
Chapter 5

The SysML notation

Words are but symbols for the relations
of things to one another and to us;
nowhere do they touch upon absolute truth.

Friedrich Nietzsche (1844–1900)

5.1 Introduction

This chapter describes the nine SysML diagrams. Following this introduction, the
terminology used throughout the chapter is explained and the structure of SysML
diagrams is discussed. This is followed by a discussion of stereotypes and then of
the SysML meta-model, which forms the basis of this chapter. Following this, each
of the nine diagrams is described in turn. For each diagram type there is a brief
introduction, a discussion of the diagram elements through its meta-model and
notation, examples of how to use the diagram and a summary.

5.1.1 Diagram ordering
So far, we have looked at two of the diagrams in some detail when block definition
diagrams and state machine diagrams were used to illustrate structural and
behavioural modelling in Chapter 4; these diagrams are shown again in this chapter
for the sake of completeness and also to introduce the meta-model using diagrams
that are already well known.

The chapter first covers the structural diagrams and then the behavioural
diagrams. Within these groupings there is no significance in the ordering of the
diagrams. They are simply presented in, what is from the author’s point of view, a
logical order. Therefore, the various parts of this chapter may be read in any order.

5.1.2 The worked example
When discussing each of the SysML diagrams in the sections that follow, they will be
discussed using an example System taken from the world of escapology. The System
consists of an escapologist who is placed in a rectangular coffin, which is then placed
into a hole. Concrete is pumped into the hole, under computer control, until the hole
is full. The escapologist has to escape from the coffin and the concrete-filled hole
before his breath runs out. Figure 5.1 shows the set-up for the escape.
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This is a classic escapology stunt that has been performed by many people. It is
also a dangerous one, and escapologists have lost their lives performing it because
the System Requirements and constraints were not properly understood or
evaluated. One such performer was Joe Burrus who died 30 October 1990 when
the weight of the concrete crushed the coffin he was in. This example is a
socio-technical System that includes hardware, software, People and Process. It
lends itself readily to the use of all of the SysML diagrams. What is more, it is not
an example based around a library, an ATM or a petrol pump. The literature is
already too full of such examples.

5.2 The structure of SysML diagrams

Each diagram in the SysML has the same underlying structure, which is intended to
provide a similar appearance for each, as well as making cross-referencing between
diagrams simpler. The structure of each diagram is shown in Figure 5.2.

The diagram in Figure 5.2 shows that each ‘diagram’ is made up of one or
more ‘graphic node’ and one or more ‘graphic path’. Each ‘graphic path’ relates
together one or two ‘graphic node’. Examples of graphic nodes include blocks on
block definition diagrams and states on state machine diagrams. Examples of
graphic paths include: relationships on block definition diagrams and control flows
on activity diagrams.

The text ‘«stereotype»’ on the blocks is an example of ... a stereotype.
Stereotypes are a mechanism by which the SysML can be extended. Indeed, the

Pump

Concrete

Hole

Coffin

Escapologist

start

stop

reverse

Pump

Controller

Figure 5.1 The coffin escape stunt
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SysML itself is defined using stereotypes on the underlying unified modelling
language (UML). Stereotypes are discussed in Section 5.3.

5.2.1 Frames
Any SysML diagram must have a graphic node known as a frame that encapsulates
the diagram in order to make identification of, and navigation between, diagrams
simpler. Frames have a defined format. This format, along with other guidelines for
the use of frames, is described in detail in Chapter 6. Examples of frames will be
seen around all the diagrams in the Examples subsections for each of the SysML
diagrams in the following sections.

5.3 Stereotypes

Stereotypes provide a way to extend the SysML. They represent a powerful way to
define new SysML elements by tailoring the SysML to your needs.

In order to use stereotypes effectively, it is first necessary to be able to spot one
within a model. Visually, this is very simple, as stereotypes are indicated by
enclosing the name of the stereotype within a set of double chevrons. Indeed, the
SysML block itself contains the «block» stereotype.

Figure 5.3 shows two example stereotypes: «testCase» applied to a
block (here representing a Scenario) and «validate» applied to a dependency.

1..*

«stereotype»

diagram

«stereotype»

graphic node

«stereotype»

graphic path

1..*

1

1..2 1

relates together

Figure 5.2 Structure of each SysML diagram

Minimise risk to

escapologist

«testCase»

[Package] Scenarios [Failed Stunt –

Emergency]

«validate»

Figure 5.3 Example stereotypes
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A dependency, represented by a dashed line with an open arrowhead, can be
considered to be the weakest of the SysML relationships since it simply shows that
there is some kind of (usually) unspecified relationship between the connected
diagram elements. Dependencies are not named and cannot have any multiplicities
associated with them. SysML makes use of a number of stereotyped dependencies,
particularly in the requirement diagram and use case diagram, as described in
Sections 5.5.5 and 5.5.9. In Figure 5.3, a new stereotype is used, one not found in
the standard SysML, in order to show that a test case validates a use case. Note that
«testCase» is a SysML stereotype and that the camel case naming is part of
the SysML.

Stereotypes can be defined for any of the standard SysML elements. Unfortu-
nately, the method by which stereotypes are defined varies from SysML tool to
tool. However, a common diagrammatic method of defining a stereotype, found in
many tools, is shown in Figure 5.4.

The diagram in Figure 5.4 shows the definition of the «validate» stereotype.
The diagram shows two blocks, ‘Dependency’ and ‘validate’, which are related
together by a special type of specialization/generalization known as an extension.
An extension is used specifically when defining stereotypes. An extension is
represented graphically by a filled-in triangle – very similar to the specialisation/
generalisation symbol.

The new stereotype to be defined, in this case ‘validate’, is shown in a block,
which is itself stereotyped «stereotype». The SysML element that is being stereo-
typed, in this case a dependency, is shown in a block containing the «metaclass»
stereotype. The two blocks are then connected with an extension relationship. This
shows that the «validate» stereotype can be applied to a dependency and, as defined
in Figure 5.4, only a dependency. In addition to the graphical definition, it is con-
sidered good modelling practice to provide a textual description of the stereotype
that describes its intended use.

«metaclass»

Dependency

«stereotype»

validate

Figure 5.4 Defining a stereotype
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The diagram in Figure 5.4 can be generalised to give a rubber stamp version
that forms the basis of the definition of any stereotype. Such a diagram is given in
Figure 5.5.

To use this diagram simply replace indicated text. For example, if it a modeller
wanted to be able to apply the stereotype «ethernet» to an association on a block
definition diagram, then start with Figure 5.5 and simply replace ‘[insert stereotype
name]’ with ‘ethernet and ‘[insert model element]’ with ‘Association’, giving the
diagram as shown in Figure 5.6.

When defining stereotypes, SysML also allows information to be associated
with the stereotype. These properties are known as tags and they are defined as
properties of the stereotype block. An example is given in Figure 5.7.

 

«metaclass»

[insert model element]

«stereotype»

[insert stereotype name]

Figure 5.5 ‘‘Rubber stamp’’ diagram for stereotype definition

«metaclass»

Association

«stereotype»

ethernet

Figure 5.6 Another example of stereotype definition
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The «ethernet» stereotype in Figure 5.7 has been extended through the
definition of the ‘media type’ tag, intended to be used to show the type of ethernet
being used. When the «ethernet» stereotype is applied to an association then a
value can be given to any tags defined for that stereotype. These tags are then
shown in a comment, as in the example in Figure 5.8.

Note that not all SysML tools show tags in this way. For example, some tools
show tags along with the stereotype as in Figure 5.9.

Each tag is shown with its value on a separate line underneath the stereotype. It
is enclosed in curly braces. If a stereotype has multiple tags, then each will be
displayed on a separate line.

«metaclass»

Association

«stereotype»

ethernet

media type : String

Figure 5.7 Stereotype with tag definition

«block»

Computer

«block»

Router

11

«ethernet»

media type = 100BASE-TX

«ethernet»

Figure 5.8 Example of stereotype usage with tags shown in comment

11«block»

Computer

«block»

Router

«ethernet»

{media type = 100BASE-TX}

Figure 5.9 Example of stereotype usage with tags shown as part of stereotype
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5.4 The SysML meta-model

The SysML specification defines SysML in terms of the underlying UML on which
SysML is based, and is done so using UML via the SysML meta-model. This is a
model, in UML, of the SysML.

This chapter presents a partial meta-model for each of the nine SysML
diagrams. In keeping with the use of UML in the SysML specification, UML class
diagrams have been used to produce the SysML meta-model diagram throughout this
chapter. These diagrams are the same as would be produced if using SysML block
definition diagrams, and therefore can be read as SysML block definition diagrams.
Thus, it would be possible to model the SysML using the SysML if desired.

The SysML meta-model itself is concerned with the modelling elements within
the SysML, how they are constructed and how they relate to one another. The full
UML meta-model on which SysML is based is highly complex and, to someone
without much SysML (or UML) experience, can be quite impenetrable. The
meta-models presented in this book show highly simplified versions of the actual
meta-model in order to aid communication and to group different aspects of the model
according to each diagram – something that is not done in the actual meta-model.

5.5 The SysML diagrams

This section describes each of the nine SysML diagrams, beginning with the five
structural diagrams and concluding with the four behavioural diagrams.

5.5.1 Block definition diagrams
This section introduces what is perhaps the most widely used of the nine SysML
diagrams: the block definition diagram. The block definition diagram was introduced
in Chapter 4 in order to illustrate structural modelling and this section expands upon
that information, covering more of the syntax and showing a wider range of examples,
which are all taken from the escapology example that runs throughout this chapter.

Block definition diagrams realise a structural aspect of the model of a System
and show what conceptual things exist in a System and what relationships exist
between them. The things in a System are represented by blocks and their rela-
tionships are represented, unsurprisingly, by relationships.

5.5.1.1 Diagram elements
Block definition diagrams are made up of two basic elements: blocks and rela-
tionships. Both blocks and relationships may have various types and have more
detailed syntax that may be used to add more information about them. However, at
the highest level of abstraction, there are just the two very simple elements that
must exist in the diagram. A block definition diagram may also contain different
kinds of ports and interfaces, together with item flows, but at their simplest will just
contain blocks and relationships.

Blocks describe the types of things that exist in a System, whereas relation-
ships describe what the relationships are between various blocks.

Figure 5.10 shows a high-level meta-model of block definition diagrams.
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From Figure 5.10 we can see that a ‘Block Definition Diagram’ is made up of
one or more ‘Block’, zero or more ‘Relationship’, zero or more ‘Port’, zero or more
‘Item Flow’ and zero or more ‘Interface Specification’.

Each ‘Relationship’ relates together one or two ‘Block’. Note that the multi-
plicity on the ‘Block’ side of the association is one or two, as it is possible for a
‘Relationship’ to relate together one ‘Block’ – that is to say that a ‘Block’ may be
related to itself. A special kind of block is the ‘Interface Block’, used specifically to
define Interfaces. An ‘Instance Specification’ defines an instance (real-world exam-
ples) of a ‘Block’. Many such instance specifications may be defined for a ‘Block’.

A ‘Block’ has interaction points defined by zero or more ‘Port’. Each ‘Port’ is
typed by a ‘Block’ and can be nested with zero or more other ‘Port’. A ‘Port’ can be
specialised further through two main sub-types:

● ‘Full Port’, used to represent an interaction point that is a separate element of
the model. That is, a full port can have its own internal parts and behaviour.

● ‘Proxy Port’, used to represent an interaction point that identifies features of its
owning block that are available to other, external blocks. They are not a
separate element of the model and therefore do not specify their own internal
parts and behaviour. Any such features and behaviour that they make available
are actually those of its owning block. A ‘Proxy Port’ only be typed by an
‘Interface Block’.

Neither full ports nor proxy ports have to be used. If it is unclear, when modelling,
whether a port needs to be a full port or a proxy port, then leave it as a plain port.
The decision whether to change to a full or proxy port can be made later as the
model evolves.

Used in conjunction with the ‘Port’ is the ‘Item Flow’, which flows between
two ‘Port’ and which conveys a ‘Flow Property’, a type of ‘Property’ of a ‘Block’
that is described below.

Each ‘Block’ is made up of zero or more ‘Property’, zero or more ‘Operation’
and zero or more ‘Constraint’ as shown in Figure 5.11.

The diagram in Figure 5.11 shows the partial meta-model for block definition
diagrams showing the elements of a block. There are four types of ‘Property’:

● ‘Part Property’, which is owned by the ‘Block’. That is, a property that is intrinsic
to the block but which will have its own identity. A part property can be wholly
owned by its parent block or may be shared between multiple parent blocks.

● ‘Reference Property’, which is referenced by the ‘Block’, but not owned by it.
● ‘Value Property’, which represents a ‘Property’ that cannot be identified

except by the value itself, for example numbers or colours.
● ‘Flow Property’, which defines elements that that can flow to or from (or both)

a block. They are mainly used to define the elements that can flow in and out of
ports and all item flows that flow between ports are typed by flow properties.

Both an ‘Operation’ and a ‘Property’ (with the exception of a ‘Flow Property’) can
be marked as being a ‘Feature’. A feature is a property or operation that a block
supports for other blocks to use (a ‘Provided Feature’) or which it requires other
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blocks to support for its own use (a ‘Required Feature’), or both (a ‘Provide &
Required Feature’).

The differences between the first three types of property can be confusing. An
example will help and is illustrated in Figure 5.12.

The block definition diagram in Figure 5.12(a) models the structure of the
Coffin Escape stunt and the reader is directed to Figure 5.14 for a description of the
notation. The diagram shows that the ‘Coffin Stunt’ is composed of a ‘Reservoir’, a
‘Coffin’, a ‘Pump’, a ‘Hole’, a Pump Controller’, a ‘Fluid’ and an ‘Escapologist’.
The ‘Fluid’ has a ‘Density’, which will be represented as ‘kg/m3’ (representing
kilograms per cubic metre). The ‘Fluid’ is pumped into the ‘Hole’ via the ‘Pump’
and is supplied from the ‘Reservoir’. Note the use of role names at the ends of the
composition and association relationships.

The ‘Density’ is simply a number – it does not have any individual identity –
and is therefore treated as a value property.

The ‘Reservoir’, ‘Coffin’, ‘Pump’, etc., are all intrinsic parts of the ‘Coffin
Escape’. That is, they can be thought of as having their own identity but form ele-
ments of the ‘Coffin Escape’. Therefore, they are modelled as part properties, which
is shown using composition. If a part can be an element of more than one owning
block at the same time, then aggregation would be used rather than composition.

The ‘Fluid’ is not part of the ‘Hole’ or the ‘Reservoir’. It is pumped into the
former and supplied by the latter. It has its own identity. For this reason, it is related

1..*

«graphic node»

Block

Property

{Abstract}
Operation Constraint

Part Property

Value Property

Reference Property

Flow Property

Feature

Provided Feature

Required Feature

* * *

1

may be marked as a

1

1..*

may be marked as a {NOT Flow Property}

Provided & Required

Feature

Figure 5.11 Partial meta-model for the block definition diagram showing block
elements
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to ‘Hole’ and to ‘Reservoir’ through associations. Any block related to another
through an association can be considered to be a reference property of the block it
is related to.

The nature of such relationships and the types of property they represent can
be seen clearly in the block definition diagram in Figure 5.12(b). This shows
exactly the same information but in a different format that uses named property
compartments rather than via graphical paths and nodes. This shows how the

bdd [Package] System [Coffin Escape and Fluid – Showing Part and Reference Properties]

«block»

Coffin Escape

parts

Coffin : Coffin

Controller : Pump Controller

Escapologist : Escapologist

Fluid : Fluid

Hole : Hole

Pump : Pump

Reservoir : Reservoir

«block»

Fluid

values

Density : kg/m 3

references

FluidDestination : Hole

FluidSource : Reservoir

1

1

bdd [Package] System [System Elements Showing Fluid Relationships](a)

(b)

«block»

Coffin Escape

«block»

Coffin

«block»

Reservoir

«block»

Pump

«block»

Fluid

«block»

Hole

«block»

Pump Controller

«block»

Escapologist

values
Density : kg/m3

1 Coffin 1 Controller 1 Escapologist

1 Reservoir
1

is pumped into

Fluid Destination
1 Fluid1 Pump

1 Hole

1

1is supplied from

FluidSource

Figure 5.12 Types of property – alternative representations
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various graphical representations can be rendered into a textual format. There are
two things to note. First, the role names on the relationships are used to name the
properties when displayed in property compartments. Second, in the case of
reference properties, the association name (‘is supplied from’ or ‘is pumped into’
in the example above) does not form part of the information in the property com-
partment, which is a loss of information. The property compartment notation is
more compact than the full composition and association notation, although perhaps
not as clear; useful perhaps when producing summary diagrams.

Continuing our breakdown of the meta-model for the block definition diagram,
there are three main types of ‘Relationship’ as shown in Figure 5.13:

● ‘Association’, which defines a simple relationship between one or more
blocks. There are also two specialisations of ‘Association’ known as ‘Aggre-
gation’ and ‘Composition’, which show shared parts and owned parts
respectively, as discussed earlier in this section.

● ‘Generalisation’, which shows a ‘has types’ relationship that is used to show
parent and child blocks.

«graphic path»

Relationship

{Abstract}

«graphic path»

Generalisation

«graphic path»

Dependency

«graphic path»

Association

«graphic path»

Aggregation
«graphic path»

Composition

Figure 5.13 Partial meta-model for the block definition diagram showing types of
relationship

132 SysML for systems engineering

©
 H

ol
t, 

Jo
n;

 P
er

ry
, S

im
on

, J
an

 0
1,

 1
75

3,
 S

ys
M

L
 f

or
 S

ys
te

m
s 

E
ng

in
ee

ri
ng

. 2
nd

 E
di

tio
n 

: A
 M

od
el

-B
as

ed
 A

pp
ro

ac
h

T
he

 I
ns

tit
ut

io
n 

of
 E

ng
in

ee
ri

ng
 a

nd
 T

ec
hn

ol
og

y,
 S

te
ve

na
ge

, I
SB

N
: 9

78
18

49
19

65
29



● ‘Dependency’, which is used to show that one block (often referred to as the
client) somehow depends on another block (often referred to as the supplier)
such that a change to the supplier may impact the client. ‘Dependency’ can be
considered to be the weakest of the relationships since it simply shows that there
is some kind of (usually) unspecified relationship between the connected blocks.

A summary of the notation used in the block definition diagram is shown in
Figure 5.14.

Instance specification

1..*1 

«block»

Block1

«block»

Block2

references

RoleName1 : Block3 [1..*]

«block»

Block3

parts

RoleName2 : Block5 [*]

«block»

Block4

operations
prov Operation1 ()

flowProperties

in   FlowProperty1 : Block6

out FlowProperty2: Real

«block»

Block5

values
reqd BlockProperty1 : Real

BlockProperty2 : Real

«block»

Block6

«block»

Block7

RoleName1

0..1

1

*

1

RoleName2

1

1

Block

Block with reference

properties

Block with provided 

operation and flow

properties

Specialisation/ 

generalisation

Aggregation
Association showing 

role name

Block with part 

property

Block with value 

properties, one 

marked as a 

required feature

Composition

Dependency

Association block

«InterfaceBlock»

Interface

operations

Operation1 () : Real

Operation2 () : Block7

Interface block

«block»

Block6

Port : Block11

Port1 : Block4

Port2 : Block3

Port1 : Block4

Port2 : Block3

Port with two nested ports

«block»

Block9

Interface

Interface

Provided interface

Required interface

«block»

Block12

Port2 : ~Block4Port2 : ~Block4

«block»

Block11

Port1 : Block4

FlowProperty2 : Real

FlowProperty1 : Block6FlowProperty1 : Block6

Port with flow properties– 

Port2 is conjugated
Port with flow properties–

Item flow

Instance2 : Block5

BlockProperty2 : Real = 123.4

is associated with

Figure 5.14 Summary of block definition diagram notation
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The diagram in Figure 5.14 shows the graphical symbols used to represent
elements in a block definition diagram. The basic symbol is the block, which is
represented by a rectangle. Rectangles are also used to show other types of element
in the SysML, so it is important to be able to differentiate between a block rectangle
and any other sort of rectangle. A block rectangle will simply contain a single
name, with no colons. It will also contain the stereotype «block».

When properties, operations and constraints are present, these are shown in
compartments drawn underneath the block name, with the properties, operations
and constraints contained within. Each of these compartments will be labelled to
show what they contain, and the property compartments will be further sub-divided
to show part, reference, value and flow properties.

Any properties or operations that are features are prefixed as shown in
Table 5.1.

Flow properties have their direction indicated with prefixes as shown in
Table 5.2.

The interfaces are defined using special blocks that are stereotyped «interface»
and which usually only have operations, but no properties. The operations represent
the services provided by a block (or port) that has that interface as a provided inter-
face, or the services required by a block (or port) that has it as a required interface.
Provided and required interfaces can be shown graphically using a ball or cup
notation respectively, labelled with the name of the interface and attached to the block
or port. See for example ‘Block9’ in Figure 5.14.

Ports are shown as small squares (or rectangles) straddling the edge of the
block. They can be labelled to give the port a name and to identify the block that
types the port. For example, in Figure 5.14 ‘Block11’ has a port with the name

Table 5.2 Prefixes used with flow properties

Direction of flow property Prefix

In in
Out out
In & out inout

Table 5.1 Prefixes used with features

Type of feature Prefix

Required reqd
Provided prov
Provided & Required provreqd
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‘Port1’, which is typed by ‘Block4’. Full and proxy ports are indicated by placing
the «full» or «proxy» stereotype next to the port.

Ports that have flow properties contain a small arrow showing the direction of
the flow (whether into the port, out of the port, or both). See ‘Port1’ on ‘Block11’
in Figure 5.14 for an example of a port with flow properties that go both into and
out of the port.

If a port has some flow properties that flow in and some that flow out, then
when connected to another port it is necessary to show that these flows need to be
shown in the opposite direction. For example, look again at ‘Port1’ on ‘Block11’.
This port is typed by ‘Block4’, which has two flow properties: ‘FlowProperty1’
flows in and ‘FlowProperty2’ flows out. This means that ‘Port1’ has the same flow
properties, since it is typed by ‘Block4’. However, now consider ‘Port2’ on
‘Block12’. This is connected to ‘Port1’ on ‘Block11’ and, therefore, will have
‘FlowProperty1’ flowing out and ‘FlowProperty2’ flowing in; the opposite way
round to how they have been specified in ‘Block4’.

How do we resolve this? The answer is to make ‘Port2’ on ‘Bock12’ a con-
jugated port. This is indicated by the tilde ‘‘~’’ prefixing the name of the block
typing the port: ‘Port2: ~Block4’. The tilde reverses all the ins and outs prefixing
the flow properties in the block that it prefixes. So, as far as ‘Port2’ is concerned, it
has two flow properties: ‘FlowProperty1’, which flows out and ‘FlowProperty2’,
which flows in. As the directions on the two ends now match up correctly, the ports
can be connected and the flows shown using items flows.

Item flows are represented by a labelled triangle or a solid arrow attached to an
association. The item flow can have a name by which it can be identified and is also
labelled with the property that is transferred. This latter may appear at first to be
redundant, as item flows connect ports that themselves are typed. However, SysML
allows the modeller to differentiate between what may be transferred and what is
transferred. The type of a port shows what may be transferred, with the type of an
item flow showing what is transferred. However, the type of the item flow must be
related to the type of the port by a specialisation–generalisation relationship. An
example of this is given in the following section.

Instance specifications have a compartment that shows the name of the
instance specification (so that multiple instance specifications of the same type can
be differentiated) and the block that it is an instance of. This is underlined. For
example, in Figure 5.14 there is an instance specification labelled ‘Instance2 :
Block5’. This instance specification has a name, ‘Instance2’ and is an instance of
‘Block5’. An additional compartment can be shown, in which properties of the
typing block may be given values for this instance. In this example, the property
‘BlockProperty2’ is given the value ‘123.4’.

5.5.1.2 Examples
This section presents some examples of block definition diagrams and related dia-
gramming elements. Further examples will be found in the case study in Chapter 13.

Figure 5.15 shows the main structural elements for the Coffin Escape Stunt. It
shows that there is a ‘Coffin Escape’ that is composed of a ‘Reservoir’, a ‘Coffin’,
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a ‘Hole’, a ‘Pump’, an ‘Escapologist’ and a ‘Fluid’. Three types of ‘Fluid’ are
defined: ‘Water’, ‘Custard’ and ‘Concrete’. The use of the {incomplete} constraint
indicates that there may be additional types of ‘Fluid’ that are not shown in this
diagram.

Note that there are no properties or operations defined for any of the blocks on
the diagram, nor any relationships. This has been done deliberately in order to keep
the diagram simple. This information is shown on additional block definition
diagrams, starting with the one shown in Figure 5.16, which expands on the
definition of ‘Fluid’.

In Figure 5.16 the definition of ‘Fluid’ and its sub-types is expanded in order to
show that ‘Fluid’ has a value property named ‘Density’. Since ‘Water’, ‘Custard’
and ‘Concrete’ are all sub-types of ‘Fluid’ they inherit this property. SysML allows
value properties to be given default values, as shown here.

Properties and operations of some of the other blocks, along with the
relationships between them, are shown in Figure 5.17.

Figure 5.17 shows a lot more information about the various System Elements
that make up the Coffin Escape System. We can see that an ‘Escapologist’ escapes

1

bdd [Package] System [System Elements]

«block»

Coffin Escape

«block»

Concrete

«block»

Custard

«block»

Water

«block»

Fluid

«block»

Escapologist

«block»

Coffin

«block»

Hole

«block»

Pump

«block»

Pump Controller

«block»

Reservoir

1 Coffin

1 Hole

1 Pump

1 Controller 1

Fluid
1

1 Reservoir

{incomplete}

Figure 5.15 Example block definition diagram showing main structural elements
of the Coffin Escape Stunt
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from a ‘Coffin’ that is placed in the bottom of a ‘Hole’. A ‘Pump Controller’
controls a ‘Pump’. ‘Fluid’ is pumped into the ‘Hole’ via the ‘Pump’. This latter
aspect of the model is captured through the use of an association block: the ‘Pump’
block is connected to the association between ‘Fluid’ and ‘Hole’ with a dashed line,
making ‘Pump’ an association block. It is a block in its own right, but adds infor-
mation to the association. A maximum of one block can act as an association block
on any given association.

Many of the blocks have value properties that help to define them further and
‘Pump’ has a number of operations that show the behaviour that it can carry out.
Both ‘Hole’ and ‘Pump’ have two ports defined. These ports have been shown
using a port compartment and shown textually rather than graphically. This has
been done simply to reduce visual clutter on the diagram.

It is worth considering these ports in a little more detail. ‘Pump’ has a port,
‘pOut’, that is typed by the block ‘FluidFlow’ (see Figure 5.18).

This ‘FluidFlow’ block defines a single flow property: ‘out fluid : Fluid’. This
says that elements typed by ‘FluidFlow’ will have a single flow property, of type
‘Fluid’, flowing out of them. This agrees with the definition of the port ‘pOut’, since
this port has the out flow direction prefixed. ‘Pump’ has another port defined, ‘pIn’.

bdd [Package] System [Fluid Definitions Showing Package]

Fluid Definitions

«block»

Concrete

values

Density : kg/m3 = 2400

«block»

Custard

values

Density : kg/m3 = 1070

«block»

Fluid

values

Density : kg/m3

«block»

Water

values

Density : kg/m3 = 1000

{incomplete}

Figure 5.16 Example block definition diagram showing block properties with
default values
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1

1

1

1

1 1

1 1

bdd [Package] System [Coffin Escape – Concepts Showing Fluid Types]

«block»

Hole

values

Length : m

Width : m

Height : m

ports

in   inflow : ~FluidFlow

out outflow : FluidFlow

«block»

Coffin

values

Length : m

Width : m

Height : m

Crush pressure : Pa

«block»

Pump

ports

out pOut : FluidFlow

in   pIn : ~FluidFlow

values

Rate : m3/s

CurrentDirection : PumpDirection

operations

prime ()

flush ()

pump ()

pumpReverse ()

stopPump ()

«block»

Escapologist

values

Bmax : s

Decision : Decision Type

«block»

Pump Controller

«block»

Fluid

values

Density : kg/m3

references

FluidDestination : Hole

FluidSource : Reservoir

«block»

Concrete

«block»

Custard

«block»

Water

1

1

placed in bottom of

controls

1 escapes from

1
is pumped into

FluidDestination

{incomplete}

Figure 5.17 Example block definition diagram showing properties, operations
and relationships

bdd [Package] Ports [Port Types]

«block»

FluidFlow

flowProperties

out fluid : Fluid

Figure 5.18 Example block definition diagram defining type of ports through use
of flow properties
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The intention is that this port takes in whatever flow properties are defined by
‘FluidFlow’. However, if it was defined as ‘in pIn : FluidFlow’ then we would have
a consistency issue. The port is marked with an in flow direction but the flow
property in its type has an out flow direction. The solution is to make ‘pIn’ a
conjugated port. This has been done through the use of a tilde in the definition: ‘in
pIn : ~FluidFlow’. The directions of the flow properties defined in ‘FluidFluid’ are
now reversed as far as ‘pIn’ is concerned. A similar discussion holds for the ports of
‘Hole’. The notation and use of conjugated ports perhaps makes more sense when
they are shown connected together. An example will be shown in Section 5.5.2.

A final point to make about Figure 5.17 concerns the reference compartment in
the ‘Fluid’ block. This shows two reference properties. Remember that these cor-
respond to associations that the block is involved in. One of these is shown on the
diagram, as can be deduced via the role name ‘FluidDestination’ on the association
between ‘Fluid’ and ‘Hole’. The other reference property corresponds to an asso-
ciation that is not shown. We can deduce from the reference property that ‘Fluid’
has an association with a block called ‘Reservoir’ and that the role that ‘Reservoir’
plays in the association is that of ‘FluidSource’. For completeness, this association
is shown explicitly in Figure 5.19.

Figure 5.19 illustrates an important point when modelling: don’t be afraid to
limit what you show on a diagram. SysML tools make the consistent creation of
diagrams quick and easy, provided of course that they are a robust and sharp tool (see
Chapter 16 for a discussion of tools). If information is best omitted from one diagram,
then do so. You can always create another diagram that does show the information.

As two final examples of a block definition diagram in this section, consider
Figures 5.20 and 5.21.

The blocks in Figure 5.20 do not represent items of hardware or software or
material, etc., but rather they represent Source Elements for Need Descriptions,
produced as part of a requirements engineering activity. The diagram frame uses
the frame tag ‘SEV’ to show that this block definition diagram is being used as a
Source Element View. For a discussion of model-based requirements engineering
and the ACRE Framework from which the concept of a Source Element View is
taken, see Chapter 9.

bdd [Package] System [Relationship between Fluid and Reservoir]

1 1«block»

Reservoir

«block»

Fluid

is supplied from

FluidSource

Figure 5.19 Example block definition diagram showing a reference property
explicitly as an association
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The blocks in Figure 21 also do not represent items of hardware or software or
material, etc., but rather they represent Processes, produced as part of a Process
modelling activity. The diagram frame uses the frame tag ‘PCV’ to show that this
block definition diagram is being used as a Process Content View. For a discussion

SEV [Package] Requirement Sources

«block»

Email re. Different Fluids 15.03.2013

«block»

Coffin Escape Schematic

«block»

Meeting Minutes 01.04.2013

«block»

Initial Ideas Meeting 10.01.2011

Figure 5.20 Example block definition diagram used to model Source Elements of
Requirements

PCV [Package] Processes [Stunt Processes]

«block»

Set up

operations

Check ()

Get in coffin ()

Close lid ()

Obtain final OK ()

Cancel stunt ()

«block»

Start

operations

Start pump ()

Whip-up audience ()

Perform final check ()

Cancel stunt ()

«block»

Escape

operations

Free hands ()

Count down time ()

Emerge ()

Take a bow ()

«block»

Monitor

operations

Watch coffin ()

Start timer ()

Encourage applause ()

«block»

Emergency

operations

Assess situation ()

Get escapologist out ()

Assess condition ()

Make escapologist comfortable ()

«block»

Stunt Process

Figure 5.21 Example block definition diagram used to model Processes
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of a model-based approach to Process modelling and the ‘‘seven views’’ Frame-
work from which the concept of a Process Content View is taken, see Chapter 7.

5.5.1.3 Summary
Block definition diagrams can be used to model just about anything and form the
backbone of any SysML model. Block definition diagrams are perhaps the richest
in terms of the amount of syntax available and, as with all the meta-models in this
chapter, the one given for block definition diagrams is incomplete. For example, it
could be extended to include extra detail that can be added to relationships, such as
role names and qualifiers.

The main aim of the block definition diagram, as with all SysML diagrams, is
clarity and simplicity. Block definition diagrams should be able to be read easily
and they should make sense. A diagram that is difficult to read may simply indicate
that there is too much on it and that it needs to be broken down into a number of
other diagrams. It may also be an indication that the modelling is not correct and
that it needs to be revisited. Another possibility is that the diagram is revealing
fundamental complexity inherent in the System, from which lessons may be
learned.

Another fundamental point that must be stressed here is that block definition
diagrams are not used in isolation. They will form the main structural aspect of a
System but must be used in conjunction with the other eight SysML diagrams
to provide structural and behavioural views of a System. These diagrams are
described in the rest of this chapter.

5.5.2 Internal block diagrams
Internal block diagrams are used to model the internal structure of a block (hence
the name). By using an internal block diagram, in which compositions and aggre-
gations are implicitly represented by the containment of parts within the owning
block or within other parts, an emphasis may be put on the logical relationships
between elements of the composition, rather than the structural breakdown itself.
This adds a great deal of value, as it forces the modeller to think about the logical
relationship between elements, rather than simply which blocks are part of which
other blocks.

5.5.2.1 Diagram elements
The basic element within an internal block diagram is the part that describes blocks
in the context of an owning block. An internal block diagram identifies parts and
their internal structures, showing how they are connected together through ports
and showing the item flows that flow between parts.

The diagram in Figure 5.22 shows the partial meta-model for the internal block
diagram. It can be seen that a ‘Internal block diagram’ is made up of one or more
‘Part’, zero or more ‘Port’ and zero or more ‘Binding Connector’ and zero or more
‘Item Flow’.

A ‘Port’ defines an interaction point for a ‘Part’, just as they do for blocks (see
Section 5.5.1.1) and again come in two types: ‘Full Port’ and ‘Proxy Port’. A ‘Part’
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can be directly connected to zero or more ‘Part’ via a ‘Binding Connector’. This
connection may also be from a ‘Part’ to the ‘Port’ on another ‘Part’. A ‘Port’ may
also be connected to zero or more ‘Port’. An ‘Item Flow’ can flow across a
‘Binding Connector’.

The intention in the SysML specification seems to be that these connections
should be shown only on an internal block diagram, with a block definition
diagram showing the ports on a block, but not the connections between them. For
this reason the block definition diagram meta-model in Section 5.5.1.1 omits
such connection possibilities, but the authors see no reason why the same types of
connection should not be shown on a block definition diagram.

The diagram in Figure 5.23 shows the notation used on an internal block dia-
gram. Much of the notation is the same as can be found on a block definition
diagram and will not be discussed further. However, some notational and usage
points do need discussion, namely:

● The relationship between internal block diagrams and block definition diagrams,
and hence that of parts and blocks

● The notation for parts
● Shared parts

Before looking at the notation for parts, let us first consider the relationship
between internal block diagrams and block definition diagrams, and hence that of
parts and blocks. The first thing to say is that an internal block diagram is owned by
a block. It is used, when a block is composed of other blocks, to represent that
composition in an alternative fashion and to allow the modeller to concentrate on

*
1

* 1

* * *

*

*

* 1 *

* * * *

«graphic node»

Port

«graphic node»

Full Port

«graphic node»

Proxy Port

«graphic path»

Item Flow

«diagram»

Internal Block Diagram

«graphic node»

Part

«graphic path»

Binding Connector

is nested with

has interaction points defined by

connected to

*

connected toconnected to flows across

Connection is via Binding Connector

Figure 5.22 Partial meta-model for the internal block diagram
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the connections between the blocks rather than on the composition. From a block
that is decomposed into sub-blocks it is possible to automatically create an internal
block diagram for that block and, indeed, many SysML tools will do this for you.
The internal block diagram in Figure 5.23 has been created for ‘Block10’, based on
the block definition diagram in Figure 5.24.

The internal block diagram in Figure 5.23 is owned by ‘Block10’ and can be
thought of as being inside, or internal to (hence the name) ‘Block10’. ‘Block10’ is
shown as containing block with the blocks that it is composed of shown as parts.
(Note that the ports in Figure 5.23 could have also been shown in Figure 5.24 but
have been omitted for clarity). So, a block that is composed of sub-blocks, as
detailed on a block definition diagram, can have its internal structure modelled on
an internal block diagram owned by the block. The blocks that it is composed of are
shown as parts on the internal block diagram.

«block»

Block10

1

: Block11

Port1 : Block4

Port3

1..3: Block12

Port2 : ~Block4

«full»

Port1

: Block13

«proxy»

Port3 : Interface

1

Interface

Interface

FlowProperty1 : Block6

FlowProperty2 : Real

Port with flow properties

Port with flow properties

Port2 is conjugated

Binding connector 

with two item flows

Port with provided interface

Part

Part with nested 

part and multiplicity 

shown

Nested part

Full port with 

required interface

Proxy port typed

by an interface

block

«block»

:Block6

Port : Block11

Port1 : Block4

Port2 : Block3

Port with two nested ports

Figure 5.23 Summary of internal block diagram notation
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This brings us on to the second point, namely the notation used for parts. Parts
are represented using a rectangle that contains the name of the part. The name has
the form:

Part name : Type Name

The part name serves as an identifier for the part and the type name shows the block
that the part is a type of. The part name can be omitted if distinction between
different parts of the same type is not necessary. The type name can also be
omitted, but this is less common. In Figure 5.23 each part has its part name omitted
and its type name shown. Where the block involved in a composition has a role
name associated with it, then the part name is usually directly related to the role
name. See Figure 5.25.

Figure 5.25 is another internal block diagram for ‘Block10’ from Figure 24, but
this time with all ports, interfaces and connectors omitted. Also, on this diagram
part names are shown and their relationship to the role names in Figure 5.24 can also
be seen.

Two other points can also be seen in both Figures 5.23 and 4.24. First, if a part
has a multiplicity greater than one, this is shown in the top right corner of the part.
This can be seen for the part typed by ‘Block12’ in both diagrams, where the
multiplicity ‘1..3’ is shown in the top right corner of the part. Second, parts can also

1

1

1..31

1

1

bdd [Package] Internal Block Diagrams [Structure of Block10]

«block»

Block10

«block»

Block6

«block»

Block11

«block»

Block12

«block»

Block13

1 roleB 1..3 roleC1 roleA

1

1

roleD

Figure 5.24 Example block definition diagram used to show its relationship to
internal block diagram
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be nested and this can be seen for the part ‘roleD : Block13’, which is shown inside
the part ‘roleC : Block12’. This corresponds to the composition relationship
between ‘Block12’ and ‘Block13’. This composition relationship also means that
‘Block12’ could have its own internal block diagram, which would have a single
part, ‘roleD : Block13’. For completeness, refer Figure 5.26.

ibd [block] Block10 [Showing Parts Only]

«block»

Block10

roleA : Block6

roleB : Block11

1..3roleC : Block12

roleD : Block13

1..3roleC : Block12

roleD : Block13

Figure 5.25 Example internal block diagram used to show its relationship to
block definition diagram

ibd [block] Block12 [Parts only]

«block»

Block12

roleD : Block13roleD : Block13

Figure 5.26 Example internal block diagram for Block12
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Finally, let us consider shared parts. As was discussed briefly in Section 5.5.1.1,
the decomposition of a block can be shown on a block definition diagram using a
composition or an aggregation. A block may be wholly owned by its parent block
(shown using composition) or may be shared between multiple parent blocks (shown
using aggregation). The use of composition or aggregation has an effect on the way
that parts are shown. An example will help.

The non-SysML diagram in Figure 5.27 shows the restraints worn by the
escapologist as part of the Coffin Escape Stunt: a set of handcuffs and a set of leg
irons joined by a connecting linkage. The structure can be modelled using a block
definition diagram as shown in Figure 5.28.

Connecting 

linkage

Ankle cuff

Wrist cuff

Hand linkage

Leg linkage

Handcuffs

Leg Irons

Figure 5.27 Example system schematic showing owned and shared parts

2 1 21

1

1 1

2 1 21

1

1

1

1

bdd [Package] Restraints [Structure of Escapologist’s Restraints]

«block»

Handcuffs

«block»

Leg Irons

«block»

Wrist Cuff

«block»

Hand Linkage

«block»

Ankle Cuff

«block»

Leg Linkage

«block»

Connecting Linkage

1

2

1

connects together

21

connects together

is connected to
is connected to

{AND}

Figure 5.28 Example block definition diagram showing modelling of owned
and shared parts

146 SysML for systems engineering

©
 H

ol
t, 

Jo
n;

 P
er

ry
, S

im
on

, J
an

 0
1,

 1
75

3,
 S

ys
M

L
 f

or
 S

ys
te

m
s 

E
ng

in
ee

ri
ng

. 2
nd

 E
di

tio
n 

: A
 M

od
el

-B
as

ed
 A

pp
ro

ac
h

T
he

 I
ns

tit
ut

io
n 

of
 E

ng
in

ee
ri

ng
 a

nd
 T

ec
hn

ol
og

y,
 S

te
ve

na
ge

, I
SB

N
: 9

78
18

49
19

65
29



The restraints consist of a set of ‘Handcuffs’ composed of two ‘Wrist Cuff’
connected together by a ‘Hand Linkage’ and a set of ‘Leg Irons’ composed of two
‘Ankle Cuff’ connected together by a ‘Leg Linkage’. The ‘Hand Linkage’ and the
‘Leg Linkage’ are connected together by a ‘Connecting Linkage’. Since the ‘Wrist
Cuff’ and ‘Hand Linkage’ are only part of the ‘Handcuffs’, composition is used.
Similarly for the ‘Ankle Cuff’ and ‘Leg Linkage’. However, the ‘Connecting
Linkage’ is shared between both the ‘Handcuffs’ and the ‘Leg Irons’. For this
reason, aggregation is used. This has a direct effect on the notation used in the
internal block diagrams for the ‘Handcuffs’ and the ‘Leg Irons’. The internal block
diagram for the ‘Handcuffs’ is shown in Figure 5.29. That of the ‘Leg Irons’ would
be similar.

The difference in notation for shared parts can be seen in the internal block
diagram in Figure 5.29. A shared part is shown with a dashed outline. Note also the
multiplicity in the top right of the ‘Wrist Cuff’ part. Also, note that it is not possible
to tell from this diagram what else the ‘Connecting Linkage’ is shared with. The
block definition diagram in Figure 5.28 is needed for this.

5.5.2.2 Examples
This section presents some examples of internal block diagrams and related dia-
gramming elements. Further examples will be found in the case study in
Chapter 13.

Having defined the structure of the ‘Coffin Escape’ stunt in section 5.5.1 on
block definition diagrams (see Figures 5.15 and 5.17), an internal block diagram
can be used to explore the interfaces between the System Elements of the ‘Coffin
Escape’. This has been done in Figure 5.30.

ibd[block] Handcuffs

«block»

Handcuffs

: Hand Linkage : Connecting Linkage

2

: Wrist Cuff

Figure 5.29 Example internal block diagrams showing owned and shared parts
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Figure 5.30 shows an internal block diagram for the ‘Coffin Escape’ block. The
parts shown on this diagram can be populated automatically from the structural
information, shown using composition, in Figure 5.15. Note, however, that the
‘Escapologist’, ‘Coffin’ and ‘Fluid’ blocks have not been shown in Figure 5.30. This is
because, as indicated in the diagram frame, this internal block diagram has been
produced to show interfaces between the main system elements. This again reinforces
the point that in SysML you should be producing diagrams for a specific purpose. You
do not have to try to show everything on a single diagram, nor should you try to.

Whereas Figure 5.17 implicitly indicated the various ports and their connections,
through the use of port compartments on the blocks, these connections have been made
explicit in Figure 5.30. This is a very common use of the internal block diagram.

There are two points worth discussing further on this diagram. The first con-
cerns the nature of the two item flows on the diagram and the second that of the
interface between the ‘Pump Controller’ and the ‘Pump’.

In Figure 5.17 there are a number of ports defined on the ‘Pump’ and ‘Hole’
blocks. Each of these is typed by the ‘FluidFlow’ block that has a single flow
property typed by the ‘Fluid’ block. ‘Reservoir’ has a similar port but it is not
shown in Figure 5.17. In Figure 5.30 these ports have been connected together with
binding connectors carrying item flows. The ‘outflow’ port of ‘Reservoir’ sends an
item flow to the ‘pIn’ port of ‘Pump’, which in turn sends and item flow from its
‘pOut’ port to the ‘inFlow’ port of ‘Hole’. The direction of each of the item flows
honours the direction of each port and of the flow property defined by ‘FluidFlow’.

ibd [block] Coffin Escape [Interfaces]

«block»

Coffin Escape

reservoir : Reservoir

outflow : FluidFlow

pump : Pump

ctrIn

pIn : ~FluidFlow

pOut : FluidFlow

controller : Pump Controller

ctrlOut

hole : Hole

inflow : ~FluidFlow

iPump

ConcreteConcrete

Figure 5.30 Example internal block diagram showing main Interfaces of the
Coffin Escape Stunt
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However, whereas ‘FluidFlow’ defines a flow property of type ‘Fluid’, the item
flow shows ‘Concrete’ flowing between the ports. Do we have an inconsistency
here? The answer is no, because ‘Concrete’ is a type of ‘Fluid’, as can be seen in
Figure 5.15. This is an important point, and one that makes item flows and flow
properties useful. It is possible, through flow properties, to define the type of things
that can flow between ports and keep this at a rather general level of abstraction
(e.g. ‘Fluid’). Then, through item flows, it is possible to show what actually does
flow in a particular usage of the various blocks. Although the ‘Pump’ modelled in
Figures 5.15 and 5.17 can pump a number of types of ‘Fluid’, when it is being used
in the ‘Coffin Escape’, as shown in Figure 5.30, it will be used to pump ‘Concrete’.
The type of the item flow has to be the same as, or a sub-type of, the type of its
defining flow property. The flow property is of type ‘Fluid’ and the item flow is of
type ‘Concrete’, which is a sub-type of ‘Fluid’, so this is allowed.

The second point to discuss is the interface between the ‘Pump Controller’ and
the ‘Pump’. This connection is explicitly shown in Figure 5.30, where the ‘Pump’
has a provided interface of type ‘iPump’ and where the ‘Pump Controller’ has a
required interface of the same type. These are shown connected together and the
type of the interface, ‘iPump’, is also shown. This interface has not yet been
defined. Its definition is made on a block definition diagram using an interface
block, as shown in Figure 5.31.

Figure 5.31 defines a single interface, ‘iPump’, which has three operations
‘start()’, ‘stop()’ and ‘reverse()’. In the SysML model from which this diagram is
taken, each of these three operations would have a full description of their expected
behaviour, both in text, as part of their definition in the ‘iPump’ interface block,
and possibly also in SysML using an activity diagram. Although Figure 5.31 only
defines a single interface block, there is no reason why other interface blocks could
not be defined on the same diagram; the SysML does not require them to be defined
on separate diagrams.

«interface»

iPump

start ()

stop ()

reverse ()

bdd [Package] Interfaces [Interface Definitions]

Figure 5.31 Example block definition diagram defining the iPump interface

The SysML notation 149

©
 H

ol
t, 

Jo
n;

 P
er

ry
, S

im
on

, J
an

 0
1,

 1
75

3,
 S

ys
M

L
 f

or
 S

ys
te

m
s 

E
ng

in
ee

ri
ng

. 2
nd

 E
di

tio
n 

: A
 M

od
el

-B
as

ed
 A

pp
ro

ac
h

T
he

 I
ns

tit
ut

io
n 

of
 E

ng
in

ee
ri

ng
 a

nd
 T

ec
hn

ol
og

y,
 S

te
ve

na
ge

, I
SB

N
: 9

78
18

49
19

65
29



When connecting a required interface to a provided interface it is important
that the types of the interfaces match (i.e. that they are defined by the same inter-
face block). Actually, there is a little more flexibility allowed: the type of the
provided interface must be the same as, or a sub-type of, the type of the required
interface. This works because when a sub-type is defined, the sub-type can add
additional operations but cannot remove any. Consider Figure 5.32.

A new interface, ‘iPumpExt’, is defined in Figure 5.32. This defines a new
operation, ‘emergencyStop()’. Since ‘iPumpExt’ is a sub-type of ‘iPump’ it also
inherits all three operations that are defined for ‘iPump’.

Now imagine that ‘Pump’ in Figure 5.30 has a provided interface that is of type
‘iPumpExt’ rather than ‘iPump’. The required interface on ‘Pump Controller’ can
still be connected to this provided interface because ‘iPumpExt’ provides all the
operations that ‘iPump’ did (and that are required by the ‘Pump Controller’), plus
one more. It happens that ‘Pump Controller’ will never require the use of this
additional operation, which is okay.

However, if the required interface on ‘Pump Controller’ was of type ‘iPumpExt’
and the provided interface on ‘Pump’ was of type ‘iPump’, then the connection
could not be made. This is because ‘Pump Controller’ requires the use of the
‘emergencyStop()’ operation defined on ‘iPumpExt’. However, this is not present in
the ‘iPump’ interface provided by ‘Pump’.

Internal block diagrams can also be used with association blocks, since an
association block is, in effect, simply a block connected to an association. This is

«interface»

iPump

start ()

stop ()

reverse ()

«interface»

iPumpExt

emergencyStop ()

bdd [Package] Interfaces [Interface Definitions – Extended]

Figure 5.32 Example block definition diagram showing extended iPump
interfaces
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useful when the association block is being used to model a connector between two
physical System Elements, as shown in Figure 5.33.

In Figure 5.33, the connectivity between the ‘Reservoir’ and the ‘Pump’ is
modelled using an association block, ‘Piping’, which is composed of a length of
‘Pipe’ and two ‘Fitting’, one for each end. The way that the ‘Piping’ is assembled is
modelled using an internal block diagram, shown in Figure 5.34.

In Figure 5.34 the parts from which ‘Piping’ is composed are shown connected
using binding connectors. The diagram also shows two shared parts: ‘FromInLink :
Reservoir’ and ‘ToInLink : Pump’. These shared parts actually represent the ends
of the association between ‘Reservoir’ and ‘Pump’ for which ‘Piping’ acts as an
association block.

1 1

1

1

1

1

1

1

bdd [Package] Structural Elements [Pump & Reservoir Connectivity]

«block»

Pump

«block»

Reservoir

«block»

Piping

«block»

Fitting

«block»

Pipe

1 1supplies fluid to

1

1

pipe1

1

destinationFitting

1

1

supplyFitting

Figure 5.33 Example block definition diagram showing connectivity using an
association block

ibd [block] Piping [Showing Internal Connectivity]

«block»

Piping

destinationFitting : Fitting
«participant»

ToInLink : Pump

«participant»

FromInLink : 

Reservoir

pipe : Pipe
supplyFitting :

Fitting

Figure 5.34 Example internal block diagram showing structure of Piping
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As a final example, consider Figure 5.35 that shows two internal block
diagrams that concentrate on the ‘Power Supply Unit’ used in the Coffin Escape
Stunt to power the ‘Pump’.

In the internal block diagram (Figure 5.35(a)) the ‘Power Supply Unit’ is
shown as having a 30A outlet, modelled as a port with the name ‘Outlet : 30A
Socket’. Nothing of the structure of the socket is shown here. This is fine, as long
as this is the level of abstraction that is needed in the model. The port can be
connected to another port representing a 30 A plug, for example, and a single item
flow defined that connects them representing the transfer of AC current at 30 A.

However, it might be the case that the socket (and any associated plug) needs
to be modelled at a lower level of abstraction. This is done in the internal block
diagram in Figure 5.35(b), where the three slots making up the socket are shown
explicitly using three nested ports. The 30A plug could be modelled in the same

Power Supply Unit

Outlet : 30A Socket

ibd [block] Power Supply Unit [Socket as a Single Port](a)

(b)

Power Supply Unit

Outlet : 30A Socket

E : 9.5 mm Slot

L : 7.9 mm Slot

N : 7.9 mm Slot

ibd [block] Power Supply Unit [Socket Showing Slots]

Figure 5.35 Example internal block diagram showing nested ports
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way, showing each pin using a nested port. Each pin and slot could then be
connected individually, with the high-level item flow decomposed into three
separate item flows, one connecting each pin and slot pair. This is left as an exercise
for the reader.

5.5.2.3 Summary
The internal block diagram is very strongly related to the block definition diagram,
using parts to show the structure of a complex block. This allows the emphasis of
the diagram to be placed more on the logical relationships between elements of the
block, rather than identifying that they are actually elements of a particular block
(using relationships such as aggregation and composition). The way that the
various parts are connected, through the use of ports, interfaces and binding
connectors, and the items that flow between parts, through the use of item flows,
can also be shown. The diagram also allows a distinction to be made between parts
that are wholly owned by a parent block, and those that are shared parts, which are
shared among multiple blocks.

5.5.3 Package diagrams
The package diagram, as the name implies, identifies and relates together packages.
Packages can be used on other diagrams as well as on the package diagram; in both
cases the concept of the package is the same – each package shows a collection of
diagram elements and implies some sort of ownership. Packages can be related to
each other using a number of different dependency relationships.

5.5.3.1 Diagram elements
The syntax for the package diagram is very simple and can be seen in Figure 5.36.

The diagram in Figure 5.36 shows the partial meta-model for the ‘Package
Diagram’. It can be seen that there are two main elements in the diagram – the
‘Package’ and the ‘Dependency’. There is one type of ‘Dependency’ defined – the
‘Package Import’. The ‘Package Import’ has two types, the ‘Public Package
Import’ and the ‘Private Package Import’.

The graphical notation for the package diagram is shown in Figure 5.37.
The diagram in Figure 5.37 shows that there are really only two symbols on the

diagram: the graphical node representing a package and the graphical path repre-
senting a dependency.

A package is represented by a rectangle with a smaller tag rectangle on the top
left-hand edge. This is similar to the folder icon that can be seen in Windows
systems and, indeed, has a very similar conceptual meaning. The name of the
package can either be shown in the tag (as seen here) or, in the case of long names,
will often be shown inside the main rectangle.

The dependency may appear as an unadorned, regular dependency, or may
appear with one of two stereotypes – «import» or «access» – representing a public
package import or private package import respectively.

A package import (of either type) means that the package being pointed to
(target) is imported into the other package (source) as part of the source package,
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but with the target package remaining its own package. Any name clashes are
resolved with the source package taking precedence over the target package.

Public package import and private package import differ in the visibility of the
information that is imported. What does this mean? Consider the two examples in
Figure 5.38.

1..* *

2 1

«diagram»

Package Diagram

«graphic node»

Package

«graphic path»

Dependency

«graphic path»

Package Import

«graphic path»

Public Package Import

«graphic path»

Private Package Import

1..* *

2 1

shows relationship between

Figure 5.36 Partial meta-model for the package diagram

Package1

Package2 Package3

«import»

«access»
Package

Private package import

Dependency

Public package import

Figure 5.37 Summary of package diagram notation
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In example (a) package ‘B’ imports the contents of package ‘C’ using a public
package import. Package ‘A’ then imports the contents of package ‘B’ using a
public package import. Since ‘A’ has imported ‘B’ and ‘B’ has publicly imported
‘C’, package ‘A’ can also see the contents of package ‘C’.

In example (b) package ‘B’ imports the contents of package ‘C’ using a private
package import. Package ‘A’ then imports the contents of package ‘B’ using a
public package import. Since ‘A’ has imported ‘B’ and ‘B’ has privately imported
‘C’, package ‘A’ cannot see the contents of package ‘C’, although it can see the
contents of package ‘B’.

Packages are used to structure a model in exactly the same way the folders
(directories) organise files on a computer. Figure 5.39 helps to show how this is
achieved.

The diagram in Figure 5.39 shows that a ‘Package’ is made up of a number of
‘Packageable Element’. In the SysML, almost anything can be enclosed within a
package, so only a few examples are shown here (indicated by the {incomplete}
constraint). Note that a ‘Package’ is itself a ‘Packageable Element’ and thus a
package can contain other packages.

5.5.3.2 Examples
Package diagrams are typically used to show model structure and relationships
within a model at a very high level. Packages are often also shown on other SysML
diagrams to provide information on where in a model the diagram elements can be
found. Some examples are given in Figure 5.40.

The diagram in Figure 5.40 shows three packages from the escapology stunt.
Part of the model for this stunt represents the Life Cycle Model for the Project. This
is contained in the ‘Life Cycle Model’ package. This package makes use of the
Students Managing Projects Intelligently (STUMPI) Processes, contained in the

pkg [Package] Package Diagrams [Public vs. Private Package Import]

A B C

A B C

«import» «import»

«import» «access»

(a)

(b)

Figure 5.38 Importing packages using «import» and «access»
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*

Package

Block

Part

Constraint Block

Packageable Element

{incomplete}

Figure 5.39 Relationships between package diagram elements and the rest of the
SysML

pkg [Package] Model Structure [Relationships between Life Cycle Model and process packages]

STUMPI

ISO15288:2008

«import»

«access»

Life Cycle Model

Figure 5.40 Example package diagram showing relationships between model packages
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‘STUMPI’ package. Information in this package is visible inside the ‘Life Cycle
Model’ package, as indicated by the public package import dependency. The
STUMPI Processes themselves make use of the ISO15288:2008 process model,
contained in the ‘ISO15288:2008’ package and imported using a private package
import dependency. This means that the contents of ‘ISO15288:2008’ are visible
within ‘STUMPI’ but not visible within ‘Life Cycle Model’.

Packages are often shown on other diagrams. An example of this is shown in
Figure 5.41.

Figure 5.41 shows a block definition diagram that is displaying a number of
different types of ‘Fluid’. From the diagram frame it can be seen that the block
definition diagram is located in a package named ‘System’. The diagram also
shows a package named ‘Fluid Definitions’ surrounding the ‘Fluid’ block and its
three sub-types. This has been done to make it explicit to the reader of this diagram
that the ‘Fluid’, ‘Water’, ‘Custard’ and ‘Concrete’ blocks are not contained directly
in the ‘System’ package but rather can be found in the ‘Fluid Definitions’ package
within the ‘System’ package.

In practice, package diagrams are not that widely used. The use of packages on
other diagrams is more common where it is useful for the modeller to be able to
make explicit the location within a model of the diagram elements appearing on a
diagram.

bdd [Package] System [Fluid Definitions Showing Package]

Fluid Definitions

«block»

Concrete

values

Density : kg/m3 = 2400

«block»

Custard

values

Density : kg/m3 = 1070

«block»

Fluid

values

Density : kg/m3

«block»

Water

values

Density : kg/m3 = 1000

{incomplete}

Figure 5.41 Example block definition diagram showing a package
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5.5.3.3 Summary
Package diagrams are useful for showing aspects of a model’s structure where it
is necessary to make clear how one package uses information from another
(essentially how one package depends on another).

Packages are used within a SysML tool to structure a model. They can also be
shown on any SysML diagram to indicate where particular diagram elements can be
found in the model. However, such use must be tempered with the need to maintain
readability of a diagram. Packages should be used in this way when necessary, but
not as a matter of course lest the diagrams become too cluttered to be readable.

5.5.4 Parametric diagrams
The SysML constraint block and associated parametric diagram allow for the
definition and use of networks of constraints that represent Rules that constrain the
properties of a System or that define rules that the System must conform to.

5.5.4.1 Diagram elements
Parametric diagrams are made up of three main elements, constraint blocks, parts
and connectors as shown in Figure 5.42.

Figure 5.42 shows the partial meta-model for parametric diagrams. From the
model it can be seen that a ‘Parametric Diagram’ is made up of one or more ‘Constraint
Block’, zero or more ‘Part’ and zero or more ‘Connector’. Zero or more ‘Constraint
Block’ can be connected to zero or more ‘Constraint Block’ and one or more ‘Con-
straint Block’ can be connected to zero or more ‘Part’. Although used on a ‘Parametric
Diagram’, a ‘Constraint Block’ is defined on a ‘Block Definition Diagram’.

There are two aspects to parametric constraints in SysML: their definition and
their usage. The notations for both aspects are show in Figures 5.43 and 5.45
respectively.

«diagram»

Parametric Diagram

«graphic node»

Constraint Block

«graphic node»

Part

«graphic path»

Connector

is linked tois linked to

Constraint blocks are 

DEFINED on a Block 

Definition Diagram

1..* * *

*1..**

*

Figure 5.42 Partial meta-model for the parametric diagram
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A constraint block is defined using a block with the «constraint» stereotype
and is given a name by which the constraint can be identified. The constraint block
has two compartments labelled ‘constraints’ and ‘parameters’. The constraints
compartment contains an equation, expression or rule that relates together the
parameters given in the parameters compartment. Figure 5.43 defines a constraint
block called ‘ConstraintBlock1’ with two parameters ‘ConstraintParameter1’
and ‘ConstraintParameter2’, both of which are defined to be of type ‘Real’.
These parameters are related together by the expression ‘ConstraintParameter1 =
f(ConstraintParameter2)’, with ‘f’ representing a function taking ‘Constraint-
Parameter2’ as a parameter.

Such constraint blocks are defined on a block definition diagram. A concrete
example of a constraint block can be seen in Figure 5.44.

The example in Figure 5.44 defines a constraint block called ‘Newton’s Sec-
ond Law’ that relates the three parameters ‘f’, ‘m’ and ‘a’ given in the parameters
compartment by the equation ‘f = m * a’, as shown in the constraints compartment.

«constraint»

ConstraintBlock1

constraints

{ConstraintParameter1 = f(ConstraintParameter2)}

parameters

ConstraintParameter1 : Real

ConstraintParameter2 : Real

Constraint definition

Figure 5.43 Summary of parametric diagram notation – definition of constraint
block

bdd [Package] Constraint Definitions [Newton’s Second Law]

«constraint»

Newton’s Second Law

constraints
{f = m * a}

parameters

a : m/s^2
f : N
m : kg

Figure 5.44 Example block definition diagram showing constraint block
definition
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Although constraint blocks are defined on block definition diagrams, it is conven-
tion that such definitions are not mixed with regular blocks on the same diagram.

Once constraint blocks have been defined they can be used any number of
times on one or more parametric diagrams, the notation for which is shown in
Figure 5.45.

Each constraint block can be used multiple times on a parametric diagram.
The use of a constraint block is shown as a round-cornered rectangle known as a
constraint property. Each constraint property is to be named thus:

Name : Constraint Name

This allows each use of a constraint block to be distinguished from other uses of the
same constraint block. In Figure 5.45 a single constraint block, ‘ConstraintBlock1’,
is being used and it has been given the name ‘ConstraintProperty1’.

Small rectangles attached to the inside edge of the constraint property repre-
sent each constraint parameter. These are named and their names correspond to the
parameters defined for the constraint block in its definition.

These constraint parameters provide connection points that can be connected,
via connectors, to other constraint parameters on the same or other constraint
properties or to block properties. When connecting a constraint parameter to a
block property, this block property is represented on the diagram by a rectangle
known as a part. In Figure 5.45 a single part is shown, with the name ‘Parametric
Constraints Diagram.Block1.Property1’. This shows that this is the ‘Property1’
property of the block ‘Block1’ in the package ‘Parametric Constraints Diagram’.
Packages are used to structure SysML models as discussed in the previous section.

In Figure 5.45, the part ‘Parametric Constraints Diagram.Block1.Property1’
is connected to ‘ConstraintParameter1’. There is nothing connected to ‘Con-
straintParameter2’ and therefore the diagram is incomplete.

Property1 : Real

ConstraintProperty1 : ConstraintBlock1

ConstraintParameter1 : Real

Constraint parameter

Constraint property

Part

Connector
ConstraintParameter2 : Real

Figure 5.45 Summary of parametric diagram notation – use of constraint block
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5.5.4.2 Examples
This section presents some examples of parametric diagrams and related dia-
gramming elements.

Figure 5.46 shows a number of definitions of constraint blocks that are defined
for the Coffin Escape Stunt used as the source of examples for this chapter. As
noted previously such constraint blocks are actually defined on a block definition
diagram, and also as noted previously, good modelling practice has been followed
with constraint blocks being kept separate from normal SysML blocks.

It can also be observed that the eight constraint blocks on the top two rows of
the diagram are all general constraints that could be used on a number of projects,
whereas the three constraint blocks on the bottom row are all specific to the par-
ticular System being considered (in this case the Concrete Coffin Escape). For this

bdd [Package] Constraints [Constraint definitions]

«constraint»

Volume

constraints

{v = w * l * h}

parameters

h : m

l : m

v : m3

w : m

«constraint»

Surface Area

constraints

{sa = w * l}

parameters

l : m

sa : m2

w : m

«constraint»

constraints

{IF pressure < strength THEN

result = yes

ELSE

result = no

ENDIF}

parameters

pressure : Pa

result : Decision Type

strength : Pa

Decision – equipment

«constraint»

constraints

{IF breath result = yes AND equipment result = yes THEN

result = yes

ELSE

result = no

ENDIF}

parameters

breath result : Decision Type

equipment result : Decision Type

result : Decision Type

Decision – stunt

«constraint»

constraints

{r = a + b}

parameters

a : float

b : float

r : float

Plus

«constraint»

constraints

{p = f / a}

parameters

a : m2

f : N

p : Pa

Pressure

«constraint»

constraints

{m = d * v}

parameters

d : kg/m3

m : kg

v : m3

Mass

«constraint»

constraints

{f = m * a}

parameters

a : m/s2

f : N

m : kg

Force

«constraint»

constraints

{t = v / r}

parameters

r : m3/s

t : s

v : m3

Fill Time

«constraint»

constraints

{r = a - b}

parameters

a : float

b : float

r : float

Minus

«constraint»

constraints

{IF breath time >= fill time THEN

result = yes

ELSE

result = no

ENDIF}

parameters

breath time : s

fill time : s

result : Decision Type

Decision – breath

Figure 5.46 Example block definition diagram showing definition of parametric
constraints
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reason, a better way to organise them would be to split them out onto two separate
diagrams and perhaps even two separate packages within the model in order to
maximise reuse and decouple generic constraints from solution specific ones.

Another observation that can be made is that there are three different types of
constraint defined:

● Constraints representing physical laws or other formulae, such as the definitions
of ‘Force’ or ‘Pressure’.

● Constraints representing mathematical and logical operators that make it easier
for other constraints to be connected together in a constraint usage network,
such as the definitions of ‘Plus’ and ‘Minus’.

● Constraints representing decisions (heuristics) rather than calculation-type
constraints, evaluating input parameters against some criteria and returning a
result, which could be, for example, a ‘yes/no’, ‘true/false’ or ‘go/no-go’. The
three ‘Decision’ constraint blocks in Figure 5.46 are examples.

If so desired, the SysML stereotyping mechanism could be used to explicitly mark
the constraint blocks as one of these three types, as shown in Figure 5.47. This can
be done in order to convey extra information about the constraints, perhaps useful if
constraint blocks and parametric diagrams are to be implemented in a tool such as
Simulink.

From the point of view of modelling best practice, it would probably be better
to split Figures 5.46 and 5.47 into two diagrams, with the top two rows of constraint
blocks on one diagram and the bottom row on another. From a SysML point of view
there is nothing wrong with the diagrams. However, the bottom row differs from
the others in that all the constraint blocks defined in that row happen to be specific
to the Coffin Escape Stunt System, whereas those on the top two rows are general-
purpose definitions that could be reused for other Systems.

An example parametric diagram showing the constraint blocks defined in
Figure 5.46 being used is shown in Figure 5.48. This diagram shows the constraint
blocks being used to determine a go/no-go decision for the escapologist based on
various system properties. That is, the parametric diagram is being used to help
validate a use case, namely ‘Minimise risk to escapologist’. This can be seen in the
callout note showing that the diagram traces to that use case.

A better relationship from this diagram to the use case would be a verify
relationship, with the parametric diagram marked as a test case, since that is
essentially the role that it is playing here: the parametric diagram determines a
go/no-go decision based on the other system parameters that test whether the use
case can be met or not. However, SysML does not allow parametric diagrams to be
marked as test cases, and so a simple trace relationship has been used. For a
discussion of the various types of traceability relationships and the concept of a test
case, see the following section on the requirement diagram.

A convention adopted by the authors, but not part of SysML, is to draw such
parametric diagrams with an implied left to right direction. In Figure 5.48 the
parametric diagram is drawn as though the ‘result’ constraint parameter,
connected to the ‘Decision’ property of the ‘Escapologist’ block, is the output of
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the diagram. Similarly, the constraint parameters are arranged around each con-
straint property with ‘inputs’ on the left and ‘outputs’ on the right. This is done as
an aid in thinking about and constructing the diagram and, indeed, reflects the
purpose of the diagram.

However, one could think about going ‘backwards’ through Figure 5.48: we
could use ‘Escapologist.Bmax’ and ‘Pump.Rate’ to determine the maximum
volume of concrete that can be pumped before the escapologist runs out of breath,
and hence the maximum volume of the hole. If the hole is just a little longer and
wider than coffin (i.e. we can set values on ‘Hole.Length’ and ‘Hole.Width’) then
knowing the maximum volume of the hole would allow the height of the hole to be
determined. Perhaps this usage would be used by the safety officer to calculate the
hole size. If so then it could be redrawn and linked to the appropriate use case as
shown in Figure 5.49.

bdd [Package] Constraints [Constraint definitions with stereotypes]

«constraint»
«law»

constraints
{v = w * l * h}

parameters
h : m
l : m
v : m3
w : m

Volume

«constraint»
«law»

constraints
{sa = w * l}

parameters
l : m
sa : m2
w : m

Surface Area

«constraint»
«heuristic»

constraints
{IF pressure < strength THEN
result = yes
ELSE
result = no
ENDIF}

parameters
pressure : Pa
result : Decision Type
strength : Pa

Decision – equipment

«constraint»
«heuristic»

constraints
{IF breath result = yes AND equipment result = yes THEN
result = yes
ELSE
result = no
ENDIF}

parameters
breath result : Decision Type
equipment result : Decision Type
result : Decision Type

Decision – stunt

«constraint»
«mathematical operator»

constraints
{r = a + b}

parameters
a : float
b : float
r : float

Plus

«constraint»
«law»

constraints
{p = f / a}

parameters
a : m2
f : N
p : Pa

Pressure

«constraint»
«law»

constraints
{m = d * v}

parameters
d : kg/m3
m : kg
v : m3

Mass

«constraint»
«law»

constraints
{f = m * a}

parameters
a : m/s2
f : N
m : kg

Force

«constraint»
«law»

constraints
{t = v / r}

parameters
r : m3/s
t : s
v : m3

Fill Time

«constraint»
«mathematical operator»

constraints
{r = a - b}

parameters
a : float
b : float
r : float

Minus

«constraint»
«heuristic»

constraints
{IF breath time >= fill time THEN
result = yes
ELSE
result = no
ENDIF}

parameters
breath time : s
fill time : s
result : Decision Type

Decision – breath

Figure 5.47 Example block definition diagram showing parametric constraints
with stereotypes showing type
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Parametric constraints can also be nested, that is they can be grouped into
higher level constraint blocks that make use of existing constraint blocks. Consider
the three parametric constraints in the top left of Figure 5.48 that are used to
calculate the amount of concrete needed to fill the space in the hole above the
coffin. These three constraints can be grouped into a ‘HoleFillVolume’ constraint
block. First we define the new constraint block as shown in Figure 5.50.

‘HoleFillVolume’ is defined as being made up of two ‘Volume’ constraint
blocks and one ‘Minus’ constraint block and has a number of parameters defined.
Note the use of role names to distinguish the role that each constraint block plays.
Also note the use of aggregation rather than composition in the definition of
‘HoleFillVolume’. This was chosen since the ‘Volume’ and ‘Minus’ constraint
blocks are not restricted to being only parts of the ‘HoleFillVolume’ constraint

1

1

11

bdd [Package] Constraints [HoleFillVolume – Nested Constraint Definition]

«constraint»

constraints
{r = a - b}

parameters

r : float
a : float
b : float

Minus

«constraint»

HoleFillVolume

parameters

Fill volume : m3
Hole width : m
Hole length : m
Hole height : m
Container width : m
Container length : m
Container height : m

«constraint»

constraints
{v = w * l * h}

parameters

v : m3
w : m
l : m
h : m

Volume

Hole vol Fill volumeContainer vol

Figure 5.50 Example block definition diagram showing how higher level
constraints can be constructed for the Coffin Escape Stunt
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block, but can also form parts of other constraint blocks, that is they can be shared
parts and hence the use of aggregation.

It can also be seen that the actual constraint expression is not defined on
this diagram. For this we need a special parametric diagram that shows how
the component constraint blocks are used. This is shown in Figure 5.51; this
parametric diagram is needed to fully define this nested constraint and must be
considered as part of the definition.

Note how, in Figure 5.51, the parameters of the high-level constraint block are
attached to the diagram frame with binding connectors used to connect these to the
constraint parameters of the internal constraint properties.

Having defined this high-level ‘HoleFillVolume’ constraint Figure 5.48 can
now be redrawn to show how it can be used. This is shown in Figure 5.52.

The same approach could be taken for other groups of constraints blocks,
resulting in a high-level parametric diagram that uses perhaps three or four
high-level constraint blocks. This is left as an exercise for the reader.

It would be expected that, over time, an organisation would develop a library
of constraint definitions, with lower level constraints being grouped into higher
level ones for particular application usages.

5.5.4.3 Summary
SysML parametric diagrams show how constraints are related to each other and to
properties of System Elements. They use constraint blocks, defined on block
definition diagrams, which contain a constraint expression that relates together a
number of constraint parameters. Each constraint block can be used multiple times

par [constraint] HoleFillVolume [Constraint Definition]

Fill volume

h

l
v

w

a

b r

Container height

Container length

Container width

Hole height

Hole length

Hole width

Container vol : 

Volumeh

l
v

w

h

l
v

w

Hole vol : Volume

Fill volume : Minus

Figure 5.51 Example parametric diagram showing how higher level
constraints can be constructed for the Coffin Escape Stunt
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on multiple parametric diagrams, which relate the defined constraints to each other
and to System Elements.

Parametric diagrams allow properties and behaviour of a System to be con-
strained and can provide an invaluable aid in understanding the often complex
relationships between System properties. Modelling such inter-relationships allows
analysis and design decisions to be made and also can be used to test whether
Requirements have been or indeed can be satisfied. The use of parametric diagrams
as Scenarios is discussed further in Chapter 9.

5.5.5 Requirement diagrams
The SysML has a dedicated requirement diagram that is used to represent
Requirements and their relationships. This diagram is, in essence, a tailored block
definition diagram consisting of a stereotyped block with predefined properties and
a number of stereotyped dependencies and fixed-format notes. The various rela-
tionships provided by the requirement diagram also form an essential and central
part of the Traceability Views that are a fundamental aspect of a model-based
approach to systems engineering.

5.5.5.1 Diagram elements
Requirement diagrams are made up of three basic elements: requirements,
relationships and test cases. Requirements are used, unsurprisingly, to represent
Requirements, which can be related to each other and to other elements via
the relationships. Test cases can be linked to requirements to show how the require-
ments are verified.

Figure 5.53 shows the partial meta-model for requirement diagrams. From the
model it can be seen that a ‘Requirement diagram’ is made up of one or more
‘Requirement’, zero or more ‘Relationship’ and zero or more ‘Test Case’. There are
six types of ‘Relationship’: the ‘Derive’, ‘Nesting’, ‘Satisfy’, ‘Trace’, ‘Refine’ and
‘Verify’ relationships.

The notation used in SysML requirement diagrams is shown in Figure 5.54.
This is followed by a description of the how the notation is used.

Central to the requirement diagram is the requirement. This is shown in
SysML as a rectangle with the stereotype «requirement». The rectangle also con-
tains a human-readable name for the requirement. In addition, all requirements
have two properties predefined by SysML: the id# and txt properties. The id#
property is there to hold a unique identifier for the requirement. The txt property
holds descriptive text for the requirement. The display of id# and txt is optional and
Figure 5.54 shows these compartments for ‘Requirement1’ and omits them for
‘Requirement2’, ‘Requirement3’ and ‘Requirement4’.

A Requirement may be decomposed into one or more sub-Requirements, for
example when the Requirement is not atomic in nature and it is desired to
decompose it into a number of related atomic sub-Requirements. In SysML this
decomposition is known as nesting and is indicated with a nesting relationship such
as that shown between ‘Requirement1’ and ‘Requirement2’.

When carrying out Requirements analysis it is often necessary to derive addi-
tional Requirements. A derived Requirement is one that is not explicitly stated by a
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Stakeholder Role but one that has been derived by systems engineers from an
explicit, stated Requirement as part of the requirements analysis process. Such
derived Requirements can be linked back to their source Requirements in SysML
by using a derive relationship, an example of which is shown in Figure 5.54
showing that ‘Requirement3’ is derived from ‘Requirement1’.

The SysML requirement diagram also supports four other types of relation-
ships that are used in the following ways:

● Satisfy relationship. This is used to show that a model element satisfies a
requirement. It is used to relate elements of a design or implementation model
to the Requirements that those elements are intended to satisfy. Although
Figure 5.54 shows a satisfy relationship between a block and a requirement, it
can be used between any SysML model element and a requirement.

● Trace relationship. This is used to show that a model element can be traced
to a requirement or vice versa. This provides a general-purpose relationship
that allows model elements and requirements to be related to each other.

1..*

*

*

*

1 1

1..*

1..*

1

«graphic node»

Requirement

«graphic node»

Test Case

«graphic path»

Relationship

{Abstract}

«graphic path»

Derive

«graphic path»

Nesting

«graphic path»

Satisfy

«graphic path»

Trace

«graphic path»

Refine

«graphic path»

Verify

*

*

*

1

may be

decomposed into

may be derived from

verifies

«diagram»

Requirement Diagram

Figure 5.53 Partial meta-model for the requirement diagram
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An example of this is shown by the trace relationship between ‘Requirement2’
and ‘Source Element’ in Figure 5.54.

● Refine relationship. This is used to show how model elements and requirements
can be used to further refine other model elements or requirements. This could
be, for example, one requirement refining another as shown in Figure 5.54
where ‘Requirement4’ refines ‘Requirement3’.

● Verify relationship. This is used to show that a particular test case verifies a
given requirement and so can only be used to relate a test case and a
requirement. However, a test case is not a specific type of SysML element.
Rather it is a stereotype, «testCase», which can be applied to any SysML
operation or behavioural diagram to show that the stereotyped element is a test
case intended to verify a requirement. This stereotyped element – the test
case – can then be related to the requirement it is verifying via the verify
relationship. The test case is shown on a requirement diagram as a SysML
note containing the name of the SysML element or diagram that is acting as a
test case along with the stereotype «testCase». This is shown in Figure 5.54 by
the verify relationship between the test case called ‘Sequence Diagram’ and
‘Requirement2’.

 

«block»

Source Element
«block»

Block

«requirement»

Requirement1

id#
ID007

txt
The System shall do ...

«requirement»

Requirement2

Trace relationship

«testCase»

Sequence Diagram

«requirement»

Requirement3

«requirement»

Requirement4

«trace»

«deriveReqt»

«satisfy»

«verify»

«refine»

Requirement showing id 

and text properties

Nesting

Satisfy relationship

Verify relationship

Derive relationship

Refine relationship

Figure 5.54 Summary of requirement diagram notation
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Unfortunately, the definition of the «testCase» stereotype in the SysML specifica-
tion [1] prevents the stereotype being applied to SysML parametric diagrams. This
is a missed opportunity since parametric diagrams, discussed earlier in this section,
are an ideal mechanism by which Formal Scenarios (test cases) can be modelled,
which is possible using sequence diagrams. Readers who are adopting the techni-
ques and approaches described in this book are urged to use the SysML’s stereo-
typing mechanisms to define their own test case stereotype that can be applied to
parametric diagrams. Similarly, a verify stereotype could be defined that can take a
use case as a target given the issues with the verify relationship discussed earlier in
this section.

These various types of relationship allow the modeller to explicitly relate
different parts of a model to the requirements as a way of ensuring the consistency
of the model. However, where possible one of the specific types of relationship,
such as satisfy, should be used in preference to the more generic trace relationship,
which has weakly defined semantics since it says nothing about the nature of the
relationship other than that the two elements can be traced in some general and
unspecified manner.

It should also be noted that, although shown in Figure 5.54 using stereotyped
dependencies, these relationships can also be shown in SysML using special
versions of the note. These callout notes can be useful when relating elements in
widely different parts of a model since it avoids the need to produce additional
diagrams specifically to show the relationships. However, they can lead to incon-
sistency, particularly when modelling is not being carried out using a tool (or using
a tool that does not enforce consistency). Using the stereotyped dependencies gives
an immediate and direct indication of the relationship since the two elements are
explicitly connected by the dependency. Using callout notes hides the immediacy
of the relationship inside the text of the note and also requires that two notes are
added to the model: one to the source of the relationship and one to the target. If
one of these notes is omitted the model will be inconsistent. An example of the use
of callout notes is given in Section 5.5.5.2.

5.5.5.2 Examples
This section presents some examples of requirement diagrams and related
diagramming elements. Further examples will be found in the case study in
Chapter 13.

Figure 5.55 shows a number of SysML requirements for the Coffin Escape
Stunt, each of which has its id# and txt property shown. Some of these requirements
are broken down further into sub-requirements via nesting. At least two of these
requirements, ES004 and ES005, have descriptive text in their txt property that
could be considered to be untestable. In the case of ES005, the sub-requirements
further describe what is meant by ‘ . . . the risk to the escapologist is minimised’.
However, in the case of ES004 further analysis is required. This might result in a
number of derived requirements being created as shown in Figure 5.56.

The three requirements ES004-D001, ES004-D002 and ES004-D003 shown
in Figure 5.56 are each derived from ES004 and show how the vague and
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«requirement»

Perform Stunt

id#
ES001

txt
The System shall enable the Escapologist to perform the 'concrete coffin' Coffin Escape stunt.

«requirement»

Allow Different Fluids

id#
ES002

txt
The System shall allow the Coffin Escape 

stunt to be performed using different Fluid, 

not just Concrete. Examples include Custard

and Water,etc.

«requirement»

Computer-controlled Pump

id#
ES003

txt
The System shall ensure that the Pump used 

to pump the chosen Fluid into the Hole is to be

under computer control.

«requirement»

Minimise Risk

id#
ES005

txt
The System shall ensure that the risk to the Escapologist is minimised.

«requirement»

Sufficient Air

id#
ES006

txt
The System shall ensure that the stunt can be

performed before the Escapologist runs out of

air.

«requirement»

Crush-proof

id#
ES007

txt
The System shall ensure that the Coffin (and

the Escapologist) is not crushed by the weight

of the Fluid on top of it.

«requirement»

Maximise Excitement

id#
ES004

txt
The System shall ensure that the excitement of the Audience is maximised.

req [Package] Requirements Diagrams [Stunt Requirements]

Figure 5.55 Example requirement diagram showing Requirements for the Coffin Escape Stunt
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untestable requirement that ‘The System shall ensure that the excitement of the
audience is maximised’ may be further specified in a way that is testable.

Sometimes turning off the id# and txt properties of a requirement can make a
diagram easier to read, particularly when additional information such as trace
relationships are shown. This has been done in Figure 5.57, which shows
the same requirements as are shown in Figure 5.55, but with the id# and txt
compartments hidden and trace relationships added linking the requirements to
blocks representing the source of the requirements. There is no significance in
the sizing of the various requirements, it has been done simply to ease the layout
of the diagram.

A similar diagram is given in Figure 5.58, which concentrates on a single
requirement, showing how it traces to source elements and in addition, showing a
use case that refines the requirement. A seemingly obvious, but often overlooked,

req [Package] Requirements Diagrams [Maximise Excitement – Derived Requirements]

«requirement»

Maximise Excitement

id#
ES004

txt

The System shall ensure 

that the excitement of the 

Audience is maximised.

«requirement»

Satisfaction Survey

id#
ES004-D001

txt
The System shall ensure that an 

Audience satisfaction survey is carried 

out after every performance.

«requirement»

Minimum Satisfaction Level 85%

id#
ES004-D002

txt
The System shall deliver an Audience

satisfaction level of 85% within four

performances.

«requirement»

Continuing Satisfaction

id#
ES004-D003

txt
The System shall ensure that a 

minimum Audience satisfaction level 

of 85% is maintained after the first four

performances.

«deriveReqt»

«deriveReqt»

«deriveReqt»

Figure 5.56 Example requirement diagram showing derived Requirements
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aspect of modelling is highlighted in Figure 5.58, namely that of keeping diagrams
as simple as possible. There is often a temptation to overload diagrams with too
many elements so that they add to the complexity and lack of understanding of the
system rather than helping. The information shown on the four example diagrams
earlier in this section could have been shown on a single diagram, but this would
have made the communication of the understanding of the requirements and their
relationships to other model element harder to achieve. Any sensible modelling tool
will allow model elements to be reused on a number of different diagrams and this
is to be encouraged, not only for requirements diagrams but for any of the SysML
diagrams. If you find a diagram is becoming too complex (more than around 9 or 10
elements, as a crude heuristic), break it down into a number of simpler diagrams.
Miller’s comments on the limits on our capacity to process information are as valid
today as when they were first written and apply just as much to SysML models. See
Reference 2.

The final example of a requirement diagram is shown in Figure 5.59. This
diagram shows exactly the same information as that shown in Figure 5.58 but uses

req [Package] Requirements Diagrams [Stunt Requirements Showing Traceability – id# & txt hidden]

«block»

Email re. Different

Fluids 15.03.2010

«block»

Coffin Escape 

Schematic

«block»

Meeting Minutes 

01.04.2010

«block»

Initial Ideas 

Meeting 10.01.2008

«requirement»

Perform Stunt

«requirement»

Allow Different Fluids

«requirement»

Computer-controlled Pump

«requirement»

Minimise Risk

«requirement»

Sufficient Air

«requirement»

Crush-proof

«requirement»

Maximise Excitement

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»
«trace»

Figure 5.57 Example requirement diagram showing «trace» relationships
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the callout notation rather than explicit refine and trace relationships. Some of the
immediacy of information is lost using the callout notation since the symbols used
do not, in this example, show graphically that the other model elements involved
are a use case and two blocks. One has to read the content of the callout notes to
understand the types of model elements involved. For this reason the authors

req [Package] Requirements Diagrams [Computer-controlled Pump – Refines and traces – Callout Notation]

«requirement»

Computer-controlled Pump

refinedBy

«Use Case» Fluid to be pumped into ...

tracesTo

«block» Coffin Escape Schematic

«block» Meeting Minutes 01.04.2010

Figure 5.59 Example requirement diagram showing «refine» and «trace»
relationships using callout notes

req [Package] Requirements Diagrams [Computer-controlled Pump – Refines and traces]

«block»

Coffin Escape Schematic

«block»

Meeting Minutes 01.04.2010

Fluid to be pumped

into hole under

computer control

«requirement»

Computer-controlled Pump

«refine»

«trace»«trace»

Figure 5.58 Example requirement diagram showing «refine» and «trace»
relationships
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recommend, where possible and appropriate, the explicit relationships as in
Figure 5.58.

5.5.5.3 Summary
SysML requirement diagrams are used to show requirements and their
relationships to each other and how they trace to, are satisfied by, are refined
by and are verified by other model element. Wherever possible, use of the
more specific types of relationship (such as satisfy) is preferred over the
more generic trace. Each requirement has a name, unique identifier and a
description. Most SysML tools allow the identifier and description to be
hidden if desired, in order to simplify diagrams. Additional properties such as
‘priority’ may be defined if needed and examples are given in the SysML
specification [1].

It should also be noticed that the scope of the requirement diagram may, and
should, be extended to include other types of Need from the MBSE Ontology,
rather than being restricted to Requirements only. The MBSE Ontology states that
there are four types of Need: Requirement, Capability, Goal and Concern, each of
which may be visualised using the SysML requirement concept.

5.5.6 State machine diagrams
So far we have been considering the SysML structural diagrams. In this section we
now start looking at the SysML behavioural diagrams, beginning with the state
machine diagram. State machine diagrams have been discussed in some detail in
Chapter 4 and thus some of this section will serve as a recap. The focus here,
however, will be the actual state machine diagram, whereas the emphasis pre-
viously has been on general behavioural modelling.

State machine diagrams realise a behavioural aspect of the model. They model
the order in which things occur and the logical conditions under which they occur
for instances of blocks, known in SysML as instance specifications. They show
such behaviour by relating it to meaningful states that the System Element, mod-
elled by a block, can be in at any particular time, concentrating on the events that
can cause a change of state (known as a transition) and the behaviour that occurs
during such a transition or that occurs inside a state.

5.5.6.1 Diagram elements
State machine diagrams are made up of two basic elements: states and transitions.
These states and transitions describe the behaviour of a block over logical time.
States show what is happening at any particular point in time when an instance
specification typed by the block is active. States may show when an activity is being
carried out or when the properties of an instance specification are equal to a par-
ticular set of values. They may even show that nothing is happening at all – that is
to say that the instance specification is waiting for something to happen. The ele-
ments that make up a state machine diagram are shown in Figure 5.60.

Figure 5.60 shows the partial meta-model for state machine diagrams. State
machine diagrams have a very rich syntax and thus the meta-model shown here
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omits some detail – for example, there are different types of action that are not
shown. See References 1 and 4 for more details.

From the model, it can be seen that a ‘State Machine Diagram’ is made up of
one or more ‘State’ and zero or more ‘Transition’. A ‘Transition’ shows how to
change between one or two ‘State’. Remember that it is possible for a transition to
exit a state and then enter the same state, which makes the multiplicity one or two
rather than two, as would seem more logical.

There are four types of ‘State’: ‘Initial State’, ‘Simple State’, ‘Composite
State’ and ‘Final state’. Each ‘State’ is made up of zero or more ‘Activity’. An
‘Activity’ describes an on-going, non-atomic unit of behaviour and is directly
related to the operations on a block. A ‘Composite State’ is divided into one or
‘Region’. When there are more than one ‘Region’, each ‘Region’ is used to model
concurrent (i.e. parallel) behaviour.

Each ‘Transition’ may have zero or one ‘Guard Condition’, a Boolean condition
that will usually relate to the value of a block property. The ‘Guard Condition’ must
evaluate to true for the ‘Transition’ to be valid and hence capable of being crossed.

A ‘Transition’ may also have zero or one ‘Action’. An ‘Action’ is defined as an
activity whose behaviour is atomic. That is, once started it cannot be interrupted
and will always complete. An ‘Activity’, on the other hand, is non-atomic and can
be interrupted. An ‘Action’ should be used for short-running behaviour.

1..* *

*

0..1

1..*

1..2 1

«diagram»

State Machine Diagram

«graphic node»

State

«graphic path»

Transition

Event

Guard Condition

Action

Activity

«graphic node»

Initial State

«graphic node»

Simple State

«graphic node»

Composite State

Region

«graphic node»

Final State

*

*

1

shows how to change between

0..1 0..1

Figure 5.60 Partial meta-model for the state machine diagram
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Finally, a ‘Transition’ may have zero or one ‘Event’ representing an occur-
rence of something happening that can cause a ‘Transition’ to fire. Such an ‘Event’
can be thought of as the receipt of a message by the state machine.

If an ‘Event’ models the receipt of a message, often sent from one state
machine to another, then how does one model the sending of such a message from a
state machine? The answer is that there are actually two types of event: receipt
events and send events.

The type of event described earlier in this section, which corresponds to the
receipt of a message and which can trigger a transition, is actually an example of a
receive event. A send event represents the origin of a message being sent from one
state machine to another. It is generally assumed that a send event is broadcast to all
elements in the System and thus each of the other elements has the potential to
receive and react upon receiving the event. Obviously, for each send event there
must be at least one corresponding receipt event in another state machine. This is
one of the basic consistency checks that may be applied to different state machine
diagrams to ensure that they are consistent. A send event is usually modelled as the
action on a transition.

The notation for the state machine diagram is shown Figure 5.61.
The basic modelling elements in a state machine diagram are states, transi-

tions and events. States describe what is happening within a system at any given
point in time, transitions show the possible paths between such states and events
govern when a transition can occur. These elements were discussed in detail in
Chapter 4 and the reader is referred to that chapter. However, there are a number of
elements in Figure 5.61 that weren’t discussed in Chapter 5 and which need
discussion here, namely:

● Composite states
● Entry activities
● Exit activities

Figure 5.61 shows two composite states: ‘Composite State (Concurrent)’ and
‘Composite State (Sequential)’. Composite states allow states to be modelled that
have internal behaviour that is further decomposed into states. They can be thought
of as states that have their own state machine diagrams inside.

Let us consider ‘Composite State (Sequential)’ first. This composite state has a
single region (the part of the state beneath the box containing the name). Since
there is only one region the behaviour takes place sequentially within the state and
hence this is a sequential composite state. In this example, ‘Simple State 1’ is
entered first. This then leads on to ‘Simple State 2’ and when this state is left the
final state is entered.

Now consider ‘Composite State (Concurrent)’. This has two regions separated
by a dashed line. Each region represents concurrent (i.e. parallel) behaviour and
hence this is a concurrent composite state. The transition to ‘Composite State
(Concurrent)’ causes both regions to become active and therefore the two small
state machine diagrams in the regions become active. When both have completed,
then the transition from ‘Composite State (Concurrent)’ to the final state can fire.
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Examples of composite states, along with a discussion of when sequential
composite states are used, can be found in Section 5.5.6.2.

Entry and exit activities can be seen in ‘Simple State 1’, shown as ‘Entry/op2’ (an
entry activity), and in ‘Composite State (Concurrent)’ shown as ‘Exit/op3’ (an exit
activity).

An entry activity represents an activity that takes place every time a state is
entered. The notation is the keyword ‘Entry/’ followed by the behaviour to take
place (in the example here, the invocation of an operation ‘op2’).

An exit activity represents an activity that takes place every time a state is
exited. The notation is the keyword ‘Exit/’ followed by the behaviour to take place
(in the example here, the invocation of an operation ‘op3’).

Unlike normal activities both the entry activity and the exit activity cannot
be interrupted; they behave more like actions as they are guaranteed to run to
completion. Section 5.5.6.2 gives examples.

Before moving on to consider some examples of state machine diagrams it is
worth discussing some alternative notation that can be used for events (both receipt
events and send events) and for modelling decision points (known as junction states).

Figure 5.62 shows the two possible notations for modelling receipt events and
send events. The top part of the diagram shows the textual notation. There is no
keyword to indicate ‘‘receipt’’, an event preceding a guard condition represents a
receipt event. The widely used notation for representing a send event is to place the
word ‘‘send’’ in front of the event name as part of the action on the transition. Note,
however, that this is a convention and is not specified by the SysML standard. Exactly
the same transition is shown at the bottom of the diagram, but this time using gra-
phical symbols that explicitly show which is a receipt event and which is a send event.
This notation is also used on activity diagrams discussed in Section 5.5.8 below.

Figure 5.63 shows alternative notations that can be used when there are two or
more transitions from a state that have the same event (or indeed no event) but
different guard conditions. In the example, the same event ‘Event1’ will lead either
to ‘state 2’ or ‘state 3’ depending on the value of the guard condition. This can be
represented as two separate transitions from ‘state 1’ as in the upper part of the
diagram, or as a single transition from ‘state 1’ to a junction state (the diamond)
followed by two transitions from the junction state.

As to which notation to use? Well, use whatever you feel is best. Diagramming
guidelines might specify (see Chapter 6 for a discussion of diagramming guidelines).

state 1 state 2Event1 Event2

state 1 state 2

[guard]

Event 1[guard]/send Event 2

Receipt event – Event1 Send event – Event2 

Figure 5.62 Alternative notations for receipt and send events
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However, if they don’t, you are advised to choose a style and use it consistently
within a model. At least in that way your state machine diagrams will have a
consistent look and feel.

5.5.6.2 Examples
This section presents some examples of state machine diagrams and related
diagramming elements. Further examples will be found in the case study in
Chapter 13.

The block definition diagram in Figure 5.64 shows a single block that models the
‘Pump’ used in the Coffin Escape Stunt. This was seen previously in Section 5.5.1.2

state 1

state 2

state 3

state 1

state 2

state 3

Event1[guard = TRUE]/action

Event1[guard = FALSE]/action

Event1/

[guard = TRUE]/action

[guard = FALSE]/action

Figure 5.63 Alternative notations for decisions

bdd [Package] Structural Elements [Pump properties and operations]

«block»

values
Rate : m3/s

CurrentDirection : PumpDirection

operations

prime ()

flush ()

pump ()

pumpReverse ()

stopPump ()

Pump

Figure 5.64 Example block definition diagram showing Pump properties and
operations
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when we looked at example block definition diagrams. The block has a number of
operations and the ‘Pump’ that it models can be in a number of meaningful states,
such as being powered down and pumping in either direction. It should, therefore,
have its behaviour modelled using a state machine diagram. This has been done in
Figure 5.65.

The state machine diagram in Figure 5.65 has three main states, ‘starting’,
‘working’ and ‘stopping’, an initial state and a final state. The state ‘working’ is a
composite state. It has one region and is therefore a sequential composite state. It
contains three states: ‘pumping forward’, ‘pumping reverse’ and ‘reversing’.

The state machine represented by this state machine diagram can be considered
to come into existence when the ‘Pump’ is turned on. When this happens the state
machine diagram begins in the initial state and then immediately transitions to the
‘starting’ state. It will stay in this state until the ‘start’ event is received. On receipt of
this event the transition will fire and the state machine will move into the ‘pumping
forward’ state. There are a number of points to discuss here. First, the transition has
an action ‘CurrentDirection = Forward’. As is common with many actions this is
assigning a value to a property of the owning block. Is ‘CurrentDirection’ a property
of the ‘Pump’ block? Yes, as it can be seen from Figure 5.64. So this action is
consistent with the structural aspects of the model. Second, the transition crosses the
boundary of the ‘working’ composite state and enters the ‘pumping forward’ state
contained within ‘working’. This is perfectly okay and is very common when
working with sequential composite states. This initial transition and associated
behaviour captures the fact that the ‘Pump’ in this example always starts pumping in
the normal forward direction.

stopping

do : stopPump

Entry/flush

pumping forward

reversing

do : stopPump

pumping reverse

do : pumpReverse

working

reversing

do : stopPump

pumping reverse

do : pumpReverse

starting

start/CurrentDirection = 

Forward

stop/

reverse/

[CurrentDirection =

Forward]/CurrentDirection =

Reverse  

reverse/

[CurrentDirection = 

Reverse]/CurrentDirection = 

Forward

stm [State Machine] Pump [Pump operation]

do : pump

Entry/prime

Figure 5.65 Example state machine diagram showing pump behaviour
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Once running, the ‘Pump’ can be switched to pump in a reverse direction.
However, it has to stop pumping normally before it can make this change of
direction. Similarly, if pumping in reverse, it can be switched back to pumping
normally but, again, it has to stop pumping first. The operator does not have to
explicitly tell the ‘Pump’ to stop before switching direction. The ‘Pump’ has to
handle this itself. This is what the three states inside ‘working’, together with their
associated transitions, do.

When the ‘pumping forward’ state is entered, the ‘Pump’ primes itself. This is
achieved with an entry activity ‘Entry/prime’. This invokes the ‘prime’ operation of
the ‘Pump’. This cannot be interrupted; the ‘Pump’ will always complete its
‘prime’ operation before it does anything else. Once the ‘Pump’ has finished
priming itself, it then begins pumping via an activity ‘do: pump’. This can be
interrupted. If not interrupted, then the ‘pump’ operation will run to completion. If
it is interrupted, then the ‘pump’ operation will cease and the ‘pumping’ state will
be left along whichever transition fired causing the interruption.

So what transitions are possible from ‘pumping’ and what will cause them to
happen? The most obvious is the transition from ‘pumping’ to ‘reversing’. This
transition has an event ‘reverse’ and no guard condition or action. If ‘reverse’ is
received by the state machine diagram while in the ‘pumping’ state then this
transition will fire and the ‘reversing’ state will be entered. Don’t forget: the ‘do:
pump’ activity can be interrupted, so this event can cause the ‘pump’ operation to
cease prematurely. Another possibility, perhaps not so obvious, is the transition
from the ‘working’ sequential composite state to the ‘stopping’ state. This
transition is drawn from the boundary of ‘working’. This means that it is a valid
transition from all of the states contained within. Essentially all three states have
a transition triggered by the ‘stop’ event to the ‘stopping’ state’. This illustrates
the common use of sequential composite states; they are used to enclose states
that all have the same transitions from them, allowing a cleaner diagram to be
produced. Again, this transition, should it fire, will end the ‘pump’ operation
prematurely.

If the transition to ‘reversing’ fires, then the state machine will move into the
‘reversing’ state where an activity will invoke the ‘stopPump’ operation. Again, this
behaviour can be interrupted by the transition triggered by the ‘stop’ event from the
‘working’ state. However, it cannot be interrupted by either of the two transitions,
which directly leave the ‘reversing’ state. Why? Because neither of the two transi-
tions from ‘reversing’ has events. They only have guard conditions and actions.
Only transitions with events can interrupt behaviour in a state. Those without events
will be checked once any behaviour inside the state has completed. Thus, as soon as
the ‘stopPump’ operation has finished (assuming the ‘stop’ event has not caused the
transition to ‘stopping’ to fire), then the two guard conditions on the transitions are
checked. Whichever is true determines which transition takes place. Both of these
guard conditions check the value of the ‘CurrentDirection’ property to establish
whether the ‘Pump’ is currently pumping in the normal direction or is pumping in
reverse. In this case, the guard condition ‘[CurrentDirection = Forward]’ will be
true, since this is the direction that was set on entry to the ‘pumping forward’ state.
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Therefore, the transition to the ‘pumping reverse’ state will fire, and the action
‘CurrentDirection = Reverse’ is executed to track that the ‘Pump’ is now in the
‘pumping reverse’ state.

The behaviour of the ‘pumping reverse’ state is now the opposite of the
‘pumping forward’ state. There is no need for the ‘Pump’ to prime itself as this was
already done and the ‘Pump’ has just been pumping, so the ‘pumpReverse’
operation is immediately invoked. This will either run to completion or be inter-
rupted in exactly the same way as for ‘pump’ in the ‘pumping’ state. A ‘reverse’
event will cause the transition to ‘reversing’ to fire or a ‘stop’ event will cause a
transition to ‘stopping’ to fire. If the transition to ‘reversing’ happens, then the
behaviour is described previously except that the other guard condition is now true
and the transition back to ‘pumping forward’ will take place.

Thus, the ‘start’ event will start the ‘Pump’ pumping normally and each receipt of
the ‘reverse’ event will cause it to toggle to pumping in reverse and then back to
pumping normally, with the ‘Pump’ stopping automatically before changing direction.

When in any of the ‘pumping forward’, ‘reversing’ or ‘pumping reverse’ then
receipt of the ‘stop’ event will cause the transition to the ‘stopping’ state to fire. On
entry to this state the ‘Pump’ is flushed (‘Entry/flush’) before the ‘stopPump’
operation is invoked.

If all of the preceding explanation of the behaviour of the state machine
diagram in Figure 5.65 seems convoluted, perhaps it will help to reinforce the
benefits of modelling with a language such as SysML. An experienced modeller
would have understood all of the above description simply by looking at the
diagram in Figure 5.65.

Finally, an important consideration when constructing state machine diagrams
is that of determinism. When leaving a state it is important that only one of the
transitions can be followed. This means that the events and guard conditions on
all the transitions from a state must be mutually exclusive; in this way only one
transition, at most, will ever occur. If more than one transition could occur, then the
state machine diagram is said to be non-deterministic and the exact behaviour is
impossible to determine. There is a place for non-deterministic state machine
diagram but their discussion is outside the scope of this book.

5.5.6.3 Summary
State machine diagrams realise a behavioural aspect of the model. They model the
order in which things occur and the logical conditions under which they occur for
instances of blocks, known in SysML as instance specifications. They show such
behaviour by relating it to meaningful states that the System Element, modelled by
a block, can be in at any particular time, concentrating on the events that can cause a
change of state (known as a transition) and the behaviour that occurs during such a
transition or that occurs inside a state.

There are a few rules of thumb to apply when creating state machine diagrams:

● All blocks that exhibit behaviour (have operations) must have their behaviour
specified. If the System Element modelled by the block can be in a number of
states then this behaviour should be modelled using a state machine diagram.
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If it does not exhibit such stateful behaviour, then consider using activity diagrams.
Whichever is chosen, the behavioural aspect of the block must be modelled.

● All operations in a particular block that has its behaviour modelled using a state
machine diagram must appear on its associated state machine diagram. States
may be empty and have no activities, which may represent, for example, an idle
state where the System is waiting for an event to occur. Messages are sent to and
received from other state machine diagrams as send events and receipt events.

Also, remember that there is a difference between behaviour modelled using
actions on a transition and behaviour modelled using activities within a state.
Actions are atomic. They are considered to take zero logical time and once started
cannot be interrupted. Activities, on the other hand, do take time to run and can be
interrupted (but remember that entry activities and exit activities are guaranteed to
complete). It is important to differentiate between activities and actions as they can
have a large impact on the way in which the model of a System will evolve and an
even bigger impact on how it is implemented.

5.5.7 Sequence diagrams
This section introduces and discusses sequence diagrams, which realise a behavioural
aspect of the model. The main aim of the sequence diagram is to show a particular
example of operation of a System, in the same way as movie-makers may draw up a
storyboard. A storyboard shows the sequence of events in a film before it is made.
Such storyboards in MBSE are known as Scenarios. Scenarios highlight pertinent
aspects of a particular situation and ignore all others. Each of these aspects is
represented as an element known as a life line. A life line in SysML represents an
individual participant in an interaction and will refer to an element from another
aspect of the model, such as a block, a part or an actor. Sequence diagrams model
interactions between life lines, showing the messages passed between them with an
emphasis on logical time or the sequence of messages (hence the name).

5.5.7.1 Diagram elements
Sequence diagrams are made up of two main elements, life lines and messages,
along with additional elements that allow other diagrams to be referenced,
interaction uses, and constructions such as looping and parallel behaviour to be
represented, represented using combined fragments. These elements are shown in
Figure 5.66.

Figure 5.66 shows the partial meta-model for sequence diagrams. From the
model it can be seen that a ‘Sequence Diagram’ is made up of one or more ‘Life
Line’, one or more ‘Message’, zero or more ‘Interaction Uses’ and zero or more
‘Combined Fragment’, which has types ‘Loop Combined Fragment’, ‘Parallel
Combined Fragment’ and ‘Alternative Combined Fragment’. An ‘Interaction Use’
references a ‘Sequence Diagram’ and each ‘Combined Fragment’ spans one or
more ‘Life Line’. A ‘Message’ connects two ‘Occurrence Specification’, each of
which occurs on a ‘Life Line’. Each ‘Life Line’ is made up of zero or more
‘Execution Specification’.
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The notation for the sequence diagram is shown in Figure 5.67.

The main element of a sequence diagram is the life line, representing a parti-
cipant in a Scenario over a period of time. It is represented by a rectangle with a
dashed line hanging below it, as shown in Figure 5.67. The dashed line represents
logical time extending down the diagram, with earlier times at the top and later times
at the bottom. The sequence diagram is the only SysML diagram in which layout is
important, as indicated by this time dimension. A life line will refer to an element
from another aspect of the model, such as a block or an actor; it can be thought of as
an instance of that element that is taking part in the Scenario. This is reflected in the
labelling of the life line, placed inside the rectangle, which takes the following form:

name : type

The name part of the label is optional and is used to give the life line a unique
identifier in the case where multiple life lines of the same type are used on the same
diagram. The type indicates the block or actor that the life line is an instance of and

ref Another Sequence Diagramref Another Sequence Diagram

loop (min, max)loop (min, max)

parpar

altalt

Life Line

Execution specification

Call message

Interaction use

Loop combined fragment

Parallel combined fragment

Alternative combined fragment

Reply message

Asynchronous message

:Life Line 1 :Life Line 2 :Life Line 3

Figure 5.67 Summary of sequence diagram notation
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the rectangle can be adorned with the stereotype «block» or the stick man symbol to
emphasise that the life line is typed by a block or an actor (see, for example,
Figure 5.73).

The sequence of interaction between life lines is shown by messages drawn
between the sending and receiving life lines. These messages can be annotated with
text describing the nature of the interaction and show the sequence of interactions
through time. The portion of time during which a life line is active is shown by the
small rectangles on the dashed line, known as execution specifications. A life line
can send a message to itself, to show that some internal behaviour is taking place.
See, for example, Figure 5.73. The two occurrence specifications connected by a
message are not explicitly shown, but are the points on the life line where a message
leaves and joins a life line.

Complex Scenarios can be represented containing looping, parallel and
alternative behaviour, shown using various types of combined fragment. In addi-
tion, a sequence diagram can refer to another via the interaction use notation,
allowing more and more complicated Scenarios to be developed. Examples of the
combined fragment and interaction use notation are shown in Figure 5.67. They are
described further in the following subsections. However, it is worth sounding a note
of caution here. The various combined fragment notations can be nested, allowing
very complicated Scenarios to be modelled. In particular, the use of the alternative
combined fragment notation allows alternative paths through a Scenario to be
shown. What this means is that the sequence diagram is showing more than one
Scenario. From a SysML perspective, there is nothing wrong with doing this.
However, from a modelling perspective such an approach can, in all but the
simplest of cases, lead to confusing diagrams. Apart from showing very simple
alternatives on a single diagram the authors would recommend a one diagram, one
scenario approach.

Showing parallel processing
Parallel paths through a Scenario can be shown in sequence diagrams using a
parallel combined fragment. Each parallel path appears in a separate compartment
within the combined fragment frame. The parallel compartments are divided by a
dashed line, and the combined fragment uses the keyword par.

Figure 5.68 shows a sequence diagram with two parallel combined fragments,
each of which has two parallel regions. The first parallel combined fragment shows
the ‘Begin stunt’ message being sent from the ‘Set up’ life line to the ‘Start’ life line
at the same time as the ‘Set up’ life line sends the ‘Begin stunt’ message to the
‘Escape’ life line. Similarly, the second parallel combined fragment shows the ‘Start
escape’ message being sent between the ‘Start’ and ‘Escape’ life lines at the same
time that it is sent between the ‘Escape’ and ‘Monitor’ life lines.

Referencing other diagrams
Often, when modelling Scenarios, common behaviour is observed. Rather than
having to repeat this behaviour on every sequence diagram that needs it, SysML
allows other sequence diagrams to be referenced to allow reuse of Scenarios.
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For example, say that we have some common functionality that we want to
show on multiple Scenarios. First, we model this using a sequence diagram. An
example is shown in Figure 5.69.

This functionality can then be reused on another sequence diagram using an
interaction use. Each referenced Scenario appears in a separate frame with the
keyword ref, as shown in Figure 5.70.

«block»

:Set up

«block»

:Start

«block»

:Escape

par

Begin stunt

Begin stunt

par

Begin stunt

sd [Package] Scenarios [Preparation]

Figure 5.69 Example sequence diagram defining common functionality to be
referenced

par

Begin stunt

Begin stunt

par

Begin stunt

par

Start escape

Start escape

par

Start escape

sd [Package] Scenarios [Successful Stunt – Escapologist View]

«block»

:Set up

«block»

:Start
«block»

:Escape

«block»

:Monitor

Figure 5.68 Example sequence diagram showing a parallel combined fragment

190 SysML for systems engineering

©
 H

ol
t, 

Jo
n;

 P
er

ry
, S

im
on

, J
an

 0
1,

 1
75

3,
 S

ys
M

L
 f

or
 S

ys
te

m
s 

E
ng

in
ee

ri
ng

. 2
nd

 E
di

tio
n 

: A
 M

od
el

-B
as

ed
 A

pp
ro

ac
h

T
he

 I
ns

tit
ut

io
n 

of
 E

ng
in

ee
ri

ng
 a

nd
 T

ec
hn

ol
og

y,
 S

te
ve

na
ge

, I
SB

N
: 9

78
18

49
19

65
29



The life lines that appear in the sequence diagram referenced must appear on
the referencing diagram and the interaction use must be placed over those life lines
as in Figure 5.70.

Showing alternatives
Sometimes two or more Scenarios are so similar that showing alternative paths on a
single diagram rather than one per diagram is desirable. SysML allows Scenarios to
be modelled in this way using alternative combined fragments.

This consists of a frame with the keyword alt that is divided into separate
compartments, one for each alternative, by dashed lines. Each compartment
should have a guard condition that indicates the conditions under which that alter-
native is executed. The absence of a guard condition implies a true condition. The
guard condition else can be used to indicate a condition that is true if no other guard
conditions are true. Although there is nothing in SysML to prevent the use of guard
conditions where more than one can evaluate to true, this leads to a non-deterministic
sequence diagram and is to be avoided. An example of a sequence diagram showing
two alternatives is shown in Figure 5.71.

The diagram in Figure 5.71 shows two Scenarios, since the alternative combined
fragment has two compartments. Both Scenarios begin with the ‘Assistant’ sending a
‘start’ message to the ‘Pump Controller’, which itself sends a ‘start’ message to the
‘Pump’. The ‘Pump’ then sends itself two messages, ‘prime’ followed by ‘pump’.

In the first Scenario, when the guard ‘Emergency = FALSE’ holds, the first
alternative takes place. The ‘Assistant’ sends a ‘stop’ message to the ‘Pump
Controller’, which itself sends a ‘stop’ message to the ‘Pump’. The ‘Pump’ then
sends itself two messages, ‘flush’ followed by ‘stopPump’.

In the second Scenario, when the guard ‘Emergency = TRUE’ holds, the second
alternative takes place. The ‘Assistant’ sends a ‘reverse’ message to the ‘Pump

«block»

:Start

«block»

:Escape

«block»

:Monitor

ref [Package] Scenarios [Preparation]ref [Package] Scenarios [Preparation]

par

Start escape

Start escape

par

Start escape

sd [Package] Scenarios [Successful Stunt – Escapologist View – Using Preparation Scenario]

«block»

:Set up

Figure 5.70 Example sequence diagram showing the use of a reference
combined fragment
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Controller’, which itself sends a ‘reverse’ message to the ‘Pump’. The ‘Pump’ then
sends itself two messages, ‘stopPump’ followed by ‘pumpReverse’.

Showing loops
The final combined fragment to be considered allows looping behaviour to be
shown. The looping combined fragment is shown using a frame with the keyword
loop. The keyword may be accompanied by a repetition count specifying a
minimum and maximum count as well as a guard condition. The loop is executed
while the guard condition is true but at least the minimum count, irrespective of the
guard condition and never more than the maximum count.

The syntax for loop counts is

● loop minimum = 0, unlimited maximum
● loop(repeat) minimum = maximum = repeat
● loop(min, max) minimum & maximum specified, min <= max

sd [Package] Scenarios [Computer Control of Pump – Use of Alt]

«block»

:Pump Controller

«block»

:Pump
Assistant

start

prime

pump

prime

pump

alt

stop

stop

flush

stopPump

reverse

reverse

stopPump

pumpReverse

alt

flush

stopPump

stopPump

pumpReverse

stopPump

pumpReverse

[Emergency = FALSE]

[Emergency = TRUE]

Figure 5.71 Example sequence diagram showing the use of the alternative
combined fragment
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An example sequence diagram showing a loop combined fragment is shown in
Figure 5.72.

The diagram shows a loop with no repetition count (which is the same as a loop
forever) and a guard condition that indicates that the loop is to continue while the
Coffin Escape Stunt is not complete.

There are many other types of combined fragment defined, but the four dis-
cussed here are the most often used. For details of the other types of combined
fragment, such as the break or opt combined fragments, see Reference 5.

In addition, there is nothing to prevent the nesting of combined fragments. For
example, a loop may have a parallel combined fragment inside it, with instance
uses and perhaps even alternative combined fragments in each parallel region.
Remember, though, that one of the key aims of modelling is to improve the
communication of complex ideas and such diagrams, while valid SysML should be
used with caution as diagrams can rapidly become very difficult to understand and
make the communication worse rather than better.

There is much more notation available for use on sequence diagrams, including
the modelling of timing constraints between messages and the distinction between
synchronous and asynchronous messages. See References 1, 3, 5 and 6 for further
information.

5.5.7.2 Examples
This section presents some examples of sequence diagrams. Further examples of
sequence diagrams can be found in the case study in Chapter 13.

Figure 5.73 is an example of a sequence diagram that treats the System (in this
case the ‘Coffin Escape’) as a black box; that is, it concentrates on the interactions
between Stakeholder Roles and the System, modelling the System as a single life

Safety Officer Assistant Audience

begin

loop

whip-up audience

loop

encourage applause

[While Coffin Escape not complete]

sd [Package] Scenarios [Successful Stunt – Audience View – Assistant/Audience Interaction]

Figure 5.72 Example sequence diagram showing the use of a loop
combined fragment
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line. As well as showing these interactions, it also shows some interactions that are
internal to the System, namely the ‘get in’ and ‘escape’ messages.

Three other interactions are also worthy of comment, namely the ‘begin’,
‘whip-up audience’ and ‘encourage applause’ messages. These are of interest
because they are between Stakeholder Roles rather than between Stakeholder Roles
and the System. Some people (and indeed some SysML tools) would consider such
interactions as illegal.

Nevertheless, these are essential interactions that are needed to fully describe
the Scenario (in this case, that of a successful stunt) as it is impossible to model this
Scenario fully without showing them. When considering the System to be the
‘Coffin Escape’ consisting of equipment, Processes and the Escapologist, then the
Stakeholder Roles shown in Figure 5.73 as actor life lines are outside the System.
But this is a question of context. In the wider context of the stunt being performed
that includes all the necessary supporting roles and the audience, then these Sta-
keholder Roles are part of the System and therefore these interactions become
interactions between System Elements.

Figure 5.74 shows a simple Scenario, that of the assistant starting and stopping
the pump used in the stunt. However, unlike in Figure 5.73, the System is no longer
treated as a black box. In this diagram, the individual elements of the System are
shown along with the relevant Stakeholder Role who is shown interacting with one
of the System Elements (the ‘Pump Controller’). The internal interactions between
the ‘Pump Controller’ and the ‘Pump’ are also shown, as is the behaviour that takes
place inside the ‘Pump’. Thus, it can be seen that when the ‘Pump’ receives a ‘start’
message it primes itself and then begins pumping. Similarly, on receipt of a ‘stop’
message it first flushes itself before stopping. Such white box Scenarios are

sd [Interaction] Scenarios [Successful Stunt – Audience View – Black-box Level]

:Coffin Escape

«block»Safety Officer AudienceAssistant

get in coffin

close lid

check

begin

whip-up audience

start

start escape

escape

encourage applause

Figure 5.73 Example sequence diagram showing actors as life lines and
System as a single block
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typically developed from black box Scenarios, which may have been developed
earlier during the requirements engineering process. An equivalent black box
Scenario for Figure 5.74 is shown in Figure 5.75.

As Figure 5.75 is intended to be the black box Scenario from which
Figure 5.74 is developed, the diagrams should be consistent. One would expect

sd [Interaction] Scenarios [Computer Control of Pump – Successful Stunt]

:Pump Controller

«block»

:Pump

«block»Assistant

start

start

prime

pump

stop

stop
flush

stopPump

Figure 5.74 Example sequence diagram showing interactions between System
Elements

«block»

:Coffin Escape
Assistant

stop pumping

start pumping

stop

start

sd [Interaction] Scenarios [Computer Controlo of Pump – Successful Stunt – Audience View]

Figure 5.75 Example sequence diagram showing equivalent black box Scenario
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the interactions between the ‘Assistant’ and the ‘Coffin Escape’ System in Fig-
ure 5.75 to be the same as those between the ‘Assistant’ and the relevant System
Element (in this case the ‘Pump Controller’) in Figure 5.74, as indeed they are.
Similarly the interactions of the System with itself in Figure 5.75 should be con-
sistent with those between System Elements in Figure 5.74. In this case, although
the messages are not labelled the same, they are consistent with one another. The
difference here is due to the differing levels of abstraction shown on the two
diagrams. A single message at the black box System level is refined into a number
of messages between and within System Elements when the Scenario is modelled
in more detail.

The final example in this section, Figure 5.76, shows a Scenario where the
System Elements are not pieces of equipment but rather represent Processes that
are carried out as part of the System. The messages between the Processes show
how one Process initiates another, in this case for the Scenario showing the suc-
cessful execution of the stunt. In this Scenario the ‘Start’ Process, on completion,
has to trigger the ‘Escape’ and ‘Monitor’ Processes that have to run in parallel.
This is shown by the use of the parallel combined fragment, containing two par-
allel regions, surrounding the two ‘Start Escape’ messages sent by the ‘Start’
Process.

5.5.7.3 Summary
Sequence diagrams are used to model Scenarios. They show behaviour through
time, through the passage of messages between life lines that represent the
participants in the Scenario. When modelling Scenarios, this can be done as black

«block»

:Set up

«block»

:Start

«block»

:Escape

«block»

:Monitor

Begin stunt

par

Start escape

Start escape

par

sd [Interaction] Scenarios [Successful Stunt – Audience View]

Figure 5.76 Example sequence diagram showing use of parallel combined
fragment
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box Scenarios, modelling the System as a single life line, or as white box Scenarios
that show System Elements:

● Black box Scenarios are often generated when the Scenario is placing the
emphasis on the interactions from the point of view of one or more Stakeholder
Roles. An example of such a diagram is the Stakeholder Scenario View in
ACRE (see Chapter 9).

● White box Scenarios are often generated when the emphasis is on the
interactions between System Elements. An example of such a diagram is the
System Scenario View in ACRE (see Chapter 9).

In practice, Stakeholder Roles often have to be shown interacting with System
Elements, so the distinction is often blurred.

5.5.8 Activity diagrams
This section looks at another behavioural diagram, the activity diagram. Activity
diagrams, generally, allow very low-level modelling to be performed compared to
the behavioural models seen so far. Where sequence diagrams show the behaviour
between elements and state machine diagrams show the behaviour within elements,
activity diagrams may be used to model the behaviour within an operation. The
other main use for activity diagrams is for modelling Processes. For a detailed
discussion of Process modelling with SysML see Chapters 7 and 8.

5.5.8.1 Diagram elements
The main elements that make up activity diagrams are shown in Figure 5.77.

Figure 5.77 shows a partial meta-model for activity diagrams. It shows that an
‘Activity Diagram’ is made up of three basic elements: one or more ‘Activity
Node’, one or more ‘Activity Edge’ and zero or more ‘Region’. There are three
main types of ‘Activity Node’, which are the ‘Action’, the ‘Object’ and the ‘Control
Node’ all of which will be discussed in more detail later in this section. The
‘Action’ is where the main emphasis lies in these diagrams and represents a unit of
behaviour on the ‘Activity Diagram’. There are many different types of ‘Action’
available, the discussion of which is beyond the scope of this book. We will treat
them all the same, but for a full discussion see Reference 4. An ‘Action’ can also
have zero or more ‘Pin’, which can be used to show an ‘Object Flow’ that carries an
‘Object’. This is discussed further.

An ‘Activity Edge’ connects one or two ‘Activity Node’; it can connect an
‘Activity Node’ to itself, hence the multiplicity of one or two, rather than just two.
The ‘Activity Edge’ element has two main types – ‘Control Flow’ and ‘Object
Flow’. A ‘Control Flow’ is used to show the main routes through the ‘Activity
Diagram’ and connects together one or two ‘Activity Node’. An ‘Object Flow’ is
used to show the flow of information between one or more ‘Activity Node’ and
does so by carrying the ‘Object’ type of ‘Activity Node’.

The other major element in an activity diagram in the ‘Region’ has two main
types: ‘Interruptible Region’ and ‘Activity Partition’. An ‘Interruptible Region’
allows a boundary to be put into an activity diagram that encloses any actions that
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may be interrupted. This is particularly powerful for Systems where behaviour may
be interrupted by atypical conditions, such as software interrupts and emergency
situations. For example, by a direct user interaction or some sort of emergency
event. The ‘Activity Partition’ is the mechanism that is used to visualise swim lanes
that allow different actions to be grouped together for some reason, usually to show
responsibility for the actions.

The diagram in Figure 5.78 shows an expanded view of the types of ‘Control
Node’ that exist in SysML. Most of these go together in twos or threes, so will be
discussed together.

● The ‘Initial Node’ shows where the activity diagram starts. Conversely, the end
of the activity diagram is indicated by the ‘Activity Final Node’. The ‘Flow
Final Node’ allows a particular flow to be terminated without actually finishing
the diagram. For example, imagine a situation where there are two parallel
control flows in a diagram and one needs to be halted whereas the other
continues. In this case, a final flow node would be used as it terminates a single
flow but allows the rest of the diagram to continue.

● The ‘Fork Node’ and ‘Join Node’ allow the flow in an activity diagram to be
split into several parallel paths and then re-joined at a later point in the dia-
gram. Fork nodes and join nodes (or forks and joins as they are usually known)
use a concept of token passing, which basically means that whenever a flow is
split into parallel flows by a fork, then imagine that each flow has been given a
token. These flows can only be joined back together again when all tokens are
present on the join flow. It is also possible to specify a Boolean condition on
the join to create more complex rules for re-joining the flows.

*

1
1..*

1..2 1

2

1..*

1

1..* 1..* *

«graphic node»

Activity Node

{Abstract}

«graphic node»

Action
«graphic node»

Control Node

{Abstract}

«graphic node»

Object

{Abstract}

«graphic path»

Activity Edge

{Abstract}

«graphic path»

Control Flow

«graphic path»

Object Flow

Pin

«graphic node»

Interruptible Region

«graphic node»

Activity Partition

«graphic node»

Region

{Abstract}

«diagram»

Activity Diagram

1..*

carries

connects together

1

flows between

interrupts

Figure 5.77 Partial meta-model for the activity diagram
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● The ‘Decision Node’ and ‘Merge Node’ also complement one another. A
‘Decision Node’ allows a flow to branch off down a particular route according
to a guard condition, whereas a ‘Merge Node’ allows several flows to be
merged back into a single flow.

There are three types of symbol that can be used on an activity diagram to show the
flow of information carried by an ‘Object Flow’: the ‘Object Node’, the ‘Signal’

«graphic node»

Control Node

{Abstract}

«graphic node»

Initial Node

«graphic node»

Final Node

{Abstract}

«graphic node»

Fork Node

«graphic node»

Join Node

«graphic node»

Decision Node

«graphic node»

Merge Node

«graphic node»

Activity Final Node
«graphic node»

Flow Final Node

Figure 5.78 Expanded partial meta-model of the activity diagram, focusing on
‘Control Node’

«graphic node»

Object

{Abstract}

«graphic node»

Object Node

«graphic node»

Signal

«graphic node»

Event

Figure 5.79 Expanded partial meta-model for the activity diagram, focusing on
‘Object Node’
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and the ‘Event’. See Figure 5.79. The ‘Object Node’ is used to represent informa-
tion that has been represented elsewhere in the model by a block and which is
forming an input to or an output from an action. It can be thought of a representing
an instance specification. The ‘Event’ symbol is used to show an event coming into
an activity diagram, whereas a ‘Signal’ is used to show an event leaving an activity
diagram. They correspond to receipt events and send events of a state machine
diagram. There is a special type of ‘Event’, known as a ‘Time Event’ that allows
the visualisation of explicit timing events.

Each of these diagram elements may be realised by either graphical nodes or
graphical paths, as indicated by their stereotypes, and is illustrated in Figure 5.80.

In addition to the elements mentioned so far, SysML has notation that can be
applied to an ‘Activity Edge’ and an ‘Object Node’. This notation makes use of the

 

Activity Partition

...

Action

Action

Activity Partition

Signal

Action

Signal

«continuous»...

[condition]

[condition] {Probability = value %}

«discrete»

{rate = expression}...

Initial node

Control flow

Merge node

Fork

Action

Join

Object node

Object flow

Continuous object flow

Decision node

Final node Control flow with 

guard and probability

Signal

Discrete control 

flow with rate

Activity partition

Action

Object Name:Object Node

Figure 5.80 Summary of activity diagram notation
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existing constraint and stereotype notation that is already present in SysML and
simply defines some standard constraints and stereotypes for use on activity
diagrams.

The first of these notations allows a rate to be applied to an ‘Activity Edge’
(and, more specifically, normally to an ‘Object Flow’) in order to give an indica-
tion of how often information flows along the edge. Flows can be shown to be
discrete or continuous. This is shown by use of the «discrete» or «continuous»
stereotypes placed on the flow. Alternatively the actual rate can be shown using a
constraint of the form: {rate = expression}. For example, if data or material passed
along a flow every minute, then this could be shown by placing the constraint
{rate = per 1 minute} on the flow.

The second notation allows for a probability to be applied to an ‘Activity Edge’
(typically on ‘Control Flow’ edges leaving a ‘Decision Node’) and indicates the
probability that the edge will be traversed. It can be represented as a number
between 0 and 1 or as a percentage. All the probabilities on edges with the same
source must add up to 1 (or 100%). It is important to note that the actual edge
traversed is governed by the guard conditions on the ‘Decision Node’ and not by
the probability. The probability is nothing more than an additional piece of infor-
mation that can be added to the diagram.

The other notation modifies the behaviour of an ‘Object Node’ and is indicated
by the use of the stereotypes «nobuffer» and «overwrite». If an object node is issued
by an action and is not immediately consumed by its receiving action, then that
object node can block the operation of the originating action until it is consumed by
the receiving action. «nobuffer» and «overwrite» modify this behaviour:

● «nobuffer» means that the marked object node is immediately discarded if the
receiving action is not ready to receive it. The originating action will not be
blocked and can continue to generate object nodes, which will be discarded if
not yet needed.

● «overwrite» means that the marked object node is overwritten if the receiving
action is not ready to receive it. The originating action will not be blocked and
can continue to generate object nodes. The latest generated will overwrite the
previous one if not yet needed.

Figure 5.81 shows some additional notation that covers interruptible regions and
the use of pins rather than object nodes.

Interruptible regions are shown by a dashed soft box surrounding the region to
be interrupted. There must always be a normal flow of control through the inter-
ruptible region. In this example, the flow is into ‘Action3’ then to ‘Action4’ and
then out of the region. There must also be an event that causes the interruption:
‘Event1’ in the example. The event is connected by a control flow to an action
outside the interruptible region, which acts as an interrupt handler: ‘Action7’ in the
example. The control flow is either annotated with a lightning bolt symbol, as here,
or may be drawn as such a lightning bolt. In the example above the interruptible
region shows that while ‘Action3’ or ‘Action4’ are taking place, they may be
interrupted by ‘Event1’, which will cause control to transfer to ‘Action7’.
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The diagram also shows the notation for a flow final node and shows how pins
may be used instead of explicit object nodes. The part of the diagram involving
‘Action3’ and ‘Action4’ is equivalent to the one shown in Figure 5.82.

Event1

«overwrite»

Object Node1

Action4

Object Node1

Object Node

Action3
Event1

«overwrite»

Object Node1

Action4

Object Node1

Object Node

Action3

Object Node

Action7

Interruptible region Event

Flow final node

Overwrite 

object node on 

input pin

Figure 5.81 Activity diagram notation for showing interruptible regions and use
of pins rather than object nodes

 

Action3

Action4

«block»

«overwrite»

Object Node1

Figure 5.82 Object node notation equivalent to pin notation
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Which notation is better, pins or object nodes, is a matter of personal pre-
ference (and perhaps organisational diagramming guidelines and options available
in your SysML tool). The authors are firmly in favour of explicit object nodes
rather than the version using pins.

5.5.8.2 Examples
The section will give a number of examples of activity diagrams. Additional
examples can be found in Chapters 7, 8 and 13.

Figure 5.83 shows an example activity diagram containing a single activity
partition. This is labelled with the model element (in this case ‘Assistant’) that is
responsible for all the behaviour taking place inside that activity partition. It is

: Assistant

Start timer

Watch coffin

Time Out

Emergency

act [Activity] Monitor [Monitor]

Start timer

Watch coffin

Time Out

Emergency

Start timer

Watch coffin

Time OutStart timer

Watch coffin

Time Out

Emergency

Start escape

[Escape complete]

[Escape NOT 
complete]

Encourage 

applause

Figure 5.83 Example activity diagram showing decision, merge and interruptible
region
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possible to have multiple such activity partitions and an example is given later in this
section. An activity partition is usually labelled with the name of a block or an actor
that specifies the type of the model element responsible for the activity partition.

The behaviour in this activity diagram begins on receipt of a ‘Start escape’
event, after which control passes into an interruptible region where the action ‘Start
timer’ takes place. Once this action is completed, control falls through a merge
node and the ‘Watch coffin’ action takes place. When this action is completed a
decision node is reached. If the guard condition ‘[Escape completed]’ is true, then
control passes to the ‘Encourage applause’ action and once this is finished the
activity final node is reached and the activity diagram terminates. If, instead, the
guard condition ‘[Escape NOT complete]’ is true, then control passes back up to
the merge node before re-entering the ‘Watch coffin’ action. The merge node is
simply used to merge alternative control flows back into a single control flow.

However, the normal behaviour is not the only way in which this activity
diagram can end. If the ‘Time out’ event is received at any time the ‘Start timer’ or
‘Watch coffin’ actions are executing, then the interruptible region is exited and the
‘Emergency’ signal is sent out of this diagram. Note the use of the pin on the signal
in order to connect the event to the signal.

Another activity diagram is shown in Figure 5.84. This time all the behaviour
is the responsibility of the ‘Escapologist’ and the activity diagram begins on receipt
of the ‘Begin stunt’ event. When this is received, control enters a fork node, which
leads to two parallel branches in which the ‘Escapologist’ is undertaking both the
‘Free hands’ action and the ‘Count down time’ action. Each of these leads into a
join node and when both are completed, then control passes to the ‘Emerge’ action.
If either of the two parallel actions failed to complete, then the ‘Emerge’ action
would never be reached. After ‘Emerge’ is finished, the ‘Escapologist’ executes
the ‘Take a bow’ action and then the activity diagram finished via the activity
final node.

The final example we will consider here is shown in Figure 5.85. In this
activity diagram there are two activity partitions and we can see from the diagram
that the ‘Assistant’ is responsible for carrying out the ‘Whip-up audience’ and
‘Start pump’ actions and for issuing the ‘Start escape’ signal. The ‘Safety Officer’
is responsible for everything else in the diagram.

On receipt of the ‘Begin stunt’ event, the ‘Safety Officer’ will carry out the
‘Perform final check’ action. When this is complete control enters a decision node
that has two branches leaving it. If the guard condition ‘[Problems found]’ is true
then the ‘Safety Officer’ carries out the ‘Cancel stunt’ action and activity diagram
terminates via the activity final node.

If, however, the guard condition ‘[No problems]’ is true, then responsibility
passes to the ‘Assistant’ who carries out the ‘Whip-up audience’ and ‘Start pump’
actions in sequence and finally issues the ‘Start escape’ signal. The activity
diagram then terminates via the activity final node.

However, this is not the end of the actions that the ‘Assistant’ has to carry out.
How can this be, if there are no further actions in Figure 5.85? Look back at
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Figure 5.83. The activity diagram there is kicked off on receipt of a ‘Start escape’
event. This is the very event that the ‘Assistant’ has just issued as the ‘Start escape’
signal in Figure 5.85. The two activity diagrams are connected by this event/signal
pair. This is an excellent example of the kinds of consistency between diagrams that
you should be looking for when modelling. An event that comes into an activity
diagram (or into a state machine diagram as a receipt event) must come from
somewhere. There must be a corresponding signal on another activity diagram (or
send event on a state machine diagram) that is the source of the event. This would,

: Escapologist

Begin stunt

Free hands

Emerge

Take a bow

act [Activity] Escape [Escape]

Begin stunt

Free hands

Emerge

Take a bow

Begin stunt

Free hands

Emerge

Take a bow

Count down time

Figure 5.84 Example activity diagram showing fork nodes and join nodes
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perhaps, be less confusing if SysML used the same names across activity diagrams
and state machine diagrams, but Table 5.3 may help you to remember.

Some of the nature of this communication and further consistency can be seen
by looking at Figure 5.76. This shows the communication between a number of

act [Activity] Start [Start]

Start escape

Start pump

Perform final 
check

Begin stunt

Cancel stunt

[Problems found]

[No problems]

: Assistant : Safety Officer

Whip-up audience

Figure 5.85 Activity diagram showing multiple activity partitions

Table 5.3 Equivalence of event terminology between activity and state machine
diagrams

Activity diagram State machine diagram

Event is same as Receipt event
Signal is same as Send event
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System Elements (actually Processes). The internal behaviour of these processes is
what has been modelled by the activity diagrams earlier in this section. Thus, the
‘Start escape’ signal in Figure 5.85 corresponds to the beginning of the ‘Start
escape’ message in Figure 5.76 as it leaves the ‘:Start’ life line. The Start escape’
event in Figure 5.83 corresponds to the end of the ‘Start escape’ message in
Figure 5.76 as it enters the ‘:Monitor’ life line.

Thus, activity diagrams can communicate with other activity diagrams or with
state machine diagram and vice versa. Furthermore, the messages corresponding to
these events and signals can be modelled as messages on sequence diagrams. Isn’t
consistency great?

5.5.8.3 Summary
Activity diagrams are very powerful SysML behavioural diagrams, which can be
used to show both low-level behaviour, such as operations, and high-level
behaviour, such as Processes. They are very good for helping to ensure model
consistency, relating to state machine diagrams, sequence diagrams and block
definition diagrams.

Activity diagrams concentrate on control and object flow, showing behaviour
defined using actions that use and produce object nodes. That is, they concentrate
on behaviour that deals with information flow and transformation, rather than
behaviour that concentrates on change of state (as in the state machine diagram) or
that concentrates on the sequencing of messages (as in the sequence diagram).
However, all of these diagrams can (and should) be used together to give a
complete and consistent model of the interactions between System Elements.

5.5.9 Use case diagrams
The SysML use case diagram realises a behavioural aspect of a model, with an
emphasis on functionality rather than the control and logical timing of the Sys-
tem. The use case diagram represents the highest level of behavioural abstraction
that is available in the SysML. However, the use case diagram is arguably
the easiest diagram to get wrong in the SysML. There are a number of reasons
for this:

● The diagrams themselves look very simple, so simple in fact that they are often
viewed as being a waste of time.

● It is very easy to go into too much detail on a use case diagram and to acci-
dentally start analysis or design, rather than conducting context modelling.

● Use case diagrams are very easy to confuse with data flow diagrams as they
are often perceived as being similar. This is because the symbols look the same
as both use cases (in use case diagrams) and processes (in a data flow diagram)
are represented by ellipses. In addition, both use cases and processes can be
decomposed into lower level elements.

● Use case diagrams make use of perhaps the worst symbol in SysML, the
stick person notation used to represent actors. This is discussed further in
Section 5.5.9.1.
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Nevertheless, use case diagrams are central to systems engineering, forming the
basis of the model-based approach to requirements engineering as embodied by the
ACRE approach described in Chapter 9, being used to model the Needs in Context
for the System under development.

5.5.9.1 Diagram elements
Use case diagrams are made up of four main elements as shown in Figure 5.86.

Figure 5.86 shows a partial meta-model for use case diagrams. It shows that a
‘Use Case Diagram’ is made up of one or more ‘Use Case’, zero or more ‘Actor’,
zero or one ‘System Boundary’ and zero or more ‘Relationship’. Each ‘Use Case’
yields an observable result to one or more ‘Actor’. There are three types of
‘Relationship’: the ‘Extend’, ‘Include’ and ‘Association’. A ‘Use Case’ can be
made up of zero or more ‘Extension Point’, each of which defines the condition for
an ‘Extend’ relationship. Each ‘Association’ crosses the ‘System Boundary’.

*

1..*

0..1

*

*

1..*

1

1..*1
1

«diagram»

Use Case Diagram

«graphic node»

Actor

«graphic node»

Use Case

Extension Point

«graphic path»

Relationship

{Abstract}

«graphic node»

System Boundary

«graphic path»

Extend

«graphic path»

Include

«graphic path»

Association

*

*

yields an observable 

result to

1

crosses

1
1

defines condition for

Figure 5.86 Partial meta-model for the use case diagram
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The notation that is used on use case diagrams is shown in Figure 5.87.

Use case diagrams are composed of four basic elements: use cases, actors,
relationships and a system boundary. As a minimum a use case diagram must
contain at least one use case; all other elements are optional.

Each use case describes behaviour of the system that yields an observable
result to an actor. It is with the actor that the SysML notation is at its weakest, in
terms of both the symbol and the name. The stick man symbol and the name actor
suggest that this concept represents that of a person. This is not the case. An actor
represents the role of a Person, place or thing that interacts with, is impacted by or
has an interest in the System. So, while an actor can, indeed, represent a Person, it
can also be used to represent an Organisation, other System or even a piece of
legislation or a Standard. Furthermore, it is essential to understand that it is the role
that is represented. This means that you should never see the names of People or
Organisations or Standards, etc., on a use case diagram, but the role that they are
playing. An actor named ‘ISO15288’ would be wrong, but one named ‘Systems
Engineering Standard’ would be correct. It is also worth noting that a given role
may be taken by more than one person, place or thing and that a given person, place
or thing may take on more than one role.

In terms of the MBSE Ontology, the actor is directly analogous to the concept
of the Stakeholder Role rather than the concept of the Person. The use case is
directly analogous to the concept of the Use Case that represents a Need that has
been put into Context.

Boundary Name

Actor1

Actor2

Actor3

Use Case1

Use Case2 Use Case3

Use Case4

«include»

«extend»

System boundary

Use case

Include relationship

Specialisation/Generalisation

Actor

Extend relationship

Association

Figure 5.87 Summary of use case diagram notation
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Use cases are related to actors and to other use cases using a number of dif-
ferent types of relationship:

● Association relationship. This is used to relate use cases to actors and, unlike
when used on a block definition diagram, is a simple unadorned line with
neither name nor multiplicity as can been seen in the association between
‘Actor2’ and ‘Use Case1’ in Figure 5.87.

● Include relationship. This is used when a piece of functionality may be split
from the main use case, for example to be used by another use case. A simple
way to think about this is to consider the included use case as always being part
of the parent use case. This is used to try to spot common functionality within a
use case. It is highly possible that one or more of the decomposed use cases
may be used by another part of the System. It is shown using a dashed line with
an open arrow head, the line bearing the stereotype «include». The direction of
the arrow should make sense when the model is read aloud. In Figure 5.87 ‘Use
Case1’ includes ‘Use Case3’.

● Extend relationship. This is used when the functionality of the base use case is
being extended in some way. This means that sometimes the functionality of a
use case may change, depending on what happens when the System is running.
A simple way to think about this is to consider the extending use case as
sometimes being part of the parent use case. Extending use cases are often
used to capture special, usually error-handling, behaviour. The extend
relationship is also shown using a dashed line with an open arrow head, the
line bearing the stereotype «extend». It is important to get the direction of
the relationship correct, as it is different from the ‘«include»’ direction. The
direction of the arrow should make sense when the diagram is read aloud. In
Figure 5.87 ‘Use Case4’ extends ‘Use Case1’. Every use case should be
described (normally using text). Such a description must define the extension
points where the behaviour of the use case is extended by the extending use
case. An extension point has no specific graphical notation.

● Specialisation/generalisation relationship. This is exactly the same relation-
ship as found on block definition diagrams and is used when one use case is a
specialisation of another. Just like when used with blocks, generalisation
between use cases allows for inheritance of behaviour and relationships. For
example, consider the use case diagram shown in Figure 5.88. The general Use
Case ‘Allow stunt to be performed using different fluids’ is specialised by the
two Use Cases ‘Perform using concrete’ and ‘Perform using custard’, which
inherit the behaviour described in ‘Allow stunt to be performed using different
fluids’ as well as including the Use Case ‘Ensure fluid chosen is suitable for
venue’, which is included by ‘Allow stunt to be performed using different
fluids’.

In a similar way, generalisation can be used between actors, as is shown in
Figure 5.87, when one actor is a specialisation of another.

The final element that can appear on a use case diagram is the system
boundary, used when describing the Context of a System. As its name suggests, the

210 SysML for systems engineering

©
 H

ol
t, 

Jo
n;

 P
er

ry
, S

im
on

, J
an

 0
1,

 1
75

3,
 S

ys
M

L
 f

or
 S

ys
te

m
s 

E
ng

in
ee

ri
ng

. 2
nd

 E
di

tio
n 

: A
 M

od
el

-B
as

ed
 A

pp
ro

ac
h

T
he

 I
ns

tit
ut

io
n 

of
 E

ng
in

ee
ri

ng
 a

nd
 T

ec
hn

ol
og

y,
 S

te
ve

na
ge

, I
SB

N
: 9

78
18

49
19

65
29



system boundary defines the boundary of the System from a particular point of
view, that is Context. Everything inside the system boundary is part of the System,
and everything outside the system boundary is external to the System. Actors are
always outside the system boundary, and indeed, an association between an actor
and a use case that crosses a system boundary indicates that there is an Interface
between the actor and the System (which may be a sophisticated software and
hardware Interface but equally could be an Interface in which a Person passes a
note on a piece of paper to another Person).

System boundaries are not mandatory on a use case diagram. They are used
when use cases are being shown in a Context. Where a use case diagram is being
drawn simply to expand on a use case, as shown in Figure 5.88, then no system
boundary is needed.

5.5.9.2 Examples
This section presents some examples of use case diagrams and related diagram-
ming elements. Further examples of use case diagrams can be found in Chapter 13
and throughout Chapters 7–11 and 14–16. In addition, this section concludes with
some guidance notes on common patterns that are often seen in use case diagrams
and that can guide the modeller in refinement of the use case diagrams.

Figure 5.89 shows a use case diagram identifying the high-level Use Cases for
the Coffin Escape Stunt. The Context, as indicated by the presence and title of the
system boundary, is for the stunt System rather than from the point of view of an
individual Stakeholder Role. The relevant high-level Stakeholder Roles are shown
as actors, with associations connecting them to the Use Cases in which they have
an interest and the relationships between the Use Cases are shown. There are two

Allow stunt to be

performed using

different fluids

Perform using

concrete
Perform using

custard

Ensure fluid

chosen is suitable

for venue

«include»

uc [Package] Requirements [Coffin Escapology Stunt – Focus on Fluidsl]

Figure 5.88 Example use case diagram showing generalisation
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points worth highlighting about this diagram: the number of Use Cases shown and
the use of the «constrain» dependency.

The diagram shows only seven Use Cases, yet this is the top-level use case
diagram showing the Use Cases for the whole coffin stunt System. Surely there
must be more Use Cases than this? The answer to this is, of course, yes there are.
However, this does not mean that all these Use Cases have to be shown on a single
diagram. Other use case diagrams can be drawn that break these Use Cases down
further and put them into the correct Context. Don’t forget that these diagrams are
produced to aid understanding and communication. A complicated diagram with
tens of Use Cases on it may look impressive but is rarely of any practical use (other

Audience

Coffin Maker

Safety Officer

Escapologist

Maximise audience

excitement

Ensure

sufficient air

Allow stunt to be

performed using

different fluids

Minimise risk to

escapologist

Ensure coffin not

crushed by fluid

Fluid to be pumped

into hole under

computer control

Perform coffin

escapology stunt

«include» «include»

«include» «include»

Coffin Escapology Stunt – Coffin Escape System Context

uc [Package] Requirements [Coffin Escapology Stunt – Coffin Escape System Context]

«constrain»«constrain»

Figure 5.89 Example use case diagram showing System Context
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than for illustrating just how complicated the system is). Consider a System such as
an aeroplane. There will be 1000s of Use Cases for the complete System, but how
many high-level Use Cases are there? Probably not many more than ‘Take off
safely’, Land safely’, ‘Have a fully-laden range of X km’, ‘Have a carrying
capacity of X kg’, etc.

The second point to discuss is that of the «constrain» dependency, such as the
one between ‘Minimise risk to escapologist’ and ‘Perform coffin escapology stunt’.
The «constrain» dependency is not part of standard SysML, but is an extension used
by the authors to show that one use case constrains another in some way. It is
created using the SysML stereotyping mechanisms built into the language that
allows existing language elements to be extended and is discussed in detail in
Section 5.3.

Figure 5.90 shows another use case diagram showing Needs in Context.
However, rather than showing the Use Cases for the entire System, this diagram
shows them from point of view of a single Stakeholder Role, namely the

Assistant

Coffin Maker

Safety Officer

Audience
Improve skill

level

Ensure

sufficient air

Minimise risk to

escapologist

Perform coffin

escapology stunt

Make money

Ensure coffin not

crushed by fluid

«include» «include»

Coffin Escapology Stunt – Escapologist’s Context

uc [Package] Requirements [Coffin Escapology Stunt – Escapologist’s Context]

«include»

«constrain»

«constrain»

Figure 5.90 Example use case diagram showing a Stakeholder Role’s Context
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escapologist. Unsurprisingly some of the Use Cases are also shown in Figure 5.89,
since the Escapologist is one of (if not the) main Stakeholder Roles in any
escapology stunt. However, some of those in Figure 5.89 (such as ‘Maximise
audience excitement’) are not of direct interest to the Escapologist and are therefore
not shown in Figure 5.90. Conversely, there are Use Cases that are only relevant to
the Escapologist (such as ‘Improve skill level’), which are shown in Figure 5.90 but
are not relevant from the System Context and are therefore not shown in
Figure 5.89. This whole idea of Context is central to the ACRE approach to
requirements engineering discussed in much more detail in Chapter 9. Note also the
use of the «constrain» dependency in Figure 5.90.

As discussed in Section 5.5.9.1 a use case diagram does not have to show any
actors or contain a system boundary. An example of such a use case diagram is
shown in Figure 5.91.

Figure 5.91 is focusing on Use Cases related to the use of different fluids in the
stunt and to the computer control of the pump used in the stunt. Two specific types
of fluids are identified and are shown via the use of the generalisation relationship
between ‘Allow stunt to be performed using different fluids’ and ‘Perform stunt
using concrete’ and ‘Perform stunt using custard’. A Use Case representing special
case behaviour ‘Provide computer-controlled emergency fluid removal’ extends the
standard ‘Fluid to be pumped into hole under computer control’ Use Case.

When developing use case diagrams there are a number of common patterns
that should be looked for as an aid towards the production of good use case

Provide

computer-controlled

emergency fluid

removal

Perform coffin

escapology stunt

Allow stunt to be

performed using

different fluids

Fluid to be pumped

into hole under

computer control

Perform using

concrete
Perform using

custard

«include»«include»

«extend»

uc [Package] Requirements [Coffin Escapology Stunt – Focus on Fluids and Computer Control]

Figure 5.91 Example use case diagram without system boundary or actors
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diagram. This section concludes with a look at these patterns, which cover the
following possible situations:

● Use case at too high a level
● Actor at too high a level
● Repeated actors
● Something missing

Each of these four patterns is discussed in the following sub-sections.

Use case too high-level
One common mistake is to model use cases at too high a level. Consider Figure 5.92.

Figure 5.92 shows a use case, ‘Use Case1’, that is linked to all actors. Such a
pattern may indicate that the use case is at too high a level and that it should be
decomposed further, making use of «include» and «extend» dependencies to link it
to more detailed use cases. The actors would then be associated with the more
detailed use cases rather than all being connected to the top-level use case.

Actor too high-level
Another common error is to model actors at too high a level. Consider Figure 5.93.

Figure 5.93 shows an actor, ‘Actor2’ (drawn with a surrounding box for
emphasis), that is connected to every use case. Such a pattern may indicate that:

● The actor is at too high a level and that it should be decomposed further.
● The diagram has been drawn from the point of view of the Stakeholder Role

represented by that actor.

System

Actor1

Actor2

Actor3

Actor4

Actor5

Use Case1

Use Case2

Figure 5.92 Use case too high level
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If the actor is at too high a level, then it should be decomposed further and replaced
on the diagram with the new actors. These actors will then be associated with the
relevant use cases rather than being associated with all the use cases.

If the diagram has been drawn from the point of view of the Stakeholder Role
represented by that actor, that is the use case diagram is drawn for that Stakeholder
Role’s Context, then the actor should be removed from the diagram. The system
boundary should indicate that the diagram is drawn for that Stakeholder Role’s
Context.

Repeated actors
Sometimes a pattern is seen in which two or more actors are connected to the same
use cases. Figure 5.94 shows this.

Here we see two actors, ‘Actor1’ and ‘Actor 2’ (drawn with a surrounding box
for emphasis), that are both connected to the same three use cases. This pattern may
indicate that the actors are representing the same Stakeholder Role. Alternatively, it
may indicate that instances of Stakeholder Roles have been used (check for names
of specific people, organisations, standards, etc.). Instances should never be used.
Remember that a Stakeholder Role represents the role of something that has an
interest in the Project, not an actual instance involved. Any duplicate actors should
be removed from the diagram.

Something missing – use cases without actors and actors without use cases
What does it mean if we have use cases or actors that are not related to anything?
Consider Figure 5.95.

Figure 5.95 has a use case, ‘Use Case5’, and an actor, ‘Actor5’, that are not
connected to anything else on the diagram.

System

Actor1

Actor2

Actor3

Actor4

Actor5

Use Case1

Use Case2

Use Case3

Use Case4

Figure 5.93 Actor too high level
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System

Actor1

Actor2

Actor3

Actor4

Use Case1

Use Case2Use Case3

Use Case4

Use Case5

Figure 5.94 Repeated actors

System

Actor2

Actor1

Actor4

Actor5

Actor3

Use Case5

Use Case1

Use Case4

Use Case3

Use Case2

Figure 5.95 Something missing? Basic use case diagram checks
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‘Use Case5’ has no actors associated with it. There are four possible reasons
for this:

1. The use case is not needed and should be removed from the diagram.
2. There is an actor (or actors) missing that should be added to the diagram and

linked to the use case.
3. There is an internal relationship missing; the use case should be linked to

another use case.
4. There is an external relationship missing; the use case should be linked to an

existing actor.

‘Actor5’ has no use cases associated with it. There are three possible reasons for this:

1. The actor is not needed and should be removed from the diagram.
2. There is a use case (or use cases) missing that should be added to the diagram

and linked to the actor.
3. There is a relationship missing; the actor should be linked to an existing use

case.

These two errors are very common, particularly when creating initial use case
diagrams, and should be checked for on all use case diagrams.

5.5.9.3 Summary
Use case diagrams show the highest level behaviour of a system and are used to
show Needs (Requirements, Concerns, Goals or Capabilities) in Context, along
with the Stakeholder Roles involved and the relationships between them. This is the
central theme of the ACRE approach described in Chapter 9, realised in its
Requirement Context View.

Care is needed when producing use case diagrams. They should not be over-
decomposed so that they start to look like data flow diagrams and become diagrams
detailing the design of the System as they exist to show high-level behaviour as
Needs in Context. There are a number of common patterns that should be looked
for when producing use case diagrams, which can help you to spot when use cases
or actors are at too high a level, where an actor has been repeated or where there is
something missing from a use case diagram.

5.6 Auxiliary constructs

The SysML specification defines a number of auxiliary constructs, among which is
included the allocation. The allocation will be described here. Some other exam-
ples of auxiliary constructs are given in Chapter 13. For full information on the
other auxiliary constructs, see Reference 1.

An allocation is used to show how various model elements are allocated to and
allocated from other elements. Such allocations may be used to show deployment
or more generally to relate different parts of a model as the design progresses.

Figure 5.96 shows the partial meta-model for allocations and shows that an
‘Allocation’ can be represented in two ways: as an ‘Allocation Compartment’
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(either an ‘allocatedFrom Compartment’ or an ‘allocatedTo Compartment’) on an
existing graphic node or as an ‘Allocation Dependency’ between model elements,
with each end of such a dependency equivalent to one of the two types of
‘Allocation Compartment’.

Rather than showing an ‘Allocation Compartment’ as a compartment of the
relevant model element, it can also be shown using a callout note notation. This can
be seen in Figure 5.97, where the notation used for allocations is shown.

Allocations can be shown on diagrams other than the block definition diagram
but the notation used is essentially the same. The following diagrams show
examples of the notation in use.

«block»

Block1

allocatedFrom

«Activity» Activity1 ()

allocatedTo

«block» Block2

«block»

Block2

«Allocate»

Allocation dependency

Allocations shown as compartments

Allocations shown as call-out note

allocatedFrom

«Activity» Activity1 ()

allocatedTo

«block» Block2

Figure 5.97 Summary of allocation notation on a block definition diagram

11

Allocation

«graphic node»

Allocation 

Compartment

«graphic node»

allocatedFrom 

Compartment

«graphic node»

allocatedTo 

Compartment

«graphic path»

Allocation 

Dependencyrepresents end of

Figure 5.96 Partial meta-model for allocations
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Figure 5.98 shows allocation of the ‘Escapologist’ to the ‘Coffin’ and the
‘Coffin’ to the ‘Hole’ using the allocation dependency notation. The block
definition diagram here is essentially being used a kind of deployment diagram
(a diagram type present in UML but rather inexplicably, given the nature of systems
engineering, absent from the SysML).

Figure 5.99 shows exactly the same information as is shown in Figure 5.98, but
makes use of both allocation compartments and an allocation dependency. Note

bdd [Package] System [Escapologist and Coffin Deployment – Alternate Notation]

«block»

Escapologist

«block»

Coffin

allocatedTo

«block» Hole

«Allocate»

Figure 5.99 Example block definition diagram showing allocation using
compartments

bdd [Package] System [Escapologist and Coffin Deployment]

«block»

Hole

«block»

Coffin

«block»

Escapologist

«Allocate»

«Allocate»

Figure 5.98 Example block definition diagram showing allocation using a
dependency
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also that this diagram is lacking the ‘Hole’ block found in Figure 5.98. The block
and the relationship to it can be deduced from the allocatedTo compartment in the
‘Coffin’ block.

Finally, we can go very minimalist, as in Figure 5.100 where everything is
done using allocation compartments. The diagram also shows how these allocation
compartments would be shown using the callout note notation. In a ‘‘real’’ model,
both notations would not be shown on the same diagram.

5.7 Summary

This chapter has described each of the nine SysML diagrams in turn, along with
some of the auxiliary notation, and has provided examples of their use.

In order to conclude this chapter, there are a few pieces of practical advice that
should be borne in mind when modelling using the SysML:

● Use whatever diagrams are appropriate. There is nothing to say that all nine
diagrams should be used in order to have a fully defined System – just use
whatever diagrams are the most appropriate.

● Use whatever syntax is appropriate. The syntax introduced in this book
represents only a fraction of the very rich SysML language. It is possible to
model most aspects of a system using the syntax introduced here. As you
encounter situations that your known syntax cannot cope with, it is time to
learn some more. There is a very good chance that there is a mechanism there,
somewhere, that will.

● Ensure consistency between models. One of the most powerful aspects of the
SysML is the ability to check the consistency between diagrams, which is often
glossed over. Certainly, in order to give a good level of confidence in your
models, these consistency checks are essential.

bdd [Package] System [Escapologist and Coffin Deployment – Alternate Notation – Minimal]

«block»

Coffin

allocatedFrom

«block» Escapologist

allocatedTo

«block» Hole «block» Escapologist

«block» Hole

«block» Escapologist

«block» Hole

«block»

Coffin

allocatedFrom

allocatedTo

Figure 5.100 Example block definition diagram showing allocation – the
minimalist approach
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● Iterate. Nobody ever gets a model right the first time, so iterate! A model is an
evolving entity that will change over time and, as the model becomes more
refined, so the connection to reality will draw closer.

● Keep all models. Never throw away a model, even if it is deemed as
incorrect, as it will help you to document decisions made as the design has
evolved.

● Ensure that the system is modelled in both structural and behavioural aspects.
In order to meet most of the above criteria, it is essential that the system is
modelled in both aspects, otherwise the model is incomplete.

● Ensure that the system is modelled at several levels of abstraction. This is one
of the fundamental aspects of modelling and will help to maintain consistency
checks.

Finally, modelling using the SysML should not change the way that you work, but
should aid communication and help to avoid ambiguities. Model as many things as
possible, as often as possible, because the more you use the SysML, the more
benefits you will discover.
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