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Abstract. This article discusses an approach for hierarchical multilevel fault simulation for large systems described 
at the transistor, gate, and higher levels. The approach reduces the memory requirement of the simulation drastically, 
thus allowing the simulation of circuits that are too large to simulate at one flat level on typical engineering work- 
stations. This is achieved by exploiting the regularity and modularity found in a hierarchical circuit description 
that contains many repeated substructures. The hierarchical setup also allows flexible multilevel simulation: behavioral 
models can replace subcircuits at any level of the hierarchy for accelerated simulation. The simulation algorithms 
are at the switch level so that general MOS digital designs with bidirectional signal flow can be handled, and 
both stuck-at and transistor faults are treated accurately. The approach has been implemented in the hierarchical 
logic and fault simulation system, CHAMP, that runs under UNIX on SUN-3 and SUN-4 workstations. It has 
been used successfully for simulating and fault grading a large commercial microprocessor. 
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1. Introduction 

The development of better integrated circuit fabrication 
techniques has increased the complexity of digital sys- 
tems implemented on a single chip. The increase in the 
level of integration has exceeded the capability of cur- 
rent Computer Aided Design (CAD) tools which are 
crucial for the design and verification of large systems. 
In particular, the effort spent on simulation has grown 
sharply. Simulation tools are employed both to help 
verify the functionality of a design (logic simulation) 
and to evaluate the quality of a set of test patterns (fault 
simulation). 

Fault simulation has traditionally been performed at 
the gate level [1] where failures are approximated using 
the stuck-at-fault model [2]. For Metal Oxide Semicon- 
ductor (MOS) technology this is an inappropriate level 
of abstraction. MOS circuits may contain ratioed logic 
and pass transistors exhibiting bidirectional signal flow 
and charge-sharing effects. Furthermore, the gate level 
stuck-at fault model does not model realistic physical 
failures in MOS circuits adequately [3-6]. 

Switch-level fault simulators [3-9] are effective in 
simulating transistor-level effects and failures; however, 

they tend to require large amounts of memory when 
the circuits are represented at the flat level and the cir- 
cuit hierarchy is not utilized. Tiffs memory requirement 
becomes a limiting factor of the performance of switch- 
level logic and fault simulators when large circuits are 
considered. The limitations are due to the severe per- 
formance penalties of paging in a virtual memory envi- 
ronment. Therefore, to effectively perform logic and 
fault simulation in a reasonable amount of time and with 
acceptable memory requirements, circuit regularity and 
hierarchy must be exploited. 

Hierarchical approaches are common in both soft- 
ware and hardware engineering as means of coping with 
system complexity. They are a natural consequence of 
designing in a divide-and-conquer fashion. In addition, 
during design one tries to identify common subtasks 
that, once implemented, can be used as building blocks 
for more involved tasks. Obviously, a divide-and- 
conquer method has the advantage of reducing a large 
problem to subproblems that are easier to design and 
verify. For most VLSI systems, the hierarchy is natural: 
the system architect defines the system as an intercon- 
nection of functional blocks each of which is an inter- 
connection of less complex functional blocks. The 
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blocks at the bottom of the hierarchy are realized at 
the Boolean gate or at the transistor level. 

From the point of view of simulation, a hierarchical 
circuit description offers many advantages over a fiat 
description. A hierarchical description allow compact 
representation of the circuit by exposing repetitively 
used blocks. Consider, for example, an N-bit binary 
adder; it can be represented as the interconnection of 
N identical submodules each consisting of a full adder 
which, in turn, consists of an interconnection of ele- 
mentary logic gates. This contrasts sharply with a flat 
description, where the whole N-bit adder is given at 
the gate level. The difference in the size of the descrip- 
tion becomes even more visible when the lowest level 
of the circuit is at least in part described in terms of 
transistor networks, as is the case for MOS designs. 
This reduction in memory requirement is pivotal for 
dealing with large circuits, where paging activity during 
simulation degrades performance and makes analysis 
of a complete system practically impossible. 

A hierarchical description can also be used to sPeed 
up the simulation. It facilitates the replacement of com- 
plex modules with functionally equivalent but computa- 
tionally cheaper modules. For instance, one replaces 
the switch-level based evaluation of a logic gate by a 
software description. At a higher level, a collection of 
gates can be emulated by one software function. Certain 
regular subcircuits have obvious high-level equivalents 
that can be derived manually in a straightforward man- 
ner. Also, for blocks of moderate size, one has the option 
of constructing a table by carrying out an exhaustive 
low-level simulation [10], generating logic expressions 
[9, 11, 12], or generating a behavioral description [13] 
to replace the block and expedite its evaluation while 
maintaining its function. 

Another advantage of hierarchical simulation is in 
the area of user interface. A hierarchical simulator 
keeps the circuit structure defined by the designer while 
a single-level simulator requires a flattener to translate 
the hierarchical circuit structure into a fiat structure. 
A flattened circuit is cumbersome to use and requires 
the consultation of a symbol table to map the designer 
entities into the fiat simulator primitives. For example, 
the original circuit structure may include an ALU and 
a register file and the designer may be interested in 
observing the output lines of the ALU. This would re- 
quire consulting the symbol table of the flattener, identi- 
fying the "flat" names of the ALU output lines, and 
requesting that each one of the identified names be 
traced by the flat simulator. By keeping the hierarchy 
as defined by the user, circuit traversal and tracing 

becomes extremely simple; the user can navigate 
through the circuit structure and trace a module at any 
level of the hierarchy. 

Hierarchical logic and fault simulation was first im- 
plemented in the program CHIEFS [14]. CHIEFS uses 
a gate-level description at the lowest level, and thus can- 
not model transistor-level effects. Moreover, gate-level 
simulation requires unidirectional signal flow across 
subcircuit boundaries. This is insufficient for MOS 
design. Similarly, multilevel simulation has typically 
been performed from the gate level upwards (see, e.g., 
[15]). It is relatively easy to incorporate and exploit hier- 
archy in a simulator where primitives are unidirectional 
with well defined input and output ports. However, 
when switches or transistors are allowed as primitives, 
the difficult problems of bidirectional signal flow and 
charge sharing need to be considered. Moreover, the 
behavior of a primitive may change from unidirectional 
to bidirectional in the presence of faults. Hitherto, the 
problems of incorporating such effects in a hierarchical 
simulator have not been addressed. 

Here, an approach is given for hierarchical multi- 
level fault simulation. The approach is based on repre- 
senting the circuit in a hierarchical fashion where the 
lowest-level primitives consist of transistor interconnec- 
tions. A key point of this work is in its application to 
large systems. The approach has been implemented in 
a computer program, CHAMP, which has the following 
features: 
1. It is switch-level based. Hence general MOS designs 

are handled. Transistor-level stuck-open/stuck-close 
faults can be modeled in addition to the classical 
gate-level faults. 

2. It allows bidirectional signal flow inside circuit 
blocks that are represented as transistor networks 
as well as across the boundaries of higher-level 
blocks. This way, no restrictive conditions are placed 
on the circuit description. 

3. It allows mixed-mode simulation: parts of the circuit 
can be simulated faster at a behavioral level by sup- 
plying a high-level software description. 

4. It allows assignable delays. 
The program has been used to fault grade the 

MC68000 [16] microprocessor design obtained from 
Motorola Inc., Austin. This is the first program that 
can perform fault simulation for large systems with 
reasonable requirements of CPU time and memory. 

The remainder of the article is Organized as follows: 
section 2 describes the data structures necessary for 
hierarchical simulation. Section 3 details the various 
stages of the simulation algorithm. Section 4 outlines 
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our implementation and presents results and observa- 
tions from our experiments. Section 5 offers conclu- 
sions and gives directions for future research. 

2. Circuit Description and Data Structures 

2.1. General  Structure and Primit ives  

Our approach to developing an efficient and at the same 
time accurate simulation system is to use the hierarchi- 
cal information given in a design description. Besides 
reducing the memory requirements compared to a fiat 
representation, the hierarchy is helpful both to replace 
blocks by a higher level behavior and to trace signal 
and fault propagation. Therefore, the algorithms dis- 
cussed in this paper operate directly on a hierarchically 
specified circuit rather than flattening the design out. 
Intuitively, a hierarchical description of the topology 
of a circuit can be thought of as a tree where each vertex 
stands for a design entity and the descendants or chil- 
dren constitute its building blocks. This is illustrated 
in figure 1. The root of the tree is also referred to as 

"top level." The leaves of the tree (labeled 'P' in figure 
2) correspond to the primitive building blocks of the 
circuits. The behavior of the primitive blocks is either 
given explicitly or can be computed directly from their 
structure. 

One notes that the tree description of the topology 
of a circuit is redundant because identical subcells 
would be replicated. Instead of replicating the structure 
of identical blocks, we use a single representative that 
is shared by all the identical subcells. Thus one obtains 
a multigraph as illustrated in figure 2. Clearly, any 
vertex beside the root may now have more than one 
"parent." However, uniqueness is preserved through 
the different paths from the root to the any particular 
subcell. Details of the hierarchical data structure are 
given below. Ideas on hierarchical circuit descriptions 
used in a different context can be found in [17]. 

Two types of primitives are used in our framework: 
transistor networks and behavioral models (also called 
functional models). A transistor network is given as 
a netlist of MOS transistors. A transistor is modeled 
as a three node device (source, gate, and drain). All 
transistors act as voltage-controlled switches which can 

Fig. 1. Tree structure of hierarchical description. 

Fig. 2. Multigraph structure of hierarchical description. 
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be in one of three states: on (high conductance), off 
(open circuit), and undefined (on or off or intermedi- 
ate). The nodes of the circuit may assume one of three 
values: high (1), low (0), or undefined (X). An nMOS 
(pMOS) transistor is on (off) when its gate is high, off 
(on) when its gate is low, and undefined when its gate 
is undefined. All transistors are bidirectional elements 
(i.e., no distinction is made between the source and 
the drain). Using switch-level transistor models, the cir- 
cuit is represented by an undirected vertex-weighted 
switch graph G(V, E) similar to the graphs described 
in [18, 19]. Switch-level simulation techniques are ap- 
plied to the switch graph [18] to evaluate the correspond- 
ing transistor network. Thus, the behavior of a transistor 
network is computed directly from its structure. 

The second type of primitive are behavioral models. 
A behavioral model explicitly specifies the input/output 
relationship of a piece of circuitry. The behavioral de- 
scription is specified in a high-level software function 
(also referred to as C-function, since the C program- 
ming language is used for implementation); it is either 
generated automatically using compiled simulation 
techniques [1, 13] or supplied by the user. A behavioral 
model may contain just a logic gate (for example using 
table lookup or bit manipulation functions), a collection 
of gates, or a whole functional block (see for instance 
[13]). Looking at the schematic circuit graph in figure 2 
one notes that a behavioral model can appear at any 
level of the hierarchy. In particular, a complete block 
that was previously described in terms of subcells can 
be replaced by a software function. Also, it becomes 
clear how common subcells are shared in the case of 
behavioral primitives: the program code of a behavioral 
model exists only once; it is instantiated with specific 
parameters through a function call. 

One notes that behavioral models for more complex 
circuits are not unique. In general, it is difficult to gen- 
erate behaviors without loss of accuracy, particularly 
when the underlying circuit contains delays and state 
information. Modeling behavior under fault will add 
complexity and will often not be sufficiently accurate. 
Hence, in our approach fault injection is always per- 
formed at the lowest level of representation, the tran- 
sistor level. 

2.2. Hierarchical Data Structures and Operations 

Storing a circuit description hierarchically demands 
more involved data structures than a fiat representation: 
besides avoiding the replication of structural information 

one needs to be able to traverse the hierarchy top-down 
and bottom-up to propagate signal changes. In this sec- 
tion we outline the basic data structures. 

A data structure for the circuit description must 
essentially have two components: one that is concerned 
with the circuit topology (describing the recursive macro 
composition of the circuit) and the other maintaining 
the state of the circuit during the simulation. As dis- 
cussed earlier, repeated structures need to be stored 
only once and may be referenced many times. However, 
different references of one structure will be connected 
to different parent cells in the hierarchy. Thus, there 
is interconnection information that is specific to each 
reference. Clearly, the state (the current set of signal 
values) is also specific to each reference. Therefore, 
we distinguish two types of data structure: a base struc- 
ture, or class, which carries the structure of a module, 
its fault information, etc. and an instantiation structure, 
or instance, which holds information specific to each 
reference of a base structure, such as current state and 
fault lists. 

The base structure is implemented through the two 
data structures cell and node given in pseudo C code 
in figure 3. 

In cell, pin count and node count store the num- 
ber of electrical nodes on the boundary of the cell and 

struc cell 
{ 

string name; 
integer pin__count; 
integer node count; 
node vector nodes; 
integer subcell__count; 
cell___vector subceUs; 
function c function; 
transistor pointer transistor_._net; 
integer fault count; 
fault descriptor local faults; 

} 

struct node 
{ 

integer 
integer 
integer vector 
integer vector 
integer vector 
char 

} 

fanout__count; 
fanin_ count; 
fanouts; 
fanins; 
fanin___nodes; 
type; 

Fig. 3. Data structure of cell and node. 
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the total number of electrical nodes in the cell respec- 
tively; nodes is an array of electrical nodes containing 
the boundary nodes first followed by the internal nodes. 
The distinction is necessary because in order to reevalu- 
ate a certain block of the circuit one needs to load a 
new set of signal values (also called environment) into 
the input pins on the boundary of the block; similarly 
new output values need to be passed upward in the hier- 
archy through the output pins. In contrast, internal 
nodes are recomputed using the standard switch-level 
operation of selecting the signal value corresponding 
to the least upper bound of all paths feeding into the 
node (also called the consensus operation here). 

The field subceU count contains the number of 
children cells, and subceUs is an array of pointers to 
the subcells. This corresponds to the down links in a 
hierarchical representation such as the one depicted in 
figure 2. Primitives need to have a reference either to 
a software function or to a transistor network (fields 
c___function and transistor___net). 

For fault simulation one needs to keep track of the 
number of faults that can occur in the cell (fault 
count). Fault descriptor is a pointer to an array of fault 
descriptors each containing bit-encoded information 
about the local faults in the cell (i.e., the pin number 
and the signal value under fault). 

Node is a substructure of cell and represents electri- 
cal nodes at different levels of the hierarchy. Fanin 
count (fanout count) stores the number of fanins (fan- 
outs) to the node. Fanins andfanouts are arrays of cell 
indexes; fanin__nodes store the indexes of the fanin 
nodes relative to the fanin cells. Fanins andfanin___nodes 
are used to perform the consensus operation for a node 
after all instances feeding into it have been evaluated. 
The setup is illustrated in figure 4. Node N has cell 
index m on its fanout list, cell indexes i and k on its 
fanin list and A and B on the fanin__~odes list. 

parent cell 

Furthermore, the structure node contains a type field. 
In addition to the conventional input/output data types for 
signals (denoted INPUT, OUTPUT) entering a subcir- 
cuit, we introduce a bidirectional type (denoted IOPUT). 
This captures the notion of bidirectional signal flow and 
is used to represent nodes on the boundary of a subcir- 
cuit that can both receive a value from the outside and 
be modified by the operations inside the subcircuit. 

The instantiation structure instance is shown in fig- 
ure 5. Base is the base structure after which the instance 
is patterned. The state of the nodes of the instance are 
kept in the state vector state. The state of a node consists 
of its logical value ('0', T, or 'X') and strength informa- 
tion (conductance of the path driving the node). Note 
that this ternary logic can be employed to detect hazards 
in combinational circuits and oscillations and races in 
sequential circuits [20, 21]. In addition, the array of bits 
activity keeps track of whether a new consensus needs 
to be computed for a node: this is the case when there 
is a change in output signal values of instances con- 
nected to the node. The arrays state and activity have 
node count elements. 

The pointers parent and children provide up and 
down links between instances in the tree representation 
of the hierarchy. Each boundary node of the instance 
is connected to a node in the parent of the instance. 
The array contacts keeps the index of the connection 
in the parent of each boundary node of the instance. 
It is needed for loading a new environment into the in- 
stance whenever it is scheduled for evaluation. The envi- 
ronment is loaded from the parent, as will be explained 
in the next section. 

Each instance keeps track of the time of its last eval- 
uation in the field time. This helps to avoid unnecessary 

struct instance 

cell base; 
state vector state; 
bit vector activity; 
instance pointer parent; 
instance pointer children; 
integer vector contacts; 
integer time; 
integer rank; 
integer fault___offset; 
fault___list propagated__faults; 
fault___list local__faults; 

Fig. 4. Example for fan-in/fan-out setup. Fig. 5. Instance structure. 



144 Saab, Mueller-Thuns, Blaauw, Rahmeh, and Abraham 

reevaluations. Rank gives the level of the instance at 
the respective level of hierarchy computed by perform- 
ing a topological sort. 

For fault simulation, different copies of the same 
cell will receive individual fault identification numbers 
(called fault ids). The first fault id is stored in the field 
fault offset. For each instance we maintain two lists 
of fault records, one holding faults local to the instance 
(local faults) and the other holding faults that have 
been propagated to the instance (propagated_~aults). 

Each fault record contains the respective fault id and 
the corresponding state and activity information. We 
note therefore that the size of fault records critically 
depends on the number of nodes at the particular level 
of hierarchy and can become very large toward higher 
levels in the hierarchy. 

3. Evaluation Algorithm 

The benefits of hierarchical fault simulation come at 
the cost of increased complexity of the event scheduler. 
Scheduling, retrieving, and progagating events become 
non-trivial when an event must travel up and down the 
hierarchy in order to propagate to all the affected mod- 
ules. The difficulties are due to the following: 
1. Event propagation: The propagation of events is 

not limited to a single level as in traditional techniques 
but can encompass many levels of the hierarchy. 

2. State variables: In the presence of faults the proper 
updating of nodes corresponding to state variables 
at a given level is very crucial to obtaining the cor- 
rect fault effect at higher level. 

3. Delays: Delayed events resulting from faulty and 
fault-free circuits need to be processed differently 
at different levels of the hierarchy. 

4. Consistency: Checks are needed to insure consis- 
tency across levels for node description (delays, node 
type, etc.) 
In this section we describe the hierarchical evalua- 

tion algorithm that is at the heart of CHAMP. The eval- 
uation algorithm operates on a single stack. A stack 
element consists of an instance needing evaluation and 
flag indicating the direction of the evaluation (top- 
down or bottom-up). The algorithm uses the following 
operations: 
1. push (instance, flag) to push an instance-flag pair 

on the stack, 
2. pop (instance, flag) to pop from the top of the stack 

an instance-flag pair, 
3. top (instance, flag) to get a copy of the instance-flag 

pair currently on the top of the stack. 

3.1. Algorithm 

The evaluation procedure is outlined in figure 6. It starts 
by updating the state of the delay elements. This involves 
changing node states and propagating their effect to the 
respective next higher level in the hierarchy and to the 
rest of the circuit. Faulty delayed signals are processed 
before the corresponding fault-free signals, since the 
previous fault-free machine is a reference for all faulty 
machines, supplying the necessary state variables. After 
the delayed signals have been processed, the instance 
top instance, which corresponds to the root instance 
of the hierarchy, is pushed on the stack and procedure 
eval.__inst is called to evaluate the effect of a new input 
pattern. 

Procedure process__delay is sketched in figure 7. 
It updates all delayed signals scheduled to be processed 
at the current simulation time. When a signal that lies 
on the boundary of an instance is changed to a new 
value, the parent of the instance is notified. This way, 
the effect of the change can propagate to the next higher 
level (if any) and to other parts of the circuit. 

Procedure propagate effect is shown in figure 8. 
This procedure takes as input an instance inst which 
has a node N on the boundary that has a state change 

eval___top ( ) 
{ 

process delay (current__time); 
push (top__.instance, top__down); 
eval.__inst ( ); 

} 

Fig. 6 Procedure eval top. 

pmcess__delay (current__time) 
{ 

for (each node N scheduled for a faulty machine) 
{ 

set state(N); 
propagate effect (N, faulL_id); 

} 
for (all nodes N scheduled for fault free machine) 
{ 

set state (N); 
propagateeffect (N, fault~free); 

} 

Fig. 7. Procedure process~delay. 



Hierarchical Multi-level Fault Simulation of Large Systems 145 

propagate effect (inst, fault__id) 
{ 

while ((inst != top_._instance) && boundary__.has~changed (inst)) 
{ 

push (parent (inst), bottom~up); 
eval__inst ( ); 
inst = parent (inst); 

} 

Fig. 8. Procedure propagate effect. 

eval__inst ( ) 
{ 

while (! empty (stack)) 
{ 

top (inst, flag); 
while (type (inst) = =  primitive) 
{ 

pop (inst, flag); 
eva l~ lowes t~ leve l  (inst); 
top (inst, flag); 

} 
if  (flag = = bottom__up) 
{ 

event__count = sense children (inst, f a u l t e d ) ;  
if (event__count = = 0) 

pop (inst, flag); 
if (fault~free) 

inject__faults (inst); 
} 
else 
{ 

event count = load__environment (inst, rid) 
if (event count = = O) 

pop (inst, flag); 
else 

sct___stack_._flag__of__inst (bottom._up); 
} 

} 

Fig. 9. Procedure eval__inst. 

and propagates the effect of changes to upper levels and 
other higher levels of hierarchy. This is accomplished 
by successive calls to eval___inst until either the top in- 
stance is reached or no change occurs on the boundary 
of the current instance. 

Procedure eval__inst is shown in figure 9. Initially, 
instance top instance is placed on the stack (in eval__ 
top) and the evaluation flag is set to top-down. Eval__ 
inst first evaluates all primitives found on the top of 
the stack (if any) by either calling the switch-level eval- 
uation procedure if the primitive is described at the 

transistor level or the associated behavioral C-function. 
Next, the evaluation flag for instance inst on top of the 
stack is tested to determine in which direction the eval- 
uation is to proceed. If the direction of evaluation is 
top-down, the environment is loaded (see procedure 
load environment in figure 12 below) and the direction 
flag associated with inst is switched to bottom-up, if 
the new environment is different from the previous one. 
(In case of the top instance the environment is given 
by the new set of primary inputs; else it consists of all 
signals on the boundary of the instance). To propagate 
the changed signals downward in the hierarchy all af- 
fected subblocks (children instances) are pushed on the 
stack. Their children in turn are pushed if signals on 
their boundary have changed, and so forth until the 
primitive instances are reached. 

If the evaluation, on the other hand, is bottom-up, 
the state of the nodes in inst are updated due to changes 
coming from the next lower level; this step is detailed 
in procedure sense__children (see figure 12 on page 
146). If no new events are caused by this change, the 
instance inst on top of the stack is popped. If inst has 
been evaluated due to an event in the fault-free circuit 
then faults local to a child of inst are considered for 
injection if such a child was evaluated due to the same 
event. The fault injection is accomplished in the proce- 
dure inject faults. 

Procedure inject faults is shown in figure 10. This 
procedure takes as input an inst that has just been evalu- 
ated as fanlt-flee. The effect of this procedure is the 
activation of faults local to children of inst that were 
evaluated with the fault-free machine. In addition, the 
procedure propagates the effects of faults that have been 
activated at lower levels. 

inject__faults (inst) 
{ 

for (each child of inst) 
if (fault free.__state__has__changed (child)) 
{ 

inject__local.__faults (child); 
propagate change~in._child (inst, child); 

/ 

for (each injected fault) 
if (fault affect~inst (fault, inst)) 

push (inst, top__down); 

Fig. 10. Procedure inject_faults.  
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load environment (inst, rid) 
{ 

event count = 0; 
for (each INPUT and IOPUT node) 
{ 

if (state (node) != state (parent__contact (node)) 
{ 

state (node) = state (parent___ contact (node)); 
event count = event count + 1; 

} 
} 
if (rid == fault___free) 

for (every faulty copy of inst) 
compute logic values of state variables of copy; 

Fig. 11. Procedure load__environment. 

procedure sense children (inst, fault~id) 
{ 

for (each node N in inst) 
{ 

compute__state (N); 
if (state (N) I= previous__state (N)) 
{ 

for (each inst i on fanout list of N) 
push (i, top down); 

if (is__boundary___node (N)) 
notify (parent contact (node)); 

} 
} 

Fig. 12. Procedure sense children. 

Procedure load environment, shown in figure 11, 
first loads the environment from the parent instance, 
that is, it copies the value of all signals connected to 
the boundary. The procedure then tests if the event is 
caused by a faulty or by a fault-free machine by looking 
at the second parameterfid.  In the latter case, all faulty 
copies of inst are evaluated to compute the next state 
of inst in the presence of each of the faults. These eval- 
uations need to be performed before fault-free evalua- 
tion of inst to insure correct results. 

Procedure sense children (shown in figure 12) com- 
putes the new state of nodes in inst resulting from a 
change in node states at the lower level. In case the new 
state of a node differs f rom its old state all instances of 
the node fans out to need to reevaluated and are pushed 
on the stack. I f  the modified node lies on the boundary 
of the instance the contact node in the parent is notified. 

4. Implementation and Application 

4.1. Programming Environment 

The algorithms described in this article have been im- 
plemented in a prototype software program in the C 
progamming language. The program comprises a total 
of  about 15,000 lines of  code and runs under UNIX or 
SUN Microsystems SUN-3 and SUN-4 workstations. 
The overall structure of the simulation system is out- 
lined in figure 13. 

The simulator accepts a simple hierarchical descrip- 
tion language in which the user specifies circuits by 
defining primitives and building macros from them 
hierarchically. A primitive consists of  either an inter- 
connection of transistors or the name of a software func- 
tion. Other description languages are supported through 
front-end translators (currently the HHB CADAT format 
[22], the SILOS format [23], SCALD [24], and the 
ISCAS circuit format [25]). The good machine simula- 
tion of CHAMP was validated by simulating an entire 
microprocessor with around 250,000 input vectors and 
comparing the outputs with those of a commercial soft- 
ware simulator. We verified the fault simulation by 
"hardwiring" selected faults and checking that the ones 
flagged as detected by the simulator cause correspond- 
ing errors. 

4.2. Performance Experiments 

In this section, we describe experiments performed with 
small to medium sized circuits. In particular, we are 
interested in how some performance parameters vary 
as we scale the circuits up. 

In table 1, a summary is given, which contains the 
statistics of simulations for typical MOS designs. The 
circuits were simulated on a SUN-3 workstation. Cir- 
cuit 1 is a four-phase clock generator containing I00 
transistors. Circuits 2 to 5 are 4-, 8-, 16-, and 32-bit 
full adders respectively. This table shows that the CPU 
time and memory  requirement do not grow exponen- 
tially with circuit size. 

Table 2 gives a comparison of the memory  require- 
merits for flat versus hierarchical storage. All numbers 
are in bytes and they are listed separately for the storage 
of the netlist and the storage of state information. Due 
to some duplication of state information, the hierarchi- 
cal representation takes slightly more space for storing 
the state; however, it is more efficient for storing the 
interconnections of the circuit. The savings in storage 
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Table 1. Simulation statistics. 

# 

# # patterns CPU Memory 
Circuit elements faults (test) Coverage (sec) (pages) 

CKT1 100 144 310 84% 58.40 158 
CKT2 176 80 8 100% 5.40 126 
CKT3 352 160 8 100% 7.76 138 
CKT4 704 320 8 100% 14.06 148 
CKT5 1408 640 8 100% 51.74 176 

Table 2. Comparison of memory requirements. 

Storage netlist Storage state 

Circuit Flat Hier. Flat Hier. 

CKT1 588 356 4863 4867 
CKT2 224 124 482 480 
CKT3 448 220 942 932 
CKT4 896 436 1859 1862 
CKT5 1792 828 3686 3702 

become more apparent as the circuits grow in size and 
have a lot of duplicated subcells. 

The time requirements for the simulation are highly 
dependent on the way the circuit is represented, espe- 
cially on the number of levels of hierarchy. In our exper- 
iments with the full adders, simulation may take twice 
the time if the circuit is described fully hierarchically 
compared to a flat format; that is, if a 32-bit adder, 
for example, is given as two interconnected 16-bit adders 
that are in turn described as two 8-bit adders, etc. The 
penalty in computation time is due to the added traver- 
sals of the hierarchy as is negligible if there are few 
levels of hierarchy. Furthermore, for large circuits the 
memory savings become substantial; then it is, for ex- 
ample, possible to avoid paging and hence achieve better 
overall performance or to simulate a large design cost 
effectively on a smaller computer, for instance a work- 
station rather than a mainframe (see also the discussion 
in the next section). 
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4.3. Fault Grading of a Microprocessor 

The main objective of this work is to provide tools for 
logic and fault simulation that are capable of handling 
large designs but also have a reasonable cost/perform- 
ance ratio. We chose engineering workstations as a plat- 
form for the following reasons: 
1. They typically deliver minicomputer performance 

at very competitive cost. 
2. They are in widespread use. 
3. It is straightforward to run simulation in a distributed 

manner by partitioning the input data set for logic 
simulation or the fault set for fault simulation among 
a number of workstations that can share the circuit 
description residing on one file server. 

4. We would like to demonstrate that complex designs 
can be handled without the use of mainframe com- 
puters. This way, we hope to be able to cope with 
much larger present and future designs whose com- 
plexity and demand for simulation time is likely to 
grow faster than computer performance. 
In this section, we discuss the application of our sim- 

ulation system to a large circuit, a commercially available 
microprocessor. To our knowledge, the fault grading 
of a complete microprocessor chip of this size using 
switch-level simulation has not been accomplished pre- 
viously. The chip we consider is Motorola's MC68000 
microprocessor [16]. The complete circuit description 
is given as a mixture of gates and MOS transistors. 
Beside the microprocessor, the description contains 
"glue logic" notably a set of RAMS holding the machine 
code that constitutes a functional test of the microproc- 
essor. Thus, the test pattern is immediately given by 
the hex-dump of an assembled program and only a 
small set of external signals needs to be supplied to the 
simulator (typically: clock enable, interrupts, and bus 
control signals). 

For a large system to be simulated the memory re- 
quirements of concurrent fault simulation prohibit inject- 
ing the complete set of faults to be analyzed. Hence 
one needs to use multipass simulation, that is: the cir- 
cuit is simulated repeatedly with one test sequence, and 
a small subset of faults is injected each time. 

In our setup, we initially injected sets of around 2000 
faults per pass into the circuit for each simulation run 
of around 80,000 vectors; it required around 24 hours 
of CPU time on a SUN-4. Memory requirements for 
the simulation of the MC68000 typically peaked at 
around 25-35 mega-bytes for the first one hundred 
clock cycles and then tapered off to about 8-12 mega- 
bytes. We have currently simulated the circuit with all 
stuck-at faults for several hundred thousand vectors. 

Currently, the set of faults to be injected is an arbi- 
trary set of contiguous fault numbers. Since all faults 
in the system are given a unique identification number 
when traversing the circuit cell by cell, a set of faults 
as chosen above is clustered around a particular portion 
of the circuit. We observed that the memory require- 
ments and overall performance is very dependent on 
the choice of portion and on the test pattern: different 
data sets create rather unbalanced event activity and 
may or may not expose the faults currently injected. 

Ideally, one should run test patterns and fault sets 
in an order determined by the target faults of each test 
set. Unfortunately, it is not always possible to determine 
the target faults of a test set since ad hoc functional test 
pattern generation often focuses on a set of instructions 
rather than a circuit block. Hence, circuit activity is 
hard to predict. A closer coupling between test genera- 
tion and fault simulation is clearly desirable and needs 
further research. 

5. Conclusion 

In this article we introduced an approach for the cost- 
effective and accurate fault simulation of very large digi- 
tal designs. This approach is based on storing and proc- 
essing the circuit in a hierarchical manner. This way, 
memory requirements are reduced and faster behavioral 
descriptions can replace subcircuits at any level of the 
hierarchy. We have described the data structure and ex- 
plained the essential steps of the simulation algorithms. 
Our experimental results demonstrated the usefulness 
of the method in fault grading an entire microprocessor 
on engineering workstations. Future work will concen- 
trate on the use of efficient high-level functions, inte- 
grating test generation algorithms into the fault simu- 
lator, and a distributed implementation. 
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