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Abstract

We present a simple and novel framework for generat�
ing blocked codes for high�performance machines with
a memory hierarchy� Unlike traditional compiler tech�
niques like tiling� which are based on reasoning about
the control �ow of programs� our techniques are based
on reasoning directly about the �ow of data through the
memory hierarchy� Our data�centric transformations
permit a more direct solution to the problem of enhanc�
ing data locality than current control�centric techniques
do� and generalize easily to multiple levels of memory
hierarchy� We buttress these claims with performance
numbers for standard benchmarks from the problem do�
main of dense numerical linear algebra� The simplicity
and intuitive appeal of our approach should make it at�
tractive to compiler writers as well as to library writers�

� Introduction

Data reuse is imperative for good performance on mod�
ern high�performance computers because the memory
architecture of these machines is a hierarchy in which
the cost of accessing data increases roughly ten�fold
from one level of the hierarchy to the next� Unfortu�
nately� programs with good data reuse cannot be ob�
tained for most problems by straight�forward coding of
standard algorithms� In some cases� it is necessary to
develop new algorithms which exploit structure in the
underlying problem to reuse data e�ectively� a well�
known example of this is Bischof and van Loan�s WY
algorithm for QR factorization with Householder re�ec�
tions� which was developed explicitly for improving data
reuse in orthogonal factorizations ��	
� Even when ex�
isting algorithms are su�cient� reorganizing a program
to reuse data e�ectively can increase its size by orders
of magnitude� and make the program less abstract and
less portable by introducing machine dependencies�

In this paper� we describe restructuring compiler
technology that reorganizes computations in programs
to enhance data reuse� We evaluate the performance of
this technology in the problem domain of dense numer�
ical linear algebra� This problem domain is appropriate
because it is important in practice� and there are li�
braries of hand�crafted programs with good data reuse
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which can be used for comparisons with automatically
generated code� Some of these programs are discussed
in Section ��

The rest of this paper is organized as follows� In
Section 
� we discuss current solutions to the problem
of developing software with good data reuse� including
hand�crafted libraries like LAPACK ��
� and automatic
compiler techniques such as tiling ���
� The technology
described in this paper was motivated by the limitations
of these approaches� and is introduced in Section �� This
technology di�ers from standard restructuring compiler
technology like tiling because it is based on reasoning
about the data �ow rather than the control �ow of the
program� In a sense that is made precise later in the pa�
per� our approach is data�centric� and it should be con�
trasted with existing compiler techniques for promot�
ing data reuse� which are control�centric� In Section 	�
we present a general view of data�centric transforma�
tions� and show how to reason about the correctness
of such transformations� In Section �� we show how
data�centric transformations can be combined together
to produce new transformations� and use these ideas to
generate transformations to enhance data reuse in com�
mon dense linear algebra benchmarks� In Section �� we
describe performance results� Finally� we discuss ongo�
ing work in Section ��

� Running Examples

Figure � shows three important computational kernels
that we will use to illustrate the concepts in this pa�
per� Figure ��i� shows matrix multiplication in the
so�called I�J�K order of loops� It is elementary for
a compiler to deduce the well�known fact that all six
permutations of these three loops are legal� This loop
is called a perfectly nested loop because all assignment
statements are contained in the innermost loop� Fig�
ure ��ii� iii� show two versions of Cholesky factorization
called right�looking and left�looking Cholesky factoriza�
tion� both these loop nests are imperfectly nested loops�
Both codes traverse the matrix A a column at a time�
In right�looking Cholesky� the columns to the right of
the current column are updated by the L�K loop nest�
using the outer product of the current column� as shown
in Figure ��i�� The L and K loops are called the update
loops� Left�looking Cholesky performs lazy updates in
the sense a column is updated only when it is visited by



do I � ���N
do J � ���N

do K � ���N
C�I�J� � C�I�J� � A�I�K� � B�K�J�

�i� Matrix Multiplication

do J � ���N
S�	 A�J�J� � sqrt 
A�J�J��
do I � J����N

S�	 A�I�J� � A�I�J� 
 A�J�J�
do L � J����N

do K � J����L
S�	 A�L�K� � A�L�K� � A�L�J� � A�K�J�

�ii� Right�looking Cholesky Factorization

do J � ���N
do L � J��N

do K � ���
J���
S�	 A�L�J� � A�L�J� � A�L�K��A�J�K�

S�	A�J�J� � sqrt
A�J�J��
do I � J����N

S�	 A�I�J� � A�I�J� 
 A�J�J�

�iii� Left�looking Cholesky Factorization

Figure �� Running examples � Matrix Multiply and
Cholesky
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Figure �� Pictorial View of Cholesky Factorization

the outermost loop� The shaded area to the left of the
current column in Figure ��ii� shows the region of the
matrix that is read for performing this update�

� Previous Work

The numerical analysis community has used a layered
approach to the problem of writing portable software
with good data reuse� The general idea is to �a� �nd
a set of core operations for which algorithms with good
data reuse are known� �b� implement carefully hand�
tuned implementations of these algorithms on all plat�
forms� and �c� use those operations� wherever possible�
in writing programs for applications problems� From
Amdahl�s law� it follows that if most of the computa�
tional work of a program is done in the core operations�
the program will perform well on a machine with a mem�
ory hierarchy� While the implementations of these op�
erations are not portable� the rest of the software is
machine�independent�

In the context of dense numerical linear algebra�

the core operation is matrix multiplication� The stan�
dard algorithm for multiplying two n� n matrices per�
forms n� operations on n� data� so it has excellent data
reuse� Most vendors provide so�called Level�� BLAS
routines which are carefully hand�optimized� machine�
tuned versions of matrix multiplication� To exploit
these routines� the numerical analysis community has
invested considerable e�ort in developing block�matrix
algorithms for standard dense linear algebra problems
such as Cholesky� LU and QR factorizations� These
block algorithms operate on entire submatrices at a
time� rather than on individual matrix elements� and
are rich in matrix multiplications� The well�known LA�
PACK library contains block matrix algorithms imple�
mented on top of the BLAS routines� and is written for
good data reuse on a machine with a two�level memory
hierarchy ��
�

The LAPACK library has been successful in prac�
tice� However� it requires a set of machine�speci�c�
hand�coded BLAS routines to run well� Since it is
not a general�purpose tool� it cannot be used outside
the realm of the dense numerical linear algebra� It
is also speci�cally written for a two�level memory hi�
erarchy� and it must be re�implemented for machines
with deeper memory hierarchies� Therefore� automatic
program restructuring tools that promote data reuse
through transformations provide an attractive alterna�
tive�

The restructuring compiler community has devoted
much attention to the development of such technology�
The most important transformation is Mike Wolfe�s it�
eration space tiling ���
� preceded by linear loop trans�
formations if necessary ��� ��� �

� This approach is
restricted to perfectly nested loops� although it can be
extended to imperfectly nested loops if they are �rst
transformed into perfectly nested loops� A loop in a loop
nest is said to carry reuse if the same data is touched
by multiple iterations of that loop for �xed outer loop
iterations� For example� loop K in Figure ��i� carries
reuse because for �xed I and J� all iterations of the
loop touch C�I�J�� similarly� loop I carries reuse be�
cause successive iterations of the I loop touch B�K�J��
Loops that carry reuse are moved as far inside the loop
nest as possible by using linear loop transformations� if
two or more inner loops carry reuse and they are fully
permutable� these loops are tiled ���
� Intuitively� tiling
improves performance by interleaving iterations of the
tiled loops� which exploits data reuse in all those loops
rather than in just the innermost one� It is easy to ver�
ify that all the three loops in the matrix multiplication
code carry reuse and are fully permutable� Tiling all
three loops produces the code shown in Figure 
 �for
�	 � �	 tiles�� The three outer loops enumerate the
iteration space tiles� while the three inner loops enu�
merate the iteration space points within a tile� In this
case� iteration space tiling produces the same code as
the equivalent block matrix code ��	
�

Tiling can be applied to imperfectly nested loops
if these loops are converted to perfectly nested loops
through the use of code sinking ��	
� Code sinking moves
all statements into the innermost loop� inserting appro�
priate guards to ensure that these statements are exe�
cuted the right number of times� There is no unique way
to sink code in a given loop nest� for example� in left�



do t� � � �� d�N��	�e
do t� � � �� d�N��	�e
do t� � � �� d�N��	�e
do It � 
t������� �� �� min
t�����N�
do Jt � 
t������� �� �� min
t�����N�
do Kt � 
t������� �� �� min
t�����N�
C�It�Jt� � C�It�Jt� � A�It�Kt� � B�Kt�Jt�

Figure 
� Blocked Code for matrix matrix multiplica�
tion

looking Cholesky� statement S� can be sunk into the I
loop or into the L�K loop nest� Other choices arise from
the possibility of doing imperfectly nested loop trans�
formations �especially loop jamming� during the code
sinking process� Depending on how these choices are
made� one ends up with di�erent perfectly nested loops�
and the resulting programs after linear loop transfor�
mations and tiling may exhibit very di�erent perfor�
mance� In right�looking Cholesky for example� if S� is
sunk into the I loop� and the resulting loop is sunk into
the L�K loop nest� we end up with a ��deep loop nest
in which only the update loops can be tiled� even if
linear loop transformations are performed on the per�
fectly nested loop� If on the other hand� we jam the
I and L loops together� and then perform sinking� we
get a fully permutable loop nest� tiling this loop nest
produces code with much better performance� Simi�
larly� it can be shown that for left�looking Cholesky� the
best sequence of transformations is to �rst sink S� into
the I loop� jam the I and L loops together and then
sink S� and S� into K loop� Interactions between loop
jamming�distribution and linear loop transformations
have been studied by McKinley et al ���
� However� no
systematic procedure for exploring these options for ob�
taining perfectly nested loops from imperfectly nested
loops is known�

A somewhat di�erent approach has been taken by
Carr and Kennedy ��
� By doing a detailed study of
matrix factorization codes in the LAPACK library� they
came up with a list of transformations that must be
performed to get code competitive with LAPACK code�
These include strip�mine�and�interchange� preceded by
index�set�splitting and loop distribution to make the
interchange legal ��
� Additional transformations such
as unroll�and�jam ��
 and scalar replacement are per�
formed on this code to obtain code competitive with
hand�blocked codes used in conjunction with BLAS ��
�
However� it is unclear how a compiler can discover auto�
matically the right sequence of transformations to per�
form� it is also unclear whether this approach can be
generalized for a machine with a multi�level memory hi�
erarchy�

Finally� there is a large body of work on determin�
ing good tile sizes ��� ��� ��� ��� ��
� This research
focuses on perfectly nested loops with uniform depen�
dences �i�e� dependence vectors can be represented as
distances�� While this work is not directly comparable
to ours� the detailedmemory models used in some of this
research ���� ��� ��
 are useful in general for estimating
program performance�

� Data�centric Transformations

Since the goal of program transformation is to enhance
data reuse and reduce data movement through the mem�
ory hierarchy� it would seem advantageous to have a tool
that orchestrates data movement directly� rather than as
a side�e�ect of control �ow manipulations� The ultimate
result of the orchestration is� of course� a transformed
program with the desired data reuse� but to get that
program� the tool would reason directly about the de�
sired data �ow rather than about the control �ow of the
program� A useful analogy is signal processing� The in�
put and the output of signal processing is a signal that
varies with time� and in principle� all processing can be
done in the time domain� However� it is often more con�
venient to take a Fourier transform of the signal� work in
the frequency domain and then take an inverse Fourier
transform back into the time domain�

��� Data Shackle

In the rest of the paper� the phrase statement instance
refers to the execution of a statement for given values
of index variables of loops surrounding that statement�

De�nition � A data shackle is a speci�cation in three
parts�

� We choose a data object and divide it into blocks�
� We determine a sequence in which these blocks are
�touched� by the processor�

� For each block	 we determine a set of statement in�
stances to be performed when that block is touched
by the processor� However	 we leave unspeci�ed the
order of enumeration of statement instances within
this set��

We now look at this in detail�

� The data objects of interest to us are multidimen�
sional arrays� An array can be sliced into blocks
by using a set of parallel cutting planes with nor�
mal n� separated by a constant distance d� Further
slicing can be performed by using additional sets
of planes inclined with respect to this set of planes�
We de�ne the cutting planes matrix as the matrix
whose columns are the normals to the di�erent sets
of cutting planes� the order of these columns is de�
termined by the order in which the sets of cut�
ting planes are applied to block the data� Figure �
shows the blocking of a two�dimensional array with
two sets of cutting planes� the cutting planes ma�

trix is

�
� �
� �

�
�

� A block is assigned the block co�ordinate
�x�� � � � � xm� if it is bounded by cutting planes

numbered xi � � and xi from the ith set of cut�
ting planes� The code that we generate �schedules�
blocks by enumerating them in lexicographic order
of block co�ordinates�

�One possible order for executing these statement instances
is to use the same order as the initial code� We leave the order
unspeci	ed because it permits us to join data shackles together
to get 	ner degrees of control on the execution� as we will see in
Section 
�



� The �nal step is to specify the statement instances
that should be performed when a block is sched�
uled� From each statement S� we choose a single
reference R of the array that is being blocked� For
now� we assume that a reference to this array ap�
pears in every statement� We will relax this condi�
tion in Section 	�
When a block of data is scheduled� we execute all
instances of S for which the data touched by ref�
erence R is contained in this block�� As mentioned
before� the order in which these instances should
be done is left unspeci�ed�

N

N

0 1 2 3

0

2

<1,1> <1,2> <1,3> <1,4>

<2,1> <2,2> <2,3> <2,4>

<3,1> <3,2> <3,3> <3,4>

3

1

<4,1> <4,2> <4,3> <4,4>

Figure �� Cutting planes on a data object

The rationale for the term �data shackle� should now
be clear� One thinks of an instrument like a pantograph
in which a master device visits the blocks of data in
lexicographic order� while a slave device shackled to it
is dragged along some trajectory in the iteration space
of the program� It is also convenient to be able to refer
to statement instances �shackled� to a particular block
of data�

Since a data shackle reorders computations� we must
check that the resulting code respects dependences in
the original program� Legality can be checked using
standard techniques from polyhedral algebra� and is dis�
cussed in Section 	�

As an example of a data shackle� consider the matrix
multiplication code of Figure ��i�� Let us block matrix
C as shown in Figure �� using a block size of �	 X �	�
and shackle the reference C�I�J� in Figure ��i� to this
blocking� This data shackle requires that when a par�
ticular block of C is scheduled� all statement instances
that write into this block of data must be performed by
the processor� We can require these to be performed in
program order of the source program� Naive code for
accomplishing this is shown in Figure 	� The two outer
loops iterate over the blocks of C� For every block of C�
the entire original iteration space is visited� and every

�Because of other data references in statement S� these state�
ment instances may touch data outside that block�

iteration is examined to see if it should be executed� If
the location of C accessed by the iteration falls in the
current block �which is determined by the conditional
in the code�� that iteration is executed� It is easy to see
that in the presence of a�ne references� the conditionals
are all a�ne conditions on the loop indices correspond�
ing to the cutting plane sets and the initial loop index
variables�

do b� � � �� d�N����e
do b� � � �� d�N����e
do I � � �� N
do J � � �� N
do K � � �� N
if ��b������� 	 I 	� b����� 



��b������� 	 J 	� b�����
C�I�J
 � C�I�J
 � A�I�K
 � B�K�J


Figure 	� Naive code produced by blocking C for matrix
matrix multiply

The code in Figure 	 is not very e�cient� and is sim�
ilar to runtime resolution code generated when shared�
memory programs are compiled for distributed�memory
machines ���
� Fortunately� since the conditionals are
a�ne conditions on surrounding loop bounds� they can
be simpli�ed using any polyhedral algebra tool� We
have used the Omega calculator ���
 to produce the code
shown in Figure �� It is simple to verify that this code
has the desired e�ect of blocking the C array since blocks
of C are computed at a time by taking the product of
a block row of A and a block column of B� This code
is not the same as the code for matrix matrix product
in the BLAS library used by LAPACK since the block
row�column of A�B are not blocked themselves� Our
data shackle constrains the values of the loop indices I
and J in Figure ��i�� but leaves the values of K uncon�
strained� This problem is addressed in Section � where
we discuss how data shackles can be combined�

In the Cholesky factorization code� array A can be
blocked in a manner similar to Figure �� When a block
is scheduled� we can choose to perform all statement in�
stances that write to that block �in program order�� In
other words� the reference chosen from each statement
of the loop nest is the left hand side reference in that
statement� Using polyhedral algebra tools� we obtain
the code in Figure �� In this code� data shackling re�
groups the iteration space into four sections as shown
in Figure �� Initially� all updates to the diagonal block
from the left are performed �Figure ��i��� followed by
a baby Cholesky factorization ��	
 of the diagonal block
�Figure ��ii��� For each o��diagonal block� updates from
the left �Figure ��iii�� are followed by interleaved scal�
ing of the columns of the block by the diagonal block�
and local updates�Figure ��iv���

Note that just as in the case of matrix matrix prod�
uct� this code is only partially blocked �compared to LA�
PACK code� � although all the writes are performed
into a block when we visit it� the reads are not localized
to blocks� Instead� the reads are distributed over the en�
tire left portion of the matrix� As before� this problem
is solved in Section ��



do t� � � �� d�N����e
do t� � � �� d�N����e
do It � �t������� �� �� min�t�����N�
do Jt � �t������� �� �� min�t�����N�
do K � � �� N
C�It�Jt
 � C�It�Jt
 � A�It�K
 � B�K�Jt


A

B

C
K

K

Figure �� Simpli�ed code produced by blocking C for
matrix matrix multiply

��� Discussion

By shackling a data reference R in a source program
statement S� we ensure that the memory access made
from that data reference at any point in program exe�
cution will be constrained to the �current� data block�
Turning this around� we see that when a block be�
comes current� we perform all instances of statement
S for which the reference R accesses data in that block�
Therefore� this reference enjoys perfect self�temporal lo�
cality ��

� Considering all shackled references together�
we see that we also have perfect group�temporal locality
for this set of references� of course� references outside
this set may not necessarily enjoy group�temporal lo�
cality with respect to this set� As mentioned earlier�
we do not mandate any particular order in which the
data points within a block are visited� However� if all
dimensions of the array are blocked and the block �ts
in cache �or whatever level of the memory hierarchy is
under consideration�� we obviously exploit spatial local�
ity� regardless of whether the array is stored in column�
major or row�major order� An interesting observation
is that if stride�� accesses are mandated for a particular
reference� we can simply use cutting planes with unit
separation which enumerate the elements of the array
in storage order� Enforcing stride�� accesses within the
blocks of a particular blocking can be accomplished by
combining shackles as described in Section ��

The code shown in Figure � can certainly be ob�
tained by a �long� sequence of traditional iteration space
transformations like sinking� tiling� index�set splitting�
distribution etc� As we discussed in the introduction�
it is not clear for imperfectly nested loops in general
how a compiler determines which transformations to
carry out and in what sequence these transformations
should be performed� In this regard� it is important
to understand the �division of work� between our data�
centric transformation and a polyhedral algebra tool like

do t� � �� �n�������
�� Apply updates from left to diagonal block ��
do t� � �� ���t����

do t� � ���t����� min�n����t��
do t� � t�� min�n����t��
A�t��t�� � A�t��t�� � A�t��t�� � A�t��t��

�� Cholesky factor diagonal block ��
do t� � ���t����� min����t��n�
A�t��t�� � sqrt�A�t�� t���
do t� � t���� min����t��n�
A�t��t�� � A�t��t��� A�t��t��

do t� � t���� min�n����t��
do t� � t�� min�n����t��
A�t��t�� � A�t��t�� � A�t��t�� � A�t��t��

do t� � t���� �n�������
�� Apply updates from left to

off�diagonal block ��
do t� � �� ���t����
do t� � ���t����� ���t�
do t� � ���t����� min�n����t��
A�t��t�� � A�t��t�� � A�t��t�� � A�t��t��

�� Apply internal scale�updates to
off�diagonal block ��

do t� � ���t����� ���t�
do t� � ���t����� min����t��n�
A�t��t�� � A�t��t��� A�t��t��

do t� � t���� ���t�
do t� � ���t����� min�n����t��
A�t��t�� � A�t��t�� � A�t��t�� � A�t��t��

Figure �� Data shackle applied to right�looking
Cholesky factorization

(iv) Internal scale+update  (iii) Update off-diagonal block from left

(ii) Cholesky factor diagonal block(i) Update diagonal block from left

t3 t6

t7

t3

t5

t3 t6

t7

t3

t5

t6

Figure �� Pictorial View of Code in Figure �



Omega� Enforcing a desired pattern of data accesses is
obtained by choosing the right data shackle � note that
the pattern of array accesses made by the code of Fig�
ure 	� which is obtained directly from the speci�cation
of the data shackle without any use of polyhedral alge�
bra tools� is identical to the pattern of array accesses
made by the simpli�ed code of Figure �� The role of
polyhedral algebra tools in our approach is merely to
simplify programs� as opposed to producing programs
with desired patterns of data accesses�

� Legality

Since data shackling reorders statement instances� we
must ensure that it does not violate dependences� An
instance of a statement S can be identi�ed by a vec�
tor i which speci�es the values of the index variables
of the loops surrounding S� The tuple 
S�i� represents
instance i of statement S� Suppose there is a depen�
dence from 
S��i�� to 
S��i�� and suppose that these
two instances are executed when blocks b� and b� are
touched respectively� For the data shackle to be legal�
either b� and b� must be identical� or b� must be touched
before b�� If so� we say that the data shackle respects
that dependence� A data shackle is legal if it respects
all dependences in the program� Since our techniques
apply to imperfectly nested loops like Cholesky factor�
ization� it is not possible to use dependence abstractions
like distance and direction to verify legality� Instead� we
solve an integer linear programming problem�

��� An Example

To understand the general algorithm� it is useful to con�
sider �rst a simple example� in right�looking Cholesky
factorization� we formulate the problem of ensuring that
the �ow dependence from the assignment of A�J�J�
in S� to the use of A�J�J� in S� is respected by the
data shackle from which the program of Figure � was
generated�� We �rst write down a set of integer inequal�
ities that represent the existence of a �ow dependence
between an instance of S� and an instance of S�� Let S�
write to an array location in iteration Jw of the J loop�
and let S� read from that location in iteration �Jr� Ir�
of the J and I loops� A �ow dependence exists if the fol�
lowing linear inequalities have an integer solution ��	
�

������
�����

Jr � Jw� Ir � Jw �same location�

N � Jw � � �loop bounds�

N � Jr � � �loop bounds�

N � Ir � Jr � � �loop bounds�

Jr � Jw �read after write�

���

Next� we assume that the instance of S� is performed
when a block �b��� b��� is scheduled� and the instance of
S� is done when block �b��� b��� is scheduled� Finally� we
add a condition that represents the condition that the
dependence is violated in the transformed code� In other
words� we put in a condition which states that block

�The shackle was produced by blocking the matrix A as shown
in Figure �� and choosing the left hand side references of all
assignment statements in Figure ��ii� for shackling�

�b��� b��� is �touched� strictly after �b��� b���� These
conditions are represented as�������������

�����������

Writing iteration done in �b��� b���

b�� � �	� �� � Jw � b�� � �	

b�� � �	� �� � Jw � b�� � �	

Reading iteration done in �b��� b���

b�� � �	� �� � Jr � b�� � �	

b�� � �	� �� � Ir � b�� � �	

Blocks visited in bad order

�b�� � b��� � ��b�� � b��� � �b�� � b����

���

If the conjunction of the two sets of conditions ���
and ��� has an integer solution� it means that there is
a dependence� and that dependent instances are per�
formed in the wrong order� Therefore� if the conjunc�
tion has an integer solution� the data shackle violates
the dependence and is not legal� This problem can be
viewed geometrically as asking whether a union of cer�
tain polyhedra contains an integer point� and can be
solved using standard polyhedral algebra�

This test can be performed for each dependence in
the program� If no dependences are violated� the data
shackle is legal�

��� General View of Legal Data Shackles

The formulation of the general problem of testing
for legality of a data shackle becomes simpler if we
�rst generalize the notion of blocking data� A data
blocking� such as the one shown in Figure �� can
be viewed simply as a map that assigns co�ordinates
in some new space to every data element in the ar�
ray� For example� if the block size in this �gure is
�	 x �	� array element �a�� a�� is mapped to the co�
ordinate ��a� div �	� � �� �a� div �	� � �� in a new two�
dimensional space� Note that this map is not one�to�
one� The bottom part of Figure � shows such a map
pictorially� The new space is totally ordered under lex�
icographic ordering� The data shackle can be viewed as
traversing the remapped data in lexicographic order in
the new co�ordinates� when it visits a point in the new
space� all statement instances mapped to that point are
performed�

Therefore� a data shackle can be viewed as a func�
tion M that maps statement instances to a totally or�
dered set �V� ��� For the blocking shown in Figure ��
C	
S�I� � A maps statement instances to elements of
array A through data�centric references� and T	A � V
maps array elements to block co�ordinates� Concisely�
M � T	C�

Given a functionM�
S�I��
V���� the transformed
code is obtained by traversing V in increasing order�
and for each element v 
 V� executing the statement
instances M���v� in program order in the original pro�
gram�

Theorem � A map M

S�I� �
V��� generates legal
code if the following condition is satis�ed for every pair
of dependent statements S� and S��

� Introduce vectors of unknowns i� and i� that rep�
resent instances of dependent statements S� and S�
respectively�
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Figure �� Testing for Legality

� Formulate the inequalities that must be satis�ed for
a dependence to exist from instance i� of state�
ment S� to instance i� of statement S�� This is
standard ��
��

� Formulate the predicate M
S��i���M
S��i���
� The conjunction of these conditions does not have
an integer solution�

Proof� Obvious� hence omitted� �

��� Discussion

Viewing blocking as a remapping of data co�ordinates
simpli�es the development of the legality test� This
remapping is merely an abstract mathematical device
to enforce a desired order of traversal through the ar�
ray� the physical array itself is not necessarily reshaped�
For example� in the blocked matrix multiplication code
in Figure �� array C need not be laid out in �block� or�
der to obtain the bene�ts of blocking this array� This
is similar to the situation in BLAS�LAPACK where it
is assumed that the FORTRAN column�major order is
used to store arrays� Of course� nothing prevents us
from reshaping the physical data array if the cost of con�
verting back and forth from a standard representation
is tolerable� Physical data reshaping has been explored
by other researchers ���� 

�

Upto this point� we have assumed that every state�
ment in the program contains a reference to the array
being blocked by the data shackle� Although this as�
sumption in valid for kernels like matrix multiplication
and Cholesky factorization� it is obviously not true in
general programs� Our current approach to this prob�
lem is naive but simple� If a statement does not con�
tain a reference to the array being blocked by the data
shackle� we simply add a dummy reference to that ar�
ray �such as � ��B�I�J�� to the right hand side of the
statement� The dummy reference is of course irrelevant
for dependence analysis� and serves only to determine
which instances of this statement are performed when
elements of B are touched by the data shackle� The pre�
cise expression used in the dummy reference is irrelevant

for correctness� but a data shackle that is illegal for one
choice of this expression may be legal if some other ex�
pression is used �since that changes the order in which
the statement instances are performed�� This is clearly
an issue that we need to revisit in the future� and we
plan to use tools we developed for automatic data align�
ment to address this problem more carefully �	
�

� Products of shackles

We now show that there is a natural notion of taking the
Cartesian product of a set of shackles� The motivation
for this operation comes from the matrix multiplication
code of Figure �� in which an entire block row of A is
multipliedwith a block of column of B to produce a block
of C� The order in which the iterations of this compu�
tation are done is left unspeci�ed by the data shackle�
The shackle on reference C�I�J� constrains both I and
J� but leaves K unconstrained� therefore� the references
A�I�K� and B�K�J� can touch an unbounded amount of
data in arbitrary ways during the execution of the iter�
ations shackled to a block of C�I�J��� Instead of C� we
can block A or B� but this still results in unconstrained
references to the other two arrays� To get LAPACK�
style blocked matrix multiplication� we need to block all
three arrays� We show that this e�ect can be achieved
by taking Cartesian products�

Informally� the notion of taking the Cartesian prod�
uct of two shackles can be viewed as follows� The �rst
shackle partitions the statement instances of the origi�
nal program� and imposes an order on these partitions�
However� it does not mandate an order in which the
statement instances in a given partition should be per�
formed� The second shackle re�nes each of these parti�
tions separately into smaller� ordered partitions� with�
out reordering statement instances across di�erent par�
titions of the �rst shackle� In other words� if two state�
ment instances are ordered by the �rst shackle� they
are not reordered by the second shackle� The notion of
a binary Cartesian product can be extended the usual
way to an n�ary Cartesian product� each extra factor
in the Cartesian product gives us �ner control over the
granularity of data accesses�

A formal de�nition of the Cartesian product of data
shackles is the following� Recall from the discussion in
Section 	 that a data shackle for a program P can be
viewed as a map M�
S�I� � V� whose domain is the
set of statement instances and whose range is a totally
ordered set�

De�nition � For any program P	 let�
M� � �S� I�� V�

M� � �S� I�� V�

be two data shackles� The Cartesian product M� � M� of
these shackles is de�ned as the map whose domain is the
set of statement instances	 whose range is the Cartesian
product V�� V� and whose values are de�ned as follows

for any statement instance 
S�i�	

�M� � M���S� i� � � M��S� i�� M��S� i� �

The product domain V� � V� of two totally or�
dered sets is itself a totally ordered set under stan�
dard lexicographic order� Therefore� the code gen�
eration strategy and associated legality condition are



identical to those in Section 	� It is easy to see
that for each point v� � v� in the product domain
V� � V�� we perform the statement instances in the set
�M� � M��

���v�� v�� � M�
���v�� � M�

���v���
In the implementation� each term in an n�ary Carte�

sian product contributes a guard around each state�
ment� The conjunction of these guards determines
which statement instances are performed at each step of
execution� Therefore� these guards still consist of con�
juncts of a�ne constraints� As with single data shack�
les� the guards can be simpli�ed using any polyhedral
algebra tool�

Note that the product of two shackles is always legal
if the two shackles are legal by themselves� However�
a product M� � M� can be legal even if M� by itself is
illegal� This is analogous to the situation in loop nests
where a loop nest may be legal even if there is an inner
loop that cannot be moved to the outermost position�
the outer loop in the loop nest �carries� the dependence
that causes di�culty for the inner loop�

��� Examples

In matrix multiplication� it is easy to see that shackling
any of the three references �C�I�J��A�I�K��B�K�J�� to
the appropriate blocked array is legal� Therefore� all
Cartesian products of these shackles are also legal� The
Cartesian product MC � MA of the C and A shackles
produces the code in Figure 
� It is interesting to note
that further shackling with the B shackle �that is the
product MC � MA � MB� does not change the code that
is produced� This is because shackling C�I�J� to the
blocks of C and shackling A�I�K� to blocks of A imposes
constraints on the reference B�K�J� as well� A similar
e�ect can be achieved by shackling the references C�I�J�
and B�K�J�� or A�I�K� and B�K�J��

A more interesting example is the Cholesky code� In
Figure ��ii�� it is easy to verify that there are six ways
to shackle references in the source program to blocks of
the matrix �choosing A�J�J� from statement S�� either
A�I�J� or A�J�J� from statement S� and either A�L�K��
A�L�J� or A�K�J� from statement S��� Of these� only
two are legal� choosing A�J�J� from S�� A�I�J� from
S� and A�L�K� from S�� or choosing A�J�J� from S��
A�J�J� from S� and A�L�J� from S�� The �rst shackle
chooses references that write to the block� while the sec�
ond shackle chooses references that read from the block�
Since both these shackles are legal� their Cartesian prod�
uct �in either order� is legal� It can be shown that one
order gives a fully�blocked left�looking Cholesky� identi�
cal to the blocked Cholesky algorithm in ��	
� while the
other order gives a fully�blocked right�looking Cholesky�

��� Discussion

Taking the Cartesian product of data shackles gives us
�ner control over data accesses in the blocked code� As
discussed earlier� shackling just one reference in matrix
multiplication �say C�I�J�� does not constrain all the
data accesses� On the other hand� shackling all three
references in this code is over�kill since shackling any two
references constraints the third automatically� Taking
a larger Cartesian product than is necessary does not

a�ect the correctness of the code� but it introduces un�
necessary loops into the resulting code which must be
optimized away by the code generation process to get
good code� The following obvious result is useful to de�
termine how far to carry the process of taking Cartesian
products� We assume that all array access functions are
linear functions of loop variables �if the functions are
a�ne� we drop the constant terms�� if so� they can be
written as F �I where F is the data access matrix ���

and I is the vector of iteration space variables of loops
surrounding this data reference�

Theorem � For a given statement S	 let F�� � � � � Fn be
the access matrices for the shackled data references in
this statement� Let Fn�� be the access matrix for an un�
shackled reference in S� Assume that the data accessed
by the shackled references are bounded by block size pa�
rameters� Then the data accessed by Fn�� is bounded by
block size parameters i� every row of Fn�� is spanned
by the rows of F�� � � � � Fn�

Stronger versions of this result can be proved� but
it su�ces for our purpose in this paper� For ex�
ample� the access matrix for the reference C�I�J� is�

� � �
� � �

�
� Shackling this reference does not bound

the data accessed by row
�
� � �

�
of the access ma�

trix

�
� � �
� � �

�
of reference B�K�J�� However� taking

the Cartesian product of this shackle with the shackle
obtained from A�I�K� constrains the data accessed by
B�K�J�� because all rows of the corresponding access
matrix are spanned by the set of rows from the access
matrices of C�I�J� and A�I�K��

Although the problem of generating good shackles
automatically is beyond the scope of this paper� Carte�
sian product is obviously viewed as a way of generat�
ing new shackles from old ones� The discussion in this
section provides some hints for generating good data
shackles�

� How are the data�centric references chosen� For
each statement� the data�centric references should
be chosen such that there are no remaining uncon�
strained references�

� How big should the Cartesian products be� If there
is no statement left which has an unconstrained
reference� then there is no bene�t to be obtained
from extending the product�

� What is a correct choice for orientation of cutting
planes� To a �rst order of approximation� the ori�
entation of the cutting planes is irrelevant as far
as performance is concerned� provided the blocks
have the same volume� Of course� orientation is
important for legality of the data shackle�

These matters and related ones are currently being
investigated and will be addressed in the forthcoming
thesis of the �rst author of the paper�

��� Multi�level Blocking

Cartesian products can be used in an interestingmanner
to block programs for multiple levels of memory hierar�
chy� For lack of space� we explain only the high level
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Figure ��� Matrix multiply blocked for two levels of
memory hierarchy

idea here� For a multi�level memory hierarchy� we gen�
erate a Cartesian product of products of shackles where
each factor in the outer Cartesian product determines
blocking for one level of the memory hierarchy�

The �rst term in the outer Cartesian product corre�
sponds to blocking for the slowest �and largest� level of
the memory hierarchy and corresponds to largest block
size� Subsequent terms correspond to blocking for faster
�and usually smaller� levels of the memory hierarchy�
We have applied this idea to obtain multiply blocked
versions of our running examples in a straightforward
fashion� It is unclear to us that tiling can be general�
ized to multiple levels of memory hierarchy in such a
straightforward manner�

Figure �� demonstrates this idea for matrix multi�
plication� The outer Cartesian product for this example
has two factors� the �rst factor is itself a product of two
shackles �on C�I�J� and A�I�K� with block sizes of ����
and the second factor is also a product of two shack�
les �once again� on C�I�J� and A�I�K�� but block sizes
of ��� As can be seen from the code� the �rst term of
the outer Cartesian product performs a ���by��� matrix
multiplication� which is broken down into several ��by��
matrix multiplications by the second term in this prod�
uct� By choosing smaller inner blocks �like ��by��� and
unrolling the resulting loops� we can block for registers�

� Performance

We present performance results on a thin node of the
IBM SP�� for the following applications� ordinary and
banded Cholesky factorizations� QR factorization� the
ADI kernel and the GMTRY benchmark from the NAS
suite� All compiler generated codes were compiled on
the SP�� using xlf �O
�

Figure �� shows the performance of Cholesky factor�
ization� The lines labeled Input right�looking code show
the performance of the right�looking Cholesky factor�
ization code in Figure ��ii�� This code runs at roughly
� MFlops� The lines labeled Compiler generated code
show the performance of the fully blocked left�looking
Cholesky code produced by the Cartesian product of
data shackles discussed in Section �� While there is a
dramatic improvement in performance from the initial
code� this blocked code still does not get close to peak
performance because the compiler back�end does not
perform necessary optimizations like scalar replacement
in innermost loops� A large portion of execution time
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Figure ��� Cholesky factorization on the IBM SP��

is spent in a few lines of code which implement ma�
trix multiplication� but which are optimized poorly by
the IBM compiler� Replacing these lines manually by
a call to the ESSL BLAS�
 matrix multiplication rou�
tine improves performance considerably� as is shown by
the lines labeled Matrix Multiply replaced by DGEMM�
Finally� the line labeled LAPACK with native BLAS is
the performance of the Cholesky factorization routine
in LAPACK running on the native BLAS routines in
ESSL� The MFlops graph provides �truth in advertis�
ing� � although the execution times of LAPACK and
compiler�generated code with DGEMM are compara�
ble� LAPACK achieves higher M�ops� This is because
we replaced only one of several matrix multiplications
in the blocked code by a call to DGEMM� On the posi�
tive side� these results� coupled with careful analysis of
the compiler�generated code� show that the compiler�
generated code has the right block structure� What re�
mains is to make the compilation of inner loops �by
unrolling inner loops� prefetching data and doing scalar
replacement ��� �	
� more e�ective in the IBM compiler�

Figure �� shows the performance of QR factorization
using Householder re�ections� The input code has poor
performance� and it is improved somewhat by block�
ing� The blocked code was generated by blocking only
columns of the matrix� since dependences prevent com�
plete two�dimensional blocking of the array being fac�
tored� As in the case of Cholesky factorization� re�
placing loops that perform matrix multiplication with
calls to DGEMM results in signi�cant improvement� as
shown by the line labeled Matrix Multiply replaced by
DGEMM� This code beats the fully blocked code in
LAPACK for matrices smaller than ����by����� The
compiler�generated code uses the same algorithm as the
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Figure ��� QR factorization on the IBM SP��

�pointwise� algorithm for this problem� the LAPACK
code on the other hand uses domain�speci�c informa�
tion about the associativity of Householder re�ections
to generate a fully�blocked version of this algorithm ��
�

Gmtry benchmark on thin node of SP2
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Figure �
� �i� Gmtry � �ii� ADI benchmarks on the
IBM SP��

Figure �
�i� shows the results of data shackling for
the Gmtry kernel which is a SPEC benchmark kernel
from Dnasa�� This code performs Gaussian elimination
across rows� without pivoting� Data shackling blocked
the array in both dimensions� and produced code similar
to what we obtained in Cholesky factorization� As can
be seen in this �gure� Gaussian elimination itself was
speeded up by a factor of 
� the entire benchmark was

do i � �� n
do k � �� n

S�� X�i�k� �� X�i���k��A�i�k��B�i���k�
enddo
do k � �� n

S�� B�i� k� �� A�i�k��A�i�k��B�i���k�
enddo

enddo

�i� Input code

do t� � �� n
do t� � �� n��
S�	 X
t����t����X
t��t���A
t����t��
B
t��t��
S�	 B
t����t����A
t����t���A
t����t��
B
t��t��

enddo
enddo

�ii� Transformed Code

Figure ��� E�ect of fusion � interchange on ADI
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Figure �	� Banded Cholesky factorization on the SP��

speeded up by a factor of ��
Figure ���i� shows the ADI kernel used by McKinley

et al in their study of locality improving transforma�
tions ���
� This code was produced from FORTRAN�
�� by a scalarizer� The traditional iteration�centric ap�
proach to obtain good locality in this code is to fuse
the two k loops �rst� after which the outer i loop and
the fused k loop are interchanged to obtain unit�stride
accesses in the inner loop� The resulting code is shown
in Figure ���ii�� In our approach� this �nal code is ob�
tained by simply choosing B�i���k� as the data�centric
reference in both S� and S� and blocking B into blocks of
size �x�� When an element of B is touched� all statement
instances from both loop nests that touch this element
must be performed� this achieves the e�ect of loop jam�
ming� Traversing the blocks in storage order achieves
perfect spatial locality� which achieves the e�ect of loop
interchange after jamming� As shown in Figure �
�ii��
the transformed code runs ��� times faster than the in�
put code� when n is �����

Since shackling takes no position on how the
remapped data is stored� the techniques described in
Section � can be used to generate code even when the
underlying data structure is reshaped� A good exam�
ple of this is banded Cholesky factorization ��	
� The
banded Cholesky factorization in LAPACK is essen�



tially the same as regular Cholesky factorization with
two caveats� �i� only those statement instances are per�
formed which touch data within a band of the input ma�
trix� and �ii� only the bands in the matrix are stored �in
column order�� rather than the entire input matrix� In
our framework� the initial point code is regular Cholesky
factorization restricted to accessing data in the band�
and the data shackling we used with regular Cholesky
factorization is applied to this restricted code� To obtain
the blocked code that walks over a data structure that
stores only the bands� a data transformation is applied
to the compiler generated code as a post processing step�
As seen in Figure �	� the compiler generated code actu�
ally outperforms LAPACK for small band sizes� As the
band size increases however� LAPACK performs much
better than the compiler generated code� This is be�
cause� for large band sizes� LAPACK starts reaping the
bene�ts of level 
 BLAS operations� whereas the xlf
back�end �on the IBM SP��� is once again not able to
perform equivalent optimizations for loops in our com�
piler generated code which implement matrix multiply
operations�

	 Ongoing Work

There are several unresolved issues with our approach�
In this section� we discuss these open issues and suggest
plausible solutions when possible�

As discussed in Section �� a data shackle has three
components � sets of cutting planes� shackled references
and order of enumeration over blocks� In this paper� we
have assumed that the speci�cation of these components
is given to the compiler� Automating our data�centric
approach fully requires the compiler to determine these
components� We are working on this problem� basing
our approach on the following observations�

One approach is to implement a search method that
enumerates over plausible data shackles� evaluates each
one and picks the best� When there are multiple data
shackles that are legal for a program� we need a way
to determine the best one� This requires accurate cost
models for the memory hierarchy� such as the ones de�
veloped by other researchers in this area ���� ��
�

If the search space becomes large� heuristics may be
useful to cut down the size of the search� Theorem � and
the subsequent discussion suggests that to a �rst order
of approximation� the orientation of cutting planes has
little impact on performance� and can be selected to
satisfy legality considerations alone� For all the bench�
marks in the paper� we found that walking over the
blocked array in top to bottom� left to right order was
adequate� This order of enumerating blocks has great
appeal because it is simple and because we believe that
this is the natural order used by programmers� In gen�
eral� of course� this order of traversing blocks may not
be legal �triangular back�solve is an example�� but we
believe that in most of those cases� traversing the blocks
bottom to top or right to left will be legal�� Another
assumption in our approach so far is that a shackled ref�
erence makes a single sweep through the corresponding
array� This is adequate for problems like matrix fac�
torizations in which there is a de�nite direction to the

�This is similar to loop reversal�

underlying data �ow of the algorithm� but it is obviously
not adequate for problems like relaxation codes in which
an array element is eventually a�ected by every other
element� To solve this problem� we must make multi�
ple passes over the blocked array� One possibility is the
following� rather than perform all shackled statement
instances when we touch a block� we can perform only
those instances for which dependences have been satis�
�ed� The array is traversed repeatedly till all instances
are performed� Determination of good block sizes can
also be tricky� especially for a multi�level memory hi�
erarchy ���
� This problem arises even in handwritten
code � in this context� library writers are exploring the
use of training sets to help library code determine good
block sizes ��

� We can adopt this solution if it proves
to be successful�

We have presented data shackling as an alternative
restructuring technology that avoids some of the prob�
lems of current control�centric approaches� However� it
is unclear to us whether our approach can fully sub�
sume loop transformation techniques� In the event that
both these approaches are required for program restruc�
turing� an important open question is to determine the
interaction between them�

Finally� we note that there are programs for which
handwritten blocked codes exploit algebraic properties
of matrices� QR�factorization using Householder re�ec�
tions is an example ��	
� It is unclear to us whether a
compiler could or even should attempt to restructure
programs using this kind of domain�speci�c informa�
tion� It is likely that the most plausible scenario is
compiler blocking augmented with programmer direc�
tives for blocking such codes ��
�
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