

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-5, November 2012

24

Abstract- Plagiarism detection is a challenging problem. Today

thousands of documents are present on the net but there are no

proper tools to guarantee their uniqueness in such a great

domain. PDF documents form a significant portion of this vast

database. Copy detection in digital document database may

provide necessary guarantees for publishers and newsfeed

services to offer their valuable work for others perusal. We

consider the case of comparing a Query Document with a

Registered Document .Plagiarism detection techniques are

applied by making a distinction between natural and

programming language. In this paper we have implemented

SCAM (standard Copy Analysis Mechanism) which is relative

measure to detecting copies based on comparing the words and

lines frequency occurrences of the new document against those of

registered documents. These tests involve comparisons of various

articles and show that in general this scheme performs pretty well

in detecting documents that have Exact, Partial and Trivial

overlap.

Keywords: Plagiarism, SCAM, WordNet, Registered Document,

Query Document

I. INTRODUCTION

A document may be seen as a list of terms, list of

key-words, and set of related words or concepts. It seems

obvious that it is not the same to have just simple words as the

basic items of the representation, that to have a set of words

(may be structured someway) with a representation of their

meaning [1]. The analysis on documents’ contents can be

semantic or statistical. Regarding the document

representation, a commonly used Information Retrieval

approach is the adoption of the Vector Space Model, where

the similarity score between two documents is calculated

using the cosine formula, resulting the cosine of the angle

of the angle between the two corresponding vectors. This

representation is also called a “bag-of-words”, since the list of

word positions are not maintained, hence relation-ships

between words are missed [2]. This seems not to be

appropriate for a plagiarism detection system that works on

text documents, also cosine formula has issues when

documents differ in size. In natural language, a sentence may

be seen as the fundamental part of a discourse and the

minimum unit to express a concept.We considered a good

norm to build a sentence-level system to compare documents

using semantic analysis. Sentence boundaries allow us to keep

track of meaning and contest of terms, maintaining

information about their position and mutual relationships.

A phrase is extracted from each document every time a

particular punctuation mark is met; the vocabulary of terms is

expanded with synonyms through Wordnet, trying to cover

paraphrasing. To search for source containing suspicious

phrases a search engine is required. Usually plagiarism

Manuscript received on November, 2012.

Mr. Ranjeet Singh, Faculty of information Technology, SRM

University, NCR campus, India.

Mr. Chiranjit Dutta, Faculty of information Technology, SRM

University, NCR campus, India.

detection involves Internet sources and web search engines

which is free, easy and fast way of detecting plagiarism. The

user can copy and paste or type in suspicious phrases taken

from suspected plagiarized work into a search engine in an

attempt to find on-line material containing the suspicious

phrases” [3]. Unfortunately they are not open source and

working with them means that there is no possibility to tweak

the code according to your requirements and consequently,

user lacks complete control about elaboration and results. In

order to avoid such limitations we decided to use our own

search engine based on Swing java library. This is a major

benefit of using an open source search engine, since one can

tweak the calculation of the score for a document to the

required specifications. The scoring and similarity

calculations are transparent and one can build similarity

classes that are appropriate for required domain. For each

sentence in each document, several searches are launched,

trying to cover all the possible forms of a plagiarized phrase.

The similarity matches are obtained with (using) SCAM

algorithm and they are displayed on a GUI. The idea is to

present a list of plagiarized documents ordered by similarity

score. Thus the user has the possibility to visualize in detail

the compared parts. To evaluate the effectiveness of the

detection system, “EXACT, PARTIAL, TRIVIAL, or NO

Match with the Registered Document, and then further based

on it, we can decide whether to add Query Document into the

database or not” are implemented.

II. LITERATURE SURVEY

A. Copy Detection Preliminaries

In this section, we present the architecture of a generic copy

detection server and introduce relevant.

Figure 1: A Generic Copy Detection Server

terminology. We also give a brief summary of some issues

that need to be considered while building a copy detection

server such as data structures, and the textual units used for

comparison.

Duplicity Detection System for Digital

Documents

 Ranjeet Singh, Chiranjit Dutta

Duplicity Detection System for Digital Documents

25

B. Copy Detection Server Architecture

In Figure 1, we see the architecture of a generic copy

detection server with a repository of registered documents.

(The repository is shown to be centralized, but in practice

may be distributed.) We define chunking of a document to be

the pro cess of breaking up a document into more primitive

units such as sentences, words or overlapping sentences.

Documents that are to be registered are chunked and inserted

into the repository. New do- cuments that arrive are chunked

into the same units and are compared against the

pre-registered do- cuments for overlap. In subsequent

sections we will consider different chunking units and

document similarity measures.

Let W represent the vocabulary of the chunks, that is the set

of occurrences of all distinct chunks in the registered

documents. Let wi refer to the ith chunk in the vocabulary. Let

the size of the vocabulary (number of distinct chunks) be N.

C. Inverted Index Storage

We propose using an inverted index structure (as in

traditional IR systems []) for storing chunks of the registered

documents. An index of the chunks in the vocabulary is

constructed and maintained at registration time.

Figure 2: Inverted Index Storage Mechanisms

Each entry for a chunk points to a set of postings that

indicate the documents where the chunk occurs. Every

posting for a given chunk wi has two attributes (docnum,

frequency), where docnum is a unique identifier of a

registered document, and frequency is the number of

occurrences of wi in document with ID docnum. In Figure 2,

we illustrate the index structure with three registered
documents. The letters \a” through \e”, which represent the

chunks in the documents, constitute the vocabulary with N=5.

For instance, chunk \d” has two postings representing that it

occurs once in document D2 and twice in documents D3.
When a document D is to be compared against the

pre-registered documents, the chunks of Dare looked up in the

registered documents index.

This means that only the documents that overlap at the

chunk level will be considered using this index mechanism.

Hence the total number of looks ups on the index is the

number of distinct chunks that occur in the document D.

D. Units of Chunking

As defined earlier, chunking involves breaking up a

document into more primitive units such as paragraphs,

sentences, words or overlapping sentences. The unit of

chunking chosen for copy detection is critical since it shapes

the subsequent overlap search cost and storage costs as

outlined below.

• Similarity level: The bigger the chunking unit the lower

the probability of matching unrelated documents. For

instance, two unrelated documents may both have a sentence

like “This research was funded by NSF” as part of a

paragraph. If the chunking unit is a paragraph, the two

documents will probably not be detected as an overlap, while

they will be detected if the chunking unit is a sentence. On the

other hand, the bigger the chunking unit, the higher the

probability of missing actual overlaps. For instance, consider

two paragraphs that share 5 out of 6 identical sentences. With

paragraph chunking, no match will be detected, while with

sentence chunking 5 out of the possible 6 units will be

detected as matching.

• Search Cost: The larger the chunk, the higher the potential

number of distinct chunks that will be stored. For instance, as

the collection of documents grows, we expect the number of

distinct sentences that will be stored to be higher than the

number of distinct words. This is because beyond a certain

point the number of new words introduced into the

vocabulary will be low as opposed to the near-linear growth

of sentences/ paragraphs. Hence we see that

the potential size of the chunk index is higher when the

chunking unit is chosen is larger. Of course the number of

postings per chunk is larger when the chunking unit is small

(as in words).

However, we see one advantage for small chunking units. A

small chunking unit increases locality. That is most

documents will have a relatively small working set of words

rather than sentences. Consider the frequency distribution of

N words to follow Zipf’s Law [12,15, 11]. If the words are

ranked in non- increasing order of frequencies, then the

probability that a word w of rank r occurs is

∑ =

=
N

v
vr

wP

1
/1*

1
)(

If we assume a vocabulary of about 1.8 million words [17],

about 40,000 (about 2% of 1.8 million) words constitute

nearly 75% of the actual occurrences of words thereby

increasing the effects of caching.
That is, by retaining the most popular words and their

associated postings in main memory, we may be able to

reduce the number of accesses to the disk resident portion of

the index. With sentence chunking, we expect the access

pattern to be more random due to very large size of the

sentence vocabulary.

As we have argued, word chunking may lead to more

locality during comparisons. In addition, word chunking has

the potential to detect finer (e.g. ,partial sentence) overlap,

which may be especially important with in formal documents

that may not have a clear sentence structure. As discussed

earlier, COPS sometimes has problems detecting sentence

boundaries.

However, before we can use word chunking, we need to

determine a good scheme for comparing documents. Recall

that for sentence chunking, comparison was straightforward:

if X of the Y sentences in document D1 appear in D2 then the

overlap is X*100/Y [6]. Unfortunately, this simple scheme

breaks down for words: the fact that D2 has many of the

words of D1 does not necessarily mean they do not

necessarily mean they overlap. In the next section, we

propose scheme based on relative frequency of words that we

have empirically found to be effective.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-5, November 2012

26

III. IMPLEMENTATION

In this section we present an implementation of our

plagiarism detection system based on Query document (Line

and sentence matching). The main tools and utilities used to

develop our application are vector space and relative

frequency model. However, details of the document structure

and the main classes of code carrying out the execution also

described in this section. The programming language chosen

is java, the motivation is given by the fact that the native

version of partial match is written in this language and this can

easily help us to manage and possibly modify it.

A. Detection Steps

In this section we report a detailed overview on the main

methods implemented and steps followed to achieve a

detection system. There are three main steps:

• Processing the registered document: The registered

document is given input is processed in order to tokenize it

in a list of words; stemming and stop word removals are

applied.

• Searching on the index: The index is questioned in order to

retrieve a match between the registered document and

query document.

• Evaluating Similarity: Using SCAM formula, a similarity

measure is calculated between registered document and

the query documents.
The code is divided in three Java packages:

• Core: Handles the project execution; all the Java classes

implementing the three modules are included in this

packages are: which are: javaprogram.java,

checkplagiarism.java, dupdetector.java.

• Utils: Includes some Java Classes for example,

Config.java: handles information about the configuration

and relative paths contained in the file Config.dat,

PDFTextParser.java: contained methods to support

extraction of tokens from raw text convert into PDF

format.

• GUI: contains graphical user interface.

B. Processing the registered document

In the step input data is processed and it is called a

registered document. The class in charge of performing this

task is ProcessTest. The main method in this class is extract

token; it has two main objectives: fill a data structure (a Java

HashMap) and fill the table testphrase. The method uses the

same Analyzer which is used to Query document; this is very

important in order to keep consistency in the way the text is

processed and in order to achieve better results. The

registered document is splited in the same ways query

document have been splited by using regular expressions and

the same logic is used to trim a phrase each time a particular

punctuation mark is met. The phrase is stored in the database

with local drive.

It is important to remember that we use Standard Analyzer

which performs stemming and stop word removal. The logic

behind this has been to consider each phrase generated as a

single document, so for each generated phrase we created a

term frequency vector, like the code below:

 if (tdocFreq.containsKey(term))

tdocFreq.put(term, tdocFreq.get(term).intValue() + 1);

else

tdocFreq.put(term, 1);

This data structure is a simple term frequency vector

associating each term to be number of its occurrences in text.

For example if we had:” Every man dies, not every man really

lives.”, the derived structure will be as shown in Table 1. It is

related to the phrase and to keep track of the relation we

associate each phrase through its own id and term frequency

vector. This method associates the terms with their owns

synonyms creating and filling another data structure, a

JavaHashmap.

Table1: Term Frequency: Registered Document

Term Synonyms

Every 2

Man 2

Die 1

Really 1

Lives 1

C. Searching on the index

In this step which is performed by the class SearchDocs, the

index is questioned to retrieve documents containing terms

also in the registered document. Plagiarism class permitting to

query an index is IndexSearcher:

IndexSearcher is = new IndexSearcher(directory);

where directory is an object of class Directory containing

the path of the index previously written.

Within SearchDocs two methods having the same name are

declared: queryDocs; the first one takes only the structure

with query pharse id associated to its term frequency vector

(tdocFreq, Table1); the second method takes also the

WordCount structure (Table2). In both cases we scanned this

structure and for each query phrase it is operated in this way:

for each term

create a query

question the index

for each result obtained (for each document)

get the term frequency vector

fill two data structures:

- docVectors: document - vector

- docSumOfFreq: document - sum of the term frequencies

end for each

end for each

for each Document we took the respective term frequency

vector, as [8]we specified to Index writer. We did this using

methods getIndexReader and getTermFreqVector from class

IndexSearcher, specifying id and field to retrieve.

TermFreqVector tfVector = is. Get Index Reader (). Get

Term Freq Vector (Integer. parseInt (id),”contents”);

We associated each retrieved document with respective

term frequency vector in a data structure called docVectors.

docVectors.put(filename,tfVector);

Table2: Term Synonyms WordCount

Terms Occurrences

Man Adult male, homo, human being, human…………..

Die Decease, perish, pass away, expire…….

Really Truly, actually, in truth…

Lives Survive, endure, exist, alive…

Duplicity Detection System for Digital Documents

27

D. Evaluating Similarity with SCAM

Detecting plagiarism is not a simple string match; it should

give a positive result for example by indicating either the

registered document is a superset or a subset of the query

document.Simple cosine similarity measure typically used is

not enough to recognize overlap between documents; SCAM

formula is a relative measure to detect overlap, irrespective of

the differences in document sizes[2]. We have implemented

the [18]SCAM formula to detect similarity among documents.

This similarity formula re-turns a high value when the content

of query document is either a subset or a superset of the

registered document.

It is an alternative to the cosine similarity formula and it

works on a set of words that are in common between test and

registered document, a word wi is included in the set C,

if the following condition is true:

0
)(

)(

)(

)(
>

+−

Rfi

Tfi

Tfi

Rfiε

€ is a constant value greater than 2; a large value of €

expands the above set including words sometimes not

relevant, a lower value of € reduces the ability to detect minor

overlap, since some words can be excluded. fi(R) and fi(T)

are the number of times wi occurs in registered documents (R)

and query document (T)[5] . the score for the measures is

given by:

∑
∑

=

=
N

i

Cwi

TfiTfi

TfiRfi
RTS

0
)(*)(

)(*)(
),(ε

It returns the degree to which R overlaps T, normalized

with the document T alone. The numerator works, as we said,

on the frequencies of words in the pair of document from the

set C. the relative similarity which is limited to the range 0 to

1, is given by:

similarity(T,R)= max[S(T,R),S(R,T)]

Where S(R, T) is the same formula with reserved operands as;

∑
∑

=

=
N

i

Cwi

RfiRfi

TfiRfi
TRS

0
)(*)(

)(*)(
),(ε

Now we have all the information and data structures to be

used in the implementation of SCAM formula. The code is

below:

for each retrieved Document

get the terms

for each term

if the term appear in the test Document

get the test term frequency

get the term frequency

if condition EPSILON

calculate S(T, R)

calculate S(R, T)

end if

end if

end for

end for

E. Graphical User Interface

We developed a simple GUI allowing the user to

accomplish two main tasks as indexing a dataset and checking

for plagiarism. It has been chosen a windows interface,

common and easy to understand; the screen shot in Figure 3

represents the main window. The index window includes

Figure 3: Scren Shot Main Window

the path of the directory containing the documents to line and

sentence checking (figure 4). The list of the indexed

documents and shown to the user. Figure 6 shows duplicity

document in each local drive.

Figure 4: Comparison b/w registered and query document

 We have calculated various similarity percentages on the

basis of word occurrence frequencies, and line match

frequencies Figure 5.

Figure 5: Result of plagiarism detection

Figure 6: Duplication Detection in PC

IV. RESULTS

Here are some results calculated by considering a Query

Document against the Registered Document.

We have calculated various similarity percentages on the

basis of word occurrence frequencies, and line match
frequencies. On the basis of results obtained the query

document was categorized as either EXACT, PARTIAL,

TRIVIAL, or NO Match with the Registered Document, and

then further based on it, we can decide whether to add Query

Document into the database or not figure 7.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-5, November 2012

28

Some results are as under:

Query Document: SteganographyQ.pdf

Registered Document: SteganographyR.pdf

Figure 7: Exact Match

Query Document: SteganographyR.pdf

Registered Document: pdfFile.pdf

Figure 8: No match

Query Document: plag2.pdf

Registered Document: Plagiarism.pdf

Figure 9: Trivial Match

V. ADVANTAGES

• The copy detection system provides a mechanism for displaying the

location of overlap that exists between two documents. It shows the

location of matching sentences for each pair of sentences in a

comparison. Furthermore, the granularity of this overlap distribution

can be adjusted to reveal more or less detail as desired.

• People who hire writers want to obtain unique and novel piece of

writings for their magazines and newspapers. Such software helps

the companies in publishing original articles in order to avoid law

suits and other related problems.

VI. CONCLUSIONS

It shows (No, trivial, Partial, Exact) in our table3, we may

be biasing our conclusions. For example, perhaps a threshold

of 35% or 40% would give more desirable results, while in

our table we have limited our threshold values to four. In spite

of this, we only show four ranges because: (1) Showing more

ranges would make it harder to visualize the results and (2) we

believe (after analyzing the raw data) that these four ranges

are adequate to roughly distinguish the various ca Table 3:

Difference for various matches

Classification

Type

Word Line

range% range%

Exact Match >=80 >=80

Partial Match >=80 >=40

Trivial match >=50 >=0.0

No Match <50 <=0.0

REFERENCES

[1] C. Justicia de la Torre, Maria J. Martn-Bautista, Daniel Sanchez, and

Mara Amparo Vila Miranda.Text mining: intermediate forms on

knowledge rep-resentation.

[2] Manu Konchady. Building Search Applications:Lucene, Lingpipe, and

Gate. Mustru Publishing, Oakton, Virginia, 2008.

[3] Higher Education Academy ICS (Information and Computer Sciences)

University of Ulster. Plagiarism prevention and detection. (n.d.).

Retrieved March 17, 2010, from http:

//www.ics.heacademy.ac.uk/resources/assessment/plagiarism/detectpl

agiarism.html.

[4] Eduard Montseny and Pilar Sobrevilla, editors. Pro-ceedings of the

Joint 4th Conference of the European Society for Fuzzy Logic and

Technology and the 11th Rencontres Francophones sur la Logique

Floueetses Applications, Barcelona, Spain, September 7-9, 2005.

Universidad Polytecnica de Catalunya, 2005.

[5] M. Bilenko, R.J. Mooney, W.W. Cohen, P. Ravikumar, and

S.E.Fienberg, “Adaptive Name Matching in Information

Integration,”IEEE Intelligent Systems, vol. 18, no. 5, pp. 16-23,

Sept./Oct. 2003.

[6] C. Sutton, K. Rohanimanesh, and A. McCallum, “Dynamic

Conditional Random Fields: Factorized Probabilistic Models for

Labeling and Segmenting Sequence Data,” Proc. 21st Int’l Conf.

Machine Learning (ICML ’04), 2004.

[7] V.S. Verykios, G.V. Moustakides, and M.G. Elfeky, “A Bayesian

Decision Model for Cost Optimal Record Matching,” VLDB J., vol.

12, no. 1, pp. 28-40, May 2003.

[8] V.S. Verykios and G.V. Moustakides, “A Generalized Cost Optimal

Decision Model for Record Matching,”Proc. 2004 Int’l Workshop

Information Quality in Information Systems,pp. 20-26,2004.

[9] N. Koudas, A. Marathe, and D. Srivastava, “Flexible String Matching

against Large Databases in Practice,”Proc. 30th Int’l Conf. Very Large

Databases (VLDB ’04),pp. 1078-1086, 2004.

[10] R. Agrawal and R. Srikant, “Searching with Numbers,” Proc. 11th Int’l

World Wide Web Conf. (WWW11), pp. 420-431, 2002.

[11] W.E. Yancey, “Evaluating String Comparator Performance for Record

Linkage,” Technical Report Statistical Research Report Series

RRS2005/05, US Bureau of the Census, Washington, D.C., June 2005.

[12] W.W. Cohen and J. Richman, “Learning to Match and Cluster Large

High-Dimensional Data Sets for Data Integration,” Proc. Eighth ACM

SIGKDD Int’l Conf. Knowledge Discovery and Data Mining (KDD

’02),2002.

[13] A. McCallum and B. Wellner, “Conditional Models of Identity

Uncertainty with Application to Noun Coreference,” Advances in

Neural Information Processing Systems (NIPS ’04),2004.

[14] P. Singla and P. Domingos, “Multi-Relational Record Linkage,” Proc.

KDD-2004 Workshop Multi-Relational Data Mining, pp. 31-48, 2004.

[15] H. Pasula, B. Marthi, B. Milch, S.J. Russell, and I. Shpitser,“Identity

Uncertainty and Citation Matching,” Advances in Neural Information

Processing Systems (NIPS ’02), pp. 1401-1408, 2002

[16] S. Chaudhuri, V. Ganti, and R. Motwani, “Robust Identification of

Fuzzy Duplicates,” Proc. 21st IEEE Int’l Conf. Data Eng. (ICDE ’05),

pp. 865-876, 2005.

[17] Project Gutenberg home page: http://www.promo.net/pg/.

[18] Glatt Plagiarism Services home page: http://www.plagiarism.com/.

[19] J. Brassil, S. Low, N. Maxemchuk, and L.O'Gorman. Document

marking and identification using both line and word shifting.

Technical report, AT&T Bell Labratories,2004. May be obtained from

ftp://ftp.research.att.com/dist/brassil/do cmark 2.ps.

Mr. Ranjeet Singh, Assistant Professor of SRM

University, NCR Campus in IT Department. B.Tech in

IT From UPTU in 2007 M.Tech in CSE From SRM

University, Chennai in 2010 Currently doing Research

in Database Security & Cloud Computing.

Mr. Chiranjit Dutta, Assistant Professor of SRM

University, NCR Campus in IT Department. B.Tech in

CSE From WBUT in 2008 M.Tech in CSE From MGR

University, Chennai in 2010 Currently doing Research

in Wireless Communication & Cloud Computing.

http://www.promo.net/pg/
http://www.plagiarism.com/
ftp://ftp.research.att.com/dist/brassil/do%20cmark%202.ps

