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Abstract

We demonstrate applications of algebraic techniques that optimize and certify polynomial inequal-
ities to problems of interest in the operations research and transportation engineering communities.
Three problems are considered: (i) wireless coverage of targeted geographical regions with guaran-
teed signal quality and minimum transmission power, (ii) computing real-time certificates of collision
avoidance for a simple model of an unmanned vehicle (UV) navigating through a cluttered environ-
ment, and (iii) designing a nonlinear hovering controller for a quadrotor UV, which has recently been
used for load transportation. On our smaller-scale applications, we apply the sum of squares (SOS)
relaxation and solve the underlying problems with semidefinite programming. On the larger-scale
or real-time applications, we use our recently introduced “SDSOS Optimization” techniques which
result in second order cone programs. To the best of our knowledge, this is the first study of real-time
applications of sum of squares techniques in optimization and control. No knowledge in dynamics
and control is assumed from the reader.

1 Introduction

In this paper we consider applications of polynomial optimization in the area of operations research and
transportation engineering. While techniques in more established areas of optimization theory such as
linear, integer, combinatorial, and dynamic programming have found wide applications in these areas
[11, 10, 9, 22], the relatively newer field of polynomial optimization, which has gone through rapid
advancements in recent years, may yet prove to reveal many unexplored applications. It is our aim in
this paper to bring a few such applications to the attention of the operation research community and to
highlight some algorithmic tools based on algebraic techniques that we believe are particularly suited
for approaching problems of this sort.

The fundamental problem underlying all of our applications is that of optimizing over nonnegative
polynomials. This is the task of finding the coefficients cα := cα1,...,αn of some multivariate polynomial
p(x) := p(x1, . . . , xn) =

∑
α cαx

α in order to get p(x) ≥ 0, either globally (i.e., ∀x ∈ Rn), or on certain
basic semialgebraic sets. A basic semialgebraic set is a subset of the Euclidean space defined by a finite
number of polynomial (in)equalities. That is a set of the form

S := {x ∈ Rn| gi(x) ≥ 0, hi(x) = 0},

where the functions gi, hi are all multivariate polynomials. The polynomial optimization problem (POP)
is itself a problem of this form. Indeed, the task of finding the minimum of a polynomial function q
on a basic semialgebraic set S is the same as that of finding the largest constant γ such that q(x) − γ
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is nonnegative on S. There are, however, many other applications of optimization over nonnegative
polynomials, some to be seen in this work.

Our paper is organized as follows. In Section 2, we briefly review the concept of sum of squares
(sos) decomposition and its relation to semidefinite programming (SDP). This is a popular approach for
certifying polynomial nonnegativity. While remarkably powerful, it often faces scalability limitations on
larger-scale problems. As a potential remedy, we have recently introduced [5, 4] the concepts of diago-
nally dominant and scaled diagonally dominant sum of squares (dsos and sdsos) decomposition, which
instead of SDP result in linear programs (LP) and second order cone programs (SOCP) respectively.
These concepts are also presented in Section 2.

In Section 3, we consider the problem of providing guaranteed wireless coverage to certain basic
semialgebraic subsets of the Euclidean space with minimum transmission power. The general problem
here has been previously considered in the literature but we show that tools from polynomial optimiza-
tion allow us to handle the problem in broader and arguably more realistic scenarios. Our next two
examples are related to transportation problems in operations research. In particular, in Section 5, we
consider a simple model of an unmanned aerial vehicle (UAV), which aims to fly through a cluttered
environment in a collision free manner. The techniques presented in this section can also be adapted for
applications to ground vehicles. We demonstrate how one can choose a control law and at the same time
find a formal certificate—an independently verifiable proof—that the resulting dynamics will guarantee
no collisions with obstacles. We show that using our SOCP techniques, the underlying computational
task can be carried out in the order of 20-30 milliseconds, hence making a plausibility claim about a
real-time application of this approach. In Section 6, we use the same technical tools to design a stabi-
lizing controller for a quadrotor system, a device that has increasing potential for use in transportation
(see Section 6). The designed controller prevents the quadrotor from losing balance when it is subject to
environmental disturbance, or an external perturbation. The SDP resulting from this controller design
problem is so large that it cannot be solved on our machine (3.4 GHz PC with 4 cores and 16 GB
RAM). This is another example demonstrating the promise of our new sdsos machinery for handling
problems of large scale.

Our second and third applications include the employment of Lyapunov techniques to convert a
problem in dynamics and control to a problem in polynomial optimization. Since we do not want to
assume this background from the reader, we present the essentials of these very basic concepts in Section
4. The mathematical background in this section (just like Section 2) is presented at a minimal level to
make the paper self-contained, while keeping the focus on the applications and the algorithmic aspects.
We end the paper with some brief concluding remarks in Section 7.

2 Algebraic certificates of nonnegativity via convex optimization

The task of optimizing over nonnegative polynomials or even checking nonnegativity of a given polyno-
mial, either globally or on a basic semialgebraic set, is known to be NP-hard [33]. This is true already
for checking global nonnegativity of a quartic (degree-4) polynomial, or for checking nonnegativity of
a quadratic polynomial on a set defined by linear inequalities. A popular relaxation scheme for this
problem is through the machinery of the so-called sum of squares optimization.

We say that a polynomial p is a sum of squares (sos), if it can be written as p =
∑

i q
2 for some

other polynomials qi. Obviously, such a decomposition is a sufficient (but in general not necessary [19])
condition for (global) nonnegativity of p. The situation where p is only constrained to be nonnegative
on a certain basic semialgebraic set1

S := {x ∈ Rn| g1(x) ≥ 0, . . . , gm(x) ≥ 0}
1In this formulation, we have avoided equality constraints for simplicity. Obviously, there is no loss of generality in

doing this as an equality constraint h(x) = 0 can be imposed by the pair of inequality constraints h(x) ≥ 0,−h(x) ≥ 0.
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can also be handled with the help of appropriate sum of squares multipliers. For example, if we succeed
in finding sos polynomials s0, s1, . . . , sm, such that

p(x) = s0(x) +
m∑
i=1

si(x)gi(x), (1)

then we have found a certificate of nonnegativity of p on the set S. Indeed, if we evaluate the above
expression at any x ∈ S, nonnegativity of the polynomials s0, s1 . . . , sm imply that p(x) ≥ 0. A Posi-
tivstellensatz theorem from real algebraic geometry due to Putinar [40] states that if the set S satisfies
the so-called Archimedean property, a property only slightly stronger than compactness2, then every
polynomial positive on S has a representation of the type (1), for some sos polynomials s0, s1, . . . , sm of
high enough degree (see also [34] for degree bounds). Even with absolutely no qualifications about the
set S, there are other Positivstellensatz theorems (e.g., due to Stengle [41]) that certify nonnegativity
of a polynomial on a basic semialgebraic set using sos polynomials. These certificates are only slightly
more complicated than (1) and involve sos multipliers associated with products among polynomials gi
that define S [36]. A great reference for the interested reader is the survey paper by Laurent [24].

The computational advantage of a certificate of (global or local) nonnegativity via sum of squares
polynomials is that it can be automatically found by semidefinite programming. What establishes the
link between sos polynomials and SDP is the following well-known theorem. Recall that a symmetric
n×n matrix A is positive semidefinite (psd) if xTAx ≥ 0,∀x ∈ Rn, and that semidefinite programming
is the problem of optimizing over psd matrices subject to affine inequalities on their entries [43]. We
denote the positive semidefiniteness of a matrix A with the standard notation A � 0.

Theorem 2.1 (see, e.g., [35],[36]). A multivariate polynomial p(x) in n variables and of degree 2d is
a sum of squares if and only if there exists a symmetric matrix Q (often called the Gram matrix) such
that

p(x) = zTQz,
Q � 0,

(2)

where z is the vector of monomials of degree up to d

z = [1, x1, x2, . . . , xn, x1x2, . . . , x
d
n].

The search for the matrix Q satisfying a positive semidefiniteness constraint, as well as linear equality
constraints coming from (2) is a semidefinite programming problem. The size of the matrix Q in this
theorem is (

n+ d

d

)
×
(
n+ d

d

)
,

which approximately equals nd × nd. While this number is polynomial in n for fixed d, it can grow
rather quickly even for low degree polynomials. For example, the polynomials that we will be requiring
to be sos in our controller design problem for the quadrotor (Section 6) have 16 variables and degree 6
and result in a Gram matrices with about half a million decision variables. A semidefinite constraint of
this size is quite expensive—for example, the SDP solvers of SeDuMi [42] and MOSEK [2] fail to solve
the quadrotor problem on our machine and quickly run out of memory.

2.1 DSOS and SDSOS Optimization

In order to address the problem of scalability posed by SDP, we have recently introduced [5, 4] alterna-
tives to SOS programming that lead to linear programs (LPs) and second order cone programs (SOCPs).

2In particular, if we have as an outer estimate a ball of some radius R in which our set S lives, then we can add a single
quadratic inequality

∑
i x

2
i ≤ R to the description of S to have it satisfy the Archimedean property without changing the

set.
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The key insight there is to replace the condition that the Gram matrix Q be positive semidefinite (psd)
with stronger sufficient conditions in order to obtain inner approximations to the cone SOSn,d of sos
polynomials in n variables and of degree d. In particular, Q will be required to be either diagonally
dominant (dd) or scaled diagonally dominant (sdd). We recall these definitions below.

Definition 2.2. A symmetric matrix A is diagonally dominant (dd) if aii ≥
∑

j 6=i |aij | for all i.

We will refer to the set of n× n dd matrices as DDn.

Remark 2.1. It is clear from Definition 2.2 that the set DDn has a polytopic description and can thus
be optimized over using LP.

Definition 2.3. Denote the set of n×n symmetric matrices as Sn. Let M ij
2×2 ∈ Sn denote the symmetric

matrix with all entries zero except the elements Mii,Mij ,Mji,Mjj. Then, a symmetric matrix A is
scaled diagonally dominant (sdd) if it can be expressed in the following form:

A =
∑
i 6=j

M ij
2×2,

[
Mii Mij

Mji Mjj

]
� 0.

Remark 2.2. The relationship between dd and sdd matrices is made clear in [5]. As we show there, a
symmetric matrix A is sdd if and only if there exists a positive diagonal matrix D such that AD (or
equivalently, DAD) is diagonally dominant.

The set of n× n sdd matrices will be denoted by SDDn. We note that sdd matrices are sometimes
referred to as generalized diagonally dominant matrices [13].

Theorem 2.4. The set of matrices SDDn can be optimized over using second order cone programming.

Proof. Positive semidefiniteness of the 2 × 2 matrices in Definition 2.3 is equivalent to the diagonal
elements Mii,Mjj , along with the determinant MiiMjj − M2

ij , being nonnegative. This is a rotated
quadratic cone constraint and can be imposed using SOCP [6].

Remark 2.3. The fact that diagonal dominance is a sufficient condition for positive semidefiniteness
follows directly from Gershgorin’s circle theorem. The fact that sdd implies psd is immediate from
Definition 2.3 since a sdd matrix is a sum of psd matrices. Hence, denoting the set of n× n symmetric
positive semidefinite matrices (psd) as S+

n , we have from the definitions above that:

DDn ⊆ SDDn ⊆ S+
n .

We now introduce some naturally motivated cones that are inner approximations of the cone of
nonnegative polynomials and that lend themselves to LP and SOCP. In analogy with the representation
of sos polynomials in terms of psd matrices (Theorem 2.1), we define the dsos and sdsos polynomials
in terms of dd and sdd matrices respectively.

Definition 2.5 ([5, 4]).

• A polynomial p of degree 2d is diagonally-dominant-sum-of-squares (dsos) if it admits a represen-
tation as p(x) = zT (x)Qz(x), where z(x) is the standard monomial vector of degree d, and Q is a
dd matrix.

• A polynomial p of degree 2d is scaled-diagonally-dominant-sum-of-squares (sdsos) if it admits a
representation as p(x) = zT (x)Qz(x), where z(x) is the standard monomial vector of degree d,
and Q is a sdd matrix.
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We denote the set of polynomials in n variables and degree d that are dsos and sdsos by DSOSn,d
and SDSOSn,d respectively.

The following inclusion relations are straightforward:

DSOSn,d ⊆ SDSOSn,d ⊆ SOSn,d.

Theorem 2.6. The set DSOSn,d is polyhedral and the set SDSOSn,d has a second order cone rep-
resentation. For any fixed d, optimization over DSOSn,d (resp. SDSOSn,d) can be done with linear
programming (resp. second order cone programming), of size polynomial in n.

Proof. This follows directly from Remark 2.1 and Theorem 2.4. The size of these programs is polynomial
in n since the size of the Gram matrix is

(
n+d
d

)
×
(
n+d
d

)
, which scales as nd.

Remark 2.4. While here we have chosen to define the DSOSn,d and SDSOSn,d cones directly in terms
of dd and sdd matrices in order to expose their LP and SOCP characterizations, it is more natural to
define them as sos polynomials of a particular form. This alternate characterization is provided in [5].
In particular, we have the following equivalent definitions:

• A polynomial p is dsos if it can be written as

p =
∑
i

αim
2
i +

∑
i,j

β+
ij (mi +mj)

2 + β−ij (mi −mj)
2,

for some monomials mi,mj and some constants αi, β
+
ij , β

−
ij ≥ 0.

• A polynomial p is sdsos if it can be written as

p =
∑
i

αim
2
i +

∑
i,j

(β+
i mi + γ+

j mj)
2 + (β−i mi − γ−j mj)

2,

for some monomials mi,mj and some constants αi, β
+
i , γ

+
j , β

−
i , γ

−
j ≥ 0.

We will refer to optimization problems with a linear objective posed over the cones DSOSn,d,
SDSOSn,d, and SOSn,d as DSOS programs, SDSOS programs, and SOS programs respectively. In
general, quality of approximation decreases, while scalability increases, as we go from SOS to SDSOS to
DSOS programs. Depending on the size of the application at hand, one may choose one approach over the
other. In this paper, we will be using SOS optimization (Section 3) and SDSOS optimization (Sections 5
and 6) in our numerical experiments. The reader is referred to [26, 4, 5] for many numerical examples
involving DSOS optimization. We also remark in passing that SDSOS or even DSOS programming enjoy
many of the same theoretical (asymptotic) guarantees of SOS programming—results of this nature are
proven in [5].

We now proceed to some potential operations research applications of the tools discussed so far.

3 Wireless coverage with minimum transmission

In the problem considered in this section we have a number n of wireless electromagnetic transmitters
located at positions (x̄i, ȳi), i = 1, . . . , n on the plane. Each transmitter is an omnidirectional power
source, emitting waves in all directions with equal intensity. Due to the laws of electromagnetics, the
energy Ei propagated from each jamming device is inversely proportional to the squared distance from
the device:

Ei(x, y) =
ciλ

(x− x̄i)2 + (y − ȳi)2
,
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where λ is some propagation constant, set hereafter to 1 with no loss of generality, and ci is the
transmission rate of device i. The goal is to make sure that certain regions of the plane are guaranteed to
receive a given cumulative energy level of at least C units, while minimizing transmission power. These
regions can for example be populated urban geographical domains where a wireless service provider
would like to guarantee a certain level of signal quality.

The problem we describe is motivated by some interesting and relatively recent work in [16], [15] (see
also the thesis [14]), where the motivation is instead to jam the communication network of an adversary
with a wireless transmitter. We note, however, that there are a few differences between our setting and
that of [16] and [15], the main one being the assumption about the region to be covered. Reference [16]
assumes that this region is a set of isolated points (the location of the adversary is known) and this
results in a simplified problem. However, more complex objectives are considered by the authors; e.g.,
the goal is to make the communication graph of the enemy disconnected, or to jam a prescribed fraction
of the enemy locations, or to decide which transmitters to turn off. On the opposite end, the work
in [15] assumes absolutely nothing about the location of the adversary. As a result, the goal is to cover
an entire rectangular region by a prescribed level of jamming power. Our setting, by contrast, allows
for the region to be covered to be the union of arbitrary basic semialgebraic sets (see, e.g., Figure 1(a));
this obviously enhances the modeling power. We should also comment that neither our work, nor the
works in [16] and [15], satisfactorily address the more difficult problem of optimizing over the location
of the transmitters.

A formal summary of our setting is as follows. We are given as input the following quantities: C
(required coverage level), γi (upper bounds on transmission rates), (x̄i, ȳi), i = 1, . . . , n (location of our
transmitters), Bj , j = 1, . . . ,m (basic semialgebraic sets describing regions to be covered). We assume
that the transmitters are outside of the location sets Bj . The goal is to find transmission rates ci to
solve the following optimization problem3:

minimize
∑n

i=1 ci
ci ≤ γi, ∀i = 1, . . . , n,

E(x, y) :=
∑n

i=1
ci

(x−x̄i)2+(y−ȳi)2 ≥ C, ∀(x, y) ∈ Bj , j = 1, . . . ,m.
(3)

Note that the latter constraints are requiring certain rational functions to be nonnegative on certain
basic semialgebraic sets. Upon taking common denominators, we can rewrite these constraints as
polynomial inequality constraints:

p(x, y) := −C
∏n
i=1[(x− x̄i)2 + (y − ȳi)2] +

∑n
i=1 ci

∏
k 6=i[(x− x̄k)2 + (y − ȳk)2] ≥ 0,

∀(x, y) ∈ Bj , j = 1, . . . ,m.
(4)

Observe that the degree of the polynomial p(x, y) is two times the number of transmitters. Since we
are dealing with polynomial inequalities in only two variables, we have no scalability issues restraining
us from applying the sos relaxation. Let each set Bj be defined as

Bj = {x| gj,1(x, y) ≥ 0, . . . , gj,kj (x, y) ≥ 0},

for some bivariate polynomials gj,1, . . . , gj,kj . The optimization problem that we will be solving is:

minimize
∑n

i=1 ci

p = σ0 +
∑kj

i=1 σj,kgj,i, j = 1, . . . ,m,
σ0, σj,k sos,

(5)

where p is as in (4) and σ0, σj,k are bivariate polynomials whose degree is upper bounded by some
even integer d. Note that the above is a semidefinite programming problem (via Theorem 2.1) with

3An alternative reasonable objective is to minimize maxi ci. This can as easily be handled.
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(a) The input to the problem. (b) Log of the cumulative energy at
the SDP solution.

(c) Region that receives a total en-
ergy of at least C = 10 units (in
dark red).

Figure 1: An instance of the wireless coverage problem.

decision variables consisting of the scalars ci and the coefficients of the polynomials σ0, σj,k. It is easy
to see that for each value of the degree d, the optimal value of (5) is an upper bound on the optimal
value of (3). Moreover, since in our setting each set Bi satisfies the Archimedean property4, Putinar’s
Positivstellensatz tells us that by increasing d, we will be able to solve (3) to global optimality.

Let us now solve a concrete example. Our input data is demonstrated in Figure 1(a). We have two
transmitters, located at points (1, 1.5) (called transmitter 1) and (2, 1) (called transmitter 2) on the
plane. The area to be covered is given by the five ellipsoidal regions

Bj = {z := (x, y)T | (z − zj)TAj(z − zj) ≤ αj},

with A1 =

[
3 1
1 1

]
, A2 =

[
1 0
0 3

]
, A3 =

[
1 0
0 1

]
, A4 =

[
1 −1
−1 3

]
, A5 =

[
5 0
0 1

]
, z1 = (1.1, 1.75)T , z2 =

(1.25, 2)T , z3 = (1.5, 1.75)T , z4 = (1.8, 1.8)T , z5 = (2, 1.4)T , α1 = α2 = α3 = α4 = 0.1, α5 = 0.2.
The required energy level on these areas is C = 10 and the upper bounds on both transmission

rates c1, c2 is 11. We first would like to know if by only turning on one of the two transmitters we can
meet the required energy level. For the transmitter at the location (2, 1), the optimal value of the SDP
in (5) with degree of sos multipliers set to zero (i.e., constant multipliers) is 17.594. In fact, in this
case, we know that this upper bound is already exact! This is because in the case of one transmitter,
the polynomial p in (4) is quadratic. If a quadratic polynomial is nonnegative on a region defined by
another quadratic, this fact is always certified by a constant degree multiplier—this is the celebrated
S-lemma; see [37]. Similarly, if we solve the problem for the transmitter located at (1, 1.5), the optimal
value of (5) which matches the optimal value of (3) is 11.446. So our task is indeed not achievable with
one transmitter only.

With both transmitters on, the SDP in (5) is infeasible for degree-0 sos multipliers (giving an upper
bound of infinity). However, when we increase the degree of these multipliers to 2, a solution is returned
with c1 = 2.561 and c2 = 5.550 at optimality. By further increasing the degree of our sos multipliers,
no improvement in optimal value is observed and we conjecture that the numbers above are already
optimal for the original problem (3). Figure 1(b) shows the logarithm of the cumulative energy level
E(x, y) at each point in space. (The logarithm is taken to better observe the dispersion of energy.)
Figure 1(c) shows all pixels that receive the required energy level of C = 10 units. As promised, all five
ellipsoids are covered and interestingly the boundary of the region covered touches two of the ellipsoids.
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Figure 2: The steps involved in Lyapunov analysis of dynamical systems via convex optimization.

4 Lyapunov theory and optimization

The examples presented in our next two sections involve decision-making about trajectories of dynamical
systems. The machinery that allows us to reduce such tasks to problems in optimization is Lyapunov
theory. As depicted in Figure 2, the general idea is the following: In order to guarantee that trajectories
of dynamical systems satisfy certain desired properties, it will be enough to find certain scalar valued
functions that satisfy certain inequalities. These functions will be parameterized as polynomials and
DSOS/SDSOS/SOS relaxation techniques will be used to find their unknown coefficients in such a way
that the desired inequalities are automatically satisfied. For our two applications, we explain next what
these inequalities actually are.

Barrier functions (Section 5). Consider a differential equation ẋ = f(x), where ẋ denotes the
derivative of the state vector x with respect to time and f : Rn → Rn is a polynomial function. Suppose
we are given two basic semialgebraic sets Ssafe and Sunsafe and we want to guarantee that trajectories
starting in Ssafe would never end up in Sunsafe. This guarantee can be achieved if we succeed in finding
a function V : Rn → R, called a barrier function [38], [39], [8], with the following three properties:

V (x) < 1 ∀x ∈ Ssafe, V > 1 ∀x ∈ Sunsafe, V̇ (x) ≤ 0 ∀x.

The expression V̇ denotes the time derivative of V along trajectories. If V is a polynomial, V̇ will also
be a polynomial given (via the chain rule) by:

V̇ (x) = 〈∇V (x), f(x)〉.

The three inequalities above imply that it is impossible for a trajectory to go from Ssafe to Sunsafe
since the function V evaluated on this trajectory would need to go from a value less than one to a value
more than one, but that cannot happen since the value of V is non-increasing along trajectories.

Stability and region of attraction computation (Section 6). Suppose once again that we have
a differential equation ẋ = f(x) with origin as an equilibrium point (i.e., satisfying f(0) = 0). In
numerous applications in control and robotics, one would like to make sure that deviations from an
equilibrium point tend back to the equilibrium point. This is the notion of asymptotic stability. A
particularly important problem in this area is the so-called “region of attraction (ROA) problem”: For
what set of initial conditions in Rn do trajectories flow to the origin? This question can be addressed
with Lyapunov theory. In fact, Lyapunov’s stability theorem (see, e.g., [23, Chap. 4]) tells us that if
we can find a (Lyapunov) function V : Rn → R, which together with its gradient ∇V satisfies

V (x) > 0 ∀x 6= 0, and V̇ (x) = 〈∇V (x), f(x)〉 < 0 ∀x ∈ {x| V (x) ≤ β, x 6= 0}, (6)

4Indeed each set Bi is compact and the entire environment can be placed in a ball of some prescribed radius R. This
quadratic constraint can be added to the description of each Bi to satisfy the Archimedean property.
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then the sublevel set {x| V (x) ≤ β} is part of the region of attraction. Notice again that if f is a
polynomial function (an immensely important case in applications [3, Chap. 4]), and if we parameterize
V as a polynomial function, then the search for the coefficients of V satisfying the conditions in (6) is
an optimization problem over the set of nonnegative polynomials.

5 Real-time Planning with Barrier Functions

X

Y

ψ

Figure 3: An illustration of the states of the UAV model we consider.

One promising application domain for polynomial optimization in transportation is for real-time plan-
ning and control on autonomous vehicles. In this example, we consider such an application for a simple
model of an unmanned aerial vehicle (UAV) navigating through a cluttered two dimensional environ-
ment. In order to make the navigation task more realistic, we also consider a bounded but uncertain
“cross-wind” term in the dynamics. This results in an uncertain differential equation and requires rea-
soning about families of trajectories that the system could end up following, making the problem more
challenging. The states and dynamics of the UAV are inspired by the widely-used Dubins car model
[18] and are given by:

x =

 x
y
ψ

 , ẋ = f(x,u,w) =

 ẋ
ẏ

ψ̇

 =

 −v sinψ + w
v cosψ
u

 , (7)

where x and y are the x and y positions of the UAV in the environment, v = 1 m/s is the speed of
the airplane, ψ is the yaw angle, u is the control input and w is the “cross-wind” (bounded between
[−0.05, 0.05]). An illustration of the states of the model are given in Figure 3. We Taylor expand these
dynamics to degree 3 to obtain polynomial dynamics in order to use DSOS/SDSOS/SOS programming.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y

 

 

Barrier level set

Obstacles

Safe Unsafe

Figure 4: A barrier function computed for a particular initial state and obstacle configuration. The
UAV is guaranteed to remain safe when the controller is executed despite the effects of the cross-wind.
The green curve is a level set of a degree-4 polynomial found by SDSOS optimization.
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(a) Environment 1 (b) Environment 2 (c) Environment 3

(d) Environment 4 (e) Environment 5 (f) Environment 6

Figure 5: UAV successfully navigating through different obstacle environments using the planning algo-
rithm described in Section 5. A video of the navigation can be found at http://youtu.be/J3a6v0tlsD4.
This video also shows the barrier certificates (not shown here) as they get updated in real time.

Our goal is to make the UAV navigate through cluttered environments that are unknown pre-runtime
while avoiding collisions with the obstacles in the environment despite the effects of the cross-wind on
the vehicle dynamics. In order to achieve this, we pre-compute five control primitives that the UAV
can choose from at runtime. These controllers take the form:

ui(x) = −K(ψ − ψdes,i), i = 1, . . . , 5. (8)

These control primitives cause the UAV to control its yaw angle to a particular angle (ψdes,i). We
choose K = 50 and ψdes,1 = 0 rad, ψdes,2 = −20π/180 rad, ψdes,3 = 20π/180 rad, ψdes,4 = −45π/180
rad, ψdes,5 = 45π/180 rad.

The UAV’s task is to choose from these control primitives in order to navigate its way through the
environment. After executing a particular chosen primitive for a short interval of time (1/20 seconds
in our case), the UAV replans by choosing a control primitive again. Hence, the key decision that our
planning algorithm needs to make is the choice of control primitive given a particular configuration
of obstacles in its environment. We take our inspiration from [8], which uses barrier certificates for
verifying the safety of a controller given a particular set of obstacles (but does not consider the case
where obstacle positions are not known beforehand and decisions must be made in real time). Similarly,
other previous SOS programming approaches [27] to collision avoidance have involved solving SOS
programs offline and then using these precomputed results to do planning in real time. In contrast, in
our example here, the optimization problems are solved in real-time. We describe our approach below.

At every control iteration, we identify the closest two obstacles in the environment in front of the
UAV. We then evaluate each control primitive ui and check if executing it from our current state will
result in the UAV avoiding collision with the obstacles. The first safe controller found is executed. The
safety of a controller can be checked by computing barrier functions using the polynomial optimization
approaches described in Section 2. Denoting the current state as x0 = (x0, y0, ψ0) and the obstacle sets
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as Xobs,1 ⊂ R2 and Xobs,2 ⊂ R2, we use polynomial optimization to search for a function V (x) of degree
4 that satisfies the following conditions:

V (x0) = 0, (9)

V (x) > 1, ∀(x, y) ∈ Xobs,i, i = 1, 2, (10)

V̇ (x, w) =
∂V

∂x
f(x, ui(x), w) < 0, ∀x ∈ X, ∀w ∈ [−0.05, 0.05]. (11)

Here, X is a “large” set that the system is guaranteed to remain within for the duration of time for which
the control primitive is executed. In particular, we choose it to be the unit sphere around the current
state. The conditions above imply that the state x is constrained to evolve within the 1-sublevel set
(in fact the 0-sublevel set) of the function V (x) and is thus guaranteed to not collide with the obstacles
despite the effects of the cross-wind.

Hence, at each control iteration we need to solve a maximum of 5 optimization problems, all of which
are independent and can be parallelized. In our example, we use SDSOS programming to compute
barrier functions and observe running times of approximately 0.02− 0.03 seconds for feasible problems
and 0.08− 0.09 seconds for infeasible problems (i.e., problems where no barrier function can be found)
using the Gurobi SOCP solver [1] (a more thorough running time analysis is presented later). Hence,
a real-time implementation of this approach on a hardware platform is plausible. Such a hardware
implementation can benefit from already-existing SOCP solvers that are specifically designed to run
on embedded systems [29], [28]. In particular, [17] presents an approach for generating stand-alone C
code for an SOCP solver that can run very efficiently and with low memory footprint. The use of such
real-time SOCP solvers has already been considered for tasks such as landing of spacecraft (e.g., for
NASA’s Mars exploration project) [12].

A particular example of a barrier function computed for the controller u1 is shown in Figure 4.
The obstacles are shown in red and the initial state of the UAV is also plotted. The 1-level set of the
computed barrier is plotted in green and certifies that the initial state is guaranteed to remain safe when
the controller is executed.

Figure 5 demonstrates the performance of the algorithm described above with SDSOS programming
used to compute barrier functions on a number of environments. Each subfigure shows a randomly cho-
sen environment (with obstacle positions chosen from the uniform distribution) with circular obstacles
that the UAV has to navigate. The trajectory traversed by the UAV following the described planning
algorithm is indicated in these plots and remains collision free in each case. Note that the original
(non-Taylor expanded) dynamics are used for the simulations.

We end the discussion of this example by comparing running times and performance of the SDSOS
and SOS approaches to this problem. In order to do this, we fix the initial state of the vehicle to
be (0, 0, ψ0) for varying values of ψ0. For each ψ0, we randomly sample 100 different environments
containing two obstacles each. The obstacles are disks of radius 0.03 m with centers (xc, yc) uniformly
sampled in the range xc ∈ [−0.2, 0.2] m, yc ∈ [0, 0.2] m. For each environment, we attempt to find
a valid barrier certificate for the first controller in our library (i.e., the one that servos the vehicle to
ψdes,1 = 0). The results are summarized in Table 1 which presents the number of environments (out of
100) for which a barrier certificate was successfully found using SDSOS and SOS programming. As the
table illustrates, the number of times SDSOS programming fails to find a barrier certificate when SOS
programming succeeds is quite small.

We also compare running times of the two approaches in Figure 6. We use the Gurobi SOCP solver
[1] for the SDSOS problems and SeDuMi [42] as the SDP solver for SOS problems. As the histograms
of running times illustrate, the SDSOS approach is significantly faster than the SOS approach. We note
that while the MOSEK SOCP/SDP solvers are typically faster, we were unable to make these work on
this problem due to numerical issues.
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ψ0 0◦ 10◦ 20◦ 30◦ 40◦

SDSOS 66 % 59 % 70 % 68 % 56 %
SOS 68 % 62 % 70 % 76 % 65 %

Table 1: Comparison of percentage of times a valid barrier certificate was found using SDSOS and
SOS programming for randomly sampled obstacle environments and initial yaw angles. (Only the ratio
between the two is meaningful here.)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

50

100

150

200

250

300

running time (s)

fre
qu

en
cy

 

 
SOS (SeDuMi)
SDSOS (Gurobi)

Figure 6: Histograms of running times for SOS and SDSOS approaches on the collision avoidance
problem.

6 Nonlinear Control Design for a Quadrotor Model

Quadrotors (see Figure 7) have recently been recognized as a popular platform for academic research
in systems theory due to their agile maneuvering capabilities and inexpensive cost [31, 20]. They have
also been considered for the task of load transportation, not only in laboratory settings [32]5, but also
by the aerospace companies Bell and Boeing and the online retail company Amazon6. In this section,
we consider the problem of designing a nonlinear stabilizing feedback controller for the quadrotor’s
hovering configuration, which is relevant to almost all of its applications. In addition to a stabilizing
controller, we also obtain a formal certificate of stability of the resulting system. This certificate takes
the form of an inner approximation of the region of attraction (ROA), i.e., the set of initial conditions
the controller is guaranteed to stabilize to the goal position.

Figure 7: We design a hovering controller for the quadrotor model described in [30]. (Image from [30].)

We use the dynamics model described in [30] for our numerical experiments. The model includes 16

5A video corresponding to the paper is available at https://www.youtube.com/watch?v=YBsJwapanWI
6https://www.youtube.com/watch?v=Le46ERPMlWU
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states:
x := [x1, y, z, φ, θ, ψ, ẋ, ẏ, ż, p, q, r, ω1, ω2, ω3, ω4],

where x1, y, z are the coordinates of the center of mass of the system, φ, θ, ψ are the Euler angles
describing its orientation, p, q, r are angular velocities of the quadrotor expressed in the body frame,
and ωi, i = 1, ..., 4, are the angular speed of the rotors. The rotor angular speeds cannot be controlled
directly and have nontrivial dynamics. The control inputs of the system are thus the desired speed of
the rotors (the rotors take some time to catch up to the desired speed).

In the end our system takes the form ẋ = f(x) + g(x)u(x) with f and g given and the control u as
a decision function. We use the method presented in our earlier work [25] in collaboration with Russ
Tedrake to design a hovering controller u for the system. The fixed point corresponding to the hovering
configuration has the first twelve states of the system equaling 0 but with non-zero rotor speeds ωi
counteracting the force of gravity. The dynamics of the system are Taylor expanded to degree 3 in
order to obtain polynomial dynamics. We search for a degree 2 Lyapunov function V (x) and a degree 3
feedback controller u(x) in order to maximize the size of the region of attraction (ROA) of the resulting
closed-loop system (i.e., the differential equation with u(x) plugged in). We use SDSOS programming
since the state space is too large for SOS programming to handle, causing our computer to run out of
memory. The resulting optimization problem is:

max
ρ,L(x),V (x),u(x)

ρ (12)

s.t. V (x) ∈ SDSOS16,2

−V̇ (x) + L(x)(V (x)− ρ) ∈ SDSOS16,6

L(x) ∈ SDSOS16,4∑
j

V (ej) = 1.

Here, L(x) is a nonnegative multiplier term and ej is the j-th standard basis vector for the state
space R16. From our discussion in Section 4, it is easy to see that the above conditions are sufficient
for establishing Bρ = {x ∈ R16 | V (x) ≤ ρ} as an inner estimate of the region of attraction for the
system. When x ∈ Bρ, the second constraint implies that V̇ (x) < 0 (since L(x) is constrained to be
nonnegative). The last constraint normalizes V (x) so that maximizing the level set value ρ leads to
enlarging the volume of the ROA.

The optimization problem (12) is not convex in general since it involves conditions that are bilinear
in the decision variables. However, problems of this nature are common in the SOS programming
literature (see e.g. [21]) and are typically solved by iteratively optimizing groups of decision variables.
Each step in the iteration is then a SDSOS program. This iterative procedure is described in more detail
in [25] and can be initialized with the Lyapunov function from a Linear Quadratic Regulator (LQR)
controller [7]. The iterations are terminated when the objective changes by less than 1 percent.
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Figure 8: Slices in different subspaces of the hovering ROA of the quadrotor system.
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An important observation is that unlike the sets POSn,d and SOSn,d, the sets DSOSn,d and
SDSOSn,d are not invariant to coordinate transformations, i.e., a polynomial p(Ax) is not necessarily
dsos (resp. sdsos) even if p(x) is dsos (resp. sdsos). Thus, performing coordinate transformations on
the problem data (e.g., on the state variables of a dynamical system) can sometimes have an important
effect. We describe a particular coordinate transformation that is intuitive and straightforward to imple-
ment. It can be used for problems involving the search for Lyapunov functions, and can potentially be
extended to other problems as well. In particular, given a Lyapunov function V (x) we find an invertible
affine transformation that simultaneously diagonalizes the Hessians of V (x) and −V̇ (x) evaluated at the
origin (this is always possible for two positive definite matrices). The intuition behind the coordinate
change is that the functions V (x) and −V̇ (x) locally resemble functions of the form xTDx (with D
diagonal), which are dsos polynomials that are “far away” from the boundary of the DSOS (and hence
SDSOS) cone. We solve the optimization problem (12) after performing this coordinate transformation.
The transformation is then inverted to obtain ROAs in the original coordinate frame.

Figure 9: A sampling of five initial conditions that are stabilized by our controller. The goal position is
shown in green, the stabilized initial conditions in red, and the intermediate trajectories in blue.

Each iteration of the algorithm employed for solving the optimization problem (12) takes approxi-
mately 15 minutes, with convergence occurring between 15 and 20 iterations. Figure 8 shows slices of
the computed ROA in multiple subspaces of the state space. As the plot illustrates, we are able to verify
stability of the closed loop system for a large set of initial conditions. A qualitative demonstration of
the performance of the controller is given in Figure 9. The system is started off from five different initial
conditions (shown in red) and our nonlinear hovering controller is applied. The resulting trajectory is
shown in blue. In each case the quadrotor is able to stabilize itself to the goal configuration (green).

7 Conclusions

In this paper, we demonstrated three applications of optimization problems over the set of nonnegative
polynomials that may be of interest in operations research and transportation engineering. We hope
to have conveyed the message that the problem of certifying polynomial inequalities appears in more
diverse areas than one might think. There are powerful tools for approaching this problem based on
the sum of squares relaxation and semidefinite programming. We believe that our recently introduced
techniques of DSOS and SDSOS optimization, which are LP and SOCP-based alternatives to sum of
squares programming, can pave the way to new applications of algebraic techniques in optimization—in
particular, applications that are large-scale or real-time.
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