor Nanocrystallites.
J. Am. Chem. Soc. 115, 8706–8715 (1993).

J. E. B. Katari, V. L. Colvin and A. P. Alivisatos: X-ray Photoelectron spec-
troscopy of CdSe nanocrystals with applications to studies of the nanocrystal
surface. J. Phys. Chem. 98, 4109–4117 (1994).

K. Hashizume, M. Matsubayashi, M. Vacha1 and T. Tani: Individual meso-
scopic structures studied with sub-micrometer optical detection techniques:
CdSe nanocrystals capped with TOPO and ZnS-overcoated system. J. of Lu-
minescence, 98, 49–56 (2002).

J.-Yu Zhang and W. W. Yu: Formation of CdTe nanostructures with dot, rod,
and tetrapod shapes. Appl. Phys. Lett. 89, 123108 (2006).

P. Dagtepe, V. Chikan, J. Jasinski and V. J. Leppert: Quantized growth of
CdTe quantum dots; observation of magic-sized CdTe quantum dots. J. Phys.
Chem. C, 111, 14977–83 (2007).

N. O. V. Plank, H. J. Snaith, C. Ducati, J. S. Bendall, L. Schmidt-Mende and
M. E. Welland: A simple low temperature synthesis route for ZnO-MgO
core-shell nanowires. Nanotechnology, 19, 465603–465610 (2008).

Growth Of Nanocrystals In Glass

In the middle ages stained glass was fabricated by dissolving metals in molten
glass following by quenching and annealing to form metallic nanocrystals. To-
day this method can be used to produce nanocrystals of semiconductors em-
bedded in a glass matrix. First the semiconductor is dissolved in the molten
glass which is then quenched to room temperature. By annealing, the dis-
persed semiconductor molecules or atoms coalesce into nanocrystals which are
approximately spherical. This method is inexpensive and can produce indus-
trial size glass containing semiconductor nanocrystals for optical applications
(neutral density filters, color filters in photography are some examples). A
variation of this method involves implanting ions into the glass and then heat-
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ing up the glass to allow the ions to react to form the semiconductor nanocrys-
tals.

L. C. Liu and S. H. Risbud: Quantum-dot size-distribution analysis and precipi-
tation stages in semiconductor doped glasses. J. Appl. Phys. 68, 28–32 (1990).

S. A. Gurevich, A. I. Ekimov, I. A. Kudryavtsev, O. G. Lyublinskaya, A. V.
Osinskii, A. S. Usikov, N. N. Faleev: Growth of CdS nanocrystals in silicate
glasses and in thin SiO2 films in the initial stages of the phase separation of
a solid solution. Semiconductors, 28, 486–93 (1994).

S. Guha, M. Wall and L. L. Chase: Growth and Characterization of Ge
nanocrystals. Nuclear Instru. Meth. in Phys. Research B (Beam Interactions
with Materials and Atoms) 147, 367–372 (1999).

H. Bernas and R. E. de Lamaestre: Ion beam-induced quantum dot synthesis
in glass. Nuclear Instru. Meth. in Phys. Research B (Beam Interactions with
Materials and Atoms) 257, 1–5 (2007).

Pulsed Laser Deposition

This technique is similar to evaporation except it uses a uv laser producing
high power nanosecond long pulses to ablate a source into a plume. The short
duration of the pulse will not dissociate the semiconductor unlike evaporation
by an oven. Contamination by the crucible is avoided since only the source is
heated. By depositing nanometer metal catalyst particles on the substrate it is
possible to grow an array of nanowires just as the LVS technique.

N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee and S. T. Lee: SiO2-enhanced syn-
thesis of Si nanowires by laser ablation. Appl. Phys. Lett. 73, 3902–4 (1998).

Y. Y. Wu, Rong Fan and P. D. Yang: Block-by-block growth of single-crystalline
Si/SiGe superlattice nanowires. Nano Letters, 2, 83-6 (2002).

S. Neretina, R. A. Hughes, N. V. Sochinski, M. Weber, K. G. Lynn, J. Wojcik,
G. N. Pearson, J. S. Preston, and P. Mascher: Growth of CdTe/Si(100) thin
films by pulsed laser deposition for photonic applications. J. Vac. Sci. Tech-
nol. A 24, 606–611 (2006).

C. V. Cojocaru, A. Bernardi, J. S. Reparaz, M. I. Alonso, J. M. MacLeod, C.
Harnagea, and F. Rosei: Site-controlled growth of Ge nanostructures on
Si(100) via pulsed laser deposition nanostenciling. Appl. Phys. Lett. 91,
113112–113114 (2007).

A. Rahm, M. Lokenz, T. Nobis, G. Zimmirmann, M. Grundmann, B. Fuhr-
mann and F. Syrowatka: Pulsed-laser deposition and characterization of
ZnO nanowires with regular lateral arrangement. Applied Physics A 88,
31–4 (2007).

X. W. Zhao, A. J. Hauser, T. R. Lemberger and F. Y. Yang. Growth control of
GaAs nanowires using pulsed laser deposition with arsenic over-pressure.
Nanotechnology, 18, 485608-1-6 (2007).
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Review articles

L. Brus: Chemical Approaches to Semiconductor Nanocrystals. J. Phys. Chem.
Solids, 59, 459–465 (1998).

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F.
Kim and H. Q. Yan: One-dimensional Nanostructures: Synthesis, Characteri-
zation, and Applications. Adv. Materials 15, 353–389 (2003).

N. Wang, Y. Cai and R. Q. Zhang: Growth of nanowires. Materials Science &
Engineering R: 60, 1–51 (2008).

Carbon Nanotubes and Graphene

In earlier editions of this book carbon nanotubes, semiconducting as well as
(semi)-metallic, had already been mentioned (1.1.5) and some references
given. The field has reached an enormous development since the beginning
of the present century: according to the Web of Science nearly 35 000 arti-
cles have appeared to date in source journals mentioning carbon nanotubes
either in the title or in the abstract. Single wall nanotubes can now be grown
readily and are available commercially. However, the control over chirality
of the tube, which determines the size of the bandgap, is lacking. A related
development which started around 2004 concerns single graphene sheets. For
symmetry reasons they are semimetallic, with Dirac-type massless electrons at
the Fermi energy. Nearly 3500 articles, cited to date (Dec. 2008) about 63000
times, have been published on graphene. While single graphene sheets can be
obtained by simple techniques, such as pealing, a well-controlled and repro-
ducible growth technique is still lacking. We give next a few recent references
on carbon nanotubes and graphene with the understanding that these are still
fast developing fields:

X. Fan, R. Buczko, A. A. Puretzky, D. B. Geohegan, J. Y. Howe, S. T. Pan-
telides, S. J. Pennycock: Nucleation of Single Walled Carbon Nanotubes.
Phys. Rev. Letters 90, 145501 (2003).

M. Monthioux, Who should be given credit for Nanotubes? Carbon 44, 1621
(2006).

M. J. Height, J. B. Howard, J. W. Tester, J. B. V. Sande: Flame Synthesis of Car-
bon Nanotubes. Carbon 42, 2295 (2004).

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigoreva and A. A. Firsov: Carbon Wonderland, Scientific American
298, 90 (2008).

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelsov, S. V.
Dubonos, I. V. Grigoreva, S. V. Dubonos, and A. A. Firsov: Two–Dimensional
Gas of Massless Dirac Fermions in Graphene, Nature 438, 197 (2005).

General Reading

Jorio, A., Dresselhaus, M. S., Dresselhaus, G. (ed.): Carbon Nanotubes: ad-
vanced topics in synthesis, structure, properties, and applications, Topics in
Applied Physics, Vol. 111 (Springer, New York, 2008).
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Popov, V. N., Lambin, P. (ed): Carbon Nanotubes: from basic research to tech-
nology, (Kluwer Acad. Pub., Doordrecht, 2006).

Thomsen, C., Reich, S.: Raman Scattering in Carbon Nanotubes, in Springer
Topics in Applied Physics, ed. by M. Cardona and R. Merlin (Springer, Hei-
delberg, 2007).

Chapter 2

During the past two decades so-called ab initio techniques have become in-
creasingly important as already mentioned in p. 333. This fact is due partly
to the enhanced power of available computers and partly to the increasing
sophistication of the computer codes available for the calculation of elec-
tronic structures. The latter now include free and commercial ones. Most of
these computer codes are based on the so-called density functional theories
which allow the conversion of the intractable many electron interactions into
tractable one electron potentials. Among these functionals, the most com-
monly used ones are the local density approximation (LDA) and, more re-
cently, the generalized gradient approximation (GGD). Some of these ap-
proaches start with one-electron ionic potentials which are reduced to ab initio
pseudopotentials derived from the corresponding atomic wavefunctions. Plane
waves or augmented plane waves (APW) are used as trial functions for solv-
ing the appropriate Schrödinger equation. In semiconductors containing par-
tially filled d and f shells, the strong Coulomb repulsion between these highly
localized electrons cannot be represented by pseudopotentials alone. One ap-
proach is to add an additional Coulomb repulsion term (U) for these localized
electrons leading to approximations known as LDA�U or GGA�U. Most
of these approaches are now implemented via a plethora of computer codes
available through the web (on the basis of free access or for an annual fee)
under acronyms such as:

ABINIT (www.abinit.org),
QUANTUM-EXPRESSO (www.quantum-espresso.org),
SIESTA which stands for Spanish Initiative for Electronic Simulations with

Thousands of Atoms (www.uam.es/departamentos/ciencias/fismateria),
VASP which stands for Vienna Ab-initio Simulation Package

(cms.mpi.univie.ac.at/vasp/),
WIEN 2K (www.wien2k.at)

and others.
These methods have proven to be rather accurate for determining ground

state energies and properties but have limited success when dealing with ex-
cited states properties, like the band gaps, and exciton energies in the dielec-
tric response spectra (see p. 333). A number of highly sophisticated correc-
tion schemes have been developed to overcome these difficulties. They include
the GW approximation to the electron self-energy and the time dependent
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density functionals, as well as direct solutions of the Bethe-Salpeter equation
which take into account the Coulomb (excitonic) interaction between an ex-
cited electron and the hole left behind (see Fig. 6.55). Unfortunately, most
of these calculations are quite computation intensive and require the use of
super-computers. Even then, most of these calculations do not include the ef-
fect of electron-phonon interaction, which can be non-negligible in many cases
even at zero temperature (because of the zero-point vibrations, see Fig. 6.44).
We give below a list of articles and books related to the theory and practice of
ab initio electronic band structure calculations including their recent updates.
The acronyms of some of the codes used are given in red.

P. Hohenberg and W. Kohn: Inhomogeneous electron gas. Phys. Rev. 136,
B864–B871 (1964).

W. Kohn and L. J. Sham: Self-consistent equations including exchange and cor-
relation effects. Phy. Rev. 140, A1133–A1138 (1965). (Walter Kohn shared
the 1998 Nobel Prize in Chemistry for his development of the density-
functional theory.)

M. S. Hybertson and S. G. Louie: Electron correlation in semiconductors and
insulators: band gaps and quasiparticle energies. Phy. Rev. B 34, 5390–5413
(1986).

A. Rubio, J. L. Corkill, M. L. Cohen, E. L. Shirley, and S. G. Louie: Quasiparti-
cle Band Structure of AlN and GaN. Phys. Rev. B 48, 11810–11816 (1993).

B. Wenzien, P. Kackell, F. Bechstedt, G. Capellini: Quasiparticle Band Struc-
ture of Silicon Carbide Polytypes. Phys. Rev. B 52, 10897–10905 (1995).

D. Vogl, P. Krüger, J. Pollmann: Self-Interaction and Relaxation-Corrected
Pseudopotentials for II-VI Semiconductors. Phys. Rev. B 54, 5495–5511
(1996).

F. Bechstedt, P. Kackell, A. Zywietz, K. Karch, B. Adolph, K. Tenelsen, J.
Furthmüller: Polytypism and Properties of Silicon Carbide. Phys. Stat. Solidi
B 202, 35–62 (1997) (VASP).

S. Albrecht, L. Reining, R. del Sole and G. Onida: Ab Initio Calculations of
Excitonic Effects in the Optical Spectra of Semiconductors. Phys. Rev. Lett.
80, 4510–4513 (1998).

C. Stampfl and C. G. Van de Walle: Density-Functional Calculation of III–V
Nitrides Using Local-Density Approximation and the Generalized Gradient
Approximation. Phys. Rev. B 59, 5521–5535 ( 1999).

D. Sánchez-Portal, E. Artacho, J. M. Soler, A. Rubio, P. Ordejón: Ab Initio
Structural, Elastic and Vibrational Properties of Carbon Nanotubes. Phys.
Rev. B 59, 12678–12688 (1999).

K. Labniczak-Jablonska, T. Suski, I. Gorczyca, N. E. Christensen, K. E. At-
tenkofer, R. C. C. Perera, E. M. Gullikson, J. H. Underwood, D. L. Ederer,
and Z. Liliental Weber: Electronic States in Valence and Conduction Bands
of Group III Nitrides: Experiment and Theory. Phys. Rev. B 61, 16623–16632
(2000).

L. E. Ramos, L. K. Teles, L. M. R. Scolfaro, J. L. P. Castineira, A. L. Rosa,
J. R. Leite: Structural, Electronic, and Effective-Mass Properties of Silicon
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and zinc-blende group III Nitride Semiconductors. Phys. Rev. B 63, 165210–
165219 (2001).

F. Bechstedt and J. Furthmüller: Do We Know the Fundamental Gap of InN?
J. Cryst. Growth 246, 315–319 (2002) (VASP).

D. Sánchez-Portal, P.Ordejón, E. Canadell: Computing the Properties of Mate-
rials from First Principles with SIESTA. Structure and Bonding 113, 103–170
(2004).

M. Cardona: Electron-Phonon Interaction in Tetrahedral Semiconductors.
Solid State Commun. 133, 3–18 (2005).

M. Cardona and M. L. W. Thewalt: Isotope Effects on Optical Spectra of Semi-
conductors. Rev. Mod. Phys. 77, 1173–1224 (2005).

A. Sucivara, B. R. Sahu, L. Kleinman: Density Functional Study of the Effect
of Pressure on Ferroelectric GeTe. Phys. Rev. B 73, 214105–214110 (2006)
(VASP).

R. Laskovski and N. E. Christensen: Ab Initio Calculation of Excitons in ZnO.
Phys. Rev. B 73, 045201 (2006).

A. N. Chantis, M. Cardona, N. E. Christensen, D. L. Smith, M. van Schilf-
gaarde, T. Kotami, A. Svane, and R.C. Albers: Strain-Induced Conduction-
Band Splitting in GaAs from First Principles Calculations. Phys. Rev. B 78,
075208–075214 (2008).

A. Marini: Ab initio Finite-Temperature Excitons, Phys. Rev. Lett. 101,
106405–106408 (2008) (YAMBO).

Z. A. Ibrahim, A. I. Shkrebtii, M. J. G. Lee, K. Vynck, T. Teatro, W. Richter,
T. Trepk, and T. Zettler: Temperature Dependence of the Optical Response:
Application to bulk GaAs Using First-Principles Molecular Dynamics Simu-
lations. Phys. Rev. B 77, 125218–125222 (2008) (QUANTUM-EXPRESSO).

M. Verstraete: First-Principles Computation of the Electronic and Dynamical
Properties of Solids and Nanostructures with ABINIT. J. Phys.: Cond. Mat-
ter 20, 064212 (2008).

General Reading

Dresselhaus M. S., Dresselhaus G., Jorio A.: Group Theory: Application to the
Physics of Condensed Matter (Springer; Heidelberg, Berlin, 2008).

Evarestov R. A.: Quantum Chemistry of Solids: The LCAO First Principles
Treatment of Crystals (Springer, Berlin, Heidelberg, New York, 2007). In
page 526 there is a list of computer codes for periodic systems that use a
localized orbital basis.

Fiolhais C., Nogueira F., and Marques M. A. L. (eds.): A Primer in Density
Functional Theory (Lecture Notes in Physics) (v.620) (Springer, Heidelberg,
Berlin, 2003).

Marques M. A. L., Ullrich C. A., Nogueira F., Rubio A., Burke K., Gross
E. K. U. (eds.): Time-Dependent Density Functional Theory (Springer, Hei-
delberg, Berlin, 2006).

Martin R. M.: Electronic Structure: Basic Theory and Practical Methods (Cam-
bridge University Press, Cambridge, 2004).
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Chapter 3

Ab initio phonon calculations

The discussion of phonon dispersion relations in Chap. 3 was based on semi-
empirical models of the force constants. In Fig. 3.3, however, an example of
ab initio calculations was shown for the dispersion relations of GaN. These
results are based on the total energy calculations obtained from an ab ini-
tio electronic band structure. The atomic positions are then perturbed and
the corresponding changes in the total energy are used to obtain restoring
forces. This can be done either by using static atomic displacements (i.e.
time independent phonon eigenvectors), which correspond to frozen phonons,
or by energy functional perturbation theory. During the past decade sev-
eral of the ab initio computer codes mentioned in the update to the refer-
ences of Chap. 2, (e.g. ABINIT, CASTEP, VASP) and others (MedeA is the
name of a software platform which works with VASP for the computation
of materials properties including phonons. Further details can be found at
the URL:www.materialsdesign.com/), have been expanded so as to allow the
calculation of phonon dispersion relations. In the references that follow, the
reader will find examples of ab initio calculations of the lattice dynamics of
semiconductors. Whenever standard codes were used in these calculations, the
corresponding acronyms are given in red.

S. Baroni, S. de Gironcoli, A. del Corso, P. Giannozzi: Phonons and Related
Crystal Properties from Density-Functional Perturbation Theory. Rev. Mod.
Phys 73, 515–562 (2001).

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J.
Clark and M. C. Payne: First-principles simulation: ideas, illustrations and the
CASTEP code. J. Phys.: Condens. Matter 14, 2717–2744 (2002).

X. C. Gonze: A Brief Introduction to the ABINIT software package. Z. für
Kristallographie, 220, 558–562 (2005).

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson
and M. C. Payne: First Principles Methods Using CASTEP. Z. für Kristallo-
graphie 220, 567–570 (2005).

K. Parlinski: First-Principle Lattice dynamics and Thermodynamics of Crystals.
J. Physics: Conference Series 92, 012009-012013 (2007). (VASP) (In this article

references to calculations for a number of semiconductors such as BN, GaN,
HgSe, ZnTe, AgGaS2 etc. can be found.)

A. H. Romero, M. Cardona, R. K. Kremer, R. Lauck, G. Siegle, J. Serrano,
X. C. Gonze: Lattice Properties of PbX (X=S, Se, Te): Experimental stud-
ies and ab initio calculations including spin-orbit effects. Phys. Rev. B 78,
224302–224310 (2008). (ABINIT) (In this work, evidence for the influence
of electronic spin-orbit coupling on the lattice dynamics and related proper-
ties is presented.)
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Inelastic x-ray Scattering (IXS)

As discussed in Chap. 7, laser Raman scattering yields very precise informa-
tion about the frequencies and line widths of phonons at or near the center of
the Brillouin zone. However, it cannot access phonons throughout the whole
Brillouin zone because the laser wavelength is much larger than the typical lat-
tice constants. The measured dispersion relations shown in this chapter were
obtained by inelastic neutron scattering (INS), taking advantage of the fact
that the wavelength of thermal neutrons is close to the lattice constants. This
technique, however, is slow, cumbersome, requires large samples and has poor
energy resolution. Within the past decade, these problems have been circum-
vented (except for the poor resolution) by using IXS, with monochromatized
x-rays from a synchrotron radiation source. An example of these measure-
ments is given in Fig. 3.3. IXS allows the use of small samples (� 1 mm in
size) and is thus suitable for measurements under pressure in diamond anvil
cells (DAC). A discussion can be found in the following articles:

M. Krisch: Status of Phonon Studies at High Pressure by inelastic X-ray scat-
tering. J. Raman Spectr. 34, 628–632 (2003).

M. Krisch and F. Sette: Inelastic X-ray Scattering from Phonons, in Light Scat-
tering in Solids IX, edited by M.Cardona and R. Merlin (Springer, Heidel-
berg, 2007) p. 317–369.

Effects of Hydrostatic Pressure on Phonons

The large samples required by INS limits the highest hydrostatic pressure that
can be reached to about 1 GPa. With IXS much smaller samples can be used
and, with the help of DACs pressures as high as a few hundred GPa can be
reached at the expense of the resolution. The pressure effects of main interest
are the shift in phonon frequencies (related to the mode Grüneisen parame-
ters discussed in Problem 3.17) and changes in phonon line widths. These “an-
harmonic” effects are amenable to ab initio calculations. The phase transitions
which take place at high pressures are also evinced in the phonon spectra.
Recent advances in the field can be found in the following publications:

A. Debernardi: Anharmonic Èffects in the Phonons of III-V Semiconductors:
First Principles Calculations. Solid State Commun. 113, 1–10 (1999).

J. Camacho, K. Parlinski, A. Cantarero, and K. Syassen: Vibrational Properties
of the high pressure Cmcm phase of ZnTe. Phys. Rev. B 70, 033205–033208
(2004).

J. Kulda, A. Debernardi, M. Cardona, F. de Geuser, and E. E. Haller: Self-
Energy of Zone- Boundary Phonons in Germanium: Ab initio Calculations
versus Neutron Spin-Echo Measurements. Phy. Rev. B 69, 045209–045213
(2004).

J. Serrano, A. H. Romero, F. J. Manjon, R. Lauck, M. Cardona and A. Ru-
bio: Pressure Dependence of the Lattice Dynamics of ZnO, an ab initio ap-
proach. Phys. Rev. B 69, 094306–094319 (2004). (ABINIT)
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Effects of Isotopic Substitution on Phonons

During the pass 15 years isotopically pure constituents of many semiconduc-
tors have become available at affordable prices. With them it has become pos-
sible to grow semiconductor crystals with tailor-made isotopic compositions.
A number of interesting experiments have thus become possible. In p. 117
(footnote) it has already been mentioned that elimination of strongly neutron
absorbing isotopes (e.g. 113Cd) allows INS measurements on cadmium com-
pounds such as CdS. Isotopic substitution also yields information about an-
harmonic effects, among others the dependence of the lattice parameters on
isotopic mass. The interested reader should consult:

N. Vast and S. Baroni: Effects of Isotopic Disorder on the Raman Spectra of
Crystals: Theory and ab initio Calculations for Diamond and Germanium.
Phys. Rev. B 61, 9387–9392 (2000).

M. Cardona and M. L. W. Thewalt: Isotope Effects on Optical Spectra of Semi-
conductors. Rev. Mod. Phys 77, 1173–1224 (2005).

Electron Phonon Interactions

In Sect. 3.3 we have discussed the effects of phonons on the electronic states
on the basis of semi-empirical models of the electronic band structures and the
lattice dynamics. As expected, these effects can also be calculated using the ab
initio approach from both the electronic band structures and lattice dynamics.
Such calculations are the simplest for long wavelength acoustic phonons; they
correspond to the effects of uniform (either uniaxial or hydrostatic) strains on
the electronic band structure. More general electron-phonon interaction ef-
fects, including intervalley scattering, have since been calculated also by ab
initio techniques. We mention two recently articles on this subject.

S. Sjakste, V. Tyuterev and N. Vast: Ab initio Study of °-X intervalley scatter-
ing in GaAs under pressure. Phys. Rev. B 74, 235216–235222 (2006).

S. Sjakste, N. Vast, V. Tyuterev: Ab initio Method for Calculating Electron-
Phonon Scattering Times in Semiconductors: Application to GaAs and GaP.
Phys. Rev. Lett. 99, 236405–236408 (2007).

Chapter 4

The study of defects in semiconductors is one of the most important fields
in semiconductor physics and new developments appear constantly. For exam-
ple, it has been found that large band gap semiconductors tend to be n-type.
It was thought that there might be fundamental reasons preventing the in-
corporation of acceptors in them. By now it has been demonstrated via the
p-doping of GaN and related alloys that no insurmountable barriers exist to
prevent the p-doping of the large band gap semiconductors. This breakthrough
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results from a better understanding and control of intrinsic defects which often
compensate the acceptors. Another interesting development involves the dis-
covery that alloying GaAs with high concentration of N (as shown in Section
4.3.3 low concentration of nitrogen isoelectronic impurities produce resonant
states inside the conduction band of GaAs) can lower the band gap of GaAs
rather than increasing it as one may expect from the much larger band gap of
GaN than that of GaAs. A related development is the incorporation of high
concentration of magnetic ions, such as Mn, into a III-V host to produce ferro-
magnets with Curie temperature above room temperature. Much of these re-
cent advances would not have been possible without the development of new
“non-equilibrium” growth techniques (see updates in references of Chapter 1).
Equally important for the study of deep centers in semiconductors has been
the application of ab initio approaches to calculate the electronic properties of
defects. A good case in point is the deep center known as the DX center (see
Section 4.3). This deep center has been studied extensively, both experimen-
tally and theoretically, so that its nature can be said to be completely under-
stood. An appendix has been devoted in this book to this important deep cen-
ter. The following is a list of references on the above topics except for the DX
center. References to work on the DX center can be found in the Appendix.
A few words of caution are in order though. There are still confusions and
controversies in the study of dilute magnetic III-V semiconductors because
many of the samples are inhomogeneous and poorly characterized. Neverthe-
less, our understanding of the properties of magnetic ions in semiconductors
has greatly improved recently.

Intrinsic and Deep Centers in Large Gap Semiconductors

G. Y. Zhang, Y. Z. Tong, Z. J. Yang, S. X. Jin, J. Li and Z. Z. Gan: Relationship
of background carrier concentration and defects in GaN grown by metalor-
ganic vapor phase epitaxy. Appl. Phys. Lett., 71, 3376–3378 (1997).

K. H. Chow. G. D. Watkins, A. Usui and M. Mizuta: Detection of interstitial
Ga in GaN. Phys. Rev. Lett., 85, 2761–2764 (2000).

C. H. Park, S. B. Zhang and S.-H. Wei: Origin of p-type doping difficulty in
ZnO: The impurity perspective. Phys. Rev. B 66, 073202/1–3 (2002).

C. G. Van de Walle and J. Neugebauer: First-principles calculations for defects
and impurities: applications to III-nitrides. J. Appl. Phys., 95, 3851–79 (2004).

K. H. Chow, L. S. Vlasenko, P. Johannesen, C. Bozdog, G. D. Watkins, A. Usui,
H. Sunakawa, C. Sasaoka and M. Mizuta: Intrinsic defects in GaN. I. Ga
sublattice defects observed by optical detection of electron paramagnetic
resonance. Phys. Rev. B 69, 045207/1–5 (2004).

P. Johannesen, A. Zakrzewski, L. S. Vlasenko, G. D. Watkins, A. Usui, H.
Sunakawa and M. Mizuta: Intrinsic defects in GaN. II. Electronically en-
hanced migration of interstitial Ga observed by optical detection of electron
paramagnetic resonance, Phys. Rev. B 69, 045208/1–9 (2004).
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A. Janotti and C. G. Van de Walle: Oxygen vacancies in ZnO. Appl. Phys.
Lett., 87, 122102/1–3 (2005)

P. Dev, Y. Xue, and P. H. Zhang: Defect-induced intrinsic magnetism in wide-
gap III-nitrides. Phys. Rev. Lett. 100, 117204–117206 (2008).

Electronic Structure of GaAsN and related alloys

W. Shan, K. M. Yu, W. Walukiewicz, J. W. Ager III, E. E. Haller, M. C. Ridg-
way: Reduction of band-gap energy in GaNAs and AlGaNAs synthesized by
N� implantation. Appl. Phys. Lett., 75, 1410–12 (1999).

S. B. Zhang and S.-H. Wei: Nitrogen solubility and induced defect complexes
in epitaxial GaAs: N. Phys. Rev. Lett., 86, 1789–92 (2001).

P. R. C. Kent and A. Zunger: Evolution of III-V nitride alloy electronic struc-
ture: the localized to delocalized transition. Phys. Rev. Lett., 86, 2613–16
(2001); Theory of electronic structure evolution in GaAsN and GaPN alloys.
Phys. Rev. B 64, 115208/1–23 (2001).

L.-W. Wang: Large-scale local-density-approximation band gap-corrected
GaAsN calculations. Appl. Phys. Lett., 78, 1565–7 (2001).

Magnetic impurities in semiconductors and III-V dilute magnetic
semiconductors

H. Ohno: Making nonmagnetic semiconductors ferromagnetic. Science, 281,
951–614 (1998).

T. Dietl and H. Ohno:Ferromagnetism in III-V and II-VI semiconductor struc-
tures, Physica E.9, 185–93 (2001).

M. A. Scarpulla, B. L. Cardozo, R. Farshchi, W. M. Oo, M. D. McCluskey, K. M.
Yu, and O. D. Dubon: Ferromagnetism in Ga1�xMnxP: Evidence for Inter-
Mn Exchange Mediated by Localized Holes within a Detached Impurity
Band. Phys. Rev. Lett. 95, 207204 (2005).

E. Malguth, A. Hoffmann, W. Gehlhoff, O. Gelhausen, M. R. Phillips and X.
Xu: Structural and electronic properties of Fe3� and Fe2� centers in GaN
from optical and EPR experiments. Phys. Rev. B 74, 165202/1–12 (2006).

T. Jungwirth, J. Sinova, A. H. MacDonald, B. L. Gallagher, V. Novak, K. W.
Edmonds, A. W. Rushforth, R. P. Campion, C. T. Foxon, L. Eaves, E. Ole-
jnik, J. Masek, S.-R. E. Yang, J. Wunderlich, C. Gould, L. W. Molenkamp,
T. Dietl and H. Ohno: Character of states near the Fermi level in
(Ga,Mn)As: Impurity to valence band crossover. Phy. Rev. B 76, 125206/1–9
(2007).

L. Liu, P. Y. Yu, Z. X. Ma, and S. S. Mao: Ferromagnetism in GaN:Gd: A Den-
sity Functional Theory Study. Phys. Rev. Lett. 100, 127203–127206 (2008).

A. Ney, T. Kammermeier, V. Ney, S. Ye, K. Ollefs, E. Manuel, S. Dhar, K. H.
Ploog, E. Arenholz, F. Wilhelm and A. Rogalev: Element specific magnetic
properties of Gd-doped GaN: Very small polarization of Ga and paramag-
netism of Gd. Phy. Rev. B 77, 233308/1–4 (2008).
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K. Alberi, K. M. Yu, P. R. Stone, O. D. Dubon, W. Walukiewicz, T. Wojtowicz,
X. Liu, and J. K. Furdyna: Formation of Mn-derived impurity band in
III-Mn-V alloys by valence band anticrossing Phys. Rev. B 78, 075201/1–7
(2008).

General Reading

Dietl T., Awschalom D. D., Kaminska M., Ohno H. (ed.): Spintronics, Volume
82 (Semiconductors and Semimetals), (Academic Press; New York, 2008).

Drabold D. A., Estreicher S. (ed.): Theory of Defects in Semiconductors (Top-
ics in Applied Physics, Vol. 104), (Springer, Heidelberg, Berlin, 2006).

Norbert H. N., Terukov E. (ed.): Zinc Oxide – A Material for Micro- and Opto-
electronic Applications (NATO Science Series II: Mathematics, Physics and
Chemistry) (Springer; Heidelberg, Berlin, 2005).

Tilley R. J. D.: Defects in Solids (Special Topics in Inorganic Chemistry) (Wiley-
Interscience, New York, 2008).

Chapter 5

In Chapter 5 we have studied the transport of electrons under an applied elec-
tric field based on the assumption that the mean-free-paths of the electrons
are much smaller than the dimensions of the sample. This assumption allows
us to treat the motion of the electron classically, similar to the diffusion of par-
ticles in the presence of an external perturbation. In reality, electrons behave
as Bloch waves in a crystal. Although predictions of the effect of the wave
nature of electrons on their transport can be traced back to F. Bloch, they
were not realized until advances in the fabrication of nanometer size samples
(see updated references for Chapter 1) make their observation possible. When
the mean-free-paths of the carriers are much longer than the dimension of the
sample, the motion of the carriers is said to be ballistic (as compared to dif-
fusive). In this regime, the transport of carriers through a sample has to be
described in terms of the transmission of quantum mechanical waves. This ap-
proach has already been applied in Section 9.5 to describe resonant tunneling.
With the recent interest in low-dimensional structures, quantum transport has
become a topic of great interest for both its basic science and electronic de-
vice applications. Some of the important phenomena discovered include: the
observation of quantized conductance (the reciprocal of a quantum of con-
ductance: the “quantum of resistance” has been defined on p. 541 in relation
to the Quantum Hall Effect which is clearly an example of quantum trans-
port). Another phenomenon is Coulomb Blockade which influences quantum
transport through a double-barrier quantum well or quantum dot. This ef-
fect plays an important role in the operation of single electron transistors (or
SET). One interesting consequence of the long mean-free-path of the electron
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is that electrons can be reflected many times within a superlattice sample just
like light inside a Fabry-Perot interferometer. The resultant interference of the
electron wave under a dc applied field can give rise to high frequency oscilla-
tions known as Bloch oscillations.

The following list contains references to some of the theoretical and experi-
mental papers related to quantum transport of charged carriers in semiconduc-
tors and metals. Additional references on more recent work including carbon
nanotubes and graphene can be found in the updated references for Chapter 9.

Theory

M. Büttiker, Y. Imry, R. Landauer, S. Pinhas: Generalized many-channel Con-
ductance Formula with Application to small Rings. Phys. Rev. B 31, 6207–
6215 (1985).

S. Horiguchi, Y. Nakajima, Y. Takahashi, M. Tabe: Energy eigenvalues and
quantized conductance values of electrons in Si quantum wires on {100}
plane. Japan. J. of Appl. Phys., (Part 1) 34, 5489–5498 (1995).

J.-L. Mozos, C. C. Wan, G. Taraschi, J. Wang, H. Guo: Quantized conductance
of Si atomic wires. Phys. Rev. B 56, R4351–4354 (1997).

S. K. Lyo: Magnetic-field-induced V-shaped quantized conductance staircase in
a double-layer quantum point contact. Phys. Rev. B 60, 7732–7735 (1999).

Y. Imry, R. Landauer: Conductance viewed as transmission. Rev. Mod. Phys.
71, S306–312 (1999).

W. Magnus, W. Schoenmaker: Quantized conductance, circuit topology, and
flux quantization. Phys. Rev. B 61, 10883–10889 (2000).

B. Dwir, D. Kaufman. E. Kapon, A. Palevski: Quantized conductance and
inter-subband scattering in serially connected quantum wires. Europhys.
Lett., 55, 80–85 (2001).

Quantized Conductance Experiments

M. A. Kastner: Mesoscopic physics and artificial atoms. AIP Conference Pro-
ceedings, no. 275, 573–851 (993).

E. B. Foxman, P. L. McEuen, U. Meirav, N. S. Wingreen, Y. Meir, P. A. Belk,
N. R. Belk, M. A. Kastner, S. J. Wind: Effects of quantum levels on transport
through a Coulomb island. Phys. Rev. B 47, 10020–10023 (1993).

D. Dixon, L. P. Kouwenhoven, P. L. McEuen, Y. Nagamune, J. Motohisa, H.
Sakaki: Linear and non-linear transport through coupled quantum dots. Surf.
Sci., 361–362, 636–9 (1996).

S. J. Koester, B. Brar, C. R. Bolognesi, E. J. Caine, A. Patlach, E. L. Hu, H.
Kroemer, M. J. Rooks: Length dependence of quantized conductance in bal-
listic constrictions fabricated on InAs/AlSb quantum wells. Phys, Rev, B 53,
13063–13073 (1996).
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Wang, S. Lourdudoss: Quantized conductance in a heterostructurally defined
Ga0.25In0.75As/InP quantum wire. Appl. Phys. Lett., 71, 918–920 (1997).

B. E. Kane, G. R. Facer, A. S. Dzurak, N. E. Lumpkin, R. G. Clark, L. N.
Pfeiffer, K. W. West: Quantized conductance in quantum wires with gate-
controlled width and electron density. Appl. Phys. Lett., 72, 3506–3508
(1998).

L. Worschech, F. Beuscher, A. Forchel,: Quantized conductance in up to 20 Ìm
long shallow etched GaAs/AlGaAs quantum wires. Appl. Phys. Lett., 75,
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Chapter 6

Ab initio calculations of the bulk dielectric response of semiconductors
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There was already in the 3rd edition (Fig. 6.55) an example of such calcu-
lations for GaN, compared with experimental results. During the past decade
this topic has received considerable attention. Some examples have been listed
among the additional references to Chap. 2, such as the book: Time Depen-
dent Density Functional Theory, ed. by M. A. L. Marques et al.. Most extant
calculations, however, do not include spin-orbit interaction nor the effect of
electron-phonon interaction (i.e., the dependence on temperature and on iso-
topic masses). Since much of the information on these two effects has been
obtained from optical measurements, we have added references to pertinent
recent articles in this chapter. We also take advantage of this update to in-
clude references to ab initio calculations of the second-harmonic generation
at surfaces, and on the Burstein-Moss shift of the band gap with increasing
doping.
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Dependence of bandgaps on Temperature and Isotopic Masses:
Electron-Phonon Interaction

Most calculations of Â(ˆ) available in the literature imply that they apply to
T � 0. This is, however not correct: even at T=0 the electron-phonon interac-
tion, not included in the calculation, can significantly alter the corresponding
electronic states. This fact has already been mention in Problem 6.19, in con-
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nection with Fig. 6.44. The effects of the zero –point vibrations (i.e. at T � 0)
can be found for many semiconductors in TABLE III of the article by The-
walt and Cardona mentioned in the additional references of Chap. 2.

Note that with increasing temperature energy gaps usually (but not always:
see PbS) decrease. Some additional references were already given for Chap. 2.
We add a few more:

R. Ramírez, C. P. Herrero: Path Integral Molecular Dynamics Simulation of
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Optical Properties of Semiconductor Mixed Crystals

Mixed Crystals or alloys have been mentioned in connection with Fig. 4.8.
Their energy gaps vary usually continuously from one end to the other of the
composition range. They are used by technologists for bandgap engineering
(see Fig. 9.2). The literature in the field has an old and distinguished his-
tory (see Chap. 9). Recent work involves ab initio calculations of the so-called
“bowing” in the dependence of bandgaps on composition. A few recent refer-
ences are:

C. Mitra and W. R. L. Lambrecht: Band-Gap Bowing in AgGa(Se1�xTex)2 and
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Strain-induced birefringence and intrinsic birefringence of cubic
semiconductors

Equation (6.158) describes the effect of an electric field on the dielectric func-
tion. A similar tensor equation can be used to describe the effect of a tensorial
strain. Whereas a cubic crystal is usually assumed to be optically isotropic, a
finite wavevector q breaks this isotropy (p. 246 and Refs. [6.7, 8]). This effect
has recently received attention as determining the resolution of lenses used
for uv lithography. In the past few years ab initio calculations of strain induced
and q induced birefringence have been performed:

G. Bester, X. Wu, D. Vanderbilt and A. Zunger: Importance of Second or-
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sponse of surfaces. This is due to advances in ab initio computational tech-
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on ellipsometry and reflectometry. The results have proven to be useful for
the in situ characterization of epitaxial layers during growth.

The calculations are often performed on fictitious samples obtained by rep-
etition of thin layers so as to generate in the computer a three-dimensional
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The first order infrared absorption related to the excitation of phonons in po-
lar materials is discussed in Sect. 6.4. Its strength is related to the Born effec-
tive charge e∗ shown in Eq. (6.119). This effective charge has been calculated
for many semiconductors during the past 15 years using ab initio techniques.
e∗ and other polarization related properties have been described by several
authors using the so-called Berry’s phase. Ab initio methods also allow the
calculation of the dependence of e∗ on strain. Although a non-zero e∗ is char-
acteristic of polar crystals and thus vanishes for crystalline Si, in amorphous
Si deviations from the regular lattice positions induce dynamic charges and,
consequently, ir absorption. Several references are listed as follows.
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Chapter 7

Emission Spectroscopies

During the past decade photoluminescence spectroscopies have continued to
play an important role in the characterization and in basic investigations of
semiconductors. Luminescence has also found an increasing role in applica-
tions such as light emitting diodes, lasers and high efficiency solid state light-
ing. Considerable effort has been spent in the investigation of large band gap
II-VI compounds, such as ZnO, and the group III nitrides. Isotopically pure
semiconductors have been used to decrease the width of emission lines and
thus the resolution of emission spectroscopies. A few relevant references are
listed in the following:
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Raman Spectroscopy

Some of the recently developed important Raman techniques not covered in
previous editions are: inelastic x-ray scattering (using monochromatized syn-
chrotron radiation), time-dependent reflectivity induced by coherent phonons
excited by femtosecond pulses (Raman scattering in the time domain), and
spatially resolved Raman scattering using enhanced near-field in the vicinity
of nanometer size scanning tips (known as Tip-enhanced Raman scattering or
TERS). To measure the sample topology and size in TERS the scanning tips
are typically controlled by an Atomic Force Microscopes (AFM). In terms of
materials, carbon nanotubes and graphene, as well as semiconductor nanos-
tructures and microcavities, have attracted considerable attention. TERS has
become a very powerful technique for studying these nanostructures. The dis-
covery of superconductivity in B-doped diamond, silicon, and SiC has again
drawn attention to the Fano interference effect in the Raman spectra induced
by the interaction between optical phonons and the continuum background
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Chapter 8

Photoelectron spectroscopy

During the past two decades the number of electron synchrotrons and stor-
age rings dedicated exclusively to applications of synchrotron radiation has
proliferated. Most of these applications involve condensed matter physics, es-
pecially semiconductors. Most developed and a few developing countries (e.g.
Brazil) have either domestic synchrotrons or easy access to one in a neighbor-
ing country. Their light and x-rays emission, once monochromatized, is partic-
ularly suitable for photoelectron spectroscopy. Although Chapter 8 discusses
mostly bulk photoemission spectroscopy, a few pages are already devoted to
surface effects. During the past decade emphasis has shifted from bulk to sur-
face phenomena, a field in which ab initio electronic and vibronic calculations
have been very helpful. The availability of synchrotrons has also made possi-
ble the development of a bulk-type spectroscopy in which electrons are res-
onantly excited from a core level to a conduction band. X-rays of a lower
energy are then emitted through recombination of valence electrons with the
hole left behind in the core. The efficiency of this Raman-like spectroscopy
(called resonant x-ray emission spectroscopy) is rather limited and so is the
corresponding resolution. Nevertheless, it allows one to map out the full band
structures and even obtain information about their atomic and orbital compo-
sitions. As already mention in the past editions of this book, scanning tunnel-
ing microscopies and spectroscopies are useful techniques to elucidate surface
properties. Some recent references are listed below.

A. M. Frisch, W. G. Schmidt, J. Bernholc, M. Privstovsek, N. Esser, W. Richter:
(2×4) GaP(001) Surfaces: Atomic Structure and Optical Anisotropy. Phys.
Rev. B 60, 2488–2494 (1999).
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Spectroscopy and Density Functional theory Calculations of the Electronic
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A. R. H. Preston, B. J. Ruck, L. F. J. Piper, A. DeMasi, K. E. Smith, A. Schleife,
F. Fuchs, F. Bechstedt, J. Chai, S. M. Durbin: Band Structure of ZnO from
Resonant x-Ray Emission Spectroscopy. Phys. Rev. B 78, 155114/1–4 (2008).

Core Levels and Core Level Shifts

Electron emission from core levels is usually excited with far uv or x-ray radia-
tion. Although investigations are sometimes still performed with conventional
sources, most work is done now with monochromatized synchrotron radiation.
Strong monochromaticity allows the determination of the natural line widths
(not broadened by spectral resolution). Sometimes these widths are so narrow
that the resolution of the contributions of the first few surface layers becomes
possible (especially at low temperatures). Ab initio calculations of core level
energies and shifts are also being performed. A few recent references follow:

H. W. Yeom, Y. C. Chao, S. Terada, S. Hara, S. Yoshida, R. I. G. Uhrberg: Sur-
face Core Levels of the 3C SiC(001)3×2 Surface: Atomic Origins and Sur-
face Reconstruction. Phys Rev. B 56, R15525–R15528 (1997).

R. I. G. Uhrberg, T. Kaurila, Y. C. Chao: Low-Temperature Photoemission
Study of the Surface Electronic Structure of Si(111)7×7. Phys. Rev. 58,
R1730–R1733 (1998).
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interface. Phys. Rev. Letters 81, 2320–2323 (1998).
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Z. J. Zhao, F. Liu, L. M. Qiu, L. Z. Zhao, S. K. Yan: Core Level Binding Energy
Shifts Caused by Size Effect in Nanoparticles. Acta Physico-Chimica Sinica
24, 1685–1688 (2008).

Graphite and Graphene

Recently it has been shown that by sticking adhesive tape on a graphite sur-
face,it is possible to peel off isolated single hexagonal layers of carbon, the so-
called graphene sheets. These are ideal two-dimensional samples. Their sym-
metry (with two atoms per two-dimensional primitive cell), demands degen-
eracy at the Fermi energy at the K-points of the two-dimensional Brillouin
zone. The perfect single graphene layer can be called a semi-metal or a zero-
gap semiconductor. This fact has received considerable attention in the past
5 years. A k · p expansion of the valence and conduction bands around this
point results in Dirac-like particles of zero effective mass (see Problem 2.19).
The interested reader should consult the following references in addition to
those in Chapt. 1 & 9:
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.

Grigorieva, S. V. Dubonos, A. A. Firsov: Two-Dimensional Gas of Massless
Dirac Fermions in Graphene. Nature 438, 197–200 (2005).

A. K. Geim and K. S. Novoselov: The Rise of Graphene. Nature Materials. 6,
183–191 (2007).

Chapter 9

This chapter deals with the effect of confinement of electrons and phonons in
semiconductors. At the time of first publication of this book the best way of
demonstrating these confinement effects was to fabricate a nanometer thick
layer of semiconductor, making a so called quantum well. Since then the
field of creating nanometer scale semiconductor structures has “exploded”
concomitantly with world-wide interest in nano-science and -technology. New
terms like nanowires, quantum wires and quantum dots have appeared. We
have tried to cover some of these new developments in subsequent editions. In
the present edition we try to add new references to recent work in the area of
nanostructured semiconductors relevant to the topics covered in various chap-
ters. Due to the large number of publications which have appeared we find it
necessary to limit ourselves to only a small number of selected papers.

Confinement of electrons and holes in Quantum Wires and Quantum Dots

Al. L. Efros, A. L. Efros: Interband absorption of light in a semiconductor
sphere. Sov. Phys. Semicond. 16, 772–776 (1982).

K. I. Kang, B. P. McGinnis, Sandalphon, Y. Z. Hu, S. W. Koch, N. Peyghambar-
ian, A. Mysyrowicz, L. C. Liu, S. H. Risbud: Confinement-induced valence-
band mixing in CdS quantum dots observed by two-photon spectroscopy.
Phys. Rev. B 45, 3465–3468 (1992).
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