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Abstract. A novel method is proposed for post-processing of JPEG-encoded im-
ages, in order to reduce coding artifacts and enhance visual quality. Our method
simply re-applies JPEG to the shifted versions of the already-compressed image,
and forms an average. This approach, despite its simplicity, offers better performance
than other known methods, including those based on nonlinear filtering, POCS, and
redundant wavelets.
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1. Introduction

Block transform coding of images, via the Discrete Cosine Transform
(DCT), has proved to be a simple yet effective method of image com-
pression. Different implementations of this method have found widespread
acceptance via international standards for image and video compres-
sion, such as JPEG and MPEG standards.

The basic approach for block-transform compression is fairly simple.
The encoding process consists of dividing the image into blocks, typi-
cally of size 8 x 8. A block transform, typically the DCT, is applied to
these blocks, and the transform coefficients are individually quantized
(scalar quantization). To efficiently represent the resulting data, certain
lossless compression operations are performed on the quantized data,
typically consisting of a zig-zag scan of coefficients and entropy coding.
A simplified diagram of this overall process is shown in Figure 1.

The block encoding process, while simple and efficient, also intro-
duces a number of undesirable artifacts into the image; the most notable
are blocking artifacts (discontinuities at the block boundaries) and
ringing artifacts (oscillations due to the Gibbs phenomenon). These
artifacts become more pronounced with increasing compression ratio.

A significant body of work has evolved to address the enhancement
of DCT-compressed images. The problem of JPEG image enhancement,
in particular, is of great interest due to the fact that the number of
JPEG encoded images is currently in the millions, and will continue
to rise for at least the next few years, well beyond the impending
introduction of JPEG 2000. A prime example of this proliferation is

';:‘ © 2002 Kluwer Academic Publishers. Printed in the Netherlands.

final.tex; 21/10/2002; 13:01; p.1



DC Coefficients
DPCM |+
Source/ beT 0 Entropy Headers/ JPEG
Image Coding Syntax Code
AC Coefficients
. Huffman
Design Tables
Huffman
- Tables
Quantization
Tables

Figure 1. The JPEG encoding system

on the Internet, where numerous web pages use JPEG encoded images.
Another example are the images produced by digital cameras.

In this paper we present a novel postprocessing technique for the
reduction of compression artifacts in JPEG-encoded images. This ap-
proach is a significant departure from the previous signal processing
methods, in that it does not specifically look at the discontinuities at
block boundaries, neither does it make direct use of smoothness criteria.
It uses the JPEG process itself to reduce the compression artifacts of
the JPEG-encoded image. This approach is very easy to implement
and, despite its simplicity, has highly competitive performance.

2. Background

Past work on the enhancement of JPEG-encoded images has largely
focused on enforcing various smoothness criteria on the compressed
image. The model for smoothness or continuity of the image can be
deterministic or stochastic, and the enforcement of the model can vary,
from regularization-based optimization to projection on convex sets
(POCS) to adaptive and space-varying filters.

The earliest attempts in enhancing block-encoded images involved
space-invariant filtering [1]. It was quickly discovered, however, that
space-invariant filters are generally not very effective for this applica-
tion; they either do not remove enough of the artifacts, or oversmooth
the image.

Space-varying filters provide a more flexible framework for the re-
duction of compression artifacts. An early example of the application
of space-varying operations to block-encoded images appeared in [2].
Space varying methods usually involve a classification step. For ex-
ample, Kuo and Hsieh [3] classify image blocks according to hight
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or low AC activity, and apply the enhancement process only on the
active blocks. The algorithm in [3] involves edge detection, and the
space-varying filter is designed such that it does not smooth the edges.

In a different space-varying approach, Chou et al. [4] and Xiong et
al. [5] classify the block boundaries according to the local activity in
the image: If the discontinuity at a block boundary is small compared
to the local energy in the image, then it is likely that the discontinuity
is entirely due to quantization, therefore a strong filtering operation is
performed on it. However, very large discontinuities at block bound-
aries are less likely to be due to quantization alone, therefore a milder
smoothing operation is performed on them, so that the image edges are
preserved.

A number of other related methods also depend on classification and
space-varying operations, e.g. [6, 7, 8].

Another class of postprocessors utilize a reconstruction method known
as Projection on Convex Sets (POCS). Usage of POCS for image recon-
struction goes back to the work of Yula [9], and Yula and Webb [10].
This method is based on the well-known topological property that the
nonempty intersection of a set of closed convex sets is itself a closed
convex set. This intersection can be reached through repeated alternate
projections onto the original sets. In the postprocessing application,
one convex set consists of all original images that are quantized to the
given compressed image. The other convex sets are defined to express
the smoothness of the original image. The intersection of all these sets,
as found by POCS, is a better approximation to the original image
than the compressed image itself. POCS is elegant in design, but its
convergence is critically dependent on the a-priori assumption that the
representative sets have nonempty intersection.

One of the earliest POCS postprocessors for JPEG was proposed
by Zakhor [11], ! where the smoothness convex set consists of lowpass
bandlimited images. Reeves and Eddins [12] pointed out that a non-
ideal lowpass filter, like the one used in [11], is not a projection operator
and therefore the algorithm, strictly speaking, cannot be classified as
POCS, but is rather a constrained optimization method. Yang et al. [15]
proposed a different convex set consisting of images with a total discon-
tinuity across block boundaries less than a given threshold (Figure 2);
this work was extended in [16] via a spatially adaptive convex set. Other
work utilizing POCS for JPEG postprocessing includes [17, 18].

Constrained optimization is the basis of another family of JPEG
postprocessors. A subset of this class is known as reqularization, a

! This work has been subject to repeated inaccurate citation, including in [12,
13, 14, 15, 16]
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Figure 2. Traditional JPEG denoising concentrates on block discontinuities.

method to solve ill-posed inverse problems. Yang et al. [15] proposed
a regularization scheme for a constrained least squares solution to
the postprocessing problem. The constrained least squares approach
arises from the desire to remain within the quantization convex set
(constraint) but at the same time minimize the highpass energy of the
signal (expressed as least squares). [15] used a regularization method
to solve this problem. Hong et al. [19] applied regularization methods
in the subband domain to reduce DCT artifacts in images.

Another family of postprocessors are based on sophisticated stochas-
tic modeling of the image. All post-processors use a priori knowledge
of the image properties. However, in the model-based approach, the
a priori assumptions and their introduction into the algorithm are
more explicit. Markov Random Fields (MRF) are among the more
successful models applied to image enhancement. The algorithm of
O’Rourke and Stevenson [13] applies maximum a-posteriori (MAP)
estimation under a Markov prior, while constraining the solution to the
DCT quantization hypercube. Li and Kuo [20] developed a multiscale
MAP technique, again under the MRF prior. Because of the iterative
procedure necessary for the generation of Markov Random Fields, MRF
techniques have a high computational complexity.

Strictly speaking, compression distortion is not a random noise, in
the sense that the additive distortion induced by compression, condi-
tioned on the original (input) image, is completely deterministic. Under
certain conditions, however, compression noise is uncorrelated with the
quantized (output) image. Therefore, denoising techniques originally
intended for random noise situations can sometimes be applied to the
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enhancement of compressed images. Among the most simple and ef-
fective denoising algorithms are those using the wavelet transform.
Gopinath et al. [21] proposed an enhancement method involving the
oversampled wavelet transform, in conjunction with a soft thresholding
motivated by the minimax arguments of Donoho [22]. Gopinath et al.
find the threshold based on a MMSE estimation of the quantization
noise. Another version of oversampled wavelet denoising was employed
by Xiong et al. [5]. We note that the oversampled wavelet denois-
ing of Gopinath as well as that of Xiong are both variations on the
so-called translation-invariant denoising introduced by Coifman and
Donoho [23].

In the above we presented a quick overview of the main approaches
to postprocessing JPEG encoded images. For the sake of brevity, some
existing algorithms were not individually mentioned, among them [14,
24, 25, 26, 27, 28, 29]. These algorithms use variants or combinations
of the techniques already mentioned in this section.

3. JPEG denoising through JPEG

3.1. ALGORITHM

We present a simple and powerful technique for the enhancement of
JPEG-compressed images. Our algorithm is a dramatic departure from

the known enhancement techniques, and simply consists of applying
shifted versions of the JPEG compression operator to the JPEG-compressed
image. The algorithm is summarized below:

1. Shift the compressed images in vertical and horizontal directions by
(i,7)-

2. Apply JPEG to shifted image.

3. Shift the result back, i.e. vertically and horizontally by (—i, —j).

4. Repeat for all possible shifts in the range [—3,4] x [—3, 4]

5. Average all images

The quantization parameter and the quantization matrix of the
JPEG, for the postprocessing purposes, is set to the same values as the
compressed image. This should present no difficulties, since the header
of the original JPEG image contains all necessary information. The
block diagram of our postprocessing algorithm is shown in Figure 3.
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Figure 4. Our JPEG postprocessing uses various shifts of JPEG, three representative
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The dual shifting of the image in each branch of Figure 3 essentially
amounts to a net shift of the boundaries of the block encoding pro-
cess, as illustrated in Figure 4. This demonstrates a basic motivation
behind our algorithm: The JPEG encoding process is known to reduces
the high-frequency content of the image. In other words, the high-
frequency components of the image are quantized more coarsely than
lower frequencies. But at the same time, high frequency components are
introduced at the edges of the blocks, because these edges effectively
are not “seen” in the DCT block-spectrum of JPEG. By taking various
shifts of JPEG, the original block boundaries will be exposed to the
frequency shaping of the JPEG encoding process, thus the magnitude
of the blockiness will be reduced.

This secondary encoding process itself will produce new block bound-
aries, albeit smaller than the original one. One can put these new
block boundaries at any given location, by controlling the shift of the
secondary JPEG encoding. However, there is no reason to prefer any
given location over another, therefore we average all shifts so that the
secondary blockiness is diffused over all pixels. In fact, with this process,
almost no blocking effects are visible in the final postprocessed image.

3.2. RELATION TO KNOWN DENOISING TECHNIQUES

The algorithm proposed in this paper, while in appearance and op-
eration very different from previous approaches, in fact combines two
powerful ideas from image denoising: redundant representations and
the duality of quantization and denoising.

Recently, wavelet expansions have emerged as a robust and pow-
erful tool for many signal processing applications, in particular image
denoising [22]. Wavelet bases provide efficient representations of signals,
which is desirable in many applications, e.g. compression. However, in
other applications, such as denoising, efficiency of representation is not
an object. It has been known, in fact, that redundant representations
(frames) perform better than bases in denoising applications [30].

A simple explanation for the performance of redundant denoising
algorithms is that the inverse transform for a frame (as opposed to a
basis) is a Moore-Penrose pseudoinverse. Loosely speaking, the frame
inverse transform contains averaging, which helps reduce the effect of
noise. Xiong et al. [5], for example, harnessed the power of this tech-
nique and used redundant wavelets, along with edge classification and
soft thresholding nonlinearities for their enhancement algorithm.

Our method is closely related to the oversampled (redundant) wavelet
denoising techniques. The diagram in Figure 3 shows that JPEG encod-
ing and decoding are performed successively in each branch, therefore
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Figure 5. JPEG enhancement algorithm seen from the viewpoint of redundant
expansions

the lossless parts of JPEG can be removed for our purposes, leading
to the simplified diagram of Figure 5. This diagram shows that our
JPEG enhancement algorithm can be viewed as a redundant denoising
algorithm, where quantization plays the role of denoising nonlinearities.

This brings us to the second main idea underlying the proposed
algorithm: the duality of quantization and denoising [31]. To express
this relationship and its utilization in our algorithm, we look at optimal
quantization, optimal MMSE denoising, and their relationship.

Assume the available observations x are a summation of a Gaussian
signal s and a memoryless Gaussian noise n.

r=s+n (1)

Bayesian quadratic mean estimation requires that the decorrelated com-
ponents of the observed signal be scaled according to:

0.2

j = s €T 2

o2+ o2 2)

Therefore, optimal denoising of Gaussian signals require a linear oper-
ation on the diagonalized version of the signal.

On the other hand, optimal quantization, again for the Gaussian

signals, is achieved via the inverse water-filling algorithm [32]. This
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argument, which is used to justify transform coding, states that optimal
quantization is achieved via a diagonalizing transform. To achieve op-
timality, transform components below a certain energy are eliminated,
and others are quantized so as to produce equal error energy.

At first sight, these two approaches may seem different, but in ap-
plication they are very close. To see this point, note that the linear
expression for the optimal denoising operator requires knowledge of
the power of the original (uncorrupted) signal and noise. But in prac-
tice, estimating these quantities can be a rather difficult task. One can
look at the inverse water-filling algorithm as an approximation of the
optimal Gaussian denoising in many practical situations, because:

— For components where the signal is weaker than the noise, the
linear expression (2) is approximated by zero. This corresponds to
a coarse quantization that maps small signals to zero.

— For components where the signal is greater than the noise, the
denoising fraction (2) is close to one. This expression can again be
approximated by quantization, because when quantized distortion
is much smaller than signal power, quantization itself is almost
equivalent to an attenuation [33].

To summarize, this algorithm effectively uses a redundant (frame)
expansion approach to signal denoising, where the frame expansion is
an oversampled DCT. The denoising nonlinearities are provided by the
scalar quantizers in JPEG.

3.3. QUANTIZATION LEVELS

The question remains: how to set the quantization levels in the sec-
ondary (denoising) JPEG? Experiments show that the best results
are obtained when the secondary JPEG quantization is identical to
the quantization matrix in the original image. In our experiments, we
perturbed the quantization matrix by a multiplying constant . We
tested values of a both greater than and less than unity. In all such
experiments, both at high and low bitrates, the quantization matrix
best suited for denoising was the same as the one used for compression.

From a practical point of view, this should present no difficulties,
since the quantization matrix is represented in the JPEG header of the
original image, and can be extracted easily.

3.4. IMAGE BOUNDARIES

The shifting operation in our algorithm needs to be modified close to
the image boundaries. We offer three solutions at the image boundaries:
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— Symmetric extension
— Row and column replication

— Zero-shift replacement

The symmetric extension works as follows: when the shift requires
that part of the existing block go outside of the image boundaries,
the data is “thrown away.” When it requires data from outside the
image boundaries, the image is extended symmetrically. The symmetric
extension can be either odd or even at the boundary.

The replication method is similar to the symmetric extension, except
that the data shifted from outside of image boundaries is simply a
replication of the boundary row/column. Our simulation results were
obtained using this method.

The zero-shift replacement technique for a boundary block works as
follows: any shifts that can be performed without reference to pixels
outside of image boundary are performed as usual. If in any branch in
Figure 3 a knowledge of pixels outside the image boundary is required,
then that branch will be replaced with the zero-shift branch. This
means that boundary blocks will receive less smoothing than other
blocks.

4. Computational Issues

At first glance the system shown in Figure 3 seems fairly involved.
While a direct implementation of this system is simpler than optimization-
based and model-based approaches mentioned in Section 2, it still
involves 64 times JPEG compression and decompression.

A direct implementation of this system has the advantage that vir-
tually no additional software or hardware is required. Existing JPEG
code and/or hardware can be applied with the addition of some shift
operators. When computational complexity becomes an issue, however,
one can improve the speed of the algorithm by a number of very simple
modifications:

— The simplest modification is in the branch with zero shift in Fig-
ure 3. The JPEG encoding and decoding in this branch can be re-
moved. The reason: JPEG is an idempotent operator, in the sense
that reapplication of JPEG with identical parameters to a JPEG-
compressed image will result in the same JPEG-compressed image.
Therefore the branch with zero shift can be replaced with an iden-
tity operator, saving the computation of one JPEG compression
and decompression.
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— The second modification is much more significant, and involves the
removal of the lossless parts of JPEG (Figure 1). Since JPEG com-
pression is directly followed by decompression in our algorithm,
the lossless parts of JPEG play no role, and can be removed. This
includes DPCM on DC values, zig-zag scan, generation of Huffman
tables, entropy coding, and the generation of syntax and headers.
The only parts needed are the DCT and the scalar quantiza-
tion. Scalar quantization is implemented as a truncation operation,
therefore the bulk of the computational complexity of our method
will reside in the DCT and inverse DCT. This is a significant
reduction in computational complexity.

— Finally, we note that not all shifts in Figure 3 are necessary. In
fact, we observed that removing half of the shifts (in a quincunx
pattern) does not significantly change the output of the algorithm.
We therefore recommend it as a computational shortcut.

The operations of our algorithm depends on little else except the
DCT and IDCT, so the complexity can be easily determined. The exact
number of operations needed for this algorithm depends on the imple-
mentation chosen for DCT and IDCT. For example, we show below a
complexity analysis of our algorithm with the 2-D DCT implementation
of Feig and Linzer [34]. This is a 8 x 8 DCT that takes advantage of the
redundancies in the two-dimensional lattice of the DCT to design an
implementation with 60 multiplications and 262 additions per block.
We saw above that the block with zero shift need not be recalculated
during postprocessing. From among the other shifts, only one-half need
be computed. Therefore we need 31 DCT and IDCT operations over
the image. This gives a total of ZX%# ~ 58 multiplications per pixel
and QX:%# ~ 254 additions per pixel for this algorithm. To put
these numbers in perspective, the computational complexity of the
proposed algorithm is roughly similar to the complexity reported for
the “simplified algorithm” in [16], but is substantially smaller than that
of [11].

Before leaving the subject of implementation and computation, we
note that the implementation of the proposed algorithm involves only
a small engineering effort (hence cost), since it needs little beyond the
DCT and IDCT, and the transform already exists in each implemen-
tation of JPEG.
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5. Optimal MMSE Estimation

The proposed algorithm can be viewed as a linear combination of a
number of estimates of the image. To illustrate, we use the following
notation. Assume that the original image is denoted by a vector x, the
JPEG-encoded image by X, and the denoised image by y. Assume that
the succession of JPEG encoding and decoding process is represented
by the operator Q. Using the delay operator notation D, we can write:

y = ZD(*Z}*J‘) Q(D) %) (3)
1]

Fach term in the sum represents one branch of the system in Figure 3.
A simple and direct extension is to replace the sum with a linear
combination:

y = ZO‘M D(=5=3) 9(D) %) (4)
Y]

where the coefficients «;; can be determined, via a training set, to
make y an optimal MMSE estimator of the original image.

We applied this technique to a training set of images, and the result-
ing coefficients are shown in Figure 6. We see that, with the exception
of zero shift, all shifts have almost the same coefficient. The zero-shift
coefficient is significantly larger than others.

While this is a large deviation from the uniform coefficients other-
wise used in this paper, we found that the optimal coefficients result
in little if any additional improvement in the PSNR of the enhanced
image. This leads us to believe that, in the space of coefficients, the
distortion cost function must be rather flat. We therefore recommend
the simpler uniform coefficient set over the optimal one.

6. Experimental Results

The results are very encouraging both in terms of PSNR and visual
quality. In fact, the PSNR improvements are superior to previously
reported results known to us. Table II compares the performance of
the new algorithm with some results in the literature. The test image
is the green component of the 512 x 512 pixel “Lenna.” For comparison
purposes, we use the three quantization tables originally introduced
in [11], and also used in [5, 16]. These quantization tables are pre-
sented in Table I. Table III presents the results of the application of
our algorithm to a number of 512 x 512-pixel test images.

We observed a slightly different JPEG PSNR compared to [5, 16]
(on the order of a few hundredths of a dB) which we attribute to
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Figure 6. Coefficients for optimal combining of JPEG shifts

small differences in JPEG implementation. In order to maintain fairness
despite small implementation differences, we report not the absolute
PSNR, but the improvement in PSNR in each case.

Figure 7 shows part of the JPEG and enhanced image at the lower
PSNR range. Note the improvement in de-blocking, as well as perse-
verance of edges.

7. Conclusion

In this paper we presented a novel approach to the enhancement of
JPEG encoded images. Most previous approaches involve a smooth-
ness criterion, and in one way or another focus on the discontinuities
generated by the block-encoding process. In contrast, our algorithm
uses the JPEG encoding itself to enhance the JPEG-compressed image.
This is performed through application of various shifts of JPEG to the
encoded image. The boundaries of the image can be treated in a number
of ways. The computational complexity of the algorithm is smaller
than the optimization-based approaches, and can be further reduced
by removing the lossless parts of JPEG, as well as downsampling the
shifts at which it is applied. Experimental results demonstrate excellent
performance, and a large-scale reduction of both blockiness and ringing
artifacts.
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Table I. Quantization tables used in experiments.

@

20 24 28 32 36 80 98 144
24 24 28 34 52 70 128 184
28 28 32 48 74 114 156 190
32 34 48 58 112 128 174 196
36 52 74 112 136 162 206 224
80 70 114 128 162 208 242 200
98 128 156 174 206 242 240 206
144 184 190 196 224 200 206 208

Q2

50 60 70 70 90 120 255 255
60 60 70 96 130 255 255 255
70 70 80 120 200 255 255 255
70 96 120 145 255 255 255 255
90 130 200 255 255 255 255 255
120 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255

OF

110 130 150 192 255 255 255 255
130 150 192 255 255 255 255 255
150 192 255 255 255 255 255 255
192 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
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Figure 7. Top: Part of JPEG encoded 512 x 512 Lenna at 26.65 dB. Bottom:
Enhanced image through re-application of JPEG.
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Figure 8. Top: JPEG encoded 512 x 512 Lenna at 26.65 dB. Bottom: Enhanced
image.
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Table II. Improvements in PSNR on JPEG-encoded tmages via different
algorithms, on image “Lenna” (green component).

Improvement in PSNR
JPEG PSNR POCS [16] Wavelet [5] Adaptive [4] Our method

26.65 1.14 1.14 1.06 1.16
29.74 0.85 0.79 0.79 1.03
32.34 0.45 0.10 0.45 0.66

Table III. Improvements in PSNR, through the proposed algorithm,
on a number of test images at various bitrates.

Quantization Lenna  Mandrill Stream  Goldhill Barbara

Q1 0.66 0.19 0.23 0.52 1.04

Q2 1.03 0.23 0.42 0.74 0.89

Qs 1.16 0.40 0.55 0.91 1.04
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