
JOURNAL OF ELECTRONIC TESTING: Theory and Applications, 1, 139-149 (1990)
�9 1990 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Hierarchical Multi-level Fault Simulation of Large Systems

DANIEL G. SAAB, ROBERT B. MUELLER-THUNS, AND DAVID BLAAUW
Center for Reliable and High Performance Computing, Coordinated Science Laboratory, University of Illinois at Urbana-Champaign,

Urbana, 1L 61801

JOSEPH T. RAHMEH AND JACOB A. ABRAHAM
Computer Engineering Research Center, University of Texas at Austin, Austin, TX 78712

Received April 21, 1989. Revised November 28, 1989 and January 8, 1990.

Abstract. This article discusses an approach for hierarchical multilevel fault simulation for large systems described
at the transistor, gate, and higher levels. The approach reduces the memory requirement of the simulation drastically,
thus allowing the simulation of circuits that are too large to simulate at one flat level on typical engineering work-
stations. This is achieved by exploiting the regularity and modularity found in a hierarchical circuit description
that contains many repeated substructures. The hierarchical setup also allows flexible multilevel simulation: behavioral
models can replace subcircuits at any level of the hierarchy for accelerated simulation. The simulation algorithms
are at the switch level so that general MOS digital designs with bidirectional signal flow can be handled, and
both stuck-at and transistor faults are treated accurately. The approach has been implemented in the hierarchical
logic and fault simulation system, CHAMP, that runs under UNIX on SUN-3 and SUN-4 workstations. It has
been used successfully for simulating and fault grading a large commercial microprocessor.

Key words: fault simulation, multilevel simulation, testing, VLSI design.

1. Introduction

The development of better integrated circuit fabrication
techniques has increased the complexity of digital sys-
tems implemented on a single chip. The increase in the
level of integration has exceeded the capability of cur-
rent Computer Aided Design (CAD) tools which are
crucial for the design and verification of large systems.
In particular, the effort spent on simulation has grown
sharply. Simulation tools are employed both to help
verify the functionality of a design (logic simulation)
and to evaluate the quality of a set of test patterns (fault
simulation).

Fault simulation has traditionally been performed at
the gate level [1] where failures are approximated using
the stuck-at-fault model [2]. For Metal Oxide Semicon-
ductor (MOS) technology this is an inappropriate level
of abstraction. MOS circuits may contain ratioed logic
and pass transistors exhibiting bidirectional signal flow
and charge-sharing effects. Furthermore, the gate level
stuck-at fault model does not model realistic physical
failures in MOS circuits adequately [3-6].

Switch-level fault simulators [3-9] are effective in
simulating transistor-level effects and failures; however,

they tend to require large amounts of memory when
the circuits are represented at the flat level and the cir-
cuit hierarchy is not utilized. Tiffs memory requirement
becomes a limiting factor of the performance of switch-
level logic and fault simulators when large circuits are
considered. The limitations are due to the severe per-
formance penalties of paging in a virtual memory envi-
ronment. Therefore, to effectively perform logic and
fault simulation in a reasonable amount of time and with
acceptable memory requirements, circuit regularity and
hierarchy must be exploited.

Hierarchical approaches are common in both soft-
ware and hardware engineering as means of coping with
system complexity. They are a natural consequence of
designing in a divide-and-conquer fashion. In addition,
during design one tries to identify common subtasks
that, once implemented, can be used as building blocks
for more involved tasks. Obviously, a divide-and-
conquer method has the advantage of reducing a large
problem to subproblems that are easier to design and
verify. For most VLSI systems, the hierarchy is natural:
the system architect defines the system as an intercon-
nection of functional blocks each of which is an inter-
connection of less complex functional blocks. The

140 Saab, Mueller-Thuns, Blaauw, Rahmeh, and Abraham

blocks at the bottom of the hierarchy are realized at
the Boolean gate or at the transistor level.

From the point of view of simulation, a hierarchical
circuit description offers many advantages over a fiat
description. A hierarchical description allow compact
representation of the circuit by exposing repetitively
used blocks. Consider, for example, an N-bit binary
adder; it can be represented as the interconnection of
N identical submodules each consisting of a full adder
which, in turn, consists of an interconnection of ele-
mentary logic gates. This contrasts sharply with a flat
description, where the whole N-bit adder is given at
the gate level. The difference in the size of the descrip-
tion becomes even more visible when the lowest level
of the circuit is at least in part described in terms of
transistor networks, as is the case for MOS designs.
This reduction in memory requirement is pivotal for
dealing with large circuits, where paging activity during
simulation degrades performance and makes analysis
of a complete system practically impossible.

A hierarchical description can also be used to sPeed
up the simulation. It facilitates the replacement of com-
plex modules with functionally equivalent but computa-
tionally cheaper modules. For instance, one replaces
the switch-level based evaluation of a logic gate by a
software description. At a higher level, a collection of
gates can be emulated by one software function. Certain
regular subcircuits have obvious high-level equivalents
that can be derived manually in a straightforward man-
ner. Also, for blocks of moderate size, one has the option
of constructing a table by carrying out an exhaustive
low-level simulation [10], generating logic expressions
[9, 11, 12], or generating a behavioral description [13]
to replace the block and expedite its evaluation while
maintaining its function.

Another advantage of hierarchical simulation is in
the area of user interface. A hierarchical simulator
keeps the circuit structure defined by the designer while
a single-level simulator requires a flattener to translate
the hierarchical circuit structure into a fiat structure.
A flattened circuit is cumbersome to use and requires
the consultation of a symbol table to map the designer
entities into the fiat simulator primitives. For example,
the original circuit structure may include an ALU and
a register file and the designer may be interested in
observing the output lines of the ALU. This would re-
quire consulting the symbol table of the flattener, identi-
fying the "flat" names of the ALU output lines, and
requesting that each one of the identified names be
traced by the flat simulator. By keeping the hierarchy
as defined by the user, circuit traversal and tracing

becomes extremely simple; the user can navigate
through the circuit structure and trace a module at any
level of the hierarchy.

Hierarchical logic and fault simulation was first im-
plemented in the program CHIEFS [14]. CHIEFS uses
a gate-level description at the lowest level, and thus can-
not model transistor-level effects. Moreover, gate-level
simulation requires unidirectional signal flow across
subcircuit boundaries. This is insufficient for MOS
design. Similarly, multilevel simulation has typically
been performed from the gate level upwards (see, e.g.,
[15]). It is relatively easy to incorporate and exploit hier-
archy in a simulator where primitives are unidirectional
with well defined input and output ports. However,
when switches or transistors are allowed as primitives,
the difficult problems of bidirectional signal flow and
charge sharing need to be considered. Moreover, the
behavior of a primitive may change from unidirectional
to bidirectional in the presence of faults. Hitherto, the
problems of incorporating such effects in a hierarchical
simulator have not been addressed.

Here, an approach is given for hierarchical multi-
level fault simulation. The approach is based on repre-
senting the circuit in a hierarchical fashion where the
lowest-level primitives consist of transistor interconnec-
tions. A key point of this work is in its application to
large systems. The approach has been implemented in
a computer program, CHAMP, which has the following
features:
1. It is switch-level based. Hence general MOS designs

are handled. Transistor-level stuck-open/stuck-close
faults can be modeled in addition to the classical
gate-level faults.

2. It allows bidirectional signal flow inside circuit
blocks that are represented as transistor networks
as well as across the boundaries of higher-level
blocks. This way, no restrictive conditions are placed
on the circuit description.

3. It allows mixed-mode simulation: parts of the circuit
can be simulated faster at a behavioral level by sup-
plying a high-level software description.

4. It allows assignable delays.
The program has been used to fault grade the

MC68000 [16] microprocessor design obtained from
Motorola Inc., Austin. This is the first program that
can perform fault simulation for large systems with
reasonable requirements of CPU time and memory.

The remainder of the article is Organized as follows:
section 2 describes the data structures necessary for
hierarchical simulation. Section 3 details the various
stages of the simulation algorithm. Section 4 outlines

Hierarchical Multi-level Fault Simulation of Large Systems 141

our implementation and presents results and observa-
tions from our experiments. Section 5 offers conclu-
sions and gives directions for future research.

2. Circuit Description and Data Structures

2.1. General Structure and Primit ives

Our approach to developing an efficient and at the same
time accurate simulation system is to use the hierarchi-
cal information given in a design description. Besides
reducing the memory requirements compared to a fiat
representation, the hierarchy is helpful both to replace
blocks by a higher level behavior and to trace signal
and fault propagation. Therefore, the algorithms dis-
cussed in this paper operate directly on a hierarchically
specified circuit rather than flattening the design out.
Intuitively, a hierarchical description of the topology
of a circuit can be thought of as a tree where each vertex
stands for a design entity and the descendants or chil-
dren constitute its building blocks. This is illustrated
in figure 1. The root of the tree is also referred to as

"top level." The leaves of the tree (labeled 'P' in figure
2) correspond to the primitive building blocks of the
circuits. The behavior of the primitive blocks is either
given explicitly or can be computed directly from their
structure.

One notes that the tree description of the topology
of a circuit is redundant because identical subcells
would be replicated. Instead of replicating the structure
of identical blocks, we use a single representative that
is shared by all the identical subcells. Thus one obtains
a multigraph as illustrated in figure 2. Clearly, any
vertex beside the root may now have more than one
"parent." However, uniqueness is preserved through
the different paths from the root to the any particular
subcell. Details of the hierarchical data structure are
given below. Ideas on hierarchical circuit descriptions
used in a different context can be found in [17].

Two types of primitives are used in our framework:
transistor networks and behavioral models (also called
functional models). A transistor network is given as
a netlist of MOS transistors. A transistor is modeled
as a three node device (source, gate, and drain). All
transistors act as voltage-controlled switches which can

Fig. 1. Tree structure of hierarchical description.

Fig. 2. Multigraph structure of hierarchical description.

142 Saab, MueUer-Thuns, Blaauw, Rahmeh, and Abraham

be in one of three states: on (high conductance), off
(open circuit), and undefined (on or off or intermedi-
ate). The nodes of the circuit may assume one of three
values: high (1), low (0), or undefined (X). An nMOS
(pMOS) transistor is on (off) when its gate is high, off
(on) when its gate is low, and undefined when its gate
is undefined. All transistors are bidirectional elements
(i.e., no distinction is made between the source and
the drain). Using switch-level transistor models, the cir-
cuit is represented by an undirected vertex-weighted
switch graph G(V, E) similar to the graphs described
in [18, 19]. Switch-level simulation techniques are ap-
plied to the switch graph [18] to evaluate the correspond-
ing transistor network. Thus, the behavior of a transistor
network is computed directly from its structure.

The second type of primitive are behavioral models.
A behavioral model explicitly specifies the input/output
relationship of a piece of circuitry. The behavioral de-
scription is specified in a high-level software function
(also referred to as C-function, since the C program-
ming language is used for implementation); it is either
generated automatically using compiled simulation
techniques [1, 13] or supplied by the user. A behavioral
model may contain just a logic gate (for example using
table lookup or bit manipulation functions), a collection
of gates, or a whole functional block (see for instance
[13]). Looking at the schematic circuit graph in figure 2
one notes that a behavioral model can appear at any
level of the hierarchy. In particular, a complete block
that was previously described in terms of subcells can
be replaced by a software function. Also, it becomes
clear how common subcells are shared in the case of
behavioral primitives: the program code of a behavioral
model exists only once; it is instantiated with specific
parameters through a function call.

One notes that behavioral models for more complex
circuits are not unique. In general, it is difficult to gen-
erate behaviors without loss of accuracy, particularly
when the underlying circuit contains delays and state
information. Modeling behavior under fault will add
complexity and will often not be sufficiently accurate.
Hence, in our approach fault injection is always per-
formed at the lowest level of representation, the tran-
sistor level.

2.2. Hierarchical Data Structures and Operations

Storing a circuit description hierarchically demands
more involved data structures than a fiat representation:
besides avoiding the replication of structural information

one needs to be able to traverse the hierarchy top-down
and bottom-up to propagate signal changes. In this sec-
tion we outline the basic data structures.

A data structure for the circuit description must
essentially have two components: one that is concerned
with the circuit topology (describing the recursive macro
composition of the circuit) and the other maintaining
the state of the circuit during the simulation. As dis-
cussed earlier, repeated structures need to be stored
only once and may be referenced many times. However,
different references of one structure will be connected
to different parent cells in the hierarchy. Thus, there
is interconnection information that is specific to each
reference. Clearly, the state (the current set of signal
values) is also specific to each reference. Therefore,
we distinguish two types of data structure: a base struc-
ture, or class, which carries the structure of a module,
its fault information, etc. and an instantiation structure,
or instance, which holds information specific to each
reference of a base structure, such as current state and
fault lists.

The base structure is implemented through the two
data structures cell and node given in pseudo C code
in figure 3.

In cell, pin count and node count store the num-
ber of electrical nodes on the boundary of the cell and

struc cell
{

string name;
integer pin__count;
integer node count;
node vector nodes;
integer subcell__count;
cell___vector subceUs;
function c function;
transistor pointer transistor_._net;
integer fault count;
fault descriptor local faults;

}

struct node
{

integer
integer
integer vector
integer vector
integer vector
char

}

fanout__count;
fanin_ count;
fanouts;
fanins;
fanin___nodes;
type;

Fig. 3. Data structure of cell and node.

Hierarchical Multi-level Fault Simulation of Large Systems 143

the total number of electrical nodes in the cell respec-
tively; nodes is an array of electrical nodes containing
the boundary nodes first followed by the internal nodes.
The distinction is necessary because in order to reevalu-
ate a certain block of the circuit one needs to load a
new set of signal values (also called environment) into
the input pins on the boundary of the block; similarly
new output values need to be passed upward in the hier-
archy through the output pins. In contrast, internal
nodes are recomputed using the standard switch-level
operation of selecting the signal value corresponding
to the least upper bound of all paths feeding into the
node (also called the consensus operation here).

The field subceU count contains the number of
children cells, and subceUs is an array of pointers to
the subcells. This corresponds to the down links in a
hierarchical representation such as the one depicted in
figure 2. Primitives need to have a reference either to
a software function or to a transistor network (fields
c___function and transistor___net).

For fault simulation one needs to keep track of the
number of faults that can occur in the cell (fault
count). Fault descriptor is a pointer to an array of fault
descriptors each containing bit-encoded information
about the local faults in the cell (i.e., the pin number
and the signal value under fault).

Node is a substructure of cell and represents electri-
cal nodes at different levels of the hierarchy. Fanin
count (fanout count) stores the number of fanins (fan-
outs) to the node. Fanins andfanouts are arrays of cell
indexes; fanin__nodes store the indexes of the fanin
nodes relative to the fanin cells. Fanins andfanin___nodes
are used to perform the consensus operation for a node
after all instances feeding into it have been evaluated.
The setup is illustrated in figure 4. Node N has cell
index m on its fanout list, cell indexes i and k on its
fanin list and A and B on the fanin__~odes list.

parent cell

Furthermore, the structure node contains a type field.
In addition to the conventional input/output data types for
signals (denoted INPUT, OUTPUT) entering a subcir-
cuit, we introduce a bidirectional type (denoted IOPUT).
This captures the notion of bidirectional signal flow and
is used to represent nodes on the boundary of a subcir-
cuit that can both receive a value from the outside and
be modified by the operations inside the subcircuit.

The instantiation structure instance is shown in fig-
ure 5. Base is the base structure after which the instance
is patterned. The state of the nodes of the instance are
kept in the state vector state. The state of a node consists
of its logical value ('0', T, or 'X') and strength informa-
tion (conductance of the path driving the node). Note
that this ternary logic can be employed to detect hazards
in combinational circuits and oscillations and races in
sequential circuits [20, 21]. In addition, the array of bits
activity keeps track of whether a new consensus needs
to be computed for a node: this is the case when there
is a change in output signal values of instances con-
nected to the node. The arrays state and activity have
node count elements.

The pointers parent and children provide up and
down links between instances in the tree representation
of the hierarchy. Each boundary node of the instance
is connected to a node in the parent of the instance.
The array contacts keeps the index of the connection
in the parent of each boundary node of the instance.
It is needed for loading a new environment into the in-
stance whenever it is scheduled for evaluation. The envi-
ronment is loaded from the parent, as will be explained
in the next section.

Each instance keeps track of the time of its last eval-
uation in the field time. This helps to avoid unnecessary

struct instance

cell base;
state vector state;
bit vector activity;
instance pointer parent;
instance pointer children;
integer vector contacts;
integer time;
integer rank;
integer fault___offset;
fault___list propagated__faults;
fault___list local__faults;

Fig. 4. Example for fan-in/fan-out setup. Fig. 5. Instance structure.

144 Saab, Mueller-Thuns, Blaauw, Rahmeh, and Abraham

reevaluations. Rank gives the level of the instance at
the respective level of hierarchy computed by perform-
ing a topological sort.

For fault simulation, different copies of the same
cell will receive individual fault identification numbers
(called fault ids). The first fault id is stored in the field
fault offset. For each instance we maintain two lists
of fault records, one holding faults local to the instance
(local faults) and the other holding faults that have
been propagated to the instance (propagated_~aults).

Each fault record contains the respective fault id and
the corresponding state and activity information. We
note therefore that the size of fault records critically
depends on the number of nodes at the particular level
of hierarchy and can become very large toward higher
levels in the hierarchy.

3. Evaluation Algorithm

The benefits of hierarchical fault simulation come at
the cost of increased complexity of the event scheduler.
Scheduling, retrieving, and progagating events become
non-trivial when an event must travel up and down the
hierarchy in order to propagate to all the affected mod-
ules. The difficulties are due to the following:
1. Event propagation: The propagation of events is

not limited to a single level as in traditional techniques
but can encompass many levels of the hierarchy.

2. State variables: In the presence of faults the proper
updating of nodes corresponding to state variables
at a given level is very crucial to obtaining the cor-
rect fault effect at higher level.

3. Delays: Delayed events resulting from faulty and
fault-free circuits need to be processed differently
at different levels of the hierarchy.

4. Consistency: Checks are needed to insure consis-
tency across levels for node description (delays, node
type, etc.)
In this section we describe the hierarchical evalua-

tion algorithm that is at the heart of CHAMP. The eval-
uation algorithm operates on a single stack. A stack
element consists of an instance needing evaluation and
flag indicating the direction of the evaluation (top-
down or bottom-up). The algorithm uses the following
operations:
1. push (instance, flag) to push an instance-flag pair

on the stack,
2. pop (instance, flag) to pop from the top of the stack

an instance-flag pair,
3. top (instance, flag) to get a copy of the instance-flag

pair currently on the top of the stack.

3.1. Algorithm

The evaluation procedure is outlined in figure 6. It starts
by updating the state of the delay elements. This involves
changing node states and propagating their effect to the
respective next higher level in the hierarchy and to the
rest of the circuit. Faulty delayed signals are processed
before the corresponding fault-free signals, since the
previous fault-free machine is a reference for all faulty
machines, supplying the necessary state variables. After
the delayed signals have been processed, the instance
top instance, which corresponds to the root instance
of the hierarchy, is pushed on the stack and procedure
eval.__inst is called to evaluate the effect of a new input
pattern.

Procedure process__delay is sketched in figure 7.
It updates all delayed signals scheduled to be processed
at the current simulation time. When a signal that lies
on the boundary of an instance is changed to a new
value, the parent of the instance is notified. This way,
the effect of the change can propagate to the next higher
level (if any) and to other parts of the circuit.

Procedure propagate effect is shown in figure 8.
This procedure takes as input an instance inst which
has a node N on the boundary that has a state change

eval___top ()
{

process delay (current__time);
push (top__.instance, top__down);
eval.__inst ();

}

Fig. 6 Procedure eval top.

pmcess__delay (current__time)
{

for (each node N scheduled for a faulty machine)
{

set state(N);
propagate effect (N, faulL_id);

}
for (all nodes N scheduled for fault free machine)
{

set state (N);
propagateeffect (N, fault~free);

}

Fig. 7. Procedure process~delay.

Hierarchical Multi-level Fault Simulation of Large Systems 145

propagate effect (inst, fault__id)
{

while ((inst != top_._instance) && boundary__.has~changed (inst))
{

push (parent (inst), bottom~up);
eval__inst ();
inst = parent (inst);

}

Fig. 8. Procedure propagate effect.

eval__inst ()
{

while (! empty (stack))
{

top (inst, flag);
while (type (inst) = = primitive)
{

pop (inst, flag);
eva l~ lowes t~ leve l (inst);
top (inst, flag);

}
if (flag = = bottom__up)
{

event__count = sense children (inst, f a u l t e d) ;
if (event__count = = 0)

pop (inst, flag);
if (fault~free)

inject__faults (inst);
}
else
{

event count = load__environment (inst, rid)
if (event count = = O)

pop (inst, flag);
else

sct___stack_._flag__of__inst (bottom._up);
}

}

Fig. 9. Procedure eval__inst.

and propagates the effect of changes to upper levels and
other higher levels of hierarchy. This is accomplished
by successive calls to eval___inst until either the top in-
stance is reached or no change occurs on the boundary
of the current instance.

Procedure eval__inst is shown in figure 9. Initially,
instance top instance is placed on the stack (in eval__
top) and the evaluation flag is set to top-down. Eval__
inst first evaluates all primitives found on the top of
the stack (if any) by either calling the switch-level eval-
uation procedure if the primitive is described at the

transistor level or the associated behavioral C-function.
Next, the evaluation flag for instance inst on top of the
stack is tested to determine in which direction the eval-
uation is to proceed. If the direction of evaluation is
top-down, the environment is loaded (see procedure
load environment in figure 12 below) and the direction
flag associated with inst is switched to bottom-up, if
the new environment is different from the previous one.
(In case of the top instance the environment is given
by the new set of primary inputs; else it consists of all
signals on the boundary of the instance). To propagate
the changed signals downward in the hierarchy all af-
fected subblocks (children instances) are pushed on the
stack. Their children in turn are pushed if signals on
their boundary have changed, and so forth until the
primitive instances are reached.

If the evaluation, on the other hand, is bottom-up,
the state of the nodes in inst are updated due to changes
coming from the next lower level; this step is detailed
in procedure sense__children (see figure 12 on page
146). If no new events are caused by this change, the
instance inst on top of the stack is popped. If inst has
been evaluated due to an event in the fault-free circuit
then faults local to a child of inst are considered for
injection if such a child was evaluated due to the same
event. The fault injection is accomplished in the proce-
dure inject faults.

Procedure inject faults is shown in figure 10. This
procedure takes as input an inst that has just been evalu-
ated as fanlt-flee. The effect of this procedure is the
activation of faults local to children of inst that were
evaluated with the fault-free machine. In addition, the
procedure propagates the effects of faults that have been
activated at lower levels.

inject__faults (inst)
{

for (each child of inst)
if (fault free.__state__has__changed (child))
{

inject__local.__faults (child);
propagate change~in._child (inst, child);

/

for (each injected fault)
if (fault affect~inst (fault, inst))

push (inst, top__down);

Fig. 10. Procedure inject_faults.

146 Saab, Mueller-Thuns, Blaauw, Rahmeh, and Abraham

load environment (inst, rid)
{

event count = 0;
for (each INPUT and IOPUT node)
{

if (state (node) != state (parent__contact (node))
{

state (node) = state (parent___ contact (node));
event count = event count + 1;

}
}
if (rid == fault___free)

for (every faulty copy of inst)
compute logic values of state variables of copy;

Fig. 11. Procedure load__environment.

procedure sense children (inst, fault~id)
{

for (each node N in inst)
{

compute__state (N);
if (state (N) I= previous__state (N))
{

for (each inst i on fanout list of N)
push (i, top down);

if (is__boundary___node (N))
notify (parent contact (node));

}
}

Fig. 12. Procedure sense children.

Procedure load environment, shown in figure 11,
first loads the environment from the parent instance,
that is, it copies the value of all signals connected to
the boundary. The procedure then tests if the event is
caused by a faulty or by a fault-free machine by looking
at the second parameterfid. In the latter case, all faulty
copies of inst are evaluated to compute the next state
of inst in the presence of each of the faults. These eval-
uations need to be performed before fault-free evalua-
tion of inst to insure correct results.

Procedure sense children (shown in figure 12) com-
putes the new state of nodes in inst resulting from a
change in node states at the lower level. In case the new
state of a node differs f rom its old state all instances of
the node fans out to need to reevaluated and are pushed
on the stack. I f the modified node lies on the boundary
of the instance the contact node in the parent is notified.

4. Implementation and Application

4.1. Programming Environment

The algorithms described in this article have been im-
plemented in a prototype software program in the C
progamming language. The program comprises a total
of about 15,000 lines of code and runs under UNIX or
SUN Microsystems SUN-3 and SUN-4 workstations.
The overall structure of the simulation system is out-
lined in figure 13.

The simulator accepts a simple hierarchical descrip-
tion language in which the user specifies circuits by
defining primitives and building macros from them
hierarchically. A primitive consists of either an inter-
connection of transistors or the name of a software func-
tion. Other description languages are supported through
front-end translators (currently the HHB CADAT format
[22], the SILOS format [23], SCALD [24], and the
ISCAS circuit format [25]). The good machine simula-
tion of CHAMP was validated by simulating an entire
microprocessor with around 250,000 input vectors and
comparing the outputs with those of a commercial soft-
ware simulator. We verified the fault simulation by
"hardwiring" selected faults and checking that the ones
flagged as detected by the simulator cause correspond-
ing errors.

4.2. Performance Experiments

In this section, we describe experiments performed with
small to medium sized circuits. In particular, we are
interested in how some performance parameters vary
as we scale the circuits up.

In table 1, a summary is given, which contains the
statistics of simulations for typical MOS designs. The
circuits were simulated on a SUN-3 workstation. Cir-
cuit 1 is a four-phase clock generator containing I00
transistors. Circuits 2 to 5 are 4-, 8-, 16-, and 32-bit
full adders respectively. This table shows that the CPU
time and memory requirement do not grow exponen-
tially with circuit size.

Table 2 gives a comparison of the memory require-
merits for flat versus hierarchical storage. All numbers
are in bytes and they are listed separately for the storage
of the netlist and the storage of state information. Due
to some duplication of state information, the hierarchi-
cal representation takes slightly more space for storing
the state; however, it is more efficient for storing the
interconnections of the circuit. The savings in storage

Hierarchical Multi-level Fault Simulation of Large Systems 147

C-functions

input patterns

frontend
translator

POStprocess good

chine output

parse circuit;

compile, setup

data structures;

link C-functions

simulator

frontend
translator

(,..~ault statistics

Fig. 13. Overall system structure.

Table 1. Simulation statistics.

patterns CPU Memory
Circuit elements faults (test) Coverage (sec) (pages)

CKT1 100 144 310 84% 58.40 158
CKT2 176 80 8 100% 5.40 126
CKT3 352 160 8 100% 7.76 138
CKT4 704 320 8 100% 14.06 148
CKT5 1408 640 8 100% 51.74 176

Table 2. Comparison of memory requirements.

Storage netlist Storage state

Circuit Flat Hier. Flat Hier.

CKT1 588 356 4863 4867
CKT2 224 124 482 480
CKT3 448 220 942 932
CKT4 896 436 1859 1862
CKT5 1792 828 3686 3702

become more apparent as the circuits grow in size and
have a lot of duplicated subcells.

The time requirements for the simulation are highly
dependent on the way the circuit is represented, espe-
cially on the number of levels of hierarchy. In our exper-
iments with the full adders, simulation may take twice
the time if the circuit is described fully hierarchically
compared to a flat format; that is, if a 32-bit adder,
for example, is given as two interconnected 16-bit adders
that are in turn described as two 8-bit adders, etc. The
penalty in computation time is due to the added traver-
sals of the hierarchy as is negligible if there are few
levels of hierarchy. Furthermore, for large circuits the
memory savings become substantial; then it is, for ex-
ample, possible to avoid paging and hence achieve better
overall performance or to simulate a large design cost
effectively on a smaller computer, for instance a work-
station rather than a mainframe (see also the discussion
in the next section).

148 Saab, Mueller-Thuns, Blaauw, Rahmeh, and Abraham

4.3. Fault Grading of a Microprocessor

The main objective of this work is to provide tools for
logic and fault simulation that are capable of handling
large designs but also have a reasonable cost/perform-
ance ratio. We chose engineering workstations as a plat-
form for the following reasons:
1. They typically deliver minicomputer performance

at very competitive cost.
2. They are in widespread use.
3. It is straightforward to run simulation in a distributed

manner by partitioning the input data set for logic
simulation or the fault set for fault simulation among
a number of workstations that can share the circuit
description residing on one file server.

4. We would like to demonstrate that complex designs
can be handled without the use of mainframe com-
puters. This way, we hope to be able to cope with
much larger present and future designs whose com-
plexity and demand for simulation time is likely to
grow faster than computer performance.
In this section, we discuss the application of our sim-

ulation system to a large circuit, a commercially available
microprocessor. To our knowledge, the fault grading
of a complete microprocessor chip of this size using
switch-level simulation has not been accomplished pre-
viously. The chip we consider is Motorola's MC68000
microprocessor [16]. The complete circuit description
is given as a mixture of gates and MOS transistors.
Beside the microprocessor, the description contains
"glue logic" notably a set of RAMS holding the machine
code that constitutes a functional test of the microproc-
essor. Thus, the test pattern is immediately given by
the hex-dump of an assembled program and only a
small set of external signals needs to be supplied to the
simulator (typically: clock enable, interrupts, and bus
control signals).

For a large system to be simulated the memory re-
quirements of concurrent fault simulation prohibit inject-
ing the complete set of faults to be analyzed. Hence
one needs to use multipass simulation, that is: the cir-
cuit is simulated repeatedly with one test sequence, and
a small subset of faults is injected each time.

In our setup, we initially injected sets of around 2000
faults per pass into the circuit for each simulation run
of around 80,000 vectors; it required around 24 hours
of CPU time on a SUN-4. Memory requirements for
the simulation of the MC68000 typically peaked at
around 25-35 mega-bytes for the first one hundred
clock cycles and then tapered off to about 8-12 mega-
bytes. We have currently simulated the circuit with all
stuck-at faults for several hundred thousand vectors.

Currently, the set of faults to be injected is an arbi-
trary set of contiguous fault numbers. Since all faults
in the system are given a unique identification number
when traversing the circuit cell by cell, a set of faults
as chosen above is clustered around a particular portion
of the circuit. We observed that the memory require-
ments and overall performance is very dependent on
the choice of portion and on the test pattern: different
data sets create rather unbalanced event activity and
may or may not expose the faults currently injected.

Ideally, one should run test patterns and fault sets
in an order determined by the target faults of each test
set. Unfortunately, it is not always possible to determine
the target faults of a test set since ad hoc functional test
pattern generation often focuses on a set of instructions
rather than a circuit block. Hence, circuit activity is
hard to predict. A closer coupling between test genera-
tion and fault simulation is clearly desirable and needs
further research.

5. Conclusion

In this article we introduced an approach for the cost-
effective and accurate fault simulation of very large digi-
tal designs. This approach is based on storing and proc-
essing the circuit in a hierarchical manner. This way,
memory requirements are reduced and faster behavioral
descriptions can replace subcircuits at any level of the
hierarchy. We have described the data structure and ex-
plained the essential steps of the simulation algorithms.
Our experimental results demonstrated the usefulness
of the method in fault grading an entire microprocessor
on engineering workstations. Future work will concen-
trate on the use of efficient high-level functions, inte-
grating test generation algorithms into the fault simu-
lator, and a distributed implementation.

Acknowledgments

This work was supported in part by the Semiconduc-
tor Research Corporation Contract 87-DP-109 at the
University of Illinois, in part by the Semiconductor
Research Corporation Contract 88-DJ-142 at the Uni-
versity of Texas, and in part by Motorola Inc., Austin,
Texas.

References

1. M.A. Breuer and A.D. Friedman, Diagnosis and Reliable Design
of Digital Systems. Woodland Hills, CA: Computer Science Press,
1976.

2. R.D. Eldred, "Test routines based on symbolic logical state-
ments," J. ACM 6: 33-36, 1959.

H i e r a r c h i c a l M u l t i - l e v e l Fau l t S i m u l a t i o n o f L a r g e S y s t e m s 149

3. R Banerjee and J.A. Abraham, "Fault characterization of VLSI
MOS circuits" Proc. IEEE Intern. Conf. Circuits and Computers,
New York, pp. 564-568, September 1983.

4. I.N. Hajj and D.G. Saab, "Fault modeling and logic simulation
of MOS VLSI circuits based on logic expression extraction,"
Proc. IEEE Intern. Conf. Computer-Aided Design, Santa Clara,
CA, pp. 99-100, September 1983.

5. Y.M. E1-Ziq, "Failure analysis and test generation for VLSI phys-
ical effects," 1983 Custom Integrated Circuit Conf, Rochester,
NY, pp. 300-303, May 1983.

6. R.E. Bryant and M.D. Schuster, "Fault simulation of MOS digital
circuits," VLSIDesign 4 (6): 24-30, 1983.

7. M.R. Lightner and G.D. Hachtel, "Implication algorithms for
MOS switch-level function macromodeling, implication and test-
ing," Proc. 19th ACM Design Autom. Workshop, pp. 691-698,
June 1982.

8. A.K. Bose, E Kozak, C.-Y. Lo, H.N. Nham, E. Pacas-skewes,
and K. Wu, ' ~ fault simulator for MOS LSI circuits;' Proc. 19th
ACM/IEEE Design Aurora. Conf., pp. 400-408, June 1982.

9. G. Ditlow, W. Donath, and A. Ruehli, "Logic equations for
MOSFET circuits," Proc. IEEE Intern. Symp. Circuits and Sys-
tems, Newport Beach, CA, pp. 752-755, May 1983.

10. D.G. Saab, "Logic and fault simulation of VLSI circuits including
hierarchical techniques" Ph.D. Dissertation, University of Illinois
at Urbana-Champaign, 1988.

11. I.N. Hajj and D.G. Saab, "Symbolic logic simulation of MOS
circuits," Proc. IEEE Intern. Symp. Circuits and Systems, New-
port Beach, CA, pp. 246-249, May 1983.

12. R.E. Bryant, D. Beatty, K. Brace, K. Cho, and T. Scheffler,
"COSMOS: A Compiled Simulator for MOS Circuits," Proc.
24th ACM/IEEE Design Autom. Conf., pp. 9-16, 1987.

13. D.T. Blaauw, D.G. Saab, R.B. Mueller-Thuns, J.T. Rahmeh, and
J.A. Abraham, '~utomatic generation of behavioral models from
switch-level descriptions," Proc. 26th ACM/1EEE Design Autom.
Conf., Las Vegas, NV, pp. 179-184, June 1989.

14. W.A. Rogers and J.A. Abraham, "CHIEFS: A concurrent, hier-
archical and extensible fault simulator," Proc Intern. Test Conf.,
Philadelphia, pp. 710-716, November 1985.

15. D.D Hill and W.M. Van Cleemput, "SABLE: Multilevel simula-
tion for hierarchical design," Proc. IEEE Intern. Symp. Circuits
and Systems, Houston, TX, pp. 361-365, April 1980.

16. Motorola Corporation, MC68000 Programmer's Reference Man-
ual, Engtewood Cliffs, NJ: Prentice-Hall, 1986.

17. L. Jones, "Fast oniine/offline netlist compilation of hierarchical
schematics," Proc. 26th ACM/1EEE Design Autom. Conf., Las
Vegas, NV, pp. 822-825, June 1989.

18. R.E. Bryant, % switch-level model and simulator for MOS digital
systems," IEEE Trans. Comput. C-33, pp. 160-177, 1984.

19. R.H. Byrd, G.D. Hachtel, M.R. Lightner, and M.H. Heydemann,
"Switch level simulation: models, theory, and algorithms?' In
Advances in Computer-Aided Engineering Design, ed., A.L.
Sangiovanni-Vincentelli. JAI Press, Greenwich, CT, pp. 93-148,
1985.

20. E.B. Eichelberger, "Hazard detection in combinational and se-
quential switching circuits," IBMJ. Res. Develop. 9 (2): 90-99,
March 1965.

21. J.A. Brzozowski and M. Yoeli, "On a ternary model of gate net-
works," IEEE Trans. Comput. C-28, No. 3, pp. 178-184, March
1979.

22. HHB Inc., CADAT User 'S Manual. HHB Inc., Mahwah, NJ, 1987.
23. SimuCad, SILOS User's Manual. SimuCad, Incline Village, NV,

1984.

24. T.M. McWilliams, J.B. Rubin, L.C. Widdoes, and S. Correl,
SCALD User's Manual. Berkeley, CA, Lawrence Livermore
Laboratory, 1979, Annual Report, S-1 Project.

25. E Brglez and H. Fujiwara, 'N neutral netlist of 10 combinational
benchmark circuits and a target translator in Fortran," Proc.
Intern. Test Conf., Philadelphia, pp. 785-794, 1985.

Daniel G. Saab received the B.S. degree in Computer Engineering,
the M.S. degree in Electrical Engineering, and the Ph.D. in Electrical
Engineering from the University of Illinois at Urbana-Champaign in
1982, 1985, and 1988, respectively. From July 1982 to August 1983 he
worked as a Computer Aided Design Engineer at Tektronix in Oregon.
Currently, he is an Assistant Professor in the Department of Electrical
and Computer Engineering at the University of Illinois at Urbana-
Champaign and with the Center for Reliable and High Performance
Computing at the University of Illinois. He received the 1989 Semi-
conductor Research Corporation Inventive contribution award.

Prof. Saab's research interests include circuit, timing and switch-
level simulation of VLSI circuits, fault simulation and testing, parallel
processing, and design automation.

Robert B. Mueller-Thuns received his Diplom-Ingenieur degree in
Electrical Engineering from the Technical University of Aachen, West
Germany, in 1986, and the M.S. degree in Computer Science from
the University of Illinois at Urbana-Champaign in 1988. During the
summer of 1986 he worked for Siemens AG, Munich, W. Germany,
as a CAD engineer. He spent the summers of 1988 and 1989 with
the Advanced Simulation Group at the IBM T.J. Watson Research
Center, Yorktown Heights. Currently, he is with the Center for Reliable
and High Performance Computing at the University of Illinois, pursu-
ing the Ph.D. degree. His research interests include computer aided
design for VLSI, simulation, testing, and parallel processing.

R. Mueller-Thuns is a student member of IEEE and ACM and
a member of Tan Beta Pi.

David T. Biaauw received his B.S. degree in Physics and Computer
Science from Duke University, Durham, North Carolina, and the
M.S. degree in Computer Science from the University of Illinois at
Urbana-Champaign. Currently, he is pursuing the Ph.D. degree at
the University of Illinois. His research interests include computer-
aided design for VLSI and simulation.

D. Blaauw is a student member of IEEE and ACM.

Joe Rahmeh was born in Becharre, Lebanon in 1960. He received
the B.S., M.S., and Ph.D. degrees in Electrical and Computer Engi-
neering from the University of Illinois in May 1981, January 1984,
and October 1988 respectively. Currently he is an assistant professor
at the University of Texas at Austin. His research interests include
computer architecture, parallel processing, and electronic computer-
aided design.

Jacob A. Abraham is a Professor in the Department of Electrical
and Computer Engineering and director of the Computer Engineering
Research Center at the University of Texas at Austin, where he also
holds the eighth Cockrell Family Regents Chair in Engineering. He
received the Bachelor's degree in Electrical Engineering from the
University of Kerala, India, in 1970. His M.S. degree, also in Electrical
Engineering, and Ph.D., in Electrical Engineering and Computer
Science, were received from Stanford University, Stanford, Califor-
nia, in 1971 and 1974, respectively. From 1975 to 1988 he was on
the faculty of the University of Illinois, Urbana, Illinois.

Professor Abraham's research interests include fanlt-tolerant com-
puting, VLSI design and test, computer-aided design, and computer
architecture.

