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Abstract. Often the random vector variable, X, being encountered,

for example, in atmospheric, biological, economic and environ-

mental and other research, is of a large dimension but admits of

meaningful grouping(s) into two or more mutually exclusive and

exhaustive subvectors. Dimension reduction techniques are then

sought to obtain “representative” new variables for each group to

be formed by taking suitable compounds of the components within

that group. This results in the substantially reduced dimensional

vector variable Y to represent X. This greatly facilitates the associ-

ated computational and inferential statistical analyses. Hotelling’s

construction of canonical variables for the case of two groups of

quantitative variables has been generalized in various directions to

yield Generalized Canonical Variables that encompass more than

two groups, both quantitative and qualitative components in X,

order constraints imposed by the user on the compounding coeffi-

cients, and so on. The availability of •packages makes the imple-•Q1

mentation of such techniques for real-life problems quite feasible

and attractive. On the inferential side, a variety of new types of

hypotheses is posed: determination of optimal number of groups,

best grouping for the same number of groups, and so on. While

the corresponding distribution theory is quite involved, some in-

teresting results are, nevertheless, emerging also. This topic is

a fertile area and is in need of further theoretical and applied

research, which should be very useful to a wide variety of practi-
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Introduction

In the statistical analysis of k � 2 sets of variables, one is primarily concerned with

two related aspects: study of relationships between the sets and reduction of dimen-

sionality of the variables per set. The latter is achieved by forming k new variables,

one per set, at each stage and over several stages, based on the relationships be-

tween the sets. In the study of relationships between the sets, it is natural to seek

appropriate similarity or distance measures. For numeric or quantitative variables,

geometrically a reasonable measure of closeness is the angle between the two vari-

ables. This algebraically is equivalent to the correlation between the two variables

and hence the extent of closeness translates to the extent of linear dependence in this

case. Hotelling’s enhancement of canonical correlation (CC) as a “generalized cor-

relation” to measure the relationship between two sets of numeric random variables

has thus had a common appeal. In addition to examining the similarity/dependence

between two sets, CC analysis yields a method for dimension reduction also through

the resulting canonical variables (CV). Each CV may be looked upon as an optimal

one-dimensional summary statistic representative of the corresponding set composed

of many variables.

The problems considered above are faced with nonnumeric or qualitative/categorical

data too. Thus, substantial research—many research papers and at least five Ph.D.

theses: References 8, 10, 14, 24, and 36 have been devoted to generalizations of CC

analysis to more than two sets.
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As in CV analysis with two sets, in extending it to the case of k > 2 sets, the

aims are to obtain (i) a measure of similarity/dependence between the k sets usually

based on some function of the correlation matrix and (ii) representative variables,

one for each set, which optimize this measure. Such extensions have yielded, what

we will term, generalized canonical correlations (GCCs) and generalized canonical

variables (GCVs). For definitions and an earlier review of the work done on GCV

analysis, the reader is referred to Reference 37 and references therein. Other types of

generalizations exist, for example, see References 51, 3, 43, and 16. Here we emphasize

more on the generalizations under the set up of (i) and (ii).

Further, these generalizations of CC analysis, while expanding the scope of its

applications, also expose both constructional and inferential problems specific to the

several sets case.

The constructional generalizations suggested may broadly be classified into three

approaches:

(a) conditional analysis with possibly two restricted linear compounds of the vari-

ables corresponding to two chosen sets while partializing out the other sets;

(b) general (unconditional) analysis incorporating all the sets simultaneously that

are motivated by a (i) scalar-valued and (ii) matrix-valued GCC as a measure

of dependence between the k sets; and

(c) nonlinear analysis to encompass “nonlinear,” (not to be confused with nonlin-

ear compounds) that is, nonnumeric or categorical, both nominal and ordinal,

variables.

The inferential generalizations may be listed as:

(i) estimation and tests of hypotheses pertaining to GCC and GCV;

(ii) determination of the optimal grouping of the variables subject to retaining the

number of sets to be the same;

(iii) determination of the optimal number of sets and the variables therein; and

(iv) independence of some and of all of the sets.
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Constructions

Assume that a meaningful subgrouping of a vector variable X : p × 1, into k disjoint

subvector variables Xi : pi×1, Σk
i=1pi = p, is given. Consider first the case in which X

is a quantitative or numeric variable with dispersion matrix of X denoted by ΣX. Let

Y = (Y1, . . . , Yk)
′, Yi ≡ fi(Xi), i = 1, . . . , k, for some functions fi(·). Usually, fi(·)s

will be each zero mean, unit variance linear functions. In general, we will refer to

Y as a GCV and its components as canonical variables (variates, when normalized).

Denote by ΣY the correlation matrix of Y. We discuss here mostly the first stage

GCC and GCV, primarily for notational simplicity and also since the role of the

higher stage ones are similar to that of the ones for CC.

In approach (a), we consider two preferred sets conditioned on or partializing out

the remaining sets in a variety of ways. The canonical correlation analysis is then

carried out on these two conditional sets at the first and higher stages in the usual way

(see e.g., Ref. 1). The resulting CCs and CVs are the GCCs and GCVs respectively.

However, for each of these conditionings, the corresponding GCVs at the various

stages are obtained as the normalized eigenvectors associated with the eigenvalues,

or equivalently GCCs, corresponding to some determinantal equation. This equation

may be presented in a unified form as

|Σ∗
od − (k − 1)ρΣ∗

d| = 0, Σ∗
od + Σ∗

d = Σ∗
X.

Σ∗
d and Σ∗

od are the diagonal and off-diagonal super matrices associated with the k sets

and Σ∗
X is the modified covariance matrix of X, modified by the specific generalization

adopted. This approach has yielded computationally quite convenient - though of

limited generality - part, partial, bipart, bipartial, [34, p.26; 35; 42], and g1- and

g2-bipartial [26, 27] GCCs and their corresponding GCVs.

Certain real-life applications may demand that the compounding coefficients for

some or all of the sets be restricted; say, obey some ordering, or have •linear con-•Q2

straints (see e.g., Ref. 52 for such CC analysis), or have a mixture of equality and

inequality constraints [10]. Das and Sen [11] demonstrate that this problem can be

reduced to that of a CV analysis with nonnegative constraints. For two sets, this

leads to restricted canonical correlation (RCC) and corresponding restricted canoni-

cal variable (RCV). Formally, Das and Sen [12] define
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RCC = max[α′Σ12β : α′Σ11α = β′Σ12β = 1, α ∈ R+
p1

, β ∈ R+
p2

]

where R+
pi

denotes the nonnegative orthant of Rpi
, i = 1, 2. They then solve the prob-

lem by an appeal to the Kuhn-Tucker Lagrangian method. This method of construc-

tion easily generalizes to yield restricted conditional generalized canonical correlations

(RCGCCs) and restricted conditional generalized canonical variables (RCGCVs) cor-

responding to the conditional GCCs and GCVs in (a) discussed above, for example,

restricted g1- and g2-bipartial GCCs and their corresponding GCVs. Omladic̆ and

Omladic̆ [33] give an alternative approach of obtaining RCC and RCV by translating

the problem into that of determining generalized eigenvalues of a real symmetric ma-

trix in the metric of a positive definite matrix. GCC analysis under linear constraints

has also been considered by Yanai [53].

Consider now approach b(i). It is convenient for interpretation, comparison, and

inference purposes to have a scalar measure of dependence of k sets like the CC coef-

ficient for two sets. McKeon [29] obtained a (first stage) GCC as a generalization of a

modified intraclass correlation coefficient. SenGupta [36] constructed equicorrelated

GCV (at each stage) and this equicorrelation coefficient may be taken as a scalar

GCC. Following the sample space formulation of Carroll, Coelho [8] also presents a

scalar GCC λ, which we define rigorously in the next section because of its connection

with some of the approaches discussed there.

For approach b(ii), various criteria for obtaining GCV on the basis of the correla-

tion matrix ΣY have been proposed, for example, SUMCOR, MAXVAR, SSQCOR,

MINVAR, GENVAR, MAXBET, MAXRAT, and MAXNEAR (see e.g., Refs. 18, 37,

41, 44, and 45). Though these are general methods, yet unlike the methods in (a), in

general these methods do not lead to eigenvalue and eigenvector solutions and require

iterative techniques. This fact leads to difficulties in developing inference procedures.

However, the modification of GENVAR proposed by SenGupta [36], to be termed

restricted GENVAR (RGENVAR), yields GCC and GCV in terms of eigenvalues and

eigenvectors. RGENVAR uses the criterion of minimizing the generalized variance

of ΣY subject to its off-diagonal elements, that is, the pairwise correlations, being

all equal. RGENVAR analysis is particularly amenable to statistical inference. We
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discuss briefly the MAXVAR method because of its connections with several other

methods and with later developments. For further details on the others, the reader

is referred to Reference 37 and the references therein. The MAXVAR method was

suggested by Horst [23, 24]. The compounding coefficients in Y are determined such

that ΣY achieves the best least squares or Euclidean norm approximation to a rank

one matrix. Methods proposed by McKeon [29], McDonald [30], and Carroll [5] from

different viewpoints coincide with the MAXVAR method. Carroll’s approach can

be given several interpretations. In his original approach, Carroll obtained sample

GCV, Y, and an auxiliary sample variate U such that they are most closely related

in the sense that the sum of the squared correlations of U with each Yj is maxi-

mum. Further, U such obtained can be related to the first principal component line

for Y. By providing a random variable development of Carroll’s approach, Ketten-

ring [70] bridges it with MAXVAR approach. Proceeding with the sample space

framework of Carroll, Coelho [8] presents a geometric-algebraic description of those

GCV. To be more specific, now let X : n × p be the data matrix partitioned as

X = [X1, . . . ,Xi, . . . ,Xk],Xi : n × pi, i = 1, . . . , k, commensurable with the given

partitioning of the p variables into the k sets. Denote by ci : n × 1, i = 1, . . . , k, the

ith canonical variate. Then, Coelho defines a GCV c : n × 1 as a linear combination

of all the p variables. He shows that c =
∑k

i=1 ci and it comprises of the variables that

lie closest, “on an average”, to all the m groups of variables, that is, closest on an

average to all the k subspaces Ei spanned by the columns of each Xi. By “closest on

the average,” geometrically it is meant that c is the vector variable that maximizes
∑k

i=1 cos2 θ(c, ci), where θ(., .) denotes the angle between the two arguments. Alge-

braically, this translates to: c maximizes λ = the sum of the squares of their multiple

correlation coefficients with the variables in each of the k sets. The scalar λ is then

taken as the corresponding GCC.

Some other interesting generalizations are due to Dauxois and Pousse [13] and

Van de Geer [44].

We now return to Carroll’s approach in order to trace the developments leading

to methods for (iii). Let now the auxiliary vector variate U : n × 1 have n scores.

For each set i, there will be m weights denoted by ai : m × 1, yielding one weighted

sum. Thus, the data for the set i is represented by Xi : n × m. Carroll’s method
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seeks max(U,aj)
∑k

j=1 cor(U,Xjaj)
2. van der Burg [46] expresses this GCV problem as

one of minimization of a sum of squared (SSQ) difference loss function, specifically,

min(U,aj)
∑k

j=1 SSQ(U −Xjaj), for unit normalized, that is, zero mean and unit vari-

ance U and Xj (per column). Proceeding to higher stages, van der Burg, de Leeuw,

and Dijksterhuis [49] (henceforth VDD•), seek, as is usual,•Q3

min
(U,Aj)

k∑

j=1

SSQ(U− XjAj), (1)

for unit-normalized U and Xj , U uncorrelated across columns. This yields their

version of a GCV analysis performed by their general technique, OVERALS, for a

three-way table corresponding to the special case of only quantitative variables that

are measured in interval scales.

For (iii), we now turn to canonical variable analysis for k sets of qualitative vari-

ables, which is sometimes termed as nonlinear CC analysis, see, for example, Refer-

ence 50 and VDD. Coelho [8] introduces indicator variables to represent categorical

(when nominal) variables as in a multinomial setup. He also performs GCV analysis

in terms of the Burt matrix when categories (say, ordinal) can be assigned numerical

values. VDD attempts to present a unified treatment for all these three different

types of variables by introducing optimal scaling for the variables represented by the

columns of Xj. Let Ct denote the class of transformations that satisfy the measure-

ment constraints for a vector variable xt, t = 1, . . . , km, obtained from X. Then, Ct

contains all linear transformations of xt for numerical variables, all monotone ascend-

ing transformations for ordinal variables and all isomorphic transformations of xt for

nominal variables. Then, with optimal scaling, Equation 1 can be given the general

representation

min
(U,Aj ,Qj)

k∑

j=1

SSQ(U− XjAj), (2)

for unit-normalized U and Qj , U uncorrelated across columns with the vector qt, t =

1, . . . , km, a column of Q1, . . . , Qk, constrained to satisfy the given measurement

restrictions. OVERALS of VDD is a slightly extended version of model (2) in that it

incorporates sets differing possibly both in number and type. For related models and

discussions see References 4 and 30.

GCV analysis has been extended to encompass complex variables [31].
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With large-dimensional random variables, the problem of having singular covari-

ance matrices may arise. Determination of the maximum number of stages that yield

nonzero GCC and other related problems then need to be addressed. SenGupta [42]

gives a unified approach using generalized inverses - see also References 24, 8, and 54.

Inference

Parametric statistical inference procedures for GCV analysis have mostly been based

on the assumption of multivariate normal distribution of X. For (a), since the problem

basically reduces to that for two sets, the usual approaches adopted for CC analysis

(k = 2) may be invoked (see e.g., Refs. 12, p. 53; and 19, p.4). Thus, one may,

with obvious modifications, adopt the parametric inference procedures on CC for

normal populations from References 1 and 20, and for nonnormal populations from

Reference 32, and so on, to study relevant MLEs, Likelihood Ratio, and Union-

Intersection tests for (a). When normality is suspected, resampling methods may be

invoked. Observing that the associated statistics in (a) are smooth functions of the

sample covariance matrix, it follows from the result of Beran and Srivastava [2] that

the sampling distribution of such statistics may be estimated by the corresponding

bootstrapped distributions - see, for example, Reference 12.

Consider now the general methods under (b). Under (asymptotic) multivariate

normality, tests for a specified value of the first stage GCC and for optimal grouping

as well as for optimal dimensionality of GCV, that is, problems (i)–(iii), have been

derived for RGENVAR in Reference 38 using isotonic regression. For GENVAR,

such problems under general alternatives may also be dealt with using the tests for

Standardized Generalized Variances given by SenGupta [39]. It may be worthwhile

to cast these problems in the arena of Ranking and Selection, where certain results

on Generalized Variances do exist.

For nonnormal data, de Leeuw •and van der Burg [56] discuss the permutation•Q4

limit distribution of certain GCCs.

For the nonlinear methods in (c), an underlying multinomial distribution is often

a reasonable choice. Constructing the covariance matrix accordingly, counterparts of

the multivariate normal approaches mentioned above may be explored. Coelho [8]

considers three types of nested hypotheses:
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H0: The k sets are all independent,

H
(m)
0 : The mth set is independent of all the sets from m+1 to k(m = 1, . . . , k−1),

and

H
i(m)
0 : The mth and ith sets are independent (i > m), conditionally on all the

sets m + 1 through k (but not the ith one), (m = 1, . . . , k − 1; i = m + 1, . . . , k).

H0 is of obvious relevance. It may also be a judicious choice to have some (see

Ref. 25) but not all of the sets to be independent. Observe that our approach of

viewing GCC to measure the closeness of the sets, naturally demands that the nullity

of the GCC over all the stages should be equivalent to H0 above, under multivariate

normality. This is true for the methods in (a) and for several of the methods in (b)

including GENVAR, RGENVAR, SUMCOR, MAXVAR, SSQCOR, and MINVAR.

Anderson [1] discusses Wilk’s statistic for testing independence of k sets, and Coelho

[9] provides “near-exact” distribution of this statistic based on the generalized near-

integer Gamma distribution. Coelho [8] also proposes Likelihood Ratio type tests for

the above three nested hypotheses, while van der Burg and de Leeuw [48] show how

to use bootstrap and jackknife methods under the multinomial model for categorical

data. There is a serious need for the development of optimal statistical inference

procedures for the various generalizations of CC and CV discussed above.

Softwares

For (a), simple computations are needed for obtaining the associated eigen values

and eigenvectors. Timm and Carlson [42] provide a program for part and bipartial

CC analysis. Carroll and Chang [6] and CANON of Chen and Kettenring [7] provide

programs for several of the generalizations mentioned in (b). CORALS, the program

of Young, de Leeuw, and Takane [55], and CANALS of van der Burg and de Leeuw

[47] and Gifi [18] provide programs for CC analysis of nonmetric data. CORALS has

also been extended by Gifi [17] to cover a variety of measurement scales for variables

as well as data grouped in k � 2 sets. van der Burg, de Leeuw, and Dijksterhuis [49]

have prepared the program OVERALS, which performs GCC analysis of two or more

sets with the three measurement levels of data : numerical, ordinal, and nominal.

This program is included in the SPSS package. However, programs for conducting
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statistical inference procedures on GCC and GCV even with linear data are yet to be

developed.

Applications

Broadly formulated, GCV analysis subsumes the aspects, and is intimately related

to and provides generalizations of CVs analysis, Multivariate Multiple Regression

analysis, Multivariate Analysis of Variance and Covariance, Discriminant analysis,

Fisher’s Optimal Scoring technique, Principal Component analysis (one variable per

set), Multiple Correspondence analysis (one variable per set and multiple nominal

transformations–Gower, [21]), Multiple Factorial (not factor) analysis [8], and the

Gifi system [17] of exploratory multivariate data analysis.

There exist several examples in the literature of applications of GCV analysis

to real-life data sets—see, for example, References 22, 23, 25, 37, and 38, for the

numerical psychometric data of Thurstone and Thurstone; and References 21 and 8,

for the nonnumerical medical data of Taylor.
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