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Abstract—In social networks, where users send messages
to each other, the issue of what triggers communication
between unrelated users arises: does communication between
previously unrelated users depend on friend-of-a-friend type of
relationships, common interests, or other factors? In this work,
we study the problem of predicting directed communication
intention between two users. Link prediction is similar to
communication intention in that it uses network structure for
prediction. However, these two problems exhibit fundamental
differences that originate from their focus. Link prediction
uses evidence to predict network structure evolution, whereas
our focal point is directed communication initiation between
users who are previously not structurally connected. To address
this problem, we employ topological evidence in conjunction to
transactional information in order to predict communication
intention. It is not intuitive whether methods that work well for
link prediction would work well in this case. In fact, we show in
this work that network or content evidence, when considered
separately, are not sufficiently accurate predictors. Our novel
approach, which jointly considers local structural properties of
users in a social network, in conjunction with their generated
content, captures numerous interactions, direct and indirect,
social and contextual, which have up to date been considered
independently. We performed an empirical study to evaluate
our method using an extracted network of directed @-messages
sent between users of a corporate microblogging service, which
resembles Twitter. We find that our method outperforms state
of the art techniques for link prediction. Our findings have
implications for a wide range of social web applications, such
as contextual expert recommendation for Q&A, new friendship
relationships creation, and targeted content delivery.

Keywords-social networking analysis; corporate microblog-
ging; communication intention; social factors; prediction;

I. INTRODUCTION

Link prediction refers to the problem of predicting the

existence of a link between two entities in an entity re-

lationship graph, by calculating entity similarity based on

entity attributes [1] and the graph structure [2]–[4]. Social

link prediction in particular has gained a lot of attention,

since it can assist users into discovering and making new

friends, improving their overall user experience. On the

other hand, using link prediction, companies exploit social

networking sites for monetization, by selectively expanding

their targeted user base and by triggering targeted advertising

campaigns.

Link prediction in social networks is a challenging prob-

lem, as social networking data is inherently noisy and het-

erogeneous. Overall, social networking users provide scarce

information about their interests in their profiles, which are

often incomplete and obsolete. Further, user-generated pub-

lished content mostly comprises of free, unstructured text,

which often does not adhere to grammatical and syntactical

rules, contains slag terms and abbreviations, and is often

of restricted length (e.g. 140 characters in Twitter). Hence,

social networking content includes useful information for

social link prediction, but this information is not well struc-

tured, and is often misleading or ambiguous. For this reason,

most social link prediction approaches calculate graph-based

proximity scores [2], [3], asserting that the “closer” two

nodes are in the social graph, the more likely they are to

become linked in the future. Liben-Nowell et al. [3] showed

that the Adamic/Adar metric performs best in scientific co-

authorship networks, while Backstrom et al. [5] introduced

a supervised link prediction approach based on supervised

random walks.

While social networking data present challenges in social

link prediction, they also exhibit a wealth of information

to be used for that cause. Social networking data, often

have some sort of “context” associated with them, including

user provided annotations (e.g. description, hashtags) and

system information (e.g. upload time). “Individual features

might be noisy or unreliable but collectively they provide

revealing information” [6] about users. Schifanella et al. [1]

showed that strong correlations exist between annotations

and social proximity, and used semantic similarity between

user annotations as statistical predictors of friendship links.

Network proximity metrics measure the likelihood of an

interaction between two users, regardless of the existence of

a path between them. Proximity metrics used in prior work

include neighborhood based methods and methods based on

the ensemble of all paths [3]. The greater the number of

paths connecting two users, the closer they are considered

to be in the network. However, information spread in social

networks depends, not only on the underlying network

structure, but also on the information itself, and the nature

of the process by which nodes interact [7]. In social media,

users broadcast information to all their neighbors (i.e. one-



to-many interactions) or specific groups (e.g. groups of

friends in Facebook or circles in Google+), whereas public

status updates in social networks may be distributed to every

single user (i.e. broadcast). One-to-one interactions exist in

the form of directed messages between users (e.g. @reply

messages in Twitter).

We propose a technique that takes into account both struc-

tural properties of the social network and user interactions

(both explicit and implicit) in order to predict initiation of

communication between nodes. We compare our approach

to state of the art methods used in linked prediction on a

corporate microblogging service, which resembles Twitter.

Our problem differs from social link prediction. Instead of

trying to give an answer to the classification problem of

whether an edge between users u and v exists or not, we

are trying to understand the factors behind the intension of

user u to sent a direct message to user v. An edge represents

a conversation between users rather than friendship and its

directionality matters; it depends on the user who starts the

conversation and is asymmetric (e1 = (u, v) 6= e2 = (v, u)).
Further, each edge is created under specific context (e.g. a

message sent under a specific topic in group g1, using a set

of hashtags St1 ). It is not intuitive whether methods that

work well for link prediction would work as well in this

setting.

In this paper we make the following contributions:

• We define the communication intention prediction prob-

lem for social networks.

• We propose a new framework for proximity calculation

in directed graphs, which jointly considers local struc-

tural properties of the nodes along with direct and indi-

rect, semantically enriched interactions between them.

• We evaluate our approach on a @replies network, in-

ferred from a corporate microblogging service, demon-

strating that communication intention prediction can be

accurately performed.

The paper is organized as follows. We first discuss

relevant prior work. Next, we introduce our methodology

for representing users within a social network, and we

describe our algorithm for computing semantic similarity

between users. We then discuss in detail the results of a

quantitative experimental study, designed to discover which

factors trigger communication between unrelated users, and

measure how the importance of such factors changes with

respect to different users.

II. RELATED WORK

The problem of link prediction for social networks has

been well studied. Liben-Nowell et al. [3] explored several

similarity metrics for social link prediction. Markines et

al. [8] systematically analyzed semantic similarity measures

based on folksonomies. Instead, we are using an augmented

social graph, into which many different object types coexist

simultaneously. Schifanella et al. [1] utilized vocabulary

overlap between users as indicator of user connectivity in

Flickr. We are extending this hypothesis to other aspects of

users activity, semantically enriching them, and considering

them in conjunction to local network structure.

Jacovi et al. [9] recommended “interesting” people us-

ing prior evidence of user interests in terms of following

and tagging. Chen et al. [10] recommended new friends,

based either on social or content similarity. Their approach

required at least one prior interaction between users and

employed simple keyword matching schemes. Instead, we

do not assume prior relationships between users. Further, we

are trying to predict communication, which does not entail

friendship (and vice versa), and to understand the factors that

trigger such communication, based on semantically enriched

content and semantic similarity, in conjunction to network

proximity.

Different approaches for social link prediction based

on random walks include [5], [11], [12]. Such techniques

mainly focus on the social network structure and are compu-

tationally expensive. Fire et al. [13] addressed the computa-

tional cost, using efficient topological features. Probabilistic

inferencing approaches include [14], [15], but also exhibit

high computational cost. Machine learning approaches in-

clude [16]–[18]. All such approaches however do not exploit

the full extend of information available in a social network.

Sadilek et al. [19] used network structure, content, and

user location to infer social ties. Their probabilistic model

relies on a dense representation of all possible, symmetric

friendships, and requires training. Instead, we are focusing

on asymmetric, directed communication. Our approach does

not require training to “learn” probability distributions for

every node pair, but can dynamically keep track of changes

and recompute pairwise similarities incrementally, when

necessary.

Perhaps the most close work to ours is [20]. Their focus,

however, is on information diffusion around topics for given

time slice, having past communication evidence. Sousa et al.

[21] investigated factors that motivate users to reply to other

users in Twitter, whereas our focal point is to determine what

motivates users to initiate a conversation with others.

III. COMMUNICATION INTENTION PREDICTION IN

MICROBLOGGING SITES

Twitter is a social networking site which allows users to

share their status updates as well as interact with others by

sending short text messages. Users can follow other people

and have followers themselves. The following relationship in

this case may not be reciprocal. Users can “retweet” posts,

make use of #hashtags, and directly address a message to

another user (‘@’ followed by a username). Such messages

are referred to as @replies. In this setting, users interact

either directly or indirectly. Users are explicitly connected

when there is a “following” relationship (social link) be-

tween them. Users are implicitly connected through indirect



activities, such as common use of #hashtags, retweets, and

@replies. We can infer a directed network from @replies

messages, representing users’ interaction flow [21].

In this paper we aim to understand what motivates com-

munication between users. In particular, we seek to answer

the following question: “What makes people sent @reply

messages to strangers?”. Our hypothesis is that information

on the @reply network can help predict users’ intention to

communicate in microblogging services. To this end, we

consider a directed social graph G = (V,E), where each

node u ∈ V represents a user, and an edge e = (u, v) ∈ E
exists if and only if user u has sent at least one @reply

message to user v. Each edge may have a weight wuv

attached to it, such that wuv equals the frequency of replies

sent from user u to user v. We have chosen this intuitive

definition for edges so as to represent the “transer” of content

from user u to user v when user u sends user v a @reply

message. An undirected edge euv between users u and v if

either user sent a message to the other would not capture

the semantics of directed communication, which may or may

not be reciprocal.

We formulate the communication intention prediction

problem as follows:

Communication Intention Prediction Problem Defini-

tion. Given G′ = (V ′, E′), a subgraph of G consisting of all

nodes in G (V ′ ≡ V ) and a subset of edges in G (E′ ⊂ E),

output a ranked list L of edges (links), not present in G′,

that are predicted to appear in G, such that E′ ∪ L ≡ E.

IV. USER REPRESENTATION

Social networks provide a variety of contextual features,

that are dependent on the type of the resource (e.g. photos

may be geotagged). We consider a representation of mi-

croblogs using each feature according to its type, adapting

the definition of event from [22]. Using this definition, each

microblog is characterized by a set of attributes, both textual

and non-textual, some of which are unique for each post,

while others may be missing or have multiple instances. For

example, each post has exactly one date attached to it. Other

features, such as hashtags, may be arbitrarily many.

Textual Features: These features include raw textual

content (bag-of-words), as well as user provided hashtags

and group participation. We formally represent raw textual

content using tf.idf weight vectors [23] and then utilize the

cosine similarity metric to compute similarity between such

vectors. We clean the text by performing stemming and basic

stop-word elimination. The use of cosine similarity lacks

semantics and ignores semantic associations between terms

with similar meaning but poor lexical similarity. Hashtags

are meant to be a selective set of highly descriptive keywords

of the content of microblogs. Groups are indicative of com-

munities of interest. Stemming and/or stop-word removal,

and cosine similarity do not seem appropriate for them,

hence we are calculating semantic similarity for these facets.

Figure 1. Augmented social graph.

Temporal Features: These features regard the date and

time a post was made. We represent date values as the

number of minutes elapsed since the Unix epoch.

A user can be modeled as a union of her connections

and her content, based on the features described above.

Using this user model, we form an augmented, directed

social graph, presented in Figure 1. In the rest of this

section we describe in detail our approach, which consists of

calculating users proximity through aggregation over their

microblogs similarity and similarity with respect to their

network neighborhood.

A. Semantic Similarity of Textual Features

To compute semantic similarity between hashtags (simi-

larly for groups), we utilize WordNet - a lexical database

for English [24]. The WordNet toolkit permits search of

relevant concepts in terms of conceptual, semantic and

lexical relations: a) Synonyms: terms that denote the same

concept (e.g. “car” - “automobile”); b) Hypernyms: more

general concepts (e.g. “furniture” is a hypernym of “bed”);

and c) Hyponyms: more specific concepts (e.g. “bed” is a

hyponym of “furniture”).

Semantic Similarity of Concepts: Given two concepts a
and b, let Sa denote a set of terms (specified below) that

describe a, and Sb a set of terms that describe b. The

similarity s(a, b) between a and b is then defined as the

Jaccard index:

s(a, b) = s(Sa, Sb) =
|Sa

⋂

Sb|
|Sa

⋃

Sb|
, (1)

where |·| is set cardinality,
⋃

is set union, and
⋂

denotes set

intersection. It holds that 0 ≤ s(a, b) ≤ 1, and s(a, b) = 1
if Sa and Sb are identical, and s(a, b) = 0 if they do not

share any terms at all. We use this similarity measure, which

has been found to be a good trade-off between simplic-

ity and performance [25], to calculate similarity between

textual concepts a and b. The system returns all synonym

concepts of a, denoted with Sa, as well as all synonym



Figure 2. Example of hashtag hierarchy.

concepts of b, denoted as Sb. We define the synonym-based

similarity between concepts a and b as ss(a, b) = s(a, b) =
s(Sa, Sb). Similarly, we define hypernym-based similarity

as sh(a, b) = s(a, b) = s(Ha, Hb) and hyponym-based

similarity as shp(a, b) = s(a, b) = s(Hpa, Hpb).
The semantic similarity between two hashtags (same for

groups) a and b can then be computed as the weighted sum

of the measures described above. This metric however does

not discriminate between cases where hashtags belong to the

same subtree as shown in Figure 2 (e.g. t2 is a hypernym

of t1). To resolve this issue, we compute similarity between

the union of annotations for each hashtag. To account for

lexical similarity between hashtags a and b, we consider their

Levenshtein similarity. We use the max operator to select the

highest similarity, either semantic or lexical. Formally, we

define the semantic similarity between two hashtags a and

b (sg for groups) as follows:

stg(a, b) = max {LevenshteinSimilarity(a, b),

wsss(a, b) + whsh(a, b) + whpshp(a, b),

s(Sa ∪Ha ∪Hpa, Sb ∪Hb ∪Hpb)} ,
(2)

where ws = wh = whp = 1/3. We chose symmetric

weights, since we did not find any particular reason to

weight differently the similarity contribution of synonyms,

hypernyms, and hyponyms.

Textual Similarity: We compute textual similarity

stx(x, y) between two bag-of-words x and y, represented

as tf.idf weight vectors, using cosine similarity [23].

B. Date Similarity

We compute similarity between dates d1 and d2 as fol-

lows:

sd(d1, d2) =

{

0 if |d1 − d2| ≥ Td

1− |d1−d2|
Td

otherwise
, (3)

where Td = 365. In other words, if d1 and d2 are more than

one year apart, we define their similarity as zero. Otherwise,

we define their similarity as one minus their difference in

days.

C. Time Similarity

We compute similarity between time instances t1 and t2
as follows:

st(t1, t2) =

{

0 if |t1 − t2| ≥ Tt

1− |t1−t2|
Tt

otherwise
, (4)

where Tt = 86400. In other words, if t1 and t2 are more than

one day apart, we define their similarity as zero. Otherwise,

we define their similarity as one minus their difference in

seconds.

Overall, we compute similarity between timestamps x and

y as sdf (x, y) = wdsd(xd, yd) +wtst(xt, yt), where sd(., .)
is calculated using Equation 3, st(., .) is calculated using

Equation 4, and wd + wt = 1. Different Td and Tt values

may yield optimal results for different datasets. We leave

users the ability to set these thresholds according to their

respective needs.

D. Feature Set Similarity

We use a variation of Hausdorff point set distance measure

[26] to calculate similarity between two sets of features A :
{a1, a2, ..., am} (e.g. X’s hashtags) and B : {b1, b2, ..., bn}
(e.g. set of hashtags associated with post Y ), as follows:

SH(A,B) =
1

|A|

|A|
∑

k=1

max
i

{sim(ak, bi)}, (5)

where sim(ak, bi) is any similarity measure on any two set

elements ak and bi. This is the average of the maximum

similarity of features in set A with respect to features in

set B [22]. Like the original Hausdorff distance metric, this

similarity measure is asymmetric with respect to the sets:

SH(A,B) 6= SH(B,A).

E. Content Proximity

To compute similarity between two posts p1 and p2
we compute the similarity between each of their attributes

respectively. Combining all similarity measures described

above in a weighted sum, we get the similarity between

two posts p1 and p2 as follows:

S(p1, p2) = wgsg(p1g , p2g ) + wtgSH(p1tg , p2tg )+

wtxstx(p1, p2) + wdfsdf (p1, p2),
(6)

where wdf + wg + wtg + wtx = 1. In our experiments

we consider numerous weighting schemes and report our

observations.

The similarity measure between two users u and v with

respect to their microbloggs can then be computed using the

modified Hausdorff distance as follows:

SC(u, v) =
1

|up|

|up|
∑

k=1

max
i

{S(upk
, vpi

)}, (7)

where up denotes the set of user u’s microbloggs. Our

content proximity metric is easily extensible to other types



of resources, such as documents, videos etc., that have

contextual features attached to them.

F. Network Proximity

To compute similarity between two users with respect to

their network proximity we considered numerous proximity

methods proposed in the literature. For simplicity and re-

duced complexity, we chose to use a modification of the

common neighbors metric. We define network proximity

between users u and v as:

SN (u, v) = s(Γu,Γv) =
|Γu ∩ Γv|

|Γu|
, (8)

where Γu denotes the set of u’s neighbors. Normalizing by

|Γu|, SN becomes asymmetric with respect to users. This

way closeness is calculated on the premises of the percentage

of common neighbors instead of the absolute number, with

higher percentage indicating greater intersection of common

interests.

G. User Similarity

We calculate user similarity as a weighted function of

content and network proximity. We define similarity between

two users u and v as:

S(u, v) = λSC(u, v) + (1− λ)SN (u, v), (9)

where λ controls the tradeoff between content and network

proximity.

For our prediction problem, we first construct the aug-

mented social graph G(V,E). Given a user u, we compute

user similarity in a top down fashion for all facets, for all

u’s posts with respect to all other users in the network

that do not belong in the set of user u’s direct contacts,

using Equations 7-9. To reduce complexity, we can restrain

similarity calculation to users being up to distance d from

user u, instead of considering the complete user corpus.

V. DATA SET

Our dataset is a complete snapshot (June 2010 - Au-

gust 2011) of a corporate micro-blogging service, which

resembles Twitter, consisting of 4,213 unique users, who

have posted 16,438 messages in total, distributed over 8,139

threads and 88 groups. Out of all messages, 8,174 are

broadcast (e.g. status updates) and 8,264 are @replies. The

number of unique hastags is 637. The corporate micro-

blogging site does not impose any restrictions on the way

people interact or who they chose to follow, much similar

to Twitter. We inferred a network based on the @replies

messages, represented as a directed graph G = (V,E),
where each node u ∈ V represents a user, and each edge

e = (u, v) ∈ E exists if and only if user u has sent

at least one @reply message sent to user v. Of the 4,213

total users, 582 belong in the largest connected component,

contributing 11,684 messages and sharing 3,773 edges. We

did not impose restrictions on the minimum number of

neighbors or messages per user, resulting in a variety of

users’ activity ranging from a minimum of one message per

user to over 400 messages maximum.

VI. DATA CHARACTERISTICS

The existence of edge eij does not guarantee that the

reciprocal edge eji also exists. Hence, the relationship is

not symmetric. If user A sends a message to user B, the

edge eAB is created, but not vise versa. We call user B

the “follower” of user A. If B also replies to A, then they

become each other’s “mutual followers”. Figure 3 shows the

scatter plot of the number of followees versus the number

of followers. The points are scattered around the diagonal,

indicating equal numbers of followers and followees. The

cumulative distribution of the out-degree to in-degree ratio

exhibits high correlation between in-degree and out-degree,

which can be explained as a result of symmetric links being

created due to the tendency of users to reply back when they

receive a message from other users.

We further examine the probability distributions of the

number of messages nm and the number of replies nr per

user, the distribution of the number of groups ng to which

a post belongs and the probability of finding a user with a

number nt of distinct hashtags in his vocabulary, as well

as the total number t of hashtag assignments per user (a

hashtag used twice is counted twice) and the total number g
of group related messages per user (the number of messages

sent to a group). More precisely, if fu(t) is the frequency

of hashtag t being used by user u, then the total number of

hashtag assignments of user u is given by: tu =
∑

t fu(t).
Similarly, if fu(g) is the number of times user u has sent

a message to group g (either privately to another group

member or broadcast to the group), then the total number of

group messages of user u is given by: gu =
∑

g fu(g). All

activities show behavior consistent with power law networks;

the majority of users show small activity patterns with few

nodes being significantly more active. All distributions are

broad, indicating that the activity patterns of users are highly

heterogeneous.

A. Correlations Between Features and the Network

We now examine correlations between user activities

and the structure of the @replies network. Specifically, we

investigate if there is a connection between the number

of neighbors a user has and the activity patterns of such

user. We characterize the average activity of users with k
neighbors (we consider in-degree and out-degree separately)

in the @replies network using the following quantities: (i) the

average number of messages nm of users with k neighbors,

(ii) the average number of replies nr of users with k
neighbors, (iii) the average number of distinct groups ng

(similarly for total number of group messages) of users with

k neighbors, (iv) the average number of distinct hashtags
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Figure 3. Scatter plot of the number of followers and the number of
followees.

nt (similarly for total hashtag assignments) of users with k
neighbors. For example,

nm(k) =
1

|u : ku = k|
∑

u:ku=k

nm(u). (10)

Figure 4 shows the probability distributions of such quan-

tities. All activities have an increasing trend for increasing

values of k (both for in-degree and out-degree). Large

fluctuations can be observed for large values of k due to

the fewer highly connected users over whom the averages

are performed. Notably, the average number of messages and

replies are very well correlated to the number of neighbors,

as is the average number of distinct groups. The average

number of (distinct) hashtag assignments exhibits more

heterogeneity than the other measures, but overall the trend

is increasing with increasing values of k. Users with many

contacts but using very few hashtags and sending very few

group messages can however be observed.

B. Homophily as a Function of Network Proximity

We examine user similarity in terms of hashtag usage,

with respect to their distance in the @replies network. We

argued earlier that users of the corporate micro-blogging

service mostly hashtag their own content. This observation

along with the personal character of hashtaging make us

anticipate that there will be no global hashtag vocabulary

across users, commonly found in social bookmarking sites

[27], [28], or if such a vocabulary exists, it will be extremely

incoherent. To test the existence of a globally shared vocab-

ulary, we selected pairs of users at random and measured

the number of their shared hashtags, which, on average is

≈ 1.001.

Even though random pairs of users don’t have common

hashtags, adjacent users in social networks tend to share

common interests, a property known as homophily [29],

[30] or assortative mixing [31]. We measure user homophily

10
0

10
2

10
0

10
1

10
2

10
3

(a)

 

 

n
m

in

n
m

out

10
0

10
2

10
0

10
1

10
2

10
3

 

 

(b)

n
r

in

n
r

out

10
0

10
2

10
0

10
1

10
2

(c)

 

 

n
g

in

n
g

out

10
0

10
2

10
0

10
1

10
2

10
3

(d)

 

 

g
in

g
out

10
0

10
2

10
0

10
1

10
2

(e)

 

 

n
t

in

n
t

out

10
0

10
2

10
0

10
1

10
2

10
3

(f)

 

 

t
in

t
out

Figure 4. From left to right and top to bottom, average number of (a)
messages nm, (b) replies nr , (c) distinct groups ng and (d) groups g, (e)
distinct hashtags nt and (f) total hashtag assignments t of users having k
neighbors in the @replies network.

with respect to hashtags as a function of users’ distance

in the @replies network. We regard hashtag assignments

of user u as a feature vector, whose elements correspond

to hashtags and whose entries correspond to frequencies of

hashtag usage for user u. Hence, the normalized similarity

between two users u and v with respect to their hashtag

vectors, σhashtags(u, v) can be computed as follows:

σhashtags(u, v) =

∑

t

fu(t)fv(t)

√
∑

t

fu(t)2
∑

t

fv(t)2
, (11)

σhashtags(u, v) is equal to 0 if users u and v have no

hashtags in common, and 1 if they have used exactly the

same hashtags. We further define the normalized similarity

between two users u and v with respect to their distinct

hashtag usage, σUhashtags
(u, v) =

∑

t

δtuδ
t
v

√
nt(u)nt(v)

, where nt(u)

is the total number of distinct hashtags of user u and δtu = 1
if user u has used hashtag t at least once, and 0 otherwise.
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Figure 5. Top: Average number of shared hashtags nst, σhashtags(u, v),
and σUhashtags

(u, v) of two users as a function of their distance d in the

network. Bottom: Probability distribution of the number of shared hashtags
nst of two users being at distance d on the network, for d = 1, 2, 3.

To compute averages of the aforementioned similarities

we performed an exhaustive investigation of the @replies

network up to distance equal to the network diameter.

Figure 5 demonstrates the dependency of user similarity

on distance, by showing the average number of shared

hashtags and the corresponding average cosine similarities

of two users as a function of d. The average number

of shared hashtags remains almost constant for d ≤ 6,

after which point it drops rapidly1. High hashtag alignment

is observed between neighbors for greater distance than

traditional online social networks [1], due to the fact that

inside the corporate microblogging site users exhibit more

focused interests aligned with their discipline, day to day

responsibilities and ongoing projects.

VII. EVALUATION

We demonstrate the effectiveness of our framework by

removing some of the edges in the @replies network and

recommending the links based on the pruned graph. We use

four-fold cross validation by randomly dividing the set of

edges into four partitions, use one partition for prediction,

and retain the links in the other partitions. We randomly

sample 100 users and recommend the top-k links for each

user. We use precision, recall and mean reciprocal rank

(MRR) for reporting accuracy. We measure precision at k
as: P@k = 1

|S|

∑

p∈S
Nk(p)

k
, where S is the set of sampled

users and Nk(p) is the number of truly linked persons in

the top-k list of user p. Similarly, we measure recall at

k as R@k = 1
|S|

∑

p∈S

|Fp∩Rp|
|Fp|

, where Fp denotes the

truly linked user set of person p and Rp denotes the set

of recommended users of person p (|Rp| = k). Finally, we

1We got similar results when we examined users homophily with respect
to groups as a function of their distance in the @replies network

Table I
WEIGHTING SCHEMES.

Metric wtx wtg wg wdf wd wt

SS Uniform 0.25 0.25 0.25 0.25 0.5 0.5

SS Tags 0.0 1.0 0.0 0.0 0.5 0.5

SS Groups 0.0 0.0 1.0 0.0 0.5 0.5

SS Text 1.0 0.0 0.0 0.0 0.5 0.5

SS Time 1 0.0 0.0 0.0 1.0 0.8 0.2

SS Time 2 0.0 0.0 0.0 1.0 0.5 0.5

SS Time 3 0.0 0.0 0.0 1.0 0.2 0.8

SS Mix 1 0.2 0.3 0.4 0.1 0.8 0.2

SS Mix 2 0.2 0.5 0.2 0.1 0.8 0.2

SS Mix 3 0.3 0.45 0.1 0.15 0.8 0.2

measure MRR at k as MRR@k = 1
|S|

∑

p∈S
1

rankp
, where

rankp denotes the rank of the first correctly recommended

link of user p.

We compare our approach against four baseline ap-

proaches described below:

• Random Selection: Randomly select a pair of users

and create a link between them.

• Shortest Distance: Create a link between user u and

the user v closest to him (length of shortest path).

• Common Neighbors: σ(u, v) = |N(u)
⋂

N(v)|,
where N(u) is the set of neighbors of user u in the

social network.

• Shared Vocabulary: Following [32] and our analysis

on user homophily as a function of network proximity,

we regard the vocabulary of a user as a feature vector

whose elements correspond to hashtags and whose en-

tries are the hashtag frequencies for that specific user’s

vocabulary. To compare the hashtag feature vectors of

two users, we use the standard cosine similarity defined

in Equation 11.

We use SS Uniform to denote our method using a uniform

weighting scheme. We experiment with multiple weighting

schemes, resulting in numerous variations of our approach,

shown in Table I.

A. Methods Comparison

Here we compare the accuracy of our conversation initia-

tion prediction scheme (SS Uniform) against the baselines.

Tables II and III list average precision, recall and MRR as

calculated over our four-fold cross validation experiment for

100 randomly chosen users. We indicate the best performing

baseline, against which we compute percentage lift, i.e. the

% improvement that our method achieves over the best

performing baseline.

Random selection performs the worst as expected, since

the more users and edges in the graph the tougher it becomes

to recommend correct links by random selection. Shortest

Distance also performs poorly, while Common Neighbors

perform slightly better. Even though we do not report results

for the Adamic/Adar and Katz metrics, they perform as bad

as common neighbors. This indicates that graph structure



Table II
PREDICTION PRECISION ACHIEVED BY DIFFERENT METRICS.

Metric P@1 P@5 P@10 P@20 P@50
Random 0.0070 0.0036 0.0057 0.0059 0.0048

Shortest Distance 0.0716 0.0716 0.0643 0.0492 0.0303

Common Neighbors 0.1050 0.0768 0.0637 0.0487 0.0303

Shared Vocabulary 0.0327 0.0318 0.0247 0.0193 0.0141

SS Uniform,λ = 0.8 0.162 0.109 0.089 0.066 0.039

Precision Lift % 54.29 41.93 38.41 34.14 28.71

Table III
PREDICTION RECALL AND MRR ACHIEVED BY DIFFERENT METRICS.

Metric R@1 R@10 MRR@1 MRR@10
Random 0.0020 0.0021 0.0067 0.0016

Shortest Distance 0.0269 0.0204 0.0716 0.0156

Common Neighbors 0.0321 0.0198 0.1050 0.0177

Shared Vocabulary 0.0062 0.0069 0.0327 0.0068

SS Uniform,λ = 0.8 0.162 0.283 0.162 0.25

Lift % 404.67 1287.25 54.28 1312.43

has some predictive power but is insufficient by itself

to perform well. Intuitively, close proximity due to short

@replies path does not necessarily entail a direct @reply

message to be sent. Shared Vocabulary is comparable in

accuracy to network-based metrics, even though it performs

worse overall, most probably due to the high hashtag align-

ment which is observed between neighbors for distance

d ≤ 6 in this dataset. Hence, vocabulary commonality

alone is not indicative of communication intension either, but

could potentially prove complementary to structural features.

Nonetheless, all approaches exhibit a drop in accuracy as a

function of k, which can be explained by the average degree

of nodes in our dataset. It is impossible to get more correct

results in the top-k list once the maximum value of correct

neighbors is reached.

Our approach outperforms the baselines with respect to

all accuracy metrics, often by a considerable margin, by

mediating local structural characteristics with content and

rich semantics about content’s metadata. Although average

precision achieved by our approach appears low, ranging

from 16.2% for k = 1 to 3.9% for k = 50, it is at least

an order of magnitude higher than precision achieved by

baselines. Similarly, our approach performs better in terms

of recall and MRR, where it achieves the best improvement

over the best performing baseline. Note that for k = 50,

the recall of our approach is 50%. Precision values follow

a heavy-tailed distribution, indicating a strong difficulty in

making accurate predictions for some users, while achieving

very high precision (100% or close to 100%) for others.

B. Weight Scheme Selection

There are two types of parameters in our approach: λ,

and six weighting factors (wtx, wtg , wg , wdf , wd, wt)

each controlling the significance of different facets into

the proximity calculation. Different datasets may lead to
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Figure 6. (a) Precision @1 and (b) Recall @1 as a function of λ..

different optimal values for these parameters. We obtain

the best values for our dataset by performing a grid search

over ranges of values for these parameters and measuring

accuracy on the validation set for each of the configuration

settings. Table I lists some of the weighting schemes we

experimented with.

1) Effect of Parameter λ: Parameter λ controls the trade-

off between structural proximity and content similarity. The

higher its value the more significance is given to content

similarity. A value of 0 only considers network proximity,

whereas a value of 1 only considers content similarity.

Figure 6 demonstrates the effect of parameter λ in Precision

and Recall @1, achieved by the weighting schemes presented

in Table I.

Schemes which consider only one type of content facet

(i.e. SS Uniform, SS Tags, SS Groups, SS Text, and the

three SS Time schemes) perform better than the base-

line, since they still combine network and content prox-

imity scores to make a good prediction. Interestingly, time

schemes perform better than schemes considering hastags or
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Figure 7. Impact of weighting scheme on accuracy (measured @5).

text alone, but have inferior performance than SS Groups.

This indicates that timing between replies is essential in this

dataset, an outcome which can be explained as a result of

the corporate environment, which requires prompt answers.

Among the mix schemes, SS Mix 3 performs worse,
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Figure 8. Average precision (measured@ 5) of users having k (a) posts
or (b) neighbors in the @replies network.

probably due to the discounted weighting of the group facet.

SS Mix 2, which gives more emphasis on the hashtags

and treats equally the textual and group facets is the best

performing weighting scheme, apart from when λ = 1.

In this case, the uniform scheme outperforms the rest.

Nonetheless, all weighting schemes considerably outperform

the baseline. The λ value that provides the best tradeoff

between content and network appears to be λ = 0.8 (when

also considering k ∈ {5, 10, 20, 50}).

2) Effect of Weighting Scheme: Figure 6 hints on how

weighting schemes affect accuracy overall. Figure 7 demon-

strates the effect of weighting schemes on accuracy per

user. Here, we compare accuracy@5 of three schemes,

however, our observations hold for all of our schemes, for

all top-k results. In most cases, both SS Mix 1, λ =
0.9 and SS Uniform, λ = 0.9 significantly outperform
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Figure 9. MRR (measured @ 5) as a function of λ. Different plots impose
structural or content availability restrictions. All measurements refer to
weighting scheme SS Mix 1.

SS Uniform, λ = 0.5 with respect to precision, recall

and MRR. However, in few cases SS Uniform, λ = 0.5
performs better than the other two weighting schemes. More-

over, different weighting schemes perform better for differ-

ent users (e.g. SS Mix 1, λ = 0.9 and SS Uniform,

λ = 0.9 achieve different accuracy values for same users).

This can be explained as a result of different criteria being

important for different users (i.e. content versus time, or

network proximity). Hence, personalization is imperative in

order to achieve better accuracy overall.

3) Content Availability and Structural Proximity: Figure

8a shows average precision as a function of the number

of available posts. Figure 8b shows how average precision

depends on network structure. To test the effect of these

two factors we performed an experiment where we imposed

either structural or content restrictions. Structural restrictions

implicitly impose some content restrictions since an edge

represents at least one @reply message. This is not a 1-to-

1 mapping, since many @replies between the same pair of

users refer to the same edge. The number of messages does

not necessarily reflect number of @replies since many posts

may be broadcast instead of direct messages.

Figure 9 shows MRR as a function of λ for different

restrictions. Intuitively, the greater the number of posts (or

the number of neighbors) available for a user, the greater

the statistical evidence, resulting in more accurate predic-

tions. In fact, by restricting users to have ≥ 50 posts, we

achieve on average (over all k ∈ {1, 5, 10, 20, 50}) 58.7%-

68% MRR (32.7%-37.2% precision and 34.1%-38% recall).

Considering users with ≥ 100 posts, we achieve on average

67.5%-73.5% MRR (38.9%-45.2% precision and 38.9%-

45.3% recall).

VIII. CONCLUSION

We introduced the problem of communication intention

prediction in social networks. We addressed this problem

using a novel framework that exploits both local structural

characteristics and semantically enriched, user generated

content. We tested the effectiveness of our approach on an

extracted directed network, inferred from directed @reply

messages sent between users of a corporate microblogging

service. We showed that the more statistical evidence avail-

able per user, the better accuracy we can achieve. Based on

our findings, our methodology shows great potential to help

users identify “interesting” people to initiate conversations

with, collaboratively solve problems, or simply create new

friends. Although we didn’t explore temporal effects on our

prediction problem, we found evidence that personalized

weighting schemes can greatly improve overall accuracy.

We leave this as future work, along with experimentation

on larger datasets from Twitter and Facebook.
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