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Abstract

When a researcher suspects that the marginal effect of x on y varies with z, a common
approach is to plot ∂y/∂x at different values of z along with a pointwise confidence
interval; the procedure is described in Brambor, Clark, and Golder’s 2006 article in
Political Analysis. In this paper, we demonstrate that this approach produces
statistically significant findings under the null hypothesis at a rate that can be many
times larger or smaller than advertised. Conditioning inference on the statistical
significance of the interaction term does not solve this problem. However, we
demonstrate that the problem can be avoided by exercising qualitative caution in the
interpretation of marginal effects and via methodological adjustments implemented in
our interactionTest software package.

Introduction

Much of the recent empirical work in political science has recognized that causal
relationships between two variables x and y are often changed—strengthened or
weakened—by contextual variables z. Between 2000 and 2011, 338 articles in the
American Political Science Review, the American Journal of Political Science, and the
Journal of Politics tested some form of hypothesis involving interaction. Such a
relationship is commonly termed interactive. The substantive interest in these
relationships has been coupled with an ongoing methodological conversation about the
appropriate way to test hypotheses in the presence of interaction. The latest additions
to this literature [1–7] emphasize visually depicting the marginal effect of x on y at
different values of z (with a confidence interval around that marginal effect) in order to
assess whether that marginal effect is statistically and substantively significant. The
statistical significance of a multiplicative interaction term is seen as neither necessary
nor sufficient for determining whether x has an important or statistically distinguishable
relationship with y at a particular value of z. More specifically, the statistical
significance of the product term is sufficient (in an OLS regression) for concluding that
∂y/∂x is different at different values of z, but not whether ∂y/∂x is statistically
distinguishable from zero at any particular value of z [5].

A paragraph from p. 74 of Brambor, Clark, and Golder [4] summarizes the current
state of the art:

The analyst cannot even infer whether x has a meaningful conditional effect
on y from the magnitude and significance of the coefficient on the
interaction term either. As we showed earlier, it is perfectly possible for the
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marginal effect of x on y to be significant for substantively relevant values of
the modifying variable z even if the coefficient on the interaction term is
insignificant. Note what this means. It means that one cannot determine
whether a model should include an interaction term simply by looking at the
significance of the coefficient on the interaction term. Numerous articles
ignore this point and drop interaction terms if this coefficient is insignificant.
In doing so, they potentially miss important conditional relationships
between their variables.

In short, they recommend including a product term xz in linear models where
interaction between x and z is suspected, then examining a plot of ∂y/∂x and its 95%
confidence interval over the range of z in the sample. This advice is spelled out on pp.
75-76 of Brambor, Clark, and Golder [4], where they describe the application of their
technique to a substantive example:

The solid sloping line in Fig. 3 indicates how the marginal effect of
temporally-proximate presidential elections changes with the number of
presidential candidates. Any particular point on this line is
∂ElectoralParties

∂Proximity = β1 +β3PresidentialCandidates. 95% confidence intervals
around the line allow us to determine the conditions under which
presidential elections have a statistically significant effect on the number of
electoral parties—they have a statistically significant effect whenever the
upper and lower bounds of the confidence interval are both above (or below)
the zero line.

If the confidence interval does not include zero for any value of z, one should conclude
that x and y are statistically related (at that value of z), with the substantive
significance of the relationship given by the direction and magnitude of the ∂y/∂x
estimate. It is hard to exaggerate the impact that the methodological advice given by
Brambor, Clark, and Golder [4] has had on the discipline: the article has been cited over
2800 times as of August 2015. Similar advice given by Braumoeller [3] has been cited
over 600 times in the same time frame.

In this paper, we highlight a heretofore unrecognized hazard with this procedure: the
reported α-level of confidence intervals and hypothesis tests constructed using the
procedure can be inaccurate because of a multiple comparison problem [8,9]; α denotes
the probability of rejecting the null hypothesis when the null is true. The source of the
problem is that adding an interaction term z to a model like y = β0 + β1x is analogous
to dividing a sample data set into subsamples defined by the value of z, each of which
(under the null hypothesis) has a separate probability of a false positive (i.e., falsely
rejecting the null hypothesis when the null is true). In contrast, Brambor, Clark, and
Golder [4] construct a pointwise confidence interval (typically using a two-tailed
α = 0.05); “pointwise” indicates that the confidence intervals are constructed without
considering the joint coverage of the confidence interval for all values of z. That is, the
confidence interval for each value of z assumes a single draw from the sampling
distribution of the marginal effect of interest. As a result, these confidence intervals can
either be too wide or too narrow: plotting ∂y/∂x over values of z and reporting any
statistically significant relationship tends to result in overconfident tests, while plotting
∂y/∂x over z and requiring statistically significant relationships at multiple values of z
tends to result in underconfident tests. The latter may be assessed when, for example, a
theory predicts that ∂y/∂x > 0 for z = 0 and ∂y/∂x < 0 for z = 1 and we try to jointly
confirm these predictions in a data set.

We believe that researchers can minimize the impact of this issue using a few simple
measures. Our primary recommendation is for researchers to simply be aware that
marginal effects plots generated under a given α could be over- or underconfident, and

2



thus to take a closer look if results are at the margin of statistical significance. When
overconfidence is an issue, researchers can control the false discovery rate (or FDR) in
marginal effects plots by adapting the procedure of Benjamini and Hochberg [10]; we
provide code to accomplish this in R in the interactionTest package. Researchers can
also control the familywise error rate (or FWER) of these plots using a simple F -test [5],
although this procedure is more conservative and less powerful than controlling the
FDR. We also rule out one possible solution for overconfidence: researchers cannot solve
the problem by conditioning inference on the statistical significance of the interaction
term (assessing ∂y/∂x for multiple z only when the product term indicates interaction
in the DGP) because this procedure results in an excess of false positives. In situations
of underconfident results, a bootstrapping procedure allows researchers to construct
marginal effects plots with confidence intervals that have appropriate coverage; we
provide R code for this procedure in the interactionTest package. Finally, we
demonstrate the application of our recommendations by re-examining a paper on
political party viability by Clark and Golder [11], one of the first published applications
of the hypothesis testing procedures described in Brambor, Clark, and Golder [4].

Interaction terms and the multiple comparison
problem

We begin by considering the following question: when we aim to assess the marginal
effect of x on y (∂y/∂x) at different values of a conditioning variable z, how likely will at
least one marginal effect come up statistically significant by chance alone? In the
context of linear regression, Brambor, Clark, and Golder [4] recommend (i) estimating a
model with x, z, and xz terms, then (ii) plotting the estimated ∂y/∂x from this model
for different values of z along with 95% confidence intervals. If the CIs exclude zero at
any z, they conclude that the evidence rejects the null hypothesis of no effect for this
value of z. Figs 1 and 2 depict sample plots for continuous and dichotomous z variables
respectively; the 95% confidence interval excludes zero in both examples (for values of
z / 4 in the continuous case, and for both z = 0 and 1 in the dichotomous case), and so
both samples can be interpreted as evidence for a statistical relationship between x and
y.

Our goal is to assess the false positive rate of this test procedure—that is, the
proportion of the time that this procedure detects a statistically significant ∂y/∂x for
some value of z when in fact ∂y/∂x = 0 for all z. If the false positive rate is greater than
the nominal size of the test, α, then the procedure is overconfident: the confidence
interval covers the true value less than α proportion of the time. If the false positive
rate is less than α, then the procedure is underconfident: the confidence interval could
be narrower while preserving its property of covering the true value α proportion of the
time. In the case of the Brambor, Clark, and Golder procedure, the question is whether
the 95% CIs in Fig 2 exclude zero for at least one value of z more or less than 5% of the
time under the null.

As most applied researchers know, when a t-test is conducted—e.g., for a coefficient
or marginal effect in a linear regression model—the α level of that t-test is only valid for
a single t-test conducted on a single coefficient or marginal effect. Consider the example
of a simple linear model:

E[y|x1, ..., xk] = ŷ =

k∑
i=1

β̂ixi

If a researcher conducts two t-tests on two different β coefficients, there is usually a
greater than 5% chance that either or both of them comes up statistically significant by
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Figure 1. Sample Marginal Effects Plots in the Style of Brambor, Clark, and
Golder [4]* (Continuous x and z)
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*Continuous x and z: data were generated out of the model y = 0.15 + 2.5 ∗ x− 2.5 ∗ z − 0.5 ∗ xz + u,
u ∼ Φ(0, 15), x and z∼ U [−10, 10]; model fitted on sample data set, N = 50.

chance alone when α = 0.05. In fact, if a researcher enters k statistically independent
variables that have no relationship to the dependent variable into a regression, the
probability in expectation that at least one of them comes up statistically significant is:

Pr(at least one false positive) = 1− Pr (no false positives)

= 1−
k∏

i=1

(
1− Pr

(
β̂i is st. sig.|βi = 0

))
= 1− (1− α)

k

so if the researcher tries five t–tests on five irrelevant variables, the probability that at
least one of them will be statistically significant is ≈ 22.6%, not 5%. This is an instance
of the multiple comparison problem; the problem is associated with a long literature in
applied statistics [12–17].

The same logic applies to testing one irrelevant variable in k different samples.
Indeed, the canonical justification for frequentist hypothesis testing involves determining
the sampling distribution of the test statistic, then calculating the probability that a
particular value of the statistic will be generated by a sample of data produced under
the null hypothesis. Thus, if a researcher takes a particular sample data set and
randomly divides it into k subsamples, the probability of finding a statistically
significant effect in at least one of these subsamples by chance is also 1− (1− α)

k
.
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Figure 2. Sample Marginal Effects Plots in the Style of Brambor, Clark, and
Golder [4]* (Continuous x, Dichotomous z)
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*Dichotomous x and z: data were generated out of the model y = 0.15 + 2.5 ∗ x− 2.5 ∗ z − 5 ∗ xz + u,
u ∼ Φ(0, 15), x∼ U [−10, 10] and z ∈ {0, 1}with equal probability; model fitted on sample data set,
N = 50.

Interaction terms create a multiple comparison problem: the
case of a dichotomous interaction variable between statistically
independent regressors

It is not as commonly recognized that interacting two variables in a linear regression
model effectively divides a sample into subsamples, thus creating the multiple
comparison problem described above. The simplest and most straightforward example is
a linear model with a continuous independent variable x interacted with a dichotomous
independent variable z ∈ {0, 1}:

E[y|x, z] = ŷ = β̂0 + β̂xx+ β̂zz + β̂xzxz (1)

A researcher wants to know whether x has a statistically detectable relationship with y,
as measured by the marginal effect of x on E[y|x, z] from model (1): ∂ŷ/∂x. Let M̂Ex

be shorthand notation for ∂ŷ/∂x and M̂E
z0

x be shorthand notation for ∂ŷ/∂x when
z = z0, where z0 is any possible value of z. Because x is interacted with z, this means
that the researcher needs to calculate confidence intervals for two quantities:(

∂ŷ

∂x
|z = 0

)
= M̂E

0

x = β̂x (2)(
∂ŷ

∂x
|z = 1

)
= M̂E

1

x = β̂x + β̂xz (3)
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These (pointwise) confidence intervals can be created (i) by analytically calculating

var
(
M̂E

0

x

)
and var

(
M̂E

1

x

)
using the asymptotically normal distribution of β̂ and the

variance-covariance matrix of the estimate, (ii) by simulating draws of β̂ out of this
distribution and constructing simulated confidence intervals of (2) and (3), or (iii) by

bootstrapping estimates of β̂ via repeated resampling of the data set and constructing
confidence intervals using the resulting β̂ estimates.

Common practice, and the practice recommended by Brambor, Clark, and
Golder [4], is to report the estimated statistical and substantive significance of the
relationship between x and y at all values of the interaction variable z. Unfortunately,

the practice inflates the probability of finding at least one statistically significant M̂E
z0

x .
A model with a dichotomous interaction term creates two significance tests in each of
two subsamples, one for which z = 0 and one for which z = 1. This means that the

probability that at least one statistically significant M̂E
z0

x will be found and reported
under the null hypothesis that ME0

x = ME1
x = 0 is:

Pr(false positive)

= Pr
[(
M̂E

0

x is st. sig.|ME0
x = 0

)
∨
(
M̂E

1

x is st. sig.|ME1
x = 0

)]
= 1− Pr

[
¬
((
M̂E

0

x is st. sig.|ME0
x = 0

)
∨
(
M̂E

1

x is st. sig.|ME1
x = 0

))]
= 1− Pr

[(
M̂E

0

x is not st. sig.|ME0
x = 0

)
∧
(
M̂E

1

x is not st. sig.|ME1
x = 0

)]
If the two marginal effects in the second term are unrelated, as when x and z are
statistically independent and all β coefficients are fixed, then we can rewrite this as:

Pr (false positive)

= 1−
(

Pr
(
M̂E

0

x is not st. sig.|ME0
x = 0

)
∗ Pr

(
M̂E

1

x is not st. sig.|ME1
x = 0

))
where MEz0

x is the true value of ∂y/∂x when z = z0. If the test for each individual
marginal effect has size α, this finally reduces to:

Pr(false positive) = 1− (1− α)2 (4)

The problem is immediately evident: the probability of accidentally finding at least

one statistically significant M̂E
z0

x is no longer equal to α. For a conventional two-tailed
α = 0.05, this means there is a 1− (1− 0.05)2 = 9.75% chance of concluding that at
least one of the marginal effects is statistically significant even when ME0

x = ME1
x = 0.

Stated another way, the test is less conservative than indicated by α. The problem is
even worse for a larger number of discrete interactions; if z has three categories, for
example, there is a 1− (1− 0.05)3 ≈ 14.26% chance of a false positive in this scenario.

To confirm this result, we conduct a simulation analysis to assess the false positive
rate under the null for a linear regression model. For each of 10,000 simulations, 1,000
observations of a continuous dependent variable y are drawn from a linear model:

y = 0.2 + u

where u ∼ Φ(0, 1). Covariates x and z are independently drawn from the uniform
distribution between 0 and 1, with z dichotomized by rounding to the nearest integer.
By construction, neither covariate has any relationship to y—that is, the null hypothesis
is correct for both. We then estimate a linear regression of the form:

ŷ = β̂0 + β̂1x+ β̂2z + β̂pxz

and calculate the predicted marginal effect M̂E
z0

x for the model when z = 0 and 1.
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The statistical significance of the marginal effects M̂E
z0

x is assessed in three different

ways. First, we use the appropriate analytic formula to calculate the variance of M̂E
z0

x

using the variance-covariance matrix of the estimated regression; this is:

var
(
M̂E

z0

x

)
= var

(
β̂x

)
+ (z0)

2
var
(
β̂xz

)
+ 2z0 cov

(
β̂x, β̂xz

)
This enables us to calculate a pointwise 95% confidence interval using the critical
t-statistic for a two-tailed α = 0.05 test in the usual way. Second, we simulate 1000
draws out of the asymptotic (multivariate normal) distribution of β̂ for the regression,

calculate M̂E
z0

x at z0 = 0 and 1 for each draw, and select the 2.5th and 97.5th
percentiles of those calculations to form a 95% confidence interval. Finally, we construct
1000 bootstrap samples (with replacement) for each data set, then use the bootstrapped
samples to construct simulated 95% confidence intervals.

The results for a model with a dichotomous z variable are shown in Table 1. The
table shows that, no matter how we calculate the standard error of the marginal effect,
the probability of a false positive (Type I error) is considerably higher than the nominal
α = 0.05 and close to the theoretical expectation.

Table 1. Overconfidence in Interaction Effect Standard Errors of MEx = ∂y/∂x*

# of Calculation
z categories Method Type I Error

2 categories Simulated SE 9.86%
Analytic SE 9.45%

Bootstrap SE 10.33%
Theoretical 9.75%

3 categories Simulated SE 14.20%
Analytic SE 13.93%
Theoretical 14.26%

continuous Simulated SE 14.51%
Analytic SE 13.75%

*The reported number in the “Type I Error” column is the percentage of the time that a
statistically significant (two-tailed, α = 0.05) marginal effect ∂y/∂x for any z is detected in
a model of the DGP from Eq (1) under the null hypothesis where β = 0. Type I error rates
calculated via simulated, analytic, or bootstrapped SEs using 10,000 simulated data sets with
1,000 observations each from the DGP y = 0.2+u, u ∼ Φ(0, 1); x ∼ U [0, 1], z ∈ {0, 1} with equal
probability (2 categories), z ∈ {0, 1, 2} with equal probability (3 categories), and z ∼ U [0, 1]

(continuous). For analytic SEs, se
(
M̂E

z0
x

)
=

√
var
(
β̂x
)

+ (z0)2 var
(
β̂xz
)

+ 2z0cov
(
β̂x, β̂xz

)
and the 95% CI is

(
β̂x + β̂xzz0

)
± 1.96 ∗ se

(
M̂E

z0
x

)
. Simulated SEs are created using 1000

draws out of the asymptotic (normal) distribution of β̂ for the regression, calculating M̂E
z0
x

for each draw, and selecting the 2.5th and 97.5th percentiles of those calculations to form a
95% confidence interval. Bootstrapped SEs are created using 1000 bootstrap samples (with
replacement) for each data set, where the bootstrapped samples are used to construct simulated
95% confidence intervals. Theoretical false positive rates for discrete z are created using expected
error rates from the nominal α value of the test as described in Eq (4).
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Continuous interaction variables

The multiple comparison problem and resulting overconfidence in hypothesis tests for
marginal effects can be worsened when a linear model interacts a continuous
independent variable x with a z variable that has more than two categories. For
example, an interaction term between x and a continuous variable z implicitly cuts a
given sample into many small subsamples for each value of z in the range of the sample.
By subdividing the sample further, we create a larger number of chances for a false
positive.

To illustrate the potential problem with overconfidence in models with more
categories of z, we repeat our Monte Carlo simulation with statistically independent x
and z variables using a three-category z ∈ {0, 1, 2} (where each value is equally
probable) and a continuous z ∈ [0, 1] (drawn from the uniform distribution) instead of a
discrete z. Bootstrapping is computationally intensive and yields no different results
than the other two processes when z is dichotomous; we therefore only assess simulated
and analytic standard errors for the 3 category and continuous z cases. The results are
shown in Table 1.

As before, the observed probability of a Type I error is far from the nominal α
probability of the test. A continuous z tends to have a higher false positive rate than a
dichotomous z (≈ 14% compared to ≈ 10% under equivalent conditions), and roughly
equivalent to a three-category z.

Statistical interdependence between marginal effects estimates

In the above, we assumed that marginal effects estimates at different values of z are

uncorrelated. But if M̂E
0

x is related to M̂E
1

x when z is dichotomous, then the
probability of a false positive result is:

Pr (false positive)

= 1− Pr
[(
M̂E

0

x is not st. sig.|ME0
x = 0

)
∧
(
M̂E

1

x is not st. sig.|ME1
x = 0

)]
We would expect correlation between the statistical significance of marginal effects
estimates when (for example) x and z are themselves correlated, or when βx and βxz are

stochastic and correlated. If
(
M̂E

0

x is not st. sig.|ME0
x = 0

)
and(

M̂E
1

x is not st. sig.|ME1
x = 0

)
are perfectly correlated, then we expect the joint

probability that both occur to be equal to either individual probability that one occurs
(1− α) and therefore Pr (false positive) = 1− (1− α) = α. In that case, the individual
tests have correct size. As their correlation falls, the joint probability that both occur
falls below (1− α) as the proportion of the time that one occurs without the other rises.
When the correlation reaches zero, we have the result in Table 1. In the event that the
statistical significance of one marginal effect were negatively associated with the

other—that is, if M̂E
0

x were less likely to be significant when M̂E
1

x is significant and
vice versa—then the probability of a false positive could be even higher than that
reported in Table 1.

To illustrate the effect of correlated x and z on marginal effects estimates, Table 2
shows the result of repeating the simulations of Table 1 with varying correlation
between the x and z variables. Correlation between the continuous x and dichotomous z
is created by first drawing x and a continuous z? from a multivariate normal with mean

zero and VCV =

[
1 ρ
ρ 1

]
, then choosing z = 1 with probability

Φ(z?|µ = 0, σ = 0.5).When z is dichotomous, it appears that correlation between x and
z is not influential on the false positive rate for MEx; the false positive rate is near 9.8%
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Table 2. Overconfidence in Interaction Effect Standard Errors of MEx = ∂y/∂x with
Correlated Independent Variables*

Type I Error (Analytic SE)

continuous z

ρxz binary z uniform normal

0.99 9.91% 7.29% 5.28%
0.9 9.26% 11.80% 6.42%
0.5 9.81% 14.06% 8.42%
0.2 9.78% 13.82% 8.87%
0 9.83% 13.69% 8.68%

-0.2 10.0% 13.60% 8.39%
-0.5 10.0% 13.81% 8.22%
-0.9 9.75% 11.57% 6.52%
-0.99 9.73% 7.61% 5.01%

*The reported number in the “Type I Error” column is the percentage of the time that a
statistically significant (two-tailed, α = 0.05) marginal effect ∂y/∂x for any z is detected
in a model of the DGP from Eq (1) under the null hypothesis where β = 0. Type I error
rates are determined using 10,000 simulated data sets with 1,000 observations each from
the DGP y = 0.2 + u, u ∼ Φ(0, 1). When z is continuous, x and z are either (a) drawn
from a multivariate distribution with uniform marginals and a multivariate normal copula

with mean zero and VCV =

[
1 ρ
ρ 1

]
(column “uniform”), or (b) drawn from the bivariate

normal distribution with mean zero and VCV =

[
1 ρ
ρ 1

]
(column “normal”). When z is

binary, x and z? are drawn from the bivariate normal with mean zero and VCV =

[
1 ρ
ρ 1

]
and Pr(z = 1) = Φ(z?|µ = 0, σ = 0.5). Analytic SEs are used to determine statistical

significance: se
(
M̂E

z0
x

)
=

√
var
(
β̂x
)

+ (z0)2 var
(
β̂xz
)

+ 2z0cov
(
β̂x, β̂xz

)
and the 95% CI is(

β̂x + β̂xzz0
)
± 1.96 ∗ se

(
M̂E

z0
x

)
.
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(our theoretical expectation from Table 1) for all values of ρxz. This may be because the
dichotomous nature of z creates the equivalent of a split sample regression, wherein

M̂E
1

x is quasi-independent from M̂E
0

x despite the correlation between x and z. This

interpretation is supported by the observed correlation between t-statistics for M̂E
0

x

and M̂E
1

x in our simulation, which never exceeds 0.015 even when |ρxz| ≥ 0.9. We

conclude that it may be possible for M̂E
0

x and M̂E
1

x to be correlated in a way that
brings the false positive rate closer to α, but that simple collinearity between x and a
dichotomous z will not produce this outcome.

The results with a continuous z are more interesting. We look at two cases: one
where x and z are drawn from a multivariate distribution with uniform marginal
densities and a normal copula (in the column labeled “uniform”), and one where x and z
are drawn from a multivariate normal distribution (in the column labeled “normal”).
This is accomplished using rCopula in the R package copula. The normal copula

function has mean zero and VCV =

[
1 ρ
ρ 1

]
. The multivariate normal density has

mean zero, VCV =

[
1 ρ
ρ 1

]
. When do do this, we see that the false positive rate

indeed approaches the nominal α = 5% for extreme correlations between x and z.
Furthermore, we also see that the false positive rate when ρxz = 0 is about 8.7%; this is
lower than the 13.69% false positive rate that we see in the uniformly distributed case
(which is comparable to the 14.51% false positive rate that we observed in Table 1). It
therefore appears that the false positive rate for marginal effects can depend on the
distribution of x and z.

Underconfidence is possible for conjoint tests of
theoretical predictions

The analysis in the prior section asks how often we expect to see ∂y/∂x turn up
statistically significant by chance when our analysis allows this marginal effect to vary
with a conditioning variable z. Although we believe this is typically the right criterion
against which to judge a significance testing regime, there are situations where it is a
poor fit. For example, a theory with interaction relationships often makes multiple
predictions; it may predict that ∂y/∂x < 0 when z = 0 and ∂y/∂x > 0 when z = 1. Such
a theory is falsified if either prediction is not confirmed. This situation creates a
different kind of multiple comparison problem: if we use a significance test with size α
on each subsample (one where z = 0 and one where z = 1), the joint probability that
both predictions are simultaneously confirmed due to chance is much smaller than α
and the resulting confidence intervals of the Brambor, Clark, and Golder [4] procedure
are too wide. In this case, a researcher can achieve greater power to detect true
positives without losing control over size by reducing the α of the individual tests.

Dichotomous interaction variable

Consider the model of Eq (1), where a continuous independent variable x is interacted
with a dichotomous independent variable z ∈ {0, 1}. A researcher might hypothesize
that x has a statistically significant and positive relationship with y when z = 0, but no
statistically significant relationship when z = 1. That researcher will probably go on to
plot the marginal effects of Eqs (2) and (3). If the researcher’s theory is correct, then
Eq (2) should be statistically significant and Eq (3) should not. (We explore alternative
ways to test for the absence of a relationship between x and y at a particular value of z
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in S1 Appendix.) If the null hypothesis is correct, so that both marginal effects equal
zero, what is the probability that the researcher will find a positive, statistically
significant marginal effect for Eq (2) and no statistically significant effect for Eq (3)?

When M̂E
0

x and M̂E
1

x are statistically independent and α = 0.05 for a one-tailed test,
this probability must be:

Pr (false positive)

= Pr
[(
M̂E

0

x is stat. sig. and > 0|ME0
x = 0

)
∧
(
M̂E

1

x is not stat. sig.|ME1
x = 0

)]
= Pr

(
M̂E

0

x is stat. sig. and > 0|ME0
x = 0

)
∗ Pr

(
M̂E

1

x is not stat. sig.|ME1
x = 0

)
= α (1− 2α)

= 0.05 ∗ 0.90

= 0.045

That is, the probability of finding results that match the researcher’s suite of predictions
under the null hypothesis is 4.5%, a slightly smaller probability than that implied by α.
In short, the α level is too conservative. Setting α ≈ 0.0564 yields a 5% false positive
rate.

The situation is even better if a researcher hypothesizes that ME0
x > 0 and

ME1
x < 0; in this case, when M̂E

0

x and M̂E
1

x are statistically independent and for a
one-tailed test where α = 0.05,

Pr(false positive)

= Pr
[(
M̂E

0

x is stat. sig. and > 0|ME0
x = 0

)
∧
(
M̂E

1

x is stat. sig. and < 0|ME1
x = 0

)]
= Pr

(
M̂E

0

x is stat. sig. and > 0|ME0
x = 0

)
∗ Pr

(
M̂E

1

x is stat. sig. and < 0|ME1
x = 0

)
= α2 = 0.052 = 0.0025

That is, the probability of a false positive for this theory is one-quarter of one percent
(0.25%), an extremely conservative test! Setting a one-tailed α =

√
0.05 ≈ .224

corresponds to a false positive rate of 5%.
Perhaps the most important finding is that the underconfidence of the test—the

degree to which the nominal α is larger than the actual probability of a false
positive—is a function of the pattern of predictions being tested. This means that some
theories are harder to “confirm” with evidence than others under a fixed α, and
therefore our typical method for assessing how compatible a theory is with empirical
evidence does not treat all theories equally.

Continuous interaction variable

The underconfidence problem can be more or less severe (compared to the dichotomous
case) when z is continuous, depending on the pattern of predictions being tested. To
determine the false positive rate when z is continuous, we ran the Monte Carlo
simulation from Table 1 under the null (βx = βz = βxz = 0) and checked for statistically
significant marginal effects that matched a specified pattern of theoretical predictions
using a two-tailed test, α = 0.05. These results (along with simulations for binary z for
comparison) are shown in Table 3. All the simulated false positive rates are smaller
than the 5% nominal α, and all but one are smaller than the 2.5% one-tailed α to which
a directional prediction corresponds. The degree of the test’s underconfidence varies
according to the pattern of predictions.
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Table 3. Underconfidence in Confirmation of Multiple Predictions with Interaction
Effects*

Monte Carlo
Predictions assessed z type Type I Error

MEz
x st. insig. | z = 0, MEz

x < 0 | z = 1 binary 2.25%

MEz
x > 0 | z = 0, MEz

x < 0 | z = 1 binary 0.07%

MEz
x st. insig. | z < 0.5, MEz

x < 0 | z ≥ 0.5 continuous 2.81%

MEz
x > 0 | z < 0.5, MEz

x < 0 | z ≥ 0.5 continuous 0.49%

MEz
x > 0 | z < 0.5, MEz

x < 0 | z ≥ 0.5, continuous 0.34%
MEx

z > 0 | x < 0.5, MEx
z < 0 | x ≥ 0.5

MEz
x > 0 | z < 0.5, MEz

x < 0 | z ≥ 0.5, continuous 0.40%
MEx

z < 0 | x ∈ (−∞,∞)

*The “predictions assessed” column indicates how many distinct theoretical predictions must be
matched by statistically significant findings in a sample data set in order to consider the null
hypothesis rejected. The “z type” column indicates whether z is binary (1 or 0) or continuous
(∈ [0, 1]). The “Type I Error” column indicates the proportion of the time that the assessed
predictions are matched and statistically significant (two-tailed, α = 0.05, equivalent to a
one-tailed test with α = 0.025 for directional predictions) in a model of the DGP from Eq (1)
under the null hypothesis where βx = βz = βxz = 0. Monte Carlo Type I errors are calculated
using 10,000 simulated data sets with 1,000 observations each from the DGP y = 0.2 + u,
u ∼ Φ(0, 1). z and x are independently drawn from U [0, 1] when z is continuous; when z is
binary, it is drawn from {0, 1} with equal probability and independently of x. Standard errors

are calculated analytically: se
(
M̂E

z0
x

)
=

√
var
(
β̂x
)

+ (z0)2 var
(
β̂xz
)

+ 2z0cov
(
β̂x, β̂xz

)
.
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Thorough testing of possible hypotheses: underconfidence or
overconfidence?

The tension between over- and underconfidence of empirical results is illustrated in a
recent paper by Berry, Golder, and Milton (hereafter BGM) in the Journal of
Politics [7]. In that paper, BGM recommend thoroughly testing all of the possible
marginal effects implied by a statistical model. For a model like Eq (1), that means
looking not only at ∂y/∂x at different values of z, but also at ∂y/∂z at different values of
x. Their reasoning (given on p. 653) is that ignoring the interaction between ∂y/∂z and
x allows researchers to ignore implications of a theory that may be falsified by evidence:

...the failure of scholars to provide a second hypothesis about how the
marginal effect of z is conditional on the value of x, together with the
corresponding marginal effect plot, means that scholars often subject their
conditional theories to substantially weaker empirical tests than their data
allow.

If BGM are describing holistic testing of a particular theory with a large number of
predictions, then we believe that our analysis tends to support their argument. As we
show above, making multiple predictions about ∂y/∂x at different values of z lowers the
chance of a false positive under the standard hypothesis testing regime. The false
positive rate is even lower if we holistically test a theory using multiple predictions
about both ∂y/∂x and ∂y/∂z.

However, it is vital to note that following BGM’s suggestion will also make it more
likely that at least one marginal effect will appear as statistically significant by chance
alone. The reason for this is relatively straightforward: testing a larger number of
hypotheses means multiplying the risk of a single false discovery under the null
hypothesis. In short, we contend that BGM are correct when testing a single theory by
examining its multiple predictions as a whole, but caution that analyses that report any
findings separately could be made more susceptible to false positives by this procedure.

What now? Determining and controlling the false
positive rate for tests of interaction

The goal of this paper is evolutionary, not revolutionary. We do not argue for a
fundamental change in the way that we test hypotheses about marginal effects
estimated in an interaction model—viz., by calculating estimates and confidence
intervals, and graphically assessing them—but we do believe that there is room to
improve the interpretation of these tests. Specifically, we believe that the confidence
intervals that researchers report should reflect an intentional choice. We suggest three
best practices to help political scientists achieve this goal.

Suggestion 1: do not condition inference on the interaction
term, as it does not solve the multiple comparison problem

A researcher’s first inclination might be to fight the possibility of overconfidence by
conditioning inference on the statistical significance of the interaction term. That is, for
the case when z is binary:

1. If β̂xz is statistically significant: calculate M̂E
0

x = β̂x and M̂E
1

x = β̂x + β̂xz and
interpret the statistical significance of each effect using the relevant 95% CI.
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2. If β̂xz is not statistically significant: drop xz from the model, re-estimate the

model, calculate M̂E
0

x = M̂E
1

x = β̂′x, and base acceptance or rejection of the null

on the statistical significance of β̂′x

However, this procedure results in an excess of false positives for M̂Ex. The reason is
that a multiple comparison problem remains: the procedure allows two chances to
conclude that ∂y/∂x 6= 0, one for a model that includes xz and one for a model that
does not.

Monte Carlo simulations reveal that the overconfidence problem with this procedure
is substantively meaningful. Repeating the analysis of Table 1 with a binary z ∈ {0, 1}
under the null hypothesis (∂y/∂x = 0), conditioning inference on the statistical
significance of the interaction term results in a 8.17% false positive rate when α = 0.05
(two-tailed); the false positive rate is 9.60% under the continuous z. These numbers are
calculated using simulation-based standard errors. This is less overconfident than the
Brambor, Clark, and Golder procedure using M̂Ex only, which resulted in ≈ 10% false
positive rates, but still larger than the advertised α value. Therefore, we cannot
recommend this practice as a way of correcting the overconfidence problem.

Suggestion 2: use tests designed to minimize false discoveries
and false null findings

In cases where a researcher believes that the over- or underconfidence of traditional
hypothesis test procedures may be decisive to a result (i.e., when results are at the
margin of some threshold for statistical significance), s/he can use an alternative test
procedure in order to minimize the probability of a false positive (when overconfidence
is a potential problem) or a false null finding (when underconfidence is the relevant
threat).

Overconfidence corrections for estimated marginal effects

When a multiple comparison problem creates the danger of excess false rejections of the
null, the literature supports two broad approaches to the problem. The first approach
involves controlling the false discovery rate (FDR), or the number of rejected null
hypotheses that are false as a proportion of the total number of statistically significant

results [10]. In the context of testing the statistical significance of M̂E
z

x at multiple

values of z, the FDR is the proportion of statistically significant values of M̂E
z

x for
which the null is actually true (MEz

x = 0) in repeated tests. The second approach
involves controlling the familywise error rate (FWER), or the proportion of the time
that a set of multiple comparisons (a “family” of hypothesis tests) will produce at least

one false rejection of the null hypothesis [9]. For testing M̂E
z

x at multiple values of z,

the FWER is the proportion of the time (in repeated tests) in which at least one M̂E
z

x

is statistically significant when the true MEz
x = 0. In general, a test that sets the

FWER at some value is a more conservative procedure than a test that limits the FDR
to the same value: a single rejection of any hypothesis where the null is true in a set of
multiple comparisons raises the FWER, whereas the FDR allows a fixed level of false
positive hypothesis tests as a proportion of all statistically significant results.
Consequently, procedures that control the FWER tend to be less powerful than those
which control the FDR [10].

A researcher can control the FDR by adapting the procedure of Benjamini and
Hochberg [10,18]). For a categorical interaction variable z with m categories, the

procedure suggests that the researcher should order each of the m values of M̂E
zi

x from
i = 1...m according to the magnitude of their p-values, p1, p2, ..., pm then find the largest
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k that satisfies pk < α k
m . The researcher then rejects the null hypothesis for all M̂E

zj

x

from j = 1...k at level α; this procedure ensures that the FDR is no larger than α,
though it can (in some cases) be smaller [10,19]. To visually depict which marginal
effects are statistically significant, a researcher can use the critical t statistic t?

corresponding to α k
m when constructing a 95% CI using β̂ ± t? ∗ se

(
M̂E

z

x

)
at all values of

z. Note that this procedure also imposes a weak limit on the FWER: when all null
hypotheses are true, or (∂y/∂x | z = zi) = 0 for all zi, the FDR is equivalent to the
FWER [10]. The procedure to find an appropriate FDR-controlling t? is included as a
part of our interactionTest R library.

For controlling the FWER, Kam and Franzese [5] recommend conducting a joint

F -test to determine whether M̂E
z

x 6= 0 for any value of z when interaction between x
and z (or other variables) is suspected. For a simple linear DGP with two variables of
interest, this means running two models:

1. ŷ = β̂0 + β̂xx+ β̂zz + β̂xzxz

2. ŷ = β̂0 + β̂zz

Then, the researcher can use an F-test to see whether the restrictions of model (2) can
be rejected by the data. If so, the researcher can proceed to construct, plot, and

interpret M̂E
z

x using the procedure described in Brambor, Clark, and Golder [4].
We use both of these procedures on the simulated data from Table 2; in each case,

we set the target α value of the procedure to α = 0.05, two-tailed. The results are
shown in Table 4. Because all the null hypotheses are true in the simulated data set

(that is, M̂E
zi

x = 0 for all zi), both the procedures should yield roughly equivalent
results (because the FDR in this case is equivalent to the FWER). Indeed, as the table
indicates, both procedures are effective at limiting false rejections of the null to a
probability of / α.

There are some scenarios where an F-test of this kind is inappropriate. A joint
F-test of coefficients is a direct test for the statistical significance of ∂ŷ/∂x = β̂x + β̂xzz
against the null that they all equal 0. For a generalized linear model with a non-linear
link, this relationship between coefficients and marginal effects is not direct. Therefore,
an F-test for restriction in these models may not correspond to a test for the statistical
significance of marginal effects for the same reason that the statistical significance of
coefficients in non-interaction relationships in a GLM does not necessarily indicate the
statistical significance of marginal effects [6]. To take another example, the case of
underconfident tests, the null is that at least one marginal effect does not match the
theoretical prediction. This null does not correspond to the null of the F-test, that all
marginal effects equal zero. Thus the F-test is inappropriate in this scenario as well. In
these cases, the bootstrapping procedure described in the next subsection could be
adapted to limit the FWER to 5% for a single marginal effect.

Underconfidence corrections for estimated marginal effects

As noted above, the Brambor, Clark, and Golder [4] procedure is underconfident
whenever a researcher is trying to conduct a conjoint test of multiple interaction
relationships predicted by a pre-existing theory. Consequently, the appropriate critical t
value to set a 5% probability of falsely rejecting the null of this conjoint test when
examining confidence intervals is not the typical t = 1.96 (for n→∞). Instead, we
suggest a nonparametric bootstrapping approach to hypothesis testing that chooses the
appropriate critical t.

The procedure is simple:
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Table 4. FDR and FWER control results for MEx = ∂y/∂x*

FDR FWER (F -test)

continuous z continuous z

ρxz binary z uniform normal binary z uniform normal

0.99 0.0498 0.0294 0.0432 0.0487 0.0343 0.0277
0.9 0.0478 0.0319 0.0359 0.0468 0.0470 0.0296
0.5 0.0495 0.0365 0.0322 0.0448 0.0538 0.0376
0.2 0.0513 0.0323 0.0290 0.0476 0.0480 0.0375
0 0.0525 0.0345 0.0339 0.0488 0.0517 0.0396

-0.2 0.0509 0.0320 0.0309 0.0478 0.0494 0.0378
-0.5 0.0504 0.0353 0.0318 0.0493 0.0531 0.0366
-0.9 0.0502 0.0313 0.0344 0.0481 0.0462 0.0286
-0.99 0.0503 0.0324 0.0413 0.0482 0.0339 0.0226

*The reported number in the “FDR” column is the percentage of the time that a statistically
significant (two-tailed, α = 0.05) marginal effect ∂y/∂x for any z is detected in a model of the
DGP from Eq (1) under the null hypothesis where β = 0 using the procedure of Benjamini and
Hochberg [10]. The reported number in the “FWER” column is the percentage of the time that
a statistically significant (two-tailed, α = 0.05) marginal effect ∂y/∂x for any z is detected in a
model of the DGP from Eq (1) under the null hypothesis where β = 0 and simultaneously where
an F -test for the joint significance of βx and βxz has been passed (two-tailed, α = 0.05); this
procedure is recommended by Kam and Franzese [5]. Figs are determined using 10,000 simulated
data sets with 1,000 observations each from the DGP y = 0.2 + u, u ∼ Φ(0, 1). When z is
continuous, x and z are either (a) drawn from a multivariate distribution with uniform marginals

and a multivariate normal copula with mean zero and VCV =

[
1 ρ
ρ 1

]
(column “uniform”), or

(b) drawn from the bivariate normal distribution with mean zero and VCV =

[
1 ρ
ρ 1

]
(column

“normal”). When z is binary, x and z? are drawn from the bivariate normal with mean zero and

VCV =

[
1 ρ
ρ 1

]
and Pr(z = 1) = Φ(z?|µ = 0, σ = 0.5). Analytic SEs are used to determine

statistical significance: se
(
M̂E

z0
x

)
=

√
var
(
β̂x
)

+ (z0)2 var
(
β̂xz
)

+ 2z0cov
(
β̂x, β̂xz

)
and the

95% CI is
(
β̂x + β̂xzz0

)
± tFDR ∗se

(
M̂E

z0
x

)
for the FDR and

(
β̂x + β̂xzz0

)
±1.96∗se

(
M̂E

z0
x

)
for the FWER. The value of tFDR is determined by following the Benjamini and Hochberg [10]
procedure for controlling the false discovery rate (as described in the text), then setting
tFDR = α k

m
for the appropriate value of k; for continuous values of z, the number of points zi

at which ∂y/∂x|zi is used for m (we use 11 points in our simulations).

1. For a particular data set, run a model ŷ = G
(
β̂0 + β̂1x+ β̂2z + β̂2xz + controls

)
with link function G. Calculate M̂E

z0

x , M̂E
x0

z , and their standard errors for
multiple values of z0 and x0 using the fitted model.

2. Draw (with replacement) a random sample of data from the data set.

3. Run the model ŷ = G
(
β̃0 + β̃1x+ β̃2z + β̃2xz + controls

)
on the bootstrap

sample from step 2. Calculate MEz0
x , M̃E

x0

z , and their standard errors using the
model. (The tilde distinguishes the bootstrap replicates from the hat used for
estimates on the original sample.)
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4. Calculate t̃z0x =
M̃E

z0
x −M̂E

z0
x

se(M̃E
z0
x )

and t̃x0
z =

M̃E
x0
z −M̂E

x0
z

se(M̃E
x0
z )

for all values of z0 and x0.

(Subtracting M̂E
z0

x or M̂E
x0

z allows us to determine the distribution of t under
the null hypothesis.)

5. Repeat steps 2-4 many times.

6. Using the bootstrapped values of tx and tz, find a critical t statistic t? such that
the theoretical predictions are met α proportion of the time when the null
hypothesis is true. For example, if a theory predicts that MEx > 0|z > z0 and
MEz < 0|x > x0, t? would satisfy
Pr
[(
∃z > z0 : t̃zx > t?

)
∧
(
∃x > x0 : t̃xz < −t?

)]
= α.

7. Use the t? to construct plots of M̂Ex and/or M̂Ez with confidence intervals; for

M̂Ex, these confidence intervals are given by M̂E
z0
x ± t? ∗ se

(
M̂E

z0
x

)
.

We provide R code to implement this procedure for generalized linear models as a part
of our interactionTest R library.

We tested the effectiveness of the nonparametric bootstrapping procedure in 1,000
simulated data sets with N = 1000 observations each under the null hypothesis for four
different patterns of theoretical predictions; these theoretical predictions, the rejection
rate of the bootstrapping procedure, and the median critical t found by the
bootstrapping procedure are shown in Table 5. We also show the proportion of the time
that using the critical t statistic generated from the bootstrapping procedure results in a
rejection of the null hypothesis (note that the null is true in all of our simulated data
sets). The table shows that different patterns of predictions have a different probability
of appearing by chance, which in turn necessitate a different critical t statistic;
furthermore, this critical t changes according to the correlation between x and z. Indeed,
some patterns are so unlikely under some conditions that any estimates matching the
pattern are not ascribable to chance, regardless of their uncertainty. The procedure
results in false positive rates that match the nominal 5% rate targeted by the test.

Suggestion 3: maximize empirical power by specifying theories
with multiple predictions in advance

Correcting for the overconfidence of conventional 95% confidence intervals when
performing interaction tests does come at a price: when the null hypothesis is false, the
sensitivity of the corrected test is necessarily less than that of an uncorrected test. This
tradeoff is fundamental to all hypothesis tests and not specific to the analysis of
interaction: lowering the size of the test, as we do by setting the FDR or FWER to
equal 0.05, weakens the power of a test to detect relationships when they are actually
there. On the other hand, correcting for underconfidence when simultaneously testing
multiple theoretical predictions makes (jointly) confirming these predictions easier. As a
result, we suggest that researchers generate and simultaneously test multiple empirical
predictions whenever possible to maximize the power of their empirical test. For
interaction terms, this means:

1. predicting the existence and direction of a marginal effect for multiple values of
the intervening variable, and/or

2. predicting the existence and direction of the marginal effect of both constituent
variables in an interaction.

These suggestions are subject to an important caveat: the predictions must be made
before consulting sample data in order for the lowered confidence thresholds to apply.
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The lowered significance thresholds are predicated on the likelihood of simultaneous
appearance of a particular combination of results under the null hypothesis, not on the
joint likelihood of many possible combinations of results.

Application: Rehabilitating “Rehabilitating
Duverger’s Law”

After publishing their recommendations for the proper hypothesis test of a marginal
effect in the linear model with interaction terms, Clark and Golder [11] went on to apply
this advice in a study of the relationship between the number of political parties in a
polity and the electoral institutions of that polity. Their reassessment of Duverger’s Law
applies the spirit behind the simple relationship between seats and parties predicted by
Duverger to specify a microfoundational mechanism by which institutions and
sociological factors are linked to political party viability. Based on a reanalysis of their
results with the methods that we propose, we think that some of the authors’
conclusions are more uncertain than originally believed.

Clark and Golder expect that ethnic heterogeneity (one social pressure for political
fragmentation) will have a positive relationship with the number of parties that gets
larger as average district magnitude increases. Specifically, they propose (on p. 694):

“Hypothesis 4: Social heterogeneity increases the number of electoral parties
only when the district magnitude is sufficiently large.”

We interpret their hypothesis to mean that the marginal effect of ethnic heterogeneity on
the number of electoral parties should be positive when district magnitude is large, and
statistically insignificant when district magnitude is small. To test for the presence of
this relationship, the authors construct plots depicting the estimated marginal effect of
ethnic heterogeneity on number of parties at different levels of district magnitude for a
pooled sample of developed democracies, for 1980s cross-sectional data (using data from
Amorim Neto and Cox [20]), and for established democracies in the 1990s. In all three
samples, they find that ethnic heterogeneity has a positive and statistically significant
effect on the number of parties once district magnitude becomes sufficiently large.

Fig 3-5 displays our replications of the marginal effects plots from Clark and
Golder [11]. We show three different confidence intervals: (i) the authors’ 90%
confidence intervals (using a conventional t-test), (ii) a 90% CI with a nonparametrically
bootstrapped critical t designed to set the false positive rate at 5% for the pattern of
predictions where MEz<2.5

x is statistically insignificant and MEz≥2.5
x > 0, which we call

the “prediction-corrected” CI, and (iii) a 90% CI constructed using the FDR-controlling
procedure of Benjamini and Hochberg [10]. We also calculate and show the results of a
joint-F test as prescribed by Kam and Franzese [5].

None of the joint F -tests for the statistical significance of the marginal effect of
ethnic heterogeneity yield one-tailed p-values less than 0.1. Additionally,
FDR-controlling 90% confidence intervals constructing using the procedure we describe
above include zero across the entire range of district magnitude for the sample of
established democracies in the 1990s. However, in the other two samples, the coverage
of the 90% FDR confidence intervals confirms the authors’ original results, albeit with
somewhat greater uncertainty. In addition, the authors’ original findings are statistically
significant and consistent with their pattern of theoretical predictions when we employ
the prediction-corrected 90% confidence intervals.

In summary, our analysis indicates that the authors’ claims are most strongly
supported by a combination of the empirical information they collect with the prior
theoretical prediction of an unlikely pattern of results. Their results cannot be
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Joint significance test: F(2, 48) = 2.01, p = 0.1455

−
1

0
1

2
3

M
ar

gi
na

l E
ffe

ct
 o

f E
th

ni
c 

H
et

er
og

en
ei

ty

0 1 2 3 4 5

Log of Average District Magnitude

Marginal Effect of Ethnic Heterogeneity
90% Confidence Interval, t = 1.645
Prediction−Corrected 90% Confidence Interval, t = 1.528
FDR 90% Confidence Interval, t = 1.700

 
Dependent Variable: Effective Number of Electoral Parties

 

Marginal Effect of Ethnic Heterogeneity

Figure 3. Marginal effect of ethnic heterogeneity on effective number of electoral
parties (Fig 1 from Clark and Golder [11]), with original and prediction- and
discovery-corrected confidence intervals (Pooled Analysis, Established Democracies)

Joint significance test: F(2, 42) = 2.33, p = 0.1096
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Marginal Effect of Ethnic Heterogeneity

Figure 4. Marginal effect of ethnic heterogeneity on effective number of electoral
parties (Fig 1 from Clark and Golder [11]), with original and prediction- and
discovery-corrected confidence intervals (1980s, Amorim Neto and Cox)

supported by a procedure that sets the FWER at 90%, and are only partially supported
by a procedure that sets the FDR at 90%. We believe that this re-interpretation of the
authors’ findings is important for readers to understand in order for them to grasp the
strength of the results and the assumptions upon which these results are based.

Conclusion

The main argument of this study is that, when it comes to the contextually conditional
(interactive) relationships that have motivated a great deal of recent research, the
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Joint significance test: F(2, 30) = 21.77, p = 0.1884
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Figure 5. Marginal effect of ethnic heterogeneity on effective number of electoral
parties (Fig 1 from Clark and Golder [11]), with original and prediction- and
discovery-corrected confidence intervals (1990s, Established Democracies)

Brambor, Clark, and Golder [4] procedure for testing for a relationship between x and y
at different values of z does not effectively control the probability of a false positive
finding. The probability of at least one relationship being statistically significant is
higher than one expects because the structure of interaction models divides a data set
into multiple subsets defined by z, each of which has a chance of showing evidence for a
relationship between x and y under the null hypothesis. On the other hand, the
possibility of simultaneously confirming multiple theoretical predictions by chance alone
can be quite small because this requires a large number of individually unlikely events
to occur together, making the combination of these events collectively even more
unlikely. The consequence is that false positive rates may be considerably higher or
lower than researchers believe when they conduct their tests. A further consequence is
that researchers using this procedure are implictly applying inconsistent standards to
assess whether evidence tends to support or undermine a theory when that theory
makes multiple empirical predictions.

Fortunately, we believe that specifying a consistent false positive rate for the
discovery of interaction relationships is a comparatively simple matter of following a few
rules of thumb:

1. do not condition inference about marginal effects on the statistical significance of
the product term alone;

2. if a relationship is close to statistical significance under conventional tests, use
procedures that control the overall false discovery rate and/or familywise error
rate, such as the sequential test procedure of Benjamini and Hochberg [10] or the
joint F -test recommended by Kam and Franzese [5]; and

3. if possible, generate multiple hypotheses about contextual relationships before
consulting the sample data and test them as a group using a nonparametric
bootstrapping procedure to generate the appropriate critical t value, because it
maximizes the power of the study.

None of these recommendations constitutes a fundamental revision to the way we
conceptualize or depict conditional relationships. Rather, they allow us to ensure that
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evidence we collect is compared to a counterfactual world under the null hypothesis in a
controlled fashion and consistent with the hypothesis tests that we perform in other
situations. All of our recommendations can be implemented in standard statistical
packages; we hope that researchers will keep them in mind when embarking on future
work involving the assessment of conditional marginal effects.

Supporting Information

S1 Appendix. Absence of meaningful effects. The issue of testing a theory that
predicts the absence of a relationship raises an interesting and (to our knowledge) still
debatable question: how does one test for the absence of a (meaningful) relationship
between x and y at a particular value of z? We have phrased our examples in terms of
expecting statistically significant relationships (or not), but a researcher will likely find
zero in a 95% CI considerably more than 5% of the time even when the marginal effect
6= 0 (i.e., the size of the test will be larger than α). Moreover, a small but non-zero
marginal effect could still qualify as the absence of a meaningful relationship.
Alternative procedures have been proposed by Rainey [21], but are not yet common
practice. We speculate that a researcher should properly test these hypotheses by
specifying a range of MEz

x consistent with “no meaningful relationship” and then
determining whether the 95% CI intersects this range; this is the proposal of
Rainey [21]. We assess the (somewhat unsatisfactory) status quo of checking whether 0
is contained in the 95% CI; the major consequence is that hypothesizing MEz

x is not
substantively meaningful for some z will not boost the power of a hypothesis-testing
procedure as much as it might. The size of the test is already too small for conjoint
hypothesis tests of this type, and so overconfidence is not a concern despite the
excessive size of the individual test. In our corrected procedure, the size of the test is
numerically controlled and therefore correctly set at α. See Suggestion 3 in the text for
more details of our corrected procedure.
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