
Abstract We review conditions for material instabil-

ities in porous solids induced by a bifurcation of solu-

tion into non-unique strain rate fields. Bifurcation

modes considered include jumps in the strain rate

tensor of ranks one and higher representing deforma-

tion band and diffuse instability modes, respectively.

Eigenmodes (e-modes) are extracted for each type of

instability to fully characterize various frameworks of

deformation in collapsible solids. For diffuse instability

these e-modes are determined from a homogeneous

system of linear equations emanating from the condi-

tion of zero jump in the stress rate tensor, which in turn

demands that the tangent constitutive tensor be sin-

gular for the existence of nontrivial solutions. For

isotropic materials we describe two types of singularity

of the constitutive tensor: (a) singularity of the con-

stitutive matrix in principal axes, and (b) singularity of

spin. Accordingly, we derive the e-modes for each type

of singularity. We utilize the singularity of the con-

stitutive matrix in principal axes as a precursor to

volume implosion in collapsible solids such as loose

sands undergoing liquefaction instability and high-

porosity rocks undergoing cataclastic flow. Finally, we

compare conditions and e-modes for volume implosion

and compaction banding, two similar failure modes

ubiquitous in granular soils and rocks.

Keywords Compaction band Æ Deformation band Æ
Material instability Æ Volume implosion

1 Introduction

Material instabilities in solids occur in a number of

applications and in a variety of forms. Examples

include Lüders bands in metals, cracking in concrete,

microbuckling in cellular materials, kinking failure in

fiber composites, stress-induced transformation in

shape memory alloys, and shear strain localization in

bulk metallic glasses. Geomaterials are also susceptible

to ‘‘unstable’’ behaviors manifesting through compac-

tion and dilation banding in rocks, shear banding in

sands and clays, liquefaction of saturated loose sands,

sanding in poorly cemented sandstones, and volume

collapse in high-porosity unconsolidated sediments

[1, 21, 24, 33, 43]. Such behaviors are governed by a

nonlinear interaction of geometry and material prop-

erties and are best addressed from a micromechanical

standpoint. However, a microstructural approach is not

always feasible especially when these behaviors are to

be predicted in a large-scale structure where typically

only a macroscopic material model is available to make

a prediction.

Strain localization in the form of shear bands has

received enormous attention over the years, which is

understandable because their appearance is ubiquitous

in many natural and engineered materials. In soils and

rocks strain localization is often used synonymously

with terms such as ‘‘slip surface’’ and ‘‘failure shear

zone’’ because of the appearance of significant shear

offset. However, the term ‘‘deformation band’’ seems

more general since a localized zone may also exhibit
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significant pore growth (dilation) or pore collapse

(compaction) appearing either alone or in combination

with some shear offset [1, 2, 9, 10]. Prediction of the

occurrence of deformation bands from a macroscopic

material model is now well understood. In the frame-

work of rate-independent elastoplasticity, one simply

tracks the loss of ellipticity of the governing velocity

equation of equilibrium to identify the onset of a

deformation band. The procedure not only yields the

orientation of the band but also determines the cor-

responding eigenmode (or e-mode) representing the

type of deformation band formed, i.e., whether it is a

dilation, compaction, shear, or a mixed-mode band.

In this paper, we develop a more general framework

of instability analysis for collapsible solids based on a

macroscale approach. The term ‘‘collapsible’’ generally

refers herein to any weakly bonded high-porosity

material, although we are more interested in collaps-

ible geomaterials such as aeolian sands, underconsoli-

dated sandstones, poorly cemented coquina, diatomite,

and chalk. Such materials can exhibit an ‘‘unstable’’

behavior even though it may not lead to a deformation

band. We shall call such material instability not asso-

ciated with a deformation band as ‘‘diffuse,’’ even if

this term is also used in a different context by other

authors to mean ‘‘global bifurcation,’’ see [16]. For

example, liquefaction of saturated loose sands occurs

in a diffuse mode characterized by pore collapse where

the volume implodes in all three spatial directions. Of

course, pore collapse can also occur in one dimension

along a narrow band, as exemplified by compaction

banding in porous rocks where the volume simply

compacts in the direction normal to the band [22, 33–

35]. It appears, however, that a more general frame-

work of failure modes is in order since one mode could

conceivably trigger the other. An example of where

this scenario could happen is when an unconsolidated

sandstone undergoes pore collapse in front of a well-

bore resulting in sand production and conceivably

triggering a more widespread localized deformation

pattern around the wellbore [21, 28, 29].

The theoretical underpinning of the proposed

framework is the classical bifurcation theory in which

we investigate local bifurcation modes characterized by

jumps in the strain rate tensor of ranks one and higher

[3, 4, 7, 15, 19, 27, 32, 41] representing deformation

band and diffuse modes, respectively. For the constit-

utive description of the material we review conditions

for the occurrence of such strain rate jumps in elasto-

plastic solids with associative and non-associative

plastic flow along with softening plasticity. We recall

the aspect of incremental nonlinearity and the role that

comparison solids play in the analysis, particularly for

materials exhibiting non-associative plastic flow. The

paper highlights the appropriate e-modes for various

modes of bifurcation, including that associated with

volume implosion in all three spatial directions. Fi-

nally, we illustrate the framework with numerical

stress-point calculations utilizing a class of three-

invariant non-associative plasticity models to illustrate

an interesting and important interplay among the var-

ious failure modes in a geomaterial.

As for notations and symbols, bold-faced letters

denote tensors and vectors; the symbol ‘Æ’ denotes an

inner product of two vectors (e.g. a Æ b = aibi), or a

single contraction of adjacent indices of two tensors

(e.g. c Æ d = cijdjk); the symbol ‘:’ denotes an inner

product of two second-order tensors (e.g. c : d = cijdij),

or a double contraction of adjacent indices of tensors

of ranks two and higher (e.g. C : ee ¼ Cijkle
e
kl); the

symbol ‘�’ denotes a juxtaposition of two vectors,

(a�b)ij = aibj, or of two symmetric second-order

tensors, ða� bÞijkl ¼ aijbkl:

2 Stability and ellipticity conditions for incrementally
linear solids

We first define what we mean by ‘‘material instability’’

in the context of this paper. We use the nonlinear finite

element flow chart of Fig. 1 as our backdrop since we

intend to use this paper for boundary-value problem

calculations. The flow chart identifies two types of

bifurcation: global and local. Global bifurcation occurs

at the structure level and includes as examples the Euler

buckling of beams and snap-through and snap buckling

of shells, among others. In the context of nonlinear finite

element analysis, global bifurcation can be predicted

from some ‘test functions’ of the overall global tangent

stiffness matrix which change sign as the singular point is

passed, such as the determinant, the minimum pivot, or

the minimum eigenvalue of this matrix [17]. Local

bifurcation, on the other hand, is analyzed at the Gauss

integration points and entails the prediction of non-

unique strain rate fields. Both types of bifurcation are

checked at the conclusion of the global iteration loop

when all types of iteration have converged. We equate

‘‘material instability’’ to local bifurcation and predict its

occurrence at the Gauss point level.

2.1 Local bifurcation and uniqueness of solution

Consider a solid body defined by domain B and

bounded by surface @B; where the latter admits the

decomposition @B ¼ @Bt [ @Bu and ; ¼ @Bt \ @Bu; and

where @Bt and @Bu are portions of the entire boundary

where traction rates and velocities are prescribed.
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Without loss of generality we consider a quasi-static

problem and assume two possible local solutions aris-

ing for the first time within this domain. The solutions

are denoted by the local Cauchy stress rate and

velocity fields, ð _r; _r�Þ and (v, v*), respectively. For the

solution ð _r; vÞ to be admissible we must have

div _rþ _f ¼ 0 in B;
v ¼ _u0 on @Bu;

_r � n ¼ _t0 on @Bt;

ð1Þ

where f is the body force vector per unit volume in the

undeformed configuration, n is the unit outward nor-

mal to @B; u0 and t0 are prescribed boundary dis-

placements and nominal tractions, respectively, and div

is the spatial divergence operator. For the alternative

solution ð _r�; v�Þ to be admissible it must also satisfy (1).

Next, we consider the integral

Z

B

div½ðv��vÞ � ð _r�� _rÞ�dV¼
Z

B

ð _e�� _eÞ : ð _r�� _rÞdV

þ
Z

B

ðv��vÞ �divð _r�� _rÞdV:

ð2Þ

The second integral on the right-hand side vanishes

since _r and _r� both satisfy the partial differential

equation in B: The left-hand side can be transformed

into a surface integral by Gauss theorem to yield

Z

B

div½ðv� � vÞ � ð _r� � _rÞ�dV ¼

Z

@B

ðv� � vÞ � ð _r� � _rÞ � ndV ¼ 0:

ð3Þ

Thus, any pair of possible solutions must satisfy the

condition

Z

B

ð _e� � _eÞ : ð _r� � _rÞdV ¼ 0: ð4Þ

Uniqueness is guaranteed for every point and for every

pair of stresses and strains linked by the constitutive

equation if

ð _e� � _eÞ : ð _r� � _rÞ[ 0 ð5Þ

pointwise in B: The density expression on the left-hand

side of (5) has been explored in detail by Hill [20],

among others, and in the context of ‘controllable

incremental responses’ by Nova [31] and Chambon

[14].

2.2 Local stability for incrementally linear material

Consider the following incremental constitutive equa-

tion

_r ¼ c : _e; _r� ¼ c : _e�; c ¼ @r
@e
¼ @r

�

@e�
; ð6Þ

where c is a tensor of constitutive moduli. Note that the

same tensor c is used irrespective of the direction of the

strain rate tensor. If c is invariant with respect to the

direction of _e; then we say that the material response is

incrementally linear.

Definition of stability. An incrementally linear

material is (incrementally) stable if

/ : c : / [ 0 ð7Þ

for any symmetric second-order tensor / 6¼ 0: Equa-

tion (7) is the stability condition. Note that this defi-

nition has no connection with stability theory in the

sense of Lyapunov, see e.g., [30].

Now consider the kinematical jumps,

CONTINUE

TIME STEP LOOP

GLOBAL ITERATION LOOP

ELEMENT ASSEMBLY LOOP

GAUSS INTEGRATION LOOP

MATERIAL SUBROUTINE
LOCAL ITERATION LOOP

LOCAL AND GLOBAL
BIFURCATION CHECKS

CONTINUE

Fig. 1 Flow chart of nonlinear finite element algorithm with
local and global bifurcation checks
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½½v�� ¼ v� � v; ½½ _e�� ¼ _e� � _e ¼ grads½½v��; ð8Þ

where grads is the symmetric gradient operator. For an

incrementally linear material violation of Eq. (7) for

/ � ½½ _e�� 6¼ 0 implies any of the conditions

½½ _e�� : ½½ _r�� ¼ 0 : loss of stability/uniqueness; ð9Þ

½½ _r�� ¼ 0 : continuity of stress rate tensor; ð10Þ

where ½½ _r�� ¼ _r� � _r ¼ c : ½½ _e�� is the jump in the Cauchy

stress rate field. Note that continuity of the stress rate

for a non-zero ½½ _e�� implies loss of stability/uniqueness,

but the converse is not necessarily true. For example, if

the constitutive tensor c does not possess the major

symmetry, then the equations described above do not

occur at the same time.

To elaborate the last paragraph, we write

½½ _e�� : ½½ _r�� ¼ ½½ _e�� : c : ½½ _e�� ¼ ½½ _e�� : symðcÞ : ½½ _e�� ¼ 0; ð11Þ

where ‘sym’ denotes a major symmetry operator, i.e.

sym(cijkl) = (cijkl + cklij)/2. Hence, loss of stability/

uniqueness is given by the condition

detðsymðcÞÞ ¼ 0; ð12Þ

where it is understood that the tensor c can be

arranged into a 6 · 6 square matrix (for 3D problems)

to obtain the determinant. On the other hand, continuity

of the stress rate is equivalent to the homogeneous

equation

½½ _r�� ¼ c : ½½ _e�� ¼ 0; ð13Þ

and so for a non-trivial solution to exist we must have

detðcÞ ¼ 0: ð14Þ

The eigenmode (or e-mode) of the singular sym-

metrized tensor sym(c) may be calculated from the

homogeneous equation

symðcÞ : ½½ _e�� ¼ 0: ð15Þ

However, the above equation does not preclude a jump

in the stress rate for a non-symmetric c since sym(c) =

c – skw(c), and so the jump in the stress rate is given by

½½ _r�� ¼ c : ½½ _e�� ¼ skwðcÞ : ½½ _e�� 6¼ 0: ð16Þ

On the other hand, a more physically meaningful

e-mode is the one obtained from the singular full tensor

c via (13), which is consistent with a zero jump in the

stress rate. Note that e-modes only describe deforma-

tion shapes but have no unique norms.

2.3 Strong ellipticity for incrementally linear

material

Consider the following specific form for ½½ _e�� :

½½ _e�� ¼ usymðm� nÞ; ð17Þ

where m and n are unit vectors, and u is a scalar, real

coefficient. In this case the determinant rank of the

tensor ½½ _e�� is one. Thus we get

½½ _e�� : ½½ _r�� ¼u2symðm�nÞ : c : symðm�nÞ¼u2m �A �m;
ð18Þ

where A = A(n) is called the acoustic tensor, so named

because of its connection to the propagation of planar

waves [18]. This tensor has components

Aij ¼ nkcikjlnl: ð19Þ

Definition of strong ellipticity. An incrementally

linear material is strongly elliptic if for any unit vectors

m and n,

m �AðnÞ �m [ 0: ð20Þ

Equation (20) is the strong ellipticity condition. Since

(17) is only a specific case of a more general tensor ½½ _e��;
it follows that a stable material is strongly elliptic.

Definition of ellipticity. An incrementally linear

material is elliptic if for any unit vector n,

detðAÞ 6¼ 0: ð21Þ

Note that ellipticity permits the scalar product

m Æ A Æ m to be negative.

For the specific form of the jump tensor ½½ _e�� given by

(17) the following conditions are of interest

m �A �m ¼ 0 : loss of strong ellipticity; ð22Þ

A �m ¼ 0 : loss of ellipticity: ð23Þ

Since m Æ A Æ m = m Æ sym(A) Æ m, loss of strong

ellipticity occurs when

inf jn detðsymðAÞÞ ¼ 0: ð24Þ

We use the ‘‘infimum’’ symbol here for the set of

determinants since we are typically concerned with a

condition that is initially strongly elliptic and we wish

to find the critical state at which (24) is satisfied for the
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first time. This requires that we search for the critical

normal vector n that minimizes the determinant func-

tion for a given c, though the latter tensor could also

change with deformation. On the other hand, for a

nontrivial solution to (23) to exist we must have

inf jn detðAÞ ¼ 0: ð25Þ

Loss of ellipticity condition can be written in the

alternative form

A �m ¼ ½c : symðm� nÞ� � n ¼ 1

u
½½ _r�� � n ¼ 0: ð26Þ

We recognize ½½ _r�� � n ¼ ½½_t�� as the jump in the nominal

traction rate vector across a line whose unit normal is

n. Such line is often associated with the boundary of a

so-called ‘‘deformation band.’’ Thus, loss of ellipticity

is equivalent to having a zero jump of the traction rate

vector across the band. The eigenvector m of the sin-

gular tensor A along with the critical vector n at which

this tensor becomes singular for the first time define

the corresponding rank-one e-mode, sym(m�n), often

called the ‘‘slip tensor’’ in the literature.

3 Elastoplasticity and comparison solids

For elastoplastic solids the constitutive tensor c de-

pends on the loading direction _e and has two branches,

one for elastic unloading and another for plastic load-

ing, i.e.,

c ¼ ce for elastic unloading;
cep for plastic loading;

�
ð27Þ

where ce and cep are the elastic and elastoplastic tan-

gent constitutive operators, respectively. The latter has

the following prototype structure for classical plasticity

cep¼ ce� cp; cp¼ 1

v
ce : g� f : ce; v¼ f : ce : gþH [ 0;

ð28Þ

where f and g are symmetric stress gradient tensors to

the yield and plastic potential surfaces, respectively,

and H is the generalized plastic modulus. For associa-

tive flow rule, g = f. Hardening is defined by the con-

dition H > 0, softening by the condition H < 0, and

perfect plasticity by the condition H = 0. Loading and

unloading depends on the direction of the so-called

trial rate of stress, ce : _e; relative to the yield function,

and is determined from the criterion

sgnðf : ce : _eÞ ¼ ð�Þ for elastic unloading;
ðþÞ for plastic loading:

�
ð29Þ

Throughout we assume that ce is positive definite and

possesses the major and minor symmetry.

3.1 Comparison solid for associative plasticity

Because c has two branches the response is incre-

mentally nonlinear in the sense that the constitutive

tangent operator depends on the direction of the strain

rate. This requires that we consider all possible load-

ing/unloading scenarios and choose the most critical

one. Herein we take associative plasticity, g = f, and

assume f : ce : _e [ 0 and f : ce : _e� [ 0: Thus, both

solutions follow the plastic loading branch. This

‘‘comparison solid’’ was introduced by Hill [19] to

establish a bound or limit to the stable region for

associative plasticity.

The consistency condition for the solution _e is given

by

f : ce : ð _e� _kf Þ � _kH ¼ 0; ð30Þ

where _k � 0 is the plastic consistency multiplier. Solv-

ing for _k; we obtain

_k ¼ 1

v
f : ce : _e; v ¼ f : ce : f þH [ 0: ð31Þ

The last inequality limits the degree of softening.

Similarly, for the solution _e� the consistency condition

is written as

f : ce : ð _eþ ½½ _e�� � _�kf Þ � _�kH ¼ 0; ð32Þ

from which the new consistency parameter may be

determined as

_�k ¼ _kþ _��k � 0;
_��k ¼ 1

v
f : ce : ½½ _e�� � 0: ð33Þ

It is important to note that _e and ½½ _e�� are two inde-

pendent kinematical variables, so _�k � 0 is guaranteed

only if both _k � 0 and
_��k � 0: The inequality for

_��k guarantees that in the loading/loading combination

the solution corresponding to _e� continues to yield

plastically past and beyond the solution corresponding

to _e; thus permitting a clear characterization of the

modes of failure at bifurcation.

For Hill’s comparison solid the power density pro-

duced by the jumps is given by
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L1 ¼ ½½ _e�� : ½½ _r�� ¼ ½½ _e�� : cep : ½½ _e�� ¼ ½½ _e�� : ðce � cpÞ : ½½ _e��[ 0:

ð34Þ

The symbol ‘‘L’’ connotes either a stable region ‘‘lim-

iter’’ or a ‘‘lower bound’’ to all possible powers as

elaborated below. For continuous loading L1 is ex-

pected to cross the zero value first before any jumps-

induced power density derived from other possible

loading/unloading combinations. To elaborate the last

point, assume that f : ce : _e [ 0 (plastic loading) and

f : ce : _e� \ 0 (elastic unloading). Then _r ¼ cep : _e and

_r� ¼ ce : _e�: The jump in the stress rate in this case is

½½ _r�� ¼ ce : _e� � cep : _e ¼ ce : ½½ _e�� þ cp : _e: ð35Þ

The corresponding power density is given by

P ¼ ½½ _e�� : ½½ _r�� ¼ ½½ _e�� : ce : ½½ _e�� þ ½½ _e�� : cp : _e: ð36Þ

Subtracting (34) from (36) and using the definition of

cp from (28) gives

P � L1 ¼ ½½ _e�� : cp : ½½ _e�� þ ½½ _e�� : cp : _e

¼ 1

v
ð½½ _e�� : ce : f Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

\ 0

ðf : ce : _e�Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
\ 0

[ 0: ð37Þ

Thus L1 \ P; and so L1 serves as a ‘‘lower bound’’ to

P: A similar result may be obtained if instead we as-

sume that f : ce : _e \ 0 and f : ce : _e� [ 0 (unloading/

loading combination); or if we assume that

f : ce : _e \ 0 and f : ce : _e� \ 0 (unloading/unloading

combination). By ensuring that L1 [ 0; we exclude

any local bifurcation.

3.2 Comparison solid for non-associative plasticity

If the flow rule is non-associative the condition

f : ce : _e [ 0 no longer implies that g : ce : _e [ 0; so we

cannot proceed with a similar analysis as in Sect. 3.1.

For this case Raniecki and Bruhns [36] proposed a

comparison solid producing a power density of the

form

L2 ¼ ½½ _e�� : ½½ _r�� ¼ ½½ _e�� : ~cep : ½½ _e�� ¼ ½½ _e�� : ðce � ~cpÞ : ½½ _e��[ 0;

ð38Þ

where

~cp ¼ 1

4rv
ce : ðgþ rf Þ � ðgþ rf Þ : ce 8r [ 0: ð39Þ

This comparison solid is purely fictitious in the sense

that there is no real material described by such a

constitutive tangent operator, but the expression for L2

does serve as a lower bound to all possible power

densities in the non-associative regime. For example,

consider first the case f : ce : _e [ 0 and f : ce : _e� [ 0

(plastic loading for both solutions). Following (33) we

augment the restriction f : ce : ½½ _e�� � 0: The jump in the

Cauchy stress rate is then ½½ _r�� ¼ cep : ½½ _e��; yielding a

power density of the form

U ¼ ½½ _e�� : cep : ½½ _e�� ¼ ½½ _e�� : ce � 1

v
ce : g� f : ce

� �
: ½½ _e��:

ð40Þ

Subtracting (38) from (40) gives

4rvðU � L2Þ ¼ ½½ _e�� : ce : ðg� rf Þf g2 � 0: ð41Þ

Since 4rv > 0 then U � L2; and so L2 is a lower bound

to P: Note that U ¼ L2 when g = f and r = 1.

We need to consider other possible loading and

unloading combinations, so we next assume that

b1 � f : ce : _e [ 0 and b2 � f : ce : _e� \ 0 (loading/

unloading combination); then _r ¼ cep : _e and

_r� ¼ ce : _e�: The jump in the stress rate is then given by

½½ _r�� ¼ ce : ½½ _e�� þ cp : _e; and the corresponding power

density is

P ¼ ½½ _e�� : ce : ½½ _e�� þ 1

v
½½ _e�� : ce : g� f : ce : _e: ð42Þ

Setting a ¼ ½½ _e�� : ce : g and subtracting L2 from (42)

yields

4rvðP � L2Þ ¼ 4rab1 þ aþ rðb2 � b1Þ½ �2

¼ aþ rðb1 þ b2Þ½ �2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
[ 0

�4r2b1b2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
[ 0

[ 0; ð43Þ

so L2 is also a lower bound to P: For the unloading/

loading combination a similar result may be obtained

by simply reversing the signs of b1 and b2. Finally, for

the unloading/unloading combination the condition is

less critical, so we have again exhausted all possible

combinations and conclude that by keeping L2 [ 0 we

exclude all possible local bifurcations.

An ‘‘in-loading comparison solid’’ is one for which U
represents the power density induced by the jumps. It

is not possible to show that U is a lower bound to P as

given by (42), for example, unless the flow rule is

associative, since g could deviate significantly from f

depending on the degree of non-associativity. Hence,

no inequality relation exists between U and P: On the

other hand, U ¼ 0 does result in loss of stability by
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definition (7), so U is sometimes called an ‘‘upper

bound.’’

A question arises as to what value of r > 0 provides

for the ‘‘optimal’’ estimate of the size of the stability

region. By ‘‘optimal’’ we mean the value of r at which

we can get as far into the loading history as possible

before the exclusion condition L2 [ 0 is violated for

the first time. To answer this question it suffices to note

that L2 [ 0 implies

/ : ~cep : /¼/ : ce : /� 1

4rv
ð/ : ce : ðgþ rf Þ½ �2 [ 0 8r [ 0

ð44Þ

for all symmetric second-order tensor / 6¼ 0: By the

Cauchy–Schwarz inequality we have (see [3] for proof)

½ð/ : ce : ðgþ rf Þ�2 � ð/ : ce : /Þ½ðgþ rf Þ : ce : ðgþ rf Þ�:
ð45Þ

Thus, (44) is satisfied provided we satisfy the stronger

condition

/ : ce : / 1� 1

4rv
ðgþ rf Þ : ce : ðgþ rf Þ

� �
� 0: ð46Þ

Now, since ce is positive definite, we must have

v � 1

4r
ðgþ rf Þ : ce : ðgþ rf Þ; ð47Þ

from which the optimal value of r is obtained as

ropt ¼
g : ce : g

f : ce : f

� �1=2

: ð48Þ

The optimal constitutive tensor ~c
ep
opt for the comparison

solid is then obtained by substituting ropt in (39).

3.3 Deformation banding

For non-associative plasticity an exclusion condition

against loss of strong ellipticity is given by

m �A �m[0;

A¼n � ce� 1

4rv
ce : ðgþrf Þ�ðgþrf Þ : ce

� �
�n; ð49Þ

for all m, n „ 0 and r > 0. The acoustic tensor in this

case is symmetric even if g „ f. A condition that

guarantees loss of strong ellipticity for the real material

is given by

m � symðAÞ �m ¼ 0; A ¼ n � ce � 1

v
ce : g� f : ce

� �
� n:

ð50Þ

In this case the constitutive operator pertains to the

‘‘in-loading’’ comparison solid. For a non-symmetric

A this criterion satisfies the continuum boundary

value problem (1) but does not preclude a traction

rate jump across a potential band. In fact this jump is

given by

½½_t�� ¼ n � ½½ _r�� ¼uA �m
¼u½symðAÞþ skwðAÞ� �m¼uskwðAÞ �m 6¼ 0; ð51Þ

since we must have sym(A) Æ m = 0 if sym(A) is sin-

gular. On the other hand, even if the jump is not zero,

m � ½½_t�� ¼ 0 due to the orthogonality generated by a

skew-symmetric operator. Bigoni and Zaccaria [5]

showed that (49) and (50) are coincident under the

hypothesis of isotropy.

A more physically meaningful solution is obtained

by enforcing the condition of zero traction rate jump

across a potential deformation band, leading to the

homogeneous equation

A �m ¼ 0; A ¼ n � ce � 1

v
ce : g� f : ce

� �
� n: ð52Þ

In this case we want to find a unit vector n where

det(A) = 0 is satisfied for the first time. Equation (52) is

the localization condition presented by Rudnicki and

Rice [40], without the geometric terms. In the follow-

ing we shall assume that all eigenvalues of A are real to

exclude a so-called flutter instability, which could occur

with complex eigenvalues [38].

Rice and Rudnicki [39] demonstrated that for a

deformation band-mode, bifurcation of the ‘‘in-load-

ing’’ comparison solid occurs first before any other

possible loading/unloading modes. For the sake of

completeness we outline a slightly different (and more

concise) proof of their result below. Let

Ae ¼ n � ce � n; a ¼ n � ce : g; b ¼ f : ce � n: ð53Þ

Then the acoustic tensor can be written as

A ¼ Ae � 1

v
a� b: ð54Þ

Let vLL denote the specific value of the plastic divisor v
for the ‘‘in-loading’’ comparison solid at which A is

singular, i.e.,
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Ae � 1

vLL

a� b

� �
�m ¼ 0; ð55Þ

where subscript ‘‘LL’’ denotes a loading/loading mode.

For non-trivial solutions to exist the vector Ae Æ m must

be parallel to a; and

vLL ¼ a �Ae�1 � b; ð56Þ

assuming the elastic part of the acoustic tensor is

invertible (which is normally the case).

Now, consider an unloading/loading combination

and assume that f : ce : _e \ 0 and f : ce : _e� [ 0; where
_e� ¼ _eþ ½½ _e�� ¼ _eþ usymðm� nÞ: We can think of _e and
_e� as the strain rates ‘‘outside’’ and ‘‘inside’’ the band,

respectively, although the terms ‘‘outside’’ and ‘‘in-

side’’ are interchangeable in this context. The jump in

the stress rate is given by (35) in this case, and setting

n � ½½ _r�� ¼ 0 gives

u Ae � 1

vUL

a� b

� �
�m ¼ 1

vUL

ðf : ce : _eÞa; ð57Þ

where subscript ‘‘UL’’ indicates an unloading/loading

mode. The acoustic tensor above is non-singular since

vUL „ vLL, and in fact its inverse has a closed-form

expression given by the Sherman–Morrison formula as

A�1
UL :¼ Ae� 1

vUL

a�b

� ��1

¼Ae�1þAe�1 �a�b �Ae�1

vUL�vLL

:

ð58Þ

Thus, (57) gives

um ¼ f : ce : _e

vUL � vLL

� �
Ae�1 � a: ð59Þ

The inequality for loading ‘‘inside the band’’ can be

expanded as

f : ce : ½ _eþ symðum�nÞ� ¼ f : ce : _e 1þ vLL

vUL�vLL

� �
[ 0;

ð60Þ

upon substitution of um from (59). Since f : ce : _e \ 0

by hypothesis, it follows that

vUL

vUL � vLL

\ 0: ð61Þ

The plastic divisors vLL and vUL are always positive to

ensure nonnegative plastic consistency parameters;

hence, we must have the inequality vUL < vLL. This

implies that deformation banding with unloading on

one side and loading on the other side is possible only

when the plastic modulus HUL is less than the critical

modulus HLL. Now, if H is assumed to degrade in a

smooth fashion from the stable region up to the mo-

ment of localization, then it follows that the loading/

loading mode is more critical since it requires a higher

value of H to localize. Borre and Maier [13, p 39],

demonstrated that the singularity of the acoustic tensor

A is a sufficient condition for bifurcation.

4 Isotropy, singularities and e-modes

Numerous elastoplastic constitutive models in geome-

chanics have been developed based on the assumption

of isotropy. Isotropic models are useful for capturing

mechanical responses under monotonic loading. Fur-

thermore, isotropic functions have some nice mathe-

matical features that render a physically meaningful

solution. This section exploits these features in the

mathematical capture of the triggering of some inter-

esting bifurcation modes in collapsible solids.

4.1 Spectral representation

We begin with an isotropic linearly elastic material

where the stress and elastic strain tensors r and ee are

coaxial with the eigenvectors fnð1Þ; nð2Þ; nð3Þg defining

their principal directions. These tensors admit the

spectral representation

r ¼
X3

A¼1

rAnðAÞ � nðAÞ; ee ¼
X3

A¼1

�e
AnðAÞ � nðAÞ; ð62Þ

where the scalar coefficients are the correspondng

principal values. The Cauchy stress rate can be written

in spectral form as [32]

_r¼
X3

A¼1

_rAnðAÞ �nðAÞ þ
X3

A¼1

X
B 6¼A

xABðrB�rAÞnðAÞ �nðBÞ;

ð63Þ

and the elastic strain rate as

_ee¼
X3

A¼1

_�e
AnðAÞ �nðAÞ þ

X3

A¼1

X
B 6¼A

xABð�e
B� �e

AÞnðAÞ �nðBÞ;

ð64Þ

where xAB is the AB-component of the skew-sym-

metric spin tensor x; which is the same for the two

tensors to preserve coaxiality.
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The stress gradient tensors f and g also admit the

spectral representations

f ¼
X3

A¼1

fAnðAÞ � nðAÞ; g ¼
X3

A¼1

gAnðAÞ � nðAÞ; ð65Þ

where the coefficients are the corresponding gradients

with respect to the principal stresses. Now, by the

additive decomposition of the total strain rate into

elastic and plastic parts, and by the flow rule, we get

_e ¼ _ee þ _ep ¼ _ee þ _kg

¼
X3

A¼1

ð _�e
A þ _kgAÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

_�A

nðAÞ � nðAÞ

þ
X3

A¼1

X
B6¼A

xABð�e
B � �e

AÞnðAÞ � nðBÞ;

ð66Þ

where _�A represents the total principal strain rate and
_k � 0 is the plastic consistency parameter. The above

equation indicates that the spin of the total strain is the

same as the spin of the elastic strain, a sensible result in

light of the absence of plastic spin in infinitesimal

plasticity theory.

Accordingly, the elastoplastic constitutive operator

cep admits the spectral representation

cep ¼ ce � 1

v
ce : g� f : ce

¼
X3

A¼1

X3

B¼1

a
ep
ABmðAÞ �mðBÞ

þ 1

2

X3

A¼1

X
B 6¼A

rB � rA

�e
B � �e

A

� �
ðmðABÞ �mðABÞ

þmðABÞ �mðBAÞÞ;

ð67Þ

where

a
ep
AB :¼ @rA

@�B
¼ ae

AB �
1

v

X3

C¼1

fCae
CA

 ! X3

D¼1

ae
BDgD

 !
;

v ¼ f : ce : gþH ¼
X3

A¼1

X3

B¼1

fAae
ABgB þH:

ð68Þ

The notations are as follows: m(A) = n(A)�n(A),

m(AB) = n(A)�n(B), [aAB
e ] = [¶rA/¶�B

e ] is the matrix of

elastic moduli in principal axes (this is a 3 · 3 matrix

for 3D problems), and [aAB
ep ] = [¶rA/¶�B] is the corre-

sponding matrix of elastoplastic tangential moduli in

principal axes.

4.2 Singularity of cep and associated e-modes

Consider an alternative solution _r�; also given in

spectral form as

_r� ¼
X3

A¼1

_r�AnðAÞ �nðAÞ þ
X3

A¼1

X
B6¼A

x�ABðrB�rAÞnðAÞ �nðBÞ:

ð69Þ

Our description of this alternative stress rate tensor

remains reckoned with respect to the existing stress

state characterized by the same principal values and

principal directions as those used for the stress rate _r in

(63). Now, subtracting (69) from (63) gives the jump in

the stress rate

½½ _r�� ¼
X3

A¼1

½½ _rA��nðAÞ � nðAÞ

þ
X3

A¼1

X
B 6¼A

½½xAB��ðrB � rAÞnðAÞ � nðBÞ;

ð70Þ

where ½½ _rA�� ¼ _r�A � _rA and ½½xAB�� ¼ x�AB � xAB: The

jump in the stress rate tensor (six elements for 3D

problems) consists of jumps in the principal values of

the stress rates (three elements) and jumps in the spins

(three elements).

The conjugate total strain rate that drives the

alternative stress rate _r� also admits the spectral rep-

resentation

_e� ¼
X3

A¼1

_��AnðAÞ �nðAÞ þ
X3

A¼1

X
B 6¼A

x�ABð�e
B� �e

AÞnðAÞ �nðBÞ:

ð71Þ

Once again, to preserve coaxiality the spins of the

tensors _r� and _e� must be the same. Accordingly, the

jump in the total strain rate is

½½ _e�� ¼
X3

A¼1

½½_�A��nðAÞ � nðAÞ

þ
X3

A¼1

X
B 6¼A

½½xAB��ð�e
B � �e

AÞnðAÞ � nðBÞ:

ð72Þ

Now we consider the ‘‘in-loading’’ comparison solid

described in Sec. 3.2 and write the jump in the stress rate

at the moment of loss of uniqueness, see Eq. (10), as

½½ _r�� ¼ cep : ½½ _e�� ¼ 0; ð73Þ

where cep admits the spectral decomposition (67). In

order for the jump in stress rate to vanish the jumps in
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the principal values and the jumps in the spins must be

zero, i.e.,

½½ _rA�� ¼ 0; A ¼ 1; 2; 3; ½½xAB�� ¼ 0 8A 6¼ B:

ð74Þ

For non-trivial solution we must have det(cep) = 0. The

singularities of cep, however, are of two types, charac-

terized by the following equations, see [32]

(a) detðaep
ABÞ ¼ 0; ð75Þ

(b) rA ¼ rB; A 6¼ B: ð76Þ

Type (a) corresponds to a singularity of the 3 · 3

elastoplastic matrix in principal axes, whereas type (b)

singularity gives rise to indeterminate spins. Each type

of singularity generates a specific e-mode.

To obtain the corresponding e-modes we first con-

sider type (a) singularity. The homogeneous problem

½½ _rA�� ¼
X3

B¼1

a
ep
AB½½ _�B�� ¼ 0 ð77Þ

results in non-trivial values for ½½_�B�� if and only if the

coefficient matrix is singular. Now, from (70) if rA „ rB

for A „ B the only way that ½½ _r�� can vanish is for the

spins to vanish, i.e., ½½xAB�� ¼ 0: Thus type (a) singu-

larity gives rise to an e-mode of the form

½½ _e�� ¼
X3

A¼1

½½ _�A��nðAÞ � nðAÞ; ð78Þ

where f½½_�A��g is the e-mode of the singular matrix

[aAB
ep ]. In this case, bifurcation is characterized by

jumps in the principal strain rates at fixed principal axes.

Next we consider type (b) singularity. Since the

matrix [aAB
ep ] is non-singular then (77) only admits the

trivial solution ½½_�A�� ¼ 0 for A = 1,2,3. The corre-

sponding e-mode is then

½½ _e�� ¼ ½½xAB��ð�e
B � �e

AÞnðAÞ � nðBÞ ð79Þ

for any A „ B where rA = rB. This is a ‘‘pure shear-

ing’’ e-mode at fixed principal values and produces only

rotation of principal axes. If the singularities of cep are

of both types (a) and (b) then the jump in the strain

rate is given by the full tensor (72). Regardless of the

type of singularity the e-mode has no unique norm.

4.3 Singularity of A and associated e-modes

Singularity of the acoustic tensor A does not follow

from the singularity of cep; in fact if A is singular then

cep cannot be singular (unless the e-modes are con-

strained) since the singularity of the former leads to a

rank-one e-mode whereas the singularity of the latter

leads to a full-rank jump tensor ½½ _e�� as shown in the

previous section. The e-mode corresponding to a sin-

gular A is the rank-one tensor sym (m � n), where n is

the unit vector that identifies the zero minimum

determinant of A, and

m ¼ 	 Ae�1 � a
Ae�1 � a
�� �� ð80Þ

is the eigenvector of A. The correct sign for m is chosen

by imposing condition (33),

f : ce : symðm� nÞ � 0 ð81Þ

which guarantees that in the loading/loading solution

the material ‘‘inside’’ the band continues to yield

plastically past and beyond the material ‘‘outside’’ the

band. Thus the tensor sym(m�n) is well defined.

The trace of sym(m�n), equal to the vector dot

product m Æ n, determines the nature of deformation

band created at localization. Borja and Aydin [10]

describe a classification scheme for deformation band

types according to the following framework:

m � n ¼ 1 : pure dilation band;

0 \ m � n \ 1 : dilatant shear band;

m � n ¼ 0 : simple shear band;

�1 \ m � n \ 0 : compactive shear band;

m � n ¼ �1 : pure compaction band:

8>>>>>>><
>>>>>>>:

ð82Þ

In a simple shear band the instantaneous relative

movement is tangent to the band. In a dilatant

(compactive) shear band the angle between the unit

vectors n and m is acute (obtuse), and thus the band

exhibits some form of instantaneous expansion (con-

traction). Pure dilation and pure compaction bands

exhibit little or no shear offset. Because condition (81)

requires that the tensor sym(m�n) be oriented

approximately in the direction of the stress gradient

tensor f, we can expect a compactive (dilative) bifur-

cation mode to occur on the compression (tension) cap

of the yield surface.

4.4 Volume implosion and compaction banding

Volume implosion (explosion) and compaction (dila-

tion) banding both result in pore collapse (growth) in
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soils and rocks. Volume implosion is diffuse whereas

compaction banding is localized to a narrow tabular

zone. In Fig. 2 we compare the kinematical signatures

of these two types of bifurcation.

We first recall type (a) singularity of the constitutive

tangent operator cep. The associated singular coeffi-

cient matrix [aAB
ep ] leads to jumps in the principal values

of the strain rate tensor at fixed principal directions.

The e-mode f½½_�A��g generally characterizes ‘‘squash-

ing’’ and ‘‘stretching’’ in the direction of the principal

axes (see Fig. 3a), with the net overall volumetric

strain rate jump given by

½½_�v�� ¼
X3

A¼1

½½_�A��: ð83Þ

If ½½_�v�� ¼ 0; then the e-mode is isochoric.

Consider a singular 3 · 3 matrix of elastoplastic

coefficients [aAB] of rank two (for brevity we drop the

superscript ‘‘ep’’). Assume that the first 2 · 2 subma-

trix is invertible so that the first two components of the

e-mode can be solved for in terms of the third com-

ponent. An e-mode normalized with respect to ½½_�3�� can

be written as

f½½ _�A��g ¼
1

a11a22 � a12a21

a12a23 � a13a22

a13a21 � a11a23

a11a22 � a12a21

8>><
>>:

9>>=
>>;

¼ 1

cofða33Þ

cofða31Þ

cofða32Þ

cofða33Þ

8>><
>>:

9>>=
>>;
; ð84Þ

provided cof(a33) „ 0, where cof = cofactor. Thus, the

condition for an isochoric e-mode normalized with

respect to ½½_�B�� is

X3

A¼1

cofðaBAÞ ¼ 0; cofðaBBÞ 6¼ 0: ð85Þ

Consider the same singular 3 · 3 matrix [aAB]. Its

e-mode normalized with respect to ½½_�B�� is isotropic if

cofðaB1Þ ¼ cofðaB2Þ ¼ cofðaB3Þ 6¼ 0: ð86Þ

Isochoric and isotropic e-modes represent two ends of

diffuse bifurcation arising from type (a) singularity of

cep (note that type (b) singularity of cep leads to an

isochoric e-mode). In general the actual bifurcation

mode always lies between these two end modes.

Since an e-mode is a non-trivial solution of a system

of homogeneous equations, its negative, �½½_�A��; also

satisfies the homogeneous equations. To choose the

appropriate sign of the e-mode we again impose con-

dition (33) for the ‘‘in-loading’’ comparison solid,

f : ce : ½½ _e�� ¼
X3

A¼1

X3

B¼1

fAae
AB½½ _�B��[ 0: ð87Þ

Thus, the volume jump is explosive (implosive)

depending on whether the stress point at bifurcation is

on the dilative (compactive) side of the yield surface.

Next we consider deformation banding-type of

instability. Assuming isotropy the spectral form of the

acoustic tensor may be written as

A ¼
X3

A¼1

X3

B¼1

a
ep
AB cos hA cos hBnðAÞ � nðBÞ

þ 1

2

X3

A¼1

X
B6¼A

rB � rA

�e
B � �e

A

� �
ðcos2 hBnðAÞ � nðAÞ

þ cos hA cos hBnðAÞ � nðBÞÞ;

ð88Þ

where cos hA = n Æ n(A) (same for B). We are inter-

ested in finding a vector n at which inf(det(A)) = 0, as

well as the associated eigenvector m of the singular

SIMPLE SHEAR
BAND

DILATION
BAND

COMPACTION
BAND

PORE
GROWTH

PORE
COLLAPSE

ISOCHORIC
MODE

VOLUME
EXPLOSION

VOLUME
IMPLOSION

ISOTROPIC MODE

PORE
GROWTH

PORE
COLLAPSE

(a) (b)

NORMAL MODE

Fig. 2 Idealized diagrams defining failure modes in collapsible
solids: (a) full-rank jump of strain rate tensor; (b) rank-one jump

(a) (b)

ISOTROPIC
IMPLOSION

STRICT
IMPLOSION

IMPLOSION ISOCHORIC
MODE

PURE COMPACTION
BAND

COMPACTIVE
SHEAR BAND

SIMPLE
SHEAR BAND

Fig. 3 E-modes leading to pore collapse for: (a) singular tangent
constitutive operator; (b) singular tangent acoustic tensor
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tensor. If m = ±n then we have a compaction/dilation

band, and for this mode we set

A � n ¼
X3

A¼1

X3

B¼1

a
ep
AB cos hA cos2 hBnðAÞ

þ 1

2

X3

A¼1

X
B6¼A

rB � rA

�e
B � �e

A

� �
cos hA cos2 hBnðAÞ ¼ 0:

ð89Þ

This vector equation can have a solution if and only if

n = n(A), i.e., if n is parallel to any of the three principal

axes. The spin terms drop out, and we are left with the

condition for compaction/dilation banding, see [10],

a
ep
AA ¼ 0 (no sum on AÞ: ð90Þ

This means that a pure compaction/dilation band will

emerge if A is singular at the same time that a diagonal

element of [aAB
ep ] is zero. Like the framework for dif-

fuse bifurcation, the localization condition for pure

compaction/dilation banding does not entail rotation of

the principal axes since the second summation terms in

(89) drop out when we set m = ±n. Figure 3b shows

different modes of deformation banding characterized

by pore collapse [10].

5 Simulation of pore collapse instabilities

Due to a large array of possible bifurcation modes, we

shall limit the discussion of this section to two failure

modes dominated by pore collapse instability, namely,

volume implosion and compaction banding. Conditions

for the occurrence of these two modes are summarized

in Box 1.

5.1 Associative plasticity

We consider a porous sandstone whose elastoplastic

response is described by the three-invariant yield cri-

terion [23, 25, 26]

F ¼ ðF1 þ c3F2Þl�I1 þ j � 0; F1 ¼ �I2
1=

�I2; F2 ¼ �I3
1=

�I3;

ð91Þ

where c3 and l are material parameters (adopting the

notations of [9]), and

�I1¼ �r1þ �r2þ �r3; �I2¼ �r1�r2þ �r2�r3þ �r1�r3; �I3¼ �r1�r2�r3

ð92Þ

are invariants defined from translated principal stresses

�r1 ¼ r1 � a; �r2 ¼ r2 � a �r3 ¼ r3 � a: ð93Þ

The parameter a > 0 is a stress offset along the

hydrostatic axis accommodating the material cohesion

(a = 0 for cohesionless material). Typical values of

c3 = 0.0013 and l = 0.5 have been reported by Kim

and Lade [23] for sandstone. Figure 4 shows a three-

dimensional plot of the yield surface F = 0 in principal

stress space for these values of c3 and l.

We assume that the plastic internal variable j varies

with plastic volumetric strain according to the expres-

sion

j ¼ a1vp expða2vpÞ; vp ¼ v
p
0 þ

Z

t

trð _epÞdt; ð94Þ

where a1 and a2 are material parameters that vary

according to porosity of the rock (in principle, these

parameters can be calibrated from the stress-strain

mechanical responses exhibited by the rock). Highly

porous rocks with a collapsible grain structure could

exhibit pronounced softening response as they are

Box 1 Conditions for volume implosion and compaction
banding in collapsible solids (see Fig. 3)

Volume implosion:
1. Determinant condition: detðaep

ABÞ ¼ 0

2. E-mode:
P

B a
ep
AB½½_�B�� ¼ 0; ½½ _e�� ¼

P
A½½_�A��mðAÞ

3. Sign of e-mode: f : ce : ½½ _e�� > 0
4. Implosive when: trð½½ _e��Þ\ 0
5. Strictly implosive when: ½½_�A��\ 0 for A ¼ 1; 2; 3:

Compaction banding:
1. Determinant condition: infjndetðAÞ ¼ 0
2. E-mode: A �m ¼ 0; ½½ _e�� ¼ u symðm� nÞ
3. Sign of e-mode: f : ce : symðm� nÞ > 0
4. Compactive shear band when: m � n < 0
5. Pure compaction band when: m ¼ �n

Fig. 4 Yield surface for sandstone
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compressed, and this is reflected by the values of

material parameters. In this study we shall take the

values a1 = 200 MPa and a2 = 100 so that a softening

response occurs when the plastic compaction reaches

the value vp = –1% [9]. In the simulations below we

take Young’s modulus E = 100 MPa, Poisson’s ratio
�m ¼ 0:20; cohesion parameter a = 10 kPa, and refer-

ence plastic strain v0
p = –0.005; initial stresses are

assumed as r11 = r22 = r33 = –100 kPa (isotropic). The

plasticity model is integrated using the classical return

mapping algorithm described by Borja et al. [12].

We consider the following strain-driven load path:

D�11 = –0.005%; D�22 = +0.003%; D�33 = –0.001%;

Dc12 = 2D�12 = +0.002%; Dc23 = Dc13 = 0. This leads to

an imposed net volumetric strain increment D�v =

–0.003% (compressive) as well as to a rotation of

principal axes on plane 1–2.

Figure 5 plots the determinant functions det(aAB
ep )

and inf|ndet(A). We recall from Sec. 3.1 that violation

of the exclusion condition for the Hill comparison solid

signifies initial bifurcation, which in this example is

detected at load step number 168 (each load step

consists of applying the above strain increments). The

jumps in the principal strain rates normalized to have a

unit norm are: ½½_�A�� ¼ f�0:845;�0:165; 0:516g; result-

ing in trð½½ _e��Þ\ 0: As expected, the predicted e-mode is

implosive, although not ‘‘strictly implosive’’ according

to the definition in Box 1 (not all principal jumps are

compressive). On the other hand, a compactive shear

band is predicted much later, at load step number 288.

For the compactive shear band mode calculation of the

critical orientations of n was done numerically by

sweeping the 1–2 plane in one degree-increments. The

minimum determinant of A vanishes on plane 1–2 at

orientations n defined by hn = 29� and 137� relative to

the positive 1-axis (conjugate modes). The calculated

eigenvectors m are at orientations hm = 137� and 29�,

respectively, also relative to the positive one-axis. In

both conjugate deformation bands the angle between

the vectors n and m is 108�, so m Æ n = –0.31 < 0

affirming a compactive shear band.

5.2 Non-associative plasticity

For the next simulations we consider a plastic potential

function of the form

G ¼ ð��c0 þ F1 þ c3F3Þm�I1 þ constant: ð95Þ

Figure 6 shows 3D plots of this function in principal

stress space for exponent value m = 0.25 and for dif-

ferent values of parameter �c0 characteristic of plain

concrete and other frictional materials [23]. The

parameter �c0 evidently controls the degree of volu-

metric non-associativity of the plastic flow. Figure 7

superimposes the plastic potential surface with �c0 ¼ 3:0

with the yield surface of Sect. 5.1 on a meridian plane

defined by the hydrostatic axis and one of the three

principal stress axes. It is seen that the flow rule is

approximately associative only near the nose but rap-

idly exhibits a nearly deviatoric character away from

the hydrostatic axis. This non-associative volumetric

plastic flow response is consistent with observed plastic

flow behavior of many frictional materials such as rock,

concrete, and sand [23].

We now repeat the procedure outlined in Sect. 5.1

and plot the determinant functions in Fig. 8. The

matrix [aAB
ep ] for the ‘‘in-loading’’ comparison solid

becomes singular at step number 174, where the

accompanying e-mode exhibits an implosive character

defined by principal values ½½_�A�� ¼ f�0:845;�0:163;

þ0:509g again normalized to have a unit norm. This

e-mode compares well with that calculated in Sect. 5.1.

However, a pure compaction band is detected at a

much earlier stage of the simulation, at step number 12,

where the determinant of the acoustic tensor vanishes

for the first time. This is corroborated by the elasto-

plastic modulus component a11
ep reversing in sign from

positive to negative at the same step number 12 (this

defines the direction of the normal to the compaction

band, see [9]). The critical orientation of n is calculated

at hn = 173�, and there is no conjugate band. The

associated orientation of m is calculated at hm = –7�, so

the angle between the two vectors is 180�, affirming a

compaction band. Clearly, this example underscores

the significant sensitivity of a deformation band-type

instability prediction to degree of non-associativity of

the plastic flow.
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For non-associative isotropic plasticity the optimal

constitutive tensor for the comparison solid of Rani-

ecki and Bruhns [36] also admits the spectral repre-

sentation

~c
ep
opt ¼

X3

A¼1

X3

B¼1

~a
ep
ABmðAÞ �mðBÞ

þ 1

2

X3

A¼1

X
B 6¼A

rB � rA

�e
B � �e

A

� �
ðmðABÞ �mðABÞ

þmðABÞ �mðBAÞÞ; ð96Þ

Fig. 6 Family of plastic potential surfaces for sandstone
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where

~a
ep
AB ¼ ae

AB �
1

4roptv
~fA

~fB; ~fA ¼ gA þ roptfA: ð97Þ

Type (a) singularity of this tensor occurs when

detð~aep
ABÞ ¼ 0: For the example discussed above we

determined that detð~aep
ABÞ\ 0 right at onset of plasticity.

Thus, for this particular loading condition not a single

step in the plastic loading regime is covered by the

exclusion condition of Raniecki and Bruhns [36].

To further illustrate the interplay among the various

stability criteria, we next consider the following strain-

driven load path: D�11 = –0.005%; D�22 = –0.003%;

D�33 = –0.001%; Dc12 = 2D�12 = +0.002%; Dc23 = Dc13 = 0.

This leads to an imposed net volumetric strain incre-

ment D�v = –0.006% (compressive) as well as to a

rotation of principal axes on plane 1–2. Figure 9 plots

the relevant determinants. We observe that nowhere

does the determinant of the acoustic tensor cross zero,

so this imposed strain path will not trigger a defor-

mation band. We also see that the determinant of the

matrix [aAB
ep ] for the ‘‘in-loading’’ comparison solid

crosses the value zero at step number 62, so the

response is expected to bifurcate near this load step.

The calculated e-mode has principal jumps

½½_�A�� ¼ f�0:891; �0:425;�0:160g; again normalized to

have a unit norm; by definition in Fig. 3 and Box 1, this

is a strictly implosive bifurcation mode. Finally, we see

that the determinant of the matrix ½~aep
AB� crosses the

value zero at step number 44, so the exclusion condition

covers the plastic regime up until step number 44, i.e.,

the solution is guaranteed to be stable up until this step

number. Tvegaard [42] noted that the lower bounds on

the bifurcation load predicted by (96) often appear to

be conservative. This seems to be corroborated by

Fig. 9 in which the exclusion condition terminates at

load step #44, much sooner than when the in-loading

comparison solid bifurcates at load step #62.

6 Closure

We have presented conditions for pore collapse insta-

bilities in solids induced by a local bifurcation of

solution into non-unique strain rate fields. We have

highlighted bifurcation modes as they augment (and

complement) current understanding of instabilities

associated with deformation banding. The theory was

applied to a three-invariant non-associative plasticity

model allowing for yielding and plastic flow in com-

pression. Results of the simulations suggest that a

deformation band analysis alone is not sufficient to

address the loss of uniqueness of solution, and that

diffuse pore collapse instabilities may also occur well

into the early stage of the solution. A natural extension

of the present theory would entail formulation with

finite deformation in the presence of pore fluids. This

aspect opens an entirely different approach to

addressing the problem of liquefaction instability in

granular soils, for example; work on this aspect is

currently in progress. Finally, we note that in shear

band analysis finite element solutions are now being

pursued into the post-localization regime utilizing

some form of strain enhancements to capture localized

deformation [6, 8, 11, 37]. It appears that pore collapse

instabilities can also be treated at post-bifurcation

using a similar strategy provided that one utilizes an

appropriate e-mode to construct the enhanced strain.
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