
Data�centric Multi�level Blocking

Induprakas Kodukula� Nawaaz Ahmed� and Keshav Pingali

Department of Computer Science�

Cornell University� Ithaca� NY ������

fprakas�ahmed�pingalig�cs�cornell�edu

Abstract

We present a simple and novel framework for generat�
ing blocked codes for high�performance machines with
a memory hierarchy� Unlike traditional compiler tech�
niques like tiling� which are based on reasoning about
the control �ow of programs� our techniques are based
on reasoning directly about the �ow of data through the
memory hierarchy� Our data�centric transformations
permit a more direct solution to the problem of enhanc�
ing data locality than current control�centric techniques
do� and generalize easily to multiple levels of memory
hierarchy� We buttress these claims with performance
numbers for standard benchmarks from the problem do�
main of dense numerical linear algebra� The simplicity
and intuitive appeal of our approach should make it at�
tractive to compiler writers as well as to library writers�

� Introduction

Data reuse is imperative for good performance on mod�
ern high�performance computers because the memory
architecture of these machines is a hierarchy in which
the cost of accessing data increases roughly ten�fold
from one level of the hierarchy to the next� Unfortu�
nately� programs with good data reuse cannot be ob�
tained for most problems by straight�forward coding of
standard algorithms� In some cases� it is necessary to
develop new algorithms which exploit structure in the
underlying problem to reuse data e�ectively� a well�
known example of this is Bischof and van Loan�s WY
algorithm for QR factorization with Householder re�ec�
tions� which was developed explicitly for improving data
reuse in orthogonal factorizations ��	
� Even when ex�
isting algorithms are su�cient� reorganizing a program
to reuse data e�ectively can increase its size by orders
of magnitude� and make the program less abstract and
less portable by introducing machine dependencies�

In this paper� we describe restructuring compiler
technology that reorganizes computations in programs
to enhance data reuse� We evaluate the performance of
this technology in the problem domain of dense numer�
ical linear algebra� This problem domain is appropriate
because it is important in practice� and there are li�
braries of hand�crafted programs with good data reuse

�This work was supported by NSF grant CCR��������� ONR
grant N���������������� and the Cornell Theory Center�

which can be used for comparisons with automatically
generated code� Some of these programs are discussed
in Section ��

The rest of this paper is organized as follows� In
Section 
� we discuss current solutions to the problem
of developing software with good data reuse� including
hand�crafted libraries like LAPACK ��
� and automatic
compiler techniques such as tiling ���
� The technology
described in this paper was motivated by the limitations
of these approaches� and is introduced in Section �� This
technology di�ers from standard restructuring compiler
technology like tiling because it is based on reasoning
about the data �ow rather than the control �ow of the
program� In a sense that is made precise later in the pa�
per� our approach is data�centric� and it should be con�
trasted with existing compiler techniques for promot�
ing data reuse� which are control�centric� In Section 	�
we present a general view of data�centric transforma�
tions� and show how to reason about the correctness
of such transformations� In Section �� we show how
data�centric transformations can be combined together
to produce new transformations� and use these ideas to
generate transformations to enhance data reuse in com�
mon dense linear algebra benchmarks� In Section �� we
describe performance results� Finally� we discuss ongo�
ing work in Section ��

� Running Examples

Figure � shows three important computational kernels
that we will use to illustrate the concepts in this pa�
per� Figure ��i� shows matrix multiplication in the
so�called I�J�K order of loops� It is elementary for
a compiler to deduce the well�known fact that all six
permutations of these three loops are legal� This loop
is called a perfectly nested loop because all assignment
statements are contained in the innermost loop� Fig�
ure ��ii� iii� show two versions of Cholesky factorization
called right�looking and left�looking Cholesky factoriza�
tion� both these loop nests are imperfectly nested loops�
Both codes traverse the matrix A a column at a time�
In right�looking Cholesky� the columns to the right of
the current column are updated by the L�K loop nest�
using the outer product of the current column� as shown
in Figure ��i�� The L and K loops are called the update
loops� Left�looking Cholesky performs lazy updates in
the sense a column is updated only when it is visited by



do I � ���N
do J � ���N

do K � ���N
C�I�J� � C�I�J� � A�I�K� � B�K�J�

�i� Matrix Multiplication

do J � ���N
S�	 A�J�J� � sqrt 
A�J�J��
do I � J����N

S�	 A�I�J� � A�I�J� 
 A�J�J�
do L � J����N

do K � J����L
S�	 A�L�K� � A�L�K� � A�L�J� � A�K�J�

�ii� Right�looking Cholesky Factorization

do J � ���N
do L � J��N

do K � ���
J���
S�	 A�L�J� � A�L�J� � A�L�K��A�J�K�

S�	A�J�J� � sqrt
A�J�J��
do I � J����N

S�	 A�I�J� � A�I�J� 
 A�J�J�

�iii� Left�looking Cholesky Factorization

Figure �� Running examples � Matrix Multiply and
Cholesky

J

K

L
II

J

L

K

(i) Right-looking Cholesky (ii) Left-looking Cholesky

Figure �� Pictorial View of Cholesky Factorization

the outermost loop� The shaded area to the left of the
current column in Figure ��ii� shows the region of the
matrix that is read for performing this update�

� Previous Work

The numerical analysis community has used a layered
approach to the problem of writing portable software
with good data reuse� The general idea is to �a� �nd
a set of core operations for which algorithms with good
data reuse are known� �b� implement carefully hand�
tuned implementations of these algorithms on all plat�
forms� and �c� use those operations� wherever possible�
in writing programs for applications problems� From
Amdahl�s law� it follows that if most of the computa�
tional work of a program is done in the core operations�
the program will perform well on a machine with a mem�
ory hierarchy� While the implementations of these op�
erations are not portable� the rest of the software is
machine�independent�

In the context of dense numerical linear algebra�

the core operation is matrix multiplication� The stan�
dard algorithm for multiplying two n� n matrices per�
forms n� operations on n� data� so it has excellent data
reuse� Most vendors provide so�called Level�� BLAS
routines which are carefully hand�optimized� machine�
tuned versions of matrix multiplication� To exploit
these routines� the numerical analysis community has
invested considerable e�ort in developing block�matrix
algorithms for standard dense linear algebra problems
such as Cholesky� LU and QR factorizations� These
block algorithms operate on entire submatrices at a
time� rather than on individual matrix elements� and
are rich in matrix multiplications� The well�known LA�
PACK library contains block matrix algorithms imple�
mented on top of the BLAS routines� and is written for
good data reuse on a machine with a two�level memory
hierarchy ��
�

The LAPACK library has been successful in prac�
tice� However� it requires a set of machine�speci�c�
hand�coded BLAS routines to run well� Since it is
not a general�purpose tool� it cannot be used outside
the realm of the dense numerical linear algebra� It
is also speci�cally written for a two�level memory hi�
erarchy� and it must be re�implemented for machines
with deeper memory hierarchies� Therefore� automatic
program restructuring tools that promote data reuse
through transformations provide an attractive alterna�
tive�

The restructuring compiler community has devoted
much attention to the development of such technology�
The most important transformation is Mike Wolfe�s it�
eration space tiling ���
� preceded by linear loop trans�
formations if necessary ��� ��� �

� This approach is
restricted to perfectly nested loops� although it can be
extended to imperfectly nested loops if they are �rst
transformed into perfectly nested loops� A loop in a loop
nest is said to carry reuse if the same data is touched
by multiple iterations of that loop for �xed outer loop
iterations� For example� loop K in Figure ��i� carries
reuse because for �xed I and J� all iterations of the
loop touch C�I�J�� similarly� loop I carries reuse be�
cause successive iterations of the I loop touch B�K�J��
Loops that carry reuse are moved as far inside the loop
nest as possible by using linear loop transformations� if
two or more inner loops carry reuse and they are fully
permutable� these loops are tiled ���
� Intuitively� tiling
improves performance by interleaving iterations of the
tiled loops� which exploits data reuse in all those loops
rather than in just the innermost one� It is easy to ver�
ify that all the three loops in the matrix multiplication
code carry reuse and are fully permutable� Tiling all
three loops produces the code shown in Figure 
 �for
�	 � �	 tiles�� The three outer loops enumerate the
iteration space tiles� while the three inner loops enu�
merate the iteration space points within a tile� In this
case� iteration space tiling produces the same code as
the equivalent block matrix code ��	
�

Tiling can be applied to imperfectly nested loops
if these loops are converted to perfectly nested loops
through the use of code sinking ��	
� Code sinking moves
all statements into the innermost loop� inserting appro�
priate guards to ensure that these statements are exe�
cuted the right number of times� There is no unique way
to sink code in a given loop nest� for example� in left�



do t� � � �� d�N��	�e
do t� � � �� d�N��	�e
do t� � � �� d�N��	�e
do It � 
t������� �� �� min
t�����N�
do Jt � 
t������� �� �� min
t�����N�
do Kt � 
t������� �� �� min
t�����N�
C�It�Jt� � C�It�Jt� � A�It�Kt� � B�Kt�Jt�

Figure 
� Blocked Code for matrix matrix multiplica�
tion

looking Cholesky� statement S� can be sunk into the I
loop or into the L�K loop nest� Other choices arise from
the possibility of doing imperfectly nested loop trans�
formations �especially loop jamming� during the code
sinking process� Depending on how these choices are
made� one ends up with di�erent perfectly nested loops�
and the resulting programs after linear loop transfor�
mations and tiling may exhibit very di�erent perfor�
mance� In right�looking Cholesky for example� if S� is
sunk into the I loop� and the resulting loop is sunk into
the L�K loop nest� we end up with a ��deep loop nest
in which only the update loops can be tiled� even if
linear loop transformations are performed on the per�
fectly nested loop� If on the other hand� we jam the
I and L loops together� and then perform sinking� we
get a fully permutable loop nest� tiling this loop nest
produces code with much better performance� Simi�
larly� it can be shown that for left�looking Cholesky� the
best sequence of transformations is to �rst sink S� into
the I loop� jam the I and L loops together and then
sink S� and S� into K loop� Interactions between loop
jamming�distribution and linear loop transformations
have been studied by McKinley et al ���
� However� no
systematic procedure for exploring these options for ob�
taining perfectly nested loops from imperfectly nested
loops is known�

A somewhat di�erent approach has been taken by
Carr and Kennedy ��
� By doing a detailed study of
matrix factorization codes in the LAPACK library� they
came up with a list of transformations that must be
performed to get code competitive with LAPACK code�
These include strip�mine�and�interchange� preceded by
index�set�splitting and loop distribution to make the
interchange legal ��
� Additional transformations such
as unroll�and�jam ��
 and scalar replacement are per�
formed on this code to obtain code competitive with
hand�blocked codes used in conjunction with BLAS ��
�
However� it is unclear how a compiler can discover auto�
matically the right sequence of transformations to per�
form� it is also unclear whether this approach can be
generalized for a machine with a multi�level memory hi�
erarchy�

Finally� there is a large body of work on determin�
ing good tile sizes ��� ��� ��� ��� ��
� This research
focuses on perfectly nested loops with uniform depen�
dences �i�e� dependence vectors can be represented as
distances�� While this work is not directly comparable
to ours� the detailedmemory models used in some of this
research ���� ��� ��
 are useful in general for estimating
program performance�

� Data�centric Transformations

Since the goal of program transformation is to enhance
data reuse and reduce data movement through the mem�
ory hierarchy� it would seem advantageous to have a tool
that orchestrates data movement directly� rather than as
a side�e�ect of control �ow manipulations� The ultimate
result of the orchestration is� of course� a transformed
program with the desired data reuse� but to get that
program� the tool would reason directly about the de�
sired data �ow rather than about the control �ow of the
program� A useful analogy is signal processing� The in�
put and the output of signal processing is a signal that
varies with time� and in principle� all processing can be
done in the time domain� However� it is often more con�
venient to take a Fourier transform of the signal� work in
the frequency domain and then take an inverse Fourier
transform back into the time domain�

��� Data Shackle

In the rest of the paper� the phrase statement instance
refers to the execution of a statement for given values
of index variables of loops surrounding that statement�

De�nition � A data shackle is a speci�cation in three
parts�

� We choose a data object and divide it into blocks�
� We determine a sequence in which these blocks are
�touched� by the processor�

� For each block	 we determine a set of statement in�
stances to be performed when that block is touched
by the processor� However	 we leave unspeci�ed the
order of enumeration of statement instances within
this set��

We now look at this in detail�

� The data objects of interest to us are multidimen�
sional arrays� An array can be sliced into blocks
by using a set of parallel cutting planes with nor�
mal n� separated by a constant distance d� Further
slicing can be performed by using additional sets
of planes inclined with respect to this set of planes�
We de�ne the cutting planes matrix as the matrix
whose columns are the normals to the di�erent sets
of cutting planes� the order of these columns is de�
termined by the order in which the sets of cut�
ting planes are applied to block the data� Figure �
shows the blocking of a two�dimensional array with
two sets of cutting planes� the cutting planes ma�

trix is

�
� �
� �

�
�

� A block is assigned the block co�ordinate
�x�� � � � � xm� if it is bounded by cutting planes

numbered xi � � and xi from the ith set of cut�
ting planes� The code that we generate �schedules�
blocks by enumerating them in lexicographic order
of block co�ordinates�

�One possible order for executing these statement instances
is to use the same order as the initial code� We leave the order
unspeci	ed because it permits us to join data shackles together
to get 	ner degrees of control on the execution� as we will see in
Section 
�



� The �nal step is to specify the statement instances
that should be performed when a block is sched�
uled� From each statement S� we choose a single
reference R of the array that is being blocked� For
now� we assume that a reference to this array ap�
pears in every statement� We will relax this condi�
tion in Section 	�
When a block of data is scheduled� we execute all
instances of S for which the data touched by ref�
erence R is contained in this block�� As mentioned
before� the order in which these instances should
be done is left unspeci�ed�

N

N

0 1 2 3

0

2

<1,1> <1,2> <1,3> <1,4>

<2,1> <2,2> <2,3> <2,4>

<3,1> <3,2> <3,3> <3,4>

3

1

<4,1> <4,2> <4,3> <4,4>

Figure �� Cutting planes on a data object

The rationale for the term �data shackle� should now
be clear� One thinks of an instrument like a pantograph
in which a master device visits the blocks of data in
lexicographic order� while a slave device shackled to it
is dragged along some trajectory in the iteration space
of the program� It is also convenient to be able to refer
to statement instances �shackled� to a particular block
of data�

Since a data shackle reorders computations� we must
check that the resulting code respects dependences in
the original program� Legality can be checked using
standard techniques from polyhedral algebra� and is dis�
cussed in Section 	�

As an example of a data shackle� consider the matrix
multiplication code of Figure ��i�� Let us block matrix
C as shown in Figure �� using a block size of �	 X �	�
and shackle the reference C�I�J� in Figure ��i� to this
blocking� This data shackle requires that when a par�
ticular block of C is scheduled� all statement instances
that write into this block of data must be performed by
the processor� We can require these to be performed in
program order of the source program� Naive code for
accomplishing this is shown in Figure 	� The two outer
loops iterate over the blocks of C� For every block of C�
the entire original iteration space is visited� and every

�Because of other data references in statement S� these state�
ment instances may touch data outside that block�

iteration is examined to see if it should be executed� If
the location of C accessed by the iteration falls in the
current block �which is determined by the conditional
in the code�� that iteration is executed� It is easy to see
that in the presence of a�ne references� the conditionals
are all a�ne conditions on the loop indices correspond�
ing to the cutting plane sets and the initial loop index
variables�

do b� � � �� d�N����e
do b� � � �� d�N����e
do I � � �� N
do J � � �� N
do K � � �� N
if ��b������� 	 I 	� b����� 



��b������� 	 J 	� b�����
C�I�J
 � C�I�J
 � A�I�K
 � B�K�J


Figure 	� Naive code produced by blocking C for matrix
matrix multiply

The code in Figure 	 is not very e�cient� and is sim�
ilar to runtime resolution code generated when shared�
memory programs are compiled for distributed�memory
machines ���
� Fortunately� since the conditionals are
a�ne conditions on surrounding loop bounds� they can
be simpli�ed using any polyhedral algebra tool� We
have used the Omega calculator ���
 to produce the code
shown in Figure �� It is simple to verify that this code
has the desired e�ect of blocking the C array since blocks
of C are computed at a time by taking the product of
a block row of A and a block column of B� This code
is not the same as the code for matrix matrix product
in the BLAS library used by LAPACK since the block
row�column of A�B are not blocked themselves� Our
data shackle constrains the values of the loop indices I
and J in Figure ��i�� but leaves the values of K uncon�
strained� This problem is addressed in Section � where
we discuss how data shackles can be combined�

In the Cholesky factorization code� array A can be
blocked in a manner similar to Figure �� When a block
is scheduled� we can choose to perform all statement in�
stances that write to that block �in program order�� In
other words� the reference chosen from each statement
of the loop nest is the left hand side reference in that
statement� Using polyhedral algebra tools� we obtain
the code in Figure �� In this code� data shackling re�
groups the iteration space into four sections as shown
in Figure �� Initially� all updates to the diagonal block
from the left are performed �Figure ��i��� followed by
a baby Cholesky factorization ��	
 of the diagonal block
�Figure ��ii��� For each o��diagonal block� updates from
the left �Figure ��iii�� are followed by interleaved scal�
ing of the columns of the block by the diagonal block�
and local updates�Figure ��iv���

Note that just as in the case of matrix matrix prod�
uct� this code is only partially blocked �compared to LA�
PACK code� � although all the writes are performed
into a block when we visit it� the reads are not localized
to blocks� Instead� the reads are distributed over the en�
tire left portion of the matrix� As before� this problem
is solved in Section ��



do t� � � �� d�N����e
do t� � � �� d�N����e
do It � �t������� �� �� min�t�����N�
do Jt � �t������� �� �� min�t�����N�
do K � � �� N
C�It�Jt
 � C�It�Jt
 � A�It�K
 � B�K�Jt


A

B

C
K

K

Figure �� Simpli�ed code produced by blocking C for
matrix matrix multiply

��� Discussion

By shackling a data reference R in a source program
statement S� we ensure that the memory access made
from that data reference at any point in program exe�
cution will be constrained to the �current� data block�
Turning this around� we see that when a block be�
comes current� we perform all instances of statement
S for which the reference R accesses data in that block�
Therefore� this reference enjoys perfect self�temporal lo�
cality ��

� Considering all shackled references together�
we see that we also have perfect group�temporal locality
for this set of references� of course� references outside
this set may not necessarily enjoy group�temporal lo�
cality with respect to this set� As mentioned earlier�
we do not mandate any particular order in which the
data points within a block are visited� However� if all
dimensions of the array are blocked and the block �ts
in cache �or whatever level of the memory hierarchy is
under consideration�� we obviously exploit spatial local�
ity� regardless of whether the array is stored in column�
major or row�major order� An interesting observation
is that if stride�� accesses are mandated for a particular
reference� we can simply use cutting planes with unit
separation which enumerate the elements of the array
in storage order� Enforcing stride�� accesses within the
blocks of a particular blocking can be accomplished by
combining shackles as described in Section ��

The code shown in Figure � can certainly be ob�
tained by a �long� sequence of traditional iteration space
transformations like sinking� tiling� index�set splitting�
distribution etc� As we discussed in the introduction�
it is not clear for imperfectly nested loops in general
how a compiler determines which transformations to
carry out and in what sequence these transformations
should be performed� In this regard� it is important
to understand the �division of work� between our data�
centric transformation and a polyhedral algebra tool like

do t� � �� �n�������
�� Apply updates from left to diagonal block ��
do t� � �� ���t����

do t� � ���t����� min�n����t��
do t� � t�� min�n����t��
A�t��t�� � A�t��t�� � A�t��t�� � A�t��t��

�� Cholesky factor diagonal block ��
do t� � ���t����� min����t��n�
A�t��t�� � sqrt�A�t�� t���
do t� � t���� min����t��n�
A�t��t�� � A�t��t��� A�t��t��

do t� � t���� min�n����t��
do t� � t�� min�n����t��
A�t��t�� � A�t��t�� � A�t��t�� � A�t��t��

do t� � t���� �n�������
�� Apply updates from left to

off�diagonal block ��
do t� � �� ���t����
do t� � ���t����� ���t�
do t� � ���t����� min�n����t��
A�t��t�� � A�t��t�� � A�t��t�� � A�t��t��

�� Apply internal scale�updates to
off�diagonal block ��

do t� � ���t����� ���t�
do t� � ���t����� min����t��n�
A�t��t�� � A�t��t��� A�t��t��

do t� � t���� ���t�
do t� � ���t����� min�n����t��
A�t��t�� � A�t��t�� � A�t��t�� � A�t��t��

Figure �� Data shackle applied to right�looking
Cholesky factorization

(iv) Internal scale+update  (iii) Update off-diagonal block from left

(ii) Cholesky factor diagonal block(i) Update diagonal block from left

t3 t6

t7

t3

t5

t3 t6

t7

t3

t5

t6

Figure �� Pictorial View of Code in Figure �



Omega� Enforcing a desired pattern of data accesses is
obtained by choosing the right data shackle � note that
the pattern of array accesses made by the code of Fig�
ure 	� which is obtained directly from the speci�cation
of the data shackle without any use of polyhedral alge�
bra tools� is identical to the pattern of array accesses
made by the simpli�ed code of Figure �� The role of
polyhedral algebra tools in our approach is merely to
simplify programs� as opposed to producing programs
with desired patterns of data accesses�

� Legality

Since data shackling reorders statement instances� we
must ensure that it does not violate dependences� An
instance of a statement S can be identi�ed by a vec�
tor i which speci�es the values of the index variables
of the loops surrounding S� The tuple 
S�i� represents
instance i of statement S� Suppose there is a depen�
dence from 
S��i�� to 
S��i�� and suppose that these
two instances are executed when blocks b� and b� are
touched respectively� For the data shackle to be legal�
either b� and b� must be identical� or b� must be touched
before b�� If so� we say that the data shackle respects
that dependence� A data shackle is legal if it respects
all dependences in the program� Since our techniques
apply to imperfectly nested loops like Cholesky factor�
ization� it is not possible to use dependence abstractions
like distance and direction to verify legality� Instead� we
solve an integer linear programming problem�

��� An Example

To understand the general algorithm� it is useful to con�
sider �rst a simple example� in right�looking Cholesky
factorization� we formulate the problem of ensuring that
the �ow dependence from the assignment of A�J�J�
in S� to the use of A�J�J� in S� is respected by the
data shackle from which the program of Figure � was
generated�� We �rst write down a set of integer inequal�
ities that represent the existence of a �ow dependence
between an instance of S� and an instance of S�� Let S�
write to an array location in iteration Jw of the J loop�
and let S� read from that location in iteration �Jr� Ir�
of the J and I loops� A �ow dependence exists if the fol�
lowing linear inequalities have an integer solution ��	
�

������
�����

Jr � Jw� Ir � Jw �same location�

N � Jw � � �loop bounds�

N � Jr � � �loop bounds�

N � Ir � Jr � � �loop bounds�

Jr � Jw �read after write�

���

Next� we assume that the instance of S� is performed
when a block �b��� b��� is scheduled� and the instance of
S� is done when block �b��� b��� is scheduled� Finally� we
add a condition that represents the condition that the
dependence is violated in the transformed code� In other
words� we put in a condition which states that block

�The shackle was produced by blocking the matrix A as shown
in Figure �� and choosing the left hand side references of all
assignment statements in Figure ��ii� for shackling�

�b��� b��� is �touched� strictly after �b��� b���� These
conditions are represented as�������������

�����������

Writing iteration done in �b��� b���

b�� � �	� �� � Jw � b�� � �	

b�� � �	� �� � Jw � b�� � �	

Reading iteration done in �b��� b���

b�� � �	� �� � Jr � b�� � �	

b�� � �	� �� � Ir � b�� � �	

Blocks visited in bad order

�b�� � b��� � ��b�� � b��� � �b�� � b����

���

If the conjunction of the two sets of conditions ���
and ��� has an integer solution� it means that there is
a dependence� and that dependent instances are per�
formed in the wrong order� Therefore� if the conjunc�
tion has an integer solution� the data shackle violates
the dependence and is not legal� This problem can be
viewed geometrically as asking whether a union of cer�
tain polyhedra contains an integer point� and can be
solved using standard polyhedral algebra�

This test can be performed for each dependence in
the program� If no dependences are violated� the data
shackle is legal�

��� General View of Legal Data Shackles

The formulation of the general problem of testing
for legality of a data shackle becomes simpler if we
�rst generalize the notion of blocking data� A data
blocking� such as the one shown in Figure �� can
be viewed simply as a map that assigns co�ordinates
in some new space to every data element in the ar�
ray� For example� if the block size in this �gure is
�	 x �	� array element �a�� a�� is mapped to the co�
ordinate ��a� div �	� � �� �a� div �	� � �� in a new two�
dimensional space� Note that this map is not one�to�
one� The bottom part of Figure � shows such a map
pictorially� The new space is totally ordered under lex�
icographic ordering� The data shackle can be viewed as
traversing the remapped data in lexicographic order in
the new co�ordinates� when it visits a point in the new
space� all statement instances mapped to that point are
performed�

Therefore� a data shackle can be viewed as a func�
tion M that maps statement instances to a totally or�
dered set �V� ��� For the blocking shown in Figure ��
C	
S�I� � A maps statement instances to elements of
array A through data�centric references� and T	A � V
maps array elements to block co�ordinates� Concisely�
M � T	C�

Given a functionM�
S�I��
V���� the transformed
code is obtained by traversing V in increasing order�
and for each element v 
 V� executing the statement
instances M���v� in program order in the original pro�
gram�

Theorem � A map M

S�I� �
V��� generates legal
code if the following condition is satis�ed for every pair
of dependent statements S� and S��

� Introduce vectors of unknowns i� and i� that rep�
resent instances of dependent statements S� and S�
respectively�



x
x xx

x x
x
x

x
x xx

x x
x
x

(S2,I2)

(S1,I1)

Generation
Code 

Original Program Transformed Program

Data with new co-ordinatesOriginal Data

C

A

T

V

Figure �� Testing for Legality

� Formulate the inequalities that must be satis�ed for
a dependence to exist from instance i� of state�
ment S� to instance i� of statement S�� This is
standard ��
��

� Formulate the predicate M
S��i���M
S��i���
� The conjunction of these conditions does not have
an integer solution�

Proof� Obvious� hence omitted� �

��� Discussion

Viewing blocking as a remapping of data co�ordinates
simpli�es the development of the legality test� This
remapping is merely an abstract mathematical device
to enforce a desired order of traversal through the ar�
ray� the physical array itself is not necessarily reshaped�
For example� in the blocked matrix multiplication code
in Figure �� array C need not be laid out in �block� or�
der to obtain the bene�ts of blocking this array� This
is similar to the situation in BLAS�LAPACK where it
is assumed that the FORTRAN column�major order is
used to store arrays� Of course� nothing prevents us
from reshaping the physical data array if the cost of con�
verting back and forth from a standard representation
is tolerable� Physical data reshaping has been explored
by other researchers ���� 

�

Upto this point� we have assumed that every state�
ment in the program contains a reference to the array
being blocked by the data shackle� Although this as�
sumption in valid for kernels like matrix multiplication
and Cholesky factorization� it is obviously not true in
general programs� Our current approach to this prob�
lem is naive but simple� If a statement does not con�
tain a reference to the array being blocked by the data
shackle� we simply add a dummy reference to that ar�
ray �such as � ��B�I�J�� to the right hand side of the
statement� The dummy reference is of course irrelevant
for dependence analysis� and serves only to determine
which instances of this statement are performed when
elements of B are touched by the data shackle� The pre�
cise expression used in the dummy reference is irrelevant

for correctness� but a data shackle that is illegal for one
choice of this expression may be legal if some other ex�
pression is used �since that changes the order in which
the statement instances are performed�� This is clearly
an issue that we need to revisit in the future� and we
plan to use tools we developed for automatic data align�
ment to address this problem more carefully �	
�

� Products of shackles

We now show that there is a natural notion of taking the
Cartesian product of a set of shackles� The motivation
for this operation comes from the matrix multiplication
code of Figure �� in which an entire block row of A is
multipliedwith a block of column of B to produce a block
of C� The order in which the iterations of this compu�
tation are done is left unspeci�ed by the data shackle�
The shackle on reference C�I�J� constrains both I and
J� but leaves K unconstrained� therefore� the references
A�I�K� and B�K�J� can touch an unbounded amount of
data in arbitrary ways during the execution of the iter�
ations shackled to a block of C�I�J��� Instead of C� we
can block A or B� but this still results in unconstrained
references to the other two arrays� To get LAPACK�
style blocked matrix multiplication� we need to block all
three arrays� We show that this e�ect can be achieved
by taking Cartesian products�

Informally� the notion of taking the Cartesian prod�
uct of two shackles can be viewed as follows� The �rst
shackle partitions the statement instances of the origi�
nal program� and imposes an order on these partitions�
However� it does not mandate an order in which the
statement instances in a given partition should be per�
formed� The second shackle re�nes each of these parti�
tions separately into smaller� ordered partitions� with�
out reordering statement instances across di�erent par�
titions of the �rst shackle� In other words� if two state�
ment instances are ordered by the �rst shackle� they
are not reordered by the second shackle� The notion of
a binary Cartesian product can be extended the usual
way to an n�ary Cartesian product� each extra factor
in the Cartesian product gives us �ner control over the
granularity of data accesses�

A formal de�nition of the Cartesian product of data
shackles is the following� Recall from the discussion in
Section 	 that a data shackle for a program P can be
viewed as a map M�
S�I� � V� whose domain is the
set of statement instances and whose range is a totally
ordered set�

De�nition � For any program P	 let�
M� � �S� I�� V�

M� � �S� I�� V�

be two data shackles� The Cartesian product M� � M� of
these shackles is de�ned as the map whose domain is the
set of statement instances	 whose range is the Cartesian
product V�� V� and whose values are de�ned as follows

for any statement instance 
S�i�	

�M� � M���S� i� � � M��S� i�� M��S� i� �

The product domain V� � V� of two totally or�
dered sets is itself a totally ordered set under stan�
dard lexicographic order� Therefore� the code gen�
eration strategy and associated legality condition are



identical to those in Section 	� It is easy to see
that for each point v� � v� in the product domain
V� � V�� we perform the statement instances in the set
�M� � M��

���v�� v�� � M�
���v�� � M�

���v���
In the implementation� each term in an n�ary Carte�

sian product contributes a guard around each state�
ment� The conjunction of these guards determines
which statement instances are performed at each step of
execution� Therefore� these guards still consist of con�
juncts of a�ne constraints� As with single data shack�
les� the guards can be simpli�ed using any polyhedral
algebra tool�

Note that the product of two shackles is always legal
if the two shackles are legal by themselves� However�
a product M� � M� can be legal even if M� by itself is
illegal� This is analogous to the situation in loop nests
where a loop nest may be legal even if there is an inner
loop that cannot be moved to the outermost position�
the outer loop in the loop nest �carries� the dependence
that causes di�culty for the inner loop�

��� Examples

In matrix multiplication� it is easy to see that shackling
any of the three references �C�I�J��A�I�K��B�K�J�� to
the appropriate blocked array is legal� Therefore� all
Cartesian products of these shackles are also legal� The
Cartesian product MC � MA of the C and A shackles
produces the code in Figure 
� It is interesting to note
that further shackling with the B shackle �that is the
product MC � MA � MB� does not change the code that
is produced� This is because shackling C�I�J� to the
blocks of C and shackling A�I�K� to blocks of A imposes
constraints on the reference B�K�J� as well� A similar
e�ect can be achieved by shackling the references C�I�J�
and B�K�J�� or A�I�K� and B�K�J��

A more interesting example is the Cholesky code� In
Figure ��ii�� it is easy to verify that there are six ways
to shackle references in the source program to blocks of
the matrix �choosing A�J�J� from statement S�� either
A�I�J� or A�J�J� from statement S� and either A�L�K��
A�L�J� or A�K�J� from statement S��� Of these� only
two are legal� choosing A�J�J� from S�� A�I�J� from
S� and A�L�K� from S�� or choosing A�J�J� from S��
A�J�J� from S� and A�L�J� from S�� The �rst shackle
chooses references that write to the block� while the sec�
ond shackle chooses references that read from the block�
Since both these shackles are legal� their Cartesian prod�
uct �in either order� is legal� It can be shown that one
order gives a fully�blocked left�looking Cholesky� identi�
cal to the blocked Cholesky algorithm in ��	
� while the
other order gives a fully�blocked right�looking Cholesky�

��� Discussion

Taking the Cartesian product of data shackles gives us
�ner control over data accesses in the blocked code� As
discussed earlier� shackling just one reference in matrix
multiplication �say C�I�J�� does not constrain all the
data accesses� On the other hand� shackling all three
references in this code is over�kill since shackling any two
references constraints the third automatically� Taking
a larger Cartesian product than is necessary does not

a�ect the correctness of the code� but it introduces un�
necessary loops into the resulting code which must be
optimized away by the code generation process to get
good code� The following obvious result is useful to de�
termine how far to carry the process of taking Cartesian
products� We assume that all array access functions are
linear functions of loop variables �if the functions are
a�ne� we drop the constant terms�� if so� they can be
written as F �I where F is the data access matrix ���

and I is the vector of iteration space variables of loops
surrounding this data reference�

Theorem � For a given statement S	 let F�� � � � � Fn be
the access matrices for the shackled data references in
this statement� Let Fn�� be the access matrix for an un�
shackled reference in S� Assume that the data accessed
by the shackled references are bounded by block size pa�
rameters� Then the data accessed by Fn�� is bounded by
block size parameters i� every row of Fn�� is spanned
by the rows of F�� � � � � Fn�

Stronger versions of this result can be proved� but
it su�ces for our purpose in this paper� For ex�
ample� the access matrix for the reference C�I�J� is�

� � �
� � �

�
� Shackling this reference does not bound

the data accessed by row
�
� � �

�
of the access ma�

trix

�
� � �
� � �

�
of reference B�K�J�� However� taking

the Cartesian product of this shackle with the shackle
obtained from A�I�K� constrains the data accessed by
B�K�J�� because all rows of the corresponding access
matrix are spanned by the set of rows from the access
matrices of C�I�J� and A�I�K��

Although the problem of generating good shackles
automatically is beyond the scope of this paper� Carte�
sian product is obviously viewed as a way of generat�
ing new shackles from old ones� The discussion in this
section provides some hints for generating good data
shackles�

� How are the data�centric references chosen� For
each statement� the data�centric references should
be chosen such that there are no remaining uncon�
strained references�

� How big should the Cartesian products be� If there
is no statement left which has an unconstrained
reference� then there is no bene�t to be obtained
from extending the product�

� What is a correct choice for orientation of cutting
planes� To a �rst order of approximation� the ori�
entation of the cutting planes is irrelevant as far
as performance is concerned� provided the blocks
have the same volume� Of course� orientation is
important for legality of the data shackle�

These matters and related ones are currently being
investigated and will be addressed in the forthcoming
thesis of the �rst author of the paper�

��� Multi�level Blocking

Cartesian products can be used in an interestingmanner
to block programs for multiple levels of memory hierar�
chy� For lack of space� we explain only the high level



do t� � �� 
n����
��
do t� � �� 
n����
��
do t� � �� 
n����
��

do t� � ��t���� min
��t��
n���
��
do t� � ��t���� min
��t��
n���
��
do t� � ��t���� min
��t��
n���
��

do t�� � ��t���� min
n���t��
do t�� � ��t���� min
n���t��
do t�� � ��t���� min
��t��n�

C�t���t����� A�t���t����B�t��� t���

Figure ��� Matrix multiply blocked for two levels of
memory hierarchy

idea here� For a multi�level memory hierarchy� we gen�
erate a Cartesian product of products of shackles where
each factor in the outer Cartesian product determines
blocking for one level of the memory hierarchy�

The �rst term in the outer Cartesian product corre�
sponds to blocking for the slowest �and largest� level of
the memory hierarchy and corresponds to largest block
size� Subsequent terms correspond to blocking for faster
�and usually smaller� levels of the memory hierarchy�
We have applied this idea to obtain multiply blocked
versions of our running examples in a straightforward
fashion� It is unclear to us that tiling can be general�
ized to multiple levels of memory hierarchy in such a
straightforward manner�

Figure �� demonstrates this idea for matrix multi�
plication� The outer Cartesian product for this example
has two factors� the �rst factor is itself a product of two
shackles �on C�I�J� and A�I�K� with block sizes of ����
and the second factor is also a product of two shack�
les �once again� on C�I�J� and A�I�K�� but block sizes
of ��� As can be seen from the code� the �rst term of
the outer Cartesian product performs a ���by��� matrix
multiplication� which is broken down into several ��by��
matrix multiplications by the second term in this prod�
uct� By choosing smaller inner blocks �like ��by��� and
unrolling the resulting loops� we can block for registers�

� Performance

We present performance results on a thin node of the
IBM SP�� for the following applications� ordinary and
banded Cholesky factorizations� QR factorization� the
ADI kernel and the GMTRY benchmark from the NAS
suite� All compiler generated codes were compiled on
the SP�� using xlf �O
�

Figure �� shows the performance of Cholesky factor�
ization� The lines labeled Input right�looking code show
the performance of the right�looking Cholesky factor�
ization code in Figure ��ii�� This code runs at roughly
� MFlops� The lines labeled Compiler generated code
show the performance of the fully blocked left�looking
Cholesky code produced by the Cartesian product of
data shackles discussed in Section �� While there is a
dramatic improvement in performance from the initial
code� this blocked code still does not get close to peak
performance because the compiler back�end does not
perform necessary optimizations like scalar replacement
in innermost loops� A large portion of execution time

100.0 200.0 300.0 400.0 500.0 600.0
Size of matrix of doubles(NxN)

0.0

50.0

100.0

150.0

200.0

P
er

fo
rm

an
ce

(M
flo

ps
)

LAPACK with native BLAS
Matrix multiply replaced by DGEMM
Compiler generated 40x40 blocked code
Input right-looking code

100.0 200.0 300.0 400.0 500.0 600.0
Size of matrix of doubles(NxN)

0.0

250.0

500.0

750.0

1000.0

1250.0

1500.0

1750.0

2000.0

2250.0

2500.0

E
xe

cu
tio

n 
tim

e(
m

s)

Input right-looking code
Compiler generated 40x40 blocked code
Matrix multiply replaced by DGEMM
LAPACK with native BLAS

Figure ��� Cholesky factorization on the IBM SP��

is spent in a few lines of code which implement ma�
trix multiplication� but which are optimized poorly by
the IBM compiler� Replacing these lines manually by
a call to the ESSL BLAS�
 matrix multiplication rou�
tine improves performance considerably� as is shown by
the lines labeled Matrix Multiply replaced by DGEMM�
Finally� the line labeled LAPACK with native BLAS is
the performance of the Cholesky factorization routine
in LAPACK running on the native BLAS routines in
ESSL� The MFlops graph provides �truth in advertis�
ing� � although the execution times of LAPACK and
compiler�generated code with DGEMM are compara�
ble� LAPACK achieves higher M�ops� This is because
we replaced only one of several matrix multiplications
in the blocked code by a call to DGEMM� On the posi�
tive side� these results� coupled with careful analysis of
the compiler�generated code� show that the compiler�
generated code has the right block structure� What re�
mains is to make the compilation of inner loops �by
unrolling inner loops� prefetching data and doing scalar
replacement ��� �	
� more e�ective in the IBM compiler�

Figure �� shows the performance of QR factorization
using Householder re�ections� The input code has poor
performance� and it is improved somewhat by block�
ing� The blocked code was generated by blocking only
columns of the matrix� since dependences prevent com�
plete two�dimensional blocking of the array being fac�
tored� As in the case of Cholesky factorization� re�
placing loops that perform matrix multiplication with
calls to DGEMM results in signi�cant improvement� as
shown by the line labeled Matrix Multiply replaced by
DGEMM� This code beats the fully blocked code in
LAPACK for matrices smaller than ����by����� The
compiler�generated code uses the same algorithm as the



100.0 200.0 300.0 400.0 500.0 600.0
Size of matrix of doubles(NxN)

0.0

50.0

100.0

150.0

200.0

P
er

fo
rm

an
ce

(M
flo

ps
)

LAPACK with native BLAS
Matrix multiply replaced by DGEMM
Compiler generated 40x40 blocked code
Input QR factorization code

100.0 200.0 300.0 400.0 500.0 600.0
Size of matrix of doubles(NxN)

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

8000.0

9000.0

10000.0

E
xe

cu
tio

n 
tim

e(
m

s)

Input QR factorization code
Compiler generated 40x40 blocked code
Matrix multiply replaced by DGEMM
LAPACK with native BLAS

Figure ��� QR factorization on the IBM SP��

�pointwise� algorithm for this problem� the LAPACK
code on the other hand uses domain�speci�c informa�
tion about the associativity of Householder re�ections
to generate a fully�blocked version of this algorithm ��
�

Gmtry benchmark on thin node of SP2

Original Code

Blocked Code

Normalized execution time

0.8

1.0

0.48

0.26

Time spent in Gaussian Elimination

Sample ADI loops on thin node of  SP2

Original Code

1.0

Transformed Code

0.12

Normalized execution time

Figure �
� �i� Gmtry � �ii� ADI benchmarks on the
IBM SP��

Figure �
�i� shows the results of data shackling for
the Gmtry kernel which is a SPEC benchmark kernel
from Dnasa�� This code performs Gaussian elimination
across rows� without pivoting� Data shackling blocked
the array in both dimensions� and produced code similar
to what we obtained in Cholesky factorization� As can
be seen in this �gure� Gaussian elimination itself was
speeded up by a factor of 
� the entire benchmark was

do i � �� n
do k � �� n

S�� X�i�k� �� X�i���k��A�i�k��B�i���k�
enddo
do k � �� n

S�� B�i� k� �� A�i�k��A�i�k��B�i���k�
enddo

enddo

�i� Input code

do t� � �� n
do t� � �� n��
S�	 X
t����t����X
t��t���A
t����t��
B
t��t��
S�	 B
t����t����A
t����t���A
t����t��
B
t��t��

enddo
enddo

�ii� Transformed Code

Figure ��� E�ect of fusion � interchange on ADI

100.0 200.0 300.0 400.0 500.0 600.0
Size of matrix of doubles(NxN)

0.0

50.0

100.0

150.0

P
er

fo
rm

an
ce

(M
flo

ps
)

LAPACK Banded Cholesky(band size=10)
Compiler generated code(band size=10)
Compiler generated code(band size=90)
LAPACK Banded Cholesky(band size=90)

Figure �	� Banded Cholesky factorization on the SP��

speeded up by a factor of ��
Figure ���i� shows the ADI kernel used by McKinley

et al in their study of locality improving transforma�
tions ���
� This code was produced from FORTRAN�
�� by a scalarizer� The traditional iteration�centric ap�
proach to obtain good locality in this code is to fuse
the two k loops �rst� after which the outer i loop and
the fused k loop are interchanged to obtain unit�stride
accesses in the inner loop� The resulting code is shown
in Figure ���ii�� In our approach� this �nal code is ob�
tained by simply choosing B�i���k� as the data�centric
reference in both S� and S� and blocking B into blocks of
size �x�� When an element of B is touched� all statement
instances from both loop nests that touch this element
must be performed� this achieves the e�ect of loop jam�
ming� Traversing the blocks in storage order achieves
perfect spatial locality� which achieves the e�ect of loop
interchange after jamming� As shown in Figure �
�ii��
the transformed code runs ��� times faster than the in�
put code� when n is �����

Since shackling takes no position on how the
remapped data is stored� the techniques described in
Section � can be used to generate code even when the
underlying data structure is reshaped� A good exam�
ple of this is banded Cholesky factorization ��	
� The
banded Cholesky factorization in LAPACK is essen�



tially the same as regular Cholesky factorization with
two caveats� �i� only those statement instances are per�
formed which touch data within a band of the input ma�
trix� and �ii� only the bands in the matrix are stored �in
column order�� rather than the entire input matrix� In
our framework� the initial point code is regular Cholesky
factorization restricted to accessing data in the band�
and the data shackling we used with regular Cholesky
factorization is applied to this restricted code� To obtain
the blocked code that walks over a data structure that
stores only the bands� a data transformation is applied
to the compiler generated code as a post processing step�
As seen in Figure �	� the compiler generated code actu�
ally outperforms LAPACK for small band sizes� As the
band size increases however� LAPACK performs much
better than the compiler generated code� This is be�
cause� for large band sizes� LAPACK starts reaping the
bene�ts of level 
 BLAS operations� whereas the xlf
back�end �on the IBM SP��� is once again not able to
perform equivalent optimizations for loops in our com�
piler generated code which implement matrix multiply
operations�

	 Ongoing Work

There are several unresolved issues with our approach�
In this section� we discuss these open issues and suggest
plausible solutions when possible�

As discussed in Section �� a data shackle has three
components � sets of cutting planes� shackled references
and order of enumeration over blocks� In this paper� we
have assumed that the speci�cation of these components
is given to the compiler� Automating our data�centric
approach fully requires the compiler to determine these
components� We are working on this problem� basing
our approach on the following observations�

One approach is to implement a search method that
enumerates over plausible data shackles� evaluates each
one and picks the best� When there are multiple data
shackles that are legal for a program� we need a way
to determine the best one� This requires accurate cost
models for the memory hierarchy� such as the ones de�
veloped by other researchers in this area ���� ��
�

If the search space becomes large� heuristics may be
useful to cut down the size of the search� Theorem � and
the subsequent discussion suggests that to a �rst order
of approximation� the orientation of cutting planes has
little impact on performance� and can be selected to
satisfy legality considerations alone� For all the bench�
marks in the paper� we found that walking over the
blocked array in top to bottom� left to right order was
adequate� This order of enumerating blocks has great
appeal because it is simple and because we believe that
this is the natural order used by programmers� In gen�
eral� of course� this order of traversing blocks may not
be legal �triangular back�solve is an example�� but we
believe that in most of those cases� traversing the blocks
bottom to top or right to left will be legal�� Another
assumption in our approach so far is that a shackled ref�
erence makes a single sweep through the corresponding
array� This is adequate for problems like matrix fac�
torizations in which there is a de�nite direction to the

�This is similar to loop reversal�

underlying data �ow of the algorithm� but it is obviously
not adequate for problems like relaxation codes in which
an array element is eventually a�ected by every other
element� To solve this problem� we must make multi�
ple passes over the blocked array� One possibility is the
following� rather than perform all shackled statement
instances when we touch a block� we can perform only
those instances for which dependences have been satis�
�ed� The array is traversed repeatedly till all instances
are performed� Determination of good block sizes can
also be tricky� especially for a multi�level memory hi�
erarchy ���
� This problem arises even in handwritten
code � in this context� library writers are exploring the
use of training sets to help library code determine good
block sizes ��

� We can adopt this solution if it proves
to be successful�

We have presented data shackling as an alternative
restructuring technology that avoids some of the prob�
lems of current control�centric approaches� However� it
is unclear to us whether our approach can fully sub�
sume loop transformation techniques� In the event that
both these approaches are required for program restruc�
turing� an important open question is to determine the
interaction between them�

Finally� we note that there are programs for which
handwritten blocked codes exploit algebraic properties
of matrices� QR�factorization using Householder re�ec�
tions is an example ��	
� It is unclear to us whether a
compiler could or even should attempt to restructure
programs using this kind of domain�speci�c informa�
tion� It is likely that the most plausible scenario is
compiler blocking augmented with programmer direc�
tives for blocking such codes ��
�

Acknowledgments� We would like to thank Rob
Schreiber� Charlie van Loan� Vladimir Kotlyar� Paul
Feautrier and Sanjay Rajopadhye for stimulating dis�
cussions on block matrix algorithms and restructuring
compilers� This paper was much improved by the feed�
back we received from an anonymous �good shepherd�
on the PLDI committee�

References

��
 Ramesh C� Agarwal and Fred G� Gustavson� Algo�
rithm and Architecture Aspects of Producing ESSL
BLAS on POWER��

��
 E� Anderson� Z� Bai� C� Bischof� J� Dem�
mel� J� Dongarra� J� Du Croz� A� Greenbaum�
S� Hammarling� A� McKenney� S� Ostrouchov� and
D� Sorensen� editors� LAPACK Users� Guide� Sec�
ond Edition� SIAM� Philadelphia� ���	�

�

 Jennifer Anderson� Saman Amarsinghe� and Mon�
ica Lam� Data and computation transformations
for multiprocessors� In ACM Symposium on Prin�
ciples and Practice of Parallel Programming� Jun
���	�

��
 U� Banerjee� Unimodular transformations of dou�
ble loops� In Proceedings of the Workshop on Ad�
vances in Languages and Compilers for Parallel
Processing� pages ��� ���� August �����



�	
 David Bau� Induprakas Kodukula� Vladimir Kotl�
yar� Keshav Pingali� and Paul Stodghil� Solving
alignment using elementary linear algebra� In Pro�
ceedings of the �th LCPC Workshop� August �����
Also available as Cornell Computer Science Dept�
tech report TR�	������

��
 Pierre Boulet� Alain Darte� Tanguy Risset� and
Yves Robert� �Pen��ultimate tiling! In INTE�
GRATION	 the VLSI Journal� volume ��� pages


 	�� �����

��
 Steve Carr and K� Kennedy� Compiler blockability
of numerical algorithms� In Supercomputing� �����

��
 Steve Carr and R� B� Lehoucq� Compiler blockabil�
ity of dense matrix factorizations� Technical report�
Argonne National Laboratory� Oct �����

��
 Steven Carr and R� B� Lehoucq� A compiler�
blockable algorithm for QR decomposition� �����

���
 L� Carter� J� Ferrante� and S� Flynn Hummel� Hi�
erarchical tiling for improved superscalar perfor�
mance� In International Parallel Processing Sym�
posium� April ���	�

���
 Michael Cierniak and Wei Li� Unifying data
and control transformations for distributed shared
memory machines� In SIGPLAN ���
 conference
on Programming Languages Design and Implemen�
tation� Jun ���	�

���
 Stephanie Coleman and Kathryn S� McKinley� Tile
size selection using cache organization and data
layout� In David W� Wall� editor� ACM SIGPLAN
��
 Conference on Programming Language Design
and Implementation �PLDI�� volume 
���� ofACM
SIGPLAN Notices� pages ��� ���� New York� NY�
USA� June ���	� ACM Press�

��

 Jim Demmel� Personal communication� Sep �����

���
 Jack Dongarra and Robert Schreiber� Automatic
blocking of nested loops� Technical Report UT�CS�
������� Department of Computer Science� Univer�
sity of Tennessee� May �����

��	
 Gene Golub and Charles Van Loan� Matrix Com�
putations� The Johns Hopkins University Press�
�����

���
 Monica S� Lam� Edward E� Rothberg� and
Michael E� Wolf� The cache performance and op�
timizations of blocked algorithms� In Proceedings
of the Fourth International Conference on Archi�
tectural Support for Programming Languages and
Operating Systems� pages �
 ��� Santa Clara� Cal�
ifornia� April � ��� ����� ACM SIGARCH� SIG�
PLAN� SIGOPS� and the IEEE Computer Society�

���
 W� Li and K� Pingali� Access Normalization� Loop
restructuring for NUMA compilers� ACM Trans�
actions on Computer Systems� ���
�

���
 Kathryn S� McKinley� Steve Carr� and Chau�Wen
Tseng� Improving data locality with loop transfor�
mations� In ACM Transactions on Programming
Languages and Systems� volume ��� pages ��� �	
�
July �����

���
 W� Pugh� A practical algorithm for exact array de�
pendency analysis� Comm� of the ACM� 
	��������
August �����

���
 J� Ramanujam and P� Sadayappan� Tiling mul�
tidimensional iteration spaces for multicomputers�
Journal of Parallel and Distributed Computing�
��������� ���� October �����

���
 A� Rogers and K� Pingali� Process decomposition
through locality of reference� In SIGPLAN�� con�
ference on Programming Languages	 Design and
Implementation� Jun �����

���
 Vivek Sarkar� Automatic selection of high order
transformations in the IBM ASTI optimizer� Tech�
nical Report ADTI�������� Application Develop�
ment Technology Institute� IBM Software Solu�
tions Division� July ����� Submitted to special is�
sue of IBM Journal of Research and Development�

��

 M�E� Wolf and M�S� Lam� A data locality optimiz�
ing algorithm� In SIGPLAN ���� conference on
Programming Languages Design and Implementa�
tion� Jun �����

���
 M� Wolfe� Iteration space tiling for memory hierar�
chies� In Third SIAM Conference on Parallel Pro�
cessing for Scienti�c Computing� December �����

��	
 M� Wolfe� High Performance Compilers for Paral�
lel Computing� Addison�Wesley Publishing Com�
pany� ���	�


