
DULOV 06-ch02-009-018-9780123877796 2011/5/27 10:40 Page 19 #11

This page intentionally left blank



AAMOP 01-fm-i-iv-9780123855084 2011/9/26 12:26 Page 1 #1

Advances in

ATOMIC, MOLECULAR, AND OPTICAL PHYSICS

VOLUME 60



AAMOP 01-fm-i-iv-9780123855084 2011/9/26 12:26 Page 2 #2

Editors

Ennio Arimondo
University of Pisa
Pisa, Italy

Paul R. Berman
University of Michigan
Ann Arbor, Michigan

Chun C. Lin
University of Wisconsin
Madison, Wisconsin

Editorial Board

P.H. Bucksbaum
SLAC
Menlo Park, California

M.R. Flannery
Georgia Tech
Atlanta, Georgia

C. Joachain
Universite Libre de Bruxelles
Brussels, Belgium

J.T.M. Walraven
University of Amsterdam
Amsterdam, The Netherlands



AAMOP 01-fm-i-iv-9780123855084 2011/9/27 11:28 Page 3 #3

ADVANCES IN

ATOMIC,
MOLECULAR,
AND OPTICAL
PHYSICS
Edited by

E. Arimondo
PHYSICS DEPARTMENT

UNIVERSITY OF PISA

PISA, ITALY

P. R. Berman
PHYSICS DEPARTMENT,

UNIVERSITY OF MICHIGAN

ANN ARBOR, MI, USA

C. C. Lin
DEPARTMENT OF PHYSICS,

UNIVERSITY OF WISCONSIN,

MADISON, WI, USA

Volume 60

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK
OXFORD • PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE

SYDNEY • TOKYO

Academic Press is an imprint of Elsevier



AAMOP 01-fm-i-iv-9780123855084 2011/9/27 11:34 Page 4 #4

Academic Press is an imprint of Elsevier
525 B Street, Suite 1900, San Diego, CA 92101-4495, USA
225 Wyman Street, Waltham, MA 02451, USA
32 Jamestown Road, London NW1 7BY, UK

First edition 2011

Copyright c© 2011 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333;
email: permissions@elsevier.com. Alternatively you can submit your request online
by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and
selecting: Obtaining permission to use Elsevier material.

Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons or property as
a matter of products liability, negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein. Because of rapid advances in the
medical sciences, in particular, independent verification of diagnoses and drug dosages should be
made.

ISBN: 978-0-12-385508-4

ISSN: 1049-250X

For information on all Academic Press publications
visit our web site at www.elsevierdirect.com

Printed and bound in USA

11 12 13 14 10 9 8 7 6 5 4 3 2 1

mailto:permissions@elsevier.com
http://elsevier.com/locate/permissions
www.elsevierdirect.com


AAMOP 02-toc-v-viii-9780123855084 2011/9/27 12:03 Page v #1

Contents

Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. The Use of the Magnetic Angle Changer in Atomic and
Molecular Physics 1

George C. King

1. Introduction and Background . . . . . . . . . . . . . . . . . . 2
2. Principles of Operation of the MAC and Practical Realizations

of it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3. Elastic Electron Scattering and Vibrational Excitation . . . . . . . . 17
4. Inelastic Electron Scattering . . . . . . . . . . . . . . . . . . . 31
5. Resonances in Electron Impact Excitation of Atoms

and Molecules . . . . . . . . . . . . . . . . . . . . . . . . . 37
6. Coincidence Studies in Electron Impact Excitation and

Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7. Photoelectron Spectroscopy . . . . . . . . . . . . . . . . . . . 53
8. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 58

References . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2. X-ray Methods in High-Intensity Discharges and
Metal-Halide Lamps: X-ray Induced Fluorescence 65

John J. Curry, Walter P. Lapatovich, and Albert Henins

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2. High-Intensity Discharges and Metal-Halide Lamps . . . . . . . . 68
3. Why X-ray Methods? . . . . . . . . . . . . . . . . . . . . . . 75
4. Interaction of X-rays with Atoms . . . . . . . . . . . . . . . . . 77
5. X-ray Induced Fluorescence Spectroscopy (XRIF) . . . . . . . . . 85
6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

v



AAMOP 02-toc-v-viii-9780123855084 2011/9/26 12:29 Page vi #2

vi Contents

3. Time-Domain Interferometry with Laser-Cooled Atoms 119

B. Barrett, I. Chan, C. Mok, A. Carew, I. Yavin, A. Kumarakrishnan,
S. B. Cahn, and T. Sleator

1. Introduction and Description of Two-Pulse Standing Wave
Interferometer . . . . . . . . . . . . . . . . . . . . . . . . . 121

2. Time-Domain Atom Interferometer Experiments—Atomic Recoil . . 129
3. Lattice Interferometry . . . . . . . . . . . . . . . . . . . . . . 151
4. Frequency-Domain AI Experiments . . . . . . . . . . . . . . . 159
5. Time-Domain AI Experiments—Gravity . . . . . . . . . . . . . 165
6. Internal State Labeled Interferometer . . . . . . . . . . . . . . . 171
7. Coherent Transient Effects . . . . . . . . . . . . . . . . . . . . 180
8. Superfluorescence in Cold Atoms . . . . . . . . . . . . . . . . . 186

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 193
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

4. Interaction between Atomic Ensembles and Optical
Resonators: Classical Description 201

Haruka Tanji-Suzuki, Ian D. Leroux, Monika H. Schleier-Smith, Marko
Cetina, Andrew T. Grier, Jonathan Simon, and Vladan Vuletić
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PREFACE

Volume 60 of the Advances Series contains ten contributions, covering a
diversity of subject areas in atomic, molecular, and optical physics.

Measurements of the full angular variation of electron scattering cross
sections are of great importance in understanding electron-atom inter-
actions. The conventional experimental method using electrostatic hemi-
spherical analyzers has only a limited range, typically up to 135◦, making
it very difficult to obtain reliable data on backward scattering. This prob-
lem, however, has been circumvented with the use of magnetic angle
changers developed by researchers at University of Manchester. A local-
ized magnetic field in the scattering region is introduced to deflect the
electrons in a controlled way. This results in a shift of the effective angu-
lar range of the conventional spectrometer by a fixed amount so that the
previously inaccessible region of 135◦–180◦ is shifted into a lower angle
range. George King discusses the principles of operation of this novel
device, along with examples that illustrate how it can be used for coin-
cidence measurements of electron-impact excitation and ionization and
for photoelectron studies.

Although laser-induced fluorescence has long been a powerful tool
for detecting atomic species, only in the last decade has x-ray-induced
fluorescence emerged as a tool for diagnostic studies of commercial high-
intensity discharge lamps. As an introduction to industrial lamp technol-
ogy, John Curry, Walter Lapatovich, and Albert Henins present a brief
account of the operation of metal-halide lamps, where the metal compo-
nent includes alkali and rare-earth metals. The use of x-ray, rather than
other light sources, is necessitated by the nature of the lamps and the
impediments to the traditional optical techniques raised by the physical
size and construction of commercial lamps. The x-rays probe inner-shell
electrons and give number densities of specific nuclei, which are particu-
larly useful for monitoring metal additives. Included in the discussion are
a number of diagnostic studies that exemplify the connections between
advanced developments in atomic physics and industry.

In their chapter, Brynle Barrett, Iain Chan, Carson Mok, Adam Carew,
Itay Yavin, A. Kumarakrishnan, Sidney Cahn, and Tycho Sleator present
an overview of time-domain atom interferometry. By applying two or
more off-resonant, standing-wave fields to a cold atomic vapor and
monitoring the atomic response, they obtain a signal that is analogous

xiii
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to one that is obtained in optical interferometry using phase gratings.
Alternatively, they can release atoms from an optical lattice to simulate
an amplitude grating. The theory of a time-domain atom interferometer
is developed, and it is shown how the signal can be used as a sensitive
measure of such quantities as the atomic recoil frequency, the acceleration
of gravity, and rotation rates. The dependence of the interferometric sig-
nal on magnetic fields, spontaneous emission, and laser beam profile is
modeled theoretically and studied experimentally.

Haruka Tanji-Suzuki, Ian Leroux, Monika Schleier-Smith, Marko
Cetina, Andrew Grier, Jonathan Simon, and Vladan Vuletić discuss the
problem of coupling between an applied optical field, an atom or an
ensemble of atoms in a cavity, and the cavity field. In a novel approach,
all fields are considered classical and the atoms are modeled as classical
dipole oscillators. They show that results obtained in a quantized cavity
field, quantized atom approach, are reproduced in this classical descrip-
tion. In other words, phenomena such as mode “vacuum Rabi splitting,”
cavity cooling, cavity spin squeezing, and electromagnetic-induced trans-
parency can be explained within the context of the classical model. The
applied optical field can be directed either perpendicular to or aligned
with the cavity field. A key parameter in the analysis is the so-called
cooperativity parameter that characterizes the atom-field interaction.

Philip Bucksbaum, Ryan Coffee, and Nora Berrah report on the first
experiments at the Stanford Linac Coherent Light Source (SLCLS), an
ultrafast x-ray source at the Stanford Linear Accelerator (SLAC). The
various properties of the SLCLS beam are described and potential appli-
cations to atomic, chemical, and biological studies are examined. The
theory of ionization of atoms in strong pulsed x-ray fields is reviewed,
and the roles played by core-level photoionization, Auger relaxation, and
valence photoionization are described. Experimental results on the mul-
tiple photoionization of neon are presented that provide evidence for
nonsequential multiphoton ionization. Intense x-ray-induced ionization
and dissociation of molecular nitrogen is also studied. The first optical
pump, x-ray probe time-resolved experiments at SLCLS were also carried
out using molecular nitrogen as the target. The chapter concludes with
some exciting prospects for future work at SLCLS.

In recent years, photonic entangled states have received a great deal of
attention for both fundamental tests of quantum mechanics and applica-
tions to quantum information and quantum communication. The entan-
glement of two particles involving more than one degree of freedom,
namely their hyperentanglement, allows for an expanded use of the pos-
sibilities offered by quantum mechanics. Giuseppe Vallone and Paolo
Mataloni survey the most relevant experimental and theoretical inves-
tigations of hyperentangled multiqubit photon states based on the use
of different degrees of freedom of the photon. Applications to quantum
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nonlocality tests, Bell state analysis, dense coding and quantum computa-
tion are reviewed. The principle advantage of using hyperentangled states
is the ability to engineer and detect multiqubit, very high-purity entangled
states at a relatively high rate

The kicked rotor, a model system in the study of chaos, is physically
embodied by a Gedankenexperiment in which a rigid pendulum experi-
ences momentum “kicks” resulting from a periodic train of delta-function
gravitational pulses and evolves freely between those pulses. Given its
status as a paradigm system, it is natural that studies of the quantum
dynamics of chaotic systems have focused heavily on the quantized stan-
dard map or, equivalently, the quantum kicked rotor. The kicked rotor
was realized experimentally using cold noninteracting atoms exposed
to a pulsed optical standing wave. The application of effective delta-
like kicks created a very good experimental realization of the standard
map. Mark Sadgrove and Sandro Wimberger review both theoretical and
experimental advances in the atom-optics kicked rotor problem. The the-
ory concentrates on the concept and applications of a pseudoclassical
approximation to the resonant dynamics of an atom kicked by a pulsed,
periodic potential. This powerful method allows them to derive analyti-
cal results in the deep quantum limit of the kicked rotor. The method is
applied to interpret atom-optics kicked rotor experiments in which there
are well-controlled driving forces

Recent progress in attosecond technology has resulted in an increas-
ing interest in the application of attosecond pulses as a probe of atomic,
molecular and solid state physics. In addition, novel techniques have been
introduced for the generation of subfemtosecond pulses and their appli-
cations. Francesca Calegari, Federico Ferrari, Matteo Lucchini, Matteo
Negro, Caterina Vozzi, Salvatore Stagira, Giuseppe Sansone, and Mauro
Nisoli report on recent advances in attosecond science, with particu-
lar emphasis on the generation and use of isolated attosecond pulses
produced using high-order harmonic generation in gases. The authors
analyze various temporal gating techniques that allow the harmonic
generation process to be fully implemented using a single pulse. In addi-
tion, the principle applications of isolated attosecond pulses to atomic,
molecular and solid state physics are presented.

Atomic clocks based on the ultranarrow intercombination optical tran-
sitions in divalent atoms offer the potential to achieve a new level of time-
keeping accuracy and stability. Compared with microwave atomic clocks,
such as the present-day cesium frequency standard, the optical clocks
have an advantage of much higher frequency and resonance quality fac-
tors. Andrei Derevianko and Sergey Porsev present a rigorous formalism
for evaluating various atomic-structure parameters affecting performance
and ultimate accuracy of optical lattice-based atomic clocks. They eval-
uate a number of important parameters, such as the hyperfine-induced
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width of the clock transition, the static polarizabilities, the multipolar and
vector dynamic polarizabilities, the “magic” trapping wavelengths, the
hyperfine-induced g-factors, and the blackbody radiation shifts. Accu-
rate numerical calculations of these parameters are carried out for several
divalent atoms presently under investigation, with a particular emphasis
on the ytterbium clock.

Confinement-induced resonances arise when particle scattering takes
place in the presence of an external potential that spatially confines the
motion of the particles. These resonances are obtained in the limit that
the scattering cross section reaches the unitary limit which can occur for
some combination of the scattering energy, the confining potential, and the
interatomic potential. Although those resonances properly belong to the
physics of two-particle scattering, they were discovered and investigated
within the context of many-body physics of ultracold atomic gases. Vanja
Dunjko, Michael Moore, Thomas Bergeman, and Maxim Olshanii review
the types of confinement-induced resonances that have been studied the-
oretically and experimentally. In addition they provide details on one
paradigmatic case of resonance.

The Editors would like to thank all the contributing authors for their
contributions and for their cooperation in assembling this volume. They
would also like to express their appreciation to Ms. Gayathri Venkatasamy
at Elsevier for her invaluable assistance.
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Abstract The magnetic angle changer (MAC) is a system of solenoids
that produces a localized and shaped magnetic field, which
can change the direction of an electron beam in a controlled
way. When it is used in conjunction with a conventional elec-
tron spectrometer employing hemispherical deflector analyz-
ers, it can extend the angular range of the spectrometer. In
particular, it enables the spectrometer to view the complete
back-scattering hemisphere up to and including scattering
angles of 180◦. The principles of operation of the MAC are
described, and practical examples of it are presented. The
use of the MAC is described in measurements of differential
cross sections in elastic and inelastic electron scattering in
atoms and molecules, including the observation of resonance
structures in these cross sections. Applications of the MAC to
coincidence measurements of electron impact excitation and
ionization and to photoelectron studies are also described.
Comparisons of experimental measurements with theoretical
predictions are presented where applicable.

1. INTRODUCTION AND BACKGROUND

1.1 Introduction

There is a wide range of experiments in atomic and molecular physics in
which the angular behavior of charged particles is investigated. In partic-
ular, this includes collision studies using electron impact excitation. Exam-
ples are measurements of elastic and inelastic differential scattering cross
sections, studies of negative ion resonances (Buckman and Clark, 1994;
Schulz, 1973a,b) and correlation studies involving (e, 2e) and electron–
photon coincidence measurements (Andersen et al., 1988; McCarthy &
Weigold, 1995). In addition, photoionization studies often involve the
measurement of the angular behavior of ejected photoelectrons (Becker &
Shirley, 1996). In order to obtain the maximum information from an exper-
iment, it is invariably necessary to investigate the full angular range of
the reaction products. For example, in measurements of angle-differential
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cross sections, it is advantageous to detect the scattered electrons over
the full angular range from 0◦ to 180◦, so that total and momentum
transfer cross sections can be determined: the data that are required for
technological, atmospheric, and plasma applications. And of course, the
complete angular range is required for full comparison with theory. How-
ever, the angular range of experimental measurements is often limited by
the mechanical constraints of the apparatus. Very large scattering angles
are not accessible to instruments using electrostatic hemispherical analyz-
ers, the largest angles being typically 135◦: scattering angles approaching
180◦ are inaccessible because the analyzer bumps into the monochroma-
tor. (In addition, although small angles are mechanically available, angles
close to 0◦ are difficult because the unscattered electron beam enters the
analyzer causing large spurious background signals.) Theory, of course,
does not suffer from these physical constraints, and many important and
interesting effects are predicted for electron scattering processes in the
backward hemisphere. It is here, for example, that exchange and spin
orbit effects may be especially important for small-parameter collisions.
This region should therefore provide particularly sensitive tests of the-
ory and so it is extremely valuable to have experimental access to the
backward scattering hemisphere for detailed comparison. There are some
experimental techniques that provide limited access to the backward scat-
tering hemisphere as described in section 1.2. However, their angular
ranges are limited and are generally confined to a scattering angle of
180◦: they do not provide continuous access across the whole backward
hemisphere. The magnetic angle changer (MAC) has changed all this and
does allow continuous access, without gaps, to the full angular range in
the backward hemisphere. The way it achieves this and how it has been
employed in various experimental studies are described in this chapter.
The MAC was invented and initially developed by Read and King and
their collaborators at the University of Manchester (Zubek et al., 1996;
Read & Channing, 1996). It first arose from the measurement of elastic
differential cross sections and the need to extend the measurements conti-
nuously to 180◦.

The MAC works by the application of a localized magnetic field at
the scattering region of a conventional electron spectrometer. This mag-
netic field is produced by a system of solenoids (coils), and it deflects
the electrons in a controlled way. Briefly, the two main principles of the
MAC are as follows. First, the magnetic field produced by the system of
solenoids is highly localized so that it does not disturb the operation of
the electron spectrometer in which the MAC is housed. This is achieved
by cancelling the overall dipole moment of the system of solenoids so that
the magnetic field falls off as at large distances r as r−5. (Higher-order
magnetic moments can also be cancelled, depending on the number of
solenoids and the geometry of the solenoid system). Second, the system
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of solenoids is axially symmetric, so that the axial component of the gen-
eralized momentum of an electron in the magnetic field is a conserved
quantity. This component is zero at the axis of the solenoid system, and
it is zero in the field-free region far away from the axis for electrons that
are initially directed toward the axis. Consequently, any such electrons
change direction in the magnetic field but still pass through the axis of
the solenoid system, where the interaction region is located. Similarly,
electrons that originate from the interaction region move radially away
from it once they reach the field-free region. The operation of the MAC is
described in more detail in section 2.

1.2 Alternative Techniques for Accessing the Backward
Hemisphere in Electron Scattering

As noted above, conventional electron spectrometers based on hemispher-
ical deflector analyzers have a limited angular range of detection. To
gain access to larger scattering angles, and in particular to the case of
electron scattering through 180◦, several experimental techniques have
been developed. These techniques are usually based on the trochoidal
monochromator of Stamatovic and Schultz (1970). In this device, an elec-
tron beam is collimated by an axial magnetic field and is passed through
a region containing an electric field that is perpendicular to the electron
beam direction and the magnetic field. The combined electric and mag-
netic fields cause the electrons to drift in a direction at right angles to their
axial velocity and if a small aperture is placed at the exit of the region, an
energy selected beam is obtained. This beam can then be used for colli-
sion studies. A characteristic of the motion of the electrons in the crossed
electric and magnetic fields is that the drift direction is independent of the
direction of the axial motion. Thus, a second small aperture can be placed
in the backward direction in the monochromator to pass electrons back-
scattered into the monochromator through 180◦ and separate them from
the primary beam (Burrow & Sanche, 1972). It may be noted that the angu-
lar acceptance of the device for backward scattering is strongly dependent
on the energy of the electrons. Using a magnetically collimated elec-
tron impact spectrometer, Asmis and Allan (1997) have described a novel
scheme for the measurement of inelastic differential cross sections (DCS)
at 180◦. In this instrument, the backward scattered electrons are reflected
into the forward direction by a potential barrier and enter the energy
analyzer located at 0◦. Pulsed incident electron beam and time of flight
detection are used to differentiate the backward and forward scattered
electrons. The instrument yields the ratio of the forward and backward
DCS. These data are then normalized to the absolute DCS at 0◦, measured
with a conventional spectrometer to yield the DCS at 180◦. Greenwood
et al. (1995a,b) have described a technique for measuring partial cross
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sections integrated over the angular range 90◦ to 180◦ in elastic scatter-
ing from Ar+. Their technique is again based on a trochoidal analyzer.
This analyzer is operated at a high pass energy in a nondispersive mode,
so that back-scattered electrons with axial velocities from almost zero up
to the full collision energy are transmitted with no attenuation and are
detected. The yield of detected electrons therefore corresponds to a partial
cross section, integrated over the backward scattering hemisphere.

None of the above techniques, however, enables angular differential
measurements to be made over the whole of the backward scattering
hemisphere. The MAC does so by using its localized magnetic field to
shift the effective angular range of a conventional spectrometer by a fixed
amount, for example by 70◦. The angular defining characteristics of the
spectrometer and also the mechanical means of varying the measured
angle are preserved but the entire range is shifted magnetically, in this
case from say −10◦ to 135◦ to the range 60◦ to 205◦, so that the mechanical
constraints of the apparatus are overcome.

1.3 Applicability of the Magnetic Angle Changer (MAC)

The MAC is universally applicable to both elastic and inelastic electron
(and positron) scattering. However, the small magnetic deflection pro-
duced for the much heavier atomic and molecular ions makes the MAC
of limited practical use for ion experiments. So far it has been used for
studies of elastic, inelastic, and superelastic electron scattering, resonances
in electron scattering, for (e, 2e) experiments, and also for photoelectron
spectroscopy. For a given magnetic field distribution, the deflection θ of an
electron depends on the strength of the magnetic field B and the energy E
of the electron as

θ ∝
B
√

E
. (1)

The magnetic deflection required in the MAC technique is of the order
of tens of degrees. The value of B that can be produced using turns of
wire in a vacuum system is limited by heat dissipation, and this has lim-
ited most applications to electron energies less than about 100 eV. At the
other extreme, the MAC has been used successfully with electron ener-
gies as low as ∼100 meV. One way to increase the magnetic field, without
recourse to larger solenoid currents, is to use iron-cored solenoids. Cubric
et al. (2000), for example, have done this and were able to increase the
value of B by a factor of 5 compared to a solenoid system without an iron
core. This increases the range of electron energy by a factor of 25: poten-
tially to the keV range. An important feature of the MAC is that it can be
fitted to an existing electron spectrometer. It is compact in size, typically
∼25 mm in diameter and length. Moreover, the magnetic field produced



AAMOP 05-ch01-001-064-9780123855084 2011/9/27 10:00 Page 6 #6

6 George C. King

by the MAC is well confined: the field drops to a negligible value within
a radial distance of a few tens of mm ensuring that it does not adversely
effect the operation of the electron spectrometer.

2. PRINCIPLES OF OPERATION OF THE MAC AND
PRACTICAL REALIZATIONS OF IT

2.1 Principles of Operation of the MAC

Here are described the basic principles of the MAC: the localization of
its magnetic field and its action on an electron beam. The production
and properties of an unscreened but localized magnetic field have been
described by Read and Channing (1996). The basic arrangement of the
MAC is illustrated schematically in Figure 1. It consists of four coax-
ial solenoids that are arranged as two pairs, namely an inner and an
outer pair, of radii R1 and R2, respectively. The two members of each
pair are separated by a narrow gap, which allows passage of the elec-
tron beam. The electron scattering plane is perpendicular to the central
axis of the solenoids, the z-axis in Figure 1, and passes through the centre
of the gap. The first important feature of the MAC is that the mag-
netic field it produces is localized so that it does not disturb the action
of the electrostatic devices that are used for energy selection or analy-
sis. (In the operation of such devices, precautions are usually taken to
ensure residual magnetic fields in their vicinity are kept to a value below
about 5× 10−4 mT.) This condition is accomplished by making the overall
magnetic dipole moment of the solenoid system equal to zero. Because the

z

Gap

R2

R1

I2

rI1

Figure 1 Basic arrangement of the MAC, consisting of two pairs of coaxial solenoids
of radii R1 and R2, respectively, separated by a narrow gap to allow passage of the
electron beams. The scattering plane of the electrons is perpendicular to the central
axis of the MAC and passes through the middle of the gap.



AAMOP 05-ch01-001-064-9780123855084 2011/9/27 10:00 Page 7 #7

The Use of the Magnetic Angle Changer in Atomic and Molecular Physics 7

overall magnetic quadrupole moment of a system of cylindrical solenoids
is automatically zero, the magnetic field then falls off at large radial dis-
tances r as r−5. The magnetic dipole moment for a set of circular loops or
solenoids is zero when ∑

i

niIiR2
i = 0 (2)

where Ii is the current, Ri is the radius of the solenoid, ni is the number of
turns in the solenoid, and the subscript i labels the solenoids. The attain-
ment of a zero magnetic dipole moment can therefore be achieved with
two solenoids of different radii having the appropriate number of turns
and with currents flowing in opposite directions, as indicated in Figure 1.
The resultant magnetic field produced by the set of solenoids is cylindri-
cally symmetric about the axis of the solenoids and so is perpendicular
to the scattering plane of the electrons. These electrons are therefore
deflected by the magnetic field but remain in the scattering plane. Figure 2
illustrates the typical shape of the variation of the axial component Bz of
the magnetic field with radial distance that is obtained with a MAC. Bz has
a value of typically several mT at the axis, changes direction at a particular
point, and falls to a negligible value within a radial distance of a few tens
of mm.

The second important feature of the MAC is that an electron beam that
is initially directed toward the central axis of the system of solenoids still
passes through that axis after deflection by the magnetic field. Similarly,
electrons originating at the axis will move radially away from the axis
when in the external field-free region. The reason for this is that for an
axially symmetric field, the generalized momentum

πφ = mρ2φ̇ + eρAφ (3)

0 Radial distance, r
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Figure 2 The typical shape of the variation of the axial component Bz of the
magnetic field with radial distance r from the central axis of a MAC. Bz has a value of
typically several mT at the axis, changes direction at a particular point, and falls to a
negligible value within a radial distance of a few tens of mm.
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is a conserved quantity, where the magnetic vector potential is A(r) and
cylindrical polar coordinates, ρ, z, φ are used (Read & Channing, 1996).
Both terms on the right-hand side of this equation are zero for an electron
that starts or finishes by moving radially in a region of zero Aφ , i.e., in the
external field-free region, and both terms are zero on the axis of the MAC.
This action of the MAC for elastic scattering of electrons is illustrated in
Figure 3. The MAC is placed at the interaction region of an electron spec-
trometer, so that the interaction region is at the middle of the gap on the
axis of the MAC, and the scattering plane of the electrons is perpendicular
to it. The magnetic field deflects the incident electron beam by the angle
θ before it reaches the interaction region, as shown. Since the electrons
are elastically scattered, the outgoing electrons from the interaction region
are deflected by the same amount, so that the total deflection angle is 2θ .
From Figure 3, it is clear that electrons scattered in the backward direction,
through 180◦ in the example shown, would be accessible to an electron
energy analyzer. Moreover, the presence of the localized magnetic field
does not require any realignment of the electron source or analyzer. The
above example shows the situation for elastic scattering. The MAC can
also be used for inelastic electron scattering. Now the scattered electrons
will have less energy that the incident electrons and so their magnetic
deflection will be greater. However, this can be readily taken into account.

It is also possible to make a solenoid system that has a zero dipole
moment and also a zero octupole moment. In this case, the magnetic field

Unscattered electron
beam at 0°

Total deflection
angle = 2θ

Electrons scattered
through 180°

Incident electron
beam

θ

θ

Figure 3 The action of a MAC on elastically scattered electrons. The incident
electron beam and the scattered electrons are deflected through the same angle θ by
the magnetic field, since they have the same energy, giving a total deflection of 2θ .
This action enables an energy analyzer to view electrons scattered in the backward
hemisphere.
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falls of with radial distance as r−7, since the first nonzero magnetic moment
would then be the 32-dipole moment. The dipole and octupole moments
can both be made zero if there are three or more pairs of solenoids and if
the additional condition ∑

i

niIiR4
i = 0 (4)

is satisfied. A MAC using three solenoids has been described by, for exam-
ple, Zubek et al. (1999). Alternatively, the dipole and octupole moments
can both be made zero by having solenoids of different but appropri-
ate lengths (Read & Channing, 1996). A “conical” solenoid system based
on this approach has been described by Linert et al. (2004a,b). Read and
Channing also considered the general deflecting and focusing properties
and the associated aberrations of a particular system of solenoids. The
MAC has the effect of increasing the angular and spatial extent of the
transmitted electron beam. However, by careful design of the solenoids
and by not employing excessively large magnetic deflections, these effects
can be minimized.

The MAC can be operated in a variety of modes. In one mode, the
MAC is adjusted to give a particular value of total deflection angle, say
70◦. The electron energy analyzer is then mechanically rotated about the
target region in the normal way. If its angular range without the MAC is
−10◦ to 135◦, then with the MAC it would be 60◦ to 205◦. In a second mode
of operation, the electron energy analyzer is fixed in position at a particu-
lar angle, say 120◦, and the magnetic deflection produced by the MAC is
varied by suitably varying the solenoid currents. This is a useful mode for
computer control of the experiment. Both modes of operation have been
successfully employed.

2.2 Practical Examples of the MAC

2.2.1 Prototype Manchester Design

The first practical realization of the MAC, at Manchester, consisted of two
pairs of cylindrical solenoids. The magnetic properties of this solenoid
system were designed and optimized using the CPO-3D computer sim-
ulation program (Read & Bowring, 2010). The inner and outer solenoids
had diameters of 20 mm and 25 mm, respectively, and a length of 36 mm,
which allowed the MAC to fit into the interaction region of an existing
electron spectrometer. The gap between the two pairs of solenoids was
chosen to be 8 mm. This allowed passage of the electron beam without
striking the edges of the solenoids, minimizing spurious scattering from
these edges. It was also found useful to coat, with colloidal graphite,
those surfaces of the solenoids exposed to the electron beam. The solenoid
formers were made of aluminium, and the inner former was bored so that
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the nozzle for the target gas could be positioned along the solenoid axis.
Each of the solenoids consisted of 240 turns of silver-plated solid copper
wire of 0.25 mm diameter, with a PTFE coating for vacuum compatibility.
The successful operation of the Manchester prototype was demonstrated
by observing elastic electron scattering in argon over the angular range 30◦

to 180◦ for an incident energy of 10 eV, with a total deflection angle of 95◦

(Zubek et al., 1996). However, the strength of the magnetic field that could
be produced by the solenoids, and hence the ranges of deflection angle
and electron energy, was limited by heat dissipation in the solenoids in
the vacuum environment. This lead to the realization that it is possible to
make the solenoids shorter than their radius as the magnetic field in the
small gap between the coils is not increased significantly by making the
coils any longer. This in turn leads to a reduction in heat dissipation in
the solenoids.

Following the Manchester prototype, several different MAC designs
have been developed by various research groups. These designs offer var-
ious advantages including the following: reduced heat dissipation in the
solenoids permitting the use of higher electron energies, a zero magnetic
field at the axis of the MAC, a more rapid decrease in magnetic field with
radial distance, the use of iron pole pieces to increase the magnetic field,
and reduced surface areas in the MAC construction to minimize spurious
background contributions. Representative examples of these designs are
now presented.

2.2.2 High Transparency MAC

The construction of a MAC that is nearly optically transparent has been
described by Allan (2000). This is achieved by having the inner and
outer coils made of a single layer of thin copper tubing. This makes the
MAC highly transparent to the target gas emanating from the interaction
region, and particularly advantageous for supersonic expansion sources.
This MAC is illustrated in Figure 4. The four coils are wound from a
single piece of copper tubing of 0.63 mm outer diameter and 0.22 mm
inner diameter and are self-supporting. Cooling water is passed through
the copper tubing which permits a solenoid current of up to about 8 A.
This provides magnetic fields that are strong enough to measure elastic
scattering of 100 eV electrons at 180◦. The coils are insulated by a PTFE
tubing which is covered with colloidal graphite to provide a conductive
surface. The individual coils are designed so as to provide good compen-
sation of the magnetic field outside the structure with the same current
passing through both the inner and outer coils. The design of the current
and coolant leads is thus greatly simplified as is the arrangement of the
power supplies, which makes computer control of the MAC much more
convenient. The MAC is used in conjunction with a high-resolution elec-
tron spectrometer whose analyzer can be rotated up to an angle of 135◦.
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e− beamSolenoid current
and

coolant

20 mm

Figure 4 The high transparency MAC of Allan (2000). The four coils are wound from
a single piece of copper tubing and are self-supporting. Cooling water is passed
through the copper tubing, which permits a solenoid current of up to about 8 A. This
provides magnetic fields that are strong enough to measure elastic scattering of
100 eV electrons at 180◦. Reproduced from Allan (2000).

This means that a deflection of only 22.5◦ is required for the incident and
for the scattered electrons to measure elastic scattering at 180◦, reducing
any undesired focusing effects of the magnetic field. The dependence of
the deflection angle on the solenoid currents was determined empirically
by measuring the deflection angle of the unscattered electron beam using
a Faraday cup that could be rotated about the interaction region. This
empirical calibration was in good agreement with the prediction of the
numerical simulations of the CPO-3D program (Read & Bowring, 2010).
The first use of this MAC was to measure energy-differential and angle-
differential cross sections for the excitation of the 23S state in helium
from threshold to 24 eV. In the case of energy-differential cross sections,
the cross section is measured as a function of electron energy at fixed
scattering angles. For this mode of operation, the solenoid current is con-
tinuously adjusted under computer control during each scan so as to
keep the scattering angle constant as the incident and scattered electron
energies vary.

2.2.3 Iron-Cored System of Solenoids

One approach to increase the magnetic field of a MAC while still preserv-
ing field localization is to incorporate iron cores in the solenoids. This
approach was taken by Cubric et al. (2000). These authors started with
two pair of solenoids using the usual requirement to have a zero magnetic
dipole moment, Equation (2). Their approach to the iron-cored design was
more pragmatic but it was still expected that Equation (2) would pro-
vide an indication of the required solenoid currents. Figure 5 shows a
cross section through their iron-cored design. Only a quarter of the system
is shown for the sake of clarity. The material used was soft iron with a
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Iron

Solenoids

Gas beam

e−

Figure 5 The figure illustrates the iron-cored solenoid system described by Cubric
et al. (2000). Only one quarter of the solenoid system is shown for the sake of clarity.
The directions of the gas and electron beams are also shown. Reproduced from
Cubric et al. (2000).

magnetic permeability of approximately 1000. Cubric et al. calculated the
resultant magnetic field variation this pair of solenoids would have in the
absence of the iron core, using the analytic expression:

Bz(z, ρ, R, I) =
µoI
4π

2π∫
0

R2
− ρR cosφ

[ρ2 + z2 + R2 − 2ρR cosφ]3/2
dφ (5)

where R is the radius of a loop, and z and ρ are cylindrical coordinates rep-
resenting, respectively, the axial and radial distances to the centre of the
loop. The result for the iron-free system is presented as the dashed curve
in Figure 6. It shows the axial component Bz of the magnetic field across
the gap for the system using Equation (5) and summing over the separate
turns of the solenoid. This result has been multiplied by a factor of 5 with
respect to its actual strength. The positions of the two solenoids are rep-
resented at the top of Figure 6, and the directions of the electric currents
are indicated. Also shown on Figure 6 is the magnetic field obtained with
the complete system consisting of coils and iron cores. The positions of
the iron cores are shown at the top of the figure by grey rectangles. The
magnetic field in the gap was measured experimentally using a small
magnetometer probe. It can be seen that the variation of the magnetic field
with radial distance is similar for the two configurations. Essentially, the
use of the iron core multiplies the magnetic field by a factor of 5 while pre-
serving field localization. Since the curvature of the trajectory of a charged
particle of kinetic energy E depends on the magnetic field B it experiences
as B/

√
E, Equation (1), it follows that the iron-core system is capable of

handling electron energies 25 times larger than a similar system without
iron cores. This increases the maximum electron energy of the MAC to a
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Figure 6 The axial component Bz as a function of the radial distance from the
central axis of the iron-cored MAC described by Cubric et al. (2000). The dashed curve
shows the result using Equation (5) and summing over the separate turns of the
solenoid, in the absence of the iron cores. This result has been multiplied by a factor
of 5 with respect to its actual strength. Also shown is the actual magnetic field in the
gap, with the iron cores present. Essentially the use of the iron core multiplies the
magnetic field by a factor of 5 while preserving field localization. Grey and white
rectangles represent the iron cores and solenoid positions, respectively. Reproduced
from Cubric et al. (2000).

few keV, depending on the magnitude of the desired change in angle. The
performance of the iron-cored MAC was tested by making electron impact
excitation studies of the n = 2 states of helium, at an incident energy of
120 eV. The energy analyzer was kept at 90◦ with respect to the incident
electron beam direction, and appropriate currents were applied to the
solenoids to produce an angular deflection of ±90◦. These currents were
well below the 5 A limit imposed by the solenoids overheating.

Other authors have incorporated magnetic materials in their versions of
the MAC. Trantham et al. (1997) used high permeability pole pieces and
a unique coil arrangement to further minimize external stray magnetic
fields (see also Cho et al., 2000), while Cho et al. have also described a
MAC with iron cores for use in elastic scattering experiments, for example,
see Cho et al. (2003b).

2.2.4 Conical Solenoid Design

It was noted in section 2.1 that a system of solenoids of different lengths
also allows cancellation of the octupole moment of the magnetic field of
the system, and consequently a very rapid decrease of the magnetic field
with radial distance. In addition, it can provide a very open structure so
that the target gas can be efficiently pumped away from the interaction
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region. A MAC design with solenoids of a conical geometry has been
described and used by Linert et al. (2004a,b). This system is shown in
Figure 7. The inner and outer coils are indicated by full black and full grey
circles, respectively. Each inner solenoid contains six layers of turns with
four layers in each outer solenoid. The required ratio of currents in both
solenoids to obtain zero magnetic dipole moment of the system satisfies
the following relationship:

I1

6∑
i=1

niR2
i + I2

10∑
i=7

niR2
i = 0 (6)

where I1 and I2 are the currents flowing in the inner and outer solenoids,
respectively, ni the number of turns in the layer, and Ri its radius. The
arrangement used by Linert et al. used a value of the ratio of the currents
in the inner and outer coils of 1 : −0.327, with the two currents flowing in
opposite directions. The width of each layer (a2i–a1), see Figure 7, is related
to its radius Ri through the geometric condition

a2
1 + a1a2i + a2

2i =
3
4

R2
i (7)

a2i

a1

Ri

Electrons
6 mm 27 mm

Gas needle

36 mm

Figure 7 A MAC with a conical solenoid system (to scale). The inner and outer coils
are indicated by full black and full grey circles, respectively. Ri is the radius of the i-th
layer of turns. a1 and a2i are the distances of the turns from the plane of symmetry.
Reproduced from Linert et al. (2004a).
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(Read & Channing, 1996). Here, a1 gives the position of the first turn in all
layers with respect to the scattering plane and a2i is the position of the last
turn in layer i (see Figure 7). As noted previously, a MAC has the effect
of increasing the angular and spatial extent of the transmitted electron
beam, and the ratio of the number of layers in the inner to the outer coils
was adjusted to minimize these spreading effects. In this MAC design,
relatively low currents are required to obtain the required deflection at a
given energy. For example, a 70◦ deflection of electrons of 10 eV is achieved
with a current l1 = 0.83 A in the inner coils. The magnetic field reaches
0.1% of its maximum value at a radial distance of 40 mm. For an electron
energy E, the angle of deflection α in the magnetic field is given by

α = a arcsin
(

cI1
√

E

)
(8)

with a = 98.3◦ and c = 2.50 A−1. The deflection angle of an electron beam
of energy 10 eV as a function of inner solenoid current I1 was measured
empirically and is shown in Figure 8. The observed dependence, which
for small α is approximately linear agrees very well with the analytical
expression, Equation (8). It can be seen from Equation (8) that for a given
deflection angle, the magnetic field and therefore the currents in the coils
have to be scaled as the square root of the electron energy E. Equation (8)
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Figure 8 Magnetic deflection angle of an electron beam of energy 10 eV, measured
as a function of the inner solenoid current I1. The experimental points (full squares)
were fitted with the analytical expression, Equation (8). Reproduced from Linert et al.
(2004a).
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also shows how the deflection angle α depends on E for fixed solenoid
currents. This conical design has been adopted and successfully applied
by several research workers.

2.2.5 Multisolenoid Systems

One property of a MAC consisting of two pairs of solenoids is that a finite
magnetic field exists at the central axis of the device, cf. Figures 2 and 6.
This may be of no consequence and indeed, it may be usefully applied in
some circumstances: for example, to split atomic energy levels. However,
there are experiments where the presence of the magnetic field may have
important consequences. Murray et al. (2008) have presented theoretical
modeling of resonant laser excitation of atoms in a magnetic field, which
is relevant to the use of a MAC. A zero magnetic field at the axis of a MAC
can be achieved, while still maintaining a highly localized magnetic field,
by using three pairs of solenoids instead of two. Such a three-solenoid
system has been described by Zubek et al. (1999). The solenoids are each
15.3 mm long with a gap of 9 mm between the solenoids in each pair.
Each solenoid consists of four layers each of 16 turns of copper wire cov-
ered by PTFE insulation. The layers are tightly wound on aluminium
formers whose diameters are 5 mm for the inner solenoids, 14 mm for
the middle solenoids, and 23 mm for the outer solenoids. The currents
in the inner, middle, and outer solenoids are maintained in the ratios,
1.000 : −0.927 : 0.298, with the current in the middle solenoids being in
the opposite direction to those of the other solenoids. These currents sat-
isfy the requirements of a zero resultant magnetic field in the interaction
region and a zero overall magnetic dipole moment. This MAC was used
by Zubek et al. to study resonances in the rare gases. The solenoid currents
were set to produce an angular deflection of 35◦ for electrons of energy
11 eV. For this application, the incident energy was varied over a range of
typically less than 0.6 eV. Since the electron analyzer was held at a fixed
position and the solenoid currents were also held constant, changes in the
electron energy introduce an uncertainty in the scattering angle but this
uncertainty is only small, typically ±0.5◦. More recently, Klosowski et al.
(2007) have described a MAC design that has 10 pairs of coaxial coils of
specially designed shape. This design provides large angles of magnetic
deflection (up to 60◦ for 100 eV electrons), and a magnetic field in the scat-
tering region that is very close to zero. Moreover, the spatial profile of
the magnetic field introduces a relatively small divergence of the electron
beam, which does not significantly decrease the angular resolution of the
measurements. The MAC dissipates typically 25 W of power and so is
water cooled. Klosowski et al. have demonstrated the application of the
MAC to electron–photon coincidence experiments.
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3. ELASTIC ELECTRON SCATTERING AND VIBRATIONAL
EXCITATION

3.1 Elastic Electron Scattering in Atoms

3.1.1 Introduction

The most widely used application of the MAC has been to measure elas-
tic differential cross sections (DCS) in atoms and molecules. There already
existed a large body of both experimental and theoretical work devoted to
the study of elastic DCS, but the experimental work did not encompass the
full backward hemisphere. Interest in the backward region is motivated by
both fundamental scientific reasons and by practical applications of DCS
data. An exact knowledge of the differential cross section for electron scat-
tering over the complete scattering angle range from 0◦ to 180◦ is crucial to
the understanding of the dynamics of electron scattering from atoms and
molecules. This is particularly the case at low electron energies. In addi-
tion, elastic DCS over the full range of scattering angle are required to
obtain integral and momentum transfer cross sections, which are impor-
tant for the simulation of natural and technological plasmas. Previously,
measurements of DCS for electron elastic scattering had usually been per-
formed over a typical angular range of 10◦ to 135◦ although some workers
had achieved angles close to 160◦ (e.g., Panajotovic et al., 1997; Sweeny &
Shyn, 1996). The maximum angle is limited by the mechanical constraints
of the electron spectrometer, while close to 0◦, the elastically scattered elec-
trons cannot be separated from the unscattered electron beam. On the
other hand, DCS for elastic scattering are provided by theoretical calcu-
lations over the full range of scattering angle. These theoretical data have
been extensively used to extrapolate the experimental data over the miss-
ing angular gaps at low and high scattering angles to estimate integral and
momentum transfer cross sections. However, a comparison of calculated
DCS in the range of high scattering angles up to 180◦ shows that differ-
ent theoretical approaches may predict results that differ by a factor of up
to two. Moreover, it appears that various theoretical approaches usually
predict integral cross sections for elastic scattering that lie at or above the
upper limit of the range of values obtained in the measurements of total
cross sections. The MAC technique provides access to the backward hemi-
sphere and can fill the gap at the higher angles. However, it also cannot
separate the elastically scattered electron at 0◦ from the unscattered beam,
so that extrapolation of the data is still required at angles close to 0◦. The
first measurements of elastic DCS using the MAC were reported by Zubek
et al. (1996) for the case of argon. Since then several groups have adopted
the MAC technique to measure elastic DCS in the rare gases and in a range
of diatomic and polyatomic molecules. However, experimental results in
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the backward hemisphere are still rather scarce, especially at low incident
electron energies.

3.1.2 Apparatus and Experimental Methods

Elastic DCS are measured using the combination of a MAC and a high-
resolution electron spectrometer. (Indeed, this combination of a MAC
and spectrometer is also used for the measurement of inelastic DCS and
for resonance studies.) A typical experimental arrangement is shown in
Figure 9, which is taken from Cubric et al. (1999), see also, for example,
Linert and Zubek (2006). The electron spectrometer consists of a fixed
electron monochromator and an electron energy analyzer that can be
rotated about the target region through the angular range 10◦ to 120◦

with respect to the incident electron beam. Both the monochromator and
energy analyzer employ hemispherical energy selectors. Electrons leaving
the energy monochromator are accelerated and focused onto the inter-
action region by electrostatic lenses, and the incident electron current is
measured using a deep Faraday cup placed beyond the interaction region.
Scattered electrons from the target are decelerated and focused onto the
entrance aperture of the energy analyzer by another set of electrostatic
lenses. Electrons transmitted by the analyzer are detected by a position

Electron energy
monochromator

Solenoids

Gas beam Electron energy
analyzer

Position-sensitive
detector

e−

e−

Figure 9 Schematic diagram of the combination of an electron spectrometer and a
MAC for use in measurements of angle-resolved DCS. Reproduced from Cubric et al.
(1999).
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sensitive detector, which allows a range of electron energies to be detected
simultaneously. The overall energy resolution of the spectrometer is typi-
cally 70 meV, which is more than sufficient to resolve elastically scattered
electrons from those that are inelastically scattered. The target gas beam
is produced by a single narrow capillary. The MAC consists of two pairs
of solenoids and produces a localized magnetic field that is perpendicular
to the scattering plane at the interaction region. The gap in the solenoids
allows passage of the electrons and the scattering plane lies at the mid-
point of this gap. The MAC is used to produce a total deflection of
typically 70◦. Coupled with the angular range of the rotatable analyzer,
this allows the detection of scattered electrons over the full backward
scattering hemisphere, including 180◦.

The experimental methods that are used to measure the DCS are
described, for example, by Linert et al. (2006). The incident electron
energy is calibrated against the positions of temporary negative ion res-
onances that occur in the elastic cross sections at well-know energies,
e.g., the 2S negative ion resonance in helium at 19.366 eV (Brunt et al.,
1977; but also see Gopalan et al. (2003) for a more recent measurement),
with an uncertainty of typically ±30 meV. The angular scale of the mea-
surements is calibrated by observing the maximum in the elastic DCS of
argon that occurs at 180◦ and the deep minimum close to 120◦. Linert
et al. give a total uncertainty in the angular scale of ±2◦ and estimate
their angular resolution to be 4◦. The angular response of the analyzer
is taken into account by simultaneously measuring the DCS of helium
and using the calculated cross section in helium (Nesbit, 1979). The mea-
sured relative DCS are made absolute using the relative flow technique,
which has been described in detail by Khakoo and Trajmar (1986). In
order to maintain high operational stability of the electron spectrometer,
both the gas under investigation and the helium calibrant gas are always
present simultaneously in the vacuum chamber. The measurements usu-
ally cover the backward scattering hemisphere but are extended to overlap
the angular regions of conventional measurements in the forward direc-
tion, which are now quite well established. In this way, accurate elastic
DCS measurements are obtained over the widest possible angular range.
The uncertainties in the measured values of the absolute DCS arise from
the determination of the relative flow rates of the two gases, the scattered
electron yields, and the incident electron current. There is also an uncer-
tainty in the theoretical DCS for helium, which is quoted as 1%. From the
statistical distribution of several series of measurements, Linert et al. give
an overall uncertainty in their measured DCS of typically 15%.

Despite the availability of the MAC, the measurement of DCS at very
small and very large angles remains far from trivial, as emphasized by
Allan (2005). Elaborate strategies are required to ensure the optimum
overlap of the incident electron beam and the analyzer acceptance cone as
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the electron energies and the scattering angles are changed, and to deter-
mine the response function of the spectrometer for all the energies and
angles required. The methods to achieve this are discussed extensively
by Allan. One issue that has arisen in using a MAC is the occurrence of
spurious noise contributions arising from the incident electron beam. This
beam will also be deflected by the MAC. If this deflected beam subse-
quently strikes a metal surface in the vicinity of the target region, it may
be reflected back into the MAC. The MAC may then direct it into the
analyzer, leading to spurious background signals. In practice, such contri-
butions may be eliminated by minimizing the amount of solid surface area
near the target region and by suitable angular positioning of the electron
energy analyzer and judicious use of the deflection angle of the MAC.

3.1.3 Elastic DCS in the Rare Gases

The ability to calculate accurate elastic DCS represents a fundamental test
of our understanding of the dynamics of electron–atom interactions: the
large amount of theoretical effort applied to these calculations attests to
their importance. Producing sufficiently accurate experimental data to test
the various theories presents challenges to the experimentalist, and for
detailed comparison with theory, measurements over the full range angu-
lar scattering 0◦–180◦ are required. The rare gases have attracted most of
the theoretical effort. Various different interactions become dominant as
the mass of the atom increases. Moreover, the rare gases provide the basis
upon which to proceed to open-shell atoms and to molecular systems.
The elastic DCS in helium is well described by theory, Nesbit (1979), and
indeed its role has been to normalize the experimental data in the other
rare gases. Elastic DCS in the rare gases, neon, argon, krypton, and xenon
have been measured using the MAC technique. This has mainly involved
two experimental collaborations: the Manchester/Gdansk collaboration
and the collaboration between Buckman, Cho, and coworkers. This has
usefully allowed comparison between different sources of DCS experi-
mental data. More recently in joint experimental–theoretical work, Allan,
Hotop, Bartschat, and coworkers have produced elastic DCS data in the
rare gases in their studies of Feshbach resonances.

3.1.3.1 Elastic DCS in Neon

The scattering of electrons by neon has particular importance because
its relative simplicity makes it more amenable to theoretical calculation
than heavier atoms. Experimentally, the need for accurate absolute DCS
in neon has been emphasized by suggestions (Gulley et al., 1994; Shi &
Burrow, 1992) that it can be used as a secondary standard, after helium
in the determination of DCS of other gases. Theoretical studies of elas-
tic electron scattering by neon atoms have been more extensive than the
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experimental studies. The general aim of these theoretical works was
to develop a description of the polarization and exchange interactions
between the target atom and the incident electron. The first measure-
ment of the elastic DCS in neon in the backward direction was made
by Linert et al. (2006), who also summarized the theoretical work. They
measured the DCS at incident energies of 7, 10, and 15 eV, i.e., below the
first excitation threshold. This range was extended by Cho et al. (2008)
who used incident energies of 5, 10, 20, and 50 eV: the two higher ener-
gies lying above the first excitation threshold. The elastic DCS in neon,
including the backward scattering hemisphere, has also been reported
by Allan et al. (2009), at an incident energy of 18 eV, together with the-
oretical calculations. An example of a measured elastic DCS in neon, at
an energy of 10 eV, from Linert et al. (2006), is shown in Figure 10. This
figure also shows previous experimental cross sections and the results
from several theoretical calculations. The previous experimental work
relates to the angular range below 140◦, although the much earlier work of
Ramsauer and Kollath (1932) employed a technique, which could reach
up to 167.5◦. The results of Linert et al. cover the angular range 110◦–180◦,
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Figure 10 DCS for electron elastic scattering in neon at the energy of 10 eV, obtained
by Linert et al. (2006), shown as full black squares. Also shown are experimental
results of Ramsauer and Kollath (1932), Brewer et al. (1981), Register and Trajmar
(1984) and the theoretical results of Saha (1989), McEachran and Stauffer (1983), Fon
and Berrington (1981), and Zatsarinny and Bartschat (2004a). Reproduced from Linert
et al. (2006).
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while the theoretical calculations cover the complete angular range, 0◦ to
180◦. There is some overlap in the angular range 110◦–130◦ between the
MAC data and the studies of Brewer et al. (1981) and Register and Traj-
mar (1984). In this region of overlap, there is good agreement between all
the recent experimental data including the MAC data. Over the angular
range 110◦–130◦, the theoretical calculations are also in agreement with
each other and in agreement with the experimental data. In the angu-
lar range below 110◦, the calculated DCS tend to deviate from each other
by a small amount (∼10%). The experimental results of Brewer et al. and
Register and Trajmar show differences, which increase to 10% at an angle
of 50◦. A measurement made at 50◦ using the MAC is in excellent agree-
ment with that of Brewer et al. For the angular range above 130◦, the MAC
results rise to a maximum at 180◦. Over this angular range, there are sig-
nificant discrepancies between the results of the various calculations. This
emphasizes the usefulness of the MAC to test theory in this angular range.
The best agreement with the MAC results comes from the calculations of
McEachran and Stauffer (1983) and Dasgupta and Bhatia (1984), which
coincide with each other. The results of Saha (1989) and in particular of
Fon and Berrington (1981) are considerably lower than the experimental
DCS, while the results of Zatsarinny and Bartschat (2004a) are about 20%
higher than the experimental values. Cho et al. (2008) have also measured
the elastic DCS in neon at 10 eV using a MAC and so a direct comparison
can be made. Above 130◦, the data of Cho et al. lie below those of Linert
et al. but still above the results of Fon and Berrington.

3.1.3.2 Elastic DCS in Argon

There has been a considerable amount of theoretical work on elastic
scattering in argon, and these have been summarized by Mielewska et al.
(2004). These works differ most significantly in their various approaches
to account for long-range polarization and short-range correlation inter-
actions in the electron scattering process. Mielewska et al. measured the
elastic DCS in argon at energies of 5, 7.5, and 10 eV, where correlation
and polarization interactions between the target and incident electron are
expected to play dominant roles. In a comparison of their data with the
available theoretical calculations, these authors find that in general the
theoretical results lie above the experimental values for high scattering
angles. Furthermore, although the various theoretical calculations are in
fair agreement with each other over the range of intermediate scattering
angles, they display significant differences in the region of high scattering
angle. Mielewska et al. suggest that the discrepancies may be ascribed
to difficulties in modeling the polarization–correlation interaction
(cf. Gianturco & Rodriguez-Ruiz, 1993). Cho and Park (2009) have also
used a MAC to measure elastic DCS in argon, at energies from 5 to 50 eV,
including 10 eV. Their results are shown in Figure 11 and allow direct
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Figure 11 Absolute DCS for elastic scattering in argon, obtained by Cho and Park
(2009). Also shown for: Mielewska et al. (2004), Gibson et al. (1996), Panajotovic et al.
(1997), and Sienkiewicz and Baylis (1987). Reproduced from Cho and Park (2009).
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comparison with the results of Mielewska et al. It can be seen that the
agreement between the two sets of data is good at 10 eV while it is less
good at 5 eV. Also shown for comparison is the theoretical calculation
of Sienkiewicz and Baylis (1987) who used a model potential with
two parameters to account for the dipole and quadrupole correlation
polarization.

3.1.3.3 Elastic DCS in Krypton and Xenon

Analogous measurements of elastic DCS using a MAC have been made
for krypton (Cho et al., 2003a, 2004; Hoffmann et al., 2010; Linert et al.,
2010) and for xenon (Cho et al., 2006; Linert et al., 2007). In their work,
Cho and coworkers have investigated the role of absorption in the inter-
mediate energy range. These various studies compare in some detail the
experimental data from the various groups and the predictions of the var-
ious theoretical predictions. Cho et al., Linert et al., and Hoffmann et al.
all report measurements of the DCS in krypton at or close to the energy of
10 eV, and so a useful comparison can be made between measurements
obtained using different MAC designs. It is found that the agreement
between the three measurements is good to excellent, except in the region
around the minimum in the DCS, which is strongly influenced by the
angular resolution of the experiments. These elastic studies of electron
scattering by the heavier rare gases in the low energy region are particu-
larly important from the view of developing adequate theoretical models
for correlation–polarization interactions and relativistic effects. Having a
full set of elastic DCS for the rare gases has allowed some comparisons
to be made. Linert et al. (2010) analyzed the DCS of the three heavier
rare gases argon, krypton and xenon as a function of their polarizabilities
at the scattering angles of 30◦, 80◦, and 180◦ and electron energies in the
range 5–30 eV. They find that at lower energies 5 and 7.5 eV, the DCS tend
to rise with increasing atomic polarizability, indicating significant con-
tribution of long-range dipole polarization interaction. That dependence
becomes weaker or disappears at higher energies, possibly as a result of
nonadiabatic effects.

3.1.4 Integral and Momentum Transfer Cross Sections

Elastic DCS can be used to deduce integral and momentum transfer cross
sections by integrating the DCS over the full scattering range 0◦–180◦.
However, we reiterate that the elastic cross section cannot be measured
close to 0◦ since the elastically scattered electrons cannot be distinguished
from the unscattered electron beam. Furthermore, the maximum angle
that can be observed in a conventional spectrometer is limited by mechan-
ical constraints. Previously, this meant that measured DCS data had to be
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extrapolated to low and high scattering angles. The MAC allows mea-
surements, continuously up to 180◦ so that extrapolation to higher angles
is avoided, although it is still necessary to extrapolate the DCS close to 0◦.

An example of the determination of integral and momentum transfer
cross sections is provided by the work of Linert et al. (2010). These authors
determined these cross sections for krypton at energies of 5, 7.5, and
10 eV. Both were obtained by extrapolating the measured DCS from 30◦

down to 0◦ and then integrating the DCS over the complete angular range
0◦–180◦. In the extrapolation procedure for the 0◦–30◦ range the angu-
lar dependencies of the theoretical data of Bell et al. (1988) were taken,
which were normalized to the measured DCS at 30◦. The uncertainty in
the integral and momentum transfer cross sections because of this extrap-
olation procedure is estimated to be less than 2% and 1%, respectively.
Linert et al. estimate the associated uncertainties in their elastic integral
and momentum transfer cross sections to be 17% and 15%, respectively.
In Figure 12, the integral cross sections of Linert et al., obtained at 5, 7.5
and 10 eV, are compared with cross sections determined from other mea-
sured DCS and with the results of theoretical calculations. At 10 eV, the
very small contribution (2%) because of the excitation cross section of
the first excited state 5s[3/2]o at 9.915 eV is neglected. Very good agree-
ment is found with the experimental total cross sections, which usually
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Figure 12 Integral cross sections for elastic scattering in krypton, reproduced from
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have a higher degree of accuracy than DCS measurements. There is agree-
ment also with the results of Cho et al. (2003a) who also used a MAC
to determine the integral cross section. Above 5 eV, the results of Danjo
(1988) overestimate the integral cross section whereas those of Strivas-
tava et al. (1981) largely underestimate it. These differences may, to some
extent, arise from the extrapolation of their results over the wide scat-
tering range 130◦–180◦ which is avoided with the MAC. The momentum
transfer cross sections determined at 5, 7.5, and 10 eV by Linert et al. are
shown in Figure 13 and compared with those determined from previ-
ous DCS measurements, with swarm experiments and with the preferred
cross sections given by Buckman et al. (2000). The cross sections agree
very well with those obtained by swarm experiments by Hunter et al.
(1988) and Suzuki et al. (1989). However, the preferred momentum cross
sections given by Buckman et al. appear to be underestimated above 7 eV.
The integrated results of Strivastava et al. (1981) and Danjo (1988) devi-
ate from the measurements of Linert et al. In the integration procedure,
the 130◦–180◦ angular range gives a significant (40%–60%) contribution to
the momentum transfer cross section, which therefore relies heavily on an
accurate determination of the DCS in the backward scattering direction.
With respect to the theoretical results, the R-matrix calculations of Bell
et al. (1988) are in best accord with the experimental cross sections.
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3.2 Elastic Electron Scattering and Vibrational Excitation in
Molecules

The MAC is finding increasingly wide application in the measurement of
cross sections for elastic scattering and vibrational excitation in molecules
because of its ability to make measurements in the backward scatter-
ing hemisphere. Although there is a large body of both theoretical and
experimental work in the literature on elastic DCS in molecules, there
is much less on DCS for vibrational excitation. The scattering of low-
energy electrons by molecules is an accepted test ground for developing
an accurate description of electron–molecule interactions, and an impor-
tant role is played by detailed comparison of the results of theory and
experiment. Comparison is especially important to understand the roles
of short- and long-range correlation (polarization) and exchange interac-
tions. Consequently, the MAC has been used to measure elastic DCS and
vibrational excitation in the diatomic molecules N2 (Allan, 2005; Linert &
Zubek, 2009; Zubek et al., 2000), O2 (Linert et al., 2004a,b; Linert & Zubek,
2006), and CO (Allan, 2010). Elastic scattering and vibrational excitation
cross sections are also required in the modeling of atmospheres, in the
development of gas etching processes, and in the study of radiation dam-
age in biological molecules and their analogues. Moreover, the interest
in electron-induced chemical processes at low energies has recently been
renewed by the discovery that electrons at sub-ionization and even sub-
excitation energies can damage DNA. Thus, the MAC has been used to
measure elastic and vibrational cross sections in sulfur hexaflouride SF6

(Cho et al., 2000), which is an important gas for insulation in the elec-
trical industry; in ethane (Allan et al., 2008) and methane CH4 (Curkic
et al., 2008), which is important in a wide variety of technological and
atmospheric applications; in tetrahydrofuran (Allan, 2007; Dampc et al.,
2007a,b), which serves as convenient model for the sugar ring in the DNA
backbone; and in the flourocarbons CF3H and CF3I (Cho et al., 2010),
which are important in the field of plasma processing.

3.2.1 Elastic Electron Scattering and Vibrational Excitation
in Molecular Nitrogen

Molecular nitrogen, after molecular hydrogen, is probably the most
studied target for investigations of electron–molecule collisions and for
measurements of scattering cross sections. It plays an important role
in atmospheric processes and in electrical discharges in various physi-
cal environments. Moreover, its relatively simple electronic configuration
represents a suitable target for fundamental tests of electron–molecule
interactions. Recently, Linert and Zubek (2009) have measured DCS for
elastic electron scattering and vibrational v = 1 excitation in N2 from 5 to
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20 eV over the angular range 10◦–180◦ using a MAC. The apparatus they
used is described in detail by Linert and Zubek (2006). The aims of the
work were to resolve discrepancies between earlier measurements using a
MAC (Allan, 2005; Zubek et al., 2000), and to extend previous experimen-
tal work to higher energies and a wider range of scattering angles. Linert
and Zubek also summarize the previous experimental and theoretical
works. The DCS obtained for elastic electron scattering at energies of 5, 10,
15, and 20 eV are presented and compared with other available previous
experimental and theoretical results in Figures 14(a)–(d). The statistical
uncertainties are estimated to be 13% for 5 eV, 10% for 10 eV and 15 eV,
and 15% for 20 eV. Perhaps, the DCS of most interest in the present context
is the one obtained at the energy of 5 eV, since direct comparison can be
made with the measurements of Allan et al. (2005) who also used a MAC.
It is also the case that experimental measurements at such low energies
are particularly challenging to the experimentalist. It can be seen that in
the angular range 60◦–120◦, there is very good agreement with Allan (and
also with the earlier results of Srivastava et al. (1976), later renormalized
by Trajmar et al. (1983)). The agreement with the results of Allan extends
beyond 120◦; above 160◦, the results of Linert and Zubek are slightly below
those of Allan, although within the experimental uncertainty. In the region
below 50◦, measurements from the different laboratories show differences.
At 30◦, the cross section of Linert and Zubek lies between the results of
Allan (2005) and Brennan et al. (1992), the differences being 15% and 8%,
respectively. The best agreement with theory in the range 60◦–120◦ is with
the calculations of Feng et al. (2003) and Sun et al. (1995), which both treat
polarization–correlation effects in most detail. In the region below 60◦,
most of the calculations display the experimental angular dependencies,
but appear to overestimate the cross section.

For the measurement of vibrational excitation, Linert and Zubek (2009)
recorded energy loss spectra for fixed incident electron energies at each
scattering angle. From the energy loss spectra, using a peak fitting proce-
dure, ratios of intensities of the v = 1 peak to those of the elastic peak were
determined. Absolute DCS for excitation of the v = 1 level were derived
from these ratios using their values for the absolute elastic cross sections.
The energy loss spectra above 90◦ were measured using a MAC. This intro-
duced an additional uncertainty in the angular scale of 1.5◦ at 5 eV and less
than 1◦ at higher energies, resulting in a total uncertainty for vibrational
excitation of ±3.5◦ at 5 eV and less than ±3◦ at other energies. The DCS
for vibrational (v = 0→ 1) excitation measured at 5, 10, 15, and 20 eV are
shown in Figure 15, where they are compared with available experimental
and theoretical data.

The statistical uncertainties in the DCS at 5 eV are estimated to be 22%
in the angular range 25◦–40◦ and 19% in the remaining angular range. The
uncertainties at 10, 15, and 20 eV are 17%, 14%, and 18%, respectively, over
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Figure 14 DCS for elastic scattering in molecular nitrogen, at incident energies of
(a) 5, (b) 10, (c) 15, and (d) 20 eV. Reproduced from Linert and Zubek (2009), where
full details of the previous experimental and theoretical works can be found.

the whole angular range. At 5 eV, the DCS of Linert and Zubek display
two minima, at 55◦ and 125◦, and it is asymmetric with respect to a max-
imum at about 85◦. It is in best agreement with the results of Brennan
et al. (1992) measured up to 130◦. The DCS of Allan (2005) show a more
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Figure 15 DCS for excitation of the v = 1 level of molecular nitrogen, at incident
energies of (a) 5, (b) 10, (c) 15, and (d) 20 eV. Note that in (d), the results of the
theoretical calculations have been multiplied by a factor of 4. Reproduced from Linert
and Zubek (2009), where full details of the previous experimental and theoretical
works can be found.

symmetric shape with respect to 85◦. However, the differences between
both results at 25◦ and 180◦ are within the uncertainty limits. These results
indicate considerable contribution from the 25g resonance at 5 eV. The
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R-matrix calculations of Gillan et al. (1987), which apart from 25g symme-
try also accounted for five other scattering symmetries, generated lower
cross sections in forward than in backward scattering. At other values of
incident energy, it can be seen that agreement between available data is
less satisfactory. This may be due to the extrapolation techniques used to
extend the DCS toward 180◦, which is avoided with the use of a MAC.
Linert and Zubek also integrated their cross sections for elastic scattering
and vibrational excitation to obtain integral and momentum-transfer cross
sections. In the case of elastic scattering, the cross sections were extrapo-
lated down to 0◦. A linear extrapolation was used at 10, 15, and 20 eV and
at 5 eV, and the theoretical data of Sun et al. (1995) were employed. The
integration and extrapolation procedures introduced uncertainties of less
than 0.5%.

4. INELASTIC ELECTRON SCATTERING

The physical principles of the MAC also apply to the case of inelastic elec-
tron scattering: the magnetic field is localized so that the operation of the
electrostatic spectrometer is not impaired; the incident electrons change
their incident angle but still pass through the interaction region and the
scattered electrons change their direction but still move radially away
from the interaction region once they reach the field-free region. Of course,
the incident and inelastically scattered electrons are deflected by differ-
ent amounts but these magnetic deflections can readily be determined
either by computer simulations of the MAC or from experimental mea-
surements. There is, however, an additional advantage of the MAC for
measurements of inelastic scattering. The trajectories of the inelastically
scattering electrons are separated from the unscattered electron beam
because they are deflected through different angles, as illustrated in
Figure 16, which is adapted from Cubric et al. (1999). The inelastic yield
at and near 0◦ can therefore be accurately determined, unlike the elas-
tic scattering case. Furthermore, the backward scattered electrons follow
different trajectories to those of the incident electron beam. The MAC
therefore allows inelastic measurements to be made over the complete
angular range from 0◦ to 180◦, and integral cross sections can be obtained
without recourse to any extrapolation procedures. It also follows that elec-
tron energy loss spectra can be obtained at all angles in the backward
scattering hemisphere including 180◦.

4.1 DCS for Inelastic Electron Scattering

The first application of a MAC for inelastic electron scattering was made
by Cubric et al. (1999) who measured DCS for excitation of the n = 2 states
of helium over the complete angular range from 0◦ to 180◦, at energies of
30, 40, and 50 eV. There had been numerous previous measurements of
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Unscattered
beam

Figure 16 Cross sections through a MAC showing computed trajectories for the
detection of backward (180◦) and forward (0◦) scattered inelastic electrons, where the
incident and scattered electrons have energies of 30 and 10 eV, respectively. Also
shown, for each case, is the variation of the axial magnetic field with distance from
the centre. Adapted from Cubric et al. (1999).

these DCS, with the most complete coverage of scattering angles being
achieved by Asmis and Allan (1997). These authors used a conventional
spectrometer to cover the range 0◦ to 135◦ and a magnetically focused
spectrometer, used in connection with the “electron mirror” technique,
to measure the DCS at the two specific angles of 0◦ and 180◦. It was the
measurements of Asmis and Allan that were the first that were able to
show the discrepancies between theory and experiment at the extremes of
scattering angle. Cubric et al. used two pairs of short solenoids in conjunc-
tion with a conventional electron spectrometer. The total change in angle
α caused by the MAC depends on the magnitude and direction of the field
and the energies, E1 and E2 of the incident and scattered electrons. Cubric
et al. maintained a constant ratio for the currents I1 and I2 in the inner
and outer solenoids and measured the dependence of α on I1 using sharp
structures in the DCS of the 21P state of helium at 40 eV. They also com-
puted it using the CPO program (Read & Bowring, 2010) and found that
the two methods were in agreement. A parameterization that is accurate
to within 1% is

α = a
[

arcsin
(

b
I1
√

E1

)
+ arcsin

(
b

I1
√

E2

)]
(9)

where a and b are empirical constants. Cubric et al. used a two-
dimensional scanning technique, in which energy loss spectra were
recorded at a series of incremented values of I1, while the analyzer was
kept at a fixed position. To extract the DCS of a particular state, the sum
of all counts under the corresponding peak was taken for each value of I1,
which was converted to the relevant scattering angle using Equation (9).
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This provided relative DCS. To put these on an absolute scale, the authors
used the accurate measurements of Trajmar et al. (1992) and the CCC
calculations of Fursa and Bray (1997) for the excitation of the optically
allowed 21P state; the CCC calculations being chosen because of the estab-
lished accuracy of this method over a wide range of states and energies.
The angular resolution of the MAC technique is affected by the curvature
of the trajectories of the incident electrons as they transverse the scattering
region. This curvature gives rise to a range of scattering angles received
by the analyzer and the spread is greatest for backward scattering. Using
the CPO program, Cubric et al. estimated that in their measurements the
rms spread in angles from this effect is ±6◦ for scattering through 180◦.
This magnetic spread has to be added in quadrature to the estimated
conventional spread of ±3◦ caused by the finite range of angles in the
incident beam and the finite angular acceptance of the analyzer. At a scat-
tering angle of 130◦, the magnetic and conventional spreads have the same
magnitude, while at scattering angles less than approximately 100◦ the
magnetic spread can be ignored. Cubric et al. give a total uncertainty of 8%
in the magnitude of the measured DCS, although they note that this may
be larger at some scattering angles. The measured and calculated DCS for
the n = 2 states of helium are shown in Figure 17. The DCS of the 21S
state show a sharp minimum between 45◦ and 55◦ at all the three impact
energies. The fact that such a deep and sharp is observed confirms the
estimate of the experimental angular resolution of the measurements. The
DCS of the 21P state matches the CCC results because of the normalization
procedure. The agreement between theory and experiment for the DCS of
the other states is generally good at all three impact energies but there
are discrepancies, particularly at the angles that were previously inac-
cessible. The largest discrepancies, by factors in the range 2–7, between
the measured and calculated results and between the calculated results
themselves, occur for the 23P state at the lower impact energies and at
the lowest and highest scattering angles. The disagreement for this state
at small angles may be partially explicable in terms of the slight overlap
between the 23P and 21P peaks in the energy loss spectra, but this would
affect the results at 40 and 50 eV much more than those at 30 eV, where
in fact the disagreement is largest. The disagreements at large angles are
partly due to the spread in acceptance angle in the MAC technique as
discussed above, but by convoluting the theoretical results with the exper-
imental angular function this is found to account for less than 15% of the
difference. The experimental data for the triplet cross sections also exhibit
some discontinuities, for example, near 25◦ at 30 eV. It is considered that
these arise from the arrival at the detector of electrons from the incident
beam that have undergone various reflections and deflections. Such con-
tributions have been removed from all the singlet DCS in the procedures
used to analyze the data but the discontinuities remain in the triplet DCS
even when more elaborate analyses were employed.
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Figure 17 Measured and calculated DCS for the n = 2 states of helium at incident
electron energies of 30, 40, and 50 eV. Reproduced from Cubric et al. (1999).

Subsequently, Allan (2000) measured the DCS of the 23S state of helium
from threshold to 24 eV and presented spectra at scattering angles from
0◦ to 180◦. As noted previously, the MAC devised by Allan readily allows
the incident energy to be continuously varied in the measurement of a
DCS. The measured DCS of the 23S state of helium is shown in Figure 18.
The spectra recorded at 45◦, 90◦, and 135◦ were recorded without mag-
netic deflection. The spectrum at 180◦ was recorded with the analyzer set
at 135◦ and a corresponding magnetic deflection. The spectra at 0◦ and
180◦ agree well with those Asmis and Allan (1997) with the magnetically
focused mirror spectrometer, mutually validating the two techniques.
The spectrum at 90◦ agrees with that of Allan (1992) although there are
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Figure 18 Measured DCS of the 23S state of helium from threshold to 24 eV, at
scattering angles spanning the entire sphere. The vertical lines above the spectra in
the 22–24 eV range indicate the energies of ridge resonances as calculated by Fon
et al. (1989). Reproduced from Allan (2000).

some differences within the first few hundred meV above threshold.
The spectra show that the shape of the sharp resonant structures, i.e.,
the interference of the resonant scattering amplitude with the underly-
ing background varies dramatically with scattering angle. The results of
Allan also reveal interesting details of narrow ridge resonances surround-
ing the deep minimum of the angular distribution at 22 eV for backward
scattering angles.

More recently, in joint experimental and theoretical investigations, use
of the MAC has been made to measure absolute DCS for electron impact
excitation of neon (Allan et al., 2009) and krypton (Hoffmann et al., 2010).
In particular, studies were made of the energy regions just above the first
excitation thresholds where the excitation process is dominated by promi-
nent resonance structure. In addition to the experimental measurements,
the B-spline R-matrix method (Zatsarinny & Bartschat, 2004a,b, 2005) has
been used to calculate the cross sections. In the example of neon, absolute
DCS of excitation to the four 2p53s levels and to selected 2p53p levels were
determined as a function of electron energy up to 3.5 eV above threshold
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at specific angles from 0◦ to 180◦. In addition, cross sections were recorded
as a function of scattering angle from 0◦ to 180◦ at 18 eV for the 2p53s
levels and at 19.3 eV for the 2p53p levels, respectively. The cross sections
were also determined theoretically using the B-spline R-matrix methods
with nonorthogonal orbit sets. Very good agreement was found both in
terms of absolute values and in terms of the energies and widths of the
numerous resonance features, thereby allowing for (re)classifications with
significantly improved accuracy compared to earlier work. This work is
further discussed in the section on resonances (section 5).

4.2 Electron Energy Loss Spectroscopy

Electron energy loss spectroscopy is a powerful technique to investigate
the excited states of atoms and molecules. Since the mass of the electrons
can be neglected compared to the mass of the atomic or molecular tar-
get, the energy lost by the inelastically scattered electrons gives directly
the energies of the excited states. Moreover, energy loss spectroscopy
has some valuable advantages compared to conventional photoabsorp-
tion measurements. The optical selection rules may become considerably
relaxed when the incident energy approaches the excitation threshold of
an excited state and when the scattering angle of the scattered electron is
large. This is where the ability of the MAC to access large scattering angles
becomes important, making it valuable in spectroscopic measurements.
So far, the application of the MAC to specifically measure energy loss
spectra for spectroscopic reasons has been limited, although energy loss
spectra have been obtained in the rare gases as a prelude to measuring the
DCS of excited states (Allan et al., 2009; Hoffmann et al., 2010).

Linert et al. (2004a) have studied electron impact excitation of molec-
ular oxygen using a MAC and have presented an energy loss spectrum
of O2 at a scattering angle of 180◦. Oxygen is interesting because of the
important role it plays in fundamental physical phenomena in the Earth’s
atmosphere and in gaseous plasmas. In addition, it is an important exam-
ple of a molecule with an open-shell structure. Providing an adequate
description of the interactions of incoming electrons with such open-shell
molecules is a testing challenge for theoretical methods. Particular atten-
tion has been paid to elastic scattering, vibrational excitation of the ground
state, and excitation of the lowest a11g and b16+g electronic states of oxy-
gen in the energy range 5 to 20 eV (see Linert et al. for details of previous
work). Apart from initiating studies of the excitation of molecular oxygen
at backward scattering angles, the aim of the study by Linert et al. was
to resolve inconsistencies in the experimental DCS for vibrational excita-
tion and excitation of the a11g and b16+g states and to provide DCS data
for comparison with theoretical calculations. Their energy loss spectrum
of oxygen at an incident energy of 10.4 eV and at a scattering angle of 180◦



AAMOP 05-ch01-001-064-9780123855084 2011/9/27 10:00 Page 37 #37

The Use of the Magnetic Angle Changer in Atomic and Molecular Physics 37

0.0

In
te

ns
ity

 (
co

un
ts

)

0

2000

4000

6000

8000

10000

0.2 0.4 0.6

0.8
0

500

1 3 6 9

X 3Σ−
g

b1Σ+
g

a1Δg

1

O2 180°

0

0

1.0 1.2 1.4 1.6 1.8

0.8

Energy loss (eV)

1.0 1.2 1.4 1.6 1.8 2.0
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scattering angle of 180◦. The energy loss peaks were fitted with Gaussian curves,
which are shown by the full lines. A smoothly varying background has been
subtracted from the original spectrum. Reproduced from Linert et al. (2004a).

is shown in Figure 19. The corresponding spectrum was also obtained
at 90◦. The energy loss peaks were fitted to Gaussian profiles having a
width (FWHM) of 80 meV, corresponding to the apparatus resolution. In
both spectra, the v = 0–10 vibrational levels of the ground state together
with excitation of the v = 0 level of the a11g state are identified. The most
important difference between the two spectra is the observation of the
v = 0 level of the b16+g state in the 90◦ spectrum at 1.63 eV but its absence
in the180◦ spectrum. This observation is in agreement with the predication
of vanishing cross section at 180◦ for the6− ↔ 6+ transition, and the spec-
trum of Figure 19 is the first test of this theoretical rule. Linert et al. also
report DCS for the v = 3 level of the ground state and for excitation of the
v = 0 level of the a11g state which represents about 95% of the electronic
excitation of the a11g state.

5. RESONANCES IN ELECTRON IMPACT EXCITATION OF
ATOMS AND MOLECULES

5.1 Resonances in Elastic Electron Scattering

5.1.1 Resonances in Rare Gas Atoms

The formation of resonances (or temporary negative ions) is one of the
fundamental phenomena that are observed in electron scattering from
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atoms and molecules. Since the first observation of such a state by Schultz
in helium (1963), many resonances have been observed in a range of dif-
ferent targets (for reviews see Buckman and Clark, 1994; Schulz, 1973a,b).
Resonances appear as structure in the elastic scattering cross section, and
the shapes of these structures vary with the scattering angle. Studies of
the shapes of the resonance structures and their angular dependencies are
important for determining the energy positions, i.e., the spectroscopy of
the resonances and also in the determination of their symmetries. Until the
last decade or so, however, resonance structures in atoms and molecules
had been observed over limited angular ranges. This has changed with
the application of the MAC, which has allowed the structures to be
observed for the first time over the full backward scattering hemisphere.
In the case of atoms, the observed shapes and their angular dependencies
allow the determination of the phase shifts of the partial waves involved
in the scattering process. Measurements at large angles are important for
the determination of these phase shifts since at the scattering angle of
180◦ all partial waves that contribute have the same magnitude (modu-
lus) of unity for their Legendre polynomials. Moreover, measurements in
the backward direction are especially useful for the heavier rare gas atoms
where more partial waves are present than for the lighter atoms helium
and neon.

The use of the MAC to observe resonances in the backward direction
was first demonstrated by Zubek et al. (1996), who observed resonance
structures in elastic scattering for argon at angles of 110◦, 150◦, and 180◦. In
this experiment, the yield of scattered electrons was measured as a func-
tion of incident electron energy over the energy range of 10.9–11.4 eV. This
first observation was followed by a fuller study of resonance structures in
elastic electron scattering from helium, neon, argon, krypton, and xenon,
over the range of angles from 100◦ to 180◦ (Zubek et al., 1999). The sub-
ject of the studies was the 2s2 2S resonance in He− and the np5(2P3/2,1/2)(n+
1)s2(1S) resonances in Ne−, Ar−, Kr−, and Xe− where n = 2, 3, 4, and 5,
respectively. These states are positioned below the first excitation thresh-
old of the respective atoms, or in the case of the higher-lying states of
krypton and xenon, just above. The lowest resonances can only decay to
the respective ground states and are among the sharpest of features in
electron scattering. The resonances may be considered as two spin-paired
Rydberg electrons surrounding a relatively compact core. For these mea-
surements, Zubek et al. employed the electrostatic spectrometer described
by Zubek and King (1994) in combination with a MAC. The overall energy
resolution of the measurements was approximately 30 meV. The MAC
consists of three pairs of short, coaxial solenoids, and the solenoid cur-
rents are set to produce a zero magnetic field at the scattering centre. This
ensures that the electron-atom scattering takes place in a field-free
region. The currents in the solenoids were set to produce a total angular
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displacement of 70◦ at an incident energy of 11 eV. The unscattered elec-
tron beam is deflected in the direction away from the angular view of the
analyzer, which is then able to detect electrons that are scattered within
the angular range 60◦–190◦. The currents in the solenoids were adjusted for
other values of incident energy Ei to maintain the above range of scattering
angles for each value of energy, by scaling each of the solenoid currents
as E1/2

i . The angular scale of the spectrometer was calibrated at the mean
value of each energy range studied by observing the positions of the max-
imum of the DCS of argon at 180◦ and the second minimum close to 120◦.
The angular scale determined by this procedure is considered accurate to
±1◦. Since the analyzer was held fixed in position at the scattering angle of
interest, and the magnetic field strength was also held constant, changes in
the incident energy introduce a small uncertainty in the scattering angle.
This uncertainty is estimated to be ±0.5◦, and the total uncertainty in the
scattering angle is taken to be ±1.5◦. The angular acceptance of the elec-
tron spectrometer is 4◦ as determined by the acceptance angle for scattered
electrons. An example of the resonance structure observed by Zubek et al.
(1999) is shown in Figure 20, for the 2P3/2 resonance in xenon at various
scattering angles in the backward direction. The observed structures were
analyzed using a standard phase-shift formulation (see, for example, Zubek
et al. (1995)) to obtain information on the resonance energies and widths.
The calculated phase shifts of Sienkiewicz and Baylis (1989) were used
as a starting point. The calculated cross sections were convoluted with a
Gaussian function of width corresponding to the energy resolution of the
spectrometer. The best agreements with experiment were obtained after
adjustment of the l = 1 phase shifts, although the final values did not differ
by more than 10% from the theoretical ones. The full curve shows the best
fit obtained for the measured resonance structures. The energy and width
of the 2P3/2 resonance were found to be 7.901 ±0.016 eV and 4.0 ±1.0 meV,
respectively.

5.1.2 High-Resolution Studies of Feshbach Resonances in Krypton

Recently, in a joint experimental and theoretical investigation (Hoffmann
et al., 2010), the low lying Kr− (4p55s2 2P3/2) Feshbach resonances have
been studied in elastic scattering from krypton. Absolute DCS were mea-
sured over the energy range 9.3 to 10.3 eV, which contains the resonances,
at scattering angles between 10◦ and 180◦. The very high resolution
(13 meV) of the measurements has allowed for improved determinations
of the resonance positions and widths. In order to obtain additional physi-
cal insights, B-spline R-matrix calculations of the DCS were performed. In
the case of krypton, the fine splitting between the two Kr− (4p55s2 2P3/2,1/2)

resonances is sufficiently large that the higher lying resonance lies above
the first inelastic threshold. The lower lying resonance can only decay to



AAMOP 05-ch01-001-064-9780123855084 2011/9/27 10:00 Page 40 #40

40 George C. King

8.18.07.9

Electron energy (eV)

Y
ie

ld
 o

f 
de

te
ct

ed
 e

le
ct

ro
ns

7.87.7

−0.10

−0.05

0.05

0.00

−0.10

−0.05

−0.05

−0.02

0.05

0.05

0.02

0.2

0.1

0.0

2P
Xe

3/2

1150

1260

1300

1500

1800

0.00

0.00

0.00

8.2
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backward direction showing the 2P3/2 resonance. The scale of the yield of scattered
electrons shows the size of the 2P3/2 resonance with respect to the nonresonant
yield. Reproduced from Zubek et al. (1999).

the Kr (4p6 1S0) ground state but the higher lying resonance can decay into
three exit channels, namely, to the ground state and to the two excited
Kr (4p5 5s 3P2,1) levels (energies of 9.915 eV and 10.032 eV, respectively).
Correspondingly, the width of the Kr− (4p55s2 2P1/2) resonance is much
larger than the Kr− (4p55s2 2P3/2) resonance width. Figure 21 shows the
measured energy dependence of the DCS over the energy range encom-
passing both Kr− (4p55s2 2P3/2,1/2) resonances, where the difference in the
two resonance widths is apparent. The properties of the Kr− (4p55s2 2P1/2)

resonance were accurately determined through a standard partial-wave
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analysis. The measured data were fitted by a resonance profile calculated
from a few sets of phase shifts and adjustable values of the resonance
width and the experimental energy resolution. The weighted mean of the
different fits results in a value of 3.58 (20) for the width of the (4p55s2

2P3/2) resonance. The width of the higher lying Kr− (4p55s2 2P1/2)was deter-
mined from Fano-type fits to the experimental data using Shore profiles
(1968), which were convoluted with a Gaussian apparatus function. This
gave a total width of 33(5) meV. This width again reflects the fact that the
decay of this resonance into the two nearby excited Kr (4p5 5s 3P2,1) levels
is almost ten times more rapid than that to the ground state. The measure-
ments also gave accurate values for the positions of the two resonances.
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Accompanying calculations were performed with the semirelativistic
B-spline R-matrix (BSR) program of Zatsarinny (2006) as well as a fully
relativistic version (Zatsarinny & Bartschat, 2008). An important feature
of this code is the ability to define nonorthogonal sets of one-electron
orbitals, which generally allow for a highly accurate target description
with relatively low configuration-interaction expansions. Results were
presented from a semirelativistic 47-state model (BSR47) and from a fully
relativistic model with 31 states plus a pseudostate to ensure the dipole
polarizability of the ground state (DBSR31p). The DBSR31p model gave
a value of 2.9 meV for the width of the Kr− (4p55s2 2P3/2) resonance, while
the BSR47 model gave a value of 2.7 meV. There is consistency between
the two very independent calculations but these widths appear to be too
small. For the width of the Kr− (4p55s2 2P1/2) resonance, once again the
BSR47 model gives a significantly smaller total width for this resonance
(15.4 meV) than the DBSR31p calculation (31.9 meV), which accounts for
long-range polarization effects and is in good agreement with experiment.
The large difference in the calculated widths indicates a strong sensitiv-
ity of the results on the details of the model which makes a theoretical
description very challenging. The two models were also used to calculate
the angular dependence of the resonance profiles. Here it was found
that the variation of the experimentally deduced line shapes is well recov-
ered by the BSR calculations, now with a preference for the BSR47 results.
Hoffmann et al. (2010) conclude that further high-resolution experiments
as well as continued theoretical efforts are necessary to fully understand
the intricacies of these collision processes.

5.1.3 Resonances in Electron–Molecule Scattering

The formation of resonances is also of much importance in electron–
molecule collisions. Again, the study of the resonance shapes as a function
of scattering angle is important in determining the energy positions and
hence spectroscopy of the negative ion resonances and also in the determi-
nation of the symmetries of the states. As seen in section 5.1.2, resonances
with relatively large intensity are observed in elastic electron scattering
by the rare gases. In the case of diatomic molecules, such high-intensity
structures have also been detected in elastic scattering above the first elec-
tronic excitation threshold and about 0.5 eV below the excitation threshold
of the first Rydberg states. However, here, measurements are rather scarce
and have been obtained over limited angular ranges. In addition, no for-
malism similar to analyze these molecular structures, similar to that used
for atoms, has been developed. Mielewska et al. (1999) have reported the
use of the MAC to observe resonance structures corresponding to the
(3sσ)2 26+ state in CO and the (3sσg)

2 2σ+g state in N2, in elastic scatter-
ing over the angular range from 95◦ to 180◦. For this study, they used



AAMOP 05-ch01-001-064-9780123855084 2011/9/27 10:00 Page 43 #43

The Use of the Magnetic Angle Changer in Atomic and Molecular Physics 43

the apparatus described by Zubek et al. (1999). The resonance structure
observed for the 26+g state in molecular nitrogen is shown in Figure 22.
This structure appeared on top of a background that varied with energy.
This background was approximated by a second order polynomial, which
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Figure 22 Resonance curves corresponding to the 26+g state in molecular nitrogen,
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backward direction. The scale of the detected yield shows the size of the resonance
structures with respect to the nonresonant background. The full curves show the best
fit obtained for the measured resonance structures using a Shore parameterization.
Reproduced from Mielewska et al. (1999).
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was fitted to the regions below and above the resonance structures and
then subtracted from the measured spectrum. The detected yield in the
presented spectrum shows the size of the structure with respect to the
nonresonant background. The observed structures were analyzed using
a fitting program bases on the Shore parameterization (1968), where the
calculated spectrum has been convoluted with a Gaussian apparatus func-
tion of width 35 meV. The best fit is shown in Figure 22. The resonance
had been previously measured in elastic scattering only at scattering
angles of 40◦ and 85◦. At 45◦, the structure has the shape of dip while at 85◦

it becomes a symmetric structure of a peak followed by a dip. As shown
in shown in Figure 22, which covers the range of scattering angle from
95◦ to 180◦, the resonance structure evolves gradually to form an asym-
metric dip-peak structure at 180◦. This change in shape is more dramatic
than for the corresponding 26+ state in carbon monoxide. Mielewska
attributed this difference to the result of a d-wave contribution besides
the main s-wave in the potential scattering by the nitrogen molecule and
the influence of a small dipole moment of carbon monoxide in electron
scattering.

The formation of shape resonances in molecules, which can dominate
the elastic and vibrational excitation cross sections, has also been
investigated with the use of a MAC. For example, Allan (2005) has
observed the 25g shape resonance in N2 at angles up to 180◦. The shape of
the elastic cross section depends substantially on scattering angle because
of the coherent superposition of the direct and resonant contributions.
More recently, Allan (2010) has investigated elastic and vibrational cross
sections in CO at scattering angles extending to 180◦ and at energies
between 0.2 and 5 eV, the energy region that contains a strong resonant
contribution from the 25 shape resonance.

5.2 Resonances in Inelastic Electron Scattering

It has been emphasized that the scattering of electrons represents a test
of our understanding of electron–atom interactions and the theoretical
treatments of these processes. A particularly sensitive test is provided
by near-threshold excitation where the excitation process is dominated
by resonance structure. A particular point of interest is the coupling of
the various resonance states to specific final states. This was noted in
section 5.1.2 for the 2P1/2 Feshbach resonances in the rare gases. Conse-
quently, a fruitful way to investigate resonances is to measure energy-
differential cross sections for the various final states, i.e., to measure
their excitation functions and to observe the resonance structures over
the complete range of scattering angle, as enabled by a MAC. For the
measurement of excitation functions, the incident electron energy Ei is



AAMOP 05-ch01-001-064-9780123855084 2011/9/27 10:00 Page 45 #45

The Use of the Magnetic Angle Changer in Atomic and Molecular Physics 45

linearly increased from the threshold of the excited state. Simultaneously,
the collection energy Ec of the energy analyzer is linearly increased in
synchronism with the incident energy so that the difference between the
two is maintained equal to the excitation energy Eex of the state under
study, i.e., Ei − Ec = Eex. When a MAC is used in such measurements, the
solenoid currents must be changed to take account of the change in the
incident and scattered electron energies, i.e., that the deflection angle is
constant for changes in Ei and Ec.

5.2.1 Observation of Resonance Structure in the Angle-Differential
Excitation Cross Sections of the 2p53s Levels of Neon

Absolute angle-differential cross sections for electron impact excitation
of the 2p53s and 2p53p levels of neon have been investigated in a joint
experimental and theoretical collaboration (Allan et al., 2009). The theo-
retical work involved the B-spline R-matrix method with nonorthogonal
orbit sets. This work extended an earlier investigation on a subset of
these data on Ne 2p53s excitation (Allan et al., 2006). The energy reso-
lution of the incident beam was 10 meV (FWHM), and the energy loss
peaks had a width of 14 meV, thus permitting the resolution of the four
Ne (2p53s) levels and the majority of the Ne (2p53p) levels. DCS were
measured as a function of electron energy at the scattering angles of 0◦,
45◦, 90◦, 135◦, and 180◦, the angles of 0◦ and 180◦ being obtained with the
use of a MAC. To obtain absolute cross sections, absolute elastic cross
sections were first determined at energies in the range of the resonance
positions, by normalizing to helium using the relative flow technique.
Energy loss spectra containing both the elastic and inelastic peaks were
then recorded at the same incident energies. Absolute inelastic values
were determined from the relative elastic and inelastic signal intensities
after correction for the analyzer response function. The associated uncer-
tainties in the inelastic cross sections are reported to be ±20% for energies
greater than 0.3 eV above threshold and increasing gradually to 50% very
near to threshold. As an example, Figure 23 shows the experimental cross
section for excitation of the four 2p53s levels in neon, obtained at a scat-
tering angle of 180◦, together with the corresponding predictions of the
B-spline R-matrix approach. The absolute magnitude of the experimental
results was determined independently of the theoretical results. Over-
all, theory and experiment agree remarkably well on the shapes, widths,
and energies of the narrow resonant features in the 18.3–19.0 eV range of
incident energies. The difference becomes larger close to threshold which
may be due to the difficulty of determining the response function of the
spectrometer in this region.
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Figure 23 Absolute cross sections for excitation of the four 2p53s levels in neon
obtained at a scattering angle of 180◦. The experimental data are in the left and the
theoretical predictions in the right panel. Reproduced from Allan et al. (2009).

6. COINCIDENCE STUDIES IN ELECTRON IMPACT
EXCITATION AND IONIZATION

6.1 Introduction

We have seen that electron impact excitation of atoms and molecules pro-
vides fundamental processes that allow accurate and detailed comparison
between experiment and theory. These comparisons allow models of the
collision process to be refined and enhanced with the ultimate goal being
the development of a general theory that is applicable over all collision
energies. These considerations also apply to electron impact ionization of
atoms and molecules. Comparison with theory is most exact when, the
momenta and character of the incident electron and the collision products
are measured, since the full differential cross section can then be deter-
mined. In the case of excitation, the scattered electron can be correlated
in time with photons emitted from the excited state in an electron–photon
coincidence experiment (e.g., King et al., 1972; Eminyan et al., 1973). In the
case of ionization, there are three electrons involved: the incident, the scat-
tered, and the ejected electrons. In an (e, 2e) experiment, the momenta of
all three electrons are well defined, and the scattered and ejected electrons
are detected in coincidence (Andersen et al., 1988; McCarthy & Weigold,
1995). Such coincidence experiments can provide the most detailed data
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on electron collision processes for comparison with theory. In both these
types of experiment, the outgoing electrons need to be measured over as
wide a range of angles as possible, ideally extending over the complete
backward hemisphere where the most significant discrepancies between
various theoretical models usually exist. In order to achieve this, MAC
devices have been incorporated into several coincidence apparatus. This
has allowed theory to be tested in angular ranges that were previously
inaccessible to experiment.

6.2 (e, 2e) Experiments

A conventional (e, 2e) apparatus typically consists of an unselected elec-
tron gun and two angle-resolving analyzers, which can be rotated about
the interaction region, as illustrated schematically in Figure 24. In this
figure, the electron gun and the two analyzers lie in the same plane
in the so called coplanar geometry. Analyzer 1 is fixed in position at
angle θa while the angle θb of analyzer 2 is varied. The coincidence count
rate between electrons detected in the two analyzers is then measured
a function of the moveable analyzer to determine the triple-differential
cross section. Clearly, the angular range of the moveable analyzer is
constrained by the presence of the electron gun and the fixed analyzer.
However, the MAC allows the angular range to be increased by deflect-
ing the trajectories of the electrons. Of course, the incident, scattered, and
ejected electrons will in general have different energies and be deflected
by different amounts by the MAC. However, these deflection angles can
be predicted either by computer simulation and/or empirical measure-
ments and so the required positions of the two analyzers can be readily
determined.

Stevenson and Lohmann (1996) and Murray et al. (2006) have applied
the MAC in (e, 2e) experiments. Stevenson and Lohmann measured the
triple-differential cross section for electron impact ionization of argon 3s
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Faraday

cup

E0 k0
kb

ka Ea

N2 Target

Analyzer 2
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Figure 24 The coplanar geometry in an (e, 2e) coincidence experiment, where one
analyzer is fixed in space. Reproduced from Murray et al. (2006).
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in the backward direction. Murray et al. (2006) made ionization measure-
ments from the 3σg and 2σ ∗u states of molecular nitrogen. The aim of the
work of Murray et al. was to look for a Young’s type interference effect in
the fully differential cross sections for ionization of the 3σg and 2σ ∗u states
at large scattering angles as predicted by Gao et al. (2005). The theoret-
ical prediction is that there should be a strong interference peak for the
3σg ionization at an angle of 180◦, when the scattered electron leaves the
interaction region at a small angle with respect to the incident electron
beam, i.e., that the coincidence yield should show a maximum when θa

is small and θb is close to 180◦. The (e, 2e) spectrometer used by Murray
et al. has a range for θb of 22◦ to 140◦ without the MAC. With the inclu-
sion of the MAC, the range of θb is extended from near 0◦ to about 170◦,
thus allowing the theoretical prediction to be tested. Figure 25 shows the
ionization differential cross section for the 3σg state of N2, measured with-
out the use of the MAC. These data were collected with θa = 22◦ and θb

ranging from 30◦ to 140◦ as mechanically constrained by the spectrometer.
Here, the incident electron energy is 75.6 eV, and both outgoing electrons
have an energy of 30 eV. Figure 26 shows the experimental data with
the MAC switched on. Again θa = 22◦ but now the range of θb has been
extended to 10◦ to 170◦. The experimental results do show a peak in the
vicinity near 180◦ in addition to the normal binary peak. Moreover, by
including polarization effects in the theoretical description, the predicted
interference peak is approximately the same size as the measured cross

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150

N
or

m
al

iz
ed

 c
ro

ss
 s

ec
tio

n

Analyser angle (deg)

E0= 75.6eV
θa= 22°

No magnetic field

Figure 25 Ionization differential cross section for the 3σg state of N2, measured
without the use of the MAC. The forward scattering angle is 22◦ and the incident
energy is 75.6 eV. Both electrons have an energy of 30 eV. Reproduced from Murray
et al. (2006).
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Figure 26 Ionization differential cross section for the 3σg state of N2, measured with
the use of the MAC. Reproduced from Murray et al. (2006).

section. The results of the experiment support the possibility of a Young’s
type interference effect in this case. Although the results using the MAC
are very similar to those collected with the magnetic field switched off,
small differences can be seen. In particular, the minimum at θb ≈ 115◦ is
not as deep when the field is absent, and there is a slight enhancement of
the cross section for scattering angles in the range from 125◦ to 140◦.

6.3 The Electron–Photon Coincidence Technique and Superelastic
Scattering

As mentioned in section 6.1, the electron–photon coincidence technique
gives very detailed information about electron impact excitation pro-
cesses. In this technique, the scattered electron is detected at a given
angle and is time correlated with a photon emitted from the excited
target. The momenta of the incident and scattered electrons define the
scattering plane, and the polarization of the correlated photon is deter-
mined, so that a complete description of the radiated light is determined.
The coincidence technique therefore effectively selects a small subset of
all possible scattering events, allowing accurate comparison with theory.
Klosowski et al. (2007) have described a MAC for use in electron–photon
coincidence measurements and tested its performance on the 21P1 state of
helium at an electron energy of 100 eV. Of note is that their MAC design
has a nearly zero magnetic field at its axis, i.e., at the interaction region,
which avoids any influence of the field on the evolution of the excited
state or on the coincidence measurements. Klosowski et al. found that
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results obtained with and without the use of the MAC were in good agree-
ment where comparison could be made. Subsequently, Klosowski and
coworkers reported further measurements of the electron-impact coher-
ence parameters for electron–helium scattering over the full range of
scattering angles (Klosowski et al., 2009).

Although the electron–photon coincidence technique is a very pow-
erful method for the determination of detailed cross sections, it suffers
from low detection efficiencies as do other coincidence methods. This
is because they are by their very nature highly selective in the energy
and momentum of the process under study. In the case of the electron–
photon coincidence technique, the atom that scatters the detected electron
may not radiate to the photon detector, in which case no event regis-
ters. An alternative method that provides equivalent information is the
superelastic experiment, which can be considered as the “time reversal”
of the electron–photon coincidence technique. In the superelastic tech-
nique, the atom is initially excited using laser radiation of well-defined
polarization, which is directed orthogonal to the scattering plane. The
incident electrons are directed in the opposite direction to those detected
in the corresponding coincidence experiment (Farrell et al., 1988), while
the electron detector is located where the source would be. The detector
measures superelastically scattered electrons that have equal energy to the
incident electrons in the corresponding coincidence experiment. Data are
accumulated by counting the rate of superelastically scattered electrons
as a function of the laser polarization. The signal counting rates from
superelastic scattering experiments are many times greater than those
from coincidence measurements because the laser photons are directed
in a single, well-defined direction. The apparatus used by Hussey et al.
(2007, 2008) for superelastic measurements is shown in Figure 27. It com-
bines an angle-resolving electron spectrometer with a MAC and enabled
Hussey et al. to investigate superelastic scattering in the backward scat-
tering hemisphere for the first time. They studied electron impact of the
41P1 state of calcium from near 0◦ to 180◦, over the energy range 45 to
55 eV. The calcium beam is produced by a well-collimated oven. The excit-
ing laser enters the vacuum chamber through a window in the top flange
and is accurately directed through the interaction region. For excitation
of a P state, the parameters of interest are the angular momentum Lperp

transferred to the charge cloud during the interaction, the angle γ of the
charge cloud with respect to the incident electron direction and Plin which
defines the “length” to “width” of the charge cloud. Lperp is determined
from the ratio of superelastically scattered electrons produced by chang-
ing the handedness of circularly polarized laser radiation, whereas γ and
Plin are determined using linear radiation. Without the MAC, the angu-
lar range of the analyzer is from near 0◦ to 145◦ whereas application of
the MAC extends this to range to greater than 180◦. One consequence of
the MAC is that the excited substates of the target atom are no longer
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Figure 27 The superelastic apparatus described by Hussey et al. (2007). Calcium
atoms emitted from the oven are laser excited by the input laser beam. The electron
gun is located next to the oven, and the analyzer rotates on a turntable driven by a
rotary feedthrough. The MAC solenoids surround the interaction region as shown.
Reproduced from Hussey et al. (2007).

degenerate, and this had to be taken into account in tuning the laser
wavelength and analyzing the data. Figure 28 shows the results of the
experiment and the derived values of the angular momentum parameter
Lperp for outgoing electron energies of 45 and 55 eV. These results include
data taken with and without the application of the MAC as indicated.
The results with and without the MAC operating are in close agreement
where overlap exists. At 45 eV, the results are compared to the superelas-
tic scattering data of Law and Teubner (1995) and the earlier coincidence
measurements of Kleinpoppen and coworkers (El-Fayoumi et al., 1988). It
is clear that the quality of the superelastic measurements is much greater
than that of the coincidence measurements, which have difficulties with
low counting rates and long data accumulation times. Also shown are the
measurements at 55 eV, which required a larger magnetic field. The DWBA
calculations of Stauffer and coworkers (Chauhan et al., 2005), convoluted
with the experimental angular response, are also shown for comparison.
It is clear that this model is in very good agreement with the superelastic
data, apart from the minimum close to 60◦, which is underestimated, and
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Figure 28 Derived values of the angular momentum parameter Lperp for outgoing
electron energies of 45 and 55 eV, for scattering angles from 0◦ to 180◦. The results
include data taken with and without the application of the MAC as indicated. At 45 eV,
the results are compared to the superelastic scattering data of Law and Teubner
(1995) and the coincidence measurements of Kleinpoppen and coworkers (El-Fayoumi
et al., 1988). The theoretical calculations of Stauffer and coworkers (Chauhan et al.,
2005) are also shown. Reproduced from Hussey et al. (2007).

also the minima at the higher angles, which are overestimated. The max-
ima and their positions are well reproduced. In particular, the sharp peak
at 150◦, which is observed for the first time experimentally, is in very good
agreement with theory.
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7. PHOTOELECTRON SPECTROSCOPY

7.1 Advantages of the MAC for Photoelectron Spectroscopy

So far, the use of the MAC for electron impact studies has been described.
Another important application is its use in photoelectron spectroscopy
of atoms and molecules. This technique provides spectroscopic informa-
tion for atomic and molecular ions, giving a direct measurement of the
binding energies of electron orbitals. In addition, the angle of ejection
of the photoelectrons provides information about the symmetry of the
orbitals. Traditionally, angle-resolved photoelectron spectroscopy is per-
formed with an energy analyzer that rotates about the interaction region
of the gas and photon beams and measures the photoelectron intensity at
various angles of emission. For synchrotron radiation sources, unlike for
UV laboratory sources, the analyzer usually rotates in the plane perpen-
dicular to the photon beam direction. Consequently, the energy analyzer
is able to rotate over most of the 0◦ to 360◦ angular range in that plane, con-
strained only by the presence of the target gas nozzle. However, even here,
the MAC offers valuable advantages. With the MAC there is no longer
the need to rotate the analyzer, and so mechanical movement of the ana-
lyzer in the vacuum system is avoided. Instead, the angular behavior of
the photoelectrons can be determined by varying the solenoid currents,
and this can readily be done under computer control. Moreover, the use
of an energy analyzer with a large mean radius is facilitated if the ana-
lyzer is not required to move in the vacuum system. The energy resolution
of a hemispherical deflector analyzer depends on the ratio of the size of
the entrance aperture and mean radius of the hemispheres. Consequently,
higher energy resolution is obtained when the mean radius is increased.
A fixed analyzer also means that it can be fitted with a bulky detector,
for example, a Mott detector for spin analysis of the detected photoelec-
trons. It is also the case that there are studies where it is useful to measure
the photoelectron angular distribution in the plane containing the pho-
ton beam direction, including photoelectron spectroscopic studies with
UV lamps. With conventional spectrometers, it is not possible to move
the energy analyzer into the direction of the photon beam. However, the
MAC does allow this, in an analogous way to its use in electron impact
studies.

7.2 Photoelectron Spectroscopy

7.2.1 Photoelectron Spectroscopy of Atoms: The Study
of Autoionizing Resonances

The first use of the MAC in photoionization experiments was made by
Cubric et al. (1997) who measured photoelectron angular distributions in
xenon. In particular, they determined the angular distribution pattern for
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the Xe+ 2P3/2 ionic state in the region of the 5s2 5p6
→ 5s5p5 np autoioni-

zing resonances. These resonances correspond to highly excited neutral
states where an electron is promoted from a subvalence shell to an unfilled
orbital. Subsequently, Cubric and coworkers made analogous measure-
ments of resonances lying between the 2P3/2,1/2 states of Kr+ and Xe+

(Cooper et al., 2000). The autoionizing resonances of the rare gases are
of interest because they are crucial to the understanding of the coupling
of bound states with underlying ionization continuum. The heavier rare
gases are particularly fruitful for study because of the dominant roles
played by relativistic and correlation effects. The use of photoelectron
spectroscopy in the study of these resonances brings several important
advantages. The resonances invariably decay to more than one final ion
state, and the use of photoelectron spectroscopy allows these various
channels to be isolated and individual, partial ionization cross sections
to be measured. These partial ionization cross sections can be markedly
different from each other, especially for the heavier rare gases. Moreover,
the angular distributions of the photoelectrons provide particularly sensi-
tive and detailed information about the resonances. The differential cross
section for photoionization of an atom by partially polarized radiation, in
the dipole approximation, is given by

dσ
d�
=

σ

4π

[
1+

1
4
β(1+ 3Pcos2θ)

]
(10)

where θ is the angle between the photon electric field vector and the
direction of photoelectron ejection, σ is the partial cross section for pho-
toionization, and P is the degree of linear polarization of the photon
beam. β is the angular distribution asymmetry parameter. Its value can
be deduced using Equation (10) by measuring the ratio of the photoelec-
tron intensity at two values of θ . β depends on relative phases as well
as magnitudes of photoionization amplitudes. Comparisons of theoretical
predictions of β with experiment therefore place additional constraints on
theory beyond those for cross section comparisons and are an important
avenue to understand the finer details of the ionization process.

The apparatus initially used by Cubric and coworkers (Cooper et al.,
2000; Cubric et al., 1997) consists of a compact electron spectrometer based
on a 127◦ cylindrical deflector analyzer (Hall et al., 1992) coupled with
a three-solenoid MAC system. The spectrometer provides the necessary
range of photoelectron kinetic energy at an energy resolution of typically
50 meV and an angular resolution 10◦. The experiments were carried out
at the Daresbury Laboratory SRS using a 5-m McPherson monochromator,
which provided photons over the range of interest with a resolution of
typically 15 meV. The measurements were made as continuous functions
of both photon energy and photoelectron ejection angle. Interestingly, this
work involved photoelectron energies down to typically 100 meV. Even
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at these relatively low kinetic energies, the MAC performed as computer
simulations predicted and the measurements demonstrated the successful
operation of the MAC in near-threshold photoionization studies. To test
the performance of the apparatus, the angular distribution of the He+N =
1 state was measured, which has β = 2 for all photon energies. The results,
obtained at a photon energy of 27.6 eV, are shown in Figure 29.

The open circles correspond to the measurements obtained with the
spectrometer operating in the conventional mode, where the analyzer was
rotated mechanically. The full circles correspond to the measurements
obtained using the MAC. In this latter mode of operation, the analyzer
is placed at a fixed angle of 45◦ with respect to the polarization axis of
the photon beam as illustrated in Figure 30. Magnetic deflections of ±45◦

are then obtained by passing appropriate currents through the solenoids
and reversing the polarity of the voltages applied to the solenoids. This
gives observation angles of 0◦ and 90◦, respectively, and ensures that any
asymmetries in the magnetic field cancel out in the deduced value of the
intensity ratio. It can be seen from Figure 29 that the two sets of data are
in good agreement with the full curve, which corresponds to the expected
distribution for β = 2 and the polarization of the photon beam P = 0.6.
The small disagreements in this data set were attributed to deflector set-
tings in the electron optics system, which were subsequently corrected in
the experiments on krypton and xenon. The variation of the β-parameter
and the partial ionization cross section for the 2P3/2 state of Xe+ (Cooper
et al., 2000) is shown in Figure 31. This covers the energy region from the
7d’/9s’ autoionizing resonances up to and beyond the Xe+ 2P1/2 ionization
threshold at 13.44 eV. The sharp step-like feature in the partial ionization
cross section is attributed to the new ionization channel opening, but no
dramatic feature in the β-parameter variation occurs at this threshold. The
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Figure 29 Angular distribution measurements of the He+ N = 1 state at a photon
energy of 27 eV. The open circles show the results obtained with the analyzer rotated
mechanically and the full circles show the results obtained using the MAC.
Reproduced from Cubric et al. (1997).
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Figure 30 The relative positions of the MAC and the hemispherical deflector
analyzer for the measurement of photoelectron angular distributions. The analyzer is
fixed in position and at an angle of 45◦ with respect to the polarization axis of the
photon beam.
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β-parameter data have improvements in both statistical accuracy and in
photon energy resolution over previous studies and extend the previous
work up to the 2P1/2 ionization threshold. Interestingly, the β-parameter
spectrum shows up features that are not visible in the partial ionization
cross section. For example, it is possible to see the 14s’ resonance only
in the β-parameter spectrum. A full interpretation of the β-parameter,
based on experimental data alone, is not straightforward since, for exam-
ple, there are significant spin-orbit and configuration-interaction effects,
and there is a strong need for further theoretical work.

7.2.2 High-Resolution Photoelectron Studies of H2

Cubric and coworkers subsequently developed a photoelectron spec-
trometer consisting of a three-solenoid MAC and a fixed hemispherical
deflector analyzer with a large mean radius of 165 mm (Cubric et al.,
2002). The analyzer is coupled with a four-element cylindrical lens that
transports the photoelectrons to the entrance slit of the analyzer. In par-
ticular, the large radius of the analyzer provides a high energy resolution
of ∼10 meV. Juarez et al. (2005) have used this spectrometer to measure
for the first time with full rotational selection, photoelectron angular dis-
tributions in H2 and their dependence on photon energy. In particular,
the transitions X16g(v = 0, N = 0)→ X26+g (v

+
= 0, N+= 0, 2)were studied

over the energy range 15.47 to 15.75 eV, where resonance structure domi-
nates the direct ionization continuum. The experiment was undertaken at
the Gasphase beamline at the Elettra Synchrotron Radiation Source, Italy,
which provides the high photon resolution (∼3 meV), high light inten-
sity, and high degree of linear polarization (∼100%) that is necessary for
the experiment. This rotational state-selective work involved the delivery
of para-H2 gas to the target region, which was cooled by liquid nitrogen.
This resulted in a target region surrounded by bulky mechanical compo-
nents where the ability to use a fixed-position energy analyzer was a great
advantage.

7.2.3 Photodouble Ionization

With the advent of synchrotron radiation sources, which provide tun-
able UV radiation, attention has increasingly been focused on the process
of photodouble ionization in atoms and molecules. In photodouble ion-
ization, two photoelectrons are ejected simultaneously and a major aim
of the work is to study the correlations between these two outgoing
electrons (e.g., Briggs & Schmidt, 2000; King & Avaldi, 2000). The electron–
electron correlations are reflected in the angular behavior of the two
photoelectrons. These behaviors can be investigated in an apparatus con-
taining two angle-resolving analyzers. Here, the two photoelectrons are
detected in coincidence in a (γ , 2e) experiment, in an analogous way
to (e, 2e) experiments in electron impact ionization. In addition to the
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advantages listed for single photoionization experiments, the MAC brings
an additional advantage to these photodouble ionization studies, since
an important case occurs where the two photoelectrons are ejected in the
same direction. Then, the Coulomb interaction between them is strongest.
This case cannot be viewed using a conventional setup of two analyzers
but it can be with the inclusion of a MAC so long as the energies of the
two photoelectrons are unequal. So far, this advantage does not seem to
have been exploited in photodouble ionization experiments.

8. CONCLUSIONS

The MAC was invented for the measurement of DCS in elastic electron
scattering over the complete backward hemisphere. Since then its use
has been extended to a variety of experimental studies in atoms and
molecules, including inelastic electron scattering and vibrational exci-
tation, resonances in electron scattering, coincidence measurements in
electron impact excitation and ionization, and photoelectron spectroscopy.
The MAC has enabled measurements to be made in angular regions,
which were previously inaccessible to conventional electron spectrom-
eters that employ hemispherical deflector analyzers. In turn, this has
allowed more complete comparisons of theory with experiment. In addi-
tion, the MAC has enabled DCS measurements to be integrated over an
extended (or even complete) angular range to produce more accurate
determinations of integral and momentum transfer cross sections, which
are important in a variety of technological applications. It may be expected
that the MAC will continue to be an important experimental tool in these
areas, but there may be other applications where a localized magnetic field
is useful. The focusing properties and aberrations of the MAC have been
investigated for electrons that lie in the plane perpendicular to the central
axis of the MAC. Less attention has been paid to the focusing properties of
the MAC for electrons that move out of this plane. Further computational
simulation studies would be beneficial in this respect.
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Abstract We describe the use of x-ray induced fluorescence to study
metal-halide high-intensity discharge lamps and to measure
equilibrium vapor pressures of metal-halide salts. The phy-
sical principles of metal-halide lamps, relevant aspects of
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x-ray–atom interactions, the experimental method using syn-
chrotron radiation, and x-ray induced fluorescence measure-
ments relevant to metal-halide lamps are covered.

1. INTRODUCTION

Just over 10 years ago, x-ray induced fluorescence (XRIF) was used for the
first time to measure and map gas-phase densities in a commercial high-
intensity discharge (HID) lamp (Curry et al., 2001). This work opened up a
new window on important processes affecting lamp performance. It may
also have been the first successful use of XRIF to measure vapor densi-
ties below 1017 cm−3. The success of those measurements owed much to
an x-ray source that had just become available at the then relatively new
Advanced Photon Source. Since then, XRIF has been used several more
times to further explore the physics of metal-halide high-intensity dis-
charge lamps and related processes. This chapter describes that work, all
of which has been in collaboration with the lighting industry.

High-intensity discharges, also referred to as high-pressure arcs, play a
role in many technologies including general purpose lighting, materials
processing, sterilization, environmental remediation, and spectrochem-
istry. The focus here will be on high-intensity discharges used for lighting
applications. Metal-halide high-intensity discharge (MH-HID) lamps, or
metal-halide lamps for short, are among the most advanced general pur-
pose light sources available (Hong et al., 2002 and 2005). These lamps
combine a high luminous efficacy1 with excellent color rendering2 and are
used in a number of places where intense sources are needed.3 The desires
of lighting companies to produce more profitable lamps, of government
agencies and public utilities to reduce energy consumed by lighting, and
of scientists to improve general knowledge of plasma physics have made
metal-halide lamps a topic of considerable scientific and engineering inter-
est for at least the last few decades (ALITE, 2006; ICF, 2006). This interest
has motivated the development and refinement of a number diagnostic
methods in search of better and more detailed information about these
complex systems. Diagnostics utilizing x rays are a small subset of the
available methods, but a very powerful subset.

The combination of terms “x ray” and “high-intensity” frequently
produces an initial misconception that the “x rays” are produced by

1A quantitative measure of the illuminating efficiency of a light source (see Luminous efficacy in the
Glossary for more detail).

2A quantitative measure of the ability of a light source to properly render all colors (see Color rendering
in the Glossary for more detail).

3Metal-halide lamps are used to illuminate streets and parking lots, buildings and monuments,
stadiums, large indoor spaces, and even high-end retail merchandise.
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the “high-intensity” discharge; one thinks of laser-produced plasmas or
pulsed-power discharges, from which x rays are indeed emitted by the
plasma and are also used for diagnostic purposes. High-intensity dis-
charges are high-pressure plasmas in which electrons and heavy particles
have the same or nearly the same temperature, with that temperature gen-
erally being less than a few electronvolts. In metal-halide lamps, these
temperatures are usually less than one-half an electronvolt,4 far too low
to generate a substantial amount of ultraviolet radiation, to say nothing of
x rays. The x-ray methods used to study high-intensity discharges and
metal-halide lamps utilize external sources of x rays. X-ray absorption
imaging has been demonstrated with both synchrotron radiation (Curry
et al., 2004) and with commercial x-ray tubes (Curry et al., 1998), whereas
x-ray induced fluorescence (XRIF) relies on synchrotron radiation (Curry
et al., 2003b). The latter is the subject of the present discussion.

XRIF is neither new nor unfamiliar to the broader scientific commu-
nity, but its application to the study of metal-halide lamps is novel and
presents some special challenges. The densities of atoms being detected
are small compared to typical applications; we are interested in densities
as low as 1015 cm−3. Such sensitivities are made possible by the availabil-
ity of third-generation synchrotron sources, such as the Advanced Photon
Source (APS) at Argonne National Laboratory. It is possible to obtain spa-
tially resolved measurements of relatively low vapor densities in a matter
of tens of seconds.

An intense, laser-like beam of high-energy photons like that obtainable
at the APS is not required for XRIF measurements but is so powerful that
it makes measurements with lesser sources relatively insignificant. Unfor-
tunately, the considerable effort and resources required to competitively
obtain access to and operate a remote experiment at an appropriate syn-
chrotron facility put such measurements beyond the reach of many. Most
synchrotrons are publicly funded institutions with a responsibility and
mission to serve scientific and industrial endeavors, but they are still a
limited resource.

X-ray methods are far from being the answer to all questions in metal-
halide lamps. They are, however, a considerably different set of tools with
capabilities that are both powerful and complementary to existing meth-
ods. As will be seen, they can answer questions that are important and
cannot be answered with other methods. In some ways, the significance
of the answers they provide has not been fully appreciated because the
theoretical approaches and interpretations have for so long been focused

4The electronvolt (eV) is a non-SI unit of energy equal to 1.60217733× 10−19 J. It is accepted for use with
the International System of Units (SI) by the International Committee for Weights and Measures (CIPM).
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on the answers that are provided by existing methods. This situation has
changed slowly, but we hope the change will continue.

At present, the lighting industry is undergoing somewhat of a
revolution in technology. The development of blue, green, and even ultra-
violet light-emitting diodes (LEDs) has led to the development of LEDs
as general purpose light sources to compete with other traditional tech-
nologies like metal-halide, fluorescent, halogen, and incandescent lamps.
There are a number of medium- to low-wattage LED lamps on the mar-
ket that exhibit good luminous efficacy and color rendering. Much of the
excitement in the industry and the public arises from the rapid rate of
improvement in LED lamps over the last decade and the hope that eventu-
ally LEDs can be fabricated to meet any desired performance specification
at competitive cost. If that hope becomes reality, LEDs may displace
all existing technologies. Although LEDs have already made significant
inroads into the lamp market and will probably continue that trend for
some time as additional advances occur, a complete displacement of all
existing technologies is no closer than a couple of decades and, in our
opinion, is not likely to ever happen. The historical lesson in the lighting
industry is that the market has always been diverse, matching the diverse
performance of various light sources to the exacting requirements of cus-
tomers. Candles and oil lamps, as an extreme example, are still made and
marketed for their ambiance as well as muted illumination.

There is still much that can be learned about high-intensity discharges
and metal-halide lamps. X-ray methods have and will continue to play
a role in that process. Furthermore, the techniques themselves are not
static and will experience development. It is our hope that this chapter
encourages more work in this area.

We begin this chapter by discussing metal-halide high-intensity dis-
charge lamps; the motivation for the use of XRIF and x-ray methods in
general derives directly from the characteristics of the lamps themselves.
An understanding of the physical structure and operational regimes of
the lamps will enable an appreciation for many of the points to be made
regarding XRIF. This is followed by a review of the atomic physics relevant
to understanding how the technique works. Finally, we review appli-
cations of XRIF to measurements in operating metal-halide lamps and
to the measurement of equilibrium vapor pressures of metal halides in
vapor cells.

2. HIGH-INTENSITY DISCHARGES AND METAL-HALIDE
LAMPS

High-intensity discharges (HID) are arc-like plasmas formed by a rela-
tively intense concentration of power in a high-pressure vapor (typically
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the ambient pressure and above). The term is frequently associated with
lamps and electroded discharges but rightfully applies to a more gen-
eral class that also includes some electrodeless radio-frequency excited
discharges and other plasma sources not used for lighting. In fact, elec-
trodeless high-intensity discharges found use in atomic spectroscopy
(Corliss et al., 1953) before metal-halide lamps became commercially avail-
able in the 1960s (Reiling, 1964). More recently, the lighting industry has
seen the development and patenting of electrodeless HID lamps (Hochi
et al., 2001; Palmer & Lapatovich, 2000; Turner et al., 1997), but they have
not yet been developed into widespread products because of limitations
on available power electronics.

High-intensity discharges for practical lighting applications include
mercury arc lamps, high-pressure sodium (HPS) lamps, and metal-halide
lamps. The vapor in all of these lamps is primarily mercury but also
includes a lesser amount of a rare gas such as argon, which plays an
important role during startup. Mercury arc lamps have no further addi-
tives and, as such, are somewhat inefficient and prone to producing a
bluish-white light with rather poor color rendering properties. HPS lamps
contain sodium metal in addition to mercury, and the rare gas used is
xenon. These are very efficient lamps with luminous efficacies of 120–150
lm/W. However, the radiated light is largely from the pressure-broadened
wings of the yellow sodium “D” lines. At 589 nm and 590 nm, these lines
closely match the peak of the eye sensitivity curve (see Figure 1) near
550 nm, accounting for the high luminous efficacy. The domination of
the yellow “D” lines gives HPS lamps poor color rendering (30 to 40)
(de Groot & van Vliet, 1986).
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Figure 1 The eye sensitivity curve defines the number of lumens produced by 1 W of
light at a given wavelength. It represents the response of a human eye to
electromagnetic radiation.
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Metal-halide lamps are a particular type of high-intensity discharge
lamp widely used in general illumination applications where high illu-
mination levels or exceptional color rendering are necessary. These lamps
contain, in addition to elemental mercury and a rare gas, some metal-
halide salts.5 Metal-halide salts are a mechanism for introducing various
metals into the discharge for the purpose of improving the luminous
efficacy and color rendering of the lamp. Metal-halide salts are used in
preference to elemental metals themselves because the vapor pressures
of the salts are much higher than that of the metals. This permits the
metal-halide lamp to operate at lower temperatures than would otherwise
be necessary. The iodide salts are almost exclusively used in electroded
lamps because of the limited reactivity of iodine with metal electrode com-
ponents. In electrodeless lamps, bromides, chlorides, interhalogenated
compounds, and oxyhalides may be used since there are no metallic
electrodes in the discharge with which to react.

Our work has been focused on metal-halide lamps, and therefore this
chapter will be as well. Much of what is discussed, however, may be
applied to the broader class of high-intensity discharges. There are a
number of excellent general articles on the operation and characteristics
of metal-halide lamps (Ingold, 1987; Lister & Waymouth, 2002; Sugiura,
1993; Waymouth, 1971, 1991). A particularly good one is the general
review of discharge lamps by Lister et al. (2004). An older article by Dakin
et al. (1989) titled “Anatomy of a vertical metal-halide discharge” is also
highly recommended.

A schematic of a typical, modern metal-halide lamp appears in
Figure 2. The heart of a metal-halide lamp is the ceramic or vitreous sil-
ica arc tube. Lamps with the latter are often referred to as quartz lamps.
Ceramic arc tubes are almost always constructed of densely sintered alu-
mina grains with an average size between 0.02 mm and 0.05 mm. The
sintered material is called polycrystalline alumina (PCA). Its hexagonal
crystal structure results in a translucent arc tube. In contrast, vitreous silica
makes a transparent glass arc tube. For applications requiring a transpar-
ent ceramic arc tube, cubic material such as yttrium oxide or dysprosium
oxide may be sintered to transparency (Rhodes & Reid, 1979; Wei et al.,
2008).

The arc tube is a sealed vessel, equipped with two opposing electrodes
as shown in Figure 2. Before the tube is sealed, it is dosed with several
milligrams of mercury, a few milligrams of a combination of metal-halide
salts, and approximately 104 Pa of a rare gas. The arc tube is mounted

5Hg-free metal-halide lamps have been developed and are commercially available but have a much
smaller market share than mercury-based metal-halide lamps.
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Figure 2 Schematic of a typical low to medium wattage metal-halide high-intensity
discharge lamp.

inside a hard glass jacket that absorbs ultraviolet radiation (produced dur-
ing startup), provides thermal management for the arc tube, and provides
some mechanical protection in case of failure of the arc tube. Sometimes,
an internal shroud is used in close proximity to the arc tube to provide
additional control and safety. The UV starting aid shown in Figure 2 short-
ens lamp ignition times by producing ultraviolet photons that enter the arc
tube and ionize a few rare gas atoms, thus providing the initial electrons
for discharge breakdown.

Modern metal-halide lamps are almost entirely driven by electronic
ballasts that ignite the discharge with a high-voltage pulse or radio-
frequency pulse train and drive the discharge with an audio frequency
square wave or modified square wave. Some ballasts employ sinusoidal
driving waveforms at a few MHz. The lamps are made and marketed in a
wide range of sizes, from 10 W to 10s of kilowatts.

The vapor pressure of mercury at room temperature is a few tenths of
a pascal, so if the lamp is ignited under these conditions, the discharge is
initially a low pressure Hg glow discharge, much like that in a fluorescent
lamp. At low pressure, Hg emits copious amounts of ultraviolet light at
254 and 185 nm (this is the basis for the fluorescent lamp). Ultraviolet pro-
tection by the glass jacket is absolutely essential if the lamp is located near
people. The voltage across the discharge is relatively low at this point, so
the power deposited is not at its full value. Nevertheless, heat from the
discharge is sufficient to evaporate additional mercury, thereby increas-
ing the mercury vapor pressure and consequently the power deposited
in the discharge. At some point (usually when the mercury pressure
is above 105 Pa and at wall temperatures of around 800 K), the diffuse
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low-pressure discharge will constrict and transition to a high-pressure
arc or high-intensity discharge. Before the lamp reaches final operating
temperature, the mercury is typically completely evaporated, with final
pressures in the arc tube in the range of a few or more times atmospheric
pressure, depending on the lamp design. As the temperature continues
to increase (>900 K), the arc tube becomes hot enough to raise the metal-
halide vapor pressures to significant levels. The metal-halide molecules
evaporate from the solid or liquid salt and diffuse into the discharge. The
introduction of the metal-halide salts into the arc stream alters the dis-
charge in many ways. The average ionization energy of the plasma species
decreases, and the plasma core temperature drops. This results in reduced
heat flux to the wall, and the arc tube temperature begins to level off. The
cold spot, or cold zone, temperature reaches a steady state at approxi-
mately 1200 K. More importantly, the radiation output increases (more
electrical power is converted to light and less into heat) and the color
changes from the “blue-white” characteristic of mercury to a more pleas-
ing “warm-white” with greatly improved color rendering as radiation
from the metal additives fills out the spectrum.

Electric power is deposited along the axis of the lamp, between the
electrode tips, where the electrical conductivity is highest. This esta-
blishes a radial temperature gradient in the approximately cylindrical
lamp geometry as the input power is partitioned between thermal energy
and radiation that escapes the lamp. In warmer regions of the discharge,
salt molecules are dissociated to varying degrees. In the core of the arc,
where temperatures are the highest (≤5300 K), the molecules are com-
pletely dissociated, releasing metal atoms into the vapor. Temperatures
are even high enough to ionize a large fraction of the metal atoms. Those
free metal atoms and their ions are largely responsible for the high lumi-
nous efficacies and excellent color rendering characteristic of metal-halide
lamps.

Specific metals are used in the salts because of their strong emission in
the visible range of the spectrum. Some common examples of metal-halide
salts appearing in commercial lamps are given in Table 1. The rare-earth
elements are prominently represented because they have rich visible spec-
tra. Dysprosium, holmium, thulium, and scandium have been widely
used for at least a couple of decades. More recently, cerium has produced
dramatic improvements in luminous efficacies. A number of one- or two-
electron type atoms such as sodium, cesium, calcium, and indium are also
used. These atoms tend to have strong resonance transitions as opposed
to the complex spectra of the rare earths. Typically, a combination of these
salts is used in a given lamp to optimize luminous efficacy and color ren-
dering or produce a certain color temperature. The operation of a lamp
depends strongly on the vapor pressures of the salts. These vapor pres-
sures are often strongly modified by the presence of other salts in the melt
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Table 1 Some common metal-halide salts used in metal-halide lamps and comments
on their function.

Metal-Halide Salt Comments

NaI Resonance emission near peak of eye sensitivity curve;
improves efficacy; reduces core temperature.

DyI3 Multiline atomic spectrum and molecular continuum;
improves efficacy and color rendering; reduces core temperature.

HoI3 Multiline atomic spectrum and molecular continuum;
adjusts color temperature; improves efficacy.

TmI3 Multiline atomic spectrum and molecular continuum;
adjusts color temperature; improves efficacy.

CeI3 Multiline atomic spectrum and molecular continuum;
dramatically improves efficacy and color rendering.

CaI2 Dilution agent and filler;
adjusts viscosity of liquid fill.

ZnI2 Alternative to Hg for high electrical impedance.

and in the vapor phase. Formation of complexes (weakly-bound combina-
tions of molecules) between different metal halides in the vapor phase can
increase the vapor pressures of some salts sufficiently to improve spectral
output or modify temporal behavior (warm-up time) of the lamp.

The temperature in the core of the discharge in a metal-halide lamp
is in the same range as the photosphere of the Sun: 4500–6000 K, with
the lower end being more typical of lamps having a high alkali content.
Moving outside the core, into the mantle of the discharge, temperatures
decrease rapidly—approximately quadratically—and the lamp geometry
is chosen so that temperatures at the wall do not exceed the capability of
the arc tube while it is under the extreme pressures produced by the mer-
cury vapor. For polycrystalline alumina (PCA) arc tubes, the maximum
wall temperature is about 1300 K. For fused quartz, it is only 1120 K. In
a vertically operating lamp, the metal-halide salts eventually accumulate
in the coolest parts of the arc tube, usually in a lower corner, or in the
sealing area where the electrode enters the arc tube. The liquid salts are
viscous and wet the interior surface of the arc tube but have a consistency
more like honey. Droplets of salt can adhere to regions of the arc tube and
resist gravity. The lamps are symmetrical with respect to the geometrical
equator, so the colder areas near the lower electrode are replicated near
the upper electrode seal region despite internal convection. The notion of
a cold spot is too simplistic as the salts are always observed to cover a
substantial area within the arc tube. The salts reside in a cold zone with a
distribution of temperatures. Consequently salts are frequently observed
in the upper and lower portions of the arc tube, although gravity tends
to pool the salts in the lower part of the tube. Temperatures in the cold
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zones are typically in the range of 1020–1200 K. The highest cold zone
temperature determines the vapor pressures of the metal-halide salts in
the surrounding volume. If the lamp were in complete equilibrium, these
vapor pressures would be a constant throughout. Plasma and hydrody-
namic effects frequently conspire to produce spatially dependent vapor
pressures, as well as differences between various metals. The latter phe-
nomenon is referred to as demixing and is almost always detrimental to
the operation of the lamp.

Mercury, being at high pressure, is the most abundant constituent in the
metal-halide arc. However, it produces only a small fraction of the radia-
tion because temperatures in the core are too low to excite the resonance
levels of mercury. The role of mercury is to increase the electrical and ther-
mal resistivities of the arc. A large electrical resistivity makes it possible
to dissipate a high level of power in the arc without increasing cur-
rent. Mercury’s relatively large electron impact momentum transfer cross
section enhances the electrical resistance of the arc. The large cross section
also facilitates equilibration of kinetic energy between heavy particles and
electrons. Although some work has shown a modest divergence of elec-
tron and heavy particle temperatures (Elloumi et al., 1999; Karabourniotis,
2002, and references therein) in some regions of metal-halide arcs, the mas-
sive particles can be considered to be in local thermal equilibrium with
each other. Mercury’s low thermal conductivity reduces thermal transport
across the large thermal gradients between the core and the arc tube wall,
thereby reducing a significant power loss mechanism.

An essential aspect of metal-halide lamp design is the regenerative
halogen cycle. This cycle begins with a parent molecule, e.g., DyI3, being
vaporized from a liquid condensate in the cold zone and entering the
discharge; as the molecule diffuses into warmer regions of the arc, the
molecule dissociates to varying degrees; in the core of the arc, where tem-
peratures are highest, the metal atom is completely liberated and may
even be ionized; the metal atoms and ions are excited to radiating states
by collisions with electrons and subsequently produce radiation. When
the metal atom migrates to cooler regions, it recombines with halogen
atoms; if a reassembled parent molecule comes in contact with a liquid
condensate, it may recondense back into the liquid, ready to begin the
cycle again.

Recombination near the wall is assisted by the high density of neutral
Hg atoms, which act as collision partners to absorb the binding energy of
the forming polyatoms. The latter is often viewed as an effective increase
of radial thermal conductivity in the mantle. The halogen, after disso-
ciation, rarely participates in the radiation process since its excitation
potential is generally similar to or greater than that of Hg.

The halogen cycle is essential to the lifetime of metal-halide lamps.
Processes that interrupt this regeneration can drastically reduce life
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and performance. For example, reactions of electrode components with
dissociated halogens remove halogens from the vapor and produce a
metal–rich plasma. If the metal cannot find halogen partners with which
to recombine, it will condense on the arc tube wall. The temperature of
the wall is insufficient to vaporize the pure metals, and these atoms are
forever lost to the discharge. The presence of rare-earth metals on the alu-
mina surface may precipitate formation of rare-earth aluminates, reducing
the lifetime of the arc tube. Continued sequestering of halogens eventually
depletes the discharge of metals entirely. Iodide salts are commonly used
since iodine is the least reactive of the halogens.

The high pressures in metal-halide arcs lead to a high degree of radia-
tion trapping in some regions of the spectrum. When the vapor is optically
thick in a given wavelength range and local spatial volume, the radiation
field equilibrates with the massive particles. This leads to radiation levels
that saturate at the blackbody curve of the local vapor temperature. This
is particularly true in the wavelength range surrounding the 254-nm reso-
nance line of Hg, for which the mean free path is on the order of microns.
Radiation emitted by the lamp in this range can only come from the very
edge of the arc, but the temperature there is too low to allow any signifi-
cant blackbody emission. Thus, ultraviolet radiation is greatly suppressed.
This effect occurs to lesser extent in other regions of the spectrum, depend-
ing on the constituents of the vapor. Infrared radiation losses are not as
effectively suppressed by optical opacity because the infrared blackbody
limit is less severe than the ultraviolet limit.

3. WHY X-RAY METHODS?

The development and use of optical diagnostics to study high-intensity
discharge lamps have been long and successful (see Lister et al., 2004 for a
review). The reasons for this are quite obvious. The metal atoms in the dis-
charge are chosen specifically because they and their singly-charged ions
have radiative transitions in the visible range of the optical spectrum, and
conditions in the discharge are engineered to maximize excitation of those
transitions. Atoms, ions, and molecules of other species are also active in
the optical range and may exhibit strong emission or absorption of optical
radiation.

Optical emission spectroscopy has been used to confirm the presence
or absence of particular species, obtain discharge temperatures (Herd &
Lawler, 2007; Karabourniotis, 1986; Schneidenbach & Franke, 2008), and
even measure Hg densities (Lawler, 2004). Excitation of optical transitions
with an external continuum source (Bonvallet & Lawler, 2003) or a laser
(Beks et al., 2008) has been used to measure densities and distributions of
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particular species. Many other optical measurements can be found in the
literature.

It will become clear in the following pages that x-ray techniques require
a somewhat different set of knowledge than the optical methods cited
earlier and also require equipment that is not normally present in the lab-
oratory of a lighting scientist. In fact, for XRIF, one has the additional
burden of applying for beam time and conducting an experiment at a
remote facility in order to access synchrotron radiation. Given these hur-
dles, one might be led to ask the question “Why is it useful to go to such
lengths?”

The primary motivations for the use of x-ray diagnostics to study
high-intensity discharge lamps arise from the nature of the lamps them-
selves and the impediments the lamps raise to traditional methods. Most
HID lamps are relatively small. They contain the high-intensity discharge
inside a sealed arc tube that is made of translucent PCA or fused silica that
is generally not of optical quality; optical access is limited by the strong
curvature and optical defects of the arc tube, with practically no spatial
resolution being possible in PCA arc tubes, which are translucent. The
sharp gradients in temperature restrict optical emission to the core of the
arc where temperatures are sufficiently high; the mantle of the discharge
is largely dark.

The need to “see through” the translucent PCA of most modern metal-
halide lamps while still maintaining good spatial resolution is a strong
motivation for the use of x rays. X-ray methods have also proved very
capable in quartz arc lamps. In fact, it is possible to pull an arbitrary
metal-halide lamp off a store shelf and make excellent x-ray measure-
ments without the need for any modifications to the lamp. This makes
it possible to study and learn about real lamps, not just model lamps. This
is possible because high-energy x rays can penetrate both the glass jacket
and arc tube with only a small amount of scattering and no additional
deformation of the x-ray beam.

As will be discussed in the following section, x rays are used to probe
inner shell electrons, electrons whose quantum states are not much per-
turbed by external conditions, such as valence excitation or binding with
other atoms in a molecule. As an important consequence, x-ray techniques
can be used to measure and understand what is happening in all regions
of the arc, even in the dark regions where little optical excitation occurs;
they are spatially comprehensive diagnostics.

A third important motivation follows from the preceding discussion:
x rays are not just another way to measure the same parameters that
traditional methods might be used to measure if not impeded by the
limitations cited earlier. Instead of measuring the density of a particu-
lar valence level of a particular molecular species, both x-ray absorption
and x-ray induced fluorescence measure the number densities of specific
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nuclei (mercury, dysprosium, iodine, etc.). This is particularly useful for
measuring metal additives in metal-halide lamps where the metal may
be distributed over many molecular and atomic species. X-ray induced
fluorescence is complementary to optical spectroscopy in this regard.

4. INTERACTION OF X RAYS WITH ATOMS

All of the optical methods discussed in the preceding section are based
on interactions between radiation and valence electrons with binding
energies of a few electronvolts or less. In contrast, the x-ray methods
discussed in this chapter are based on the interaction of high-energy radi-
ation with core electrons; electrons whose binding energies are several
thousand electon volts and higher! This fact has two important, and favor-
able, consequences for the study of metal-halide lamps. First, the photon
energies are orders of magnitude greater than anything produced by the
high-intensity discharge. Thus, the isolation of the x-ray signal from the
intense optical radiation produced by the discharge and from the noise of
the thermal background is excellent. Second, the problem of translucent
or poor optical quality arc tubes is avoided. Although scattering of high-
energy x rays does occur, such interactions are much weaker than optical
refraction. This enables x-ray methods to achieve good spatial resolution
in lamps with translucent PCA or fused quartz arc tubes of poor optical
quality.

There are three principal types of interactions between x rays and
atoms that are relevant to the work described in this chapter. All of them
involve interactions with the electrons orbiting atoms. They are photoelec-
tric absorption, Compton scattering, and coherent scattering. The basis of
XRIF is photoelectric absorption, but Compton and coherent scattering
also have an impact on measurements. All three of these processes will be
described in more detail in this section.

Figure 3 is a spectroscopic energy level diagram that may be used to
visualize excitation of core electrons. Potassium is chosen as an exam-
ple because it is simpler than, though not qualitatively different from,
the heavier atoms that are typically of interest in metal-halide lamps. At
the very bottom of the diagram is the ground level, corresponding to the
lowest electronic energy levels filled by the 19 atomic electrons of the
neutral potassium atom. This ground level and the bound valence lev-
els (short horizontal lines in the expanded diagram) between it and the
4s1/2 ionization limit at 4.3 eV form the traditional level diagram of optical
spectroscopy. These levels are excited when a valence orbital is occupied
by the electron initially in the 4s1/2 orbital. The 4s ionization limit, on the
other hand, corresponds to the energy required to eject the 4s electron
from the atom. All of the levels between the ground level and the 4s level
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Figure 3 Excited levels of the potassium atom, whose ground configuration is
1s22s22p63s23p64s, arising from excitation of a bound electron. The wide lines are
ionization energies for each of the bound electrons; the initial orbital is given on the
right of each line and the ionization energy in electronvolts is given on the left. It is
also possible to excite one of the electrons to a valence orbital; these are indicated in
the expanded view on the left of the figure by short lines; they are too close to the
ionization limits to be visible on the right. Excitation of any of the levels above the 4s
limit corresponds to an empty core orbital. (Deslattes et al., 2003; Ralchenko et al.,
2010; Thompson et al., 2001).

correspond to an empty 4s orbital. The next higher set of levels is quali-
tatively similar in appearance and corresponds to excitation or ionization,
not of the 4s electron, but of a 3p3/2 electron. All of these levels correspond
to an empty 3p3/2 orbital.

Above the 4s and 3p3/2 ionization limits lie additional, similar sets of
energy levels that correspond to single excitation of the other core elec-
trons that lie increasingly deeper in the Coulomb potential of the nucleus.
Other core orbitals in the potassium atom include 3p1/2, 3s1/2, 2p3/2, 2p1/2,
2s1/2, and 1s1/2. Values of n = 1, 2, 3, . . . . are often referred to by the letters
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K, L, M, . . ., and excitation of one of the two 1s1/2 electrons is referred to as
K-shell excitation. Excitation of closely spaced levels just below the ion-
ization limits (short horizontal lines in the expanded diagram) produces
the near-edge fine structure observed in some x-ray spectra.

The levels in Figure 3 can be excited by sufficiently energetic photons or
by impact with sufficiently energetic massive particles. The former process
is referred to as photoelectric absorption. The photon is annihilated and
any excess energy is imparted to the ejected electron. Figure 4 gives the
photoabsorption cross section σ for dysprosium as a function of photon
energy E. The general dependence of the cross section on energy follows
from some of the principles already discussed. Discontinuous jumps in the
cross section occur at the minimum (threshold) energy required to eject an
inner shell electron from the atom. Edges due to the three nondegener-
ate orbitals of the L-shell (L1 ↔ 2s1/2, L2 ↔ 2p1/2, L3 ↔ 2p3/2) are visible.
The K-shell presents only one edge corresponding to the two degener-
ate 1s1/2 orbitals. Not visible in this graph is the fine structure just below
each threshold energy that corresponds to excitation of a core electron to
a valence orbital.

The photoabsorption cross section decreases relatively slowly with
energy (∼E−7/2) above each threshold because the electron is ejected into
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Figure 4 Cross sections for photoabsorption (—), coherent scattering (- -), and
Compton scattering (· · ·) of high energy photons by a dysprosium atom as a function
of photon energy. The Li -edges (i = 1, 2, 3) and K-edge in photoabsorption are noted.
(Berger et al., 1998).
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the continuum and can absorb any excess energy. This slow falloff has
the effect that a monochromatic beam of x rays can simultaneously excite
a large number of atoms and transitions, provided the photon energy is
above the corresponding edges. Thus, several species can be observed
simultaneously with XRIF.

The curve in Figure 4 gives the total cross section for photoabsorption.
For photon energies above the K-shell threshold, this includes the cross
section for absorption by all the other shells as well. The ratio of the K-shell
cross section to that for all other shells is approximately independent of
energy and may be determined at the K-edge.

All of the levels above the 4s ionization limit correspond to creation of
an empty orbital, or hole, in the core. These levels will typically relax spon-
taneously to the 4s ionization limit, the ground level of the singly charged
ion. The hole in the core is filled by some combination of three major
processes that rearrange the remaining bound electrons. These processes
are spontaneous radiative relaxation, Auger decay, and the Koster–Kronig
process. The relative importance of these three processes is determined by
the atomic number of the atom and the principal quantum number (n) of
the excited level. Only the first of these, radiative decay, is of interest here
because it is the process that produces characteristic fluorescence and is
the basis of x-ray induced fluorescence.

Figure 5 shows the energy level diagram for dysprosium with the major
radiative transitions from an excited K-shell, along with the traditional
notation for the various lines. The radiative transitions involving core
orbitals are subject to the same selection rules as optical transitions, so the
most probable decay paths are electric-dipole transitions, i.e., transitions
for which1l = ±1 and1j = ±0, 1. Thus, radiative decay from the 1s level
is dominated by transitions to np1/2,3/2 levels. Overlap of the orbitals is also
a factor in the strength of transitions, so 1n = 1 transitions are stronger
than the corresponding 1n > 1 transitions. The Kα1 line is stronger than
the Kα2 line because the degeneracy g = 2j+ 1 of the 3p3/2 level is greater
than that of the 3p1/2 level. (Since excitation of levels in this diagram cor-
responds to a hole in the indicated orbital, the initial level for the electron
involved in spontaneous decay is the lower level.)

The probability that a core-shell excitation will decay radiatively is
referred to as the fluorescence yield. Figure 6 shows that the K-shell flu-
orescence yield Y increases with atomic number Z and for atoms heavier
than Z = 55, Y > 0.9. The relative probabilities of the different radiative
transitions originating in a given level are referred to as branching frac-
tions. Branching fractions for major K-shell lines as a function of atomic
number are given in Figure 7.

Photoabsorption involving K-shell electrons in heavy elements is only
weakly affected by the valence electron(s). The so-called chemical effects
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Figure 5 Radiative electric-dipole transitions from a K-shell excited dysprosium
atom. (Deslattes et al., 2003).

(arising from molecular bonding) typically affect the absorption cross
sections only near edges, where virtual transitions to valence states can
have a noticeable influence. Observation of near-edge structure, and shifts
in this structure due to molecular bonding and ionization of the valence
electron, typically requires spectral resolutions of order 1 eV or better.
The work described here has employed a much coarser energy resolution
(≈ 100 eV) and has avoided absorption edges.

The considerations in the preceding paragraph lead to a very impor-
tant point regarding the densities measured by XRIF. Since the inner shell
processes are not significantly influenced by chemical bonding or ioniza-
tion, XRIF is proportional to the density of atoms of a particular atomic
number Z, regardless of the range of chemical states in which those atoms
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Figure 6 K-shell fluorescence yield as a function of atomic number. (Krause, 1979).
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Figure 7 Branching fractions for K-shell fluorescence lines η as a function of atomic
number: η = α1 (—), η = α2 (- -), and η = β =

∑
i βi (· · ·). (Salem et al., 1974).

may find themselves! Thus, our measured densities n6Z are summations
over all molecular and ionic species M that contain an atom of atomic
number Z,

n6Z =

∑
i

cZiMi (1)
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where cZi is the relevant stoichiometric coefficient. The n6Z are sometimes
referred to as elemental densities, and for clarity, we usually replace the
subscript Z with the one- or two-letter symbol for the element.

Coherent scattering and Compton scattering are generally of no signi-
ficance for the atoms we are interested in observing with XRIF. However,
scattering from the solid arc tube can be important. First, scattering causes
a small, but finite, reduction in the transmission of x rays through the arc
tube. Second, scattering from the arc tube into the detector can easily over-
whelm the fluorescence signal being observed. This occurs because the
density of the arc tube is many orders of magnitude higher than the vapor
densities in the arc.

Compton scattering describes the interaction between a high-energy
photon and a free electron. Electrons bound to an atom can react as free
electrons to some extent if the photon energy is greater than the electron
binding energy. Compton scattering is typically more of a problem than
coherent scattering. The Compton cross section is generally larger and the
shift in photon energy that accompanies Compton scattering often leads
to interference between scattered photons and fluorescence lines in the
observed spectrum.

Considering only the conservation of momentum and energy during
the relativistic interaction between a high-energy photon and a free elec-
tron, it is relatively easy to derive the scattered photon energy Ef as a
function of the scattering angle θ and the incident energy E0,

Ef =
E0

1+ α(1− cos θ)
(2)

where α = E0/m0c2 is the ratio of the incident photon energy to the elec-
tron rest energy. This shows that the change in energy is small when
the photon energy is relatively small compared with the electron rest
energy of approximately 500 keV. A more complete treatment of the
photon–electron interaction including the electric field of the photon leads
to the Klein–Nishina formula for the cross section for Compton scattering
of polarized radiation by a free electron (Evans, 1958). Additionally, the
bound electrons of an atom react as free electrons only to the extent that
the incident photon energy exceeds each electron’s binding energy. The
binding energy has a small effect on the energy shift, but the cross section
can be modified considerably. In addition, the kinetic energy of the bound
electrons broadens the energy distribution of scattered photons. The effect
of binding energy on the cross section must be calculated separately for
each type of atom and is accounted for by multiplying the Klein–Nishina
result with the incoherent scattering function S(θ) (Hubbell et al., 1975).
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The differential Compton cross section then has the form

d2σ

d�
=

(
re

1+ α(1− cos θ)

)2
[
1− sin2 θ cos2 φ +

α2

2
·

(1− cos θ)2

1+ α(1− cos θ)

]
S(E, θ)

(3)

where re is the classical electron radius, φ is the azimuthal angle about the
incident photon wave vector with φ = 0 parallel to the direction of polar-
ization, and d� = sin θ dθ dφ is the differential solid angle. A surprising
result is that the cross section does not go to zero along the direction of
polarization, although it is a minimum.

Figure 8 gives the total Compton cross section for an Al2O3 unit cell
as a function of incident photon energy. For photon energies greater
than about 45 keV, Compton scattering is the dominant interaction. At
approximately 3× 10−23 cm2, the Compton cross section for PCA is about
two orders of magnitude smaller than the photoabsorption cross section
for Dy. However, the density of PCA (and of fused quartz) is about five
orders of magnitude larger than the vapor densities of interest. As a result,
Compton scattering from arc tubes and vapor cells can have greater inten-
sity than fluorescence if it is not minimized by an appropriate detection
geometry.
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Figure 8 Cross sections for photoabsorption (—), coherent scattering (- -), and
Compton scattering (· · ·) of high-energy photons from a unit cell of Al2O3 as a
function of photon energy. (Berger et al., 1998).
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Coherent scattering describes the correlated response of atomic elec-
trons to an electromagnetic wave. As photon energy becomes compa-
rable to and exceeds the binding energy of an electron, that electron
ceases to contribute to the coherent response, so coherent cross sections
decrease with photon energy. In addition, there is no significant shift in
energy of the scattered photon. Cross sections for coherent scattering from
dysprosium and PCA are given in Figures 4 and 8, respectively.

5. X-RAY INDUCED FLUORESCENCE SPECTROSCOPY (XRIF)

5.1 Density Measurements

X-ray induced fluorescence measurement of vapor-phase densities in
metal-halide lamps was first attempted by Fohl et al. (1993). They reported
having successfully measured iodine fluorescence signals, but they did
not report iodine densities. Fohl et al. did not use photon energies high
enough to detect the lanthanide rare-earth metals. The first reported den-
sities measured with XRIF in a metal-halide lamp did not come until 2001
(Curry et al., 2001). Since then, XRIF has been used to measure densi-
ties of metal additives, iodine, and Hg in operating metal-halide lamps
(Curry et al., 2003a,b; Nimalasuriya et al., 2007). More recently, XRIF has
been used to measure equilibrium vapor pressures of metal-halide salts
in vapor cells (Curry et al., 2011). All of this work has involved light-
ing industry scientists, including work done as part of the two Electric
Power Research Institute-sponsored ALITE consortia that existed between
1995 and 2005 (ALITE, 2006). All of the cited measurements, except those
by Fohl et al., were conducted at the Advanced Photon Source, Argonne
National Laboratory because of the ideal source parameters that are
available on Beamline 1-ID.

Beamline 1-ID combines an undulator and Si crystal double monochro-
mator (Shastri et al., 2002) to produce a laser-like x-ray beam with high
intensity, narrow bandwidth, wide tunability, low divergence, and small
size. The beam photon energy can be tuned anywhere in the range
between 50 keV and 130 keV with an energy resolving power of better than
600. A typical photon flux at the experiment is8 = 1012 s−1 with horizontal
and vertical divergences of ≤ 10 µrad.6 Without focusing, the beam cross
section is approximately 1 mm by 1 mm and polarization is >95% in the
horizontal plane. The tunability of the beam photon energy makes it pos-
sible to observe atoms as heavy as thallium (90 keV) or to maximize the
absorption cross section of lighter elements with photon energies as low
as 50 keV.

6A 60 keV photon flux of 1012 s−1 gives an average beam power of approximately 10 mW.
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Figure 9 Apparatus for x-ray induced fluorescence measurements in a high-intensity
discharge lamp, including a pair of crossed tungsten slits (S) and apertures (A1 and
A2) defining the field of view of the detector. The coordinate system used in this
chapter is also defined.

The tabletop arrangement for an XRIF measurement of densities in a
metal-halide lamp is shown in Figure 9. A pair of crossed, electronically-
adjustable tungsten slits (S) is used to eliminate any halo around the beam
and can be used to reduce the beam size. (Halos arise from scattering by
air molecules and windows, as well as imperfections in beamline optics.)
Next, an atmospheric pressure nitrogen ionization chamber measures the
photon flux transmitted by the slits. A small number of photons tran-
siting the ionization chamber are absorbed or scattered by the nitrogen
atoms, creating electron-ion pairs in the gas. A pair of electrodes collects
the resulting current, which can be calibrated to determine absolute fluxes.
Immediately following the ionization chamber is the test lamp, mounted
on a five-dimensional translation stage that allows the lamp to be moved
in the three orthogonal linear dimensions, as well as rotation around
the two horizontal axes. Rotation is sometimes required to improve the
vertical alignment of the lamp and arc tube.

The fluorescence signal induced by the x-ray beam in the lamp dis-
charge is observed by a solid-state Ge detector. The detector consists
of a cryogenically cooled Ge crystal across which a voltage is applied.
When a photon is absorbed by the crystal, the electrodes collect the
charge pairs created by the deposited energy and the resulting current
pulse is amplified and fed to a pulse height analyzer. Ideally, the pulse
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height is proportional to the energy of the absorbed photon. By process-
ing a number of sequentially absorbed photons, a spectrum is constructed
count-by-count. The energy scale for such a spectrum must be determined
independently. 109Cd, which produces an 88-keV γ ray and Ag character-
istic x-ray fluorescence between 22 keV and 25 keV, has proved useful for
this purpose.

Ge detectors typically have a flat response curve for a range of energies
that extend from below 10 keV to about 90 keV, depending on the specific
detector being used. The low energy cutoff is determined by the transmis-
sion of the window in front of the crystal, usually beryllium, sometimes
polyimide. The detector response at high energy begins to decrease when
the mean free path for photoelectric absorption becomes comparable to
the crystal, and photons have a finite probability of passing through the
crystal without interaction. A thicker crystal can extend this range but also
reduce the maximum count rate because it increases the “dead time,” or
time required to collect the charge created by a photon. Dark current is
greatly reduced by keeping the crystal at cryogenic temperatures.

Limitations of a finite crystal size, a finite pulse processing time, and
crystal imperfections lead to spectral artifacts, limited spectral resolution,
and noise (Knoll, 2000). Sometimes, so-called escape peaks can be seen
in fluorescence spectra, and care must be taken to avoid misidentification.
Escape peaks are created when some of the energy of the absorbed photon
escapes the crystal as Ge K-shell fluorescence. A count is registered at an
energy equal to the difference between the absorbed photon energy and
the Ge fluorescence energy, instead of the absorbed photon energy. Pulse
processing time is adjustable, with longer times producing better energy
resolution but longer dead times. For high count rates, corrections must be
made to account for dead time (Knoll, 2000). A typical energy resolution
is a couple of hundred electronvolts.

The Ge detector is aligned to observe fluorescence emitted along the
direction of polarization of the beam. This orientation suppresses scat-
tering from the vapor into the detector. The detector’s field of view is
defined by two apertures, one at the detector and one close to the lamp.
The detector aperture is formed by a pair of crossed, adjustable tungsten
slits, typically open several millimeters wide. The lamp aperture is placed
as close to the beam as possible, allowing just enough room for the lamp
over its full range of movement. This aperture is typically a submillimeter
circular hole in a 2-mm-thick tungsten plate. Because the lamp aperture
is much smaller than the detector aperture, the field of view of the detec-
tor can be approximated as a projection of the detector aperture through
the pinhole of the lamp aperture. This projection is shown in Figure 10
for some typical dimensions. The intersection of the field of view with the
beam determines what will be referred to as the viewing volume, i.e., the
volume from which fluorescence is collected by the detector. Typically, this
volume is approximately 1 mm by 1 mm by 1 mm, although it has been
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Figure 10 Fluorescence collection optics and x-ray beam. The detector (represented
by a circle) sits to the right of A2. The field of view of the detector can be
approximated by projecting A2 back through the pinhole A1. The intersection of the
field of view with the x-ray beam determines the viewing volume V , the region of
space from which XRIF is observed by the detector.
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Figure 11 Fluorescence spectra acquired from a metal-halide lamp with different
beam photon energies.

substantially less on occasion because of a smaller beam size. Obviously,
the axis of the field of view must be aligned to intersect the beam. Spatially
resolved XRIF spectra are obtained by step scanning an operating lamp in
the x− y plane.

A few typical spectra are shown in Figure 11 for beam photon ener-
gies of 60 keV, 70 keV, 81 keV, and 85 keV. The data were acquired from a
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lamp containing Hg, DyI3, and CsI (Curry et al., 2003b). In all the spectra,
narrow fluorescence lines from I and Dy are seen. In the spectrum excited
by 85 keV, very strong fluorescence lines from Hg are also present. The
Hg K-edge occurs at 83.102 keV; the lower beam energies are insufficient
to excite Hg. The considerably larger magnitude of Hg fluorescence rela-
tive to Dy and I is mostly due to the much greater abundance of Hg, 2 to
3 orders of magnitude greater than I. Additionally, the photoabsorption
cross section for Hg is about 4 times larger than that for I. Not labeled,
but also present in each spectrum are fluorescence lines from Cs. The Kα
lines for Cs appear between the I Kα and I Kβ peaks and are most appar-
ent in the spectrum excited by 60-keV photons. All of these fluorescence
lines appear at the same energy regardless of the excitation energy. Weak
escape peaks originating from the Hg Kα lines appear near 59 and 61 keV,
the energies of Hg Kα1 and Kα2 minus the energies of Ge Kα1 and Kα2.

Scattered photons are also apparent in each of the spectra. The narrow
peaks at each of the beam photon energies are due to coherent scattering.
The broad, multipeaked features that extend over many kilo-electronvolts
are the result of Compton scattering from the arc tube. Figure 12 shows a
cross section of the arc tube cylinder and the four possible paths by which
photons can scatter into the detector with only two scattering events.
(Single Compton scattering from the arc tube into the detector cannot
occur because the field of view, beam, and arc tube do not all overlap at

θ6

θ1

θ3

θ2

A

R

θ5

θ7

θ4 θ8

B

D

C
X

Figure 12 The four possible paths involving double scattering from a cylindrical arc
tube that can lead to a beam photon entering the detector.
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any point in space.) One path involves scattering from point A through
angle θ1 followed by scattering from point B through angle θ2; another
from point A through θ3 followed at point D through θ4; another from
points C and B through θ5 and θ6, respectively; and the last from points C
and D through θ7 and θ8, respectively. The final photon energy after such
sequential scatters is

Eij =
E0

[1+ α(1− cos θi)]
[
1+ α(1− cos θj)

] (4)

where the cosines of each of the eight angles, as well as x and R, are
defined in Figure 12. Thus,
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1
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with ρ = x/R. Only three Compton peaks are produced because E12 and
E78 are always the same. Figure 13 plots the energies of the 3 peaks for
E0 = 70 keV as a function of ρ, and Figure 14 plots the Compton-shifted
energies as a function of E0 for ρ = 0. These calculations do not take into
account the broadening of the energy distribution of the scattered photons
arising from the kinetic energy distribution of the scattering electrons and
from the range of possible scattering angles due to the finite field of view
of the detector. Figure 11 shows that the Compton peaks are quite broad
compared with fluorescence lines, with each Compton peak having a dif-
ferent shape. It can also be seen that increasing the beam energy is not very



AAMOP 06-ch02-065-118-9780123855084 2011/9/26 17:44 Page 91 #27

X-ray Methods in High-Intensity Discharges and Metal-Halide Lamps 91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
40

45

50

55

60

65

70
E

ij/
ke

V

ρ

E12

E34

E56

Figure 13 Final energies for 70-keV photons doubly scattered from a cylindrical arc
tube along the paths shown in Figure 12 as a function of ρ, the distance between the
beam and arc axis, normalized by the radius of the arc tube.
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Figure 14 Final energies for photons doubly scattered from a cylindrical arc tube
along the paths shown in Figure 12 as a function of beam photon energy E0 for ρ = 0,
the beam intersecting the arc axis.

effective in reducing interference with fluorescence lines, but just spreads
the Compton peaks over a wider spectral range. Fortunately, the breadth
of the Compton features is a considerable help in separating scattering
from characteristic fluorescence.

The count rate C observed by the detector within a given K-shell
fluorescence line Kη is

CKη
Z =

8

A
σ K

Z (E0) YK
Z BKη

Z

�

4π
V T(E0) T(EKη

Z ) Qd(E
Kη
Z ) n6Z (5)
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where 8 is the incident photon flux, A is the beam cross-sectional area,
σ K

Z (E0) is the K-shell photoabsorption cross section for an atom of atomic
number Z at the energy of the incident beam photons E0, YK is the K-
shell fluorescence yield, BKη is the branching fraction for the K-shell η line,
� is the solid angle observed by the detector, V is the viewing volume
(see Figure 10), T is the transmission of x rays of fluorescence energy EKη

Z

through the arc tube, or other, wall, Qd is the detector efficiency, and n6Z is
the number density defined by Equation 1.

Equation (5) allows the determination of elemental densities n6Z from
the intensity of observed fluorescence lines. The values for the atomic
parameters σ , Y, and B have been discussed in Section 4. The beam flux
density 8 is continuously measured during the experiment by the ioniza-
tion chambers as the beam passes through them. Transmission of beam
and fluorescence photons through the arc tube wall is determined from
cross sections of the relevant materials. Transmission through 1 mm of
fused silica and transmission through 1 mm of PCA are shown in Figure 15
as a function of energy. Attenuation of beam photons is typically small
because their energy is usually greater than 60 keV. Attenuation of fluores-
cence photons, however, can be more severe and gets larger as the element
being observed gets lighter and the fluorescence energy decreases. There
is no hard cutoff for what can be observed, but as the fluorescence pho-
ton energy decreases, the measurement signal-to-noise ratio decreases. In
addition, the correction factor for finite transmission becomes larger and
more sensitive to the exact thickness and density of the arc tube or cell
wall. It is difficult, in practice, to observe elements with atomic numbers
less than Z = 40 inside the types of arc tubes and cells being used and
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Figure 15 Transmission through 1 mm of PCA (- -) and fused silica (· · ·) as a function
of photon energy, not including scattering.
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at the densities typical of metal additives in MH-HID lamps. This pre-
cludes observation of the important additives sodium and scandium, or
the mercury substitute zinc in Hg-free lamps.

The transmission curves in Figure 15 reflect attenuation due to photo-
absorption only. An additional attenuation results from coherent and
Compton scattering. This component must be calculated for each situa-
tion because a significant fraction of scattered photons is scattered at such
small angles that the event is irrelevant. The fraction of photons scat-
tering from 1 mm of PCA is shown by the top curve in Figure 16. This
is an upper limit on the attenuation due to scattering. The lower curve
gives the fraction of photons scattered by Compton scattering only. The
atomic form factor concentrates coherent scattering in the forward direc-
tion, while the incoherent scattering function goes to zero in the forward
direction (Curry, 2010). Consequently, the Compton cross section gives
a reasonable first approximation for attenuation by scattering, which is
increasingly accurate with increasing energy.

The measured value C is the count rate in a fluorescence line. Line-
shapes for spectra measured by a Ge detector depend on a number of
factors including processing time and photon energy (Knoll, 2000). As a
result, C may be just as accurately obtained by straight integration as by
line fitting if care is taken to integrate over the entire line and to adequately
account for the baseline. Figure 17 demonstrates how this can be done
using the Dy Kα1 and Kα2 doublet blended with a Compton feature as an
example. The background, including the Compton signal, is determined
by fitting a single second-order polynomial to the noncontiguous baseline
segments on each side of the fluorescence line. These regions are indicated

20 30 40 50 60 70 80 90
0.05

0.10

0.15

Photon energy/keV

F
ra

ct
io

n 
sc

at
te

re
d

Figure 16 Fraction of photons scattered by 1 mm of PCA as a function of photon
energy. The top curve includes both Compton and coherent scattering. The bottom
curve includes only Compton scattering.
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Figure 17 Finding the baseline under Dy Kα lines. The thin horizontal lines indicate
the ranges over which a second-order polynomial is fit to the baseline on each side of
the fluorescence peaks. The thick horizontal line indicates the range over which the
spectrum is integrated after the fitted baseline (shown) is subtracted.

in the figure by thin horizontal black lines. Contributions from Compton
scattering, as can be seen in Figure 11, change slowly over the width of
most fluorescence features. The fitted background is subtracted from the
entire spectral region, and the line feature is integrated. The region of inte-
gration is shown in the figure by a thick horizontal black line. The regions
of integration and baseline fitting can be chosen individually for each line
but should remain the same across all spectra. The statistical uncertainty
σC in the number of counts can be estimated as

σC =

√
p σ 2

fit + q (6)

where p is the number of points over which the integration is performed,
σfit is the rms deviation of the data from the fit in the fitting regions, and
q is the number of counts in the line integral. The first term in the radical
is an estimate of the statistical error due to fluctuations in the true base-
line, whereas the second term represents shot noise in the line integral.
For Figure 17, the measured density is 6.7× 1015 cm−3 and the statistical
uncertainty is about 2%. The data were acquired with an integration time
of 600 seconds.

The concept of two separable geometric parameters � and V is only an
approximate way of representing geometric effects in Equation (5). In fact,
� is a complicated function of position and should be integrated over the
volume V. Nevertheless, one can deal with these parameters in an exact
way by comparison of fluorescence signals from a lamp to fluorescence
signals from a known standard. Fused silica cells or PCA cells filled with
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Figure 18 Schematic of x-ray induced fluorescence measurements in a gas-filled
calibration cell.

a comparable density of Xe have proven to be useful for this purpose. The
measured lamp is simply replaced by a calibration cell as in Figure 18, and
a fluorescence spectrum is acquired in the same manner as for the lamp.
A ratio of counts then leads to an absolute density
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(7)

if the Xe Kα lines are used for calibration and the detector efficiency is flat
over the range of energies considered.

Typically, lamp measurements are entirely automated, and the lamp
position will be stepped through a predetermined matrix of positions such
that the desired spatial range is covered. Once the lamp has settled at
each position, data acquisition is triggered and persists for a predeter-
mined period, usually for a period in the range of 10–100 seconds. At
the end of this period, a time-integrated spectrum and a time-integrated
incident flux are electronically saved along with all other relevant mea-
surement parameters. Though changes in the beam intensity over tens of
seconds are generally quite small, any changes that do occur are automat-
ically taken into account because the flux signal and fluorescence signal
are integrated simultaneously.
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Some examples of XRIF measurements of density distributions in a
metal-halide lamp appear in Figure 19. These include essentially complete
spatial distributions of the principle components of a lamp containing
16 mg of Hg, 6.8 mg of DyI3, 1.2 mg of CsI, and 12 kPa (90 Torr) of Ar
(Curry et al., 2003b). The only component not measured was Ar because
the K-shell fluorescence lines of Ar have energies of less than 3.2 keV,
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Figure 19 Density distributions measured by XRIF in a metal-halide high-intensity
discharge lamp containing 16 mg of Hg, 6.8 mg of DyI3, 1.2 mg of CsI, and 12 kPa
(90 Torr) of Ar (Curry et al., 2003b). The coordinate system is defined in Figure 9.
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too low to be observed through an arc tube. It is worth noting that this
lamp was equipped with an outer glass jacket in addition to a translucent
ceramic arc tube. The x-ray transmission of the jacket must be taken into
account but represents no serious impediment to XRIF measurements.

The measurements in Figure 19 were acquired at the vertices of the
grid superposed on the data. The spatial resolution for each measurement
was 1x ≈ 1 mm, 1y ≈ 1 mm, and 1z ≈ 1 mm. Measurements were not
acquired over the full range of −x because of the assumption of cylindri-
cal symmetry. In the figure, the positions of the electrodes and arc tube
walls are shown in blue on the n6Z = 0 plane. The arc tube was operated
vertically with the bottom of the arc tube at y = 0 on the right side of each
graph. The range of densities measured in this lamp extends from 1× 1016

to 5× 1019 cm−3.
The density of Hg is the largest of any constituent of the arc, more than

an order of magnitude larger than the second most abundant constituent,
iodine. Cs has the smallest density of all. Its presence in the arc is pri-
marily to broaden the main current channel. Two properties of Cs help
achieve this goal. First, the ionization potential of Cs is lower than that
of Dy. Therefore, Cs is ionized at larger radii than Dy. Second, resonance
radiation produced by Cs in the core is heavily self-absorbed, thereby
heating the vapor by collisional de-excitation wherever atomic Cs exists.
Such broadening or fattening of the arc is necessary in lamps containing
strong multiline radiators like the rare earths. Metals like Dy are so effi-
cient at producing and emitting radiation that they cool the vapor in the
core of the arc. In order to maintain sufficient ionization for a given input
power, the volume of the current channel must decrease. If the current
channel becomes too thin, magnetic instabilities begin to make the arc pre-
cess slowly about the arc axis like a vertical jump rope. Such an effect is
highly detrimental to lamp appearance and performance and is avoided
by adding a small amount of Cs or a similar resonance radiator.

5.2 Temperature Distributions

The primary contributor to the shapes of the density distributions in
Figure 19 is the temperature variation in the arc. As the measurements
make clear, Hg is the dominant component. It exists almost completely
in monatomic form. Thus, the relationship of the Hg density n6Hg to the
vapor temperature T can be described by the Ideal Gas Law

p = n6Hg(Er)kT(Er) (8)

where p is the total vapor pressure, Er is spatial location, and k is Boltz-
mann’s constant. Spatial variation does occur in the total vapor pressure,
either because of convective flow or in the form of acoustic waves driven
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by the alternating current in the arc. Pressure variations associated with
convective flows are too small to be of significance in this context (Lowke,
1979; Zollweg, 1978). Pressure variations from acoustic waves are of
order 1% and occur at frequencies exceeding 10 kHz (Baumann et al.,
2009; Dreeben, 2008). The time-averaged vapor pressure is constant and
spatially homogeneous in a normally operating lamp. As a result, the spa-
tially dependent arc temperature may be determined if the Hg density and
vapor pressure are both known

T(Er) =
p

kn6Hg(Er)
. (9)

Alternatively, the temperature of core of the arc can be determined from
optical emission measurements (Karabourniotis, 1986). The spatially inde-
pendent vapor pressure is determined from the combination of a local Hg
density and the corresponding local temperature. Then, spatially compre-
hensive temperature maps can be obtained from Hg density distributions.
Some examples can be found in Curry et al. (2005) and Curry et al.
(1998). Using a design operating pressure of 106 Pa (10 atm), the Hg den-
sity shown in Figure 19 is converted to the temperature distribution in
Figure 20. Optical determination of core temperatures in ceramic lamps
has been discussed in the literature (Karabourniotis & Drakakis, 2002) but
was not applied to this lamp.

The density distributions in Figure 19 and the temperature distribution
in Figure 20 show that the arc is hottest in the core where the electrical
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Figure 20 Temperature distribution derived from the Hg density distribution in
Figure 19 using a design operating pressure of 106 Pa (≈10 atm). The coordinate
system is defined in Figure 9.



AAMOP 06-ch02-065-118-9780123855084 2011/9/26 17:44 Page 99 #35

X-ray Methods in High-Intensity Discharges and Metal-Halide Lamps 99

current provides direct heating of the gas. Somewhat less apparent is the
general trend of increasing temperature from bottom to top as the heated
gas rises. Within a couple of hundred microns or less of each electrode,
the temperature distribution is determined by different factors. The con-
vergence of the current to meet the electrode tip produces a relatively
rapid increase in the gas temperature, but the temperature of the tung-
sten electrode tip itself cannot exceed the melting point of tungsten. These
two effects produce a local maximum in excess of 5000 K in front of each
electrode, followed by a steep drop to 3683 K or less at the tip. These near-
electrode effects are more clearly seen from high-resolution x-ray imaging
of the Hg density (Curry et al., 1998) than in the lower resolution XRIF
measurements.

Temperatures in the core of the arc are typically in the range of
4500–6000 K, depending on the lamp. Outside the core, the temperature
must drop quickly to the maximum operating temperature of the arc tube
wall material, 1100–1400 K. The shape of the temperature drop depends
greatly on the type and density of radiating species in the core. If radi-
ation trapping is sufficiently large, the temperature distribution becomes
fatter and most of the temperature drop occurs in the outer third of the
discharge radius. This leads to very large temperature gradients near the
wall. Another important area for lamp operation is the area below the bot-
tom electrode. This is often the coolest part of the arc because the cooler,
heavier gas sinks to the bottom. The greater densities in this region are
clearly seen in the distributions of Figure 19. The metal-halide salts also
reside in this region, and the temperatures here determine the equilibrium
vapor pressures of the salts.

Temperatures throughout the core of the arc can be obtained directly
from optical emission measurements. However, optical emission is of lit-
tle help for regions outside the core where the temperature is too low to
produce significant emission in the visible. Thus, comprehensive temper-
ature maps, as in Figure 20, are practically impossible to obtain by any
method other than x rays. Such complete maps are essential to determin-
ing and understanding the chemical distribution in the arc. Although the
dark region of the lamp contributes no visible radiation to the lamp output
and would appear to be of little interest, the molecular species that exist
in these regions can have a substantial impact on infrared radiation trans-
port and do play an important role in the transport of metal additives into
the core. The latter can be a determining factor in the luminous efficacy
and color rendering.

5.3 Chemical Partitioning

As pointed out earlier in this chapter, the densities shown in Figure 19
and those obtained by XRIF are elemental densities, a summation over all
atomic and molecular species. In the lamp of Figure 19, there are only five
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elements present, the four shown and Ar. What are not shown are the 10
or more significant molecular species into which these elements may com-
bine over the range of temperatures that occur in the lamp. A few of these
species may be detected by optical means. Given a temperature distribu-
tion, densities of a few more may be inferred from optical measurements.
Alternatively, one may infer all of the species densities by combining the
elemental densities with the corresponding temperature map. For a sys-
tem in thermal equilibrium, the partitioning of elements across different
species is a function only of the elemental densities present, the equi-
librium temperature, and the thermodynamic parameters of all possible
atomic and molecular species. Although lamp discharges are not in full
equilibrium, a local chemical equilibrium is achieved. The densities of
individual molecular species are those that are mutually consistent and
minimize the free energy of the system. Those densities can be determined
for a given set of input parameters by an iterative calculation (Cruise,
1964). As an example, the chemical distribution for a system containing
a Hg number density of 3× 1019 cm−3, a DyI3 density of 1× 1017 cm−3, and
a CsI density of 5× 1016 cm−3 has been calculated as a function of temper-
ature and is shown in Figure 21. The shift from heavy molecular species at
the lower temperatures to lighter molecular species at increasing temper-
atures, then to atoms, and eventually to electrons and ions at the highest
temperatures is evident.

In contrast to Figure 21 where the elemental densities are held constant,
the elemental densities and temperature in a lamp will be a function of
position. An example of the chemical partitioning in a real lamp appears
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Figure 21 An example of equilibrium molecular densities as a function of
temperature for a system containing a Hg number density of 3× 1019 cm−3, a DyI3
number density of 1× 1017 cm−3, and a CsI number density of 5× 1016 cm−3. (Curry
et al., 2003a).
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in Figure 22 (Curry et al., 2003a). These are the equilibrium molecular
densities in the midplane of the arc calculated from the measured elemen-
tal densities in Figure 19 and the temperature distribution in Figure 20.
This figure illustrates the complexity of the chemistry of a metal-halide
high-intensity discharge, even though only the major Dy species are plot-
ted. It is interesting to note the localization of certain molecular species
like DyI2. Given sufficient atomic data, the radiative output of the dis-
charge could be calculated from the information presented in this graph.
Practically, the calculation of radiation production and transport remains a
challenge because of the large size of the parameter space and the nonlocal
nature of some portion of the radiation transport.

The measurements and calculations behind Figure 22 are a way to
determine a comprehensive picture of the chemical distribution in a metal-
halide lamp. The weakness of such calculations is the lack of experimental
measurements of thermodynamic parameters for many of the species of
interest, at least at the temperatures relevant to lamps. Free energies can,
in principle, be calculated from basic principles and spectroscopic data in
a straightforward way (Chase, 1998). However, the key to accurate results
at higher temperatures lies in the appropriate treatment of the lowering
of ionization energy for each species. This is where different calculations
begin to diverge, and experimental measurements are needed to distin-
guish the most accurate methods. In Section 5.5, we will discuss the use
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Figure 22 Equilibrium molecular densities calculated from measured elemental
densities and the inferred temperature distribution in the mid-plane of a metal-halide
lamp. The elemental densities are from Figure 19 and the temperature distribution is
from Figure 20. The total Dy density (black, �) is given along with the major Dy
molecular species DyI3 (×), DyI2 (gray, �), DyI (◦), Dy (4), and Dy+(�). Also shown are
monatomic I (+) and the negative ion I− (O) (Curry et al., 2003a). The coordinate
system is defined in Figure 9.
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of XRIF to measure some of the needed basic thermochemical data. With-
out experimentally confirmed data, thermochemical calculations can still
be useful in clarifying the relative importance of different species and
processes.

5.4 Demixing

An interesting phenomenon that can be observed in some metal-halide
high-intensity discharge lamps is demixing of the metal additives (Dakin
& Shyy, 1989; Fischer, 1976; Stormberg, 1981). The impact of demixing on
lamp performance is deleterious. Severe cases that are immediately obvi-
ous to any observer may produce color and brightness variations along
the length of a lamp (Nimalasuriya et al., 2007). Less severe demixing
may not be apparent to the naked eye but still have a negative impact
on luminous efficacy and color rendering.

Demixing refers to the segregation of minority constituents to different
parts of the discharge. Molecular and atomic species are, of course, seg-
regated simply because certain molecular species are thermodynamically
preferred at certain temperatures, and a wide range of temperatures exists
within a high-intensity discharge lamp. Demixing is the much more com-
prehensive spatial segregation of an elemental constituent that extends
across all of the atomic and molecular forms in which that element may
be found. Thus to observe demixing, the densities across all such species
must be measured. It is also necessary to measure the overall density of the
vapor because demixing is a relative change in density. Large changes in
absolute density are always present for all elements in a high-intensity dis-
charge because of the large range of temperatures. Demixing has a much
smaller impact on absolute densities than do temperature variations. The
most obvious way of observing demixing is to look at the so-called mixing
ratios (Dakin et al., 1989; Shaffner, 1971), that is, the ratios of the elemen-
tal densities to the Hg density, the latter being an excellent approximation
to the overall vapor density. The mixing ratios are independent of chem-
ical partitioning and of the overall density variation of the vapor. Spatial
variations in the mixing ratios represent demixing. XRIF, as discussed
already, directly measures the elemental densities required to determine
the mixing ratios, something difficult to achieve with other methods.

Mixing ratios for Dy, Cs, and I obtained from the data in Figure 19
are shown in Figure 23. These plots give the radial variations of the mix-
ing ratios in the midplane of the arc, along with the temperature profile
(Figure 20). Radial demixing is evident for the metal additives Dy and
Cs, being most pronounced for the latter. On and near the discharge axis,
the metal atoms have been significantly depleted. A depletion of this
kind generally reduces luminous efficacy, simply because there are fewer
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Figure 23 Mixing ratios in a ceramic metal-halide lamp for Dy (4), Cs (◦), and I (�),
as well as the temperature distribution (×) obtained from the data in Figure 19 and an
estimated lamp pressure of 106 Pa. The ratios have been normalized so that their
asymptotic value at the wall is 1. The coordinate system is defined in Figure 9.

radiators present. Outside the core near |x| = 2 mm, there is a relative
enhancement in the mixing ratio of both Dy and Cs as compared with
the asymptotic value at the wall. I, on the other hand, shows little or no
demixing.

The origin of demixing is the differences in diffusion velocities for
different atomic and molecular species and the range of temperatures
present in a high-intensity discharge. Two principal classes of demixing
are referred to as radial demixing and axial demixing. The former involves
radial transport velocities, whereas the latter involves both radial and
axial (convection) transport.

The radial depletion seen in Figure 23 can be explained by considering
the different types of radial transport at work. Considering Dy in Figure 22
near the axis as an example, singly ionized dysprosium Dy+ has a density
maximum on axis and diffuses away from the axis due to that density
gradient. Dy, DyI, and DyI2 have a minimum on axis and diffuse toward
the axis. In steady state, the net transport rate is zero and the inflow of
neutral molecules must balance the outflow of the ion

6iDi∇ni(Er) = −D+∇n+(Er) (10)

where the summation is over all the neutral particles i, D is the diffu-
sion coefficient, and n+ is the ion density. If the diffusion coefficients of
all species are the same and the spatial dependence of the coefficients is
ignored, this leads to

n6Dy(r) = n6Dy(0). (11)
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In other words, the dysprosium elemental density is independent of r and
there is no demixing.

When the diffusion coefficients are different for different species, the
picture changes. The diffusion coefficient for the Dy ion is generally much
larger than the coefficients for the neutral particles because of the presence
of the radial ambipolar electric field. Such a field arises in finite-sized plas-
mas in order to balance the loss of positive charge and negative charge.
The lighter, more mobile electrons escape at a faster rate than the more
massive positive ions, creating a space-charge electric field. The field
grows until it is large enough to balance the loss of positive and negative
charges by speeding up the loss of positive charges and slowing down
the loss of negative charges. When ion and electron temperatures are the
same, the ambipolar field has the effect of doubling the diffusion coef-
ficient for positive ions over its value in the absence of a field (Krall &
Trivelpiece, 1986).

The larger diffusion coefficient for positive ions increases the transport
rate of ions away from the axis resulting in a relative depletion of the ele-
mental density near the axis if an element is ionized there. The solution of
Equation (10) is then

n6Dy(r) = n6Dy(0)+ n+(0)− n+(r). (12)

The elemental density of Dy is clearly a function of r if n+(r) is. In addition,
it is also clear that the elemental density on axis is less than the elemental
density at the wall (r = R)

n6Dy(R) > n6Dy(0) (13)

as long as the ion density on axis n+(0) is greater than the ion density
at the wall n+(R). This simplified analysis does not take into account the
change in temperature between the axis and the wall, nor the differences
in diffusion coefficients for different molecules, but those effects do not
qualitatively change the conclusions drawn.

The extent of ambipolar depletion experienced by an element increases
with ion density on axis, with the result that more easily ionized species
will see a greater level of demixing. Accordingly, Cs having an ionization
potential 35% lower than Dy exhibits a greater level of depletion on axis.
Iodine, with an ionization potential 75% larger than Dy, shows very little
or no depletion on axis.

Both Dy and Cs, in addition to exhibiting depletion on axis, show a
local maximum in their mixing ratios just outside the core of the arc. This
feature is not explained by the reasoning in the preceding paragraphs,
nor has such a feature been previously observed. Curry et al. (2003a)
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Figure 24 Distribution of negative charge corresponding to the densities and
temperatures in Figure 23. The coordinate system is defined in Figure 9.

calculated the chemical equilibrium from their measured elemental den-
sities and temperatures and found that the distribution of negative charge
was as shown in Figure 24. The negative charge in the core is domi-
nated by electrons, but off axis, where the temperature begins to drop,
the negative charge consists primarily of I−, negative iodine ions. The
iodine ions do not have the light mass of the electrons; their mass is only
slightly smaller than that of Dy and Cs ions. Therefore, the ambipolar field
must quickly disappear where the negative charge becomes dominated
by I−, and so must the excess transport that leads to depletion. A detailed
explanation of the observed maxima remains to be provided.

Axial demixing involves the radial diffusion mechanisms described
earlier but also involves axial convective flow. Axial demixing can often
be observed in lamps for which convective and radial diffusion veloci-
ties are comparable. A major convective cell that rises along the axis and
falls along the arc tube wall circulates the mercury vapor and entrained
additives axially. At the same time, radial diffusion transports constituents
between the upward and downward flowing parts of the convective cell.
If radial transport is faster in the outward direction than the inward,
and comparable to convective transport, constituents riding the upward
flowing vapor on axis will short-circuit the convective cell by diffusing
outward to the downward flowing vapor before they reach the top (see
Figure 25). This leads to a steady state in which the constituents sub-
ject to strong radial depletion will also show depletion at the top of the
arc, whereas elements less subject to radial demixing are relatively more
abundant there. Axial demixing is considerably reduced if the convective
velocity is either much smaller than or much larger than radial diffusion
velocities. Fischer (1976) showed that there is a convective velocity for
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Figure 25 Typical convective flow in an HID lamp.
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Figure 26 The mixing ratio for Dy in a DyI3-Hg metal-halide lamp plotted versus
radial coordinate for several axial positions. The percentages given in the key are the
percentages of the total distance from the lower electrode to the upper electrode.
Data points at each wall are off the scale of the figure. Both radial and axial demixing
are apparent. The coordinate system is defined in Figure 9. (Nimalasuriya et al., 2007).

which axial demixing is a maximum. Larger convective velocities reduce,
rather than increase, demixing because additives are transported upward
faster than they can be transported away from the axis by radial diffusion.

A study of axial demixing was made by Nimalasuriya et al. (2007) using
both XRIF to measure elemental densities and laser absorption to obtain
distributions of atomic Dy (Flikweert et al., 2005). The XRIF measurements
showed clear examples of both radial and axial demixing (Figure 26). In
addition, the two complementary diagnostic techniques made it possible
to evaluate specific terms in the radial diffusion equation presented there.
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5.5 Equilibrium Vapor Pressures

After seeing the capabilities of XRIF in the measurement of metal
and iodine densities in metal-halide lamps, Walter Lapatovich (then of
OSRAM SYLVANIA INC) suggested that XRIF might be a solution to
the longstanding problem of obtaining accurate measurements of the
equilibrium vapor pressures of metal-halide salts. By “equilibrium vapor
pressure,” we mean the pressure that equilibrates with a solid or liquid
condensate when the vapor and condensate are in a closed system in full
thermodynamic equilibrium. Although the observations of demixing, dis-
cussed already, make clear that actual vapor pressures in metal-halide
lamps are not everywhere in equilibrium with a condensate, those pres-
sures are a strong function of the equilibrium vapor pressures of the salts.
Ab initio numerical modeling of metal-halide lamps must incorporate
reasonably accurate values for equilibrium vapor pressures, even though
small errors are self-correcting.7 Unfortunately, very few, if any, of the rel-
evant vapor pressures have been measured anywhere in the temperature
range of interest for metal-halide lamps (>1000 K). The calculated and/or
extrapolated values currently used may be in error by an unacceptable
amount.

In addition to the need for the equilibrium vapor pressures of simple
metal-halide salts, knowledge of the vapor pressures in equilibrium with
salt mixtures has become increasingly important. The lighting industry has
sought to exploit the phenomenon of vapor-phase complexing between
dissimilar salts to increase the density of the radiating metal in the arc at
a given temperature, or equivalently, obtain the same density at a lower
temperature.

Complexing refers to a relatively weak bonding of two or more stable
molecules, which may be identical (homocomplex) or different (hete-
rocomplex) (Hastie, 1975). The use of complexing in lamps typically
involves pairing a high vapor pressure salt with a low vapor pressure salt
in order to increase the partial pressure of the metal atoms in the lower
vapor pressure salt. Thermochemical calculations suggest that some com-
binations of salts can produce increases in the partial pressures of some
metals by up to two orders of magnitude (Lapatovich & Baglio, 2001).
Again, very few or no measurements have been made of this effect in the
temperature range relevant to metal-halide lamps.

The principal impediment to obtaining measurements of equilibrium
vapor pressures in the temperature range of interest is the difficulty in
not only reaching those high temperatures but also in making accurate

7For example, a slightly too high vapor pressure leads to greater radiative losses, a cooling of the lamp,
and hence a lowering of the vapor pressure.
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measurements in that pressure range. The Knudsen cell method is based
on the measurement of time-integrated mass loss from a small hole in an
equilibrium vapor cell. The hole must be small enough that the flow of
vapor does not substantially perturb the vapor pressure in the cell, i.e., the
mean free path of the molecules must be much greater than the diameter
of the hole. The technique is often referred to as the effusion method. This
requirement typically limits the maximum pressures that may be inves-
tigated to something of the order of 100 Pa and less. The pressure range
relevant to metal-halide lamps is 102 Pa to 104 Pa.

The Knudsen method also involves an open system in which some
of the vapor is lost through the effusion aperture. When measuring salt
mixtures whose components have greatly different vapor pressures, this
involves a change in the system content with time.

The use of XRIF for the measurement of equilibrium vapor pressures
has many aspects in common with the measurement of metal distribu-
tions in operating arc lamps. The metal-halide salts are typically the same.
The vapor densities are in the same range. And one can use vapor cells
identical or similar to the arc tubes used in lamps. There are some critical
differences, however. First, one would like to measure equilibrium vapor
pressures over the widest range possible. Hence, there is an incentive to
increase the dynamic range of XRIF as much as possible. Second, if one
intends to obtain quality reference values for the measured vapor pres-
sures, absolute accuracy and understanding of systematic errors becomes
essential. (In lamps, relative pressures can be of great importance.) Thus,
the measurement of equilibrium vapor pressures tests the limits of XRIF.

The sensitivity of XRIF measurements in operating lamps is limited by
Compton scattering of beam photons from the arc tube into the detec-
tor. These Compton features frequently interfere with fluorescence lines
in observed spectra. Although the broad shape of those Compton features
makes it possible to distinguish them from line fluorescence, the Comp-
ton counts contribute to statistical noise in integrated line intensities. In
Section 5.1, we described the paths by which photons scattered from an
arc tube can reach the detector. These paths all require at least two scatter-
ing events. A vapor cell geometry that reduces Compton scattering further
by requiring at least three scattering events to reach the detector is shown
in Figure 27. Except for a several millimeter long, sealed filling stem, the
PCA cell is cylindrically symmetric. It is surrounded by a cylindrical tan-
talum jacket whose primary purpose is to absorb scattered photons. It
also serves the purpose of providing reasonably good heat conduction
along the outside wall of the cell, thus reducing temperature gradients
when the cell is heated in the oven. The jacket has two holes to accommo-
date the entrance and exit of the beam, and a third hole through the side
of the cylinder through which x-ray fluorescence is observed. This hole
is one of the defining apertures determining the solid angle from which
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Figure 27 The PCA vapor cell and tantalum jacket used for vapor pressure
measurements with XRIF.
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Figure 28 Schematic of the oven used for measuring equilibrium vapor pressures of
metal-halide salts with XRIF.

photons are collected by the detector. The jacket has two holes (only one is
visible in Figure 27), which accommodate thermocouples for monitoring
the cell and jacket temperature.

Measurement of equilibrium vapor pressures with XRIF was recently
demonstrated using the vapor cell described above (Curry et al., 2011).
Several vapor cells were dosed with a salt or salt mixture and filled with
500 Pa of Ar. They were sealed by fusing a PCA plug into the filling tube
with a frit. A vapor cell and the tantalum jacket were fit into a graphite
bushing and placed into a cylindrical oven as shown schematically in
Figure 28. The experimental arrangement shown there is not too different
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from that used for measurements in a metal-halide lamp discussed in
Section 5.1. The oven is aligned so that the x-ray beam travels unob-
structed through the oven. The detection of fluorescence remains along
the direction of polarization of the incident beam to minimize scatter-
ing directly from the vapor into the detector. The field of view of the
detector is determined by the viewing hole in the tantalum jacket and the
crossed slits in front of the detector. Nitrogen-filled atmospheric pressure
ionization chambers monitor the beam flux immediately preceding and
following the oven and are used to normalize the measured fluorescence
signal and determine corrections for attenuation of the beam by the vapor
at the highest vapor pressures.

Absolute vapor densities are obtained by comparison with fluorescence
observed from calibration cells containing a known pressure of xenon (see
Section 5.1). These cells are placed in the oven in the same manner as
the salt-filled cells. Vapor pressures p(T) corresponding to the measured
densities n(T) are then determined from the Ideal Gas Law

p(T) = n(T)kT (14)

where T is the temperature of the cell as determined by thermocou-
ple measurements. It is important to remember that n(T) is defined by
Equation (1). Accordingly, the corresponding vapor pressures p(T) have
sometimes been referred to as elemental vapor pressures.

A weakness of the calibration approach described earlier is the sus-
ceptibility to movement of the tantalum jacket and the limiting aperture
through which fluorescence is observed, particularly as the oven changes
temperature. A remedy may be to dose each vapor cell with a calibra-
tion gas so that the calibration is obtained simultaneously with each
measurement.

Measurements of equilibrium vapor pressures for Dy over DyI3 and Tm
over TmI3 are shown in Figures 29 and 30 where the logarithm base 10 of
the pressure P is plotted versus 1/T (Curry, 2010). Plotting in this man-
ner allows one to compare the data visually against the expected linear
dependence predicted by

ln P =
1S
k
−
1H
kT

(15)

where 1S and 1H are the changes in entropy and enthalpy under stan-
dard conditions when a mole of molecules evaporates, and k is Boltz-
mann’s constant (Mahan, 1975). A distinct change in slope in each graph
occurs at or near the predicted melting point of each salt shown by a
vertical dashed line. Such a change is expected since the enthalpy of
evaporation from a solid should be more than that from a liquid.
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Figure 29 Equilibrium vapor pressure of Dy over DyI3 as measured with XRIF (Curry,
2010). The solid line is an analytic expression for the vapor pressure, and the dashed
line is the melting temperature, both given by Hansen et al. (1998, 2000).
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Figure 30 Equilibrium vapor pressure of Tm over TmI3 as measured with XRIF
(Curry, 2010). The solid line is an analytic expression for the vapor pressure, and the
dashed line is the melting temperature, both given by Hansen et al. (1998, 2000).

The dynamic range of these measurements extends over nearly three
orders of magnitude. At the upper end of the range, the vapor density
is high enough to produce significant absorption of the x-ray beam and
corrections were made for this effect. The lower end of the range over-
laps with the upper end of the range of applicability of the effusion
method, and several measurements of the vapor pressure of both DyI3

and TmI3 have been made for pressures below 100 Pa. These existing mea-
surements have been compiled by Hansen et al. (1998, 2000) who have
produced recommended analytic expressions for the vapor pressures of
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the triiodide molecule over each salt. These expressions are also shown in
Figures 29 and 30 by solid lines for their range of expected applicability.
The XRIF results are 50% and 10% higher for DyI3 and TmI3, respectively.
At this point, sufficient work has not been completed to understand pos-
sible systematic errors and their origins. The XRIF results are for the total
Dy vapor pressure, summed over all possible molecules, as opposed to
Hansen’s expressions for the triiodide molecular vapor pressure, but there
is no expected significant difference in these two values in the range of
temperatures where the comparison is being made.

Now that the use of XRIF to measure equilibrium vapor pressures
has been demonstrated, a more thorough understanding of the absolute
accuracy of the method is needed. There are many possible sources of
systematic error. Chief among these are: (1) possible contamination of the
metal-halide salts and/or cells during preparation, (2) an inaccurate filling
of the Xe pressure in the calibration cells, and (3) variations in fluorescence
collection efficiency due to movement of the tantalum jacket with temper-
ature or when cells are changed. Inconsistencies in initial data indicate
errors in the range of 20%. Discrepancies with Hansen’s recommended
values indicate errors may be larger.

5.6 Accuracy

Some of the data presented already have statistical error bars associated
with many of the XRIF measurements. These are frequently dominated
by photon statistics. Thus, smaller uncertainties could, in most cases, be
obtained by integrating for a longer period of time. Harder to understand
are systematic errors. With respect to measurements on lamps, there has
not been a strong incentive to make measurements with uncertainties less
than 5%. For measurement of basic data, such as vapor pressures, there
is always merit in reducing uncertainties, if not for present applications,
then for future ones.

Calibration of XRIF signals using a gas-filled standard is a primary
source of systematic uncertainty because independent measurements of
the pressures of the standards have not been made. The densities of Xe,
for example, have been determined entirely by a single pressure and tem-
perature measurement of the cell maker prior to sealing of the cell. The
process of sealing a cell opens the possibility of significant changes in
the density from the measured value. Independent measurements of Xe
densities could be made in sealed cells using x-ray absorption. Such mea-
surements should give a good scale for the consistency and accuracy with
which standard cells can be made.

There are several atomic parameters in Equation (7) including absorp-
tion cross sections, fluorescence yields, and branching fractions. These
values are almost always based on semiempirical or ab initio calculations
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rather than direct measurements. Thus, their uncertainty is not always a
matter of common agreement. Nevertheless, a few points can be made.
Uncertainties in the cross sections are largest for photon energies close
to energy edges where resonances can have a large impact. Uncertain-
ties are generally much smaller away from the edges. The cross sections
appearing in most tabulations are total cross sections, meaning the cross
section for energies greater than the K-shell threshold includes absorp-
tion by the L- and lower shells. In order to obtain the K-shell only cross
section, the ratio of cross sections at the K-edge is taken as a constant
and used to determine the K-shell component at higher energies. This
inevitably involves additional error. Thus, it may be wise to consider the
K-shell photoelectric cross section values to be no better than 5%. Veigele
(1973) puts uncertainties for some of the rare-earth K-shell cross sections
as high as 10%. The branching fractions used here are estimated to have
errors between 2% and 5% (Salem et al., 1974). Uncertainties in the rel-
evant fluorescence yields are estimated as 1% to 2% depending on the
atomic number (Krause, 1979).

Determination of the transmission factors T in Equation (7) follows
from total absorption cross sections of the relevant material, so the dis-
cussion in the preceding paragraph applies here as well. In addition,
there is Compton and coherent scattering from the materials, which also
effectively attenuates the x-ray beam. The treatment of scattering was dis-
cussed in Section 5.1 where the total effect was shown to be 11% at 20 keV,
decreasing to less than 7% at 90 keV. The suggested approximation of
using Compton scattering but ignoring coherent scattering probably cuts
the error by more than a factor of two.

Measurements of beam flux under normal conditions are not likely to
be a significant source of error, mostly because it is the ratio of fluxes that
enter into the calibration [Equation (7)]. Statistical fluctuations in the flux
measurements are typically negligible.

6. SUMMARY

We have described the use of high-energy x rays to study the low tem-
perature plasmas in high-intensity discharge lamps and to measure equi-
librium vapor pressures at high temperatures. X-ray induced fluorescence
(XRIF) is a well-known technique used for analysis in many fields, but its
application to low-density vapors, as described in this chapter, appears to
be unique. Spatially resolved vapor densities of less than 1016 cm−3 have
been measured, in a reasonable time, with the use of high-flux synchrotron
radiation.

Additive densities, temperature distributions, mixing ratios, and equi-
librium vapor pressures have all been measured with a straightforward
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application of XRIF. More sophisticated variants of XRIF could prove
useful in the future. These include nuclear resonance fluorescence for
observing lighter elements, resolving near-edge fine structure to deter-
mine chemical bonding, looking at the very weak effect of the x rays on
the plasma current to understand transport and equilibration times, and
using Ge detector arrays to increase measurement sensitivity.

GLOSSARY
Ambipolar field The weak electric field arising from unequal loss rates of positive

and negative charges in a finite-sized plasma.
Coherent scattering The scattering of electromagnetic radiation produced by the

coherent response of all the bound electrons in an atom. This process is
sometimes referred to as Rayleigh scattering.

Color rendering The color rendering index is a quantitative measure of the ability
of a light source to render all colors properly as compared to an ideal source,
such as daylight. The color rendering index can have values between 0 and
100, with 100 indicating a perfect match between source and reference.

Complex A molecule formed from the relatively weak association of two or more
smaller molecules.

Compton scattering The scattering of electromagnetic radiation by a free elec-
tron. The low-energy limit of Compton scattering is sometimes referred to as
Thomson scattering. The response of a bound atomic electron has a Comp-
ton component if the photon energy is larger than the binding energy of the
electron.

Demixing The relative spatial separation of elements in metal-halide high-inten-
sity discharge lamp.

Elemental density The total number density of atoms of a particular element
summed over all atomic and molecular species.

Equilibrium vapor pressure The vapor pressure of a substance that is in equilib-
rium with a condensate in a closed system in full thermal equilibrium.

Escape peak An anomalous signal from a crystal x-ray detector arising from the
excitation and loss of the crystal material’s characteristic fluorescence. It pro-
duces relatively small peaks that differ in energy from real signal peaks by an
energy equal to the characteristic fluorescence energy.

HID High-intensity discharge.
HPS High-pressure sodium.
Luminous efficacy Luminous efficacy is a measure of the illumination a light

source provides per unit of input power. It typically has the units of lumens/
watt and is defined as the wavelength integral of the product of the eye sensi-
tivity curve (lumens per watt of optical power) and the optical power per unit
wavelength radiated by the lamp, all divided by the electrical power consumed
by the lamp. The maximum luminous efficacy for a full-color white light source
is generally considered to be in the range of 300 lm/W to 350 lm/W, depending
on what is considered full-color.

XRIF X-ray induced fluorescence.
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Curry, J. J., Estupiñan, E. G., Henins, A., Lapatovich, W. P., & Shastri, S. D. (2011).
Measurement of vapor pressures using x-ray induced fluorescence. Chemical Physics
Letters, 507, 52.

Curry, J. J., Sakai, M., & Lawler, J. E. (1998). Measurement of the Hg distribution in a high-
pressure arc lamp by x-ray absorption. Journal of Applied Physics, 84, 3066.

Curry, J. J., Sansonetti, C. J., & Wang, J. (2005). Temperature profiles and thermal losses in
150 W high-intensity discharge lamps. Journal of Physics D: Applied Physics, 38, 3086.

Dakin, J. T., Rautenberg, T. H., Jr., & Goldfield, E. M. (1989). Anatomy of a vertical metal
halide discharge. Journal of Applied Physics, 66, 4074.

Dakin, J. T., & Shyy, W. (1989). The prediction of convection and additive demixing in vertical
metal halide discharge lamps. Journal of the Electrochemical Society, 136, 1210.

de Groot, J. J., & van Vliet, J. A. J. M. (1986). The high pressure sodium lamp. London: MacMillan
Education LTD.

Deslattes, R. D., Kessler, E. G., Jr., Indelicato, P., de Billy, L., Lindroth, E., & Anton, J.
(2003). X-ray transition energies: new approach to a comprehensive evaluation. Rev.
Mod. Phys. 75, 35, also available as NIST Standard Reference Database 128: X-ray
Transition Energies. Retrieved from July 16, 2011, from http://www.nist.gov/pml/
data/xraytrans/index.cfm

Dreeben, T. D. (2008). Modelling of fluid mechanical arc instability in pure-mercury HID
lamps. Journal of Physics D: Applied Physics, 41, 144023.

http://www.epri.com
http://www.nist.gov/pml/data/xcom/index.cfm
http://www.nist.gov/pml/data/xraytrans/index.cfm
http://www.nist.gov/pml/data/xraytrans/index.cfm


AAMOP 06-ch02-065-118-9780123855084 2011/9/26 17:44 Page 116 #52

116 John J. Curry et al.

Elloumi, H., Kindel, E., Schimke, C., & Zissis, G. (1999). Experimental investigation of
deviations from local thermodynamic equilibrium in high-pressure mercury discharges.
Journal of Applied Physics, 86, 4134.

Evans, R. D. (1958). Compton effect in Encyclopedia of Physics (Vol. 34, p. 218). Berlin: Springer-
Verlag, Ch. Compton Effect.

Fischer, E. (1976). Axial segregation of additives in mercury metal-halide arcs. Journal of
Applied Physics, 47, 2954.

Flikweert, A. J., Nimalasuriya, T., Grothuis, C. H. J. M., Kroesen, G. M. W., & Stoffels, W. W.
(2005). Axial segregation in high intensity discharge lamps measured by laser absorption
spectroscopy. Journal of Applied Physics, 98, 073301.

Fohl, T., Kramer, J. M., & Lester, J. E. (1993). X-ray measurements of mercury density in
arc discharge lamps during warm-up and following extinction. Journal of Applied Physics,
73, 46.

Hansen, S., Getchius, J., & Brumleve, T. R. (1998). Vapor pressure of metal bromides and
iodides, with selected metal chlorides and metals. Urbana, Illinois: APL Engineered Materials,
Inc.

Hansen, S., Steward, R., Getchius, J., & Brumleve, T. (2000). Supplement to vapor pressure of
metal bromides and iodides. Urbana, Illinois: APL Engineered Materials, Inc.

Hastie, J. W. (1975). High temperature vapors: science and technology. New York: Academic Press.
Herd, M. T., & Lawler, J. E. (2007). Infrared continuum radiation from metal-halide high-

intensity discharge lamps. Journal of Physics D: Applied Physics, 40, 3386.
Hochi, A., Hashimotodanl, K., & Katash, K. (2001). Vane-type electrodeless HID lamp.

Matsushita Technical Journal, 47, 42.
Hong, E., Conroy, L. A., & Scholand, M. J. (2002 and 2005). U. S. lighting market characteri-

zation (Vols. i and ii). Tech. rep., Navigant Consulting, Inc., Washington, DC.
Hubbell, J. H., Veigele, W. J., Briggs, E. A., Brown, R. T., Cromer, D. T., & Howerton, R. J.

(1975). Atomic form factors, incoherent scattering functions, and photon scattering cross
sections. Journal of Physical and Chemical Reference Data, 4, 471.

ICF. (2006). High-intensity discharge lighting technology: workshop report. Tech. rep., Pre-
pared for the U.S. Department of Energy by ICF Consulting. Retrieved July 16, 2011, from
http://apps1.eere.energy.gov/buildings/publications/pdfs/corporate/hid workshop-
report.pdf.

Ingold, J. H. (1987). Radiative processes in discharge plasmas. Physics Volume 149 of NATO
Advanced Study Institute Series B (p. 347). New York: Plenum Press, Ch. Metal-halide
Sources.

Karabourniotis, D. (1986). Self-reversed emission lines in inhomogeneous plasmas. In J. M.
Proud & L. H. Leussen (Eds.), Radiative processes in discharge plasmas (pp. 171–247).
Plenum, New York: Proceedings of a NATO Advanced Study Institute.

Karabourniotis, D. (2002). Non-equilibrium excited-state distribution of atoms in dense
mercury plasmas. Journal of Applied Physics, 92, 25.

Karabourniotis, D., & Drakakis, E. (2002). Electron temperature and density in a metal-halide
discharge lamp. In 2002 IEEE international conference on plasma science. Vol. Banff, Canada
of IEEE conference record - abstracts (p. 315). Piscataway, NJ: IEEE.

Knoll, G. F. (2000). Radiation detection and measurement (3rd ed.). New York: John Wiley and
Sons.

Krall, N. A., & Trivelpiece, A. W. (1986). Principles of plasma physics (Chap. 6.8). San Francisco:
San Francisco Press, Inc.

Krause, M. O. (1979). Atomic radiative and radiationless yields for K- and L-shells. Journal of
Physical and Chemical Reference Data, 8, 307.

Lapatovich, W. P., & Baglio, J. A. (2001). Chemical complexing and effects on metal-halide
lamp performance. In Proceedings of the 9th International Symposium on the Sci. and Tech. of
Light Sources, 12–16 Aug (p. 91). Ithaca, NY: Cornell University.

Lawler, J. E. (2004). Resonance broadening of Hg lines as a density diagnostic in high
intensity discharge lamps. Plasma Sources Science and Technology, 13, 321.

Lister, G. G., Lawler, J. E., Lapatovich, W. P., & Godyak, V. A. (2004). The physics of discharge
lamps. Reviews of Modern Physics, 76, 541.

Lister, G. G., & Waymouth, J. F. (2002). Encyclopedia of Physical Science and Technology (3rd ed.,
Vol. 8, p. 557). San Diego: Academic Press, Ch. Light Sources.

http://www.apps1.eere.energy.gov/buildings/publications/pdfs/corporate/hid_workshop-report.pdf
http://www.apps1.eere.energy.gov/buildings/publications/pdfs/corporate/hid_workshop-report.pdf


AAMOP 06-ch02-065-118-9780123855084 2011/9/26 17:44 Page 117 #53

X-ray Methods in High-Intensity Discharges and Metal-Halide Lamps 117

Lowke, J. J. (1979). Calculated properties of vertical arcs stabilized by natural convection.
Journal of Applied Physics, 50, 147.

Mahan, B. H. (1975). University chemistry (3rd ed., Chap. 8.). Reading, MA: Addison-Wesley.
Nimalasuriya, T., Curry, J. J., Sansonetti, C. J., Ridderhof, E. J., Shastri, S. D., Flikweert, A. J.,

et al. (2007). X-ray induced fluorescence measurement of segregation in a DyI3-Hg metal-
halide lamp. Journal of Physics D: Applied Physics, 40, 2831.

Palmer, F. L., & Lapatovich, W. P. (2000). Coaxial applicators for electrodeless high-intensty
discharge lamps. U. S. Patent 6,107,752 and associated patents.

Ralchenko, Y., Kramida, A. E., Reader, J., & the NIST ASD Team. (2010). NIST Stan-
dard Reference Database 78: Atomic spectra database. Retrieved July 16, 2011, from
http://www.nist.gov/pml/data/asd.cfm

Reiling, G. H. (1964). Characteristics of mercury vapor-metal iodide arc lamps. Journal of the
Optical Society of America, 54, 532.

Rhodes, W. H., & Reid, J. (1979). Transparent yttria ceramics containing magnesia and
magnesium aluminate. U. S. Patent 4,174,973.

Salem, S. I., Panossian, S. L., & Krause, R. A. (1974). Experimental K and L relative x-ray
emission rates. Atomic Data and Nuclear Data Tables, 14, 91.

Schneidenbach, H., & Franke, S. (2008). Basic concepts of temperature determination from
self-reversed spectral lines. Journal of Physics D: Applied Physics, 41, 144016.

Shaffner, R. O. (1971). Theoretical properties of several metal halide arcs assuming LTE.
Proceedings of the IEEE, 59, 622.

Shastri, S. D., Fezzaa, K., Mashayekhi, A., Lee, W.-K., Fernandez, P. B., & Lee, P. L. (2002).
Cryogenically-cooled bent double-Laue monochromator for high-energy undulator
x rays (50-200 keV). Journal of Synchrotron Radiation, 9, 317.

Stormberg, H. P. (1981). Axial and radial segregation in metal-halide arcs. Journal of Applied
Physics, 52, 3233.

Sugiura, M. (1993). Review of metal-halide discharge lamp development 1980–1992. IEE
Proceedings A, 140, 443.

Thompson, A. C., Attwood, D. T., Gullikson, E. M., Howells, M. R., Kortright, J. B., Robinson,
A. L., et al. (2001). X-ray data booklet. Berkeley, CA: Technical and Electronic Information
Department, Lawrence Berkeley National Laboratory.

Turner, B. P., Ury, M. G., Leng, Y., & Love, W. G. (1997). Sulfur lamps: progress in their
development. Journal of the Illuminating Engineering Society, 26, 10.

Veigele, W. J. (1973). Photon cross sections from 0.1 keV to 1 MeV for elements Z = 1 to
Z = 94. Atomic Data, 5, 51.

Waymouth, J. F. (1971). Metal-halide lamps. Proceedings of the IEEE, 59, 629.
Waymouth, J. F. (1991). LTE and near-LTE lighting plasmas. IEEE Transactions on Plasma

Science, 19, 1003.
Wei, G. C., Lapatovich, W. P., Browne, J., & Snellgrove, R. (2008). Dysprosium oxide ceramic

arc tube for HID lamps. Journal of Physics D: Applied Physics, 41, 144014.
Zollweg, R. J. (1978). Convection in vertical high-pressure mercury arcs. Journal of Applied

Physics 49, 1077.

http://www.nist.gov/pml/data/asd.cfm


DULOV 06-ch02-009-018-9780123877796 2011/5/27 10:40 Page 19 #11

This page intentionally left blank



AAMOP 07-ch03-119-200-9780123855084 2011/9/26 17:45 Page 119 #1

CHAPTER 3
Time-Domain Interferometry
with Laser-Cooled Atoms

B. Barretta, I. Chana, C. Moka, A. Carewa,
I. Yavinb, A. Kumarakrishnana, S. B. Cahnc,
and T. Sleatord

aDepartment of Physics & Astronomy, York University, 4700
Keele St., Toronto, ON M3J 1P3, Canada
bDepartment of Physics & Astronomy, McMaster University,
1280 Main St. W, Hamilton, Ontario, Canada L8S 4M1
cDepartment of Physics, Yale University, New Haven, CT 06511,
USA
dDepartment of Physics, New York University, New York,
NY 10003, USA

Contents 1. Introduction and Description of Two-Pulse
Standing Wave Interferometer 121
1.1 Introduction 121
1.2 Calculation of the Signal 123

2. Time-Domain Atom Interferometer
Experiments—Atomic Recoil 129
2.1 Introduction 129
2.2 Experimental Work 132
2.3 One-Pulse Atom Interferometer 134
2.4 Two-Pulse Atom Interferometer 137
2.5 Multi-pulse atom interferometer 146

3. Lattice Interferometry 151
3.1 Introduction 151
3.2 Description of the Interferometer 152
3.3 Calculation of the Signal 153
3.4 Experimental Results 154

4. Frequency-Domain AI Experiments 159
4.1 Frequency-Domain Measurements

of Recoil 159
4.2 Experimental Details 161
4.3 Results and Discussion 161

Advances in Atomic, Molecular, and Optical Physics, Volume 60, Copyright c© 2011 Elsevier Inc.
ISSN 1049-250X, DOI: 10.1016/B978-0-12-385508-4.00003-6. All rights reserved.

119

http://dx.doi.org/10.1016/B978-0-12-385508-4.00003-6


AAMOP 07-ch03-119-200-9780123855084 2011/9/26 17:45 Page 120 #2

120 B. Barrett et al.

4.4 Frequency Synthesizer 162
4.5 Measurements of Rotation 163

5. Time-Domain AI Experiments—Gravity 165
5.1 Introduction 165
5.2 Theoretical Background 165
5.3 Experimental Setup 168
5.4 Measurement of g 169
5.5 Future Prospects 170

6. Internal State Labeled Interferometer 171
6.1 Introduction 171
6.2 Effect of a Uniform Magnetic Field

on the MGFID 174
6.3 Effect of a Uniform Magnetic Field

on the MGE 178
7. Coherent Transient Effects 180

7.1 Introduction 180
7.2 Experimental Setup and Results 183
7.3 Discussion 184

8. Superfluorescence in Cold Atoms 186
8.1 Introduction 186
8.2 Experimental Details 189
8.3 Results and Discussion 190

Acknowledgments 193
References 193

Abstract A single-state grating echo interferometer offers unique
advantages for time-domain studies of light–matter interac-
tions using laser-cooled atoms, including applications that
involve precision measurements of atomic recoil, rotation,
and gravitational acceleration. To illustrate the underlying
physics, we first discuss the output signal of the interfero-
meter in the absence of spontaneous emission. The influence
of spontaneous emission, magnetic sublevels, and the spatial
profile of excitations beams on matter wave interference in a
two-pulse interferometer is described, followed by a discus-
sion of transit time limited experiments using a multipulse
technique that offers several advantages. We also exam-
ine the enhancement in signal size achieved by a lattice
interferometer. The sensitivity of the interferometer to mag-
netic gradients and gravitational acceleration is discussed
along with extensions to frequency-domain studies of atomic
recoil and rotation. Applications of coherent transient effects
and echo techniques associated with internal state labeled
interferometers that utilize magnetic sublevels of a single
hyperfine state are considered for precise measurements
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of magnetic interactions such as atomic g-factor ratios. The
article concludes with an overview of the suitability of the tra-
ditional two-pulse photon echo technique for measurements
of atomic lifetimes and studies of superradiant emission in
laser-cooled samples.

1. INTRODUCTION AND DESCRIPTION OF TWO-PULSE
STANDING WAVE INTERFEROMETER

1.1 Introduction

Matter wave interference has intrigued scientists since the early days of
quantum mechanics. It was not until the late 1980s, however, that the field
of atom interferometry was born. There have been a series of beautiful
experiments carried out over the past two decades that have probed the
fundamental nature of matter wave interference using atom interferome-
ters (Berman, 1997). These include interference of “large” objects and of
biomolecules (Hackermüller et al., 2004), interference of independently
prepared particles (Andrews et al., 1997), and the origin of quantum
mechanical complementarity (Durr et al., 1998). Advances in microfab-
rication techniques and the development of laser-cooling and trapping
for neutral atoms has opened up many new possibilities for construct-
ing atomic interferometers (Keith et al., 1988; Weiss et al., 1993). Besides
testing the fundamental nature of matter wave interference, atom inter-
ferometers play an essential role in many high-precision measurements
of fundamental constants, such as the fine structure constant α and the
Newtonian constant of gravity. They offer an independent method for
determining these constants that expands our understanding of the fun-
damental nature of physical laws (Cladé et al., 2006; Fixler et al., 2007;
Weiss et al., 1993). Moreover, precise measurements of quantities such as
the local gravitational field hold promise for technological advances in
navigation and mineral exploration (McGuirk et al., 2002).

This article discusses the physics and various extensions of a particular
atom interferometer design developed at New York University (NYU) in
the mid-1990s (Cahn et al., 1997). The interferometer involves the interac-
tion of a set of pulsed laser fields with a sample of laser-cooled Rb atoms
in a magneto-optical trap. A schematic of the experimental setup of this
interferometer is shown in Figure 1. The principle of the NYU interfer-
ometer is that the interaction of an off-resonant optical standing-wave
pulse (made up of traveling waves with k-vectors k1 and k2) with a two-
level atomic system effectively modulates the atomic ground-state energy
with a spatial period 2π/q, with q = k2 − k1. The pulse therefore acts as
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Figure 1 Schematic diagram of the experimental setup (for σ+-polarized sw
experiment). M =mirror, B = beamsplitter, PD = photodiode, AOM = acousto-optic
modulator, λ/4 = quarter-wave plate, L = lens, PBS = polarizing beam splitter.

a phase grating for atomic de Broglie waves, and an initial atomic plane-
wave is scattered into a set of diffraction orders differing by multiples of
momentum ~q. A second standing-wave pulse, separated from the first by
a time T, produces further diffraction orders, and at various times after the
second pulse, these diffraction orders interfere to produce a spatial mod-
ulation in the atomic density that can be observed by the scattering of a
traveling wave pulse with wavevector k2 into the direction k1. An impor-
tant property of this interferometer is that a high degree of “collimation”
of the atoms is not necessary. This is because, for various times after the
second pulse (called echo times), the relative phase between interfering
diffraction orders is independent of the initial atomic velocity. An interfer-
ometer that is based on the cancelation of this Doppler phase is referred
to as an echo interferometer, in analogy with the spin echo (Hahn, 1950a),
or the photon echo (Abella et al., 1965). Another important feature of this
interferometer is that the measured signal results from coherences involv-
ing a single atomic ground state, making the interference signal relatively
insensitive to external electric and magnetic fields.

Like many of the atom interferometers developed over the past two
decades, this interferometer can be used to make measurements of various
physical quantities of interest to high precision. Examples are the atomic
recoil frequency ωq = ~q2/2M (M is the mass of the test atom), which is
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useful for determining the fine-structure constant α, and inertial effects
such as acceleration and rotation.

The original experiments (Cahn et al., 1997) were carried out with
counter-propagating beams having identical circular polarizations, as
shown in Figure 1. The k1 and k2 beams were independently controlled
with acousto-optic modulators (AOMs). In the experiment, the k1 and k2

beams are simultaneously pulsed at time t = 0 for a duration of about
100 ns, followed by a second standing-wave pulse a time T later. Then,
at a later time in the vicinity of t = (N̄ + 1)T for integer N̄, the resulting
atomic grating is probed by switching on only the traveling wave along k2

and measuring the (complex) amplitude of the light wave scattering into
the direction k1. The scattered wave is detected by beating it with an opti-
cal local-oscillator in a balanced heterodyne arrangement (see Figure 1).
The local oscillator is derived from the light passing undiffracted through
the AOM used to switch the k1 beam. During the experiment, the echo beat
signal is further mixed down by a 220-MHz reference from the rf oscilla-
tor using a quadrature demodulator. The two outputs of this demodulator
represent the real and imaginary parts of the scattered light field, where
the real part is in phase with the k1 field (which is not on during detection),
and the imaginary part is π/2 out of phase with k1. The phase of the sig-
nal is stabilized against mirror motion in between experiments (where an
“experiment” consists of 90% trapping [sample preparation] time and 10%
standing-wave pulse excitation and detection time), by phase-shifting the
rf local oscillator.

1.2 Calculation of the Signal

We model the system as a two-level atom interacting with an off-resonant
optical standing wave (Cahn et al., 1997; Dubetsky, 1997). We assume,
first, that the detuning 1 = ω − ω0 is sufficiently large that the atom
always remains in the ground state and that spontaneous emission can be
neglected. Here ω is the laser frequency and ω0 is the resonance frequency
of the atom. The effects of spontaneous emission are discussed in Section 2.
We also assume that, during the standing-wave pulse, the kinetic energy
term in the Hamiltonian can be neglected (Raman–Nath approximation).
This approximation is valid when ωq τ � 1 and√ωqχ τ � 1 for two-photon
Rabi frequency χ and standing-wave pulse duration τ .

For σ+ − σ+ or Lin–Lin illumination, we treat the separate transitions
as independent two-level systems. For a single two-level system, we can
adiabatically eliminate the excited state (Berman & Malinovsky, 2011) to
obtain an effective Hamiltonian for the atomic ground state

H =
p2

2M
+ V(r, t), (1)
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where

V(r, t) = ~χ(t) cos(q · r). (2)

The time-dependent two-photon Rabi frequency is χ(t) = �2
0/21, where

�0(t) = −µ · E(t)/~ is the on resonance Rabi frequency, µ is a matrix
element of the dipole moment operator, and E0(t) is the electric field
amplitude.

To calculate the signal, we first find the signal for a single atomic
momentum state ~k0, and then sum that signal over all the initial momen-
tum states. We therefore assume that just before the first standing-wave
pulse, the atomic state is given by

ψ(r, 0−) = eik0·r. (3)

We will now apply the pulse to get

ψ(r, 0+) = exp[iu1 cos(q · r)+ ik0 · r], (4)

where u1 =
∫ τ

0 χ(t)dt is a pulse area and τ is the duration of the pulse.
Expanding Equation (4) in a Fourier series, we have

ψ(r, 0+) =
∑

n

inJn(u1)ei(nq+k0)·r, (5)

which is a sum of plane waves with momenta differing by integer
multiples of ~q.

Each of the momentum states in Equation (5) oscillates at the frequency
~(k0 + nq)2/2M, so the wave function at time t is given by

ψ(r, t) = ei(k0·r−ωk0
t)
∑

n1

in1 Jn1(u1)ein1q·(r−v0t)e−in2
1ωqt, (6)

where ωk0 = ~k2
0/2M and ωq = ~q2/2M is the two-photon recoil frequency.

As an aside, we compute the expected signal immediately after the
first pulse. The atomic density after the pulse is given by ρ(r, t) =
ψ(r, t)ψ∗(r, t), and for a given initial velocity v0 is

ρv0(r, t) =
∑
n1 ,n′1

in1−n′1 Jn1(u1)Jn′1
(u1)ei(n1−n′1)q·(r−v0t)e−(n

2
1−n′1

2
)ωqt. (7)

In the experiment, we apply a laser field along the direction k2 and
observe a scattered field along the direction k1 (see Figure 1). This signal
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is proportional to the spatial Fourier component of the atomic density
involving eiq·r for which n1 − n′1 = 1:

ρq,v0(r, t) =
∑

n1

iJn1(u1)Jn1+1(u1)e−iq·v0te−i(2n1−1)ωqt. (8)

The expression can be summed using the identity (Watson, 1980)

iνJν [2u sin(α/2)] =
∞∑

l=−∞

eiνα/2Jl+ν(u)Jl(u)eilα, (9)

resulting in a density

ρq,v0(t) = J1[2u1 sin(ωqt)]e−iq·v0t. (10)

After summing over the initial Maxwellian velocity distribution, we find

ρq(t) = J1[2u1 sin(ωqt)]〈e−iq·v0t
〉 = J1[2u1 sin(ωqt)]e−(qσvt/2)2 , (11)

where σv is the e−1 width of the velocity distribution.
Figure 2 shows data (Cahn, 1997) and a theoretical fit based on Equa-

tion (11). In the experiment, a short standing-wave pulse made up of
counter-propagating fields with wave vectors k1 and k2 is applied. Imme-
diately after the pulse, a traveling wave is applied along k2, and the
scattered signal along k1 is detected. A physical picture of the data shown
in Figure 2 can be understood as follows. Before the pulse the atomic den-
sity is uniform. The effect of the standing-wave pulse is a momentum kick
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Figure 2 Doppler-broadened Kapitza-Dirac effect.
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to the atoms in a direction toward the minima of the potential defined by
the standing wave. Immediately after the pulse, there is no scattered sig-
nal, since the atoms have had no time to move from their initial position.
With time, the atoms move toward the potential minima, creating a gra-
ting in atomic density, which scatters the light. Since there is a spread in
initial velocities, the grating will wash out because of the fact that gratings
produced by different velocity classes will dephase from one another on
a time scale t ∼ d/σv, where σv is the initial velocity spread and d = λ/2 is
the period of the grating.

At time t = T, we apply a second pulse with area u2. The result is that
each atomic plane wave generated by the first pulse is split into a set of
plane waves, and the wave function after the second pulse is given by

ψ(r, t) = ei(k0·r−ωk0
t)
∑
n1 ,n2

in1+n2 Jn1(u1)Jn2(u2)

× e−in1q·v0Tei(n1+n2)q·[r−v0(t−T)] e−in2
1ωqTe−i(n1+n2)

2ωq(t−T). (12)

We find that the resulting density ρv0(r, t) ≡ ψ∗(r, t)ψ(r, t) is

ρq,v0(r, t) =
∑

n1 ,n′1 ,n2 ,n′2

in1+n′1+n2+n′2 Jn1(u1)Jn′1
(u1)Jn2(u2)Jn′2

(u2)

× e−i(n1−n′1)q·v0Tei[(n1+n2)−(n′1+n′2)]q·[r−v0(t−T)]

× e−i(n2
1−n′1

2
)ωqTe−i[(n1+n2)

2
−(n′1+n′2)

2]ωq(t−T). (13)

Since the experiment measures the scattering of the light field with wave-
vector k1 into wave-vector k2, we are interested only in the eiq·r Fourier
component of the atomic density. We therefore consider only the terms in
Equation (13) for which (n1 + n2)− (n′1 + n′2) = 1. In addition, we define
N̄ ≡ n′1 − n1, and find

ρq,v0(r, t) =
∑

n1 ,n′1 ,n2 ,n′2

in1+n′1+n2+n′2 Jn1(u1)Jn′1
(u1)Jn2(u2)Jn′2

(u2)

× e−iq·v0[t−(N̄+1)T]ei(n1+n′1)N̄ωqTe−i[2(n1+n2)+1]ωq(t−T). (14)

This expression, when averaged over initial velocities v0, will be equal
to zero unless the Doppler phase, φD = q · v0[t− (N̄ + 1)T] ≈ 0. Thus, for
a given value of N̄, no signal will be observed unless |t− tN̄| < 1/qσv,
where tN̄ = (N̄ + 1)T is the echo time. We now apply Equation (9) to
Equation (14) twice to get

ρq(t) = (−1)N̄+1JN̄[2u1 sin(ωq1t)]JN̄+1[2u2 sin(N̄ωqT + ωq1t)]〈e−iq·v0t
〉, (15)



AAMOP 07-ch03-119-200-9780123855084 2011/9/26 17:45 Page 127 #9

Time-Domain Interferometry with Laser-Cooled Atoms 127

where 1t = t− techo. This equation can be simplified further by replacing
〈e−iq·v0t

〉 with e−(qσvt/2)2 , and realizing that the velocity spread of the laser-
cooled atoms is much larger than the recoil velocity, so that a signal will
be observed only when ωq1t � 1. With this approximation, we can write

ρq(t) ∼ (1t)N̄JN̄+1[2u2 sin(N̄ωqT)]e−(qσvt/2)2 , (16)

Figures 3a and b show the echo signal as a function of 1t for N̄ = 1 and
N̄ = 2, respectively. We see that for N̄ = 1, the signal is linear at the time
1t = 0, and for N̄ = 2, the signal is quadratic, which is consistent with
Equation (16).

Figure 3c and d show the amplitude of the echo signal as a function
of T, for N̄ = 1 and N̄ = 2, respectively. In this case, the signal is periodic
with a period equal to 2π/ωq ∼ 32.4 µs. We point out here that an accu-
rate measurement of this periodicity would allow one to make an accurate
determination of the recoil frequency, and hence ~/M. The precision dωq

with which one can determine the recoil frequency is given approximately
by dT/Tmax, where dT is the uncertainty in the time of the zeros of the sig-
nal and Tmax is the maximum value of T that yields a significant signal.
As will be discussed further in Section 2, a precision measurement of ωq

would allow a precise determination of the fine structure constant.
Since the development of the time-domain de Broglie wave interferom-

eter discussed earlier, a number of extensions of the basic interferometer
design have been carried out by various groups. At NYU, the theory
has been extended to an arbitrary sequence of short pulses, and data
have been taken for a three-pulse interferometer (Strekalov et al., 2002).
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Figure 3 (a), (b) First two echoes as a function of 1t. (c), (d) First two echoes as a
function of T . In all the plots, data are represented by solid dots. The solid curves in
(a) and (b) are fits based on Equation (15). In (c) and (d) the solid curves are fits based
on Equation (16).
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At MIT, an interferometer of the type described here has been demon-
strated with a Bose–Einstein condensate (BEC) (Gupta et al., 2002). At
NIST in Gaithersburg, output coupling of BECs was also demonstrated
using a standing-wave interferometer (Hagley et al., 1999). Other pio-
neering studies at MIT and Duke University have examined the role
of atomic collisions on echo interferometers and developed techniques
for phase-space imaging using coherent transient effects (Bacon et al.,
1994; Forber et al., 1990; Thomas & Wang, 1995). Recent studies of the
kicked-rotor in a magnetically guided trap for investigations of quan-
tum dynamics and for applications to precision measurements have also
used internal-state interferometers of this type (Tonyushkin & Prentiss,
2010; Tonyushkin et al., 2009a; Wu et al., 2005, 2009). At York University,
the focus has been on precision measurements of atomic recoil (Beattie
et al., 2009b). A complete understanding of mechanisms affecting the
two-pulse interferometer was developed on the basis of analytical cal-
culations and numerical simulations (Barrett et al., 2010; Cahn, 1997;
Dubetsky, 1997) including effects such as spontaneous emission, mag-
netic sublevels, and standing-wave pulse parameters (rise time, duration,
detuning, intensity). Systematic effects on the recoil frequency (angle
between excitation beams, sample density, and index of refraction) have
also been investigated. A multipulse interferometer was also developed,
which has significant advantages for precision measurements (Beattie
et al., 2009a). The theoretical description of this interferometer was devel-
oped using the wave function evolution approach discussed in Strekalov
et al. (2002) and, separately, using the coherence function approach shown
in Mandel (1979). The coherence function approach resulted in an under-
standing of the complete recovery of contrast in the interferometer using
pulsed standing waves and the partial recovery of contrast using pulsed
traveling waves and continuous wave light. The results of these studies
of traveling-wave excitation were similar to the results of atomic beam
experiments carried out by several pioneering groups (Chapman et al.,
1995; Kokorowski et al., 2001; Pfau et al., 1994; Uys et al., 2005).

The outline of this chapter is as follows. Section 2 provides a physi-
cal description of the two-pulse interferometer described earlier and its
application for precision measurements. It also presents an analysis of the
effects of spontaneous emission and magnetic sublevels on the interfer-
ometer signal. The sensitivity of the interferometer to magnetic gradients
and gravitational acceleration, g, is also discussed. This is followed by a
description of the multipulse interferometer and a review of recent exper-
imental results at the transit-time limit. Section 3 presents a modification
to the techniques outlined earlier, in that instead of the first pulse, the
atoms are cooled in an optical lattice potential, and at time t = 0, sud-
denly released. At time T a pulse of the optical lattice is applied and, at
times close to t = (N̄ + 1)T, an echo is observed by the scattering of a
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traveling wave. In addition, Section 3 discusses the behavior of the sys-
tem if the applied pulse is of very long duration, in extreme violation of
the Raman–Nath condition. Section 4 discusses frequency-domain tech-
niques for measurements of atomic recoil and rotation. Section 5 includes
a discussion of techniques for measurements of g using the two-pulse
interferometer and presents recent results that show the potential for
high-precision measurements. Section 6 presents techniques for measur-
ing magnetic interactions using an internal state labeled interferometer
that utilizes magnetic sublevels in a single ground state. Section 7 shows
the suitability of the traditional two-pulse photon echo technique for
precision measurements of atomic lifetimes. The article concludes with
Section 8, which is a review of recent studies of superradiant emissions in
laser-cooled atoms.

2. TIME-DOMAIN ATOM INTERFEROMETER
EXPERIMENTS—ATOMIC RECOIL

2.1 Introduction

During the last 20 years, the field of precision measurements has focused
on new determinations of fundamental constants. In particular, there has
been renewed emphasis on independent measurements of the atomic fine
structure constant, α, to test quantum electrodynamics (QED). Experi-
ments based on the electron g-factor (Hanneke et al., 2008) and helium
fine structure (Smiciklas & Shiner, 2010) rely on QED to define α. In con-
trast, precision measurements of α using atom interferometers (AIs) have
relied on the following relationship (Taylor, 1994)

α2
=

(
2R∞

c

)(
mp

me

)(
M
me

)(
h
M

)
, (17)

where R∞ is the Rydberg constant, c is the speed of light, mp (me) is the
mass of the proton (electron), h is Planck’s constant, and M is the mass of
the test atom. Since R∞ and the mass ratios have been measured with a
precision greater than 0.1 parts per billion (ppb), AIs are well suited for
precision measurements of α. Importantly, an AI-based measurement of
α does not rely on QED and the precision in determining h/M is better
than the precision with which h and M can be measured independently
(Taylor, 1994).

AIs involving Raman transitions between hyperfine ground states have
exploited the properties of laser-cooled atoms for a variety of experiments
related to precision measurements and inertial sensing (Chiow et al., 2009;
Dubetsky & Kasevich, 2006; Gupta et al., 2002; Lamporesi et al., 2008;
McGuirk et al., 2002; Müller et al., 2010; Peters et al., 1999; Weiss et al.,
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1993; Wicht et al., 2002). Recent AI-based work using Bloch oscillations in
cold optical lattices (Cadoret et al., 2008) have also produced competitive
measurements of α.

In this section, we review two time-domain echo-type AI techniques
(Barrett et al., 2010; Beattie et al., 2009a,b, 2008; Cahn et al., 1997) that
are ideal for precise measurements of the atomic recoil frequency, ωq =

~q2/2M, where ~q is the two-photon momentum transfer from counter-
propagating laser fields. The different techniques for extracting ωq are
introduced briefly, followed by a more detailed discussion of signal
formation.

2.1.1 Physical Description of the AI

The AI functions on the basis of phase modulation of the atomic wave
function due to the interaction with standing-wave (sw) pulses. Although
this phase modulation is directly connected to the recoil energy, the func-
tional form of the signal has a complicated dependence on a number of
mechanisms that we explore in the following subsections. These include
the dynamic population of magnetic sublevels, phase shifts due to sponta-
neous and stimulated processes, excitation of multiple momentum states,
and the spatial profile of the excitation beams. Recent work has success-
fully modeled the signal shape on the basis of analytical calculations as
well as numerical simulations (Barrett et al., 2010; Beattie et al., 2008).

The AI uses a cold gas of rubidium atoms. The sample is excited by
sw pulses that satisfy the Raman–Nath criterion and are far-detuned from
the excited state. Each such pulse results in the diffraction of atoms into
a superposition of momentum states separated by ~q = 2~k (as shown
in Figure 4a), where k = 2π/λ is the wavenumber of the traveling wave
components of the sw. Each pulse transfers momenta in integer multi-
ples of ~q, due to scattering of radiation between the two traveling-wave
components of the sw field. After excitation, the sample evolves into a
superposition of momentum states corresponding to the same internal
ground state—which can have several magnetic sublevels.

The recoil phase of momentum state
∣∣p = n~q

〉
scales as n2ωqt, where n

is an integer denoting the number of two-photon transitions induced by
the sw pulse. The Doppler phase of these states evolves as nqv0t, where v0

is the initial atomic velocity. The modulation of the wave function occurs
on a timescale τq = π/ωq (∼32 µs for 85Rb). This occurs because atoms dif-
fering in velocity by the recoil velocity, vq = ~q/M, are displaced relative
to one another by one grating period (λ/2) in a time τq. This time scale
should be compared to the coherence time, τcoh∼2/qσv, of the atomic den-
sity grating induced by the sw potential. Here, σv =

√
2kBT /M is the e−1

width of the velocity distribution and T is the temperature of the sam-
ple. This is the time scale on which the temporal modulation of the wave
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Figure 4 (a) Recoil diagram for the two-pulse AI. Center-of-mass momentum states
are shown as dots. Standing-wave pulses are applied at t = 0 and t = T to diffract the
momentum states of the atom into multiples of the two-photon recoil momentum
2~k . Only the zeroth-order and the ± first-order diffractions from each sw pulse are
drawn for simplicity. Two pairs of interfering momentum states are shown as solid
lines. (b) Pulse timing diagram for the experiment. After each sw pulse, a modulation
in atom density forms and then decays in a time τcoh because of Doppler dephasing.
At time t = 2T , the grating echo forms as a result of the interference between
different momentum states. A traveling-wave read-out pulse coherently scatters light
from the grating at this time. The intensity of this light is detected as the signal.

function decoheres because of Doppler dephasing from the finite velocity
distribution of the sample.

For BEC conditions with T ∼ 10−8 K, the dephasing time can be much
longer than the modulation period of the wave function. In this case, the
recoil modulation can be observed with a single sw pulse, as discussed in
detail in Section 2.3.

The theoretical expression for the recoil signal in the two-pulse regime
was originally derived in Cahn et al. (1997). The treatment in (Beattie et al.,
2008) addressed the role of spontaneous emission (SE) on the recoil sig-
nal. A comprehensive study of effects on the two-pulse AI related to both
stimulated and spontaneous processes between magnetic sublevels in the
ground and excited states was carried out using numerical simulations in
Barrett et al. (2010). An analytical model of the two-pulse AI including
both SE and magnetic sublevels was also derived in this work. We discuss
these issues in Section 2.4.

An alternative technique for measuring ωq, described in Section 2.5,
involves excitation with a third sw pulse applied at t = T + δT. One then
observes the influence of this pulse on the echo at t = 2T. Figure 5 shows
the timing diagrams for both the two-pulse and three-pulse AI techniques.
In the absence of SE, the contrast at t = 2T can be recovered when δT is
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Figure 5 Recoil diagram for the two-pulse AI (a) and the three-pulse AI (b). The
grating contrast at t = 2T is measured by varying the pulse separation, T , in the
two-pulse AI. In the case of the three-pulse AI, T is held fixed and the time of the third
pulse, δT , is varied. The contrast exhibits a periodic revival when δT is an integer
multiple of the recoil period, τq.

an integer multiple of τq, due to constructive interference of phase-shifted
momentum states produced by the third pulse, as shown in Figure 5b.
The basic signal shape produced by this AI can be described by a coher-
ence function (Beattie et al., 2009b; Mandel, 1979)—a Fourier transform
of the atomic momentum distribution produced by a sw pulse. A more
detailed quantum mechanical calculation of the echo formation (Beattie
et al., 2009a; Strekalov et al., 2002) predicts certain scaling laws for the
fringe width as a function of the area of the third pulse which can be
exploited to improve the precision of a measurement of ωq.

In contrast, if the third pulse is a traveling wave, the quasi-periodic
contrast cannot be fully recovered because of decoherence from SE. The
contrast as a function of δT in this case can also be described using
a coherence function, as in atomic beam experiments (Chapman et al.,
1995; Kokorowski et al., 2001; Pfau et al., 1994; Uys et al., 2005) and in
time-domain experiments in cold atoms (Beattie et al., 2009a).

2.2 Experimental Work

Although the timescale and precision associated with the recoil experi-
ment should be limited only by the transit time of the atoms through the
region of interaction, in practice it is necessary to eliminate the effects of
decoherence due to atomic collisions and background light. Magnetic field
gradients also cause amplitude oscillations that must be eliminated (Weel
et al., 2006). A plot of the signal decay as a function of the pulse separa-
tion, T, is shown in shown in Figure 6a. The decrease in signal with T is
mainly due to residual magnetic field gradients and the loss of atoms from
the region of interaction defined by the excitation beams.

An interesting aspect of using the echo technique is that the Doppler
phases accumulated by momentum states cancel at the echo times. As a
result, the experiment does not rely on velocity selection. Although veloc-
ity selection is not required for the grating echo AI, sub-Doppler cooling
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Figure 6 (a) Signal decay of the two-pulse AI as a function of pulse separation, T .
The first pulse is held fixed while the second pulse and read-out pulse are moved out
in integer units of the recoil period, τq, and twice the recoil period, respectively. The
loss of signal is primarily due to atoms leaving the region of interaction. (b)
Experimental setup used for the two-pulse recoil experiment and (c) for the
three-pulse experiment.

of the sample is necessary to extend the transit time, which is the primary
limitation for the timescale of the experiment.

Experiments involving the two-pulse technique (Beattie et al., 2008)
were carried out in a stainless steel vacuum chamber. The light used for
atom trapping and atom interferometry is derived from a Ti:Sapphire ring
laser and from a semiconductor tapered amplifier seeded by light from
the Ti:Sapphire laser. Approximately 108 85Rb atoms are loaded into a
magneto-optical trap (MOT) in ∼200 ms. The temperature of the sample
was typically ∼50 µK (Vorozcovs et al., 2005).

The excitation pulses for the AI are derived from a chain of acousto-
optic modulators (AOMs) controlled by transistor-transistor logic (TTL)
switches that ensure an extinction ratio for the radio frequency (RF) power
of ∼40 dB. Pulsing a chain of AOMs ensures that excitation and read-
out pulses have on/off contrast greater than 106 : 1, thereby minimizing
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decoherence due to background light. The last AOM in this chain operates
at 250 MHz and is shown in Figure 6b. The diffracted beam from this
AOM serves as the excitation beam. A beam diameter of ∼0.5 cm was
used, which is comparable to the initial cloud diameter of ∼0.6 cm. The
mirror shown at the top of Figure 6c is used to retro-reflect the traveling-
wave pulses from the AOM and produce the sw excitation pulses used
for the AI. A shutter with a closing time of ∼600 µs is used to block the
retro-reflection at the time of the read-out pulse.

The grating contrast is detected using a read-out pulse that has the
same polarization and detuning as the excitation pulses. The scattered
light from the sample due to the read-out pulse is detected using a gated
photomultiplier tube (PMT). Owing to jitter in the shutter closing time
of ∼200 µs, the smallest pulse separation, T, for which the echo can be
recorded using this technique is∼1 ms. The grating contrast is determined
by integrating the echo envelope over the signal duration of ∼2 µs.

For recent experiments with the three-pulse technique, a glass vacuum
system was used. Here, the trap loads ∼109 atoms in ∼300 ms. Both the
MOT laser beams and the magnetic field gradient are switched off prior
to the AI experiment. Three pairs of coils, one pair along each direction,
are used to cancel residual magnetic fields and field gradients. These coils
remain on continuously. Under these conditions, the magnetic field at the
time of the echo experiment is canceled at the level of ∼1 mG over the
volume of the trap. The AI excitation pulses are derived from two off-
resonant, circularly polarized, traveling wave beams. They are overlapped
at the location of the trap to form a sw along the vertical direction. The AI
beams have a Gaussian intensity profile and are collimated to a diameter
of ∼1 cm. Two separate AOMs operating at 250 MHz were used to gener-
ate counter-propagating traveling-wave pulses as shown in Figure 6c. This
arrangement allowed the shutter to be eliminated so that the time separa-
tion between the standing-wave excitation pulses, T, could be reduced to
a few microseconds.

2.3 One-Pulse Atom Interferometer

In order to fully understand the origin of the signal used in the experi-
ments, a quantum theory of matter wave interference is essential. Such
a theory is governed by the quantization of the atomic center-of-mass
motion and is analogous to the diffraction of light in classical optics.

The simplest signal is presented first, namely the recoil signal produced
by one sw pulse. In order to observe interference between momentum
states after one pulse, the velocity distribution of the sample must be very
narrow (σv/vq � 1) such that the coherence of the sample is preserved
much longer than the onset time of recoil modulation (τq). The calcula-
tion of the signal is then carried out in two stages. First, the Schrödinger
equation is solved for the ground-state amplitude of the atomic wave
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function using the two-level Hamiltonian for a sw laser field. The Hamil-
tonian assumes that the sw pulse is short (Raman–Nath regime) such
that the motion of the atoms along the axis of the sw can be neglected
during the interaction. It also assumes that the pulse is far off-resonance
(|1| � �0, γ ) such that the excited state is not significantly populated.
This leads to Kapitza-Dirac diffraction of the atomic wave function into
a superposition of momentum states. Here, 1 ≡ ω − ω0 is the detun-
ing of the laser frequency, ω, from the atomic resonance frequency, ω0,
�0 ≡ µegE0/~ is the Rabi frequency, µeg is a dipole matrix element, E0 is
the electric-field amplitude of each traveling-wave component of the sw,
and γ = 0/2, where 0 is the spontaneous emission rate.

In the second stage of the calculation, after the pulse has turned off,
the atom is allowed to evolve in free space for a time t, which results in a
modification of the phase of the ground-state amplitude. In an experiment
involving a BEC, a traveling-wave read-out pulse with wavelength λ can
be applied to the atomic sample and the back-scattered electric field can
be detected as the signal (Gupta et al., 2002). The amplitude of the scat-
tered field is proportional to the λ/2-periodic component of the atomic
density modulation (the 2k = q-Fourier harmonic) produced by the sw
interaction. For a long read-out pulse, the scattered signal would exhibit
temporal modulation proportional to the contrast of the atomic density
distribution.

For a two-level atom, the Hamiltonian in the field-interaction represen-
tation is (Berman & Malinovsky, 2011)

H = ~
(
−1− iγ �(r)
�(r) 0

)
, (18)

where �(r) = �0 cos(k · r) for a sw laser field. The energy is defined to
be zero for the ground state and −~1 for the excited state. The −i~γ
term is a phenomenological constant added to account for SE during
the interaction, which gives rise to amplitude decay of the excited state.
For the moment, the effects due to SE are ignored by setting γ = 0 in
Equation (18). These effects are discussed in a later section.

The ground-state density produced after the interaction with one sw
pulse is

ρ(1)g (r, t) =
1
V

∞∑
ν=−∞

χ (1)
ν
(t)e−iνq·r, (19a)

χ (1)
ν
(t) = iνeiνq·v0(t−T1)

∑
n

Jn(u1)Jn+ν(u1)eiν(2n+ν)ωq(t−T1). (19b)

Here, χ (1)
ν
(t) is the amplitude of the νq-Fourier harmonic of the density

distribution and the superscript (1) denotes that this is valid for one sw
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pulse. The field scattered from the density grating is proportional to χ (1)1 (t)
and can be shown to be (Barrett et al., 2010)

E(1)(t) ∝ −J1

[
2u1 sinωq(t− T1)

]
, (20)

where T1 is the onset time of the pulse, ωq is the recoil frequency and u1 is
the pulse area, which, for a pulse duration of τ1, is given by

u1 =
�2

0

21
τ1. (21)

Figure 7 shows the atomic density (obtained using Equation [19a]) and
corresponding scattered field amplitude (obtained using Equation [20])
for two different pulse areas.
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Figure 7 Density distribution, ρ(1)g (z, t), and corresponding back-scattered electric
field amplitude, E(1)(t), for an atomic sample after the interaction with a weak sw
pulse (a, c) and a strong sw pulse (b, d). In plots (a) and (b), z is the distance along the
sw field. Dark portions correspond to low density while light portions correspond to
high density. ρ(1)g (z, t) shows spatial modulation that is periodic at integer multiples of
λ/2, and shows temporal modulation at integer multiples of 2ωq as the pulse area
increases. Equation (19a) was used to produce plots (a) and (b) with pulse area
u1 = 0.5 and 1.5, respectively. In plots (c) and (d), Equation (20) was used with the
same respective pulse areas. The zeroes in the contrast of the density modulation
correspond to the zeroes in E(1)(t).
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The recoil signal in the one-pulse regime is the intensity of the scat-
tered field, which is proportional to the square of Equation (20): s(1)(t) ∝
|E(1)(t)|2.

2.4 Two-Pulse Atom Interferometer

Here, the two-pulse atom interferometer is discussed, along with the
qualitatively new features that arise in this case. When the velocity disper-
sion of the sample is large, that is, σv/vq > 1, the grating in Equation (19a)
is washed out. By subjecting the sample to a second sw pulse, the grating
is reformed at a later time. The grating echoes occur only at times where
the Doppler phase cancels, (as shown in Figure 8)

t(2)echo = T2 + N̄(T2 − T1) = (N̄ + 1)T, (22)

for pulse onset times of T1 = 0 and T2 = T.
The first echo time where all momentum states interfere is t(2)echo = 2T,

corresponding to N̄ = 1, which will be the focus of most of this work. The
scattered field amplitude in the vicinity of the N̄th- order echo time is

E(2)
N̄ (1t; T) ∝ (−1)N̄+1e−(1t/τcoh)

2
JN̄

(
2u1 sin(ωq1t)

)
× JN̄+1

(
2u2 sin[ωq(1t+ N̄T)]

)
,

(23)
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Figure 8 Two-pulse recoil diagram: Doppler phase as a function of time for
momentum states

∣∣n~q
〉
. Only n = −3, . . . , 3 are shown for simplicity. The first sw

pulse (SW1) is applied at t = 0, while the second (SW2) is applied at t = T . Echo times
(given by Equation [22]) are marked by circles. The number of crossings at each echo
time is proportional to the contrast of the λ/2-periodic density grating formed at those
times.
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where 1t = t− t(2)echo, with t(2)echo given by Equation (22). From this expres-
sion, it is clear that the scattered field amplitude is periodic at multiples of
the recoil frequency as a function of the pulse separation T. It is interesting
to note that, for the N̄th-order echo, the scattered field amplitude changes
at frequency N̄ωq, which is advantageous for a precision measurement of
ωq. However, the maximum contrast of the N̄th-order echo is reduced by a
factor of ∼JN̄−1(2u1)/JN̄(2u1) ∼ (2u1)

−1 relative to the (N̄ − 1)th order echo,
which manifests as a loss in the signal to noise ratio in the experiment.

In the experiment, the measurable quantity is the relative contrast of the
atomic density grating in the vicinity of the echo. This quantity—defined
as the recoil signal—is obtained by integrating the scattered field intensity
over the duration of the echo, which can be written as

s(2)N̄ (T) ∝ J2
N̄+1

(
2u2 sin(N̄ωqT)

)
, (24)

where the superscript (2) denotes the number of pulses used to produce
the signal and the subscript N̄ denotes the order of the echo.

2.4.1 Effects due to Spontaneous Emission

Spontaneous emission during the sw interaction strongly affects the recoil
signal (Beattie et al., 2008). Taking it into account, the expression for the
scattered field in the case of both one and two pulses is modified as
follows:

E(1)(t) ∝ −J1

(
2u1

√
sin(φ(1)1 + θ) sin(φ(1)1 − θ)

)(
sin(φ(1)1 − θ)

sin(φ(1)1 + θ)

)1/2

, (25a)

E(2)
N̄ (1t; T) ∝ (−1)N̄+1e−(1t/τcoh)

2

× JN̄

(
2u1

√
sin(φ(2)1 + θ) sin(φ(2)1 − θ)

)
× JN̄+1

(
2u2

√
sin(φ(2)2 + θ) sin(φ(2)2 − θ)

)

×

(
sin(φ(2)1 + θ)

sin(φ(2)1 − θ)

)N̄/2 (
sin(φ(2)2 − θ)

sin(φ(2)2 + θ)

)(N̄+1)/2

.

(25b)

Here, the recoil phases for each pulse are defined as

φ
(1)
1 = ωq(t− T1), (26a)

φ
(2)
1 = ωq[t− T2 − N̄(T2 − T1)] = ωq1t, (26b)

φ
(2)
2 = ωq(t− T2) = ωq[1t+ N̄(T2 − T1)], (26c)
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where Tj is the onset time of pulse j, uj is the magnitude of the complex
pulse area, 2j = ujeiθ , given by

uj =
�2

0τj

21

[
1+

(
0

21

)2
]−1/2

, (27)

and θ is a phase that represents the degree to which SE contributes to the
signal:

θ = tan−1

(
−
0

21

)
. (28)

There are two main features that are observed when SE is present.
First, within a single period, the signal develops an asymmetry about
the zeroes. Second, there is a temporal shift of the zeroes toward earlier
times relative to the zeroes expected without SE. Both of these features
are best demonstrated when the pulse area is large—causing the double-
peak structure within each period of the recoil signal. This is illustrated in
Figure 9a for the one-pulse case, and has been observed experimentally in
the two-pulse case as shown in Figure 9b.

In the absence of SE the signal develops multiple peaks within each
period for large pulse areas (compare Figure 7c to Figure 7d). This
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Figure 9 (a) Comparison of recoil curves (scattered field intensity as a function of
time after the sw pulse) predicted by the one-pulse theory (square of Equation [25a])
with and without SE. The black curve corresponds to a SE-free system
(0 = 0→ θ = 0), while the gray curve corresponds to a system where SE is present
(0 = 0N → θ = −0.133 rad). The solid vertical line shows the first zero in the signal
after t = 0 in the absence of SE, while the dashed vertical line shows the zeroes shift
by a temporal amount δt = θ/ωq in the presence of SE. Pulse parameters: 1 = 7.50N;
�0 = 1.50N; τ1 = 250 ns; pulse area u1 ∼ 1.43. (b) Data from the two-pulse recoil
experiment fitted to the square of Equation (25b)—solid line. The data exhibit a
similar asymmetric shape to that predicted by the theory. Pulse parameters: detuning
1 ∼ 50 MHz; intensity I ∼ 50 mW/cm2; pulse durations τ1 = 300 ns, τ2 = 70 ns; circular
polarization.
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structure is due to the interference of higher order momentum states
which become more populated as the pulse area increases. In the absence
of any phase shifts of the individual harmonics, the shape of the recoil
signal (s(1)(t) = |E(1)(t)|2) is symmetric (black curve in Figure 9a).

On the other hand, when SE is present the phases of the individual
harmonics comprising the signal are shifted by a phase φ(1)n ≈ |n|θ − nπ/2
(Barrett et al., 2010), as a result of the decay of the excited state into the
ground state. Here, n is an integer denoting the momentum states that
are interfering (

〈
n~q

∣∣ (n+ 1)~q
〉
) to produce each harmonic of the sig-

nal. Since the signal is a coherent sum over all the harmonics, it exhibits
more constructive interference on one side of its zeroes than the other,
giving rise to an asymmetry in the peak amplitude within each recoil
period. It also results in an overall temporal shift of the waveform equal to
δt = θ/ωq.

2.4.2 Effects due to Magnetic Sublevels

In the experiment 85Rb is used, which is a multilevel atom. If only the
F = 3→ F′ = 4 transition is considered, there are 2F+ 1 = 7 ground-state
magnetic sublevels and nine excited state sublevels. These energetically
degenerate sublevels have a significant effect on the response of the AI.

The coupling strength between states
∣∣g〉 = ∣∣ng Jg mg

〉
and |e〉 = |ne Je me〉

is determined by the dipole matrix element

µeg = −e 〈e | ε̂qL · r
∣∣g〉 = −e〈ne Je‖r‖ng Jg〉C

Jg 1 Je
mg qL me , (29)

where ng, ne are the principal quantum numbers, Jg, Je are the total angu-
lar momenta, and mg, me are the magnetic sublevels of the ground and
excited states, respectively. In our case, Jg = F = 3 and Je = F′ = 4. The
unit vector ε̂qL represents the polarization of the laser field. Linear and
circular polarization states are denoted by qL. Here, qL = 0 for linearly
polarized light along the quantization axis, ẑ (k ‖ ẑ), and qL = ±1 for σ±

polarizations in the xy-plane (k ⊥ ẑ). The factor 〈ne Je‖r‖ng Jg〉 in Equa-
tion (29) is the reduced matrix element associated with the radial part
of the wave functions—the magnitude of which is unimportant for this
treatment and will be absorbed into the Rabi frequency, �0 = µegE0/~.
The factor C

Jg 1 Je
mg qL me is the Clebsch-Gordan coefficient, which describes how

strongly two states are coupled by the photon and depends on the partic-
ular transition. We are concerned only with electric dipole transitions that
obey the selection rules: Je = Jg + 1 and me = mg + qL.

From Equation (29), it is apparent that each degenerate m-level inter-
acts with a sw pulse (of a given polarization) with a different coupling
strength—which is proportional to the Rabi frequency for each transi-
tion: C

Jg 1 Je
mg qL me �0. In the experiment, this differential coupling causes the
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population of the m-levels to become unbalanced after the interaction with
the sw pulse (optical pumping). The degree of the imbalance is deter-
mined by �0, 1, and the pulse durations. In the analytical treatment that
follows, optical pumping is not taken into account. We assume that the
population of each m-level remains constant during the sw pulses. How-
ever, optical pumping effects can be taken into account using numerical
simulations of the AI, which will be discussed later.

The area of a given sw pulse, denoted by index j, is given by

u
(mg)

j =
�2

0τj

21

[
1+

(
0

21

)2
]−1/2 (

C
Jg 1 Je
mg qL me

)2

. (30)

For the first-order echo of the two-pulse recoil signal (N̄ = 1), the total
scattered field amplitude is a sum over the fields scattered by each state∣∣Jg mg

〉
(Barrett et al., 2010)

E(2)
1 (1t; T) ∝ e−(1t/τcoh)

2

(
sin(φ(2)1 + θ)

sin(φ(2)1 − θ)

)1/2 (
sin(φ(2)2 − θ)

sin(φ(2)2 + θ)

)

×

∑
mg

(
C

Jg 1 Je
mg qL me

)2

J1

(
2u

(mg)

1

√
sin(φ(2)1 + θ) sin(φ(2)1 − θ)

)

× J2

(
2u

(mg)

2

√
sin(φ(2)2 + θ) sin(φ(2)2 − θ)

)
,

(31)

where the φ(2)j are recoil phases given by Eqs. (26b) and (26c). The extra

factor of
(
C

Jg 1 Je
mg qL me

)2
in Eq. (31) arises because of the coupling of states∣∣Jg mg

〉
and |Je me〉 by the traveling-wave read-out pulse (assuming that the

scattered field has the same polarization as the read-out pulse).
The form of Equation (31) allows for interference between scattered

fields from each m-level. This additional interference from magnetic sub-
levels strongly affects the shape of the recoil signal. Figure 10a shows a
comparison of two-pulse recoil signals predicted by the simple two-level
theory (square of Equation [25b]) and the theory including multiple sub-
levels (square of Equation [31]). The two-level theory predicts extra zeroes
in the signal shape that are not observed experimentally. In contrast, for
the same set of pulse parameters, the multilevel theory correctly predicts
that these extra zeroes should not be present. Their absence is due to the
interference of back-scattered light from each magnetic sublevel.

Indeed, as Figure 10b shows, data from the two-pulse recoil experi-
ment strongly support the multilevel model described by Equation (31).
In particular, the multilevel theory successfully models the asymmetry



AAMOP 07-ch03-119-200-9780123855084 2011/9/26 17:45 Page 142 #24

142 B. Barrett et al.

0
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30

T (µs)

40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

T (µs)

80

E
ch

o 
in

te
ns

ity
(a

rb
. u

ni
ts

)

E
ch

o 
in

te
ns

ity
(a

rb
. u

ni
ts

)

100 120

(b)(a)

140 160

Figure 10 (a) Two-pulse recoil curves predicted by the two-level theory (square of
Equation [25b]—gray curve) and the theory including magnetic sublevels (square of
Equation [31]—black curve). The m-level populations were assumed to be equally
distributed among the seven levels of the Jg = 3 ground state of 85Rb. Pulse
parameters: 1 = 100N; �0 = 2.50N; 0 = 0N, τ2 = 250 ns. (b) Data from the two-pulse
recoil experiment. Data are fitted to the two-level expression (square of
Equation [25b]—dashed line), and the multilevel expression (square of
Equation [31]—solid line). Pulse parameters: detuning 1 ∼ 50 MHz; intensity I ∼ 50
mW/cm2; polarization state |qL| = 1; first pulse durations τ1 = 300 ns, τ2 = 98 ns.

and the broad valleys between zeroes that occur as the area of the sec-
ond pulse is increased. Fits using the multilevel theory show a factor of
∼10 improvement in the χ 2/dof compared to that of the two-level theory,
which corresponds to a factor of ∼3 improvement in the relative uncer-
tainty of the recoil frequency. Thus, the multilevel model is necessary for
precision measurements of ωq using the two-pulse technique.

2.4.3 Spatial Profile

Another complication in modeling the AI is that magnetic sublevels and
the spatial intensity profile of the excitation beams can be shown to pro-
duce similar effects on the signal shape. For the data presented earlier,
the beam diameter (∼1 cm) was larger than the diameter of the atomic
cloud (∼0.6 cm). Under these conditions, magnetic sublevels played the
dominant role on the response of the AI. However, when the beam
diameter is comparable to the size of the atomic cloud, these effects are
indistinguishable.

Figure 11 shows a typical measurement of ωq using the two-pulse tech-
nique. The echo intensity is recorded over two widely separated periods.
The fit to the data shown in both plots is based on a phenomenological
treatment including the effects due to SE and the spatial profile of exci-
tation beams (Beattie et al., 2008) and gives an error for ωq of ∼3 parts
per million (ppm). This is a factor of ∼3 more precise than the fits using
models without accounting for the spatial profile.
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Figure 11 Grating contrast as a function of T for the two-pulse experiment shown at
(a) T ∼ 1 ms and (b) T ∼ 9 ms. Part (a) shows three fits to the data, one based on the
theory of echo formation ignoring effects due to SE (labeled “No SE”), one including
SE (labeled “With SE”), and one based on a phenomenological treatment including
both SE and the spatial profile of excitation beams (labeled “SE and SP”). Part (b)
shows only the fit based on the phenomenological model. This fit gave a single
measurement of ωq precise to ∼3 ppm.

In either case of small or large beam diameter, the importance of includ-
ing both SE and magnetic sublevels/spatial profile in the model of the
signal is quite significant for precision measurements.

2.4.4 Effects due to B-Field Gradients and Gravity

The effect of a constant acceleration on the interferometer manifests itself
as a phase shift of the atomic grating, and therefore of the back-scattered
electric field. Here, the modification of the scattered field amplitude due
a constant force is presented. Two physical examples are considered: the
force due to gravity and the force on the atom due to the presence of a uni-
form magnetic field gradient (Weel et al., 2006). Both of these forces can
be written in the form Û(z) = −M̂z, where M̂ is an operator that com-
mutes with both the position (z) and momentum (p) operators, and acts
on the basis states |F mF〉. In the case of gravity, M̂ = F Î, with F = −Mg
and identity matrix Î since gravity acts equally on all magnetic sublevels.
In the case of a magnetic field gradient, the potential is

Û(z) = −µ · B(z) = −gFµBG
F̂z

~
z, (32)

where gF is the Landé g-factor, µB is the Bohr magneton, and B(z) = Gz,
where G = ∂B/∂z is a uniform magnetic field gradient along z, and F̂z is
the projection operator for total angular momentum, F. In this case, M̂ =
F F̂z/~ and F = gFµBG.
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The total scattered field from all magnetic sublevels in the presence of
a gradient G can be shown to be

E(2)
N̄, G(1t; T) = E(2)

N̄ (1t; T)
∑

mF

|αmF |
2eimFφ

(2)
G , (33)

where E(2)
N̄ is given by Equation (23) and the phase due to the gradient is

φ
(2)
G (1t; T) =

qgFµBG
2M

[
N̄(N̄ + 1)T2

+ 2(N̄ + 1)1tT +1t2
]
. (34)

From Equation (33), it is clear that the scattered field amplitude from
state |F mF〉 exhibits phase modulation as a function of the pulse spacing,
T, at a frequency mFω

(2)
G (T) due to the presence of the gradient, where

ω
(2)
G (T) = ∂φ

(2)
G /∂T. This frequency depends linearly on the value of T

(since the phase scales as T2) and the magnetic quantum number, mF. For
an arbitrary set of m-level populations, {|αmF |

2
}, the total scattered field

contains all the allowed harmonics of frequency ω(2)G (T). If more than one
sublevel is populated, this effect can be detected in the signal intensity
(|E(2)

N̄, G(t)|
2), since interference between differentially oscillating sublevels

would manifest as an amplitude modulation. However, if the system
is optically pumping into a single sublevel, the modulation only affects
the phase of the electric field—which cannot be observed using intensity
detection. Instead, one can use a balanced heterodyne detector to measure
the in-phase and in-quadrature components of the electric field amplitude
to obtain the phase.

Taking into account the phase evolution of the wave function due to
gravity, the scattered field can be shown to be

E(2)
N̄, g(1t; T) = E(2)

N̄ (1t; T)eiφ(2)g , (35)

where φ(2)g (T) ∼ −qgN̄(N̄ + 1)T2/2. Since gravity acts equally on all states,
its effect is a modification of the phase of the density grating. This phase
is then imprinted on the electric field scattered by the grating from the
read-out pulse and cannot be detected from the intensity of the scattered
light.

If the system is optically pumped into a single magnetic sublevel, other
than mF = 0, then a magnetic field gradient will affect only the phase of
the scattered electric field in the same manner as gravity. Since both forces
affect the phase of the scattered field in a similar manner, some care must
be taken to isolate one effect or the other in an experiment. By perform-
ing the echo experiment in the horizontal direction, for example, one can
eliminate the effect of gravity and isolate the effect of a magnetic field gra-
dient. Similarly, by performing the experiment along the vertical direction
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and canceling field gradients along all other directions, or by optically
pumping into the mF = 0 state, it is possible to eliminate the effect of
B-field gradients in order to isolate the acceleration due to gravity.

The scale of these two physical mechanisms is also quite different.
The force due to gravity on a 85Rb atom is Fg ∼ 1.4× 10−24 N. To achieve
this same force with a B-field gradient, an atom in the |F = 3, mF = 3〉
state would have to be exposed to a gradient of G ∼ 15 Gauss/cm. In
the lab, gradients as small as G ∼ 10−5 Gauss/cm can be applied to the
atoms. Experimental timescales of 2T ∼ 60 ms have been achieved in a
glass vacuum chamber with gradients at this level. At a pulse separation
of T ∼ 30 ms, amplitude modulation of the grating contrast due to a gra-
dient of this size oscillates at a frequency of mFω

(2)
G (T) ∼ 1 Hz for mF = 3

and N̄ = 1.
Figure 12 shows the recoil signal decay in the presence of a magnetic

field gradient. The signal is modulated by the phase, mFφG(T), for each
sublevel |F mF〉. By fitting the data to a model based on Equation (33), we
measure the gradient to be G = (23.9± 0.09)× 10−3 Gauss/cm, which is
within a factor of two of the estimate of the applied gradient: G ∼ 0.05
Gauss/cm.

Related studies of the effects of magnetic gradients involving guided
atom interferometers are described in Wu et al. (2005).
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Figure 12 Data showing the effect of a magnetic field gradient on the recoil signal
decay. Here, a gradient is applied to the atomic sample during the time of the
experiment. The pulse separation, T , is varied in integer multiples of the recoil
period, τq, so as to avoid any modulation due to recoil. The echo intensity is recorded
at the first-order echo time, t(1)echo = 2T . Error bars represent the standard deviation of
a set of three measurements of the echo intensity at the same T . The signal is
modulated by the phase, mFφG(T ), for each sublevel |F mF〉. The data are fitted to the
function: A[α2

0 + (α1 cosωGT + α2 cos 2ωGT + α3 cos 3ωGT )2]e−T /τ , shown as the solid
line. From the fit we extract the gradient to be G = (23.86± 0.09)× 10−3 Gauss/cm.
The m-level populations are also measured to ∼1% as |αmF |

2
= {0.51, 0.46, 0.01, 0.02},

from mF = 0 on the left to mF = 3 on the right.
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2.5 Multi-pulse atom interferometer

For the purposes of a precision measurement of ωq, the two-pulse tech-
nique has one significant drawback: the signal exhibits a complicated,
asymmetric shape as a function of T due to the different effects discussed
earlier. A different technique for measuring ωq with this interferometer—
which makes use of multiple sw pulses—eliminates this difficulty.

It is relatively straightforward to generalize the expression of the
scattered field for two sw pulses (Equation [23]) to N-pulses by apply-
ing a succession of phase gratings to the ground-state wave function
(Beattie et al., 2009a; Strekalov et al., 2002). Work related to quantum
kicked-rotors, which also use multiple-pulse AIs (Tonyushkin & Prentiss,
2009; Tonyushkin et al., 2009b; Wu et al., 2009), have also demonstrated
sensitivity to atomic recoil.

Assuming that the jth pulse has a duration τj, complex pulse area 2j =

ujeiθ (where uj and θ are given by Equations [27] and [28], respectively),
and onset time Tj > Tj−1, followed by a period of free evolution Tj+1 − Tj

before the ( j+ 1)th pulse, the velocity averaged atomic density can be
expressed as

〈ρ(l)g (r, t; T)〉 =
1
V

∑
lN

χ
(l)
lN
(t; T)e−ilNq·r, (36)

where χ (l)lN
(t; T) is the amplitude of the (lNq)-Fourier harmonic of the den-

sity distribution. Here, N is the number of pulses, l = {l1, l2, . . . , lN} denotes
the set of interfering momentum states after the pulse sequence, and
T = {T1, T2, . . . , TN} is the set of pulse onset times. The amplitude of each
spatial component of the density is

χ
(l)
lN
(t; T) = −

∑
l1 ,...,lN−1

e−
[
lN
(

t−t(l,T)echo

)
/τcoh

]2

×

N∏
j=1

J(lj−lj−1)(wj)

(
sin(φj − θ)

sin(φj + θ)

)(lj−lj−1)/2

,

(37)

where τcoh = 2/qσv and φj is the recoil phase due to pulse j:

φj = ωq

N∑
k=j

lk(Tk+1 − Tk), (38a)

wj = 2uj

√
sin(φj + θ) sin(φj − θ). (38b)
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In Equations (37) and (38a), l0 = 0 and TN+1 = t. The echo times, t(l,T)echo,
occur at temporal locations where the Doppler phase cancels and are
determined by the set of interferences, l, and onset times, T, that satisfy

t(l,T)echo = TN −
1
lN

N−1∑
j=1

lj(Tj+1 − Tj). (39)

Owing to the detection technique typically employed in experiments, one
is sensitive only to the amplitude of the q-Fourier harmonic of the den-
sity distribution, which corresponds to χ

(l)
1 (lN = 1). The scattered field

amplitude for N-pulses is therefore given by

E(N)(t; T) ∝ χ (l)1 (t; T). (40)

Setting N = 2 and l1 = −N̄ in Equation (40) gives the expression for the
two-pulse scattered field at the N̄th-order echo time (Equation [25b]).

An interesting feature of the N-pulse echo signal is that, in the absence
of spontaneous emission (θ = 0), the contrast of the grating at t = t(l,T)echo is
zero. There is a scattered field only at times ∼τcoh/lN about the echo times,
just as in the two-pulse case. Thus, the echo technique produces conditions
in the atomic sample at the echo times that are similar to those at t = 0,
namely an absence in density modulation.

2.5.1 Three-Pulse Atom Interferometer

As an illustrative example, one can consider three sw pulses applied in
the following sequence: T1 = 0, T2 = T, and T3 = T + δT, and a read-out
pulse applied at techo = (N̄ + 1)T to detect the N̄th-order echo. Just as in the
two-pulse sequence considered in previous sections, the first two pulses
cause all the momentum states to interfere in the vicinity of the echo time.
However, only those states that differ by ~q are detected. The third pulse
diffracts all the momentum states once more, as shown in Figure 13, but
effectively converts the difference between those states that interfere at
(N̄ + 1)T from m~q (m > 1) to ~q. Equivalently, the third pulse displaces
the N̄th-order echo from (N̄ + 1)T to (N̄ + 1)T + δT. However, there is still
an echo at (N̄ + 1)T provided δT is an integer multiple of τq. In this way,
the role of the third pulse is different from the first two pulses, whose sole
purpose is to produce an echo at (N̄ + 1)T.

The detected signal in this three-pulse scheme (as a function of δT) is
sensitive to more sets of interferences than in the two-pulse sequence. As a
result, the shape of the signal differs significantly from the two-pulse sig-
nal. One should expect periodic revivals in grating contrast as a function
of δT, with maxima occurring when δT is an integer multiple of the recoil
period, τq = π/ωq.
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Figure 13 Simplified recoil diagram for the three-pulse signal. Two momentum
states that differ by |1n| = 3 (

∣∣−~q
〉
and

∣∣2~q
〉
) interfere at 2T (gray circles) because of

diffraction from the third pulse. This shows an example of how the third pulse can
convert the difference between interfering states from |1n| > 1 to |1n| = 1.

Using Equation (39) with l1 = −N̄ and l2 = 1, the three-pulse recoil
signal can be approximated by

s(3)(δT ) ∝ J2
0

(
2u3

√
sin(ωqδT + θ) sin(ωqδT − θ)

)
, (41)

where θ is a phase caused by spontaneous emission during the pulses,
δT is varied between 0 and N̄T, and T is held fixed. The signal as a
function of δT is shown in Figure 14a for various pulse lengths, τ3. The
shape of the three-pulse signal is considerably different from that of the
two-pulse signal. Its symmetric, periodic peak-shaped structure is par-
ticularly advantageous for precision measurements of ωq. Furthermore, it
can be shown that the full-width at half-maximum (FWHM) of the peaks
is ∼1/u3ωq. This implies that by increasing the area of the third pulse
(increasing the field intensity, pulse duration or decreasing the detuning)
one can decrease the width of the peaks. This improves the determination
of a given peak center and therefore the measurement of ωq. This scaling
law has been confirmed experimentally and shown in Figure 14b.

It is possible to reduce the fringe width even further by increasing the
number of perturbation pulses (Beattie et al., 2009a). In order for each
additional perturbation pulse to rephase momentum states at the echo
time, they must be separated from all other perturbation pulses by a mul-
tiple of the recoil period, τq. Assuming that all perturbation pulses have
the same pulse area, u3, each additional pulse contributes to the signal
shape an additional factor of s(3)(δT) from Equation (41). This effectively
narrows each recoil fringe by a factor of N−1/2 such that the FWHM scales
as ∼1/

√
Nu3ωq. Figure 14c shows the theoretically predicted and experi-

mentally observed (2+N)-pulse recoil signals. The scaling of the FWHM
with N has been confirmed experimentally and is shown in Figure 14d.
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Figure 14 (a) Data from the three-pulse recoil experiment as a function of onset
time, δT , for various pulse durations, τ3. Dots: τ3 = 100 ns; squares: τ3 = 200 ns;
circles: τ3 = 500 ns. (b) Scaling of the peak FWHM as a function of τ3. Data is fitted to
the function A(τ3 − τ0)

−n
+ B. The power was found to be n = 1.18± 0.88. (c) Data

from the (2+N)-pulse recoil experiment as a function of onset time, δT , for various
numbers of pulses, N, each with a duration of 100 ns. Dots: N = 1; squares: N = 15;
circles: N = 35. (d) Scaling of the peak FWHM as a function of N. Data are fitted to the
function A(N −N0)

−n
+ B. The power was found to be n = 0.32± 0.47. In both (a) and

(c), data are fitted to different lineshapes (shown as solid lines) to guide the eye. The
FWHM of the peaks was obtained from these fits. Other pulse parameters:
1 ∼ 255 MHz, I ∼ 250 mW/cm2, τ1 = 700 ns, τ2 = 200 ns.

In work relating to quantum kicked-rotors (Tonyushkin et al., 2009b), a
large number of pulses was used, each with pulse area uj � 1, for a mea-
surement of ωq. An appreciable loss in contrast and subsequent revival
was observed when N was increased. For the technique described in
Tonyushkin et al. (2009b), the time scale increases linearly with N. The
prediction that the FWHM of each recoil fringe scales as N−1/2 above is
equivalent to the N−3/2 scaling predicted in Tonyushkin et al. (2009b),
since a factor of N−1 is related to the linear increase in time scale with
an increase in N.

Figure 15a and b show a measurement of atomic recoil using the three-
pulse technique. The sw pulses of the AI are separated by ∼24 ms. The
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Figure 15 Recoil measurement using the three-pulse technique. Two windows are
shown, one at δT ∼ 0.1 ms (a) and one at δT ∼ 24 ms (b). The solid line is a fit to the
data consisting of a sum of Gaussians (one for each peak) that yields a measurement
of the recoil frequency precise to ∼350 ppb. Pulse parameters: τ1 = 1100 ns,
τ2 = 300 ns, τ3 = 400 ns, 1 = 210 MHz, intensity I ∼ 200 mW/cm2.

data were acquired in ∼1 hour. A fit based on a sum of Gaussian line-
shapes results in a measurement of ωq precise to ∼350 ppb. An interesting
aspect of using a third pulse to measure ωq is that the effect of signal decay
due to the transit time of cold atoms is avoided because T is fixed.

In summary, the multiple-pulse technique is better suited for a preci-
sion measurement of ωq than the two-pulse technique because the signal
exhibits a simple, narrow-featured shape. Further improvements in the
single measurement precision to the level of ∼50 ppb appear to be attain-
able by improving the signal to noise ratio and exploiting scaling laws
that can reduce the fringe width. Since the precision scales inversely pro-
portional to the timescale of the experiment, additional improvements in
precision can be achieved by increasing the transit time of cold atoms
through the region of interaction with a larger excitation beam diameter.
Studies of systematic effects in a precision measurement will include the
angle between traveling-wave components of the standing wave and the
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index of refraction of the atomic sample (Campbell et al., 2005), which is
affected by both the atomic density and the frequency of the excitation
beams.

3. LATTICE INTERFEROMETRY

3.1 Introduction

In the interferometer considered so far in this chapter, a set of off-resonant
standing-wave pulses are applied to a cloud of cold atoms. One of the
characteristic features of this interferometer is that at the exact times of
the echoes (when the Doppler phase difference between interfering ampli-
tudes is zero), the amplitude of the echo signal is zero. As discussed in
Strekalov et al. (2002), this property applies to an interferometer of the
type discussed here consisting of an arbitrary sequence of pulses—each
satisfying the Raman–Nath condition—and is due to cancelation of the
recoil phases of the amplitudes contributing to the echo signal at the same
instant that the Doppler phases cancel. This cancelation is related to the
fact that immediately after the first standing-wave pulse, the density of
the atomic cloud is uniform, since, under the Raman–Nath condition, the
atoms have not had time to move during the pulse. Consequently, one
must observe the echo at times other than the exact echo time, where
Doppler dephasing has reduced the size of the signal. A solution would
be to cool the atoms further, for example using a BEC (Gupta et al., 2002)
to achieve a subrecoil velocity spread. But this is technically more difficult
and is likely to give rise to systematic errors due to interactions between
atoms in the condensate.

In this section, we discuss a closely related type of echo-interferometer,
which we refer to as a “lattice interferometer” (Andersen & Sleator, 2009),
that doesn’t suffer from the issue mentioned earlier. It uses atoms ini-
tially laser-cooled, then loaded into a one-dimensional (1D) optical lattice
potential where it is further cooled in the potential, then released and later
exposed to a pulse of the lattice potential. As is discussed below, one con-
sequence of cooling the atoms in the lattice is that at the moment of release,
the atomic density is strongly modulated with the period of the lattice
potential. Consequently, at the exact echo times, the signal is a maximum,
yielding a signal (in our measurements) more than a factor of four greater
than obtained in the interferometer of Cahn et al. (1997). This interfer-
ometer shares the robustness against vibrations, accelerations, rotations,
magnetic field gradients, and differences of AC Stark shifts between
internal levels of the echo-type time-domain interferometers described in
Section 1, and in Cahn et al. (1997).

In addition, we discuss how this interferometer performs when the
optical lattice pulse violates the “short” pulse or Raman–Nath limit
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(a regime not previously investigated in related interferometers), and find
that a moderate violation of this limit can enhance the performance of the
interferometer. We show that the interferometer reveals information on
the quantum dynamics of atoms in an optical lattice potential, and thereby
may be useful for the study of driven 1D systems (Raizen, 1999). Further-
more, we find that for specific pulse lengths, a coherent signal can occur at
times that differ from the expected echo time by as much as 10 τcoh, where
τcoh = 2/qσv is the coherence time expected from the initial momentum
spread of the atoms.

3.2 Description of the Interferometer

Figure 16 shows a timeline of the experiment, which uses a vapor cell
loaded MOT of 85Rb atoms loaded for 40 ms. An optical molasses stage
of 7 ms further cools the atoms and loads them into the optical lattice,
which is formed by two vertically polarized horizontally propagating
laser beams with wave vectors k1 and k2, angled apart by 162◦, and
detuned 395 MHz above the |5S1/2, F = 3〉 to |5P3/2, F′ = 4〉 transition. The
lattice laser beams are clipped Gaussian beams with a diameter larger than
the MOT cloud, so all the atoms in the MOT are loaded into the lattice.
After the molasses stage, which cools the atoms to ∼36 µK, the repump
laser remains on for 100 µs to prepare the atoms in the F = 3 ground state.
Acousto-optic modulators control the optical lattice beams. At time t = 0
(∼10 µs after the turn-off of the repump light) we abruptly (in ∼20 ns)
turn off the optical lattice. After leaving the atoms in darkness for a time
T, we pulse the optical lattice on for a short time τ . Later we detect
the amplitude of atomic density modulations with period 2π/q, where
q = k1 − k2, by applying a weak off-resonant optical field along direction

40 ms 7 ms
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T T

T Δt
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Figure 16 (a) Timeline of the experimental cycle. (b) Doppler phase diagram for
atoms released from the optical lattice.
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k1 and measuring the amplitude of the field Bragg scattered off of the
atomic density modulation along the direction k2 using the heterodyne
technique described in Section 1 and in Cahn et al. (1997).

3.3 Calculation of the Signal

To calculate the expected signal we assume that the atoms are in thermal
equilibrium in the optical lattice, and localized to narrow regions near the
potential minima, so they form a periodic density distribution and effec-
tively experience a harmonic oscillator potential. Since the temperature
of the atoms is ∼36 µK, their thermal de Broglie wave coherence length is
much shorter than the period of the optical lattice. Under these conditions,
it can be shown that the state of the atomic system can be closely approx-
imated by an incoherent mixture of states identical to the ones obtained
by an atomic plane wave of momentum k0 impinging on a periodic array
with period a = (2π/q)q̂ of Gaussian transmission functions, each with
width σ (the width of the atomic density distribution in a single minimum
in the lattice). Thus, we can write ψk0(r) = ψ0(r)eik0·r, where

ψ0(r) =
1

(2πσ 2)1/4

∑
m

exp[−(r −ma)2/4σ 2]. (42)

We would like to express Equation (42) as a sum of momentum eigen-
states, so we write

ψ0(r) =
∑

n1

An1 ein1q·r, (43)

with

An =
1
a

a/2∫
a/2

ψ0(x)e−in1qxdx ≈
1
a

∞∫
∞

e−x2/4σ 2

(2πσ 2)1/4
e−in1qxdx (44)

≈

(√
2/a

)
(2πσ 2)1/4 e−n2

1(qσ)
2
, (45)

where the integral is along the direction of a. This gives, up to a constant
factor,

ψk0(r, t = 0) =
∞∑

n1=−∞

e−n2
1(qσ)

2
ei(k0+n1q)·r. (46)

Each state ψk0 contributes to the mixture with a weight given by the
momentum (~k0) distribution of a gas of atoms in thermal equilibrium.
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The experimental signal can be computed by first calculating the signal
resulting from the system initially in state ψk0(r, 0) and then summing this
signal over the weighted distribution of k0.

After the lattice is turned off at t = 0, each plane wave, exp[i(k0 +

n1q) · r], in Equation (46) acquires a phase φ = (ωk0 + n2
1ωq + n1q · v0) t,

where ωq = ~q2/2M is the (two-photon) recoil frequency and n1q · v0t is
the Doppler phase, which is proportional to the initial atomic velocity
v0 = ~k0/M, and ωk0 = ~k2

0/2M contributes to an overall phase that can be
ignored. The optical lattice pulse, turned on at time t = T, diffracts each
plane wave into a set of plane waves with wave vectors differing by inte-
ger multiples of q. If τ is so short that atomic motion can be neglected
during the pulse (Raman–Nath condition), no Doppler phase evolution
occurs during this time. Figure 16(b) shows a diagram of the Doppler
phase evolution of various amplitudes as a function of time in the inter-
ferometer. Crossing lines in the diagram occur at times when different
momentum states have the same Doppler phase, and atomic fringe pat-
terns are produced at these times. In particular, fringe patterns with period
2π/q are produced close to times tN̄ = (N̄ + 1)T for positive integer N̄ (the
tN̄ are called echo times). A detailed calculation similar to the one in out-
lined in Section 1, which assumes that the interaction during the pulse is
given by H = ~χ cos(q · r), gives a signal

S(1t) ∝ e−(qσv1t/2)2 e−
1
2 N̄2(qσ)2 JN̄+1{2u sin[ωq(N̄T +1t)]}. (47)

where σv =
√

2kBT /M, kB is Boltzmann’s constant, T the temperature of
the atoms, 1t ≡ t− tN̄, and u ∼ χ τ is the area of the lattice pulse.

3.4 Experimental Results

Figure 17a shows the signal obtained at around T = 81 µs with a short
pulse of duration τ = 350 ns (solid curve). All data shown correspond to
the fundamental echo N̄ = 1. The estimated temperature of the atomic
gas was found by fitting Equation (47) to the data. The signals shown in
Figure 17a are the largest that could be obtained in the short pulse limit
with the laser power and detuning used. In contrast to the signal obtained
from the interferometer in Cahn et al. (1997) (also shown in Figure 17a for a
similar number of atoms), the lattice interferometer signal reaches a maxi-
mum at the echo time (1t = 0) and with a maximal signal size more than a
factor of four larger, demonstrating an improved signal-to-noise ratio and
higher contrast of the atomic density modulation. We ascribe this to the
fact that in this interferometer the signal is an echo of a density modula-
tion of the atoms, whereas in Cahn et al. (1997) it is a velocity (or phase)
modulation that with time evolves into a density modulation, but also
partially dephases because of the thermal velocity spread of the atoms. By
laser cooling the atoms into the optical lattice, we avoid the huge loss of
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Figure 17 (a) Solid curve: signal from lattice interferometer for τ = 350 ns and
T = 81 µs. Dashed curve: the maximum signal we could obtain from the
interferometer described in Cahn et al. (1997). (b) Peak signal as a function of pulse
separation T for small-area pulses τ = 100 ns (squares). Peak signal theoretically
expected from Equation (47) (corresponding solid curve). Crosses connected by a
solid line: the measured peak signal for τ = 1.2 µs, too long to satisfy the Raman–Nath
condition. The longer pulse yields sharper features in the signal.

atoms, associated with using an optical mask—the atom-optics analog of
an absorption grating in light optics (Turlapov et al., 2005)—for genera-
tion of the atomic density modulation. Note that the revival of the density
modulation shows that the atomic state continues to carry the informa-
tion of its lattice preparation, despite its density distribution shortly after
release being indistinguishable from a thermal cloud.

Equation (47) also shows that the peak signal at the echo time varies
periodically as a function of T with period given by the Talbot time
τT = 2τq = 2π/ωq. This interferometer can therefore be used to measure the
Talbot time (or equivalently, the recoil frequency), which, together with
other well-known constants, constitutes a measurement of the fine struc-
ture constant, α (see Section 2). Figure 17b shows the analytical prediction
of Equation (47) together with the experimental measurements of the peak
signal as a function of T for a pulse length of 100 ns. In the analytical pre-
diction we use χ = 2.0 MHz determined in a separate measurement of the
value of τ that yields the first maximum in the signal for T = 81 µs. The
overall amplitude of the analytical result was adjusted to fit the data. By
comparing the size of the echo signal for N̄ = 1, 2, and 3, we can use Equa-
tion (47) to extract the degree of localization, σ , of the atoms in the lattice.
We find that σ = 55 nm, or about 1/7th the 390-nm period of the lattice
potential. This could be reduced by using a BEC released from an optical
lattice.
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Sharp features in the interferometric signal as a function of T (or
equivalently higher frequency components in the signal) improves the
precision with which the Talbot time and recoil frequency can be deter-
mined (Cataliotti et al., 2001). Equation (47) indicates that if one increases
u, more oscillations and sharper features occur in each period when T is
scanned, thus increasing the sensitivity of the interferometer. The depth
of the lattice potential ~χ , and thereby u, can be increased by increas-
ing the power in the lattice beams, but these results were obtained using
the maximum laser power available. Increasing τ will also increase u, but
this will eventually lead to a breakdown of the Raman–Nath condition,
and Equation (47) will no longer apply. When the Raman–Nath condi-
tion is violated, the signal is still periodic in T, however, with period τT

independent of pulse duration. Thus, the recoil frequency can be deter-
mined simply from this period. It is therefore of interest to know what
happens when the pulse length is increased beyond the Raman–Nath
limit. Figure 17b shows the signal as a function of T for a pulse dura-
tion of τ = 1.2 µs, which is too long to satisfy the Raman–Nath condition.
It is clear that the longer pulse yields sharper features in the signal as a
function of T.

Figure 18 shows the echo signal as a function of both T and 1t for dif-
ferent pulse durations τ . Horizontal cross sections in this figure represent
the signal as a function of 1t (as shown in Figure 17a), and vertical cross
sections represent the signal as a function of T (as shown in Figure 17b).
For τ = 1.2 µs (Figure 18c) we see a clear deviation from the results pre-
dicted by Equation (47), namely that the signal vanishes for T around
(n+ 1/2)τT/2 with n an integer (∼80 µs in Figure 18c), and that the signal
is asymmetric around nτT/2. However, the narrow “dark” fringe around
nτT/2 persists, enabling an accurate determination of τT. The experimen-
tal observation that the sharpest features of the echo signal are found for
pulse durations between 1 and 2 µs is perhaps not surprising, since the
optical lattice imparts maximum momentum into the atoms for durations
around τ ∼ τosc/4, where τosc is the oscillation period of an atom close to a
potential minimum.

We use the sharp features described earlier to determine the Talbot
time by taking data with high resolution in T for τ = 1.2 µs around
T = 65 µs and around T = 455 µs—differing in T by ∼6 Talbot times
(see Figure 18d). From this we obtain a value1 of h/MRb = (4.6997±
0.0003)× 10−9 m2/s2, where MRb is the mass of a 85Rb atom, in agreement
with the value of h/MRb = 4.6994× 10−9 m2/s2 deduced from Audi et al.
(2003). Our “large” uncertainty arises from the determination of the angle
between the beams, a problem that can be overcome by using counter

1The uncertainties are one standard deviation combined systematic and statistical.
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Figure 18 Echo signal as a function of 1t and time of the lattice pulse T (the echo
time is t1 = 2T + τ ). Figure 17b is a vertical cross section at the echo time (1t = 0) and
Figure 17a is a horizontal cross section of the data in this figure. (a), (b), (c):
Experimental data for pulse durations τ = 100 ns, 600 ns, and 1.2 µs, respectively. For
τ = 1.2 µs, the signal vanishes for all T around 80 µs. (d) High-resolution
experimental data for τ = 1.2 µs. (e) Experimental data for τ = 3.5 µs. Features as a
function of T are no longer as sharp as for τ = 1.2 µs. We observe a coherent signal
for times that differ greatly from the echo time. (f) Numerical calculation of the
expected signal for the parameters of (e).
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Figure 19 Maximum signal as a function of pulse duration. Dots are the data, and
the solid curve is a numerical calculation multiplied by an exponential decay to
accommodate for decoherence due to photon scattering. The dashed line is the
maximum signal expected from Equation (47) and does not show oscillations. We see
that violating the Raman–Nath condition can increase the contrast of the atomic
density modulation.

propagating beams and coupling between optical fibers (Cladé et al., 2006;
Muller et al., 2008).

For τ = 3.5 µs (see Figure 18e), we observe the interesting phenomenon
that a coherent signal for certain values of T is observed for times that
differ from the echo time (2T + τ ) by as much as 40 µs. This is more
than 10 times the decoherence time of a few µs expected from the initial
thermal spread of atoms. The nature of the signal also seems to indicate
that its occurrence is not due to long coherence times, but rather because
the dynamics of the atoms during the lattice pulse enables a coherent
rephasing at this time. We note that this phenomenon occurs for pulse
durations τ around τosc/2. Figure 18f shows a 1D numerical calculation of
the expected signal for the same parameters as the experimental results in
Figure 18e. No photon scattering was included in the calculation.

To further investigate the dynamics of the atoms in the optical lattice
we measured the maximum signal size for a given pulse duration τ by
scanning the pulse separation T. Figure 19 shows a plot of this maximum
signal as a function of τ . We observe that violating the Raman–Nath limit
can improve the contrast of the atomic density modulation since pulse
lengths from 1 to 5 µs yield a larger signal than predicted by Equation (47)
(also shown in Figure 19). In contrast to the prediction of Equation (47),
the signal shows damped oscillations with a period of around 6.6 µs. This
period is consistent with τosc reflecting a partial revival of the initial state
at this time. This effect has been observed previously using a BEC in an
optical lattice (Ovchinnikov et al., 1999), and the fact that it is easily seen in
our data indicates that this interferometer can be used as a sensitive probe
of the quantum dynamics in diffracting structures, including classical
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chaotic systems such as the δ-kicked rotor (Raizen, 1999). Figure 19 also
shows a numerical calculation of the expected maximum signal as a func-
tion of τ . This calculation is based on the coherent interaction of the atoms
with the laser field, but to account for decay of coherence due to pho-
ton scattering in the optical lattice, includes a multiplicative exponential
decay as a function of τ , where the decay rate of 3.5× 104 s−1 is found by
fitting to the data. This decay rate is smaller than the average photon scat-
tering rate of 9× 104 s−1 calculated from our measured value of χ and the
detuning of the light.

In summary we have described an atom interferometer that uses atoms,
laser-cooled into an optical lattice, followed by an optical-lattice pulse.
The technique is capable of producing atomic density modulations with a
contrast significantly higher than the interferometer of Cahn et al. (1997).
This increases the signal-to-noise ratio of the interferometric signal. We
discussed how the interferometer performs when the pulse violates the
Raman–Nath condition and found that a moderate violation can improve
the sensitivity and increase the contrast of the atomic density modulation.
For specific pulse lengths in the long-pulse regime, we observe a coher-
ent signal at times that differ greatly from the echo time. We showed that
the interferometric signal can be used as a probe of the dynamics of the
atoms in the optical lattice. The technique also reveals the degree of locali-
zation of atoms in an optical lattice, and may therefore be employed in the
study of superfluid to Mott-insulator quantum phase transition of BECs
in optical lattices (Greiner et al., 2002; Spielman et al., 2007).

4. FREQUENCY-DOMAIN AI EXPERIMENTS

4.1 Frequency-Domain Measurements of Recoil

This section describes an atom interferometric frequency-domain mea-
surement of ωq (Weel & Kumarakrishnan, 2003) that uses the echo tech-
nique to generate a ground-state Ramsey fringe pattern. This work is
based on the scheme proposed in Dubetsky and Berman (1997).

Figure 20 shows the pulsed-laser fields used to excite the laser-cooled
sample. At t = 0, an excitation pulse consisting of two off-resonant,
counter-propagating traveling waves with frequencies ω1 and ω2 is used
to drive two-photon transitions in atoms prepared in a single hyperfine
ground state. The sample is again excited at time t = T by a second set
of traveling-wave pulses with reversed k-vectors. As a result, the sample
experiences an intensity modulation that is translated along two opposing
directions. Reversing the directions of the second set of excitation pulses
results in a cancelation of Doppler phases associated with momentum
states differing by ~q that interfere in the vicinity of the echo time t =
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Figure 20 Schematic diagram of pulsed laser fields used in experiment.

2T. Here, q = 2k. The rephased density grating formed in the sample is
detected by scattering an off-resonant traveling wave with frequency ω1

and measuring the amplitude and phase of the scattered light at fre-
quency ω2. In this manner, it is possible to probe the oscillatory Ramsey
phase φ = Tδ acquired by the grating, which depends on the frequency
difference δ = ω1 − ω2. In comparison, other Ramsey fringe experiments
involving ground or excited states (Barger et al., 1979; Bergquist et al.,
1977; Ruschewitz et al., 1998; Sengstock et al., 1993; Weiss et al., 1993)
rely on similar excitation schemes and the detuning dependence of the
population or coherence associated with an atomic level.

Using the treatment in (Dubetsky & Berman, 1997), the back-scattered
electric field amplitude can be expressed as

S(δ; T) = exp(4iTδ)J2[2u2 sin(ωqT)], (48)

where u2 is the pulse area of the second excitation pulse. The complex
exponential in Equation (48) makes it necessary to measure the phase of
the signal in order to observe the effect of recoil.

In Ramsey fringe experiments using atomic beams (Bordé et al., 1984),
the excitation zones are spatially separated. The time between interactions
with the laser fields, T, differs for each velocity class associated with the
longitudinal velocity distribution of the atomic source. As a consequence,
the fringe pattern can be observed because the signal is averaged over the
entire velocity distribution. In an experiment with a laser-cooled sample,
the time separation between interactions with light are the same for all the
atoms. Therefore, it is necessary to average the signal over T to obtain the
Ramsey lineshape (Vasilenko et al., 1985).
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4.2 Experimental Details

The experiment is carried out in a laser-cooled sample with a temperature
of ∼200 µK that contains ∼108 Rb atoms. The traveling-wave pulses used
for atom interferometry are tuned ∼90 MHz above the F = 3→ F = 4′

transition in 85Rb, and controlled by AOMs. The AOMs are driven by
oscillators which are phase locked to a commercially available rubid-
ium frequency standard with a stability characterized by a 1-second
Allan deviation of 2× 10−11. The oscillators operate near 250 MHz and the
frequency difference, δ, can be adjusted to within 1 mHz. The time sep-
aration, T, between pulses can be controlled with an accuracy of 500 ps
using delay generators with time bases slaved to the rubidium standard.
Signal detection is accomplished using the balanced heterodyne detection
system used in Cahn et al. (1997) and Weel and Kumarakrishnan (2003).
The echo signal is observed on both channels of the detection system in
the form of a beat note. These signals are mixed down to DC to obtain the
in-phase and in-quadrature components from which the signal amplitude
and phase can be determined.

4.3 Results and Discussion

By integrating the first half (before the zero crossing) of the dispersion-
shaped echo envelope (shown in Fig. 3a) and subtracting the integral
of the second half, it is possible to obtain an amplitude component.
Figure 21a shows the amplitude as a function of δ for T = 100 µs. The
amplitude exhibits an oscillatory dependence on δ given by S0 = cos(Tδ)
as seen from the fit in Figure 21a. For a fixed value of T, the average
value of the oscillation frequency is determined from the in-phase and
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Figure 21 (a) Oscillation of a component of the echo signal as a function of
detuning, δ, for T = 100 µs. Data are fitted to the form cos(T δ) (solid line). The fit
gives a period of 9.99 kHz, which is consistent with T = 100 µs. (b) Average of the
signal over T —Ramsey fringe pattern. The solid line is data and the dashed line is a fit
which yields ωq = 97.0× 103 s−1 and u2 = 1.8.
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in-quadrature components of the signal. The measurement is repeated for
different time pulse separations, T. A linear fit of the measured period as
a function of T gives a slope of 4.004 and an offset of 0.7 µs. The value of
the slope is in agreement with Equation (48), which predicts a slope of 4.

The amplitudes of the oscillatory signals are weighted to compensate
for the exponential decay of the echo amplitude versus T due to decoher-
ence from scattered light and collisions. The Ramsey fringe pattern shown
in Figure 21b is obtained by averaging a particular signal component over
the range T = 12→ 164 µs in steps of 4 µs.

The fringe pattern in Figure 21b shows peaks at±0.5ωq and±ωq, which
is consistent with Equation (48). The value of ωq is obtained by fitting
the data to Equation (48) using a least squares fit with ωq and u2 as free
parameters. The fit yields ωq = 97.0× 103 s−1, which is consistent with the
expected value of the two-photon recoil frequency. Analysis of the residu-
als allows a determination of ωq with a precision of ∼1/103. The precision
can be improved by measuring the frequency difference between widely
separated recoil components that can be recorded by increasing the pulse
area u2. As in all Ramsey experiments, the range of detunings (∼10 MHz)
is determined by the excitation pulse bandwidth, and the width of the
recoil peaks is expected to scale as ∼1/T.

4.4 Frequency Synthesizer

A potential advantage of this measurement technique is that possible sys-
tematic uncertainties in the definition of T that can affect time-domain
experiments are avoided, since the signal is averaged over T. In contrast
to Ramsey experiments with excited states (Barger et al., 1979; Bergquist
et al., 1977; Ruschewitz et al., 1998; Sengstock et al., 1993) that are limited
by the radiative decay time, the precision that can be achieved if decoher-
ence mechanisms are eliminated should be limited only by the transit time
of ground-state atoms through the region of interaction. Since the experi-
ment utilizes the same laser to generate excitation frequencies ω1 and ω2,
variations in laser frequency are common to both beams and a laser with
an ultra narrow linewidth is not required, as it is in atomic clock exper-
iments (Barger et al., 1979; Bergquist et al., 1977; Ruschewitz et al., 1998;
Sengstock et al., 1993). In comparison, an advantage of time-domain mea-
surements is that they are insensitive to the effect of vibrations, since they
do not rely on the phase of the scattered electric field.

If the transit time limit is achieved, as in time-domain experiments, the
precision of frequency-domain measurements will depend on the preci-
sion and tunability of δ. The measurement in Weel and Kumarakrishnan
(2003) relied on a RF synthesizer assembled from commercially available
components to produce dual outputs (differing by δ) to drive the excita-
tion AOMs. The synthesizer allows δ to be varied over ∼10 MHz in steps
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of 1 mHz while maintaining frequency stability with respect to a master
reference oscillator. Additionally, a simple measurement and correction
loop ensures that the outputs maintain a fixed phase relationship if δ is
varied.

The block diagram of the synthesizer is shown in Figure 22. In this cir-
cuit, there are two phase-locked loops (PLLs) operating at 250 MHz and
238 MHz. These are fractional-divide-by-N PLLs, meaning that the refer-
ence and output frequencies are not necessarily related by an integer mul-
tiple. These devices are tunable only in steps of ∼0.2 MHz, necessitating
additional electronics for fine-tuning. To tune the output at 250 MHz + δ,
a commercially available arbitrary waveform generator (AWG) tunable in
steps as small as 1 mHz is incorporated. This device has a maximum out-
put frequency of 30 MHz and is set to 12 MHz + δ. The choice of 12 MHz
ensured that when the AWG’s output is mixed with the PLL output at
238 MHz, a sum frequency near 250 MHz is obtained. A signal with fre-
quency 250 MHz + δ is obtained by filtering out the difference frequency.
Filtering is accomplished using a commercially fabricated narrow-band
notch filter (FWHM 8 MHz) whose center frequency is 250 MHz. Both
of the PLLs and the AWG are referenced to a rubidium clock operating
at 10 MHz. This clock has excellent short-term stability, with a 1-second
Allan deviation of 2× 10−11. Both the 250 MHz and 250 MHz + δ outputs
are locked in phase to the stable Rb clock, and are therefore phase-locked
to each other.

4.5 Measurements of Rotation

The frequency synthesizer developed for the recoil measurement is also
suitable for a proof of concept measurement of rotation. If a closed-loop
optical interferometer rotates about an axis perpendicular to its enclosed
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Figure 22 The block diagram for the synthesizer, where
⊗

is a RF mixer.
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area, the path difference between counter-propagating waves due to rota-
tion produces a phase shift 1φR = �Ak/c (Sagnac effect). Here, � is the
frequency of rotation, A is the area enclosed by the interferometer, k is
the wave vector, and c is the speed of light. The Sagnac effect is the basis
for the fibre ring gyroscope (Vali & Shorthill, 1976), a device commonly
used in navigation. The obvious advantage of laser gyroscopes is that the
enclosed area can be enhanced by sending the light on many round-trips,
thereby improving the sensitivity.

For an AI, the corresponding phase shift is 1φR = �AM/~, where M
is the mass of the atom. Replacing light waves with matter waves can
lead to a significant improvement in sensitivity. This is because, for the
same enclosed area, the phase shift is Mc/~k ∼ 1010 times greater for atoms
in comparison with light. For atoms, the challenge is to produce a large
enclosed area. Such atom gyroscopes should be able to detect rotations as
small as 6× 10−3 deg/h (Sleator et al., 1999). This is around three orders of
magnitude smaller than the Earth’s rate of rotation. Examples of AI-based
measurements of rotation include a Raman interferometer measurement
in a cesium atomic beam (Durfee et al., 2006; Gustavson et al., 1997a) and a
BEC experiment in which the rotational phase shift is enhanced by circu-
lating the sample in an elongated trap (Burke & Sackett, 2009). Another
approach involves confining the atoms within a linear magnetic guide
and moving this guide back and forth while diffracting the atoms, thereby
enhancing the enclosed area through multiple circuits of the same small
physical area (Wu et al., 2007).

If the Ramsey fringe experiment is carried out by launching a cloud of
cold atoms across the zone of interaction in a direction such that A ·� is a
maximum, the effect of the earth’s rotation is expected to produce a shift
in the position of the central fringe in Figure 21b. The area enclosed by the
AI can be estimated as

A =
~qvT2

M
. (49)

For typical operating parameters of T ∼ 10 ms and an atom launch speed
v ∼ 2.5 m/s the area is 0.76 mm2. Assuming that � is the vertical compo-
nent of the Earth’s rotation in Toronto, we obtain a fringe shift of 0.8 Hz.
The expected width of the central fringe for these parameters is 20 Hz,
which suggests that the fringe shift should be easily observable, since δ
can be varied in subhertz steps.

Although this experiment is simple in concept, the fringe shift due
to rotation is indistinguishable from the shift produced by gravitational
acceleration. Therefore, it is critical to align the AI beams in a plane
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perpendicular to the local gravitational field and to measure the angle of
the beams with respect to the horizontal.

5. TIME-DOMAIN AI EXPERIMENTS—GRAVITY

5.1 Introduction

Atom interferometers based on cold atoms have enormous practical appli-
cations related to inertial sensing because of the extraordinary sensitivity
to gravitational acceleration, g (Peters et al., 1999), gravity gradients,
(McGuirk et al., 2002; Snadden et al., 1998), and rotation (Durfee et al.,
2006; Gustavson et al., 1997b, 2000). Common applications include oil
and mineral prospecting, seismic exploration and monitoring, and cor-
rection of tidal charts. Most of these developments have been realized
using the well-known Raman interferometer (Kasevich & Chu, 1991) in
which cold cesium atoms are manipulated in two hyperfine ground states
using optical Raman transitions. Raman interferometers have also been
used for precision measurements of the universal gravitational constant,
G (Fixler et al., 2007; Lamporesi et al., 2008), and gravitational redshift
(Müller et al., 2010). The technology based on this class of interferome-
ters has become sufficiently advanced that it is being utilized for remote
sensing using mobile payloads (Le Gouët et al., 2008; Young et al., 2007;
Yu et al., 2006). Another independent technique for realizing precise mea-
surements of gravity in a compact setup involves exploiting the properties
of Bloch oscillations in an optical lattice (Poli et al., 2011).

Despite the advances of Raman interferometers, it is interesting to con-
sider the potential for realizing precise measurements of gravitational
acceleration using the single-state echo type interferometer used for recoil
measurements as described in earlier sections. The AI is based on the con-
figuration developed at NYU (Cahn et al., 1997; Weel et al., 2006). As in the
case of cold-atom Raman interferometers, the timescale of the experiment
is determined by the transit time of atoms through the region of interac-
tion defined by the laser beams. A particular advantage of the echo AI is
that only a single laser frequency is used and that no velocity selection is
required. Transit-time-limited recoil experiments using this technique that
are presented in this work indicate that state selection may not be required
if magnetic gradients are adequately suppressed (Weel et al., 2006).

5.2 Theoretical Background

The AI involves excitation of the sample along the vertical by two
standing-wave pulses separated by a time T as shown in Figure 23.
This configuration is similar to that of the AI used in the time-domain
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Figure 23 Curved trajectories of atomic wave packets due to gravity.

measurements of atomic recoil. The traveling-wave components of the
standing-wave pulses are sufficiently blue detuned with respect to the
excited state such that the effects of spontaneous emission during excita-
tion can be ignored. The durations of the excitation pulses are sufficiently
short, meeting the Raman–Nath criterion that the displacement of atoms is
small compared to the standing-wave period during the interaction time.
The first pulse at t = 0 diffracts atoms into a superposition of momen-
tum states that differ by n~q, where q = 2k for counter-propagating beams
and k = 2π/λẑ is the wavevector of the laser light. The λ/2 grating that
is formed by atoms focused to the nodes of the standing wave potential
is rephased by the second standing-wave pulse at t = T in the vicinity
of the echo time t = 2T. The determination of gravitational acceleration
relies on measuring the contrast and phase of the grating by coherently
back-scattering a traveling-wave read-out pulse from the sample.

Figure 23 shows a recoil diagram representing curved trajectories of
a subset of momentum states that contribute to the signal. The read-out
pulse detects the amplitude and phase of the matter wave interference
in the vicinity of 2T only from trajectories that differ by ~q. It is possible
to show that the gravitational phase shift is not related to the difference in
path lengths between the arms of the interferometer. Rather, it is related to
the energy of the atom that is affected by both recoil and gravity. Using the
action principle, it can be shown that the phase accumulation due to grav-
ity scales as gT2. Thus, the measurement of gravity relies on the connection
of the phase of the back-scattered light and the phase of the grating.

A calculation of the signal in the absence of spontaneous emission is
discussed in Cahn et al. (1997). It can be shown that the back-scattered
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electric field amplitude is proportional to the λ/2-periodic spatial compo-
nent (q-Fourier harmonic) of the atomic density grating. The echo signal
(scattered field amplitude) can be written as

E(1t; T) ∝ −e−(1t/τcoh)
2
J1[2u1 sin(ωq1t)]J2{2u2 sin[ωq(T +1t)]}, (50)

where Jn(x) is the nth-order Bessel function of the first kind, u1 and u2 are
the pulse areas of the first and second standing-wave pulses, respectively,
which define the atom-field coupling, ωq = ~q2/2M is the two-photon
recoil frequency, and 1t = t− 2T is the time relative to the echo time.

In the presence of gravity, the echo signal can be shown to be (Weel
et al., 2006)

Eg(1t; T ) = E(1t; T )eiφg(1t;T ), (51a)

φg(1t; T ) = −
qg
2

(
2T2
+ 4T1t+1t2

)
, (51b)

where φg is the phase of the atomic grating, which is accelerating down-
ward because of gravity. This phase is imprinted on the light scattered
by the atoms from the read-out pulse. It is useful to split the phase
due to gravity into two components, φg = φAI + φD. The first term, φAI =

−qgT2, is referred to as the AI phase, since it depends solely on T and
is proportional to the area of the interferometer. The second term, φD =

−qg(2T1t+1t2/2), is called the Doppler phase, since it can be shown that
φD = qv(t)1t, where v(t) = ∂(φD/q)/∂1t = −gt is the speed the atoms have
gained in the presence of gravity.

Figure 24a is an illustration of the effect of the Doppler phase on the
signal envelope at fixed T. The overall signal amplitude as a function of T
in Figure 24b illustrates the modulation at the recoil period τq = π/ωq and
the increasing oscillation frequency due to the interferometer phase. The
experiment relies on measuring the phase of the signal with respect to a
frame of reference in which the atomic sample is falling in gravity. Such an
inertial reference frame can be defined by an optical local oscillator (LO)
with a frequency ωLO. The back-scattered light from the sample due to the
read-out pulse with a frequency ωAI is detected in the form of a beat note
at a frequency ωLO − ωAI using a heterodyne technique (Cahn et al., 1997;
Shim et al., 2002, 2005; Weel et al., 2006).

The electric field of the LO can be written as ELO(z, t) = E0ei(kz−ωLOt),
while the scattered electric field from the atoms has the form EAI(z, t) =
E(T;1t)ei(k(z+1z)−ωAIt). The heterodyne signal produced by overlapping the
two beams on a photodetector can be shown to be

I(t) ∝ E0E(T;1t) cos[(ωAI − ωLO)t+ k1z] (52)
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Figure 24 Illustrative plots representing the echo signal in Equation (51a) and the
dependence of the AI phase as a function of T in Equation (51b). (a) Echo signal
(shown as the dashed line) exhibits a dispersion shape in the absence of gravity. The
echo signal in the presence of gravity (shown as the solid line) exhibits additional
oscillations due to the Doppler phase in Equation (51b). (b) The amplitude of the echo
signal as a function of T (dashed curve) is modulated at the recoil frequency, ωq. The
solid curve shows the in-phase component of the echo amplitude in the presence of
gravity. A value of g = 980 m/s2 has been used so that the changing frequency is
evident over successive recoil periods. This represents the effect of the AI phase term
in Equation (51b). In experiments involving laser-cooled rubidium atoms, the duration
of the signal envelope is τcoh ≈ 2 µs, and the recoil period τq ≈ 32 µs.

where E(T;1t) is given by Equation (50) and

1z = −
1
2

g(2T)2
+ v0(2T)+ z0. (53)

Here, the grating displacement 1z is determined by g, a launch velocity
v0, and the initial position of the grating, z0. The next section describes
how the in-phase and in-quadrature components of the electric field are
obtained from the signal intensity in Equation (52).

5.3 Experimental Setup

Figure 25a shows the experimental setup. Figure 25b illustrates the dis-
placement1z given by Equation (53). An acousto-optic modulator (AOM)
is used to produce the excitation beams. The diffracted beam from the
AOM passes through the atom cloud and is reflected by a corner cube
retro-reflector to produce a standing wave. At the time of the read-out
pulse, a mechanical shutter blocks the retro-reflection to produce a trav-
eling wave. The undiffracted beam from the AOM is the LO, which is
aligned through the same optical elements as the excitation beam and is
physically separated from the atomic cloud. The back-scattered light from
the sample and the LO are combined on a balanced heterodyne detec-
tor to produce a beat note at ωRF = ωLO − ωAI. The heterodyne signal is
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ELO = E0 cos (kz − ωLOt)

EAI = E (T; Δt)  cos (k (z − Δz) − ωAIt)
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Figure 25 (a) Experimental setup. (b) Illustration of beam paths and cloud
displacement in Equation (53). As T is increased, the atom cloud falls in gravity,
changing the path difference between the back-scattered signal and the local
oscillator.

mixed down to DC using the RF oscillator driving the AOM to generate
the in-phase and in-quadrature components of the back-scattered electric
field. The signal components are squared and integrated to obtain the in-
phase and in-quadrature amplitudes. The total signal amplitude is equal
to the individual component amplitudes combined in quadrature.

5.4 Measurement of g

Figure 26a shows the in-phase component of the scattered field in the
vicinity of the echo for T ∼ 1.5 ms. The signal envelope can be modeled by
Equation (51a). At small values of T, the effect of gravity is not appreciable
and the signal envelope resembles a dispersion shape. Figure 26b shows
the echo signal shape for a larger pulse separation: T ∼ 11 ms. The signal
envelope is modulated by the1t-dependent Doppler phase, φD = −qgt1t,
due to the effect of gravity. It is interesting that g can be inferred from the
echo signal shape by measuring the change in the Doppler frequency as
a function of t, where t is the time relative to trap turn-off. Here, t can be
changed by increasing the area of the interferometer (i.e., increasing T),
or by holding T constant and varying the timing of the excitation pulses
relative to trap turn-off. Figure 26c shows the in-phase and in-quadrature
components of the signal as a function of T. The two signals can be used to
measure the AI phase, φAI = −qgT2. Since the AI phase scales as T2, while
the Doppler frequency effectively scales as T, a measurement of φAI results
in a more sensitive measurement of g.
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Figure 26 (a) Dispersion-shaped echo envelope at T ∼ 1.5 ms. (b) Echo envelope
modulated because of the effect of gravity at T ∼ 11 ms. (c) In-phase (dashed) and
in-quadrature (solid) components of the signal as a function of T obtained by
averaging 32 repetitions. (d) Total signal amplitude (components combined in
quadrature) as a function of T , showing modulation due to atomic recoil. (e) In-phase
component of the signal as a function of T obtained by normalizing the total signal
amplitude.

Figure 26d represents the total signal amplitude obtained from the sig-
nal components combined in quadrature. The shape of the signal, which
is modeled by the square of Equation (50), exhibits recoil modulation at
2ωq given by J2

2[2u2 sin(ωqT)]. Figure 26e shows φAI as a function of T.
The AI phase has the functional form cos(−qgT2

+ qv0T + φ0), where v0

is the initial launch velocity v0 of the atomic cloud and φ0 is an arbi-
trary phase representing the initial position of the grating. The data in this
figure were obtained by normalizing the in-phase component of the signal
using the total signal amplitude. Similar data are obtained in a number
of discrete windows over the timescale of the experiment (2T ∼ 20 ms).
A least-squares fit of the data across all observational windows yielded
a measurement of g precise to 5 part per million (ppm).

Other work related to gravimetry that involves repeated reflections in
a multipulse AI is discussed in Hughes et al. (2009).

5.5 Future Prospects

The preliminary measurement presented here relied on turning on an
attenuated excitation beam during the time in which the atom trap is
loaded, measuring the equipment phase and correcting the effect of
vibrations by actively controlling the phase of the RF oscillator used
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to drive the AOM. In this method, the feedback can be engaged dur-
ing the period the atom trap is loaded, but not during the excitation
pulses. As a result, the phase stability progressively deteriorates over
the timescale of the measurement. The experimental timescale was lim-
ited by the magnetization of the stainless steel vacuum chamber. Several
developments suggest that the precision in the determination of g can
be improved significantly. Atomic recoil experiments using this AI have
achieved transit-time limited timescales of 2T ∼ 70 ms in a nonmagnetiz-
able glass vacuum chamber in which magnetic gradients were suppressed
using external canceling coils. Additionally, the experimental setup shown
in Figure 25a has been modified to include a probe beam that continu-
ously tracks the phase variations resulting in a hundredfold improvement
in phase stability. If a transit time of 300 ms is achieved, a compact experi-
ment can be realized using an atomic fountain. Under these conditions, it
is anticipated that a competitive measurement of g—precise to better than
∼1 part per billion (ppb)—is possible.

6. INTERNAL STATE LABELED INTERFEROMETER

6.1 Introduction

In this section, we describe the temporal evolution of magnetic sublevel
coherences in laser-cooled samples under the influence of static mag-
netic fields. Previous work (Chan et al., 2008; Kumarakrishnan et al.,
1998a,b) has shown that spatially periodic superposition states (coherence
gratings) of magnetic sublevels within the same hyperfine ground-state
manifold can be optically excited using two-photon transitions driven by
appropriately polarized laser fields. For excitation by counter-propagating
pulses, the grating period is λ/2, where λ is the wavelength of light.
The decay time of the coherence due to Doppler dephasing occurs on a
time scale of a few microseconds in which the displacement of a typical
atom exceeds the grating period. For this geometry, the effect of atomic
recoil is significant as in the standing-wave experiments described in ear-
lier sections. In contrast to single-state interferometers, echo experiments
involving magnetic sublevel coherences represent state-labeled interfer-
ometers in which the exchange of photons with the laser fields is associ-
ated with a precise change in internal state (Kasevich & Chu, 1991). For
nearly copropagating small-angle excitation, recoil effects are not impor-
tant and the spatial period can be ∼1000 λ. As a result, the decay time of
the coherence can be several milliseconds. The relatively long coherence
decay time and the ability to apply a uniform magnetic field across a com-
pact laser-cooled sample can be exploited for precision measurements of
magnetic interactions such as atomic g-factor ratios. Such a measurement
relies on a determination of the Larmor frequency ωL associated with the
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evolution of a coherent superposition of magnetic levels in a static mag-
netic field. We use a magneto-optical trap (MOT) consisting of spatially
overlapped samples of laser-cooled 85Rb and 87Rb isotopes. Our measure-
ments suggest that a precision of better than 1 ppm is attainable. Such
a measurement represents a sensitive test of the Zeeman Hamiltonian. In
comparison, pioneering measurements (Cohen-Tannoudji & Kastler, 1966;
Cohen-Tannoudji et al., 1969; White et al., 1968) used RF spectroscopy to
ensure narrow linewidths and paraffin-coated vapor cells to prevent spin
relaxation from wall collisions (that resulted in transit-time-limited signal
decay) to achieve precisions of a few ppm.

We use coherent transient effects designated as magnetic grating free
induction decay (MGFID) and magnetic grating echoes (MGE) that were
originally predicted in Dubetsky and Berman (1994). A laser-cooled gas
is excited using two simultaneous traveling-wave laser pulses applied
at t = 0 with wave vectors k1 and k2 at a small angle (θ ′ ∼ 10 mrad), as
shown in Figure 27a. The individual traveling waves pulses have orthogo-
nal linear or circular polarizations so that it is possible to excite1m = 1 or
1m = 2 coherences, respectively. The pulses are detuned from the excited
state and resonant with the two-photon transition that couples two mag-
netic sublevels of the ground state as shown in Figure 27b. The timing
diagram is shown in Figure 27c. The excitation creates a spatially periodic
superposition (coherence grating) between the magnetic sublevels of the
ground state. The grating, which has a period of ∼ λ/θ ′, is probed by a
read-out pulse along k2. The resulting MGFID signal is coherently scat-
tered along k1 due to conservation of momentum. The grating dephases
because of thermal motion of the atoms causing the MGFID to decay on
a time scale of λ/θ ′u, where u is the most probable speed associated with
the Maxwell–Boltzmann velocity distribution. The dephasing time of the
MGFID can therefore be used to infer the temperature of the sample.
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Figure 27 (a) Experimental schematic; θ ′ ∼ 10 mrad. PBS = Polarizing beam splitter,
PD = photodetector, AOM = acousto-optic modulator. (b) Level diagram in 85Rb
showing two-photon excitation with orthogonal linear polarizations; 1 is the
one-photon detuning. (c), (d) Timing diagram for the MGFID and MGE experiments
respectively. (e) Experimental schematic for precision measurements.
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The effect of Doppler dephasing can be eliminated by observing mag-
netic grating echo (MGE) signals. The MGE is observed using a second
set of excitation pulses at t = T to rephase the coherence grating as in
Figure 27d. The second pulse modifies the time-dependent coefficients
that describe the coherent superposition of magnetic sublevels so that
the grating reforms at t = 2T. This effect is analogous to the reversal of
the Doppler phases of individual atoms in a traditional two-pulse pho-
ton echo experiment (Rotberg et al., 2007). In the absence of decoherence
due to collisions and background light, the MGE amplitude should decay
on a time scale determined by the transit time of atoms through the laser
beams as shown in Kumarakrishnan et al. (1998b).

The excitation and read-out pulses are derived using acousto-optic
modulators (AOM) and intersect at a small angle in a sample of laser-
cooled atoms as in Figure 27a. A single tapered amplifier (TA) is used to
generate the trapping light for both 85Rb and 87Rb isotopes. Another TA is
used to generate the excitation beams as in Figure 27e. In order to mini-
mize the effect of time-varying magnetic fields, the 85Rb and 87Rb traps are
spatially overlapped. This allows the MGFID signals from both isotopes
to be recorded ∼1 ms apart. The trapping chamber is made of pyrex to
minimize magnetized materials near the MOT and to avoid the effects of
eddy currents. Magnetic field canceling coils suppress magnetic gradients
to the level of 10−5 G/cm. The experiment also relies on active feedback to
stabilize magnetic fields. In this manner, variations of static fields are lim-
ited to ∼10 µG and fluctuations in AC fields are reduced to ∼30 µG over
the time scale of the measurement. At the start of the experiment, both
85Rb and 87Rb atoms are simultaneously loaded from background vapor
into the dual isotope MOT. After turning off the magnetic field gradient
of the MOT, both isotopes are cooled in an optical molasses for ∼10 ms
to temperatures of ∼30 µK. The excitation pulses (∼5 µs in duration) and
read-out (∼1 ms in duration) for each isotope are separately switched on
in a random sequences. The signal is recorded by a gated photomultiplier
tube or a balanced heterodyne detector that is turned off at the time of the
excitation pulses.

The Doppler dephasing time can be measured by mapping out the
MGFID using a short intense read-out pulse with a variable delay with
respect to the excitation pulse in the absence of magnetic fields using a
single isotope. Figure 28a shows the MGFID from a sample of laser-cooled
85Rb atoms optically pumped into a single magnetic sublevel. The MGFID
is fitted to a Gaussian form predicted by theory (Dubetsky & Berman,
1994) and consistent with previous observations (Kumarakrishnan et al.,
1998a,b). The time constant of the decay, τ , and the angle between the
excitation beams are used to extract the most probable speed (and temper-
ature) associated with the Maxwell–Boltzmann distribution of the cloud
along the direction k1 − k2. Figure 28b shows the radius of the sample
along k1 − k2 measured using a CCD camera as a function of delay time
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Figure 28 (a) Decay of the MGFID (circles) as a function of time for an angle θ ′ =6.6
mrad. The decay time extracted by fitting the data to the equation Ae−(t/τ)

2
+ C (solid

line) is τ = 221 µs. The most probable speed, given by u = 2/(kθ ′τ), is 0.17 m/s. The
corresponding temperature is T = 149.2 µK. (b) Ballistic expansion of the cloud as a
function of time (circles). u is extracted by fitting the cloud radius R(t) to a hyperbola

R(t) =
√

R2
0 + (ut)2 (solid line), where R0 is the initial cloud radius. (c) Temperature of

the cloud measured by the CCD camera (circles) and the temperature measured from
the decay time of the MGFID (squares) as a function of total trap laser intensity. Linear
fits are represented by a dashed line with 1.3I + 82.6 µK and a solid line with 1.2I + 73.3
µK. Here, I is the trapping laser intensity in mW/cm2.

with respect to the turn off of the trapping lasers (Vorozcovs et al., 2005).
The temperature is extracted by fitting the data to a hyperbola using the
measured cloud size and the delay time. A comparison of the tempera-
ture measurements using these two techniques is shown in Figure 28c.
The temperature was varied by changing the total trap laser intensity. It
is clear that the temperature measurements show good agreement within
experimental error.

6.2 Effect of a Uniform Magnetic Field on the MGFID

It is known that the Zeeman shift between magnetic sublevels causes tem-
poral oscillations within the envelopes of these signals at multiples of ωL

(Kumarakrishnan et al., 1998a). Chan et al. (2008) presents an analytical



AAMOP 07-ch03-119-200-9780123855084 2011/9/26 17:45 Page 175 #57

Time-Domain Interferometry with Laser-Cooled Atoms 175

calculation that predicts the functional form of the Larmor oscillations in
the the MGFID in arbitrary static magnetic fields for excitation pulses with
both orthogonal linear and circular polarizations.

The theoretical treatment is based on a rotation matrix approach
(Edmonds, 1996; Rochester & Budker, 2001; Shore, 1990) in which the
effect of the magnetic field can be described as a time-dependent rotation
of the atomic system about the quantization axis. The evolution of1m = 1
and 1m = 2 coherences in a magnetic field resembles the evolution of
dipole and quadrupole moments of the atom (effects termed alignment
and orientation respectively) in an irreducible tensor basis. On the basis
of the treatment in Rochester and Budker (2001), the probability of the
atom being in a specific coherent superposition is defined by 〈F m | ρ |F m′〉,
where F and m refer to the total angular momentum and magnetic quan-
tum numbers of the ground state, respectively, and ρ is the atomic density
matrix. To calculate the probability that an atom will be in a particular
atomic state in the presence of a magnetic field, we apply the rotation
operator to align the quantization axis as defined by the laser polarizations
with the quantization axis as defined by the magnetic field. This involves
rotating the atomic coordinate system through the Euler angles (α,β,γ )
that describe rotations about each of the axes. The rotated density matrix
is given by

ρm m′(θ ,φ) =
[
D−1(φ, θ , 0)ρD(φ, θ , 0)

]
m m′

, (54)

where

D(α,β, γ ) = exp
(

iγ Ĵz

)
exp

(
iβ Ĵy

)
exp

(
iαĴz

)
. (55)

In Equation (54), θ and φ represent the polar and azimuthal angles in
the new coordinate system. The rotation generates a surface such that the
distance from the origin to a point on the surface defined by (r, θ , φ) is
proportional to the probability of finding the system in a particular state.

The rotation matrix in Equation (55) can be evaluated for the level
structure of interest (specific angular momentum Ĵ). We apply the rota-
tion operator D to the density matrix and evolve the system in time using
the Hamiltonian for the magnetic interaction. The time-dependent atomic
density matrix element ρm m′(t) is then transformed into an irreducible
tensor basis ρK

Q(t) using the transformation

ρK
Q =

∑
m, m′

(−1)F−m′
〈
F, m; F,−m′

∣∣ K, Q〉 ρm m′ , (56)

where 〈F, m; F,−m′ | K, Q〉 is a Clebsch–Gordan coefficient. It is particu-
larly convenient to write the atomic density matrix in this basis, since the
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coherence that is established by the laser pulses is proportional to the ten-
sor elements ρK

Q. The inverse transformation allows us to predict the state
of the system in the m basis and is given by

ρmm′ =

2F∑
K=0

K∑
Q=−K

(−1)F−m′
〈
F, m; F,−m′

∣∣ K, Q〉 ρK
Q. (57)

Since the time dependence of the density matrix in Equation (54) is
given by

ρ̇m m′(θ ,φ, t) = −
i
~

[
Ĥ, ρ(θ ,φ, t)

]
m m′

. (58)

where Ĥ = −gJµBB · J, the solution to Equation (58) is

ρm m′(θ ,φ, t) =
[
e−iĤt/~ρ(θ ,φ, t = 0)eiĤt/~

]
m m′

. (59)

We calculate ρK
Q (defined by Equation (56)) as a function of time for

the F = 3 manifold in 85Rb for excitation by Lin⊥Lin and σ+σ− pulses. The
relevant tensor elements are ρ1

1 and ρ2
2 , respectively. Correspondingly, the

time dependence of the MGFID in a magnetic field is given by

ρ1
1(t) ∝ cos(ωLt)+ sin(η)+ i cos(η) sin(ωLt). (60)

ρ2
2(t) ∝ e−2i(ωLt+η)

[
i
(
1− e−iη

)
+ eiωLt

+ ei(ωLt+η)
]4

. (61)

Here, we use η to specify the angle between the magnetic field and the
quantization axis of the atoms as defined by the laser polarizations. It is
evident that the signals exhibit Larmor oscillations because of the mag-
netic field. The precision measurement of the g-factor ratio relies on a
determination of the ratio of Larmor frequencies in two rubidium isotopes
under such conditions. In order to compare predictions to experimental
results, Equations (60) and (61) are multiplied by a Gaussian decay to
model Doppler dephasing.

The temporal evolution of the coherences is illustrated in Figure 29
which shows the MGFID from laser-cooled 85Rb atoms. The entire decay
was recorded using a long weak read-out pulse. A heterodyne technique
was used to determine the in-phase and quadrature components of the
signal.

Figure 29 shows the signals for Lin⊥Lin and σ+σ− excitation with the
uniform magnetic field at an angle η = π/4 with respect to the quan-
tization axis. For Lin⊥Lin excitation, the MGFID is proportional to the
irreducible tensor element ρ1

1 predicted by Equation (60). For σ+σ− the
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Figure 29 Evolution of the in-phase and quadrature parts of the MGFID in a sample
of cold atoms. (a) The excitation pulses have orthogonal linear polarizations and the
magnetic field is directed at an angle of π/4 with respect to the polarization of k2.
(b) The excitation pulses have opposite circular polarizations with the direction of the
magnetic field at an angle of π/4 to the direction of k1. In both cases the excitation
pulse widths were 2 µs, and the detuning was 40 MHz. The data are shown as dots
and the solid lines are fits based on Equations (60) and (61).

MGFID is given by ρ2
2 predicted by Equation (61). Data shown in Figure 29

exhibits excellent agreement with the fits based on Equations (60) and (61).
The overall signal shapes and oscillation frequency are consistent with
predictions. It is also clear that Larmor oscillations can be recorded over
the entire signal dephasing time.

Figure 30 shows an example of single-shot measurements of the MGFID
signals from the dual species MOT for Lin⊥Lin excitation. To determine
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Figure 30 MGFID signals from a dual isotope MOT. The temporal separation of the
signals is 1 ms.

the oscillation frequency, the data are fitted to a function based on Equa-
tion (60) with η = 0. This procedure can be used to extract the ratio of
g-factors, which is taken to be the ratio of Larmor frequencies. The preci-
sion in the measured Larmor frequencies is 24 ppm and 16 ppm for 85Rb
and 87Rb respectively. For a given set of experimental conditions (pulse
power, duration, magnetic field, read-out pulse intensity, distribution of
magnetic sublevel populations) the average value of the ratio is deter-
mined by averaging ∼100 repetitions. The major systemic effects that
are being investigated include AC stark shifts associated with the read-
out pulse, the Breit–Rabi correction due to the nonlinear variation of the
Larmor frequency with magnetic field that causes the g-factor ratio to be
dependent on the field, and magnetic sublevel population distributions
that cause a variation in the Larmor frequencies of 1m = 1 coherences
within the same ground-state manifold due to the Breit–Rabi effect.

6.3 Effect of a Uniform Magnetic Field on the MGE

The precision of the g-factor ratio can be improved by observing T depen-
dent oscillations in the amplitude of the MGE signal. Such a measurement
raises the exciting prospect of testing relativistic effects that have been
predicted at the level of 100 ppb by Anthony and Sebastian (1994).

The rotation matrix approach described in Section 6.2 is clearly well
suited to describing the MGFID in the tensor basis, since it gives ana-
lytical expressions for arbitrary magnetic field directions. In contrast, the
evolution of the MGE is more complicated. It requires knowledge of the
evolution of the magnetic sublevel populations and coherences during
both excitation pulses as well as the evolution of the Doppler and Larmor
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phases during the experiment. As a result, we use numerical simulations
to model a system of rate equations (Berman, 1991; Berman et al., 1993) to
describe the MGE and to understand this signal in a magnetic field.

An interesting prediction of the simulations is that the amplitude of the
MGE envelope exhibits oscillations that depend on the Rabi frequencies
of the excitation pulses and the magnetic field as a function of the time
between excitation pulses. The amplitude of the MGE oscillates as a func-
tion of T with a characteristic frequency

√
(χ 2/1)2 + ω2

L, where χ and 1
are the Rabi frequency and detuning of the excitation beams, respectively.
This expression has the same form as the generalized Rabi frequency for
a laser field interacting with a two-level atom (Allen & Eberly, 1987).
The term χ 2/1 characterizes the two-photon interaction and replaces
the one-photon Rabi frequency. The two-photon detuning ωL due to the
Zeeman shifted magnetic sublevels levels replaces the one-photon detun-
ing. Owing to the spatial variation in the Rabi frequency χ , the component
of the MGE oscillation at frequency ξ = χ 2/1 averages out on a time scale
of ∼1/ξ (∼100 ns). As a result, it can be expected that the frequency of the
T-dependent oscillations on suitably long time scales will be determined
by ωL. The results of simulations are consistent with expectations based
on a derivation in the limit χ � δ, where δ is the two-photon detuning
(Dubetsky & Berman, 1994). This treatment shows that the echo envelope
oscillates as a function of T with frequency δ (which is analogous to ωL).
Since it should be possible to observe the MGE on a time scale comparable
to the transit time of cold atoms through the region of interaction (several
tens of milliseconds), it should be possible to use this signal to achieve a
significant improvement in the precision with which the g-factor ratio can
be determined. However, the time scale on which magnetic-field-induced
oscillations in the amplitude of the echo envelope can be observed will be
limited by the presence of magnetic field gradients. In the presence of a
gradient, all the atoms that contribute to the signal have slightly different
Larmor frequencies, depending on their spatial locations. As T increases,
the oscillations from individual atoms get out of phase and cancel out as
shown in Chan et al. (2008).

Figure 31 shows the amplitude of the MGE at t = 2T as a function of
T from laser-cooled 85Rb atoms. These data were obtained using a short
intense read-out pulse. To record MGE signals for small values of T, we
used counter-propagating excitation pulses (k1 ≈ −k2) so that durations
of the MGFID and MGE envelopes are ∼1 µs. The data show that the
effect of atomic recoil is significant for this geometry. The signal ampli-
tude in Figure 31 shows the expected modulation at the atomic recoil
frequency ωq = ~q2/2M, where ~q = ~(k1 − k2) is the momentum transfer
to the atoms from the laser fields and M is the atomic mass. The corre-
sponding value of τq = π/ωq shown in Figure 31 is τq ∼ 32 µs. The Larmor
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Figure 31 MGE signal intensity measured with a PMT (dots) using
counter-propagating Lin⊥Lin excitation pulses in a laser-cooled sample. A magnetic
field of B ∼ 0.25 G is directed along the polarization direction of k1. The first and
second excitation pulses are 680 ns and 70 ns in duration, respectively. In addition to
the T -dependent magnetic field oscillations, the signal is modulated at the atomic
recoil frequency (ωq = 96.95(4) rad/ms). The extracted value of ωL from the fit
(solid line) is consistent with the expected value.

frequency was determined to be ωL = 110.395(15) kHz (∼100 ppm) from a
fit based on Equation 26 in Beattie et al. (2008) with an additional cos4(ωLT)
term to account for the magnetic field oscillations. The value of ωL was
consistent with expectations based on the applied magnetic field. Both
ωq and ωL were obtained from a single multiparameter fit to the data in
Figure 31a and b.

Figure 31b shows that Larmor oscillations in the amplitude of the echo
envelope cancel out for T ∼ 500 µs although the overall decay time of
the signal is several milliseconds. This behavior is due to the presence of
a magnetic field gradients of ∼0.05 G/cm due to the magnetized walls
of a stainless steel vacuum chamber (Weel et al., 2006). Following the
demonstration of transit-time-limited recoil experiments in the glass cell,
we anticipate similar observations on time scales of ∼70 ms. As a result,
it should be possible to utilize the MGE to improve the precision in the
g-factor ratio measurements to ∼100 ppb. The main experimental chal-
lenge will be associated with the long-term stability of magnetic fields,
since the time for acquiring a data set such as in Figure 31 is ∼1 hour.

7. COHERENT TRANSIENT EFFECTS

7.1 Introduction

In this section, we describe the suitability of the echo technique for pre-
cision measurements of radiative lifetimes of atomic excited states. The
knowledge of atomic lifetimes is essential for a wide range of experi-
ments in laser spectroscopy such as atom and ion trapping (Moehring
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et al., 2006), trace gas analysis, and remote sensing. Precision measure-
ments are also essential for testing quantum mechanical calculations of
level structure (Blundell et al., 1991; Dzuba et al., 1989; Safronova et al.,
2004).

Precision measurements of natural linewidths and atomic lifetimes
have generally involved scanning a probe laser with a narrow linewidth
or observing the decay of the atomic fluorescence using photon-counting
techniques. The dominant systematic effects in these experiments are the
contribution of laser linewidth and radiation trapping respectively. As
a result, these experiments have required the development of sophisti-
cated experimental setups. A prominent example is a measurement of
the natural linewidth precise to ∼0.25% in a sample of velocity-selected
laser-cooled Na atoms (Oates et al., 1996). This experiment utilized a laser
with a linewidth of only a few kilohertz. Such lasers are accessible to only
a small number of groups. An alternative technique for measuring the
atomic lifetime with comparable precision involves exciting a sample of
trapped atoms with a laser pulse and observing the fluorescence decay.
Such an experiment requires specialized expertise to develop electronics
for photon counting (Simsarian et al., 1998). Examples of other indepen-
dent techniques include photo-association spectroscopy (McAlexander
et al., 1996) in cold atoms and fast atomic-beam experiments (Volz &
Schmoranzer, 1996; Young et al., 1994).

The widely established two-pulse photon echo technique is particularly
well suited for precision measurements of atomic lifetimes because it is
insensitive to the effects of radiation trapping and laser linewidth and is
widely accessible to a large number of experimental groups. Although
photon echoes have been used extensively to measure relaxation rates
in atomic and molecular species (Patel & Slusher, 1968), collisional rates
(Flusber et al., 1978), diffractive collisions (Forber et al., 1990), atomic level
structure (Chen et al., 1980), and lifetimes in solids and doped crystals
(Becker et al., 1988; Macfarlane & Shelby, 1981), it does not appear to have
been used for atomic lifetime measurements.

Spin echoes (Hahn, 1950b) and photon echoes (Abella et al., 1965) are
well understood and have been studied extensively over the past 60 years.
In a typical photon echo experiment involving dilute atomic gases, a laser
pulse is applied at t = 0 to create a coherent superposition of ground and
excited states (Allen & Eberly, 1987). Owing to Doppler broadening, the
superposition dephases with time. At t = T a second pulse is applied
and rephases the superposition so that dipole radiation occurs at t = 2T
(photon echo). The decay of the echo signal as a function of T can be used
to measure various relaxation effects. The basic properties of a two-level
atom and its interaction with an external electric field are based on the
treatment in (Allen & Eberly, 1987; Cohen-Tannoudji et al., 1997, 1998).
This treatment can be used to describe coherent transient effects such
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as free induction decay and photon echoes using the semiclassical Bloch
vector model.

In a typical photon echo experiment involving an inhomogeneously
broadened sample, a π/2 pulse applied at t = 0 will rotate the Bloch
vector associated with the macroscopic dipole moment to the uv-plane.
Following the pulse, the Bloch vectors associated with the individual
atoms will precess freely around the w-axis. Owing to Doppler broaden-
ing, the precession occurs with different rates for different atoms resulting
in rapid dephasing of the macroscopic dipole moment (FID). It is possible
to reverse the dephasing process after some time t = T using a π -pulse.
This creates a rephased dipole moment resulting in an echo at time t = 2T.
A schematic representation of the process of echo formation is shown in
Figure 32.

For a Doppler-broadened gas, in the absence of collisional dephasing,
the echo intensity depends only on radiative decay. This dependence is
given by

I = I0 exp
(
−

2T
τ

)
. (62)
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Figure 32 Bloch vector representation. (a) Macroscopic Bloch vector representing
all atoms in the ground state. (b) Superposition state immediately after π/2-pulse.
(c), (d) Bloch vector dephasing. (e) Inversion due to π -pulse. (f) Bloch vector rephasing
(photon echo).
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The laser linewidth and the temporal shape of the excitation pulses
determine the velocity distribution that contributes to the echo forma-
tion. Although these factors affect the signal strength, they do not affect
the decay time constant, τ . Similarly, the intensity, temporal shape of
the excitation pulses and sample density affect the echo amplitude and
pulse propagation but not the decay time constant. Spontaneous emission
during the excitation pulses is also not expected to affect τ .

On the basis of Rotberg et al. (2007), we describe a measurement of
the 5P3/2 excited state lifetime using two-pulse photon echoes in rubid-
ium vapor. The measurement is precise to ∼1% and agrees with the best
measurement of atomic lifetime in Rb (Simsarian et al., 1998).

7.2 Experimental Setup and Results

The excited state lifetime is determined by measuring the exponential
decay of the photon echo intensity as a function of the time T between
the excitation pulses. The experiment relies on precisely timed and suffi-
ciently short optical pulses generated from a CW laser using acousto-optic
modulators (AOMs). The excitation pulses are on resonance with the
F = 3→ F′ = 4 transition in 85Rb or F = 2→ F′ = 3 transition in 87Rb. The
echo signal is detected using a heterodyne detection technique used in
many experiments involving cold atoms. The signals are generated in a
7-cm-long vapor cell containing a natural abundance of rubidium isotopes
(∼72% of 85Rb and ∼28% of 87Rb). The vapor density, which can be varied
by heating the cell, is monitored by measuring the absorption of a probe
laser scanned across the atomic resonance.

The experimental setup is shown in Figure 33. Short pulse generation
was achieved by focusing and spatially filtering light into two AOMs
operating at 260 MHz and 400 MHz. As a result, the resonant excitation
pulses have temporal Gaussian profiles with a full width at half maxi-
mum (FWHM) of ∼20 ns and an on/off ratio of ∼106 : 1. The heterodyne
detection technique involves use of a local oscillator (LO) derived from a
separate 260 MHz AOM as shown in Figure 33. The echo signal is com-
bined with the LO on a beam splitter and detected as a 400 MHz beat
note using photodiodes. The echo decay time can be measured by vary-
ing T and recording the echo amplitude by averaging 128 repetitions as
shown in Figure 34a. To acquire the background for each data point, the
experiment is repeated with the first pulse turned off. The oscilloscope
traces shown in Figure 34a are squared and integrated to obtain the echo
intensity. The echo intensity is expected to show an exponential decay as
a function of 2T (see Equation [62]). The measurement of the lifetime is
achieved by fitting the signal as a function of 2T to this model, as shown
in Figure 34b.
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Figure 33 The optical layout. 1/2 and 1/4 represent λ/2 and λ/4 wave plates
respectively.

7.3 Discussion

Systematic effects on the echo decay time constant were investigated by
varying several parameters affecting the echo intensity. These include the
intensity and durations of the excitation pulses, cell temperature, strength
of a quantizing magnetic field, and the beam diameter of the excitation
pulses. Other effects such as collisional dephasing and decoherence due
to background light can be ruled out on the time scale of the experi-
ment on the basis of experimental conditions. As shown in Rotberg et al.
(2007), these parameters did not produce systematic effects on the mea-
sured echo decay time. The final value for the lifetime was determined on
the basis of a double-blind study by averaging 67 equally weighted data
sets distributed between both 85Rb and 87Rb isotopes. The distribution of
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Figure 34 (a) Oscilloscope trace of excitation pulses and the photon echo using
heterodyne detection. (b) Decay of the echo intensity as a function of 2T . Data are
fitted to an exponential function that results in a lifetime measurement of
τ = 25.25± 0.38 ns.

points is a Gaussian with an average value τ = 26.47± 0.30 ns. The quoted
error represents the standard deviation of the mean (1σ uncertainty). The
measurement has a precision of 1.14% and is in agreement at the level
of 1σ with the best measurement in rubidium (Simsarian et al., 1998)
(26.20± 0.09 ns).

The theoretical prediction for the echo intensity as a function of the
excitation pulse area is well understood in the absence of spontaneous
emission (Allen & Eberly, 1987). Since the experiment involved pulse
widths that are comparable to the lifetime and since the excitation beams
have a finite spatial profile, the dependence of the signal intensity is
expected to differ from that in the ideal case. The theory must be modified
to include the effect of spontaneous emission and Gaussian pulse shapes
(Allen & Eberly, 1987). The effect of the spatial profile can also be taken
into account by assigning a Gaussian distribution of Rabi frequencies and
averaging the response over the profile. Results based on numerical sim-
ulations (Rotberg et al., 2007) show that the maximum echo intensity is
obtained when the ratio of the excitation pulse areas is ∼1.2. In contrast,
for the ideal case, the theory ignores the effect of spontaneous emission
and the temporal and spatial profiles of the excitation beams so that this
ratio is predicted to be 2.

In summary, the results suggest that improved measurements precise to
∼0.25% are attainable through additional data acquisition and studies of
systematic effects. Improvements are expected to include optical pumping
into a single magnetic sublevel to achieve an increase in the signal-to-
noise ratio and use of shorter excitation pulses to minimize the effects
of spontaneous emission. The work can also be extended to the 5P1/2

transitions so that comparisons with previous measurements (such as in
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Young et al. [1994]) are possible. The absence of systematic effects and
the relative simplicity of this technique suggest that the photon echo tech-
nique may be well suited for precision measurements in atomic and ionic
transitions that have relatively large oscillator strengths.

8. SUPERFLUORESCENCE IN COLD ATOMS

8.1 Introduction

Previously described experiments on single-state atom interferometers
and magnetic sublevel coherences have relied on the coherent transient
response of a sample of laser-cooled atoms for signal detection. It is well
known that the radiation from a coherently driven sample containing Nex

excited atoms will exhibit an N2
ex enhancement in peak intensity in the far

field. It is interesting that this well-known signature is shared by two dis-
tinct collective effects termed superfluorescence (SF) and superradiance
(SR). In this section, we review observations of both effects in a sample of
laser-cooled atoms (Paradis et al., 2008).

In SF, a sample of incoherently excited atoms can be locked in phase
to produce coherent emission by spontaneously emitted photons emitted
into preferred electromagnetic modes (Gross & Haroche, 1982). SF is char-
acterized by a burst of radiation that has some of the features of radiation
from a phased array of dipoles (Rehler & Eberly, 1971). For SR (Dicke,
1954), the direction of emission is defined by the initial phases of excitation
pulses and phase-matching conditions (Schneble et al., 2003). In contrast,
the shape of the sample defines the directions of SF emissions (Bonifacio
& Lugiato, 1975).

The ideal conditions for SF can be achieved if the propagation time for
light to travel through the sample, τe, satisfies the condition τe < τr, where
τr = (Nex0µ)

−1 is the dipole coupling time for the evolution of a macro-
scopic dipole moment (Bonifacio & Lugiato, 1975). Here, 0 is the rate of
spontaneous emission for a single atom and µ is the diffraction solid angle
at the SF wavelength, which defines the fraction of spontaneously emit-
ted photons that are amplified. Under these conditions, spontaneously
emitted photons from one end of the sample can influence the collec-
tive evolution of the entire sample. In this regime, the SF peak intensity
scales as N2

ex and the pulse width scales as N−1
ex to conserve energy. If

τe > τr, the emission of the system can be regarded as the incoherent sum
of coherent emissions from a number of subregions within the sample that
evolve independently (Arecchi & Courtens, 1970; Gross & Haroche, 1982;
Kumarakrishnan & Han, 1998; Kumarakrishnan et al., 2005).

SF is also characterized by a delay time with respect to the excitation
pulse. Under conditions in which τe < τr, a fully quantum-mechanical
model for SF initiation predicts that the delay time for SF with respect
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to the excitation pulse is given by (Polder et al., 1979):

τd =
τr

4

[
ln
(√

2πNex

)]2

. (63)

Since τd is proportional to τr, it approximately scales as N−1
ex .

The threshold number of atoms NT required for SF is achieved when
τr = T2, where T2 is the dephasing time of the system. For a Doppler-
broadened vapor NT ∼ 1010 (Gibbs et al., 1977), whereas it is typically∼105

for the case of laser-cooled atoms because of the negligible effect of the
Doppler broadened linewidth 0D . 1 MHz. Therefore, SF can become a
dominant channel for relaxation and observations of SF from atom traps
can be recorded with a high signal-to-noise ratio. Studies of SF scaling
laws can serve as useful diagnostic tools for studying various dephas-
ing processes, such as cold Rydberg atom interactions (Gross & Haroche,
1982). Another interesting aspect of working with atom traps is that it
is relatively straightforward to change the shape of the sample and to
observe the enhancement of SF along the preferred axes of the atomic
cloud. Apart from realizing the threshold atom number, it is further nec-
essary that τd < τn, where τn is the natural radiative decay time associated
with the excited state. In some cases (Kumarakrishnan & Han, 1998),
effects such as radiation trapping can extend the effective lifetime of the
excited state permitting SF to evolve even from rapidly decaying atomic
states.

SF has been extensively studied in atomic gases to understand its scal-
ing laws (Gibbs et al., 1977), effects of pulse propagation (Skribanowitz
et al., 1973), quantum fluctuations (Gross & Haroche, 1982; MacGillivray
& Feld, 1985; Vrehen et al., 1982), and dephasing processes (Maki et al.,
1989; Schuurmans, 1980). SF has also been studied as an amplifier of
quantum noise, since peak heights, pulse widths, and delay times exhibit
characteristic fluctuations because of the stochastic nature of SF initiation
(Glauber & Haake, 1976; Haake et al., 1979; Raymer & Walmsley, 1990).

In recent studies (Paradis et al., 2008), we have observed SF from
spherical and cigar-shaped clouds of laser-cooled Rubidium atoms. The
atomic system is excited to the 5D5/2 level from the 5S1/2 ground state
via two-photon excitation through the intermediate 5P3/2 level as shown
in Figure 35. The evolution of the system from the 5D5/2 level through
the 6P3/2 level to the 5S1/2 ground level is monitored by time-resolved
measurements of the light emitted on the 6P → 5S transition at 420 nm.
The time delays for the 420-nm radiation scaled as ∼N−1, where N is the
atom number. However, the delays are much smaller than expectations for
uncorrelated cascade fluorescence. Since N is significantly smaller than
the threshold number for SF on the 420-nm transition and larger than
the threshold number for the 5D → 6P transition at 5.2 µm, our obser-
vations suggest that rapid de-excitation of the 5D to the 6P level via SF
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Figure 35 Rubidium 87 level diagram: the solid lines represent excitation pulses,
and the dashed lines correspond to SF emissions pertaining to this work. The dotted
lines represent the expected SF cascade for incoherent excitation. The radiative
lifetimes of the 5D5/2 → 6P3/2 and the 6P3/2 → 5S1/2 transitions are 690 ns and 357 ns,
respectively. The total radiative lifetimes of the 5D5/2 and 6P3/2 states are 241 ns and
109 ns, respectively. These lifetimes are based on Arimondo et al. (1977), Sansonetti
(2006). The hyperfine structure of the 5D state shown in the inset was measured in
Grove et al. (1995).

at 5.2 µm triggered SR-like emissions at 420 nm. This inference is sup-
ported by the observed time delays for the 420-nm emission that agree
with SF time-delay estimates for the 5.2-µm transition. Pronounced varia-
tions in the directionality of of the 420-nm radiation were also observed
by changing the shape of the sample. For spherical clouds, the emis-
sion is isotropic, whereas for cigar-shaped clouds, it is highly anisotropic.
Along the long axis of cigar-shaped atom clouds, it is possible to observe
both triggered emission and incoherent cascade fluorescence as tempo-
rally well-resolved peaks in the detected signal. The triggered emission is
highly concentrated along a direction in between the directions of the two
almost parallel excitation beams, which is a well-known characteristic of
SR-like emission.

The experiment showed that the evolution of the system depended
critically on whether the excitation is coherent or incoherent. As shown
in Bowden and Sung (1978), avoiding coherent excitation imposes a
particularly restrictive condition on pumping. If the rubidium system can
be excited without any initial coherence between the 5S and 5D states, the
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system can be expected to decay through a multistep SF cascade involving
the 6P→ 6S (2.7 µm) and 6S→ 5P (1.3 µm) transitions shown in Figure 35.
In contrast, if there is an initial coherence between the 5S and 5D states, the
system is expected to decay through SF on the 5D→ 6P (5.2 µm) transition
and triggered SF on the 6P→ 5S (420 nm) transition—a process referred to
as “Yoked SF” (Brownell et al., 1995; Lvovsky & Hartmann, 1999; Lvovsky
et al., 2002).

8.2 Experimental Details

A schematic of the experimental setup is shown in Figure 36. Light from
an external-cavity diode laser (ECDL) is used for both the MOT beams
on the 5S1/2, F = 2→ 5P3/2, F = 3 transition in 87Rb and the first excitation
beam for the SF experiment (∼30 MHz above the MOT transition).

Another ECDL is used to produce ∼50 mW of 776-nm light. Beams
derived from the locked 780-nm laser and the 776-nm laser are counter
propagated through a rubidium vapor cell at room temperature. The
inherently Doppler-free two-photon transition resonances associated with
the 5D5/2 hyperfine levels can be observed by measuring the absorp-
tion of 776-nm light in the cell. The 776-nm laser is stabilized by means
of side-locking to the 5P3/2, F = 3→ 5D5/2, F = 4 absorption resonance.
This laser also produces the light for the second excitation beam for the
SF experiment, which is ∼30 MHz below the 5P3/2, F = 3→ 5D5/2, F = 4
transition.

776 nm laser

780 nm laser

Photodiode

Saturated
absorption

AOM

PMT

420 nm filter

MOT

To MOT

λ/2λ/2

λ/2

ν2− Δ
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5S1/2 5P3/2

5P3/2 5D5/2

Photodiode

AOM

A
O
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Figure 36 Diagram of experimental setup. SF emissions at 420 nm can be measured
both perpendicular to and along the direction of the excitation pulses. (ν1 denotes the
frequency of the 5S1/2, F = 2→ 5P3/2, F = 3 transition, and ν2, that of the 5P3/2,
F = 3→ 5D5/2, F = 4 transition).
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8.3 Results and Discussion

The ground-state atom number, N, was varied from ∼107 to 109 by chang-
ing the loading time of the MOT. The observed emissions were found
to be sensitive to the delay time between the two excitation pulses. One
limiting case is when the lower-transition pulse peaks before the upper-
transition pulse—referred to as sequential excitation. Another limiting
case occurs when the upper-transition pulse peaks before the lower-
transition pulse; this case is referred to as Stimulated Raman Adiabatic
Passage (STIRAP) (Gaubatz et al., 1990). In both cases, a significant frac-
tion of the ground-state population was transferred to the 5D state. We
estimate a typical 5S→ 5D excitation efficiency of∼50% on the basis of the
photon yield observed on the 6P→ 5S decay channel and on simulations
of the excitation process.

We first describe time-resolved measurements of the 420-nm emission
on the transition 6P3/2 → 5S1/2 along the long axis of cigar-shaped atom
clouds. Each curve in Figure 37 represents the emission intensity ver-
sus time for a distinct ground-state atom number, N. This atom number
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Figure 37 Time-resolved SF detected along the long axis of cigar-shaped atom
clouds for various ground-state atom numbers, N. The excitation pulses are
overlapped, and time t = 0 corresponds to the center of the excitation pulses.
N increases from the bottom to the trop curve. The dashed curve indicates the
time-dependence of the excitation pulses. The inset shows the height of the two
maxima observed in the time-resolved emission signals (peak 1 and peak 2) for a
fixed number of atoms, as a function of the delay time between the two excitation
pulses. (Delay time < 0 corresponds to STIRAP excitation pulse ordering, while delay
time > 0 corresponds to sequential excitation pulse ordering.)
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is varied by changing the loading time of the MOT. The steady-state
MOT fluorescence is monitored using a calibrated photodetector. N is
determined from the measured photocurrent, the solid angle subtended
by the detector, the total intensity of the MOT beams, and the detuning of
the MOT beams from resonance. It is assumed that the MOT fluorescence
is isotropic.

It is evident in Figure 37 that for a large N two time-resolved peaks
occur. The time delay of the second peak (peak 2) remains unchanged.
We interpret peak 2 as being due to cascade fluorescence. To support this
interpretation, we have modeled the level system shown in Figure 35
using rate equations for atomic populations. In the simulation, a laser
pulse with a Gaussian envelope (FWHM ∼200 ns) excites atoms from
the 5S to the 5D level. The simulation shows that the 420-nm emis-
sion resulting from uncorrelated decay peaks at a delay time of ∼200 ns.
This predicted delay of the cascade fluorescence peak matches peak 2 in
Figure 37 reasonably well.

The first of the peaks in Figure 37 (peak 1) shows the essential char-
acteristic of SF, namely a decreasing time delay with increasing N. In
accordance with this interpretation, it is also observed that peak 1 increas-
ingly dominates peak 2 as N increases. For large atom numbers, the peak
1 practically coincides in time with the excitation pulses, shown as a
dashed line in Figure 37. This observation indicates that the 5D level is
regeneratively pumped while the SF emission occurs (Gross et al., 1976).

The inset in Figure 37 shows the peak heights of the time-resolved
emissions as a function of the delay between the excitation pulses for a
fixed atom number (N ≈ 3× 108). Negative pulse delays correspond to
STIRAP excitation, where the 776-nm pulse precedes the 780-nm pulse,
while positive pulse delays correspond to sequential excitation. The SF
emission in peak 1 is dominant in the STIRAP regime and a large part
of the sequential regime. The cascade fluorescence (peak 2) dominates for
sequential excitation-pulse ordering with pulse delays larger than about
+100 ns.

Estimates based on Equation (63), assuming the largest atom numbers
available in our experiment, show that SF should occur on the 5D→ 6P
transition, while conditions are below the SF threshold for the 6P→ 5S
transition. Therefore, for the higher atom numbers (see Figure 37) SF on
the 5D→ 6P transition is expected to rapidly populate the 6P level, lead-
ing to a rapid onset of 420-nm emission, as observed for peak 1. The
420-nm emission appears to be SF as well, as evidenced by the presence of
two peaks in Figure 37, the short duration of the emission peak 1 (which
is of the order, or less than the 6P lifetime), and the high directional-
ity of the 420-nm emission for cigar-shaped clouds. As the conditions in
our experiment are below threshold for SF on the 6P→ 5S transition, the
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observed (apparently superfluorescent) emission on that transition must
be attributed to triggered SF (Lvovsky & Hartmann, 1999; Lvovsky et al.,
2002) that results from coherence between the 5S and 5D state amplitudes
generated during excitation.

We now compare the time delays of the emission peaks observed for
both cigar-shaped and spherical atom clouds. Figure 38 shows the time
delays as a function of N for peak 1 (solid diamonds) and peak 2 (empty
diamonds) for observation along the long axis of the cigar-shaped cloud.
The delays are measured with respect to the peak of the excitation pulses
(with 780-nm and 776-nm pulses temporally overlapped). A fit to the data
for peak 1 (solid line) establishes that the SF emission exhibits the expected
N−1 variation, with no fit offset. The dashed line shows the expected SF
delay for 5.2-µm emission, for the same range of N, calculated using Equa-
tion (63) based on the measured trap parameters. Although the two curves
are in excellent agreement, we note that there are systematic uncertainties
with the measured trap parameters, at the level of ±10%. Nevertheless, it
is clear that the predicted time delay for the 5.2 µm occurs on the same
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Figure 38 Delay time of SF versus number of atoms. The delays marked peak 1
(solid diamonds) and peak 2 (empty diamonds) correspond to temporally resolved
peaks, as shown in Figure 37, measured along the long axis of the cigar-shaped cloud.
Delays for the spherical trap are shown with triangles. For the case of the cigar and
the sphere, the experimental data are fitted with functions of the type aN−x

+ b (with
fit parameters a, b, and x), shown as solid lines. The fits show that the delays scale as
the expected, with x = (1.12± 0.16) for the cigar and x = (1.17± 0.14) for the sphere,
respectively. The offset b is zero for the cigar, and ∼70 ns for the sphere. The dashed
line shows the predicted 5.2-µm delay, calculated on the basis of Equation (63) using
measured cloud parameters. Numerical simulations for cascade fluorescence suggest
that peak 2 should occur at 174 ns.
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time scale as the 420-nm SF. This indicates that the 420-nm emission is
triggered by the presence of the 5.2-µm emission, confirming the results
in Lvovsky and Hartmann (1999). The data also show that there is no
variation in the delay time for peak 2, consistent with expectations for
cascade fluorescence. The discrepancy between the observed delay (∼150
ns) and the predicted delay for cascade fluorescence (174 ns for an excita-
tion FWHM of 114 ns) can be attributed to the uncertainty in the degree of
overlap between excitation pulses.

Similar data for the time delay of emission from the spherical trap
(triangles) are also shown in Figure 38. A fit (solid line) establishes that the
emission exhibits a N−1 dependence, indicating superfluorescent decay.
The emission delay for the spherical cloud is considerably longer than for
the case of the cigar-shaped cloud (peak 1). We attribute this difference to
the fact that for the spherical cloud the value of µ and the atom density
are lower than for the cigar-shaped cloud. For spherical atom clouds, we
cannot resolve the SF emission from the cascade emission over the entire
accessible range of N. The fact that for spherical clouds the SF and cascade
emissions blend into one another may explain the fit offset of ∼70 ns for
the case of the spherical cloud, apparent in Figure 38.

In future studies in cold atoms, it could be investigated if the expected
SF cascade emissions at 5.2, 2.7, and 1.4 µm occur in the presence of
incoherent excitation. Detection of time-resolved signals with adequate
signal to noise ratio at these wavelengths would constitute the main
experimental challenge. Applications of this work could extend to studies
of dephasing processes, such as interatomic interactions, in cold atoms.
Other applications could relate to Bose-condensed samples that typically
have low atom numbers and verification of predicted statistical properties
for spherical samples (Prasad & Glauber, 1985).
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Abstract Many effects in the interaction between atoms and a cavity
that are usually described in quantum mechanical terms (cav-
ity quantum electrodynamics, cavity QED) can be understood
and quantitatively analyzed within a classical framework. We
adopt such a classical picture of a radiating dipole oscilla-
tor to derive explicit expressions for the coupling of single
atoms and atomic ensembles to Gaussian modes in free
space and in an optical resonator. The cooperativity parame-
ter of cavity QED is shown to play a central role and is given a
geometrical interpretation. The classical analysis yields trans-
parent, intuitive results that are useful for analyzing applica-
tions of cavity QED such as atom detection and counting,
cavity cooling, cavity spin squeezing, cavity spin optomechan-
ics, or phase transitions associated with the self-organization
of the ensemble-light system.

1. INTRODUCTION

The interaction of atoms with a single electromagnetic mode is a problem
of significant fundamental interest. The quantum mechanical system con-
sisting of a single atom interacting with a single mode can be analyzed
exactly in the rotating wave approximation for an arbitrary coupling con-
stant. This famous Jaynes–Cummings model (Jaynes & Cummings, 1963)
of cavity quantum electrodynamics (cavity QED) gives rise to many inter-
esting effects such as Rabi oscillations with a single photon (vacuum Rabi
oscillations), collapse and revival effects due to a dependence of the Rabi
frequency on photon number, or optical nonlinearity at the single-photon
level. Many of these effects have been observed in pioneering experiments
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both in the microwave domain by Haroche and coworkers (Goy et al.,
1983; Haroche & Raimond, 1985; Kaluzny et al., 1983) and Walther and
coworkers (Meschede et al., 1985), and in the optical domain by Kimble
(Birnbaum et al., 2005; Boozer et al., 2007; Kimble, 1998; McKeever et al.,
2004b; Rempe et al., 1991; Thompson et al., 1992; Turchette et al., 1995),
Rempe (Kuhn et al., 2002; Legero et al., 2004; Maunz et al., 2004; Nußmann
et al., 2005b; Pinkse et al., 2000; Schuster et al., 2008; Wilk et al., 2007), and
others (Brennecke et al., 2007; Colombe et al., 2007; Heinzen et al., 1987;
Heinzen & Feld, 1987). Studies have concentrated on fundamental aspects
of the system such as the vacuum Rabi splitting (Agarwal, 1984; Boca et al.,
2004; Brennecke et al., 2007; Colombe et al., 2007; Kaluzny et al., 1983;
Raizen et al., 1989; Thompson et al., 1992; Zhu et al., 1990), nonclassical
light generation (Gupta et al., 2007; Kuhn et al., 2002; Legero et al., 2004;
McKeever et al., 2004a; Schuster et al., 2008; Simon et al., 2007b; Thomp-
son et al., 2006; Wilk et al., 2007), single-atom maser (Meschede et al.,
1985) and laser operation (McKeever et al., 2003a), or superradiance in
the case of many atoms (Kaluzny et al., 1983; Raimond et al., 1982). Signif-
icant effort has gone toward increasing the single-photon Rabi frequency
2g (also called the vacuum Rabi frequency), at which a single quantum of
excitation is exchanged between the atom and the cavity, above the dissi-
pation rates κ and 0 at which the photon is lost from the cavity or from
the atom by emission into free space, respectively. In this so-called strong-
coupling limit of cavity QED, namely 2g � (κ ,0), the coherent, reversible
light–atom interaction dominates over dissipative processes. This should
enable full quantum mechanical control over the atoms and photons, e.g.,
in the form of quantum gates between two atoms (Pellizzari et al., 1995)
or quantum networks (Cirac et al., 1997).

Besides being of fundamental interest, cavity QED enables an increas-
ing number of applications related to atom detection (Bochmann et al.,
2010; Gehr et al., 2010; Heine et al., 2009; Hope & Close, 2004, 2005;
Kohnen et al., 2011; McKeever et al., 2004b; Poldy et al., 2008; Puppe et al.,
2007; Teper et al., 2006; Terraciano et al., 2009; Trupke et al., 2007; Wilzbach
et al., 2009) and manipulation—be it of the spatial degrees of freedom
(Black et al., 2005a; Hood et al., 2000; Münstermann et al., 1999; Murch
et al., 2008; Nußmann et al., 2005a) such as in cavity cooling (Boozer et al.,
2006; Cirac et al., 1993, 1995; Domokos et al., 2001; Gangl & Ritsch, 1999,
2000; Hechenblaikner et al., 1998; Horak et al., 1997; Leibrandt et al., 2009;
Lev et al., 2008; Maunz et al., 2004; McKeever et al., 2003b; Morigi et al.,
2007; Mossberg et al., 1991; Murr, 2006; Nußmann et al., 2005b; Vuletić
& Chu, 2000), feedback cooling (Fischer et al., 2002; Koch et al., 2010;
Vuletić et al., 2007), self-organization and the superradiant phase transi-
tion (Baumann et al., 2010; Black et al., 2003, 2005a), or of the spin degrees
of freedom such as in spin squeezing (Appel et al., 2009; Dantan et al.,
2003a,b; Genes et al., 2003; Kuzmich et al., 1997, 1998, 2000; Leroux et al.,
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2010a,b; Schleier-Smith et al., 2010a,b), spin optomechanics (Brahms &
Stamper-Kurn, 2010), preparation of nonclassical atomic states (Mekhov
et al., 2007; Mekhov & Ritsch, 2009a,b; Simon et al., 2007a), or cavity-based
quantum memories for light (Black et al., 2005b; Simon et al., 2007a,b; Tanji
et al., 2009; Thompson et al., 2006).

Many of the above applications make use of atomic ensembles rather
than single atoms, in which case the complete quantum description of the
ensemble–cavity interaction is nontrivial as it in general involves a very
large Hilbert space (Baragiola et al., 2010). (Under assumptions of symme-
try, exact solutions are possible in a much smaller Hilbert space, see Tavis
and Cummings 1968.) On the other hand, many of these applications oper-
ate via coherent (Rayleigh) scattering, whereas incoherent spontaneous
emission (Cohen-Tannoudji et al., 1998; Mollow, 1969) is either negligible
or an undesired process whose effect can be estimated by means other
than solving the problem exactly. In such circumstances, the full quantum
description may not be necessary, and a simpler classical picture may yield
the correct results and provide a complementary or more intuitive under-
standing. An example of this is cavity cooling, where the full quantum
mechanical description yields complex dynamics (Horak et al., 1997; Zip-
pilli & Morigi, 2005), but in the relevant limit of interest for applications
(large light-atom detuning and low saturation of the atomic transition),
a classical model yields simple and correct results that can be understood
in terms of cavity-enhanced coherent scattering (Vuletić & Chu, 2000;
Vuletić et al., 2001).

Furthermore, it has become increasingly clear that features which were
originally assigned a quantum mechanical origin, such as the vacuum
Rabi splitting (Agarwal, 1984; Cohen-Tannoudji et al., 1998), can be in fact
described within a classical framework, and arise simply from a combina-
tion of linear atomic absorption and dispersion (Dowling, 1993; Zhu et al.,
1990). This is not surprising as in the limit of low saturation the atom can
be modeled as a harmonic oscillator, and the classical theory of coupled
harmonic oscillators (a cavity mode and a weakly driven atom) gives the
same mode structure as the quantum-mechanical treatment. It can then
be advantageous to use the classical theory—within its limits of applica-
bility—to describe, and develop an intuition for, more complex problems
involving atomic ensembles.

The classical description also leads to some results that are of course
contained in the quantum theory, but that are not necessarily obvious
within that formalism. For instance, the quantum description in terms
of a vacuum Rabi frequency (that perhaps should be more appropriately
called single-photon Rabi frequency) that scales inversely with the square
root of the mode volume (Cohen-Tannoudji et al., 1998) may lead one to
believe that strong-coupling and coherent atom–light interaction require
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a small cavity volume. However, the classical description immediately
reveals that the mode area plays a more fundamental role than the mode
volume. As discussed below, this feature is captured in the so-called coop-
erativity parameter η = 4g2/(κ0) of cavity QED (Kimble, 1998), that, as
we shall show, is a geometric parameter that characterizes the absorptive,
emissive, or dispersive coupling of an atom to the cavity mode.

In this work, we will analyze the atom–cavity interaction from the
classical point of view and derive analytical formulas that remain valid
quantum mechanically. We shall see that in this description the dimen-
sionless cooperativity parameter η governs all aspects of the atom–cavity
interaction. A strong-coupling limit can be defined by the condition η > 1,
corresponding to a situation where we can no longer assume the atomic
dipole to be driven by the unperturbed incident field, but have to self-
consistently include the field emitted by the atom, and circulating in the
cavity, into the total driving field. Thus for η > 1, the backaction of the
cavity field generated by the oscillating atomic dipole on that same dipole
is not negligible. This leads, among other effects, to the interesting result
known from a quantum mechanical analysis (Alsing et al., 1992) that the
emission by the atom into free space can be substantially modified by a
cavity, even if the cavity subtends only a small solid angle.

For equal cavity and atomic line widths, κ = 0, the thus defined
classical strong-coupling condition η > 1 is equivalent to the standard
strong-coupling condition 2g > (κ ,0) of cavity QED, but it is less stringent
than the latter for κ > 0 or κ < 0. (The classical strong-coupling condi-
tion η > 1 corresponds to the single-photon Rabi frequency 2g being larger
than the geometric mean of the atomic and cavity line widths.) In general,
the system can be parameterized in terms of two dimensionless param-
eters, namely the ratios g/κ and g/0 in the cavity QED description, or,
in the classical description, the cooperativity parameter η, and the line
width ratio κ/0. The cavity QED strong-coupling condition 2g > (κ ,0)
corresponds to a normal-mode splitting that is much larger than the line
widths of the normal modes. In contrast, the less stringent classical condi-
tion η > 1 also includes situations where the normal modes overlap within
their line widths, but destructive interference between them arises in a
manner that is closely related to electromagnetically induced transparency
(Harris, 1989, 1997; Litvak & Tokman, 2002).

In most cases, the coherent emission into the cavity will be associated
with the desired “signal” process, whereas the emission into free space
constitutes a “noise” process that leads to atomic decoherence, motional
heating, etc. To understand the fundamental limitations to processes like
cavity cooling, spin squeezing, spin optomechanics, or phase transitions
due to self-organization, we must therefore quantify both the emission
into the cavity mode of interest, and into all other (free-space) modes.
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In the following, we will usually express the results as power ratios that
can be given simple physical or geometrical interpretations.

In the following, we always consider two different scenarios: in the
“scattering” or “driven-atom” setup, radiation is coupled into the mode
of interest M via the atom that is driven by an external field incident
from the side. In the “absorption/dispersion” or “driven-mode” setup,
the mode of interest M is excited directly, and the atom modifies the field
in M via forward scattering, while also emitting radiation into all other
modes. We will analyze both scenarios for M being either a free-space
mode or a cavity mode.

2. INTERACTION BETWEEN A SINGLE ATOM
AND A FREE-SPACE MODE

In the following, we analyze the interaction of a single atom, described as
a point-like classical dipole oscillator, with a single transverse electromag-
netic mode in free space. We will consider a Gaussian TEM00 mode with
a waist w that is at least somewhat larger than an optical wavelength λ,
such that the paraxial approximation for the propagation of Gaussian
beams (Kogelnik & Li, 1966; Siegman, 1986) remains valid. The classical-
oscillator description of the atom agrees with the quantum mechanical
treatment in the limit where the saturation of the atomic transition is neg-
ligible, be it due to low beam intensity, or large detuning of the light
from atomic resonances (Cohen-Tannoudji et al., 1998; Mollow, 1969). The
assumption that the atom is point-like, i.e., that it can be localized to a
small fraction of an optical wavelength implies that the atom’s kinetic
temperature is well above the recoil limit.

The electric-field component Ẽ(t) = 1
2 êEe−iωt

+ c.c. of a linearly polar-
ized light field oscillating at frequency ω = ck induces a proportional
atomic dipole moment p̃ = 1

2 êpe−iωt
+ c.c. that is oscillating at the same fre-

quency. Here, ê is the unit polarization vector, and p = αE is the amplitude
of the induced dipole moment. The complex polarizability α is given by
(see, e.g., Grimm et al., 2000; Milonni et al., 2008)

α = 6πε0c3 0/ω2
0

ω2
0 − ω

2 − i(ω3/ω2
0)0

. (1)

Here, ω0 = ck0 = 2πc/λ0 denotes the atomic resonance frequency and 0 is
the line width of the atomic transition. Equation (1) is valid both classically
and quantum mechanically. In the classical description, the oscillating
electron is damped due to the emission of radiation. In the quantum
mechanical description, 0 = k3

0|µ|
2/(3πε0~) is the spontaneous popula-

tion decay rate of the atomic excited state, given in terms of the dipole
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matrix element µ ≡ 〈e|µ|g〉 between a ground state
∣∣g〉 and an excited state

|e〉. Due to the validity of Equation (1) in both the classical and quan-
tum domains, the classical results we will derive below agree with the
semiclassical results derived from quantum theory in the limit of low
saturation of the atomic transition.

The polarizability α obeys the relation

|α|2 =
6πε0

k3
Im(α), (2)

which will be useful in relating the total scattered power, proportional
to |α|2, to the absorption, given by the out-of-phase component of the
forward-scattered field that is proportional to Im(α) (see Section 2.2).
Equation (2) ensures that the optical theorem is satisfied, i.e., that the rate
at which energy is absorbed from the incident mode by the atom equals
the power scattered into other field modes (Berman et al., 2006).

The oscillating dipole emits a radiation field whose amplitude at large
distance R � λ from the atom is given by (Jackson, 1998)

Erad(R, θ) =
k2 sin θ
4πε0

eikR

R
αE, (3)

where θ is the angle between the polarization ê of the driving field and
the direction of observation.

A fraction of the radiated power can be collected in some mode of inter-
est. The field radiated into the same mode as the driving field can interfere
with the latter, resulting in attenuation of the driving field, i.e., absorp-
tion, and a phase shift of the total field, i.e., dispersion. In the following
sections, we derive simple expressions for these quantities, and interpret
them geometrically.

2.1 Scattering into a Free-Space Mode: Emission

We consider a traveling-wave TEM00 Gaussian mode M of wave num-
ber k = 2π/λ = ω/c, waist w, and Rayleigh range zR = πw2/λ. The atom
is located on the axis of that mode at the waist, as shown in Figure 1,
and driven by an external field with amplitude E propagating in some
other direction. The driving field polarization is assumed to be linear and
perpendicular to the direction of propagation of the mode M. We would
like to know what fraction of the total power scattered by the driven
atom is emitted into M. This question can be answered by decomposing
the dipole emission pattern into Hermite-Gaussian modes in a tangen-
tial plane located at distance z = R � zR in the far field (see Figure 1).
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R

Atom

Erad
x

y

z

εM

E, ε

Figure 1 Scattering of radiation by a weakly driven atom. The incident field E
polarized perpendicular to the TEM00 mode of interest M and drives an atomic dipole
oscillator that emits an electromagnetic field which is given by Erad at large distance R
from the atom. For the analysis, we choose R much larger than the Rayleigh range zR

of M.

The normalized mode function eM(ρ, z) can be found in Siegman (1986);
in the tangential plane at z � zR, it is approximately

eM(ρ, z) ≈
(

2
πw̃2

)1/2

exp
(
−
ρ2

w̃2
+ ikz+ ik

ρ2

2z
− i
π

2

)
. (4)

Here, the first term in the exponent accounts for the intensity profile of the
expanding Gaussian beam with waist w̃(z) = w

√
1+ (z/zR)

2
≈ wz/zR, the

second and third term describe the beam wave fronts, and the last term is
the Gouy phase shift of π/2 at z � zR.

In general, the electric field amplitude EM(ρ, z) in mode M at position
(ρ, z) can be written as EM(ρ, z) = eM(ρ, z)EM/

√
ε0c in terms of a position-

independent quantity EM that we will refer to as the mode amplitude.
EM is related to the total power PM in mode M via PM = |EM|2/2, and to
the electric field amplitude at the waist EM(0, 0) via EM = EM(0, 0)

√
ε0cA,

where A = πw2/2 is the effective mode area. In the following, it will be
useful to similarly formally define a mode amplitude for the field E driv-
ing the atom as E =

√
ε0cAE, even if the driving field is in some arbitrary

mode. As the induced dipole depends only on the electric field E at the
atom’s position, all atomic absorption and emission can be expressed in
terms of the rescaled quantity E .

The mode M with w � λ subtends only a small far-field angle
λ/(πw)� 1 (Siegman, 1986), such that the spatial dependence of the emit-
ted dipole field Erad [Equation (3)], over the region occupied by M can be
approximated as sin θ ≈ 1 and eikR/R ≈ eikz+ikρ2/(2z)/z. Then the mode ampli-
tude EM arising from the radiated field can be calculated easily as the
projection EM =

√
ε0c
∫

e∗MErad2πρdρ in the plane at z � zR. This yields the
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simple result

EM = iβE (5)

in terms of a dimensionless parameter

β =
k
πw2

α

ε0
(6)

that characterizes the coupling of the incident field E to mode M via the
atom with polarizability α at the drive frequency ck. From Equation (2), it
follows that β obeys the optical-theorem relation

|β|2 =
6

k2w2
Im(β) = ηfsIm(β), (7)

where we have defined another dimensionless parameter, which we will
call the single-atom cooperativity in free space

ηfs =
6

k2w2
. (8)

The total scattered power into all directions P4π can be calculated by
integrating the intensity Irad = ε0c|Erad|

2/2 of the radiated field [Equa-
tion (3)] over the surface of the sphere of radius R. Using Equations (5)–(7),
the total emitted power can be expressed as

P4π =
ck4

12πε0
|αE|2 = Im(β)|E |2 =

1
ηfs
|EM|2. (9)

The power emitted into both directions of modeM is 2PM = |EM|2, and
hence the cooperativity ηfs is equal to the ratio of (bidirectional) emission
into mode M and free-space emission P4π ,

2PM
P4π
= ηfs, (10)

independent of the light frequency or the value of the atomic polarizabil-
ity. The free-space cooperativity ηfs is a purely geometric quantity and can
be interpreted as the effective solid angle 1� = 4/(k2w2) subtended bidi-
rectionally by the mode of interest. An additional factor 3/2 accounts for
the directionality of the dipole emission pattern and would be absent if
the atomic dipole was driven by unpolarized light. Equation (10) is cor-
rect to lowest order in (kw)−2

� 1, and thus valid as long as the mode of
interest is not focussed too strongly, i.e., w & λ.
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2.2 Scattering from a Free-Space Mode: Absorption

We consider the same modeM as in the previous Section 2.1, but now take
the light to be incident in that mode with power Pin = |E |2/2, as shown in
Figure 2. The power P4π scattered by the atom located at the mode waist
on the mode axis, as given by Equation (9), by virtue of energy conserva-
tion must equal the power Pabs absorbed from the driving field. Then the
fractional attenuation can be expressed as

Pabs

Pin
=

P4π

Pin
= Im(2β). (11)

Within the rotating wave approximation (RWA), 1 ≡ ω − ω0 � ω0, the
mode-coupling parameter β in terms of the light-atom detuning 1 takes
the simple form

βRWA = ηfs (Ld(1)+ iLa(1)) , (12)

where La(1) = 0
2/(02

+ 412) and Ld(1) = −210/(02
+ 412) are the

Lorentzian absorptive and dispersive lineshapes, respectively. Then the
fractional attenuation can be written as(

P4π

Pin

)
RWA

= 2ηfsLa(1). (13)

On resonance (1=0), the beam attenuation (single-atom optical depth)
equals twice the free-space cooperativity ηfs. These results are valid for
w & λ, i.e., for ηfs . 6/(2π)2

≈ 0.2. Comparison of Equations (10) and (13)
reveals that the same geometric parameter ηfs governs the fractional emis-
sion by the atom into a particular mode, and the resonant fractional
absorption from a mode of the same geometry.

ε + ε
Pin

P4π

ε

Atom

Figure 2 Absorption by an atom placed at the center of a TEM00 mode M. The
absorption can be calculated from the power P4π radiated into free space, or from the
field EM emitted by the atom in the forward direction that interferes with the incident
field E . The solid and dashed lines indicate the wave fronts of a A Gaussian beam and
spherical wave, respectively.
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The atomic scattering cross section σ is defined as the ratio of scattered
power P4π and incident intensity Iin = Pin/A,

σ =
P4π

Iin
= Im(2β)A. (14)

In the RWA, the scattering cross section according to Equation (12) is given
by

σ =
6π
k2

0

La(1). (15)

The resonant absorption, and hence the cooperativity ηfs = 6/(k2w2) ≈

6/(k2
0w2), can thus also be understood in terms of the ratio of the resonant

scattering cross section σ0 = 6π/k2
0 and the effective beam area A = πw2/2,

i.e., ηfs ≈ σ0/(2A).
It is instructive to derive the atomic absorption from the requirement

that the power reduction in the forward direction must arise from the
destructive interference between the incident field E and the field EM =
iβE [Equation (5)] forward-scattered by the atom into the same mode M.
The total mode amplitude in the forward direction is E + EM, and the
fractional absorption can be calculated as

Pabs

Pin
=
|E |2 − |E + EM|2

|E |2
≈ −

EE∗M + E∗EM
|E |2

= Im(2β), (16)

in agreement with the derivation based on the radiated power P4π [Equa-
tion (11)]. In Equation (16), we have neglected the term |EM|2 that is
smaller by a factor (kw)−2

� 1.
Note that the polarizability α on resonance is purely imaginary. There-

fore, from the expression for the radiated field Erad [Equation (3)], it would
appear that the forward-scattered field on resonance is π/2 out of phase
with the incident field, and thus cannot cancel the latter. However, we
must keep in mind that the field Erad in Equation (3) is a radial wave,
whereas the input field is a Gaussian mode. To understand the implica-
tion of this, we can decompose the radial wave into Gaussian modes, or
equivalently, consider the relative phase in the far field, where both modes
are approximately spherical waves, and therefore interfere directly. In the
far field z � zR, there is a π/2 Gouy phase shift of the input field (rela-
tive to the driving field at the waist) (Kogelnik & Li, 1966; Siegman, 1986),
as obvious from the mode function, Equation (4), and indicated by the
wave fronts in Figure 2. This additional phase shift of π/2 ensures that, on
atomic resonance, the forward-scattered field interferes destructively with
the input field. The above derivation represents a version of the optical
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theorem that states that the total scattered power P4π is proportional to
the imaginary part of the forward-scattering amplitude (see, e.g., Berman
et al., 2006; Jackson, 1998).

2.3 Phase Shift of a Free-Space Mode: Dispersion

In general, the driving field in mode M not only is attenuated, but also
experiences a phase shift in the presence of the atom. This phase shift,
corresponding to the atomic index of refraction, can be simply understood
as arising from the interference of the out-of-phase component of the field
EM forward-scattered by the atom with the incident field E in the same
mode (Feynman et al., 1977). Writing the field amplitude in the forward
direction using Equation (5) as E + EM = (1+ iβ)E ≈ eiβE , we see that the
atom-induced phase shift of the light is

φ = Re(β). (17)

In the RWA, the atom-induced phase shift of the incident mode for
1� 0 can be written as

φRWA = ηfsLd(1) ≈ −ηfs
0

21
. (18)

At large detuning 1 � 0 from atomic resonance, the real part of the
polarizability exceeds the imaginary part by a factor 1/0, so the disper-
sion dominates the absorption [Equation (12)]. We see that the effect of
the atom’s index of refraction on the Gaussian mode also scales with the
cooperativity ηfs.

3. INTERACTION BETWEEN AN ATOMIC ENSEMBLE
AND A FREE-SPACE MODE

3.1 Absorption and Dispersion by an Ensemble

For an ensemble of N atoms located on the mode axis, the total absorption
cross section equals N times the single-atom cross section, Equation (14),
producing Beer’s law of exponential attenuation

Pin − Pabs

Pin
= e−Im(2Nβ). (19)

The exponential absorption arises as each layer of atoms is driven by a
total field that consists of the incident field on the previous layer and the
forward scattered field by that previous layer (Feynman et al., 1977). If the
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laser is tuned to atomic resonance,(
Pin − Pabs

Pin

)
ω=ω0

= e−2Nηfs , (20)

i.e., the resonant ensemble optical depth equals twice the collective coop-
erativity Nηfs.

Similarly, the phase shift induced by the ensemble on the light field
is just N times the single-atom phase shift φN = Nφ = Re(Nβ) [see Equa-
tion (17)] and at large detuning 1 from atomic resonance, but within the
RWA, 0 � 1� ω0, can be written as

(φN)RWA = NηfsLd(1) ≈ −Nηfs
0

21
. (21)

Comparing the absorption and dispersion by a single atom to that by
an atomic ensemble, we see that the single-atom cooperativity ηfs, Equa-
tion (8), for the former is replaced by the collective cooperativity Nηfs for
the latter. The fact that the phase shift experienced by the light at a fixed
light-atom detuning is proportional to the atom number and a geometric
parameter can be used for dispersive measurements of the atom number
or the atomic state (Hope & Close, 2004, 2005; Lodewyck et al., 2009), and
for measurement-induced spin squeezing in free space (Appel et al., 2009;
Kuzmich et al., 1998).

Neither the absorption nor the dispersion depend (with interferomet-
ric sensitivity) on the distribution of atoms although both effects rely on
a definite phase relationship between the incident field and the forward-
scattered field by the atoms. The reason is the cancelation of the phases
of the incident and scattered fields in the forward direction: an atom at
position z1 > 0 experiences a drive field whose phase is delayed by kz1

relative to an atom at z = 0, but the phase of the field emitted forward is
advanced by the same amount. Therefore, the contributions of all atoms
are phase-matched in the forward direction, producing maximum inter-
ference, independent of the distribution of atoms along the beam. As we
shall now see, this is no longer the case when we consider the scattering
into a direction other than the direction of the incident beam: the scat-
tered power in any given direction is strongly influenced by the atomic
distribution due to interatomic interference.

3.2 Scattering into a Free-Space Mode by an Ensemble: Cooperative
Effects from Spatial Ordering

In the geometry of Figure 1 for scattering from a driving beam into mode
M, we assume that the single atom is replaced by N atoms that, for
simplicity, are located at positions rj sufficiently close to the mode axis
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such that they all couple to M with the same magnitude. We also assume
that the scattered field EMN in mode M is small compared with the inci-
dent field so that we can take the induced dipoles to be proportional to
the incident field E alone, whose magnitude is assumed to be the same for
all atoms (i.e., the sample is optically thin along the incident beam). The
phase of the contribution from any atom to the mode amplitude EM of the
radiated field depends on the atom’s position, and we can use Equation (5)
to write

EMN = iNFβE (22)

in terms of a collective coupling parameter

F =
1
N

N∑
j=1

ei(k−kM)·rj ≡ {ei(k−kM)·r
}. (23)

Here, k and kM are the wave vectors of the incident field and mode M,
respectively, and {} denotes the average atomic coupling for the given
fixed atomic distribution as defined by Equation (23). The power PMN =

|EMN|
2/2 scattered by the ensemble (unidirectionally) into mode M rela-

tive to the power scattered by a single atom into free space P4π = Im(β)|E |2
[Equation (9)] is then given by

PMN

P4π
=

1
2
|F|2N2ηfs. (24)

(Compared with Equation (10), the additional factor 1
2 appears here

because we consider only one direction ofM, as in general the factor F will
be different for the two directions of propagation.) Due to the phase factors
in F, the emission intoM by the ensemble depends on the spatial ordering
of the atoms that determines the extent of interference between the fields
coherently scattered by different atoms. In particular, |F|2 can take on any
value between 0 and 1. The lowest value |F|2 = 0 corresponds to perfect
destructive interference between the contributions by different atoms and
is, e.g., attained for a perfectly ordered ensemble that contains an inte-
ger number n ≥ 2 of atoms per wavelength. The highest possible value
|F|2 = 1 is attained for a periodic lattice of atoms with reciprocal lattice
vector k− kM such that the fields emitted by all atoms into M interfere
constructively. This situation corresponds to Bragg scattering and inter-
estingly can arise in a self-organizing manner due to light forces on the
atoms generated by the interference pattern between the incident and the
scattered fields (Baumann et al., 2010; Black et al., 2003, 2005a; Domokos
& Ritsch, 2002; Zippilli et al., 2004). In this situation, the power emitted
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intoM scales as N2, similar to the situation encountered in superradiance
(Dicke, 1954).

Finally, in the common situation of a gaseous ensemble, correspond-
ing to a random distribution of atoms, 〈F〉 = 0 and 〈|F|2〉 = 1/N, i.e., the
phase of the emitted light field is completely random when an ensem-
ble average over different atomic distributions is performed, and the
ensemble-averaged emitted power is proportional to the atom number
N. The fact that, for a random distribution of atoms, the emitted power
in any given direction is (on average) proportional to the atom number
also explains why the usual picture of each atom emitting power inde-
pendently is valid for gaseous samples, even though in the low-saturation
limit all emitted light is coherent, and thus the fields from different
atoms interfere. However, we have also seen that the absence of inter-
atomic interference (on average) is just a special, although common, case
occurring for disordered ensembles, and that for ordered ensembles both
superradiant (emitted power scales as N2) and subradiant (little emitted
power) coherent Rayleigh scattering into a given mode is possible.

We have already noted in Section 3.1 that the absorption from a mode
does not depend on the atomic distribution, whereas the emission into a
particular mode does. Since the absorbed power must equal the total scat-
tered power by virtue of energy conservation, it follows that cooperative
effects in scattering from an (ordered) distribution of atoms correspond
merely to a directional redistribution between different free-space modes,
and that the total power emitted into free space does not change. In par-
ticular, it is not possible to change the scattering cross section per atom
by ordering the ensemble. It should be kept in mind, however, that in this
argument and in the derivation of the formulas of this section we have
assumed that the scattered field in modeM is much smaller than the driv-
ing field (|EMN|

2
� |E |2), so that we could ignore the backaction of EMN on

the atomic dipoles and assume that they are driven by the incident field E
alone. When analyzing the interaction with a cavity mode in the following
section, we will drop this restriction, with interesting consequences.

4. INTERACTION BETWEEN A SINGLE ATOM
AND A CAVITY MODE

Based on the quantitative understanding of atomic emission into and
absorption from a single Gaussian mode in free space, we can now analyze
the classical interaction between a single atom and a single mode of an
optical resonator. In the microwave domain, the cavity can partly or com-
pletely surround the atom, modifying strongly the total emitted power
P4π (Haroche & Raimond, 1985; Kleppner, 1981). In contrast, the active
modes of an optical resonator typically subtend only a very small solid
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angle. Since we are concerned with optical transitions, we will assume as
in the previous section that the solid angle subtended by the cavity mode
is small. One might naı̈vely expect that in this case the scattering into free
space is not affected by the cavity, but as we will see, a cavity supporting a
strongly coupled mode can reduce the atomic emission into all free-space
modes by acting back on the induced dipole p = αE, which depends on the
total field E experienced by the atom. This situation arising in a two-level
atom driven by two fields is akin to electromagnetically induced trans-
parency (EIT) (Harris, 1997, 1989) occurring in a three-level atom driven
by two fields.

We assume that the atom is at rest and ignore light forces and the pho-
ton recoil. A stationary atom that is continuously and weakly driven can
be treated as a classical dipole since it simply scatters the incoming nar-
rowband radiation elastically without changing the radiation frequency
(coherent or elastic Rayleigh scattering) (Cohen-Tannoudji et al., 1998;
Mollow, 1969). The driven atom inside the optical resonator can then be
treated as a monochromatic source of radiation at the frequency ω = ck of
the driving light.

4.1 Attenuation of a Cavity Mode: Cavity-Enhanced Absorption

We consider a standing-wave resonator of length L with two identical,
lossless, partially transmitting mirrors (Figure 3) with amplitude reflection
and transmission coefficients r and iq, respectively (r, q real, r2

+ q2
= 1),

and q2
� 1. The resonator supports a TEM00 mode with waist size w

(mode M), and the atom is located on the mode axis near the waist at
an antinode. Ein =

√
ε0cAEin is the mode amplitude incident onto the cav-

ity, and Ec is the mode amplitude of the traveling intracavity field. The
mode amplitude leaking into the cavity through the input mirror is iqEin,
and the atom at the antinode, driven by a field E = 2Ec, coherently scatters
a field 2EM = 4iβEc [see Equation (5)] into the resonator that adds to Ec.

P4π

Pin

Ptr

εin

εc

εM

Figure 3 Transmission through an optical standing-wave resonator containing an
atom. An incident field Ein produces a steady-state intracavity field with traveling
mode amplitude Ec . The atom at an antinode driven by the field 2Ec contributes a
field 2EM per round trip. The transmitted power is Ptr , the power scattered by the
atom into free space is P4π .
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(The factor of 2 here arises from simultaneous scattering into both cavity
directions by the atom at an antinode.) The traveling field Ec thus experi-
ences reflection at the cavity mirrors, as well as input coupling and atomic
source terms, iqEin and 2EM, respectively, per round trip. The steady-state
amplitude Ec can be determined from the condition that the field after one
round trip be unchanged:

Ec = r2e2ikLEc + iqEin + 2EM, (25)

where e2ikL accounts for the round-trip phase experienced by the cir-
culating light of frequency ω = ck. For not too large detuning δ ≡

ω − ωc � πc/L from cavity resonance ωc, we can approximate r2e2ikL
≈

1− q2
+ 2iq2δ/κ , where κ = q2c/L is the resonator line width (decay rate

constant of the energy, see, e.g., Siegman, 1986). AQ:1
Solving for the cavity field, we find

Ec =
iEin

q

[
1− i

2δ
κ
− i

4β
q2

]−1

. (26)

The ratio of transmitted power Ptr = q2
|Ec|

2/2 to incident power Pin =

|Ein|
2/2 is then

Ptr

Pin
=

[(
1+

Im(4β)
q2

)2

+

(
2δ
κ
+

Re(4β)
q2

)2
]−1

. (27)

Here, β = kα/(πw2ε0), Equation (6), containing the atomic polarizability
α, is evaluated at the frequency ω = ck of the incident light. The atom
can change the transmission through the cavity not only via absorption
∝ Im(β) ∝ Im(α), but also by shifting the cavity resonance via Re(β) ∝
Re(α), i.e., via the atom’s index of refraction that introduces a phase
shift of the light (see Section 2.3). Both absorptive and dispersive effects
can be used for single-atom detection by means of an optical resonator
(Bochmann et al., 2010; Gehr et al., 2010; Heine et al., 2009; Hope & Close,
2004, 2005; McKeever et al., 2004b; Poldy et al., 2008; Puppe et al., 2007;
Teper et al., 2006; Trupke et al., 2007).

The power P4π emitted by the atom into free space is given by Equa-
tion (9), with EM = 2iβEc. The ratio of emitted to incident power Pin can be
written as

P4π

Pin
=

Im(8β)
q2

[(
1+

Im(4β)
q2

)2

+

(
2δ
κ
+

Re(4β)
q2

)2
]−1

. (28)
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In the RWA, the coupling factor β takes the simple form of Equa-
tion (12), and we can write(

4β
q2

)
RWA

= η (Ld(1)+ iLa(1)), (29)

where we have defined a cavity cooperativity parameter (also called the
Purcell factor [Motsch et al., 2010; Purcell, 1946])

η =
4ηfs

q2
=

24
q2k2w2

=
24F/π

k2w2
. (30)

Here,F = πc/(Lκ) = π/q2 is the cavity finesse, andLa(1) = 0
2/(02

+ 412)

and Ld(1) = −210/(02
+ 412) are the Lorentzian absorptive and disper-

sive lineshapes, respectively. The cavity cooperativity can be understood
as the free-space cooperativity ηfs augmented by the average number of
photon round trips F/π inside the cavity, with an additional factor of four
accounting for the four times larger intensity at an antinode of a standing
wave compared with a traveling mode. Note that the above-defined coop-
erativity parameter η is twice as large as the cooperativity parameter C1

most widely used in cavity QED, see, e.g., Horak et al. (2003).
Equation (29) can be substituted into Equation (27) and (28) to write

explicit expressions in the RWA for the resonator transmission and free-
space emission as a function of cavity cooperativity η, detuning between
the incident light and the cavity resonance δ = ω − ωc, and detuning
between the incident light and the atomic resonance 1 = ω − ω0:(

Ptr

Pin

)
RWA

=
1

[1+ ηLa(1)]
2
+
[

2δ
κ
+ ηLd(1)

]2 (31)

and (
P4π

Pin

)
RWA

=
2ηLa(1)

[1+ ηLa(1)]
2
+
[

2δ
κ
+ ηLd(1)

]2 . (32)

Similar expressions were already derived by Zhu et al. (1990) with a classi-
cal formalism as used here, and they agree with the quantum mechanical
formulas in the low-saturation limit. Atomic absorption, spectrally char-
acterized by the absorptive Lorentzian La(1) and scaled by the cavity
cooperativity parameter η, reduces the intracavity power and the trans-
mission, whereas Lorentzian atomic dispersion ηLd(1) shifts the cavity
resonance. In the expression for the free-space emission, Equation (32),
the absorptive Lorentzian appears also in the numerator since for a given
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Figure 4 Transmission through the cavity (solid) and free-space scattering (dashed)
for a resonant atom-cavity system (ωc = ω0) vs. detuning 1 = δ in units of κ = 0 for a
weakly coupled system (η = 0.05, thin black lines) and for a strongly coupled system
(η = 10, thick grey (blue) lines). Both transmission and scattering are normalized to
the power incident on the cavity. The strongly coupled system exhibits vacuum Rabi
splitting, i.e., the normal-mode splitting exceeds the normal-mode widths.

intracavity power the atomic free-space emission scales in the same way
as the absorption.

The transmission and scattering into free space are plotted as a function
of incident frequency ω for fixed cavity frequency in a few representa-
tive cases in Figures 4 and 5. For η < 1 (weak-coupling limit), the atomic
absorption broadens the line width and reduces the transmission, whereas
the atomic dispersion induces a cavity shift. In the weak-coupling limit,
the two eigenmodes of the system, one atom-like, the other cavity-like,
maintain their character, each with a little admixture of the other mode.
In the opposite strong-coupling limit η > 1, the two modes are strongly
mixed when the cavity resonance coincides with the atomic resonance.
Both cavity transmission and atomic emission into free space show a
normal-mode splitting, given by 2g =

√
η0κ , that in the quantum descrip-

tion for 2g > (0, κ) is interpreted as the vacuum (or single-photon) Rabi
splitting of cavity QED (Cohen-Tannoudji et al., 1998; Kimble, 1998).

In the classical picture, the single-photon Rabi splitting or normal-
mode splitting for a resonant atom-cavity system (ωc = ω0, i.e., δ = 1)
and similar cavity and atomic line widths (κ ∼ 0) can be understood as
follows (Figure 4): On resonance for η > 1, the atomic absorption spoils
the cavity finesse, and the intracavity and transmitted power are low.
As the laser is detuned away from resonance, the atomic absorption is
reduced and the transmission increases until the cavity loss due to atomic
emission no longer limits the remaining constructive interference arising
from multiple round trips of the light in the detuned cavity. (The round-
trip phase also includes the atomic contribution that has the opposite
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Figure 5 Transmission through the cavity (solid) and free-space scattering (dashed)
for a resonant atom-cavity system (ωc = ω0) vs. detuning 1 = δ in units of 0 for
κ = 100 for a weakly coupled system (η = 0.05, thin black lines) and for a strongly
coupled system (η = 10, thick grey (blue) lines). Both transmission and scattering are
normalized to the power incident on the cavity. In this situation, there is no standard
Rabi splitting as the cavity width is larger than the normal-mode splitting, but the
transmission drops sharply near 1 = 0, akin to the situation in EIT.

sign as the cavity contribution and tends to decrease the total round-trip
phase, and increase the intracavity power.) Further detuning |δ| then again
decreases the intracavity power as the increasing round-trip phase shift
decreases the constructive interference inside the cavity. The combination
of atomic absorption and dispersion results in two transmission peaks that
are symmetric about δ = 0.

If the atomic line width is much narrower that the cavity line width
(0 � κ), then the atomic absorption affects the cavity transmission only
in a narrow region near atomic resonance (Figure 5). The transmission is
substantially reduced for η > 1, but if the cooperativity parameter is not
too large (η < κ/0) the normal-mode splitting is less than the cavity line
width, and there is no standard Rabi splitting. Rather, there is a dip in the
transmission and in the free-space scattering.

The ratio of atomic free-space scattering to cavity transmission is given
by the simple expression

(
P4π

Ptr

)
RWA

= 2ηLa(1), (33)
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and independent of the atom-cavity detuning δ −1. For a resonant sys-
tem (δ = 1 = 0), the transmission and free-space scattering are given by

(
Ptr

Pin

)
1=δ=0

=
1

(1+ η)2
, (34)

and (
P4π

Pin

)
1=δ=0

=
2η

(1+ η)2
. (35)

Comparison of Equation (35) with the corresponding free-space Equa-
tion (11) shows that in the weak-coupling limit η < 1 the quantity 2η =
8Fηfs/π can be interpreted as the cavity-aided optical depth. In the strong-
coupling limit η � 1, both the transmission and the free-space scattering
decrease with coupling strength η, but the transmission decreases faster
than the free-space scattering. This is closely related to EIT (Harris, 1989,
1997) where the population of the state or mode driven by the probe field
(here the resonator, in EIT the atomic excited state) is more suppressed
than that of the indirectly driven state or mode (here the free-space modes,
in EIT the second atomic ground state).

Equation (34) also shows that in a cavity the transmitted power
decreases only quadratically, rather than exponentially, with optical depth
2η > 1. The reason is that the enhanced absorption resulting in η =

(4F/π)ηfs is due to multiple round trips inside the cavity: as the atomic
absorption per round trip increases, the cavity finesse and the number
of round trips decrease, which acts to convert the exponential absorp-
tion into a polynomial one. (The single-pass optical depth is 2ηfs =

12/(k2w2) < 1.)

4.2 Frequency Shift of a Cavity Mode: Dispersion

In the limit of sufficiently large detuning from atomic resonance, such that
the cavity finesse is not spoiled by atomic absorption (ηLa(1) < 1), the
dominant effect of the atom on the resonator is a shift of the cavity res-
onance frequency by atomic dispersion, since the real part of the atomic
polarizability falls off more slowly with detuning than the imaginary part.
From Equation (31), it follows that the atom-induced cavity resonance
shift δωc, in units of the cavity line width κ , in the RWA is given by

(
δωc

κ

)
RWA

= −
η

2
Ld(1) ≈ η

0

41
, (36)
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which is proportional to the cavity cooperativity parameter η. The atom-
induced cavity shift can be used for atom detection or atomic-state detec-
tion (Bochmann et al., 2010; Gehr et al., 2010; Heine et al., 2009; Hope &
Close, 2004, 2005; McKeever et al., 2004b; Poldy et al., 2008; Puppe et al.,
2007; Teper et al., 2006; Terraciano et al., 2009; Trupke et al., 2007), or, in
the case of an atomic ensemble, for generating cavity-mediated infinite-
range atomic-state-dependent interactions between atoms enabling spin
squeezing (Leroux et al., 2010a,b; Schleier-Smith et al., 2010a).

4.3 Scattering into a Cavity Mode: Cavity-Enhanced Emission

We now consider the scattering of radiation by an atom into a resonator
of the same geometry and parameters as in Section 4.1. The atomic dipole
is driven by a mode amplitude Ein of frequency ω = ck from the side, and
emits monochromatic radiation of the same frequency into the resonator
(Figure 6). In particular, the atom at an antinode contributes a mode ampli-
tude 2EM per round trip to the mode amplitude Ec of the circulating field
inside the cavity. In steady state, Ec can be determined from the condition
that the field after one round trip, experiencing reflection at the mirrors as
well as the atomic source term, be unchanged (Siegman, 1986):

Ec = r2e2ikLEc + 2EM, (37)

which, under the same conditions as in Section 4.1 [not too high mirror
transmission q2

� 1 and not too large detuning from cavity resonance
δ � c/(2L)], has a solution of the form

Ec =
2EM

q2

1
1− 2iδ/κ

. (38)

The power emitted by the atom into the cavity is determined by the
field leaking through both cavity mirrors, Pc = q2

|Ec|
2. The power emitted

P4π

Pc

εc

εM

ε

Pc

Figure 6 An atom driven by an incident field E scattering monochromatic radiation
into an optical standing-wave resonator. The traveling mode amplitude is Ec , the atom
at an antinode adds a mode amplitude 2EM per round trip. The power leaving the
cavity in both directions is Pc , the power scattered by the atom into free space is P4π .
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into free space is P4π = |EM|2/ηfs [Equation (9)] and using Equation (30)
the ratio of cavity-to-free-space emission can be simply written as

Pc

P4π
= η

κ2

κ2 + 4δ2
. (39)

Compared with the emission into the same free-space mode given by
Equation (10), the resonant cavity (δ = 0) enhances the emission by a
factor 4/q2

= 4F/π . This factor arises from the constructive interference
between the images of the atomic dipole formed by the cavity mirrors,
or equivalently, from the constructive interference of the atomic emission
on successive round trips of the light during the lifetime of the cavity.
This frequency-dependent enhancement of coherent scattering that per-
sists even at large detuning from atomic resonance, as observed by Motsch
et al. (2010), is the principle behind cavity cooling (Horak et al., 1997;
Leibrandt et al., 2009; Lev et al., 2008; Maunz et al., 2004; Morigi et al.,
2007; Mossberg et al., 1991; Nußmann et al., 2005b; Vuletić et al., 2001;
Vuletić & Chu, 2000; Zippilli & Morigi, 2005).

Note the formal similarity between the result for cavity emission by
the driven atom [Equation (39)] and free-space emission when the cav-
ity is driven [Equation (33)]: apart from the factor of 2 difference between
absorption and scattering (compare also Equations (10) and (13) for scat-
tering and absorption in free space), the roles of the cavity field and
the atomic emission are interchanged in the two cases, and so are the
corresponding Lorentzian factors.

Although the ratio between cavity (Pc) and free-space (P4π ) emission is
independent of atomic parameters and detuning relative to atomic reso-
nance, the individual terms Pc and P4π depend on the atomic polarizability
at the frequency of the driving light. To obtain a solution that remains
valid in the limit of strong light-atom coupling (large cooperativity η > 1),
we need to take self-consistently into account that the atomic dipole
(∝ EM) is driven not only by the external field Ein but also by the field Ec of
the same frequency circulating inside the cavity. An atom at an antinode
experiences a total field E = Ein + 2Ec, and we write Equation (5) as

EM = iβ (Ein + 2Ec). (40)

Substituting EM into the steady-state condition for the cavity field Ec,
Equation (37), and solving for Ec, we find

Ec =
2iβEin

q2

1
1− i 2δ

κ
− i 4β

q2

. (41)

We can now also find the atomic source term EM (driven by both inci-
dent and cavity fields) by substituting Ec into Equation (40) for the
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atomic dipole,

EM = iβEin

1− i 2δ
κ

1− i 2δ
κ
− i 4β

q2

. (42)

The bidirectional cavity emission rate Pc = q2
|Ec|

2, relative to the power
emitted into free space in the absence of the cavity P(0)

4π = |βEin|
2/ηfs,

Equation (9), is then

Pc

P(0)
4π

=
η(

1+ Im(4β)
q2

)2

+

(
2δ
κ
+

Re(4β)
q2

)2 . (43)

The emission into free space P4π = |EM|2/ηfs is similarly modified by the
presence of the cavity from its value P(0)

4π in the absence of the cavity:

P4π

P(0)
4π

=
1+

(
2δ
κ

)2(
1+ 4Im(β)

q2

)2

+

(
2δ
κ
+

4Re(β)
q2

)2 . (44)

It is highly interesting to see that power emitted into free space can be
enhanced or reduced by a cavity that subtends only a tiny solid angle, as
has been first noted by Alsing et al. (1992) using a quantum mechanical
description. The modification of free-space emission is not a saturation
effect of the atom, as we have explicitly constructed a classical model that
does not include atomic saturation. Rather, it is the backaction of the cavity
field driving the atomic dipole in antiphase with the incident field, which
reduces the magnitude of the dipole, and thus the amount of emission into
free space.

On atomic and cavity resonance (δ = 1 = 0), the emission into the
cavity and into free space are given by the simple expressions(

Pc

P(0)
4π

)
δ=1=0

=
η

(1+ η)2 (45)

and (
P4π

P(0)
4π

)
δ=1=0

=
1

(1+ η)2 , (46)

respectively. Note again the complementarity between these formulas and
Equations (34) and (35) for the driven cavity. Although we are considering
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here only a two-level atom, these formulas are closely related to electro-
magnetically induced transparency in a three-level system (Harris, 1989,
1997) as both the incident light and the light inside the cavity couple to
the atomic excited state (Field, 1993; Rice & Brecha, 1996). The intracavity
field builds up π out of phase with the driving field at the location of the
atom, and acts to reduce the emission by the atom, both into the cavity
and into free space (Alsing et al., 1992; Heinzen et al., 1987; Zippilli et al.,
2004). In the limit of strong coupling η � 1, the intracavity electric field
experienced by the atom, 2Ec ≈ −Ein is independent of the atomic or cav-
ity properties, and builds up to be (almost) equal in value to the driving
field at the position of the atom. This reduces the atomic emission into
free space by (1+ η)2, and the dominant emission process is into the cav-
ity. A cavity with perfectly reflecting mirrors (η→∞) would cancel all
resonant free-space emission, even when it subtends only a small solid
angle 1�� 1 (Alsing et al., 1992).

In the RWA, we can substitute Equation (29) to write explicit expres-
sions for the cavity and free-space scattering as a function of laser
frequency:

Pc

P(0)
4π

=
η

[1+ ηLa(1)]
2
+
[

2δ
κ
+ ηLd(1)

]2 (47)

and

P4π

P(0)
4π

=
1+

(
2δ
κ

)2

[1+ ηLa(1)]
2
+
[

2δ
κ
+ ηLd(1)

]2 . (48)

Both quantities are plotted in Figure 7 vs. detuning of the incident laser
when the cavity resonance is chosen to coincide with the atomic resonance
(i.e., ωc = ω0, 1 = δ). For strong atom-cavity coupling, η � 1, both cavity
and free-space emission display two maxima split by 2g =

√
η0κ , i.e., the

system shows the normal-mode splitting usually associated with the vac-
uum Rabi splitting of cavity QED (Cohen-Tannoudji et al., 1998). We see
that this feature appears in linear dispersion theory also when the cou-
pled atom-cavity system is not probed via transmission through the cavity
(Section 4.1), but via excitation of the atom.

It is interesting to consider the transmission of the beam from the side,
T = 1− (P4π + Pc)/Pin, which can be calculated from Equations (47) and
(48) and Pin = |Ein|

2/2. The side-beam transmission, displayed in Figure 8,
for κ < 0 and η ≥ 1 shows a cavity-induced transmission window within
the atomic absorption line. The physical mechanism is the same as in EIT
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Figure 7 Scattering rate into the cavity Pc/P
(0)
4π (solid line) and into free space

P4π/P
(0)
4π (dashed line) for a cavity resonant with the atomic transition (ωc = ω0)

vs. probe laser detuning δ = 1 in units of 0 = κ. The displayed curves are for
cooperativity parameter η = 10. Note the suppression of free-space scattering (and
cavity scattering) on resonance, and the enhancement of free-space and cavity
scattering off resonance. The strong modification of free-space scattering by a cavity
subtending only a very small solid angle arises from the interference between the
cavity field and the incident field at the atom’s position.

(Harris, 1989, 1997), where the strongly coupled cavity mode replaces the
usual classical coupling beam (Field, 1993; Rice & Brecha, 1996).

In summary, we find that the cooperativity parameter η governs the
strength of the atom–cavity interaction: the fractional scattering into a res-
onant cavity, the reduction in cavity transmission, and the dispersive shift
of the cavity resonance frequency are all determined by the dimensionless
factor η. This factor is the product of the resonant single-pass absorption
of the light, as given by the ratio of atomic cross section and beam area,
and the average number of photon round trips in the optical resonator,
as determined by the cavity finesse F . Since the latter depends only on
mirror properties, we find that all resonators with the same mirror reflec-
tivity and the same waist size produce the same strength of atom–light
interaction, independent of the length of the cavity. In other words, the
atom–light interaction, at least in aspects that can be described classically,
depends on mode area, rather than mode volume. Any volume-dependent
effects enter through the ratio κ/0 of cavity-to-atomic line width, but the
classical strong-coupling condition η > 1 is determined by the mode area
and the cavity finesse alone.
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Figure 8 Transmission of the side beam in the “scattering scenario” of Figure 6 in
the presence of the cavity for a resonant atom-cavity system (ω0 = ωc) as a function of
detuning 1 of the side beam in units of 0. The cavity line width is chosen much
narrower than the atomic line width, κ = 0/10, and the absorption of the side beam in
the absence of the cavity is chosen to be 10%. The origin of the resonant transmission
peak is the same as in EIT, with the strongly coupled cavity (η = 1) replacing the
coupling laser in standard EIT.

5. INTERACTION BETWEEN AN ATOMIC ENSEMBLE
AND A CAVITY MODE

5.1 Absorption and Dispersion by an Ensemble in a Cavity Mode

As in the free space case, Section 3.2, we consider N atoms located at posi-
tions rj sufficiently close to the cavity axis such that the radial variation of
the coupling may be ignored (see Figure 3). The cavity is driven by an inci-
dent field. An atom at an antinode experiences a cavity mode amplitude
2Ec (see Section 4.1), and hence the atomic source term is

2EM = 4iβNHEc (49)

with the collective coupling parameter

H =
1
N

N∑
j=1

cos2 kzj ≡ {cos2 kz}. (50)
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With the cavity oriented along the z-axis, the cavity field at position zj

driving the dipole is proportional to cos kzj, and so is the field emitted
by the atom into the cavity mode for a given dipole, hence the cos2 kzj

dependence. As in Section 3.2, the curly brackets denote the average for
a given and fixed atom distribution. Solving the steady-state condition
for the cavity field, Equation (25), with the atomic source term 2EM from
Equation (49), we find for the ratio of transmitted to incident power

Ptr

Pin
=

[(
1+

Im(4NHβ)
q2

)2

+

(
2δ
κ
+

Re(4NHβ)
q2

)2
]−1

. (51)

Since the summands in H are all positive quantities, the result depends
only weakly on the ordering of the atoms. A perfectly ordered ensem-
ble with all atoms at antinodes has H = 1, while a random distribution of
atoms along the cavity standing wave has 〈H〉 = 1

2 when averaged over
different atomic spatial distributions.

For the total scattering into all free-space modes, there is effectively
no interference between different atoms (see Section 3.2), and the total
emitted power is obtained by adding the emitted power of all atoms,
Equation (9). This yields P4πN = Im(4β)|Ec|

2NH, and

P4πN

Pin
= NH

Im(8β)
q2

[(
1+

Im(4NHβ)
q2

)2

+

(
2δ
κ
+

Re(4NHβ)
q2

)2
]−1

. (52)

In the RWA, we can write for the transmission and free-space scattering(
Ptr

Pin

)
RWA

=
1

[1+HNηLa(1)]
2
+
[

2δ
κ
+HNηLd(1)

]2 (53)

and (
P4π

Pin

)
RWA

=
2HNηLa(1)

[1+HNηLa(1)]
2
+
[

2δ
κ
+HNηLd(1)

]2 . (54)

Comparison of these equations to Equations (31) and (32) shows that
for the ensemble the single-atom cooperativity η is replaced by the col-
lective cooperativity Nη, with a proportionality factor between 0 and 1,
given by H = {cos2 kz}, that depends on the atomic distribution relative to
the cavity standing wave. Similarly, the cavity shift at large detuning from
atomic resonance in the RWA, ω0 � 1� 0, is given by(

δωc

κ

)
RWA

= −
1
2

HNηLd(1) ≈ HNη
0

41
. (55)
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Since H = {cos2 kz} depends only weakly on the atomic distribution as it
varies from a disordered

(
〈H〉 = 1

2

)
to a superradiant (H = 1) situation, one

does not expect the atomic trajectories to influence each other severely
(Domokos et al., 2001). The situation is very different if the system is
excited from the side, i.e., if the cavity mode is excited via the atomic
scattering, as discussed in the next section.

5.2 Scattering by an Ensemble into a Cavity Mode

We consider an ensemble of N atoms at positions rj in a cavity oriented
along z, as in the previous Section 5.1, but now being driven with a beam
from the side traveling along x, as in Figure 6. The ensemble is assumed to
be optically thin for the incident field so that all atoms experience the same
incident-field magnitude. As each atom is driven both by the incident field
(Ein) and the cavity mode (2Ec at an antinode), the atomic source term is

2EM = 2iβN (GEin + 2HEc) (56)

with the collective coupling parameter H = {cos2 kz} along the cavity
given by Equation (50), and the collective coupling parameter for the
incident beam being

G =
1
N

N∑
j=1

eikxj cos kzj ≡ {eikx cos kz}. (57)

Using the same procedure as in Section 4.3, i.e., inserting the expression
for EM into the steady-state condition for the cavity field, Equation (37),
and solving for Ec, we now have

Ec =
2iβNGEin

q2

1
1− i 2δ

κ
− i 4NHβ

q2

. (58)

This yields for the power scattered into the cavity relative to the power
P(0)

4π scattered by a single atom into free space in the absence of the cavity

PcN

P(0)
4π

=
|G|2N2η(

1+ Im(4NHβ)
q2

)2

+

(
2δ
κ
+

Re(4NHβ)
q2

)2 . (59)

In the RWA, we can use Equation (12) to write for the scattering into the
cavity

PcN

P(0)
4π

=
|G|2N2η

[1+HNηLa(1)]
2
+
[

2δ
κ
+HNηLd(1)

]2 . (60)
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The atomic distribution along the cavity axis as quantified by H = {cos2 kz}
determines the absorption and dispersion of the resonator, whereas the
distribution with respect to both the incident beam and the cavity as quan-
tified by G = {eikx cos kz} determines the scattering into the resonator. If the
atomic detuning 1 is large enough that the absorption can be ignored
(HNηLa(1) < 1), then the scattering into the cavity can have super- or
subradiant features similar to those discussed for the free-space case in
Section 3.2. In particular, for an average over randomly ordered ensem-
bles, we have 〈|G|2〉 = 1

2N , i.e., the scattering into the cavity is proportional
to the atom number, whereas for a perfectly ordered ensemble G = 1, i.e.,
the emission into the resonator is superradiant and scales as N2.

The light field emitted into the cavity can interfere with the incident
field to form an optical lattice that is sufficiently strong to influence the
motion and spatial distribution of a laser-cooled atomic gas. In this case,
self-organization can set in suddenly as a phase transition above a certain
incident pumping threshold (Domokos & Ritsch, 2002; Fernández-Vidal
et al., 2010; Keeling et al., 2010; Nagy et al., 2010), as observed both
for a cold thermal ensemble (Black et al., 2003) and for a Bose–Einstein
condensate (Baumann et al., 2010).

6. QUANTUM MECHANICAL EXPRESSION FOR THE
COOPERATIVITY PARAMETER

Having concluded our purely classical treatment of atom–cavity interac-
tions, we now show that our definition of the cooperativity parameter is
equivalent to the standard cavity QED definition in terms of the quan-
tum mechanical vacuum Rabi frequency 2g (Cohen-Tannoudji et al., 1998;
Haroche & Raimond, 2006; Kimble, 1998). There, g is given by the atom’s
dipole coupling g = µEv/~ to the RMS vacuum field Ev at an antinode of
a cavity mode at the atomic transition frequency ω0 = ck0. The vacuum
energy in this mode is

1
2

~ω0 = ε0E2
vV, (61)

where V =
∫

exp(−2ρ2/w2) sin2
(k0z)2πρdρdz = πw2L/4 represents the

mode volume. Thus,

g = µ
√

ω0

2ε0~V
. (62)
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We have already suggested a relation between the vacuum Rabi fre-
quency 2g and the normal-mode splitting

2gcl =
√
ηκ0 (63)

appearing in the cavity transmission and atomic emission spectra derived
in Section 4.1. That this classically derived normal-mode splitting is
indeed identical to the vacuum Rabi frequency in cavity QED can be veri-
fied by substituting into Equation (63) the cooperativity η = 24F/(πk2

0w2)

from Equation (30), the cavity line width κ = πc/(LF), and the atomic
excited-state line width 0 = k3

0|µ|
2/(3πε0~). One obtains

gcl = µ

√
2ω0

ε0~πw2L
= g. (64)

Rearranging Equation (63) thus gives the standard quantum mechani-
cal expression (Kimble, 1998) for the cooperativity parameter as an
interaction-to-decay ratio:

η =
4g2

κ0
. (65)

Note that this expression can also readily be interpreted as the cavity-to-
free-space scattering ratio; in particular, for η < 1, the rate at which an
excited atom emits into the cavity is given by Fermi’s Golden Rule as 4g2/κ .

7. CONCLUSION

We have shown that a variety of fundamental features of the atom–cavity
interaction can be described in classical terms, and that the dimension-
less cooperativity parameter η that scales with the beam area, rather than
the beam volume, plays a central role in the classical description. The
weak and strong-coupling regime can be distinguished by the condition
η ≶ 1, which quantum mechanically corresponds to a single-photon Rabi
frequency that is small or large compared with the geometric mean of
the atomic and cavity line widths. In the strong-coupling regime even an
optical resonator mode that subtends a small solid angle can increase or
substantially decrease the emission into free space by the atom, due to the
backaction of the cavity field on the atomic dipole.

The classical model is valid at low saturation of atomic transitions, be
it due to low beam intensity or large detuning from atomic resonances.
The limit of low saturation of the atomic transition exists even if a single
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cavity photon saturates the atomic transition, i.e., for 2g > 0 or critical
photon number less than one in cavity QED terms. In this case, a weak
coherent state with less than the critical photon number on average needs
to be used to avoid atomic saturation. Then the classical description used
here will remain valid.

Most applications of the atom–cavity interaction rely on the narrow-
band coherent scattering by the atom that can be correctly described
in classical terms. The classical model is easily extended to include the
interaction of an atomic ensemble and a cavity mode. In this case, the col-
lective cooperativity parameter depends strongly on the ordering of the
ensemble.

It is particularly noteworthy that even the strong-coupling regime of
cavity QED, giving rise to a normal-mode or “vacuum Rabi splitting”
(Zhu et al., 1990) can be described in classical terms. One may even
ask with Dowling (1993) “How much more classical can you get?”, a
viewpoint that we cannot completely disagree with.
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et al. (2003b). State-insensitive cooling and trapping of single atoms in an optical cavity.
Physical Review Letters, 90, 133602.

Mekhov, I. B., Maschler, C., & Ritsch, H. (2007). Cavity-enhanced light scattering in optical
lattices to probe atomic quantum statistics. Physical Review Letters, 98, 100402.

Mekhov, I. B., & Ritsch, H. (2009a). Quantum nondemolition measurements and state
preparation in quantum gases by light detection. Physical Review Letters, 102, 020403.

Mekhov, I. B., & Ritsch, H. (2009b). Quantum optics with quantum gases: Controlled state
reduction by designed light scattering. Physical Review A, 80, 013604.

Meschede, D., Walther, H., & Müller, G. (1985). One-atom maser. Physical Review Letters,
54, 551.

Milonni, P. W., Loudon, R., Berman, P. R., & Barnett, S. M. (2008). Linear polarizabilities of
two- and three-level atoms. Physical Review A, 77, 043835.

Mollow, B. R. (1969). Power spectrum of light scattered by two-level systems. Physical Review,
188, 1969–1975.

Morigi, G., Pinkse, P. W. H., Kowalewski, M., & de Vivie-Riedle, R. (2007). Cavity cooling of
internal molecular motion. Physical Review Letters, 99, 073001.

Mossberg, T. W., Lewenstein, M., & Gauthier, D. J. (1991). Trapping and cooling of atoms in
a vacuum perturbed in a frequency-dependent manner. Physical Review Letters, 67, 1723.

Motsch, M., Zeppenfeld, M., Pinkse, P. W. H., & Rempe, G. (2010). Cavity-enhanced Rayleigh
scattering. New Journal of Physics, 12(6), 063022.

Münstermann, P., Fischer, T., Maunz, P., Pinkse, P. W. H., & Rempe, G. (1999). Dynamics of
single-atom motion observed in a high-finesse cavity. Physical Review Letters, 82, 3791.

Murch, K. W., Moore, K. L., Gupta, S., & Stamper-Kurn, D. M. (2008). Observation of
quantum-measurement backaction with an ultracold atomic gas. Nature Physics, 4,
561–564.

Murr, K. (2006). Large velocity capture range and low temperatures with cavities. Physical
Review Letters, 96, 253001.

Nagy, D., Kónya, G., Szirmai, G., & Domokos, P. (2010). Dicke-model phase transition in
the quantum motion of a Bose-Einstein condensate in an optical cavity. Physical Review
Letters, 104, 130401.



AAMOP 08-ch04-201-238-9780123855084 2011/9/26 17:46 Page 236 #36

236 Haruka Tanji-Suzuki et al.

Nußmann, S., Hijlkema, M., Weber, B., Rohde, F., Rempe, G., & Kuhn, A. (2005a). Submicron
positioning of single atoms in a microcavity. Physical Review Letters 95, 173602.

Nußmann, S., Murr, K., Hijlkema, M., Weber, B., Kuhn, A., & Rempe, G. (2005b). Vacuum-
stimulated cooling of single atoms in three dimensions. Nature Physics, 1, 122.

Pellizzari, T., Gardiner, S. A., Cirac, J. I., & Zoller, P. (1995). Decoherence, continuous
observation, and quantum computing: a cavity QED model. Physical Review Letters 75,
3788.

Pinkse, P. W. H., Fischer, T., Maunz, P., & Rempe, G. (2000). Trapping an atom with single
photons. Nature, 404, 365.

Poldy, R., Buchler, B. C., & Close, J. D. (2008). Single-atom detection with optical cavities.
Physical Review A, 78, 013640.

Puppe, T., Schuster, I., Grothe, A., Kubanek, A., Murr, K., Pinkse, P. W. H., et al. (2007).
Trapping and observing single atoms in a blue-detuned intracavity dipole trap. Physical
Review Letters, 99, 013002.

Purcell, E. M. (1946). Spontaneous emission probabilities at radio frequencies. Physical
Review, 69, 681.

Raimond, J. M., Goy, P., Gross, M., Fabre, C., & Haroche, S. (1982). Statistics of millimeter-
wave photons emitted by a Rydberg-atom maser: An experimental study of fluctuations
in single-mode superradiance. Physical Review Letters, 49, 1924–1927.

Raizen, M. G., Thompson, R. J., Brecha, R. J., Kimble, H. J., & Carmichael, H. J. (1989).
Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity.
Physical Review Letters, 63, 240–243.

Rempe, G., Thompson, R. J., Brecha, R. J., Lee, W. D., & Kimble, H. J. (1991). Optical bistability
and photon statistics in cavity quantum electrodynamics. Physical Review Letters, 67, 1727.

Rice, P. R., & Brecha, R. J. (1996). Cavity induced transparency. Optics Communications,
126, 230.
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Schleier-Smith, M. H., Leroux, I. D., & Vuletić, V. (2010b). States of an ensemble of two-level
atoms with reduced quantum uncertainty. Physical Review Letters, 104, 073604.

Schuster, I., Kubanek, A., Fuhrmanek, A., Puppe, T., Pinkse, P. W. H., Murr, K., et al. (2008).
Nonlinear spectroscopy of photons bound to one atom. Nature Physics, 4, 382–385.

Siegman, A. E. (1986). Lasers. Sausalito, CA: University Science Books.
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Teper, I., Lin, Y.-J., & Vuletić, V. (2006). Resonator-aided single-atom detection on a microfab-

ricated chip. Physical Review Letters, 97, 023002.
Terraciano, M. L., Olson Knell, R., Norris, D. G., Jing, J., Fernández, A., & Orozco, L. A. (2009).

Photon burst detection of single atoms in an optical cavity. Nature Physics, 5, 480–484.
Thompson, R. J., Rempe, G., & Kimble, H. J. (1992). Observation of normal-mode splitting

for an atom in an optical cavity. Physical Review Letters, 68, 1132.
Thompson, J. K., Simon, J., Loh, H.-Q., & Vuletić, V. (2006). A high-brightness source of
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Abstract The Stanford Linac Coherent Light Source (LCLS) located
at the SLAC National Accelerator Laboratory in Menlo Park,
California, began operation in the Fall of 2009. The LCLS is
a true x-ray laser, approximately one billion times brighter
than any previous laboratory source of x-ray radiation. Here
we review some of the first atomic, molecular, and opti-
cal experiments that probe the fundamental interactions of
such uniquely bright and short x-ray pulses with atoms and
molecules, summarize some of the theory leading up to
these experiments and conclude with some ideas on future
avenues of investigation.

1. INTRODUCTION

This review describes some of the research that has been initiated in
atomic physics at new “fourth generation” x-ray light sources. The first
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such light source capable of operating in the kilovolt x-ray range is
the Stanford Linac Coherent Light Source (LCLS) at the SLAC National
Accelerator Laboratory on the grounds of Stanford University in Menlo
Park, CA. The LCLS began operations in the Fall of 2009 and is currently
producing radiation wavelengths between 22 Å and 1.2 Å. The pulse
duration can be adjusted between approximately 10 fs and more than
500 fs, and the pulse energies are in the range of hundreds of microjoules
to millijoules. This beam intensity is greater than typical synchrotrons by
more than nine orders of magnitude.

This extraordinary increase in available x-ray pulse intensity and ultra-
short pulse duration creates new opportunities in atomic and molecular
physics. This review provides an overview of atomic physics in this
new physical regime and contains a discussion of some of the prelimi-
nary results of the first year of investigation of atoms and molecules
at the LCLS. The organization of the review is as follows: The first
section introduces the x-ray laser source, and some of the technical
advances and limitations that determine the regime of the first exper-
imental investigations. This is followed by a description of the basic
physics of atoms and molecules interacting with ultrashort pulse intense
x-ray laser radiation. The bulk of the review is a consolidated description
of the first experiments. The emphasis is on those research results that
have already been published, which both describe new physics and also
give a good indication of the strengths and challenges of laser research
at LCLS.

1.1 X-Ray Laser Interactions with Atoms

The widespread availability of third-generation synchrotron x-ray sources
has led to substantial advances in our understanding of structure and
dynamics in atomic, molecular, and cluster systems. X-rays can resolve
features at the sub-Ångstrom level (Hendrickson, 1991), with element-
specific sensitivity (Hoener et al., 2010a; Pešić et al., 2007; Prümper et al.,
2008; Rolles et al., 2008; Schöffler et al., 2008).

X-ray resonant absorption processes in atoms and molecules are con-
siderably weaker than those in the visible and ultraviolet parts of the
spectrum. Typically the cross sections scale as the wavelength squared or
worse. Furthermore, the optics, particularly in the vacuum ultraviolet and
soft x-ray spectrum are relatively inefficient. Nonetheless, spectroscopy in
this region has flourished because of the high brightness and complete
tunability of modern synchrotron light sources, which can be as high
as 1024 γ /s/mm2/mr2/0.1% bandwidth. When coupled to high through-
put crystal monochrometers, these sources have tunability and frequency
stability in the range of δω/ω ≈ 10−5 or better.
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Spectroscopic studies have also been enabled by the rapid advance of
detection for atomic and molecular fragments. Momentum and energy
detecting instruments permit some or all of the products of photo-
absorption to be measured with high precision. These include the reaction
microscope (Dörner et al., 2000; Schöffler et al., 2008; Ullrich et al., 1997),
VMI detectors coupled with high-resolution electron time of flight spec-
trometers (Prümper et al., 2008; Rolles et al., 2008), and high-efficiency
magnetic bottles (Eland et al., 2010; Lablanquie et al., 2011), which all
have allowed detailed information to be obtained regarding single-photon
ionization processes.

X-ray pulses from synchrotron light sources have important limitations
in the study of transient phenomena, or nonlinear high field atomic and
molecular physics. Synchrotron pulses typically last for tens of picosec-
onds and are therefore too long to observe the time-evolution of transient
processes such as dissociation, isomerization, or faster electronic processes
such as Auger relaxation. They are also unable to capture the transient
structures within molecules during chemical reactions or in strongly
driven molecules.

Subpicosecond dynamics can be observed using femtosecond lasers,
which cover wavelength regimes ranging from the infrared (IR) to the
extreme ultraviolet (EUV). This has led to a revolution in time-resolved
studies of physical and chemical processes (Corkum et al., 2009; Krausz &
Ivanov, 2009; McFarland et al., 2008). Laboratory-based laser sources pro-
vide sufficient time resolution to follow atomic motion during the course
of molecular vibration, dissociation, and reaction. Unfortunately, the long
wavelengths of these sources do not allow for direct imaging of the
motion of individual atoms. As a result, there has been tremendous inter-
est in ”fourth generation” accelerator-based free electron lasers (FEL’s),
which offer an unprecedented combination of spatial and temporal
resolution.

A soft x-ray free electron laser called FLASH has been operating since
2005 at the Deutsches Elektronen-Synchrotron (DESY), an electron accelera-
tor research laboratory in Hamburg, Germany. The FLASH FEL is tunable
from 25 eV to 200 eV in the first harmonic, and could reach 780 eV at the
fifth harmonic (Ackermann et al., 2007; Gutt et al., 2009). A review of the
atomic and molecular achievements using the vacuum ultraviolet (VUV)
FEL can be found in Berrah et al. (2010). The Linac Coherent Light Source
(LCLS) at the SLAC National Accelerator Laboratory has demonstrated
in April 2009 lasing between 800 eV and 8000 eV, making it the world’s
first hard x-ray FEL (Emma et al., 2010; Feldhaus et al., 2005). In October
of 2009, the first atomic and molecular experiments focused on nonlinear
investigations in atoms (Young et al., 2010), molecules (Cryan et al., 2010;
Fang et al., 2010; Hoener, 2010b), and clusters.
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2. OPTICAL PROPERTIES OF X-RAYS FROM ELECTRON
ACCELERATORS

The physics of strong-field laser–atom interactions has not been pursued
in the short wavelength regime, largely because strong x-ray fields have
not been available until now. Coherent x-ray narrow band light sources
based on atomic transitions have been produced in laser-driven plasmas,
but their focused output is well outside the fluence necessary to saturate
a core-level process in an atom, and their wavelengths are typically in the
vacuum ultraviolet regime on the order of 100 eV or less (Benware et al.,
1999; Daido, 2002; Dunn et al., 2000). Sources based on high harmonic
radiation are also far too weak to drive strong field processes, although
their extremely short time structure has been useful in studies of ultrafast
processes in atoms and molecules (Krausz & Ivanov, 2009; Lewenstein
et al., 1994; McFarland et al., 2008).

The 1990s saw the construction and commissioning of the “third gen-
eration” x-ray synchrotron light sources, which made use for the first
time of coherent synchrotron radiators using permanent magnet undula-
tors. These are periodic magnet arrays (typically 1–3 cm periods) through
which electrons execute periodic transverse oscillations. The word “coher-
ence” refers to the fact that the radiated fields from successive oscillations
add coherently in the forward direction, thereby yielding pulse energies
on axis that scale as the square of the number of periods. Yet these are
not sources of coherent laser radiation, for at least two reasons. First, the
number of photons emitted by a single electron while traversing an undu-
lator is typically much less than one. Second, there is no mechanism in a
synchrotron undulator to ensure that different electrons radiate in phase.
In fact, typically they do not, so the light field has the longitudinal char-
acteristics of a fully incoherent source. Another way of saying this is that
the number of photons per mode in the electromagnetic field is much less
than one.

The transition from undulator radiation to free electron laser radiation
is based on the build up of a coherent field in the undulator structure.
The details of this are described in an excellent review by Huang and Kim
(2007). Here we will present a simple qualitative description of the prop-
erties of the radiation, which is central for understanding the physics of
the laser–atom interaction.

2.1 Free Electron Laser Radiation

As electrons pass through a long undulator, they are accompanied by their
own radiation field. Because the electrons are ultrarelativistic, their syn-
chrotron radiation field does not outrun them, but rather each electron can
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experience the forces resulting from fields radiated by all of the electrons.
In fact, the synchrotron radiation does move slightly faster than the elec-
trons along the undulator axis for two reasons: First, the electron velocities
are slightly slower than the vacuum speed of light, but this difference is
extremely small (the percentage below c is 1/2γ 2, which is less than a part
per billion at LCLS). A larger source of slippage at LCLS is that the elec-
trons do not travel along a straight path like the radiation, but rather are
forced to wiggle by the magnetic fields of the undulator. The total slippage
λl per undulator period λu is the sum of these two effects

λl =
λu

2γ 2

(
1+

K2
0

2

)
, (1)

where K0/γ is the maximum angle of deviation of the wiggling electron.
The synchrotron fields are periodic of course, and this slippage creates the
opportunity for a resonance between the oscillation of the electron in the
field, and its oscillation because of the undulator, which works as follows:
If the synchrotron field exerts a transverse force on an electron that is in
the same direction as the force due to the undulator magnet at some point
in the wiggle oscillation, then those forces will be in the same direction
on the next cycle as well. The electron will have slipped exactly one radi-
ation cycle during its wiggle cycle, when the synchrotron radiation is in
resonance. This is shown graphically in Figure 1.

The presence of a resonance increases the coupling between the elec-
tron kinetic energy and the synchrotron field because the synchrotron field
and the magnetic field forces are coherently adding. This also creates a
tendency for the electrons to become bunched because a slightly higher
energy electron will make smaller excursions in the magnetic field, which
will cause it to fall out of resonance, and therefore lose energy, and there-
fore come back into resonance. On every field cycle, there is a region with
the optimal position relative to the field phase to attract electrons with the
optimal energy, so that the electrons form local density maxima known as

K0/γ

e−

λu λl

Figure 1 The resonance condition for a free electron laser is that the difference
between the electron progress in one undulator cycle and the synchrotron radiation
propagation over the same time interval is equal to one wavelength of the
synchrotron radiation.
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microbunches. The electrons in these microbunches oscillate together, and
therefore radiate coherently. This is the laser action. Free electron lasers
were first developed in the 1970s and 1980s in infrared or optical resonator
cavities, where a standing wave electromagnetic field inside the resonator
controlled the microbunching process.

In the 1980s, work by Pellegrini and others established that FEL’s
with sufficiently high gain do not require the electromagnetic resonator
structure because spontaneous density and field fluctuations could feed
on each other to lead to self-organization of microbunches, a process
known as “Self-Amplified Spontaneous Emission,” or SASE (Murphy &
Pellegrini, 1985). The SASE concept does away with the need for opti-
cal elements, and thereby it permits extension of FEL’s to the vacuum
ultraviolet and x-ray spectral range where mirrors are poor or nonexis-
tent. A SASE-based FEL also requires relatively dense electron bunches
because the radiation only passes through the gain structure a single time.
Compression techniques to increase the electron peak current are there-
fore required, and these were also developed at relativistic electron linear
accelerators in the past decade.

The result is a laser with good transverse coherence but the poor lon-
gitudinal coherence that is characteristic of a chaotic source, with little
control over the detailed spectral or temporal shape of the laser pulse. This
is reminiscent of the early days of Q-switched, solid-state lasers, where it
was first noted that such temporal properties can enhance nonlinear light
scattering and other strong field processes (Rohringer & Santra, 2007a).
The SASE-generated lasing process saturates when the microbunched
electrons lose enough energy to the laser field to fall out of resonance.
In practice, relativistic electron accelerators can produce laser peak pow-
ers in the 1–100 GW range, which can be focused to micron or submicron
spot sizes, resulting in peak intensities in excess of 1018 W/cm2. This places
the x-ray FEL in the class of the most intense laser sources available.

The first SASE-based VUV FEL was built at DESY in 2005, and the first
hard x-ray FEL was commissioned at SLAC in 2009. As of this writing,
these are the only two VUV or x-ray SASE FELs in operation, but sev-
eral more are in planning or under construction, at DESY (XFEL), Japan,
Switzerland, Italy, and elsewhere. The current performance parameters of
the two sources in operation are shown in the Table 1.

2.2 The SLAC Injector and Linac

The Stanford Linear Accelerator that powers LCLS is able to deliver elec-
tron beams with approximately 1000 times higher phase-space density
than those available at synchrotron storage rings. To to this, both the
electron injector and the beam conditioning along the accelerator have
been specially modified. The accelerator is the last third of a 3-km radio
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Table 1 FLASH and LCLS operating parameters.

Parameter FLASH LCLS

Wavelength range (nm) 6.8–47 0.15–2.4
Pulse energy (µJ) 10–100 150–4000
Pulse duration (fs [FWHM]) 10–70 <5–200
Spectral width (% [FWHM]) ∼1 ∼1
Peak brilliance (γ /s/mr2/mm2/0.1%bw) 1029−30 1030−32

Source: FLASH (2011); Iverson (2011).

frequency linear accelerator originally built in the 1960s for high-energy
physics. The basic accelerator structure is changed little from the orig-
inal design, which is based on copper cavities operating in the S-band
(2856 MHz). The following three elements have been added to this:

• A laser-driven copper photocathode now produces up to 500 pC of
electrons with under 1 mm-mr of emittance. These are produced in a
side-arm to the linac placed at the 2/3 point, 2 km from the original
electron source. The laser is frequency-tripled Ti:Sapphire operating at
266 nm, and synchronized to the pulse rf accelerator.

• Two bunch compressors have been added to the accelerating struc-
ture to compress the longitudinal phase space of the electrons and
thereby create the necessary high peak brightness. The principle of oper-
ation of an ultrarelativistic electron bunch compressor is analogous to
an ultrafast optical pulse compressor. The electron bunch receives a
longitudinal energy dispersion, or chirp, across its length longitudi-
nally, primarily because of acceleration off the electric field crest of a
traveling electromagnetic wave. The compressor is a series of dipole
magnets that create a chicane in the beam path. Higher momentum elec-
trons take a shorter path through the chicane and therefore catch up to
lower momentum electrons, so if the beam is originally chirped so that
the higher momentum electrons are behind, then the result is bunch
compression.

2.3 Coherence Properties of the Light

The transverse coherence properties of the free electron laser are extremely
important for determining the ultimate focal properties of the beam, and
its use for coherent scattering or diffractive imaging. These have been sim-
ulated extensively (Barty et al., 2009; Saldin et al., 2008). Deviations from
diffraction limited performance come from both the electron beam laser
light generation process and from the downstream optics. The degree of
transverse coherence of the beam emerging from the LCLS undulators can
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be as high as 90%, and is generally expected to be poorer for higher peak
current and for shorter wavelength, but generally on the order of 60% or
better (Ding & Huang, 2010).

The longitudinal coherence is very far from an ideal, transform-limited
pulse. The coherence length of the LCLS is equal to the cooperation length
of the radiating electron bunch. For soft x-rays, ν ∈ [0.2, 2] keV, the coher-
ence time can be as long as 1 fs or so. Therefore, it may be possible to make
use of the finite coherence for processes such as resonant excitation.

3. PHOTOEXCITATION AND PHOTOIONIZATION

The proper interpretation of scientific results using these sources requires
an understanding of the interplay between field intensity and field fre-
quency in photoionization and photoexcitation. This subject starts with
the simple results of Fermi’s Golden Rule for lowest order perturbation
theory, from which we derive that the single-photon absorption rate W
for any process is directly proportional to the photon intensity I, and may
be written as the product of the photon flux I/~ω and the cross section σ :

W(1)
= σ I/~ω. (2)

If the photon energy is insufficient to permit ionization by one photon, the
photoionization process may still proceed through second-order perturba-
tion theory, and Fermi’s Golden Rule then shows that the rate is quadratic
in I, expressed by a second-order cross section σ (2):

σ (2) =W/(I/~ω)2
∝

∣∣∣∣∑ 〈ε · r〉fn〈ε · r〉ni

ωni − ω

∣∣∣∣ , (3)

where 〈ε · r〉ab is the dipole coupling matrix element between energy levels
a and b, where a and b represent the initial state (i), final state (f ), or any
intermediate state (n). The energy splitting between two levels a and b is
denoted by ωab. The frequency and polarization of the coupling laser is
represented by ω and ε, respectively.

The magnitude of σ (2) can be estimated by noting that the energy
denominator in the second-order perturbation expression above is essen-
tially the uncertainty principle times the interval that the molecule can
exist in a virtual state following absorption of the first photon and prior to
absorbing the second. We can therefore write the second-order transition
rate as the product of two one-photon absorption rates multiplied by this
virtual state lifetime:

W(2)
∼ σin(I/~ω)1/(1ω)σnf (I/~ω). (4)
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This emphasizes the relationship of nonlinear absorption to the linear
process, and can be extended to higher orders in perturbation theory
(Lambropoulos & Tang, 1987). This picture cannot extend to very high
intensities because each order depends on a higher power of the inten-
sity so ultimately perturbation theory must break down. This breakdown
will happen at intensities where higher order processes proceed faster
than lower order processes, and a quick examination of the simple esti-
mates given above shows that this occurs when the single photon cross
section times the flux exceeds the laser frequency. For valence photoion-
ization by optical lasers, this catastrophe occurs at intensities on the order
of 1013 W/cm2, which corresponds to fields on the order of 1V/Å. We now
turn to a discussion of this regime.

3.1 Field Ionization

A linearly polarized electromagnetic field intensity of 1.9× 1016 W/cm2

has a peak electric field F0 of one atomic unit, i.e., F0 = 5.14× 109 V/cm.
(Here and henceforth, we adopt the usual definition of atomic units, with
~ = me = |e| = 1). The peak electric field of an optical pulse is a relevant
physical quantity for the process of photoemission when the electromag-
netic frequency is small compared with the resonant frequencies of the
quantum system under study. In this case, the slowly varying optical
cycle superposes with the static Coulomb field of the nucleus creating
a depressed local weak spot, or “tunnel” in the potential energy func-
tion experienced by a bound electron. This leads to field ionization for
an electron with binding energy E when the field strength is on the order
of E2/4 atomic units (Gallagher, 1994). An atomic unit of field is there-
fore sufficient to dc-field ionize any neutral atom, and fields that are
an order of magnitude weaker (two orders of magnitude weaker inten-
sity) are sufficient to ionize most ground-state atoms in the periodic
table.

The tunnel ionization probability associated with the field-induced ion-
ization described in the preceding paragraph should increase like a step
function as the field increases to its critical threshold value, except for two
effects. First, the electromagnetic field is only above the ionization barrier
during a portion of a cycle, and the tunnel in the potential occupies only a
small volume of the atom. Therefore, even a classical electron should have
some probability to survive a field above the critical threshold if it fails
to find and traverse the tunnel during this time. The second effect of sig-
nificance is quantum tunneling, which permits some electron amplitude
to leave the atom when the field is below threshold, and it also permits
some reflection from the tunnel opening even when the field is above the
threshold.
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3.2 ADK and the Keldysh Parameter

The proper treatment of low-frequency strong-field ionization requires
quantum mechanics, and it has been done in the WKB approxima-
tion by Ammosov, Delone, and Krainov (the ADK formula) (Ammosov
et al., 1986). According to ADK, the instantaneous ionization rate can
be expressed as the time-varying electron probability current J(t) pass-
ing through the tunnel formed by the strong field. It is exponential in the
field magnitude F, and also dependent on the magnitude of the electron
binding energy |E|:

J(t) = 4(2|E|)5/2 1
F(t)

exp
[
−

2
3F(t)

(2|E|)3/2

]
. (5)

The ADK result shows how to extend the concept of a transition rate
into the regime where perturbation theory is no longer valid. The cross-
over point from the multiphoton picture to the field ionization picture is
when the ADK ionization probability integrated over one cycle becomes
significant. We define a strong field parameter γ as (Reiss, 2010).

γK =
(ionization lifetime)

(wave period of the applied field)
. (6)

When γK ≤ 1 the system is best described by the ideas of strong field
tunnel ionization. The multiphoton regime is most appropriate for γK > 1.

In the low-frequency regime where ADK is valid, γK is called the
“Keldysh parameter” (Keldysh, 1965):

γK =

√
|E|/2Up, (7)

where Up is the cycle-averaged kinetic energy of an electron driven by the
laser field, which is called the “ponderomotive potential”:

Up =
e2F2

4mω2
. (8)

The Keldysh formula in Equation (7) exceeds its domain of validity when
the source field frequency can no longer be considered small compared
with the internal electron dynamics of an atom or molecule. The notion
of an electron wave function evolving adiabatically on a slowly chang-
ing distorted Coulomb potential is no longer reasonable when the laser
frequency exceeds the dynamical timescale set by the spacing between
bound states, and this picture must breakdown altogether when the
photon energy exceeds the binding energy. The numerator in γK in Equa-
tion (7) is then no longer a tunneling time, but the γK parameter is still a
useful concept.
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3.3 Floquet Formalism

Another way to treat the evolution of a quantum system under the influ-
ence of a strong field is the Floquet or “dressed state” approach. Floquet
analysis is a method for finding the solution to a Schrödinger-type dif-
ferential equation that contains an explicit time-periodic driving term,
such as the interaction term containing a laser oscillating electric field. The
essential idea is to directly include the external optical field in the Hamil-
tonian and diagonalize in the interaction picture to find the so-called field
dressed states (see ref. Friedrich, 1994; Meystre & Sargent III, 1990). The
eigenstates are actually time-varying admixtures of field-free stationary
states, but these admixtures are periodic at the optical cycle period T.
Scalar products in this dressed Hilbert space are evaluated over an optical
cycle, φ1 · φ2 =

1
T

∫ T

0 〈φ1(t)|φ2(t)〉dt.
Although this Floquet formalism is general to fields of any strength,

the idea of diagonalizing the interaction Hamiltonian is particularly well
suited for cases where the transition probability grows to near unity. It
does not assume that the driving term is weak or low frequency, and
therefore the validity of Floquet analysis can extend to strong field x-rays.

3.4 KFR and Volkov States

One way to apply dressed state ideas in the limit of photon energies that
are much greater than the electron binding energy is to suppose that the
strong x-ray field couples the initial bound state of the atom or molecule to
a state that is high enough in the continuum to be free from the influence of
the Coulomb binding field, and only influenced by the strong x-ray laser
field itself. This is a form of dressed state calculation that has also been
used for low-frequency fields, called the “KFR approximation” (Faisal,
1973; Keldysh, 1965; Reiss, 1980). The dressed electron in the final state
is called a “Volkov state” (Wolkow, 1935; Yudin et al., 2007):

ψV(r, t) = (2π)−3/2 exp
[

ip · r−
i
2

∫ t [
p+AL(t)

]2
dt
]

. (9)

Here we use the standard atomic units, and AL is the oscillating electro-
magnetic vector potential of the laser field.

The spectrum of ψV consists of a superposition of the main photopeak
at the kinetic energy p2/2 together with photopeaks separated by ±n~ω,
with amplitudes given by the Bessel Function coefficients in the Fourier
decomposition of Equation (9) (Reiss, 1980). The relative magnitude of
these peaks scales as the ratio of the ponderomotive energy Up to the
photon energy ~ω.

The probability for photoionization by a strong field x-ray can then be
approximated by the laser-induced coupling between the initial state of
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the atom or molecule, whose wave function is expressed in the absence
of a field, and the final ion state times a field-dressed Volkov state of
the outgoing electron. This is the essence of the KFR approximation, and
it has been described for both long and short wavelengths in various
ways by many authors, often referred to as the “Coulomb-Volkov ansatz”
(Cavaliere et al., 1980; Yudin et al., 2007). The validity of this approxima-
tion is expected to survive to shorter wavelengths so long as the dipole
approximation remains valid, which should be the case for all but the
hardest x-rays at LCLS. But as Figure 2 shows, strong field effects will
diminish at shorter wavelengths because of the unfavorable scaling of the
ratio of the ponderomotive potential to the relevant energy scale of the
bound system.

Under these low-frequency strong-field conditions, the interaction
Hamiltonian mixes field-free states significantly. The dipole polarizabil-
ity of an atom or molecule is a measure of this mixing of electronic
states. Those states with the highest oscillator strength, i.e., highest dipole-
coupling matrix elements, will mix more strongly. These are spatial inte-
grals, and scale with the size of the orbital. The compact low-n core orbitals

1024

1022

1020

1018

1016

1014

1012

1010

108

100 101 102 103 104

Photon energy (eV)

1 atomic unit

In
te

ns
ity

 (
W

/c
m

2 ) g K= 0.1

g K= 1

g K= 10

Figure 2 Value of the Keldysh parameter γK, which is the ratio of the ionization
lifetime to the laser cycle period, against laser intensity and photon energy, for atomic
hydrogen. The tunneling regime is generally described as the region with γK <1.
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in a multielectron atom levels must therefore play a relatively minor role
in the low-frequency polarization response of a material.

3.5 Ionization Saturation and Multiple Ionization

Although traditional strong field effects are suppressed by wavelength,
there are new strong field processes that are unique to the short
wavelength regime of x-rays because of the inverted order of photoion-
ization for x-rays: the more deeply bound electrons have much higher
photoionization cross sections, once they are above the energy threshold
to ionize. We therefore examine next the phenomenon of multiple electron
ionization, saturation, and relaxation.

The simple process of one-photon absorption as described by
Equation (2) is perfectly adequate to describe all photoabsorption pro-
cesses at synchrotrons, and is the starting point for any consideration of
multielectron strong-field effects at x-ray lasers. However, the following
two points bear mentioning: First, this formula does not consider any
effect resulting from the finite temporal coherence time of the source; and
second, this assumes that the initial state of the system is not depleted by
the process, i.e., this is a weak-field result.

The depletion phenomenon can be included in a simple rate equation
model if the coherence time is sufficiently short. The result is that the
ionization probability P goes to unity according to an exponential

P = 1− exp
(
σ (1)F

)
, (10)

where the fluence F is number of photons per unit area in the laser pulse

F =

∫
I(t)dt/~ω. (11)

Typical cross sections for the photoionization of light atoms such as nitro-
gen by kilovolt x-rays are on the order of megabarns, or 10−18 cm2. The
LCLS can routinely supply a fluence of a millijoule of kilovolt x-rays
focused to 10 µm2, on the order of 1020 photons/cm2. As a consequence,
single x-ray photoabsorption processes are strongly saturated at LCLS. In
fact, a core level can be depleted in only a few femtoseconds, which can
be significantly shorter than the nonradiative Auger-driven repopulation
of the core electron.

Coherence is the other property missing from the single-photon absorp-
tion formula described by Equation (2). In coherent fields, the phase of
the electromagnetic field is well-defined over a significant interval, so that
ground and excited quantum states coupled by the oscillating field can
develop a definite relative phase. This appears as nonzero off-diagonal
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elements of the density matrix describing the system. These coherences
allow population to oscillate between coupled electronic states. If they
are well controlled, they can lead to formation of coherent superposition
states, partial or total inversion of the population known as Rabi flopping,
as well as more complex phenomena such as electromagnetically induced
transparency or slow light (Hau et al., 1999; Kash et al., 1999; Rabi et al.,
1939).

A source based on the SASE process is not well controlled, but rather is
inherently chaotic in nature (Bonifacio et al., 1994; Rohringer & Santra,
2007b; Saldin et al., 2000). However, there is a finite coherence length
based on the cooperation length of the radiating electron bunch. Simu-
lations show that the LCLS can exhibit coherence lengths that are on the
order of 1–2 fs, which can be an appreciable fraction of the overall pulse
duration. As shown in the simple estimate above, the intensity required to
transfer 100% of the population of a core state into an unoccupied bound
or continuum state, and to do it within one coherence time of the LCLS
pulse is well within reach in the focused LCLS beam. Therefore, some
phenomena requiring coherence are expected.

Simple estimates such as Equation (10) show that any new x-ray
physics with large population transfers will require an interaction cross
section of σ & 0.3 Mb. Figure 3 shows the atoms that satisfy this crite-
rion for LCLS, which are the second-row elements B–Ne with absorption
edges below 1 keV. All of the first experiments in the AMO program at
LCLS have concentrated on atoms in this row, particularly on nitrogen
and neon.

3.6 P, A, and V -Type Processes

A number of sequential ionization processes occur and compete with each
other in ionization using intense x-ray radiation. These can be classified
into three main types: Core-level photoionization (P); Auger relaxation
(A), in which a photoexcited core vacancy is filled by a valence electron
due to electrostatic forces within the atom, while another valence elec-
tron is ejected to conserve total energy; and valence photoionization V.
P and V are distinct because of the large difference in their energies: V
processes are usually not followed by an A-type emission of a further elec-
tron, but P processes almost always are followed by A. During the intense
interaction with the focused LCLS beam, these processes follow closely
upon each other in sequence, and their order is determined by the x-ray
laser wavelength and its intensity. This is shown diagrammatically in
Figure 4.

Other processes beyond the simple sequences described above can
also contribute to the ion yield spectra. For example, Auger relaxation
can occasionally produce two continuum electrons, a process known as
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“shake-off”; or it may produce a continuum and excited valence elec-
tron, known as “shake-up.” One could term shake-off a PAA process. It
produces a triply ionized fragment, as do the sequential valence processes
VPA or PAV.

Finally, there are some processes that are particularly related to the high
intensity of the laser beam. One example is nonlinear absorption, in which
two photons contribute together to produce a single electron. Through
this means it is possible to ionize high charge states of Ne even when their
binding energy exceeds the photon energy. Nonlinear two-photon absorp-
tion is an example of a coherent strong-field process that is expected to be
extremely weak at LCLS (see discussion in Section 4.2).

A second intensity-dependent process is rapid sequential photoioniza-
tion without Auger relaxation, i.e., a PP process. This could be expected
to relax through a single Auger electron (PPA) or more than one (PPAA).
There are several electron energy signatures of PP at LCLS, which will be
discussed more fully in Section 5 of this review.
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4. LAYOUT OF LCLS EXPERIMENTAL HALLS

The experimental LCLS layout is shown in Figure 5. LCLS has six experi-
mental regions, or “hutches.” Each region is specialized for a particular
x-ray technique. Two are “soft x-ray” (500–2000 eV), and four are hard
x-ray regions. The first experimental laboratory commissioned at LCLS
was the AMO area, which was one of the soft x-ray areas that contains a
general chamber built by the LCLS project for gas phase measurements.
This chamber was commissioned and used during the initial experiments
that will be described in this review. The design of the chamber was the
responsibility of a commissioning team led by LCLS physicist John Bozek,
who received broad input from the AMO research community (Bozek,
2009).

4.1 The AMO Instrument

The AMO instrument is designed to deliver the highest fluence possible
for multiple ionization of gas phase targets, including targets that have
been excited by an ultrafast laser pulse in advance of the x-rays. The
chamber has been designed to focus the x-ray beams to intensities exceed-
ing 1018 W/cm2. The design is modular to allow some flexibility in the
placement of the focus and the arrangement of instruments around it.
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Figure 5 Layout of the underground experimental halls at LCLS. The soft x-ray AMO
hall is the furthest upstream, at the upstream end of the structure. Figure by Greg
Stewart – SLAC National Accelerator Laboratory. LCLS (2010).

There are three main sections in the AMO chamber (see Figure 6):
a mirror housing to enclose the focusing optics; a high field chamber
surrounded by time-of-flight type particle detectors; and a diagnostic
chamber. The entire system is kept under vacuum to reduce as much as
possible attenuation of the soft x-ray beam by background gas. Differential
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Figure 6 Assembled AMO instrument for LCLS. The x-rays enter from the right. The
chambers from right to left are the mirror housing, the high field physics chamber,
and the diagnostics chamber. From Bozek (2009), with the kind permission of the
European Physical Journal.

pumping allows the mirror chamber to be kept free from target gases used
in the other two chamber. Carbon-containing gases are particularly dam-
aging to the optics because the x-ray beam can create reactive organic
species which can then stick to the mirrors.

4.1.1 X-Ray Focusing Optics

The focusing optics for high intensity soft x-rays are particularly chal-
lenging. Because all materials are strongly absorbing in this wavelength
range, the only possibilities are diffractive optics such as free-standing
zone plates, or grazing incidence optics that take advantage of the rel-
atively high reflectivity for soft x-rays at near-grazing angles below a
critical angle. Zone plates cannot be used at LCLS because they damage
too easily in the LCLS beam. Instead, two grazing incidence dynamically
bent cylindrical mirrors are placed in a Kirkpatrick-Baez (K–B) configura-
tion as shown in Figure 7 (Kirkpatrick & Baez, 1948). The mirrors are made
out of crystalline silicon with a coating of B4C. The K–B mirrors maintain
a nominal grazing incidence angle of 30 mrad. The pair is designed to
produce a 1 µm focal spot in the center of the high-field interaction cham-
ber located about a meter from the mirror. For a 1-nm wavelength, this is a
diffraction-limited focus for a 1-mm spot size on the mirror. This focus can
be moved to the diagnostics chamber by changing the amount of the bend
in the mirrors, and therefore their focal lengths. This design is intended
to withstand damage under the full illumination of LCLS. The damage
threshold has been tested with LCLS beams and found to be on the order
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Figure 7 The Kirkpatrick-Baez mirror configuration used in the AMO instrument has
two grazing incidence cylindrical mirrors with a common focus. From Kirkpatrick and
Baez (1948).

of the fluence required to melt the mirror, which is approximately 2 J/cm2

(Hau-Riege et al., 2009, 2010).

4.1.2 High Field Physics Region

The focus of the K–B optic is in the center of the main section of the AMO
instrument. Atomic and molecular gases may be introduced to the focal
region with an injection system consisting of a pulsed valve source and a
skimmer. A well-defined molecular beam geometry is highly desirable, to
limit ionization of gas by the x-ray beam away from the focus. The back-
ground gas in the chamber must kept in the range of 1–10× 10−10 torr as
well, also to reduce the charged particles from x-ray interactions with the
background gas. There is a significant difference in the need for high vac-
uum compared with strong-field laser-molecule experiments, where the
high nonlinearity of the process generally ensures that no interactions take
place away from the focus.

The main measurement tools in this section of the AMO chamber
are charged particle detectors of the time-of-flight type. Ion spectrome-
ters can measure momentum, energy, and charge to analyze the different
types of x-ray-induced photofragmentation. The earliest experiments that
are described in this review used the simplest type of ion spectrometer,
an integrating time-of-flight device that can be used either in a Wiley-
McLaren type configuration to measure the charge/mass of ions, or with a
narrow slit, where the time-of-arrival also records the z-component of the
momentum. The latter mode is useful for dissociation of aligned diatomic
gases, as described further below.
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Another type of ion spectrometer that has been used in this chamber is a
velocity-map imager, which records the position of the ions away from the
axis of the extraction field, and thus measures the transverse momentum.
If this is combined with time-of-flight, then full 3D imaging of the vector
momentum is possible.

The focal region is also surrounded by five high-resolution electron
time-of-flight spectrometers (ETOFs), which are optimized for the study
of photoelectrons and Auger electrons originating at the focus. The spec-
trometers each have multiple electrostatic retarding plates and biased
flight tubes to decelerate electrons to maintain good energy resolution
and high transmission. They are designedto measure electron energies up
to several kiloelectron volt, with relatively flat acceptance of more than
20 eV, and a small opening angle (≈2.7o) (Hemmers et al., 1998). The five
ETOFs are positioned around the interaction region as shown in Figure 8
and Table 2.

4.1.3 Diagnostics Chamber

Downstream from the high field physics section of the AMO chamber
is the diagnostics section. This chamber is designed to hold a variety of
diagnostic tools to provide information about the x-ray spectrum, pulse

Figure 8 The five electron time-of-flight spectrometers are shown from a vantage
point approximately upstream of the interaction region. Three spectrometers are in
the polarization plane. Two are at forward “magic” angles (see Table 2). Greg
Stewart – SLAC National Accelerator Laboratory. LCLS (2010).
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Table 2 Angular orientation of the five ETOF
spectrometers in the high field physics AMO
chamber.

θ(◦) φ(◦) Comment

1 90 90 Perpendicular to ε
2 54.7 90 Magic angle
3 0 90 Along ε
4 35.3 0 Out of the polarization plane
5 0 35.3 Magic angle

Here, θ = 0 is the direction of polarization, which is hori-
zontal and taken as the z-axis for these purposes. φ = 0 is
along the k-vector of the x-ray laser beam. ETOFs 2 and
5 are at magic angles, i.e., angles where the L = 2, M = 0
electron continuum vanishes. ETOFs 4 and 5 are out of the
polarization plane.

energy, and timing. In addition, the K–B optics can be refocused into this
chamber, producing a slightly larger (3–5 µm) beam waist.

Single-shot diagnostics are required at LCLS because the x-ray laser
beam has significant pulse-to-pulse fluctuations in pulse energy, cen-
tral photon energy, and bandwidth, and needs to be measured on each
x-ray laser pulse. Among the instruments that can be accommodated in
this chamber are beam profile diagnostics, beam energy monitors, and a
magnetic bottle electron spectrometer.

4.1.4 Optical Lasers and the AMO Instrument

Both sections of the AMO instrument are also accessible to optical laser
radiation for use in ultrafast pump-probe experiments. The optical beam
and x-ray beams are brought into collinear propagation alignment in order
to preserve the best possible pump-probe timing. This is accomplished by
sending the x-rays through a small hole in a 45o-turning mirror at one or
the other end of vacuum chamber.

Some of the initial experiments were designed in part to help establish
the methods for relative timing between the optical laser and the x-ray
laser, and these will be described later in this review. The laser is based
on an 800-nm Ti:Sapphire chirped pulse amplifier (CPA), followed by a
flexible suite of wavelength conversion options. The ultrafast optical laser
radiation is too intense to propagate in the air for long distances, so the
light is maintained in a chirped, long-pulse state while it is transported
from the laser hall to the radiation hutch just below it. Grating compres-
sors and wavelength conversion is then performed on optical tables in the
AMO radiation hutch.

The optical lasers available for experiments at LCLS are capable of
producing several millijoules per pulse at the repetition rate of LCLS
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at 800 nm, or less pulse energy at wavelengths from the midinfrared to
the midultraviolet. The laser light can also be split into multiple beams
for interferometry, wave packet applications, autocorrelations, or optical
gating applications.

4.2 Capabilities for Pump-Probe Experiments at LCLS

The opportunities for ultrafast science utilizing the short pulses from
LCLS require excellent synchronization between the x-ray FEL and an
external laser. Femtosecond precision between two independent mode-
locked laser sources that have no common optical source presents a
significant challenge even in the best of cases, but here the situation is
complicated by the large scale of the accelerator-driven x-ray laser, and
the many sources of technical noise associated with its operation.

The AMO end station hosted the first experiments that required this
synchronization in fall 2009. The pump pulse in these experiments was
used for impulsive stimulated raman scattering of N2, in order to create
a coherent rotational wave packet that could exhibit rotational alignment.
The probe was the LCLS beam, which ionized the molecule, leading to
dissociation that could be analyzed in the angle-resolved ion time-of-flight
(ITOF) spectrometer (Glownia et al., 2010).

The Stanford Linear Accelerator must carefully synchronize the phase
of its RF cavities by means of a reference timing clock, and this can be used
to lock a harmonic of the Kerr-Lens modelocked oscillator at the front end
of the pump laser system. Because these are both narrowband frequen-
cies in the 0.5-GHz range, locking to the picosecond scale is not difficult,
and this takes care of thermal drifts that are inevitable in a machine that
stretches over kilometers. However, the LCLS pulse durations and the
relevant physical timescales are at the level of tens of femtoseconds, not
picoseconds. Therefore, a number of technical improvements were made
in this feedback system to drive the synchronization jitter down to the
level of a few hundred femtoseconds (Wilcox et al., 2009).

There are significant sources of jitter in the arrival time of the elec-
trons relative to their own RF acceleration field, due to the acceler-
ation process itself. For example, energy jitter in the electron bunch
translates to timing jitter because of the magnetic chicanes used to
compress the bunch. A more direct approach at synchronization cor-
relates the research pump laser pulse with the field of the electrons
as they arrive at the end of the LCLS undulator chain. This has been
done at SLAC in the past by means of single-shot electro-optic sam-
pling (Cavalieri et al., 2005). Here an electro-optic material such as ZnSe
is placed in the vicinity of the electron bunch, so that the enormous
Coulomb fields accompanying the passage of the bunch can produce a
transient disturbance in the material index of refraction. The ultrafast
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laser pulse can image the passage of this index disturbance, and the
image is directly related to the time of arrival, length, strength, and shape
of the electrons that produced it. This is not a feedback method, but
rather a sampling technique, where the single-shot timing information
is recorded so that the data can be re-sorted according to the timing on
each shot.

LCLS used a similar sampling method based on single-shot measure-
ments of the bunch arrival time in two S-band (2.8-GHz) RF cavities at
the end of the undulator that record the passage of the electrons. This
system can then be used in postprocessing the data to re-sort it by rel-
ative time of arrival (Figure 9). Residual jitter of ∼100 fs RMS has been
demonstrated as shown in the first transient molecular alignment experi-
ments (Glownia et al., 2010). The synchronization hardware appears to be
capable of ultimate timing jitter on the order of 50 fs.
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Figure 9 Two RF cavities independently recorded the time of arrival of the electron
bunch to the LCLS undulators. This figure shows their correlation over 300 LCLS laser
shots. The data are displayed (a) as a 2D correlation, (b) as a time-of-arrival
histogram, and (c) as a time series. From Glownia et al. (2010).



AAMOP 09-ch05-239-290-9780123855084 2011/9/26 17:47 Page 263 #25

The First Atomic and Molecular Experiments at the Linac Coherent Light 263

4.3 CFEL ASG Multipurpose, CAMP Instrument

A European collaboration led by DESY and Max Planck Society has also
designed and built a chamber called Chamber for Atomic and Molecular
Physics (CAMP) that was transported to LCLS for use in some of the first
gas phase experiments. Its main differences are an injector for small par-
ticles, and a soft x-ray camera for light scattering from gas phase and
nanoscale objects. The CAMP detector is described in Epp et al. (2009)
and Strüder et al. (2010).

5. INITIAL EXPERIMENTS ON X-RAY PHOTOIONIZATION

Several of the first AMO experiments at LCLS involved intense field pho-
toionization. Understanding the interaction of atoms and molecules with
intense ultrashort x-ray radiation is increasingly relevant to studies of
structure and dynamics in biology, chemistry, and physics. Knowledge
of this interaction is important in understanding a wide range of top-
ics from biomolecular structure–function relationships (Bogan et al., 2008;
Chapman et al., 2006; Marchesini et al., 2008; Neutze et al., 2000) to plasma
production and inertial confinement fusion (Lindl et al., 2004) as well as
possible means of producing warm dense matter at atomic densities (Dyer
et al., 2008).

5.1 Neon Rapid Sequential Ionization

The first experiment performed at LCLS tested a new regime of intense
x-ray interactions with atoms (Young et al., 2010). Neon gas was chosen
for the initial studies. The ionization potential of the most deeply bound
state of the atom, the ground state hydrogenic Ne9+ ion, is 1.36 keV (102

Rydbergs), so that it is possible to tune the LCLS to be able to single-
photon ionize the atom down to the bare nucleus. The binding energy
of the 1s orbital in the neutral atom is 870 eV, affording the opportunity to
explore near-edge photoabsorption as well: At energies less than 870 eV,
all initial photoionization is via the n = 2 valence shells; but at energies
more than this 1s absorption edge, the core is responsible for nearly all of
the ionization.

One of the main goals of the Ne experiment was to verify the ability
of the focused LCLS beam to produce very high charge states of atoms,
and this was accomplished. Fully stripped Ne could be observed when
the photon energy exceeded the 100 Ry threshold energy. When the wave-
length was changed, the ion spectra changed according to the simple
picture given above. This established the LCLS as a reliable source of
intense x-ray radiation for physics (see Figure 10).
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Figure 10 Ion time of flight spectra for Ne multiple photoionization at three LCLS
photon energies. At 800 eV, only V-type photoionization is possible. At 1050 eV, the 1s
shell cannot ionize. At 2000 eV, all electrons can be ionized, one photon at a time.
Variations in the relative heights of peaks can be related to the PAPA process
described in the text. From Young et al. (2010).

The neon experimental signature of PP processes was a distinct change
in the apparent opacity of the Ne for 2-keV radiation when the pulse
duration was varied but the fluence kept constant. For shorter pulse dura-
tions, the atoms absorbed less. Simulations show that this observation is
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consistent with a decrease in photoabsorption for atoms that have lost
both of their core electrons and have not yet acquired more from Auger
relaxation from the valence shell. Essentially, the neon becomes a more
transparent medium when there are no core electrons to contribute to the
absorption cross section.

For example, atomic Ne has a ground state configuration with 10
electrons 1s22s22p6. The outer valence 2p shell consists of six equivalent
p-electrons. An inner valence 2s shell has two electrons; and the core has
two 1s electrons with an ionization threshold energy of 870 eV. For photon
energies less than 870 eV, only V-type ionization is possible, and multiple
ionization occurs by means of sequential V-type events, only terminating
when the ionization potential of the most weakly bound electron in the
ion becomes greater than the photon energy. At energies around 1 keV,
well above the core photoabsorption edge, the dominant process is P fol-
lowed closely by A, so that most x-ray absorption events produce a double
ion. Further ionization events continue this PA process until the binding
energy excludes them. For 1050 eV photons, which was one of the ener-
gies used by Young et al., this occurs after PAPAPA production of Ne6+.
After that, only valence ionization can occur, and this terminates as well,
at Ne8+, at which point the entire n = 2 shell is empty.

5.2 Nonsequential Multiphoton Processes

The one-photon threshold for the ionization of this helium-like Ne ion is
1196 eV. Further ionization of the ground state 1s2 configuration of Ne8+

at lower photon energy can only proceed by direct two-photon processes,
and so they provided the first critical test of a coherence-driven process at
LCLS. The starting point for understanding this nonlinear mechanism is
the two-photon cross section Equation (3). This has a calculated value of
σ 2
= 10−56 cm4s (Novikov & Hopersky, 2001), which is close to the simple

estimate of Equation (4) (Lambropoulos & Tang, 1987). This should be
visible in a tightly focused LCLS beam.

The signature of multiphoton ionization is the appearance of the pho-
toionized daughter ion, in this case Ne9+. There is, however, a significant
background which comes from excited states of Ne8+ that must be present
because of the complex sequential processes described above. Some of the
same qualities that make neon ideal for studying multiple core vacan-
cies, lead to backgrounds that cannot be easily distinguished from the
nonsequential process.

Nonlinear absorption was studied in neon by comparing Ne9+ produc-
tion rates at 1110 and 1225 eV, less than and more than the one-photon
edge (Doumy et al., 2011). The lower photon energy was chosen to be
more than the energy needed to ionize Ne6+ with one photon because the
PA process from this parent is the main mechanism to produce the Ne8+
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initial state needed in this study. One way of rejecting background pro-
cesses that also produce the Ne9+ final state ion is to study the dependence
on incident intensity of the ratio of Ne9+ to Ne8+ , where we expect the non-
sequential direct two-photon ionization to yield a quadratic dependence
in intensity at 1110 eV, but the same ratio should increase linearly with
intensity at 1225 eV.

Unfortunately, there are some background processes that produce Ne9+

and also have the same quadratic dependence of the ratio of Ne9+ to Ne8+

on x-ray intensity. For example, the PVV process in Ne6+
→ Ne9+ has the

same intensity dependence as the desired PAP process. Therefore, it is
difficult to extract the nonsequential signal without some modeling. This
analysis was performed by Doumy et al. (2011), and the result is that the
direct two-photon process is clearly observed, but the estimated nonlinear
cross section is two to three orders of magnitude higher than expected.
There are technical uncertainties to the nonlinear cross section measure-
ment, such as the length and temporal shape of the LCLS beam, but the
largest contribution to the discrepancy is believed to be the nonlinear cross
section (Doumy et al., 2011).

5.3 Intense X-Ray Induced Ionization, Dissociation, and Frustrated
Absorption in Molecular Nitrogen

The interaction of intense x-rays with matter is dominated by core-shell
excitation, and in particular by the competition between Auger relax-
ation and multiple inner-shell ionization events that become feasible at
extreme x-ray intensities. These x-ray–matter interactions complement
investigations carried out in the EUV regime, such as the N2 multiple-
ionization through few-photon inner-valence ionization studied at the
FLASH facility (Jiang et al., 2009). Figure 4 illustrates concepts that have
been proposed to describe the creation of highly charged atomic and
molecular states by ultraintense, femtosecond x-ray pulses at photon
energies above the core shell ionization threshold (409.9 eV). For atomic
nitrogen, N, charge states up to N4+ may be created by two sequential
inner shell photoionization (P) events followed by Auger (A) relaxation,
PAPA, shown in Figure 4a. Following single-core hole (SCH) production,
the ratio of the core hole lifetime and the incident photon flux determines
whether double-core holes (DCH), PPAA, are produced, or if Auger decay
refills the SCH before a second core vacancy is generated.

With increasing charge, Auger decay becomes slower because of the
smaller number of valence electrons, and the highest charge states are
predominantly created by a sequence of inner shell and valence shell ion-
ization events. To illustrate the different types of molecular DCH states,
the core electron population in N2 is sketched in Figure 4b as if electrons
would occupy separate atomic orbitals. For molecular DCH states, a PPAA
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sequence leads to N4+
2 . For atoms, PA cycles are associated with SCHs and

PPAA cycles with DCHs. A SCH N5+ state cannot Auger-decay (however
may decay by slow fluorescence). Therefore, N6+ and N7+ are formed by
continued sequential photon absorption.

There are two different types of molecular DCH states (Cederbaum
et al., 1986): one corresponding to the removal of two core electrons from
the same atom and the other corresponding to the removal of one elec-
tron from each of the two atoms. With increasing molecular charge state,
dissociation is expected to compete with electronic relaxation, and the ion-
ization dynamics will transition from molecular to atomic behavior. With
photon energies 600–700 eV above the K edge of N2 and pulse durations
longer than the Auger-decay lifetimes, all pathways illustrated in Figure 4
are possible resulting in charge states up to N7+ as shown in Figure 11.

5.3.1 The Effect of Pulse Duration: Frustrated Absorption

The interest in single-pulse imaging for structure determination has raised
questions about radiation damage and the ability to extract informa-
tion before the sample is degraded or destroyed. Initial calculations and

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0.8

N2+

N+

N2
2+

N2
+

N5+

N4+ N3+

N6+

N7+

Io
n 

co
un

t/s
ho

t

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Time of flight (µs)

Figure 11 Ion time of flight spectrum recorded at 1-keV photon energy, 280-fs pulse
duration, and fluence of 7× 104 photon− Å
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experiments have focused on the idea of “inertial delay” of the Coulomb
explosion during scattering from a pulse that is significantly shorter than
the disassembly timescale for the object (Bogan et al., 2008; Chapman
et al., 2006; Marchesini et al., 2008; Neutze et al., 2000). Another contri-
bution to inertial delay in the case of sub-10 fs x-ray pulses is frustrated
absorption. The effective total photoionization cross section is reduced by
frustration, so that and Coulomb-repulsion effects that distort molecular
samples during exposure to an imaging light pulse are reduced.

Figure 12 shows ion time of flight spectra for three different pulse dura-
tions (∼7, 80, and 280 fs) at similar pulse energies (0.26 mJ, reading at
LCLS beam monitor). As a reference to show where the different charge
states are expected at higher intensities, the ion time of flight spectrum
for 2.2 mJ, 280 fs pulses is given (light gray curve). Over the range of
parameters investigated, longer pulses generally result in the observa-
tion of the highest charge states (dashed curve), whereas shorter pulses
lead almost exclusively to lower charge states. The spectra in Figure 12
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are normalized to the integrated total ion yield. Highly charged N5+ and
N6+ ions are clearly observed for 80 and 280 fs pulse lengths. In contrast,
the ∼7 fs spectrum shows only charge states up to N4+. Furthermore, the
intensity of the N3+, N4+, and N5+ peaks decreases monotonically from
280 to 7 fs pulse duration. This indicates that molecular N2 and its frag-
ments cannot absorb photons as efficiently for short pulses as for longer
pulses.

The effect shown in Figure 12 can be explained by frustrated absorp-
tion after the removal of the K-shell electrons with the short pulse. The
finite Auger relaxation time determines how fast the K-shell can be replen-
ished with electrons, and thereby limits the number of photons that
can be absorbed in a given time interval. This leads to a reduction of
multiple ionization events with an increasing peak power and, there-
fore, a suppression of the production of higher charge states for short
pulses.

The interpretation of the measurements within the concept of frustrated
absorption is supported by a theoretical description. The model describ-
ing the interaction of intense x-rays with nitrogen molecules consists of
a parameterized rate equation model which include interatomic valence
electron dynamics accounting for the delocalized nature of valence elec-
trons (Hoener et al., 2010a). Rate equation models have previously been
applied to describe intense x-ray-induced photoionization dynamics of
independent atoms (Rohringer & Santra, 2007c). Figures 13a–d show the
measured charge state distributions for four different x-ray pulse dura-
tions along with the results of the parameterized rate equation model.
To illustrate the importance of molecular valence charge dynamics in the
description of the observed effects, the results of an isolated atom based
rate equation model for a pulse energy of 49 µJ have been included as
dashed lines in (a)–(d).

Suppressed photon absorption at high peak intensities has been
observed before in the regimes of optical and infrared light (Lewis et al.,
1941) as well as soft x-ray (Nagler et al., 2009) and x-ray radiation (Young
et al., 2010). However, a microscopic picture of femtosecond time resolved
charge formation and frustrated absorption in molecules that includes the
decisive x-ray-induced chemical dynamics has never been reported.

5.3.2 Creation of Double-Core Holes in N2 by Nonlinear X-Ray
Ionization

Conventional x-ray light sources enable access to electronic states with
a single-core hole (SCH), however because of fluence limitations, the
absorption of more than a single photon is unlikely. Thus, the observed
interaction is dominated by linear, single-photon absorption processes.
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Single-photon absorption of short wavelengths can also lead to the pro-
duction of double-core holes (DCH) through electron correlation, but
these processes have a very low yield (Eland et al., 2010; Southworth et al.,
2003).
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Calculations show that DCH spectroscopy can provide a richer and
more sensitive technique than inner-shell photoemission spectroscopy,
amplifying and rendering observable subtle differences between similar
chemical systems (Cederbaum et al., 1986). Multiple atomic sites in a
molecule introduce multiple possibilities for DCH locations, i.e., double-
core holes with both vacancies on a single site (SSDCH) and double-core
holes with a single vacancy on two different sites (TSDCH). The presence
and location of the first hole affects the energy to produce the second
hole, as well as the decay mechanisms and fragmentation patterns of
the resulting DCH states. The different types of DCH states are expected
to exhibit unique spectroscopic signatures. Furthermore, these states can
show unique energetic shifts which can provide new information on the
chemical environment of the core holes (Santra et al., 2009b; Tashiro et al.,
2010).

DCH formation by multiple photon absorption has only become pos-
sible because of the unprecedented x-ray photon flux of the LCLS that
allows sequential absorption to compete with Auger decay creating a sec-
ond inner shell vacancy before the first one has been refilled (Cryan et al.,
2010; Fang et al., 2010). For N2, the Auger lifetime for a single-core hole
is 6.4 fs (Kempgens et al., 1996). The production and decay of these states
were characterized by using photoelectron spectroscopy and Auger elec-
tron spectroscopy. The experimental results are interpreted with the help
of ab-initio Green’s function calculations of the energies of the DCH states
and of the Auger decay energies. These results will serve not only as a
basis for understanding double- and multiple-core hole states in more
complex molecules, but also for producing selective configurations with
single- or double-core holes on specific atoms, ultimately controlling how
these states decay and how the molecule fragment. A new technique
based on the x-ray two-photon photoelectron spectroscopy (XTPPS) of
such SSDCH and TSDCH states has recently been proposed (Santra et al.,
2009b), and the present observations also provide the first experimental
results for the method.

Figure 15 shows photoelectron spectra recorded at 1000 and 1100 eV
energies using an electron time-of-flight (ETOF) spectrometer aligned
along the polarization axis of the x-ray beam. The 1000-eV spectrum has
been shifted to higher energies by 100 eV to allow for direct comparison
with the 1100-eV spectrum. The two spectra show rich, but very similar
structure. The observed structures correspond to the following:

1. Photoelectrons from single core-shell ionization of N2, N+2 , and N2+
2 ,

where the initial state electron vacancies are located in the valence
shells. These SCH energies are indicated by the dot-dashed lines.

2. Photoelectrons from core-shell ionization of atomic Nm+ (initial state
with m valence holes). These SCH energies are indicated by the dashed
lines.
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3. Photoelectrons from core-shell ionization of atomic Nm+(1s), with a
single-core hole and the remaining holes in the valence shells. The
processes responsible for these photoelectrons result in DCH produc-
tion. These multiple state calculated energies are shown by the dotted
lines.

4. Photoelectrons from core-shell ionization of N+2 (1s) with a single hole
in the 1s orbital of one N atom, and the second electron ejected from
the same atom, i.e., the SSDCH process. This energy is indicated by the
purple solid line. Also shown is the TSDCH where the second electron
is ejected from the other N atom. This energy is indicated by the solid
line.

5.4 Molecular TSDCH States

Two-site double-core hole formation is a uniquely molecular phe-
nomenon. The spectrum of the second electron ionized in this process is
expected to be shifted in energy because of the coulomb potential of the
first core hole. For example, the two atoms of a diatomic molecule have
four possible core electrons to draw from. If the x-ray pulse ionizes the
first and then does not have the required 70 eV or so to free the second
electron from that core, one electron from the partner atom can be ion-
ized. This electron will experience the added Coulomb potential from the
first vacancy, but at a distance of the internuclear separation, ∼2 Bohr.
We therefore expect to see a molecule-specific ionization channel with an
absorption edge that is about 1/2 Hartree more deeply bound, or about
13 eV.

The detection and assignment of electrons associated with the produc-
tion of the TSDCH states require an improved energy resolution, which is
achieved by increasing the retardation voltage in the photoelectron spec-
trometer to 480 V. Figure 14 shows a photoelectron spectrum recorded
using x-ray pulses of 1000-eV photon energy, 280-fs pulse duration, and
a fluence at the focus of 104 photons Å

−2
per pulse. The spectrum is

analyzed (Fang et al., 2010) by considering the contributions from single-
photon shake-up/off (SUO) processes (Kaneyasu et al., 2008; Svensson
et al., 1992) convolved with the experimental energy resolution of the cur-
rent study. The dashed lines and longest shaded area in Figure 14 indicate
the shape and the range of uncertainty of the SUO contributions, respec-
tively, based on the uncertainties in assigning exact peak areas in the
spectrum (Svensson et al., 1992). Note that in the single-photon ionization
regime, SUO processes would generate the only contributions to the pho-
toelectron spectrum in the kinetic energy range between 400 and 580 eV.
Therefore, all photoelectron signal shown in Figure 14 that is not con-
tained in the main photoline at 590 eV or the SUO contributions, is because
of multiple photon processes that are enabled by the LCLS. In order to
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Figure 14 Photoelectron spectrum (crosses with error bars) recorded at 1-keV
photon energy, 280-fs pulse duration the same fluence as in Figure 3, and 480 V
spectrometer retardation voltage. The shaded areas mark the correlated uncertainties
for various spectral components as described in the text. The constant sum of all
components is marked by the solid black line. Calculated line positions are marked by
vertical dashed lines. The shaded Gaussian area centered at 574 eV is the upper limit
estimate of TSDCH contributions. From Fang et al. (2010).

disentangle the major contributions generated by multiple photon ion-
ization, a nonlinear least-squares fit is performed based on five spectral
components with identical peak shapes and independent amplitudes and
center energies (shaded areas with gaussian shapes). The common peak
shape is derived by a description of the well-defined main photoline by a
Gaussian function, which gives a good approximation of the light-source-
and apparatus-induced line broadening effects (Fang et al., 2010).

Considering the finite precision of the calculations (∼1−2 eV) and
the finite energy resolution of the measurements, the agreement of the
experimentally derived peak positions with the theoretical expectations
is mostly very good (Fang et al., 2010). In particular, one spectral compo-
nent is consistently found exactly at the position of the expected TSDCH
photoline (574 eV). Unfortunately, this spectral region is also marked by



AAMOP 09-ch05-239-290-9780123855084 2011/9/26 17:47 Page 274 #36

274 P. H. Bucksbaum et al.

the strongest SUO contributions. Additionally, the N1s-1 photoline from
inner shell ionization of excited N+(1s22s12p3) fragments coincides with
the TSDCH photoline within the theoretical and experimental uncertain-
ties. As indicated by the grey area, the estimate of the total multiple
photon ionization signal at 574 eV varies between zero and 8% of the main
photoline intensity. Given the uncertainty in the contributions from over-
lapping spectral components, we resort to give an upper bound for the
TSDCH signal instead of an absolute value as described in Fang 2010. The
analysis leads to an upper bound for TSDCH contributions in the pho-
toelectron spectrum of 4% relative to the intensity of the N2(1s-1) main
photoline.

The most intense peak in Figure 15 corresponds to SCH production in
N2. Photoelectron lines are also clearly observed for a sequence of ioniza-
tion events in higher charge states of both N2 and N. The ionization events
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leading to high charge states of atomic N are apparent and are consistent
with the mass spectra shown in Figure 11. In particular, peaks correspond-
ing to process 2 and 3 in atomic N are readily identified in Figure 15.
Although all processes are produced by Auger decay and fragmenta-
tion of N2 and molecular ions, process 3 involves sequential ionization
faster than Auger decay. For the higher charge states, the reduced num-
ber of valence electrons increases the Auger lifetime, and thus increases
the probability of producing atomic DCH states. The peak identification
is particularly clear for N4+(1s), N5+(1s), and N6+(1s) ionization because
no other photoelectrons are expected at energies less than ∼550 eV,
and the observed peaks are in good agreement with the predicted line
positions.

5.5 Molecular SSDCH States

Figure 15 clearly shows a substantial peak at the expected position of the
molecular SSDCH photoelectron peak. However, this energy is also close
to the calculated position of a peak that results from core-ionization of
a triply valence-ionized nitrogen atom, and the two processes cannot be
distinguished from the photoelectron data. In contrast, the decay of the
molecular SSDCH state arising from neutral N2 is expected to produce an
Auger electron with kinetic energies several tens of electron volt above
the main Auger peaks. Figure 16 shows the corresponding Auger spectra
for N2, where the solid curves are the experimental data and the dashed
curves are our theoretical results. The experimental spectra were collected
along axes perpendicular to the polarization axis to minimize contribu-
tions from direct photoionization as opposed to Auger peaks. Figure 16
shows the Auger electron spectrum, extending from 330 to 450 eV, along
with a synchrotron-based spectrum and our calculated normal (nonres-
onant) N2 Auger spectrum. In the region 360–370 eV the normal Auger
spectrum, resulting from decay of the main SCH state of N2 (Agren, 1981;
Liegener, 1983), dominates, as demonstrated by the agreement between
the experimental and theoretical spectra. Between 370 and 390 eV, weak
features (satellites) are seen corresponding to Auger decay from excited
(shake-up) SCH states. Above 400 eV, no Auger electrons of N2 have
been observed with conventional x-ray sources. However, the spectrum
shows two new Auger peaks with energies about 50–80 eV above the
main SCH Auger peaks. These high-energy Auger peaks at energies of
413 and 442 eV are called Auger hypersatellites (Southworth et al., 2003),
and they are resulting from the decay of SSDCH states (Cryan et al., 2010;
Fang et al., 2010). Our calculation shown in Figure 16 (shaded region
at 400 and 410 eV) predicts peaks at about 410 eV, which are produced
from the Auger decay of the main SSDCH state of N2+

2 . The prediction
agrees very well with the observed peak position considering the expected
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Figure 16 Auger spectra from LCLS, synchrotron experiments, and from theoretical
calculations. Thick solid curves: Auger spectra recorded at 1.0 and 1.1 keV, pulse
duration of 280 fs and same fluence as in Figure 15. The 1.1-keV spectrum is offset
vertically up for clarity. Solid curve: Auger spectrum recorded with synchrotron
source (Fang et al., 2010). Calculated Auger spectra of various initial states (heavy
dashed line scaled), including SCH (dashed line), TSDCH (dotted line-shaded area),
SSDCH (dotted-dashed line; shaded curve). Stems at about 440 eV indicate predicted
energies of SSDCH shake-up Auger electrons. Dotted curve under SSDCH and its
shake up: spline fit to background from Fang et al. (2010).

underestimate in theory of 2–4 eV because of partially unaccounted elec-
tron relaxation in the final states (Schulte et al., 1996). We estimate the
SSDCH signal intensity to be 1% of the main Auger peak signal between
355 and 370 eV (5 eV).

Although Auger decay calculations of SSDCH shake-up states have
not been performed explicitly, the energy splitting between the SSDCH
main Auger peak and the SSDCH shake-up Auger peaks can be estimated
by the energy difference between the calculated SSDCH photoline and
the SSDCH shake-up photoline (Fang et al., 2010). The predicted ener-
gies of the SSDCH shake-up Auger electrons are indicated by black stem
lines in Figure 16. The good agreement of the calculated positions with
the peak at 442 eV suggests that this peak corresponds to Auger decay
of the SSDCH shake-up states. Furthermore, the structures at 413 and
442 eV were observed at several pulse durations ranging from 280 to 80 fs,
demonstrating reproducibility of the Auger hypersatellites. SSDCH with
single-photon absorption has been measured very successfully using syn-
chrotron radiations with high-detection efficiency magnetic bottles (Eland
et al., 2010; Lablanquie et al., 2011).
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6. FIRST OPTICAL-PUMP, X-RAY PROBE EXPERIMENTS

6.1 Dissociation of the Nitrogen Molecular Dication

The first pump-probe experiments at LCLS examined the interaction of
x-rays with molecular nitrogen. The first experiment that was sensitive
to the pump-probe timing synchronization was strong-field dissociation
of an x-ray-prepared dication (doubly ionized) state in diatomic nitrogen
(Glownia et al., 2010).

A substantial amount of the initial K-shell photoionization relaxes by
Auger electron emission that finally leaves the doubly charged molecu-
lar dication in a quasi-bound electronic state. These quasibound states
can tunnel through the barrier into the Coulombic repulsive outer part
of the potential curve. This tunneling time can be as long nanoseconds to
many milliseconds. An 800-nm laser pulse can effectively dissociate these
states, producing two singly charged atomic fragments. This system is
of interest for strong-field physics because it exhibits many characteristic
strong-field phenomena such as field-dressing and bond softening (Coffee
et al., 2006; Zavriyev et al., 1990). Here, however, the emphasis in this first
experiment was on the timing information that could be provided by the
laser-induced fragmentation of the molecular parent.

The setup is shown in Figure 17. The LCLS was tuned in the range
of 1 keV and focused into nitrogen gas, where it efficiently produced the
metastable doubly ionized molecular state through the process of core ion-
ization and Auger relaxation (the PA process which has been discussed
above.) The dication could be differentiated from other process by its time
of arrival in the ITOF placed just below the interaction region. The LCLS
800-nm Ti:Sapphire laser was then focused into the interaction region in
order to dissociate the dication. The depletion of the dication peak in the
ITOF was then monitored as a function of pump-probe delay. A strong
depletion signal of 10%–20% was observed when the laser arrived after
the x-rays. Postprocessing was performed to re-sort the data to account
for the jitter recorded in the electron RF arrival cavities discussed in
Section 4.2. A synchronization of ∼100-fs RMS was observed.

6.2 Transient Alignment Experiments

A diatomic molecules experiences transient impulsive Raman scattering
from an intense 800-nm laser pulse. This excites it into a coherent state
of rotation, following which it will evolve into a state of field-free tran-
sient alignment. Probes incident at the instant of alignment do not suffer
the problem of orientational averaging because the apparatus viewing the
aligned molecules is briefly in the molecular coordinate frame. Impulsive
molecular alignment is a well-known technique for optical experiments
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Nitrogen
X-ray
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LCLS

Figure 17 Pump-probe experimental setup for the nitrogen experiments. The optical
laser was introduced parallel to the x-ray beam by means of a laser-turning mirror
with a hole for the x-rays. From Glownia et al. (2010).

(Cryan et al., 2009; Stapelfeldt & Seideman, 2003). The alignment is nearly
perfectly periodic in nitrogen at a period inversely proportional to the
rotational constant because the rotational eigenvalues are almost perfectly
quadratic in energy. Transient alignment methods have never been uti-
lized before now at an x-ray source because of the need for short pulses
and subpicosecond synchronization.

X-ray irradiation of the aligned molecules leads to photoabsorption fol-
lowed by Auger decay, just as for an ordinary molecular beam. Some of the
doubly ionized products of this process will dissociate immediately, pro-
ducing two singly ionized atomic fragments with significant dissociation
momentum. A few will remain as molecular dications, just as in timing
experiments described above in Section 4.2. Many of the molecules and
the fragment atoms can continue to absorb x-rays, through processes such
as PAPA, as well as exotic multiple core vacancy processes such as PPA.

All of these processes can be seen to occur in an angle-selective ITOF
whose entrance slit is placed just below the interaction region, as shown in
Figure 17. The data as a function of pump-probe delay are shown for the
two mass peak manifolds corresponding to the molecular and the atomic
dications (Figure 18). The transient alignment and antialignment feature
are clearly visible, as well as the periodic alignment revivals.

6.3 Angle Resolved Auger Analysis

Auger analysis of states produced in the PPA process has not been possible
before LCLS, and these “hollow atom” states are new test beds for stud-
ies of correlation. There is a possibility to use transient double-core hole
processes to study chemical dynamics as well (Santra et al., 2009b; Tashiro
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Figure 18 Angle-resolved ion time-of-flight spectra plotted as a function of the
pump-probe delay for impulsively excited rotational wave packets in N2, with ions
measured along the polarization axis. (a) The spectrum near the peaks corresponding
to the molecular dication N2+

2 and the atomic dication N2+. The periodic rotational
alignment revivals are clearly visible. (b)–(d) show the detailed time-of-flight
spectrum of the molecular dication spectrum for three laser-x-ray delays: In (b), the
delay is t = –8.5 ps. This corresponds to an alignment perpendicular to the
spectrometer axis so that dissociating fragments do not enter the spectrometer.
In (c), the molecules are aligned with the ITOF axis, and enter it, resulting in an ITOF
spectrum that has peaks corresponding to the dissociation momentum of the
x-ray-induced fragmentation. In (d), the x-rays precede the optical pulse, so no
alignment occurs. From Glownia et al. (2010).

et al., 2010). Electron spectroscopy experiments were performed at a point
of maximum alignment of nitrogen molecules following impulsive excita-
tion. The Auger spectra showed the distinct signature of electrons coming
from the PPA process involving two core vacancies on a single nitrogen
ion (the SSDCH state discussed above in Section 5.5.) The line shape in
the SSDCH region of the Auger spectrum shows similar features to the
regular single vacancy Auger spectrum (the PA process), but shifted to
higher energy because of the reduced screening of the nucleus (Figure 19).
A calculation shows that much of the asymmetry in the SSDCH spectrum
shown in Figure 19a is because of the effect of two-site interference caused
by the two equivalent nitrogen atoms that can act as a source of the signal.

7. FUTURE PROSPECTS

Ultrafast core vacancy-driven dynamics may be a rich area for future stud-
ies at x-ray-free electron lasers such as LCLS. The formation of a core
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Figure 19 Angle resolved single-site double-core hole Auger spectra for nitrogen
molecules aligned horizontally in the picture. Angular distributions of the SSDCH
feature (a) are compared to (b) the angular distribution from the total single vacancy
Auger spectrum, and (c) the angular distribution of the most prominent peak in the
single vacancy Auger spectrum at 360 eV. Panel (d) are fitting coefficients to Legendre
polynomials. From Cryan et al. (2010).

vacancy in only a few femtoseconds may be viewed as sudden creation of
a charge disturbance that is quite localized. The resulting coulomb-driven
electron relaxation can lead to the breaking or forming of new bonds.
A particularly rich area for study may be hydrogen migration driven by
photoexcitation.

The dynamics of core hole relaxation has been studied in early LCLS
experiments. We briefly describe some of the motivations for these kinds
of investigations, as well as the instrumentation required to extract
transient structural information. The basic experiment involves excita-
tion of the target molecule by a laser, either through ultrafast resonant
excitation or strong-field coupling. Subsequent evolution of the system
could lead to isomerization, ionization, photofragmentation, or even the
extreme Coulomb explosion following multiple electron ejection. In any
case, the transient nuclear motion can be probed in several ways using
x-rays.
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Atom-selective core ionization is one of the most revealing techniques.
Here the x-rays are tuned just near an absorption edge for atoms of a
particular type in a molecule. For example, in methyl alcohol one could
selectively probe the vicinity of the oxygen atom by using radiation in the
vicinity of the O K-edge. This energy is accessible at LCLS.

The femtosecond pulse durations of LCLS permit the study of tran-
sient processes such as isomerization and photofragmentation. The x-rays
can be used to probe shifting energy levels, in analogy to optical pump-
probe spectroscopy. Here the advantage of the x-rays is that they probe
local structure in the vicinity of an atomic core. Ultrafast x-ray pulses
can also induce molecular rearrangement, which can be probed by strong
lasers.

Resonant excitation has some limitations in the case of multiple atoms
of the same species. Even though different chemical environments will
lead to edge shifts on the order of electron volt, the LCLS cannot gen-
erally differentiate between these atoms without the aid of a monochro-
mator, which reduces the laser pulse energy substantially. In addition,
many of the most interesting chemical changes involve carbon atoms
in small organic molecules, and these wavelengths, on the order of
284 eV, cannot be reached by LCLS. Therefore, nonresonant detection
must be used.

Another technique is momentum analysis of photofragments. As an
example, consider the fragmentation of two similar ring molecules, 1,3-
cyclohexadiene and 1,4-cyclohexadiene. These ring molecules are C6H8

isomers consisting of a benzene ring with two additional hydrogen
atoms. The only difference between them is the relative placement of the
extra hydrogens, which leads to the formation of double bonds in the
1,3 or 1,4 positions, respectively. K-shell photoionization with the rela-
tively high energy of LCLS cannot discriminate one of these bonds vs.
another. However, the different absorption channels can be detected by
their different photofragment momenta. Such analysis techniques make
use of position-sensitive time-of-flight detectors, known as velocity-map
imaging.

7.1 Coherence Effects

One prospect of interest is electromagnetically induced transparency in
the x-ray regime (Glover et al., 2010). Originally proposed as a potential
scheme for cleaning the chaotic fluctuations of typical FEL pulses, this
scheme is also interesting from a fundamental physics point of view. The
quintessential indicator of EIT is the narrowing of a traditionally broad
absorption line, accompanied by an Autler-Townes splitting of the reso-
nance. In the soft x-ray regime for instance, the linewidths are typically
of the order of tenths of electron volts. Excited state linewidths however
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are of order few electron volts owing to their rapid relaxation. One could
therefore imagine a lambda system with a core-excited upper state that is
for instance in a shape resonance in the continuum that can then be cou-
pled strongly to the ground-state. Such a system could be driven into EIT
if the ground-state stability could effectively be made to narrow the shape
resonance width and then split the resonance through Autler-Townes
splitting. This would suppress the absorption of the x-rays by driving
coherence in the electronic system.

A straightforward application of time domain spectroscopy is to mea-
sure the x-ray pulse duration or, alternatively, the relaxation rate of core
excitations. To first order, the photoabsorption cross section is propor-
tional to the number of electrons available for absorption. Reducing the
number of electrons in a shell simply reduces the absorption cross section
proportionately. This saturation effect may be used to autocorrelate an
ultrafast x-ray beam in a split and delay arrangement, which would also
be a direct way to measure the core refilling when the x-ray pulses are
shorter than the lifetime of the vacancy.

One could use two x-ray pulses of different frequency in the high-
fluence regime of Equation (10) to investigate core-hole relaxation for
specific channels directly in the time domain. In the sequential regime
(PAPA), when the core-excitation relaxes, either by fluorescence or Auger
decay, a new vacancy will open in the valence shell. If we assume a KL1L1
relaxation, we would expect the [2sσ−2] excitation to persist for many hun-
dreds of picoseconds. Because the relaxation refilled the core level, the
overall absorption cross section returns although the edge is shifted by
the now doubly charged Coulomb field. Below the edge, however, the
inner-valence vacancy can accept a resonant excitation from the core for
a subsequent x-ray pulse. Unfortunately, the newly born resonance will
lie some tens of electron volt lower in energy than the original absorption
edge. Furthermore, the valence states will feel a reduced screening, yet the
filled core will feel nearly the same binding as the neutral. The only way to
observe this phenomenon is either by optically preparing it (Glover et al.,
2010) or using a two-color x-ray scheme. With the two-color x-ray scheme,
one could in principle measure specific lifetimes for the different Auger
and fluorescence decay channels.

7.2 Improved DCH Electron Spectroscopy

The sequential formation of a double-core hole is of particular interest
in physical chemistry; the double-core hole is effectively a chemical shift
amplifier. When the double-core hole is distributed among different sites
in a molecule, the resulting photoelectron and Auger spectra are much
more sensitive to the valence binding environment than are the more tra-
ditional single core-hole excitations (Cederbaum et al., 1986, 1987; Santra
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et al., 2009a). The enhanced sensitivity for the two-hole system arises from
the screening of the hole–hole interaction by the valence electron density
that fills the volume between the two sites. To first order, the two half
vacant cores undergo a 1/R3 dipole–dipole interaction that is more or less
quenched by the induced polarization of the valence shell. The quenching
is therefore a strong function of the occupied number of valence bond-
ing versus antibonding orbitals. This system relaxes on a timscale short
compared with typical nuclear motion. It could therefore be used as a
time-stop measurement of the dynamically changing valence during a
photo-triggered chemical reaction (Cryan et al., 2010; Fang et al., 2010;
Santra et al., 2009a).

The analysis of the photo- and Auger-electron spectra presented here
and explained in detail in Fang et al. (2010) shows a very encouraging
agreement between the theoretically predicted and the experimentally
determined positions of DCH features. In particular, the hypersatellite
spectrum allows for a clear identification of SSDCH contributions in good
agreement with theory. However, it is also evident that a clear identifi-
cation of double-core hole states that comprise core vacancies on more
than one atom is rather challenging. The two major limiting factors are
the spectral overlap with SCH features in both the photoelectron and the
Auger-electron spectrum and the available power densities in the interac-
tion region of the LCLS AMO end station (Bozek, 2009). The improvement
of the latter, in addition to measuring the SCH contribution by defocusing
the FEL beam, allowed in a recent investigation in the fall of 2010 a much
clearer distinction of TSDCH contributions. There are more recent mea-
surements of SSDCH and TSDCH in N2, CO, CO2, and N2O and the data
is being compared with new ab initio calculations (Tarantelli, 2006).

7.3 Large Molecular Dynamics/Clusters

Photoionization of larger molecules such as H2S and SF6 have also been
carried out with a pulse duration of 280 fs and nominal pulse energy
of 2 mJ. Complete Coulomb explosion was observed leading to a high
charged state distribution of the S and F fragments. Furthermore, van der
Waal clusters photoionization experiments were conducted as a function
of pulse duration and pulse intensity leading to surprising results com-
pared with ionization with IR lasers or VUV FELs. This work is presently
being analyzed.

7.4 Resonance Phenomena Using the SXR Beam Line

The soft x-ray (SXR) beam line is a second experimental area that has been
commissioned following the first experiments described in this review. It
affords the opportunity to tune the LCLS wavelength through resonances
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thanks to the use of its monochromator, with a resolving power on the
order of 5000, which access energies between 500 and 2000 eV. Several
important K- and L-edges are covered for resonant excitation of the
second- and third-row elements. This beam line, which was successfully
commissioned in the fall of 2010, has already been used for various exper-
iments such as laser pump-x-ray probe investigations in the gas–liquid
and solid phase which are poised to provide new physical and chem-
ical understanding. In particular, one of the use of the SXR beam line
is to observe electrons in controlled correlated motion in various states
of matter. The science that can be performed at the SXR beam line cov-
ers widespread fields such as catalysis, magnetism, correlated materials,
clusters, and biological structure.

All techniques used on the SXR beam line are single shot, pump probe,
and resonant excitation compatible. The range of methods includes single-
shot x-ray absorption spectroscopy, resonant coherent imaging, x-ray
diffraction (from solids), x-ray emission spectroscopy (on solids, surfaces,
warm dense plasma), liquid jet x-ray science, resonant inelastic x-ray
scattering, photo-electron spectroscopy (on surfaces), coherent x-ray scat-
tering (transmission or reflection), materials damage thresholds studies,
and electron beam ion studies.

7.5 Second-Generation Instrument: LAMP

A second-generation end-station, significantly advancing the present
state-of-the-art instrumentation and allowing for structural dynamics
experiments across a wide range of science areas is being constructed
by a collaboration among LCLS, Max Planck Society Advanced Study
Group (ASG), and Western Michigan University for the LCLS. This
instrumentation consists of three essential parts:

1. A two mirror “x-ray split and delay” (XRSD) to enable x-ray-pump-x-
ray-probe experiments.

2. An OPA (optical parametric amplifier stage) laser providing intense,
ultrashort laser pulses over a wide range of wavelengths for two-color
pump-probe experiments together with the required optics.

3. A multipurpose end-station supporting experiments ranging from
AMO to chemistry, warm dense matter (WDM), surface physics, and
biological and inorganic particle imaging.

In its overall design, the end-station is inspired by the Center for Free
Electron Lasers (CFEL) Multi-Purpose, CAMP instrument (Strüder et al.,
2010), but offers significant additional capabilities, as briefly outlined
below.

Some of the future scientific directions that will be enabled by LAMP
include (1) photoelectron holography to “make a molecular movie,” (2) a
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new class of multiparameter experiments in gas, liquid, and solid mat-
ter, exploring ultrafast dynamics in highly excited matter, and (3) high-
resolution spectrometers that will help to disentangle the formation and
decay of molecular two-side double-core hole states (TSDCH) using a
magnetic bottle detector in order to measure the TSDCH in various
molecules. Visions of the science that will be enabled by x-ray-pump-
x-ray-probe measurements might be extrapolated from first results of
similar VUV-VUV pump-probe experiments at the FLASH and the SCSS
facilities. Among them are the ultrafast tracing of molecular wave-packets
in D+2 which delivered, for the first time, information on the internuclear
distance dependence of VUV photoionization cross sections (Jiang et al.,
2010b) and on the isomerization dynamics of [C2H2]+ cations (Jiang et al.,
2010a). Studies demonstrate time resolutions on the order of the coherence
lengths of the radiation (Pfeifer et al., 2010), pointing to the fascinating
possibility to achieve subfemtosecond time resolution with the LAMP
split-mirror unit at LCLS. In addition to providing a direct measure-
ment of the longitudinal coherence length, information on the transverse
coherence of the LCLS beam can be achieved as well. The ability to
follow electronic wave packet dynamics in molecules with the goal to
perform precision spectroscopy experiments in the time domain through
Fourier analysis of the time-dependent wave-packet motion is also being
explored.
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Strüder, L., Epp, S., Rolles, D., Hartmann, R., Holl, P., Lutz, G., et al. (2010). Large-format,
high-speed, x-ray pnccds combined with electron and ion imaging spectrometers in a
multipurpose chamber for experiments at 4th generation light sources. Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 614(3), 483–496.

Svensson, S., de Brito, A. N., Keane, M. P., Correia, N., Karlsson, L., Liegener, C. M.,
et al. (1992). The n 1s core electron shake-up and the shake-up auger satellite spec-
trum of the N2 molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 25(1),
135–144.

Tarantelli, F. (2006). The calculation of molecular double ionization spectra by green’s
functions. Chemical Physics, 329(1–3), 11–21.

Tashiro, M., Ehara, M., Fukuzawa, H., Ueda, K., Buth, C., Kryzhevoi, N. V., et al. (2010).
Molecular double core hole electron spectroscopy for chemical analysis. The Journal of
Chemical Physics, 132(18), 184302.

Ullrich, J., Moshammer, R., Drner, R., Jagutzki, O., Mergel, V., Schmidt-Bcking, H., et al.
(1997). Recoil-ion momentum spectroscopy. Journal of Physics B: Atomic, Molecular and
Optical Physics, 30(13), 2917.

Wilcox, R., Byrd, J. M., Doolittle, L., Huang, G., & Staples, J. W. (2009). Stable transmission of
radio frequency signals on fiber links using interferometric delay sensing. Optics Letters,
34(20), 3050–3052.

Wolkow, D. M. (1935). ber eine klasse von lsungen der diracschen gleichung. Zeitschrift fr
Physik A Hadrons and Nuclei, 94, 250–260.

Young, L., Kanter, E. P., Krssig, B., Li, Y., March, A. M., Pratt, S. T., et al. (2010). Femtosecond
electronic response of atoms to ultra-intense x-rays. Nature, 466(7302), 56–61.

Yudin, G. L., Patchkovskii, S., Corkum, P. B., & Bandrauk, A. D. (2007). Attosecond photo-
electron interference in the separable coulomb-volkov continuum. Journal of Physics B:
Atomic, Molecular, and Optical Physics, 40(5), F93–F103.

Zavriyev, A., Bucksbaum, P. H., Muller, H. G., & Schumacher, D. W. (1990). Ionization and
dissociation of H2 in intense laser fields at 1.064 µm, 532 nm, and 355 nm. Physical Review
A, 42(9), 5500–5510.



DULOV 06-ch02-009-018-9780123877796 2011/5/27 10:40 Page 19 #11

This page intentionally left blank



AAMOP 10-ch06-291-314-9780123855084 2011/9/26 17:51 Page 291 #1

CHAPTER 6
Generation and Applications
of n-Qubit Hyperentangled
Photon States

Giuseppe Vallonea,b,d and Paolo Matalonib,c

aMuseo Storico della Fisica e Centro Studi e Ricerche “Enrico
Fermi”, Via Panisperna 89/A, Compendio del Viminale, I-00184
Roma, Italy
bDipartimento di Fisica, Università Sapienza di Roma, I-00185
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Abstract In recent years, a number of theoretical and experimental
demonstrations regarding the use of photonic entangled
states based on many qubits, spanning a large size
Hilbert space has been provided. The entanglement of two
particles in more than one degree of freedom, namely
hyperentanglement, is a useful technique which allows to
take full advantage of the possibilities offered by quan-
tum mechanics. Compared to multiphoton entangled states,
hyperentangled states offer important advantages as far
as purity and generation/detection rate are concerned. The
present work is intended to survey the most relevant exam-
ples of hyperentangled multiqubit photon states aimed at the
verification of fundamental tests of quantum mechanics and
the realization of important quantum information protocols.

1. INTRODUCTION

The most distinctive feature of quantum physics is the possibility of entan-
gling different qubits. First recognized by Erwin Schroedinger as “the
characteristic trait of quantum mechanics,” quantum entanglement rep-
resents the key resource for modern quantum information. It derives
from “subtle” nonlocal correlations between the parts of a quantum sys-
tem and combines three basic structural elements of quantum theory, i.e.,
the superposition principle, the quantum non-separability property, and
the exponential scaling of the state space with the number of partitions.
This unique resource can be used to perform computational and crypto-
graphic tasks otherwise impossible with classical systems. An entangled
state shared by two or more separated parties is a valuable resource
for fundamental quantum communication protocols, such as quantum
teleportation, which is probably the most spectacular demonstration of
quantum entanglement. Another important aspect of entangled states
is represented by the possibility of performing fundamental tests of
quantum nonlocality.

Quantum optics represents an excellent experimental test bench for
various novel concepts introduced within the framework of quantum infor-
mation theory. Quantum states of photons, generally produced by the
spontaneous parametric down-conversion (SPDC) process, may be easily
and accurately manipulated using linear and nonlinear optical devices and
measured by efficient single-photon detectors. Photonic qubits represent
the typical carrier of quantum information and can be distributed over
long distances, either in freespace or in low-loss optical fibers.

In the typical conditions of SPDC (see Section 3) activated by a contin-
uous wave laser pump beam, no more than one photon pair is generated
time by time. This corresponds to operate with qubits belonging to a 2× 2
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Hilbert space. On the other hand, many quantum information tasks and
fundamental tests of quantum mechanics, such as the simulation of prop-
erties of quantum systems, the realization of quantum algorithms with
increasing complexity, or the investigation of the quantum world at a
mesoscopic level, deal with a large number of qubits. In order to take
full advantage of the possibilities offered by quantum mechanics, more
qubits must be added to quantum states. For example, the larger the
number of qubits, the stronger the violation of Bell inequalities and the
computational power of a quantum processor.

Two approaches may be followed to increase the number of qubits. The
first one consists of increasing the number of entangled particles (Kiesel
et al., 2005; Leibfried et al., 2005; Lu et al., 2007; Prevedel et al., 2007;
Sackett et al., 2000; Walther et al., 2005a,b; Zhao et al., 2003). In this way,
multiqubit entangled states are created by distributing the qubits between
the particles so that each particle carries one qubit. This is the way by
which four-qubit graph states with atoms (Sackett et al., 2000) and pho-
tons (Kiesel et al., 2005; Prevedel et al., 2007; Walther et al., 2005a,b; Zhao
et al., 2003), and six-qubit graph states with atoms (Leibfried et al., 2005)
and photons (Lu et al., 2007) were realized.

A second strategy consists of encoding more than one qubit in each
particle, by exploiting different degrees of freedom (DOFs) of the pho-
ton (Barbieri et al., 2005; Barreiro et al., 2005; Chen et al., 2007; Gao et al.,
2010a; Vallone et al., 2008a, 2007). This has been used to create two-photon
four- and six-qubit graph states (Ceccarelli et al., 2009a; Chen et al., 2007;
Gao et al., 2010b; Vallone et al., 2008a, 2007) and up to five-photon ten-
qubit graph states (Gao et al., 2010a). The entanglement of two particles
in different DOFs corresponds to so-called hyperentangled (HE) state
(Kwiat, 1997).

2. HYPERENTANGLEMENT

Two systems A and B are entangled if the (pure) state of the total system
|ψ〉AB is not separable, i.e., if it cannot be written as a product of two states
belonging to A and B:

|ψ〉AB 6= |χ〉A ⊗ |ϕ〉B (1)

In case of mixed states ρAB of the composite system A⊗ B, the previous
relation generalizes to ρAB 6=

∑
k pkρ

A
k ⊗ ρ

B
k , where pk are probabilities and

ρA
k ’s (ρB

k ’s) are generic density matrix of the system A (B).
Quantum entanglement has no classical analogue. This unique resource

can be used to perform tasks that are impossible with classical systems.
An entangled state shared by two or more separated parties is a key
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element in many quantum information (QI) protocols, such as quantum
computing (Raussendorf & Briegel, 2001), quantum cryptography (Ekert,
1991), quantum dense coding (Bennett & Wiesner, 1992), and quantum
teleportation (Bennett et al., 1993). The latter protocol was realized by two
different optical approaches in Roma and Innsbruck (Boschi et al., 1998;
Bouwmeester et al., 1997). By using entangled states, we can deeply inves-
tigate the nonlocal properties of the quantum world as first pointed out by
Einstein et al. (1935) and successively by Bell (1964).

The simplest examples of entangled states are given by the so-called
“Bell states”:∣∣8±〉 = 1

√
2
(|0〉A |0〉B ± |1〉A |1〉B),

∣∣9±〉 = 1
√

2
(|0〉A |1〉B ± |1〉A |0〉B) (2)

representing an entangled basis for a two-qubit system.
In the framework of quantum optics, two-photon Bell states have been

realized by different approaches. The two qubits may be encoded in a
particular DOF of the particles, such as polarization (Kwiat et al., 1995),
momentum based on linear (Rarity & Tapster, 1990), orbital (Mair et al.,
2001), or transverse (Langford et al., 2004) spatial modes, energy-time
(Franson, 1989), and time-bin (Brendel et al., 1999).

As mentioned earlier, by entangling two particles in different DOFs,
it is possible to generate hyperentangled states. A more formal defini-
tion of HE state is the following. Let us consider two photons A and B
and n independent DOFs {aj} and {bj}, with j = 1, . . . n. Each DOF spans
a 2-dimensional Hilbert space (i.e., it is equivalent to a qubit) with basis
{|0〉aj

, |1〉aj
} ({|0〉bj

, |1〉bj
}) for particle A (B). In this way, each particle encodes

exactly n qubits. A state |ϕ〉 is separable in the hyperentangled sense if it
satisfies the following condition:

∃j such that |ϕ〉 = |ϕ1〉ajI |ϕ2〉bjJ (3)

where {I,J } represents a generic bi-partition of the set Tj ≡ {a1, b1, . . . ,
an, bn}\{aj, bj}, so that I ∪ J = Tj and I ∩ J = ∅.

Definition: A (mixed) state is hyperentangled in n degrees of freedom
if it is separately entangled in each of them and cannot be written as a
mixture of states satisfying Equation (3).

In order to experimentally detect hyperentanglement, we can develop
the same method used for entanglement that corresponds to measure a
(hyper-)entanglement witness. A witness W is a hermitian operator whose
expectation value is nonnegative for any separable state, whereas it is neg-
ative for an entangled state (Horodecki et al., 1996; Terhal, 2000). By mea-
suring a negative value of 〈W〉, the presence of entanglement is demon-
strated by only few local measurements. The method can be generalized
for HE states (Vallone et al., 2008c). It consists in verifying the presence
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of entanglement for each DOF and in measuring a hyperentanglement
witness which is positive for any state that can be written as a mixture
of states satisfying Equation (3) and is negative for some hyperentangled
states.

3. HYPERENTANGLED/MULTIDOF PHOTON STATES:
EXPERIMENTAL REALIZATIONS

The techniques commonly used to generate entangled photons exploit the
spontaneous parametric down-conversion process, as mentioned.

When an intense pump laser beam (p) shines a nonlinear birefringent
crystal, pairs of photons, referred as idler (i) and signal (s), are proba-
bilistically generated from the crystal. The probability of emitting pairs
of photons is maximized when the following conditions are satisfied:

phase-matching: Ekp =
Eki +
Eks, energy matching: ωp = ωi + ωs. (4)

Phase-matching is usually obtained by exploiting the birefringence of
the nonlinear crystal. More precisely, a SPDC two-photon state may be
expressed as (Kolenderski et al., 2009)

N
∫

d2ksd
2kidωsdωsAp(ks + ki,ωs + ωi)sinc

(
1kzL

2

)
|ks,ωs〉 |ki,ωi〉 . (5)

In the previous equations, ki and ks are the transverse momentum coordi-
nates, |k,ω〉 = a†(k,ω) |0〉, Ap(k,ω) is the pump profile in the momentum–
frequency space, N is normalization constant, and L is the crystal length.
1kz represents the (longitudinal) phase mismatch 1kz(ki, ks,ωi,ωs) =

kpz(ki + ks,ωi + ωs)− ksz(ks,ωs)− kiz(ki,ωi). The longitudinal component

of momentum is given by kz(k,ω) =
√[

n(ω)ω
c

]2
− k2. In usual conditions,

the pump wavefunction is assumed to be a Gaussian function Ap(k,ω) =

C0e−
w2

0
4 k2

p e−
τ2
p
4 (ω−ωp)

2 , with τp and w0, respectively, representing the coherence
time and the beam waist of the pump laser beam. The phase-matching
condition is satisfied when 1kz = 0. Two kinds of phase-matching are
commonly adopted, depending on the extraordinary (e) or ordinary (o)
polarization of the pump and of the SPDC photons:

Type-I: e→ o+ o, Type-II: e→ e+ o. (6)

In the first case, assuming degenerate generated photons, ωi = ωs, the
phase-matching is satisfied for all the wavevectors Eki and Eks belonging
to the external surface of a single emission cone. With Type-II phase-
matching, the two degenerate photons are emitted over two different,
mutually crossing, emission cones, see Figures 1 and 2.
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Figure 1 Type-I polarization entanglement sources of degenerate photons.
(a) “Kwiat’s” source consists of two nonlinear crystals with orthogonal optical axes
shined by a 45◦ linearly polarized (|H〉 + |V 〉) laser beam. The first (second) crystal
generates the state |HH〉 (|VV 〉). (b) In the “Roma” source a vertically (|V 〉) polarized
UV laser beam passes two times through a Type-I nonlinear crystal with vertical
optical axis. A quarter wave plate QWP transforms the |HH〉 SPDC photons into |VV 〉.
The spherical mirror reflects both the pump beam and the SPDC photons.

3.1 Entanglement in a Single Degree of Freedom

Polarization entanglement - Let us now describe the polarization entangle-
ment based on Type-I phase-matching. Typically, two main setups are
used in experiments with Type-I phase-matching, the “Kwiat’s” source
(Kwiat et al., 1999) and the “Roma” source (Barbieri et al., 2004; Cinelli
et al., 2005a, 2004; Giorgi et al., 2003). The former uses two identical crys-
tals with orthogonal optical axes and a single passage of the laser beam
through the crystals. The latter uses a single crystal and a double passage
of the laser beam after reflection on a spherical mirror. Both sources typ-
ically generate the polarization entangled state |8±〉 with |0〉 → |H〉 and
|1〉 → |V〉 (see Figure 1 for details). With Type-II phase-matching, two
orthogonally polarized photons are emitted over two different cones. The
|9±〉 state can be generated (Kwiat et al., 1995) along the two directions in
which the two cones intersect (see Figure 2).

3.1.1 Path-Position Entanglement

Let us consider a Type-I crystal and a Gaussian pump profile with a long
value of τp. By assuming monochromatic SPDC photons (satisfying ωi +

ωs = ωp), the two-photon state may be written as

|9〉 ∝

∫
d2ksd

2kie−
w2

0
4 (ks+ki)

2
sinc

(
1kzL

2

)
|ks〉 |ki〉 . (7)

This wavefunction shows that the two correlated photons are emitted over
opposite directions of the cone surface. The different events correspond-
ing to different emission directions are coherent because of the transverse
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H-cone

Entangled

Photons

V-cone

UV beam

Figure 2 Type-II source. The nonlinear crystal is excited by a vertically polarized UV
laser beam. The intersections of the two cones identify the directions on which the
polarization entangled degenerate photons are generated.

coherence of the pump profile. By selecting different pairs of correlated
emission modes with single mode fibers (Rossi et al., 2009; Żukowski et al.,
1997) or a holed mask (Cinelli et al., 2005b), it is possible to generate path
(or linear momentum) entanglement. By Fourier transforming the two-
photon state, it is possible to measure their transverse spatial correlation.
By a different scheme, each photon is forced to pass through two slits that
correspond to two orthogonal states (Neves et al., 2005). Transverse spa-
tial correlations are controlled by manipulating the pump laser beam. By
making the biphotons to pass only through symmetrically opposite slits,
entangled states are generated.

3.1.2 Energy-Time Entanglement

A further available photon DOF is given by the conjugate variables energy
and time. Let us define |ω〉 = a†

ω
|0〉 and consider only two definite spatial

modes (as done by selecting the radiation with two single mode fibers)
and a Gaussian pump profile. In the limit of perfect phase-matching
and assuming constant refractive indices no(ω) ∼ no(ω0), the (normalized)
SPDC two-photon state is expressed as (here we set the emission time
t0 = 0):

|9〉 =

√
τpT
π

∫
dωsdωi e−

T2
4 (ωs−ωi)

2
e−

τ2
p
4 (ωs+ωi−ωp)

2
|ωs〉 |ωi〉 (8)

with T = no(ω0)w̄θ
c , w̄ related to the beam waist of the pump and the

selected photons and θ corresponding to the emission angle (Kolender-
ski et al., 2009). By defining |t〉 = 1

√
2π

∫
dωe−iωt |ω〉 the SPDC state may be

expressed as

|9〉 =

√
1

πTτp

∫
dt1dt2 e−

(t1−t2)
2

4T2 e
−
(t1+t2)

2

4τ2
p eiω0(t1+t2) |t1〉 |t2〉 (9)
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Figure 3 Experimental scheme for the measurement of energy-time entanglement.
Short and long paths are labeled as S and L, respectively.

For T 6= τp, the SPDC state is entangled in energy (or time). When τp � T,
frequency anticorrelations and emission time correlations are observed:
in this case, the photons are emitted at the same time, and emission events
occurring at different times are coherent within τp. A scheme invented
by Franson (Franson, 1989) enables the measurement of energy-time
entanglement (see Figure 3). For each photon, it consists of an unbal-
anced Mach–Zehnder interferometer with a short (S) and a long (L) arm.
If cτp � L− S, interference is observed when the two photons are detected
in coincidence since it is not possible to determine if they followed both
the short or the long paths. When used for nonlocality experiments, the
Franson’s scheme suffers from additional loopholes, that may be removed
by using a modified version of the setup (Cabello et al., 2009; Lima et al.,
2010).

3.1.3 OAM-Angle Entanglement

Besides spin, photons possess a further angular momentum, called orbital
angular momentum (OAM). In the paraxial approximation, photons
described by a mode function expressed by a Laguerre-Gaussian mode∣∣`, p

〉
are eigenstates of the OAM operator with eigenvalues `~ (` = 0,

±1,±2, . . .) (Allen et al., 1992). The integer quantum number p is related
to the radial profile of the beam and the integer `, referred to as the
topological winding number, describes the helical structure of the wave
front around a wave front singularity. The two-photon SPDC state may be
expressed as (Torres et al., 2003a)

|9〉 =
∑
`s ,ps

∑
`s ,ps

C`s ,`i
ps ,pi

∣∣`s, ps

〉 ∣∣`i, pi

〉
, (10)

enlightening the possible entanglement in the OAM degree of freedom. By
using the relationship between OAM and its conjugate variable, angular
position (Barnett & Pegg, 1990), it is possible to observe entanglement in
the angular domain (Jha et al., 2010).
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Under collinear phase-matching conditions, when the pump beam is
a
∣∣`0, p0

〉
mode, the two-photon state at the output of the nonlinear crys-

tal contains only terms such that `s + `i = `0. In many OAM applications,
one considers only modes with pi = ps = 0. In this subspace, when the
pump beam is a Gaussian TEM00 beam, the two-photon state is expressed
as (Di Lorenzo Pires et al., 2010)

|9〉 =

+∞∑
`=−∞

√
P` |`〉s |−`〉i (11)

where Pl represents the probability of creating a signal photon with orbital
angular momentum ` and an idler photon with −`. The state of Equa-
tion (11) represents an OAM entangled state. It is worth stressing that
the OAM space is infinite dimensional. In typical QI experiments, qubits
are encoded into subspaces of the whole Hilbert space (Nagali et al.,
2009a; Torres et al., 2003b; Vaziri et al., 2003). To manipulate the OAM
degree of freedom, several optical tools, such as computer-generated holo-
grams (Mair et al., 2001), Dove’s prisms, cylindrical lenses, spiral plates
(Oemrawsingh et al., 2004), and q-plates (Nagali et al., 2009b), may be
exploited.

3.2 Hyperentanglement in Different Degrees of Freedom

The above described techniques may be combined to generate photon
states that are entangled in more than one DOF, so-called hyperentangled
states. The first proposal of energy-momentum-polarization HE state with
a Type-II phase-matching was given in 1997 (Kwiat, 1997). The first exper-
imental realizations of HE states were provided in 2005 (Barbieri et al.,
2005; Barreiro et al., 2005; Cinelli et al., 2005a; Yang et al., 2005). In the fol-
lowing, we will describe the different kinds of hyperentangled states so
far realized.

3.2.1 Polarization-Momentum Hyperentanglement

By using the “Roma” source of polarization entanglement, the extension
to path entanglement is straightforward: the two polarization entangled
photons (labeled as A and B) are emitted over two symmetric directions
belonging to the external surface of the degenerate cone. By selecting with
a holed mask two pairs of correlated modes, due to the spatial coher-
ence property of the source, the photons are also entangled in path (see
Figure 4a). Precisely, if |r〉 and |`〉 represent the two modes in which each
photon can be emitted, the hyperentangled state may be written as:

1
√

2

(
|H〉A|V〉B + |V〉A|H〉B

)
⊗

1
√

2

(
|r〉A|`〉B + |`〉A|r〉B

)
. (12)
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Figure 4 Two schemes for the generation of polarization-momentum hyperent-
angled state. The figure of scheme b is reprinted with permission from Yang et al.
(2005). Copyright 2005 of the American Physical Society.

This state encodes four qubits into two photons (Barbieri et al., 2005;
Cinelli et al., 2005a). With a larger number of optical paths, more qubits
may be added to the state. Precisely, with four pairs of modes, a six-qubit
two-photon hyperentangled state can be generated (Vallone et al., 2009). In
order to demonstrate that the prepared state is a genuine hyperentangled
state, a hyperentanglement witness was measured (Vallone et al., 2009).
A generalization of the above described scheme including energy-time has
been proposed for the preparation of six-qubit polarization-momentum-
time entanglement (Ceccarelli et al., 2009b).

An alternative approach to realize polarization-momentum hyper-
entanglement exploits a double passage of pump beam in a Type-II
nonlinear crystal (Simon & Pan, 2002; Yang et al., 2005). The Type-II phase-
matching allows to create polarization entanglement. The two possible
emissions (forward or backward) generate momentum entanglement. The
|r〉 and |`〉 modes are identified with the two possible directions in which
each photon can be emitted (see Figure 4b)).

3.2.2 Polarization-OAM-Time

Using the “Kwiat’s” source of polarization entanglement and operating
with a long pump coherence time, the following polarization-OAM-time
hyperentangled state was generated (Barreiro et al., 2005):

(|HH〉 + |VV〉)︸ ︷︷ ︸
polarization

⊗ (|−1,+1〉 + α |0, 0〉 + |+1,−1〉)︸ ︷︷ ︸
OAM

⊗ (|SS〉 + |LL〉)︸ ︷︷ ︸
time

. (13)

In the previous equation, |±1〉 and |0〉 represent the OAM eigenstates and
α describes the OAM spatial-mode balance prescribed by the source and
selected via the mode-matching conditions. Figure 5 shows the exper-
imental setup to generate and measure the quantum state. It is worth



AAMOP 10-ch06-291-314-9780123855084 2011/9/26 17:51 Page 301 #11

Generation and Applications of n-Qubit Hyperentangled Photon States 301

poln

poln

smfholo

C

qwp hwp pol

BBO

mode-matching lenses

qwpdec LC

(a)

(d)(c)(b)

e-t

MeasurementSource

Pump laser

spa e-t poln

e-t

spa

spa

Figure 5 Source of polarization-OAM-time hyperentanglement. Figure reprinted with
permission from Barreiro et al. (2005). Copyright 2005 of the American Physical
Society.

noting that the measurement apparatus in the figure does not allow to
observe simultaneously polarization and energy entanglement.

Similar schemes were adopted for the generation of polarization-OAM
(Barreiro et al., 2008) or polarization-time (Schuck et al., 2006) hyperentan-
gled states.

3.3 MultiDOF States and Hybrid Entanglement

The use of different DOFs opens the possibility to create general mul-
tiqubit states, here named multiDOF states. These states involve more
that one degree of freedom, and in general, they are not hyperentangled
in the sense of the definition given in Section 2. The difference between
hyperentangled (HE) and general multiDOF state is based on the different
amount of entanglement between the particles, maximized in HE states.
As a simple example, by using a polarization entangled photon pair and
entangling the path DOF with the polarization of a single photon, a three-
qubit entangled state is generated, but the entanglement between the two
particles is not increased. On the contrary, with HE states, the amount
of entanglement between the two particles grows with the number of
independent DOFs added to the state.

Another term, so-called hybrid entanglement, is also used in the litera-
ture to refer to a two-qubit entanglement between two different degrees
of freedom of two particles (Barreiro et al., 2010; Ma et al., 2009; Nagali &
Sciarrino, 2010; Neves et al., 2009).

Different experiments were performed with multiDOF states. By using
polarization and OAM of a single photon, mutually unbiased bases of
ququarts were generated (Nagali et al., 2010). A 10-qubit entangled state
was created by entangling the path with the polarization of five photons
initially into a GHZ polarization state, see Figure 6 (Gao et al., 2010a).
The multiDOF approach was essential in the teleportation experiment
performed in Rome in 1998 (Boschi et al., 1998). The used resource for
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Figure 6 Scheme used for the generation and the measurement of the five-photon
10-qubit entangled state. Figure reprinted with permission from Gao et al. (2010a).
Copyright 2010 of MacMillan.

teleporting an unknown qubit was represented by a hybrid entangled
state of two photons: qubit 1 was encoded in the polarization of particle
A and qubit 2 in the path DOF of particle B, whereas the unknown qubit
3 was encoded in the particle B polarization. Qubit 3 was teleported into
the polarization of particle A by a Bell measurement performed between
qubits 2 and 3.

4. HYPERENTANGLEMENT FOR QUANTUM INFORMATION

4.1 Quantum Nonlocality Tests

Hyperentanglement allows to generalize the Greenberger–Horne–
Zeilinger (GHZ) theorem (Greenberger et al., 1989) with only two entan-
gled particles. The GHZ theorem, sometimes referred as “Bell’s theorem
without inequalities” or “All-Versus-Nothing (AVN)” proof of Bell’s theo-
rem, shows a contradiction between quantum mechanics (QM) and local
realistic theories even for definite predictions. The quantum nonlocality
can thus, in principle, be manifested in a single run of a certain measure-
ment. Although the GHZ argument requires at least three particles and,
consequently, three spacelike separated observers, with hyperentangle-
ment an AVN nonlocality proof may be derived with only two photons
(Chen et al., 2003). The contradiction between QM and local realistic
theories arises from perfect correlations. On the other hand, in a real
experiment, perfect correlations and ideal measurement devices are prac-
tically impossible. To face this difficulty, it is possible to introduce a
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Bell–Mermin inequality. Hence, an operator O, whose expectation value
on the hyperentangled state of Equation (12) is 〈O〉 = 9, is defined. How-
ever, local hidden variable (LHV) theories predict an upper bound on the
observed values of O, 〈O〉LHV ≤ 7, which is in contradiction with quan-
tum mechanical predictions. The experimental realizations of Cinelli et al.
(2005b); Yang et al. (2005) show that, under the fair sampling assumption,
the inequality is violated. Stronger AVN inequalities can be found with
four (Cabello, 2005; Vallone et al., 2007) and six qubits (Ceccarelli et al.,
2009a) encoded in two photons.

Hyperentanglement is also crucial to demonstrate the Mermin’s
growing-with-size quantum nonlocality effect, predicting that the ratio
between the quantum prediction and the classical bound grows as in
the case of n-qubit systems prepared in Greenberger–Horne–Zeilinger
(GHZ) states (Mermin, 1990). Under some assumptions, hyperentangle-
ment allows us to replace 2n two-level systems by two 2n-level systems.
This significatively reduces the decoherence problems, simplifies the task
of achieving spacelike separation between measurements, and dramat-
ically increases the efficiency in detecting photons. By using the state
given in Equation (12), it was demonstrated that the violation of the Bell
inequalities grows exponentially with the number of the internal degrees
of freedom (Barbieri et al., 2006; Cabello, 2006).

One of the main limitations of the nonlocality tests performed with
photons is represented by the so-called “detection loophole”: if the par-
ticle detection efficiency is lower than a certain threshold level, the unde-
tected events can be exploited by a local model to reproduce the quantum
predictions (Pearle, 1970; Santos, 1992). For two-qubit Bell inequalities, the
threshold detection efficiency is 82.8% for two particles in a maximally
entangled state and can be lowered down to 66.7% by using partially
entangled states (Eberhard, 1993). Qudits (i.e., d-level systems with d > 2)
or hyperentangled states offer a significant advantage over qubits in view
of closing the detection loophole. It has been recently shown that, by using
hyperentanglement with two DOFs, a threshold efficiency level of 61.8%
can be tolerated (Vértesi et al., 2010). Massar (2002) has also demonstrated
that, by increasing the dimension of the entangled state, lower bounds
decreasing exponentially with the dimension of the Hilbert space can be
obtained.

4.2 Bell State Analysis and Dense Coding

Bell state analysis, i.e., the complete and deterministic discrimination
between the four orthogonal and maximally entangled “Bell states” of
Equation (2), are central in many quantum information applications and
processing, such as quantum dense coding (Bennett & Wiesner, 1992);
(Mattle et al., 1996), teleportation (Bennett et al., 1993; Boschi et al., 1998;
Bouwmeester et al., 1997), entanglement swapping (Bennett et al., 1993;
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Jennewein et al., 2001; Pan et al., 1998; Sciarrino et al., 2002), cryptography
(Ekert, 1992; Gisin et al., 2002), quantum fingerprinting (Buhrman et al.,
2001; Horn et al., 2005), and direct characterization of quantum dynamics
(Mohseni & Lidar, 2006). However, it is not possible to completely and
deterministically discriminate between the four states using only linear
operations and classical communication. Moreover, the optimal probabil-
ity of success in these cases is only 50% (Calsamiglia, 2002; Calsamiglia &
Ltkenhaus, 2000; Ghosh et al., 2001; Lütkenhaus et al., 1999; Mattle et al.,
1996; Ursin et al., 2004; Vaidman & Yoran, 1999; van Houwelingen et al.,
2006).

By working in a larger Hilbert space, i.e., by employing hyperentangled
states, a complete analysis of Bell states with only linear optical elements
can be achieved (Barbieri et al., 2007; Kwiat & Weinfurter, 1998; Schuck
et al., 2006; Walborn et al., 2003). The method adopting polarization-
path hyperentanglement is explained as follows. Let us consider the
four hyperentangled states of the form |4〉 = |5〉π ⊗ |ψ+〉k, where |5〉π
is one of the four polarization Bell states of Equation (2) and |ψ+〉 =

1
√

2
(|r`〉 + |`r〉). For a given momentum state |ψ+〉, the discrimination of

the four hyperentangled states is equivalent to distinguish among the four
Bell polarization states. The method is based on the following equations:

|8±〉|ψ+〉 =
1
2

[±|σ+〉A|τ±〉B ∓ |σ−〉A|τ∓〉B + |τ+〉A|σ±〉B − |τ−〉A|σ∓〉B],

|9±〉|ψ+〉 =
1
2

[±|σ+〉A|σ±〉B ∓ |σ−〉A|σ∓〉B + |τ+〉A|τ±〉B − |τ−〉A|τ∓〉B],
(14)

which allows to express the four possible states |5〉π |ψ+〉k in terms of
the single-photon Bell basis |σ±〉 = 1

√
2 [|H〉|`〉 ± |V〉|r〉] , |τ±〉 = 1

√
2 [|V〉|`〉±

|H〉|r〉]. Each product state on the r.h.s. of Equation (14) identifies unam-
biguously one of the states |4〉. To distinguish among the four Bell
polarization states, it is sufficient to measure each particle into the single-
photon Bell states. The experimental probabilities corresponding to joint
single-photon Bell state detections are shown in Figure 7. Projection into
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Figure 7 Experimental probabilities showing the complete Bell state analysis of the
polarization states

∣∣8±〉 and
∣∣9±〉. Relative errors are typically 2% for the maxima and

5% for the other terms. Figure reprinted with permission from Barbieri et al. (2007).
Copyright 2007 of the American Physical Society.
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|τ±〉 and |σ±〉 is achieved by implementing a controlled-Not (CNOT) gate
between the polarization and the momentum of each particle that trans-
forms them into separable states. By using a half wave plate (with the
optical axis oriented at 45◦ with respect to vertical direction) on the |`〉
mode, Barbieri et al. (2007) were able to implement a CNOT gate with
momentum and polarization playing the role of control and target, respec-
tively. The role of polarization and momentum is exchanged using a PBS
to implement the CNOT (Walborn et al., 2003). A similar scheme with
polarization-time HE state was implemented by Schuck et al. (2006).

Bell state analysis is crucial for dense coding (Bennett & Wiesner, 1992),
one of the fundamental QI protocols. It works as follows: two observers,
Alice and Bob, share an entangled pair and each observer possesses a par-
ticle. One observer, say Bob, can encode a two-bit message by applying
one of four unitary operations on his particle, which he then transmits
to Alice. Alice decodes the message by performing a Bell state analy-
sis. Since a deterministic discrimination of all four Bell states with linear
optics is not possible, Bob can only send to Alice three of four bits, reduc-
ing the attainable capacity from 2 to log2 3 ' 1.585 bits. As explained,
entanglement in an extra-degree of freedom enables the complete and
deterministic discrimination of all Bell states. Using a polarization-OAM
hyperentangled state, a dense-coding experiment breaking the conven-
tional linear-optics threshold was reported (Barreiro et al., 2008) (see
Figure 8).

4.3 Quantum Computing

Hyperentanglement or, in general, the possibility of encoding more qubits
in different DOFs of the same particle is a useful tool for quantum
computation (QC). The realization of multiqubit states can be achieved
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with relevant advantages in terms of generation rate and state fidelity,
compared with multiphoton states. Indeed, by increasing the number
of qubits encoded in different DOFs of the same particle, the overall
detection efficiency, and hence the repetition rate of detection is constant,
since it scales as ηN (N being the number of photons and η the detec-
tor quantum efficiency). Furthermore, an entangled state built on a larger
number of particles is in principle more affected by decoherence because
of the increased difficulty of making photons indistinguishable. However,
it is worth to remember that increasing the number n of involved DOFs
implies an exponential requirement of resources. For instance, 2n modes
must be exploited to encode n qubits into a photon. However, according to
the current optical technology, working with few DOFs (such as n = 2, 3, 4)
offers still more advantages than working with a corresponding number
of photons, because of the higher repetition rate and state generation and
detection efficiency. On a medium-term timescale, a hybrid approach to
QC (i.e., multiDOF and multiphoton states) may represent a convenient
solution to overcome the structural limitations in generation and detection
of quantum photon states.

Several quantum algorithms have been realized by exploiting multi-
DOF states in the one-way framework of QC. Cluster states are particular
quantum states associated to a graph with N vertex and L links. A qubit in
the state |+〉 = 1

√
2
(|0〉 + |1〉) is associated to each vertex while a Controlled-

Z (CZij) gate: |0〉i 〈0| 11j + |1〉i 〈1| (σz)j is associated to each link. Cluster
states represent the basic resource for the realization of a quantum com-
puter operating in the one-way model. In the standard QC approach, any
quantum algorithm can be realized by a sequence of single-qubit rotations
and two-qubit gates on the physical qubits. Deterministic one-way QC is
based on the initial preparation of the physical qubits in a cluster state,
followed by a temporally ordered pattern of single-qubit measurements
and feed-forward operations. In this way, nonunitary measurements on
the physical qubits correspond to unitary gates on the logical qubits.

a1

a2

a3 b3

b2

b1 a1

a2

a3 b3

b2

b1

ClusterHE state

Figure 9 On the left of the arrow is the graph corresponding to a six-qubit
hyperentangled state and on the right a possible transformation into a more general
cluster state. ai (bi ) are DOFs of particle A (B).
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algorithm shown in b. The output of the algorithm is encoded in qubits 2, 4, and 6.

In the framework of cluster states, hyperentangled states correspond
to a graph with pairwise connected vertices (see Figure 9). By applying
suitable CZ operations between qubits belonging to the same particle,
a HE state can be transformed into a more general cluster state. For exam-
ple, with path {|`〉 , |r〉} and polarization {|H〉 , |V〉} qubits, in Vallone et al.
(2007), the CZ gate has been implemented by using a half wave plate with
vertical optical axis on photon mode |r〉. With two-photon four-qubit clus-
ter states built from polarization-path HE states, the Grover algorithm
and a CZ gate (Chen et al., 2007), a generic single qubit rotation with
active feed-forward (Vallone et al., 2008a), a CNOT gate and the Deutsch
algorithm (Vallone et al., 2008b,c) were implemented.

More complex algorithms have been realized with six-qubit cluster
states. A CNOT gate with more general input qubits was implemented
by Gao et al. (2010b); Vallone et al. (2010b). Moreover, Vallone et al.
(2010a) presented an all-optical implementation of the Deutsch–Jozsa (DJ)
algorithm for n = 2 bits (see Figure 10). The DJ algorithm allows to dis-
criminate in one run if a boolean n-bit function f is constant or balanced
(i.e., it takes the value 0 on half inputs and the value 1 on the remaining
halves). Classically, 2n−1

+ 1 runs of the algorithm are necessary to deter-
ministically solve the problem. At variance with the simple case n = 1, the
DJ algorithm allows to take advantage of the exponential growing of the
computational speed-up for increasing values of n. The correct output is
identified at a frequency of almost 1 kHz without feed-forward, a result
that overcomes by several orders of magnitude what is usually achieved
with a six-photon cluster state created by SPDC.

HE states can be also useful for quantum simulation. By a two-
photon polarization-path hyperentangled state, a simulation of deco-
herence on a fou-qubit (phased) Dicke state was realized (Chiuri
et al., 2010). Precisely, it was possible to model the following decoher-
ence channel ρ →

∑4
j=1 BjρB†

j where B1 = (1− q2)11, B2 =
√

q2(1− q2)Y1Y2,
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Figure 11 Experimental values of the witnessW and the bound on Er as a function
of q2. Continuous (black) and dotted (red) lines represent the predicted curves.

B3 =
√

q2(1− q2)Y3Y4, and B4 = q2Y1Y2Y3Y4 and the parameter q2 repre-
sents the amount of noise introduced in a controlled way into the state.
A symmetric four-qubit Dicke state with two excitations is the equally
weighted superposition of all permutations of 4-qubit product states with
two logical 1’s and two logical 0’s. A witness operator W for different
values of q2 was measured, and the corresponding results are shown
in Figure 11. The continuous black curve corresponds to the expected
behavior for the generated state. It is also possible to provide a lower
bound on the random robustness of entanglement Er (Eisert et al., 2007),
Er(ρ) ≥ |〈W〉exp|. The bounds on Er for different values of q2 are also shown
in Figure 11.

Wilde and Uskov (2009) proposed a linear-optical implementation of
quantum error-correcting code by using hyperentanglement. The code is
able to correct “bit-flip” errors.

4.4 Purification

The entanglement purification protocol (Bennett et al., 1996) allows to gen-
erate (almost) maximally entangled pairs from a larger number of less
perfectly entangled pairs using only local operations and classical com-
munication. It is essential in the case of two particles transmitted through
a noisy channel and then affected by decoherence. Therefore, simple and
precise implementations of entanglement purification is fundamental for
many QI applications.

By using polarization-path hyperentangled photon, it is possible to
purify the polarization entanglement (Simon & Pan, 2002; Cialdi et al.,
2010; Sheng et al., 2008; Sheng & Deng, 2010). The first scheme, proposed
in Simon and Pan (2002) and realized in Pan et al. (2003), is shown in
Figure 12. For a single photon pair, the idea is the following: by using
on each side of the CNOT operations, implemented by PBSs between
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Figure 12 Proposed scheme for the realization of hyperentanglement assisted
polarization purification protocol. Figure reprinted with permission from Simon and
Pan (2002). Copyright 2002 of the American Physical Society.

path and polarization qubits, it is possible to purify the polarization
entanglement by exploiting the path entanglement. Precisely, when the
two photons are detected on modes a1 and b1, all the bit-flip errors in
polarization are purified. The protocol works also in the case of four pho-
ton generation (i.e., when the pump beam peak intensity is sufficiently
large). In this case, the spin-flip purification succeeds when one photon is
detected in each of the four spatial modes behind the PBSs.

5. CONCLUSIONS

Hyperentangled photon states built on multiple degrees of freedom are
a useful resource in quantum information and computation and for
advanced fundamental tests of quantum mechanics. In this work, we
have presented an overview of the main properties and some of the most
important examples of application of such states. The advantages derived
from the use of hyperentangled states mainly reside on the possibility of
engineering and detecting at a relatively high rate multiqubit entangled
states that are more pure than multiphoton states. The hyperentangled
states based on two photons realized till now encode a maximum of six
qubits. Multiqubit photon states spanning a larger size Hilbert space may
be obtainable in the near future by adding to the previous ones a larger
number of resources and, possibly, using at the same time a larger number
of photons.

In this work, we have seen that the generation of multidegree of
freedom hyperentangled photon states is affected by the non-scalability
issue when the number of DOFs becomes large (≥5). However, accord-
ing to the current technology based on spontaneous parametric down-
conversion and avalanche photodetectors of limited quantum efficiency,
the hyperentanglement opens the path to new objectives more ambitious
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than those achievable with multiphoton states. In order to increase the
number of involved photons or DOFs, it is necessary to build complex
interferometers. The actual technology adopted to achieve this goal, based
on bulk optics, suffers from several limitations, such as large physical
size and low phase stability of the optical setup. The emerging strategy
allowing to overcome these limitations is currently represented by the
integrated waveguide technology (Marshall et al., 2009; Politi et al., 2008;
Sansoni et al., 2010; Smith et al., 2009).
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Abstract We review the concept and applications of a semiclassical
(ε-classical or pseudoclassical) approximation to the resonant
dynamics of an atom “kicked” by a pulsed, periodic potential.
This powerful method allows us to derive analytical results
in the deep quantum limit of the kicked rotor. Additionally,
classical phase space portraits may be used to represent the
dynamics even though the system is fundamentally quantum
mechanical. The technique has been successfully adapted
for systems including noise and decoherence, as well as
systems for which the initial state is a trivial quantum super-
position (leading to directed transport at quantum resonance).
For almost a decade, theoretical investigations and exper-
imental investigations have been proceeding hand-in-hand
in this field, which has been stimulated regularly by exper-
imental progress in controlling driven dynamical systems.
Here, we review both theoretical and experimental advances,
which in turn may inspire future applications of the presented
pseudoclassical method.

NOTATION

M atomic mass
kL laser wave vector
T laser pulse period
ωrec recoil angular frequency
p atomic momentum in 2~kL units
β rescaled atomic quasi-momentum
τ kicking period in dimensionless units
t total number of kicks and kick total time in units of τ
k kicking strength in dimensionless units
ε detuning from resonance value

k̃ ≡ |ε|k

ω =
√

k̃

1. INTRODUCTION

1.1 The Quantum Kicked Rotor

The kicked rotor is a model system in the study of chaos. It is physi-
cally embodied by a “Gedankenexperiment” in which a rigid pendulum
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is subject to periodic, sharp pulses from gravity (referred to as momen-
tum “kicks”) and evolves freely between those pulses. Its formal classical
description is known as the standard map (Chirikov, 1979), and it is
arguably the simplest Hamiltonian system in which to study the onset
of chaotic dynamics (Lichtenberg & Lieberman, 1992).

Given its status as a paradigm system, it is natural that studies of the
quantum dynamics of chaotic systems (vulgo quantum chaos) have focused
heavily on the quantized standard map or, equivalently, the quantum
kicked rotor (QKR). It became apparent in early numerical studies of the
QKR that quantization of the system produced two particularly notable
divergences from the classical dynamics of the standard map. Most well
known is the appearance of dynamical localization (DL) in the generic quan-
tum dynamics, that is, the freezing of diffusive energy growth after a
characteristic quantum break time (Casati et al., 1979; Fishman, 1993;
Izrailev, 1990). It was later demonstrated that the quantized standard
map could be mapped onto a disordered tight-binding model in solid-
state physics, demonstrating a link between the DL effect in the QKR and
spatial Anderson localization in disordered solids (Fishman et al., 1982).
Recently, this analogy between the QKR and solid-state systems was
used to demonstrate a dynamical analog of the famous metal-insulator
transition using cold atoms (Chabé et al., 2008; Lemarié et al., 2010).

Aside from the celebrated phenomenon of DL, the quantization of the
standard map produces another notable qualitative difference between
the classical and quantum dynamics. Quantization of the rotor momen-
tum introduces a natural time scale to the system which is absent in the
usual standard map. As the strength of the kicks is increased in the clas-
sical picture, chaos results and finally all invariant tori in phase space
are completely destroyed by this strong perturbation of the pendulum
dynamics. Among other things, this global chaos prevents the possibil-
ity of resonant driving by the kicks. However, in the quantum system,
even in this chaotic limit, momentum quantization guarantees that the
kick frequency remains an independent parameter along with the kick
strength. This allows for resonant driving of discrete quantized states at
certain kick periods, realizing the so-called quantum resonances (QRs) of
the QKR (Dana & Dorofeev, 2006; Guarneri, 2009; Izrailev & Shepelyan-
sky, 1979, 1980; Izrailev, 1990; Tian & Altland, 2010). In the present review,
we will concern ourselves with the properties of the most prominent QRs
(the so-called principal QRs) and, more precisely, with the dynamics of
ensembles of cold atoms in the close vicinity of those resonances.

For a system rich enough to encompass dynamics analogous to
Anderson-localization (Anderson, 1958; Lee & Ramakrishnan, 1985), it is
not surprising that analytical results predicting the behavior of the QKR
are few and far between. Kick-to-kick correlations remain analytically
tractable only for small times (Daley & Parkins, 2002; Shepelyansky, 1987),
and DL itself has only recently been rigorously demonstrated to exist for
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the QKR (Bourgain, 2002; Jitomirskaya, 2002). Although numerical simu-
lations of the system are relatively easy to perform, they usually provide
little insight. In this review, we will detail one of the few approaches
to the QKR that simplifies understanding and generates true physical
insight about the system, in this case in the vicinity of the principal QRs.
The so-called ε-classical method that we study accomplishes this insight
by taking advantage of the fundamental periodicities of the quantum
system to produce a pseudoclassical model for the near-resonant dynam-
ics. The first insight this allows is that due to the pseudoclassical phase
space description, we can simply illustrate the dynamics of the system
near to the QRs. The second insight, which stems from these phase space
portraits, is the existence of closed form analytical scaling functions. The
derivation of these scaling functions marks one of the few analytical and,
at the same time, experimentally useful results available for the QKR. Fur-
thermore, the simplest of these scaling functions (in the absence of noise
and external perturbations) is given as a function of a single parameter
which combines time, detuning from resonance and strength of the kicks,
providing a unified understanding of the effect of parameter changes on
the quantum dynamics.

Since the original derivation of the ε-classical standard map (Fishman
et al., 2002; Wimberger et al., 2004), it has been adapted to provide ana-
lytical theories for the QKR with decoherence (Wimberger et al., 2003),
amplitude fluctuations (Sadgrove et al., 2008), for highly nonclassical ini-
tial states (Sadgrove & Wimberger, 2009) (as in the directed diffusion
experiments discussed in Section 3.4), and also for the stability of wave
packets with respect to deterministic variations of the kick strength (via
fidelity) (Abb et al., 2009). In each case, as we will discuss, understand-
ing comes from first examining the ε-classical phase space and its changes
when varying parameters, and then adapting the theory to take account
of those changes.

1.2 The Atom-Optics Realization of the Quantum Kicked Rotor

Aside from the addition of elegant analytical results to the canon of quan-
tum chaos, the principle interest of the pseudoclassical method which we
review here is that it was developed in response to and alongside exper-
iments. Indeed, the initial development of the theory in refs. (Fishman
et al., 2002; Wimberger et al., 2003, 2004) was in response to experimen-
tally observed phenomena (d’Arcy et al., 2001; Oberthaler et al., 1999). It
is therefore necessary to give a brief account of the experimental setup in
which observations of the kicked rotor typically take place (Raizen, 1999).

The QKR was first realized experimentally using cold noninteracting
sodium atoms exposed to a pulsed, optical standing wave (with spatial
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period π/kL, kL being the wave vector of the laser creating the potential),
far detuned from the nearest atomic transition (Latka & West, 1995; Moore
et al., 1995). Before this publication, DL had been studied in the context
of driven Rydberg atoms (Arndt et al., 1991; Bayfield et al., 1989; Casati
et al., 1988; Galvez et al., 1988; Krug et al., 2003) and atoms in a mod-
ulated standing-wave potential (Moore et al., 1994). However, in Moore
et al. (1995), the realization of effective δ−like pulses (i.e., pulses much
shorter than the pulsing period T) created a very good experimental
realization of the standard map. This realization became known as the
atom-optics kicked rotor (AOKR). Although the atom-optics setting swaps
angular for linear momentum, it still makes the unique aspects of the QKR
more clear. The atomic system may be represented by the following scaled
Hamiltonian (Graham et al., 1992)

H(t′) =
p2

2
+ k cos(z)

t−1∑
j=0

δ(t′ − jτ), (1)

where p is the atomic momentum in units of 2~kL, z is the atomic posi-
tion scaled by 2kL = 4π/λ, t′ is time. t is an integer which counts the total
number of kicks, and in units of the kicking period τ it represents the
total time. The scaled kicking period τ is defined by τ = 8ωrecT, where
ωrec = Erec/~ = ~k2

L/2M is the angular recoil frequency for atoms of mass
M and Erec the recoil energy. The kicking strength k is proportional to the
optical standing-wave intensity. An important time scale when studying
QRs is defined by the Talbot time TT = π~/(2Erec), since QRs can be seen
to arise from nothing other than the Talbot effect (Deng et al., 1999; Dubet-
sky & Berman, 1997; Lepers et al., 2008; Talbot, 1836) (albeit in the time
domain) for atomic matter waves diffracted from the “grating” induced
by the flashed periodic potential. We will motivate this analogy further in
Section 2.1. The state evolution of an atom from one kick to immediately
after the next kick is determined by the unitary one-cycle Floquet operator
(Wimberger et al., 2003):

Ûβ,k = e−ik cos(θ̂) e−i τ2 (N̂+β)
2
, (2)

where θ ≡ z mod 2π . The Floquet operator of Equation (2) differs from
the Floquet operator of the original model of the QKR by the phase β,
which represents the rescaled quasi-momentum of the atom moving along
a line in contrast to a rotor which would move on a circle. By translational
invariance of the potential, quasi-momentum is conserved for all times
and, therefore, it acts just as a continuous index defined by the fractional
part of the real momentum p (Wimberger et al., 2003). N̂ then corresponds
to the integer part of p and can be interpreted as an angular momentum



AAMOP 11-ch07-315-370-9780123855084 2011/9/26 17:53 Page 320 #6

320 Mark Sadgrove and Sandro Wimberger

UHV cell

Kick beam timing

Time

MOT Z-axis
MOT beam

Kicking
beamMOT

coil

La
se

r
in

te
ns

ity

Figure 1 Diagram of the most basic experimental configuration of the atom-optics
kicked rotor. Thin arrows represent counter-propagating, co-polarized laser beams
which intersect with a sample of cold atoms which are released from a magneto-
optical trap (MOT). (Note that only two of the six MOT beams are shown in this
diagram). The kicking laser beams are periodically gated to create a pulsed potential
with a form controlled precisely by the experimenter.

operator in the θ−representation, N̂ = −id/dθ , with periodic boundary
conditions.

As shown schematically in Figure 1, all AOKR experiments using cold
atoms follow roughly the same common sequence, first realized in (Moore
et al., 1995): (1) a sample of atoms is laser cooled in a magneto-optical trap
(MOT), (2) the cooled atomic sample is released from the trap (all opti-
cal and magnetic fields are turned off), (3) the released atoms are subject
to a number of periodic pulses (“kicks”) from an optical standing wave
which intersects with the sample, and (4) the kicked atoms are allowed
to expand for some milliseconds before being exposed to near-resonant
light and having the consequent fluorescence distribution imaged on a
charge coupled device (CCD) camera. This recipe gives access to the
atoms’ momentum distribution after t kicks, as shown in Figure 2. The
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Figure 2 (a) Schematic depiction of the atom diffraction over a few kicks from the
intersected optical standing wave, following just first order diffraction into
momentum eigenstates separated by 2~k (from an initial zero momentum
eigenstate). Each ball represents a momentum eigenstate with value m in units of
2~k . The importance of interference effects (whenever two lines intersect in the
diagram) becomes clear, and the difficulty of making analytical predictions in the
general case is thus apparent. (b) Shows the predicted momentum distribution over
15 successive kicks for an atom starting from an initial zero momentum state and
kicked at QR.

mean energy of the atomic ensemble may be inferred by calculating the
second moment of the momentum distribution. Since the first realization
of the AOKR in (Moore et al., 1995), however, a number of variations on
steps (1–3) in the experiment have been implemented including the use
of a diluted Bose–Einstein condensate (BEC) as the initial state (Currivan
et al., 2009; Duffy et al., 2004b; Ryu et al., 2006), kicking of trapped sam-
ples (Duffy et al., 2004a), and nonperiodic kicking fields (Jones et al., 2007;
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Monteiro et al., 2002), among other innovations as we will discuss now
briefly.

One of the earliest variations on the AOKR experiment was the addi-
tion of noise in various forms to observe decoherence effects. In Ammann
et al. (1998), a controllable, nonzero spontaneous emission rate was intro-
duced leading to the destruction of DL. Experiments with a randomly
fluctuating standing-wave amplitude (Klappauf et al., 1998; Milner et al.,
2000) or temporal period between kicks (Oskay et al., 2003; Sadgrove et al.,
2004) demonstrated similar decoherence effects, seen in the changing line-
shape of atomic momentum distributions. However, when the effects of
spontaneous emission were tested at QR in (d’Arcy et al., 2001), it was
found that rather than destroying the quantum energy resonances, the
addition of spontaneous emission enhanced their visibility. This unusual
result, similar to behavior noticed in other investigations (Daley et al.,
2002), was explained in (d’Arcy et al., 2004), and also in (Wimberger et al.,
2003) using ε-classical theory as we will explain in detail in Section 3.3.1.
The unusual response of the QR peaks to noise was confirmed in (Sad-
grove et al., 2004), where the robustness of the QR peak structure in the
presence of amplitude fluctuations was demonstrated and explained in
terms of ε-classical stability of the near-resonant dynamics. More recently,
the stability of the resonance behavior has been quantified more rigor-
ously in experiments where fidelity of quantum states was measured
directly (Tonyushkin et al., 2009; Wu et al., 2009).

Another fruitful variation on the kicked rotor is the kicked accelerator,
where the standing wave is oriented in the vertical direction. This allows
so-called accelerator modes to emerge—narrow momentum classes of
atoms which gain energy in a resonant fashion from the pulsed standing
wave (Oberthaler et al., 1999). These accelerator modes and their stabil-
ity (Schlunk et al., 2003a) inspired the first ε-classical treatment of kicked
atoms in (Fishman et al., 2002), and investigations of this rich system have
also extended to higher order accelerator modes (Guarneri & Rebuzzini,
2008; Ramareddy et al., 2010), accelerator mode decay (Sheinman et al.,
2006), and to study so-called Arnol’d Tongues (Guarneri et al., 2006). At
this point, however, we note that the present review is concerned only
with the “horizontal kicking” system as used in the original kicked rotor
experiments (Moore et al., 1995). The behavior found when the kicks are
administered in the vertical direction and acceleration due to gravity is
nonnegligible is an interesting topic worthy of review in its own right.

Perhaps the single greatest experimental advance in the investigation
of kicked atoms involved, the use of atoms sourced from a degenerate
quantum gas rather than a thermal MOT source. The first such exper-
iments using a dilute BEC (for which atom–atom interactions can be
neglected [Wimberger et al., 2005a]) subject to standing-wave pulses
were performed at NIST in Gaithersburg in a strictly atom-optics setting
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(Deng et al., 1999). Both atom diffraction into discrete orders and the
time-domain Talbot effect were demonstrated in these early studies. Other
investigations probed QR and the opposite regime of anti-resonance (at
which the system oscillates between states instead of absorbing energy
[Izrailev, 1990]) more carefully using a BEC (Duffy et al., 2004b) and also
investigated the kicking of a BEC in situ with the magnetic trap still
on (Duffy et al., 2004a). BEC studies of the AOKR, along with nondegen-
erate ultra-cold samples (Kanem et al., 2007), also finally allowed such
central predictions about QR as ballistic energy growth and some frac-
tional resonances to be successfully demonstrated in the laboratory (Ryu
et al., 2006).

In Figure 3, manifestations of QR behavior are shown in two different
atom-optics settings. Figure 3a and b shows raw absorption images of a
dilute BEC subject to anti-resonant (half-Talbot time) and resonant (Talbot-
time) kicking, respectively. When the time between pulses equals half of
the Talbot time, we see oscillations in the atomic energy from one kick to
the next (seen here as alternate expansion and contraction of the atomic
momentum distribution), whereas when the period matches the Talbot
time, ballistic growth is seen and the momentum distribution expands
with each kick. Figure 3c shows mean energies for a kicked atomic ensem-
ble for which the initial momentum distribution is much larger than
2~k. In this case, individual momentum orders are not resolvable and
the effect of resonant kicking on the atomic momentum distribution is
more subtle. However, a strong signature of QR is still seen in the mean
energies at integer or half integer multiples of the Talbot time. It is inter-
esting to note that these energy peaks are indistinguishable between the
anti-resonant and resonant cases, due to the fact that the broad quasi-
momentum distribution allows resonant transport in both cases. In both
of the experimental situations shown in Figure 3, ultra-cold atoms were
kicked by standing-wave pulses which satisfied the Raman–Nath condi-
tion (Nath, 1936), which, physically speaking, requires that the pulse time
is short compared with the time it takes for atoms to traverse a single
period of the standing wave. Outside the Raman–Nath regime, momen-
tum transfer to atoms is curtailed (Bharucha et al., 1999; Blümel et al., 1986;
Vant et al., 1999), the extreme case being an optical lattice in which the
standing wave is always on and the atoms do not absorb energy as from
a flashed lattice. We also note in passing that the half-Talbot time effect
was recently used to demonstrate fidelity decay in cold atoms perturbed
by standing-wave kicks (Wu et al., 2009). We will have more to say on the
topic of fidelity later in this review (see Section 3.5).

Still further intriguing variations on the basic AOKR experiment are
possible when deviations from strict periodicity of the kicking are intro-
duced. Double kicks were first used to probe the dynamics of atoms in
the presence of classical phase space structures (Vant et al., 1999), but
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Figure 3 Manifestations of QR phenomena in cold atom experiments. (a) (τ ≈ 2π )
and (b) (τ ≈ 4π ) show absorption images for a kicked Bose–Einstein condensate
demonstrating the clearly distinguishable cases of anti-resonance and resonance,
respectively. This behavior is seen for an atomic ensemble with an initial momentum
width σ � 2~kL. The absorption images reproduce the atomic momentum
distribution after t kicks, schematically introduced in Figure 2a. At anti-resonance,
atoms oscillate between 0 and nonzero energy from kick-to-kick. At resonance, the
atoms gain energy quadratically as the kick number increases. (c) Shows the case for
atoms where σ � 2~kL. In this case, we see peaks in the mean energy (on the y-axis)
near the resonance and anti-resonance values at τ = 4π and 2π , respectively in (c).

the introduction of multiple kicking frequencies yielded more surprising
results in (Lemarié et al., 2010). In these experiments, resonances were
found depending on the ratio between two kicking frequencies. These res-
onances were further shown to possess a sub-Fourier nature, suggesting
possible applications to signal processing. The QRs were later shown to
possess a similar sub-Fourier narrowing of the mean energy with time,
as will be discussed below in Section 3.1. Interestingly, an analysis of
the fidelity overlap of two states kicked with slightly different periods
shows such a sub-Fourier scaling, which is yet another manifestation of
the stability of QR motion useful for applications (see the recent papers
[McDowall et al., 2009; Talukdar et al., 2010]).
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Finally, at the intersection between nonperiodic driving and studies
performed with a BEC, investigations of directed transport have recently
taken place. The goal to create a Hamiltonian ratchet (Flach et al., 2000;
Hänggi & Marchesoni, 2009; Schanz et al., 2001) using a variant of the
kicked rotor system was first investigated using thermal atoms (Jones
et al., 2007; Monteiro et al., 2002) but a more surprising variation on ratchet
motion was found using a BEC prepared in an initial superposition of
momentum eigenstates and subjected to kicking at QR (Dana et al., 2008;
Gong & Brumer, 2006; Lundh & Wallin, 2005; Sadgrove et al., 2007). It
is also interesting to note that in the first true “ratchet” for cold atoms,
achieved using an approximate saw-tooth potential combined with modu-
lation of the standing wave, a significant current was only observed when
the modulation frequency was close to QR (Salger et al., 2009).

Historically, the motivation to study the QKR experimentally was
to observe DL, thus demonstrating the restriction on chaotic motion
expected in quantum systems arising from a stabilizing interference effect.
However, as the AOKR was extended to different initial conditions and
driving fields, the QRs have become more compelling phenomena of
study, due to the possible applications to precision measurements, atomic
transport, and stable quantum behavior that they represent (Madroñero
et al., 2006). Thus, we believe it is timely to review the tools provided by
the pseudoclassical description of the quasi-resonant regime embodied by
the ε-classical theory of QR. For reasons of compactness, we restrict our
overview to the principal QRs of the QKR and mainly, but not exclusively,
discuss our own research work on the topic.

2. THE PSEUDOCLASSICAL METHOD FOR NEARLY
RESONANT QUANTUM MOTION

This section introduces the theoretical concepts of the pseudoclassical
method which has proven very useful for the description of experiments
and applications such as those detailed in the following Section 3. We
start out with a short review of the dynamical regimes of the QKR, in
particular, the QR regime at which the rotor maximally absorbs energy
from the kicking field, essentially because of a revival of its wave function
in momentum space in-between two kicks. The reported pseudoclassical
method (see Section 2.3) allows us to characterize the QKR and its exper-
imental realization by kicked cold or ultra-cold noninteracting atoms (see
Section 1) in the vicinity of these QRs.

2.1 Dynamical Localization and Quantum Resonances

As mentioned in the introduction, the QKR—at first glance a system
seemingly too simple to be of practical use—became famous because it
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reproduces in a clear way the predictions made by P. W. Anderson on
the transport of single-particles wave packets across disordered samples
(Anderson, 1958; Lee & Ramakrishnan, 1985). Although the original idea
of Anderson—recently verified in an ingenious experiment by Billy et al.
(2008)—describes transport in real space, the QKR realizes the same situ-
ation in momentum space (Fishman, 1993; Fishman et al., 1982). Kicking
the system with periods such that τ/4π is sufficiently far from a ratio-
nal number leads to what is known as “dynamical localization” (DL) of
a spreading wave packet, stressing its dynamical origin.1 DL, as a purely
quantum effect, suppresses the classically expected diffusion in systems
such as the QKR which have a classically chaotic counterpart. It is a
ubiquitous effect which also occurs in other periodically driven quantum
chaotic systems, such as microwave driven hydrogen or alkali Rydberg
states of electronic wave packets (Casati et al., 1988; Wimberger & Buch-
leitner, 2001) (for which DL was indeed observed for the very first time in
the laboratory [Arndt et al., 1991; Bayfield et al., 1989; Galvez et al., 1988]).
Although for driven Rydberg states the effect of localization manifests
itself only indirectly in the measurable ionization yield, the experimental
realization of the QKR allowed the observation of localized momentum
space wave functions in situ along with the extraction of the average
energy of the kicked atoms (Bharucha et al., 1999; Moore et al., 1995) (i.e.,
the second moment of the wave packet in momentum space) long before
its real space analog could be directly observed (Billy et al., 2008). Since
we aim to describe the motion close to QR for the QKR, here we pro-
vide only an intuitive description of DL: for τ/4π irrational, the phases
of the free part of the QKR evolution in momentum representation, i.e.,
from exp(− iτn2/2) (see Equation [2] for β = 0), in-between two kicks
are essentially randomly distributed between the different momentum
classes. Even if deterministically defined, these phases have a pseudo-
random character, which is discussed, e.g., in (Brenner & Fishman, 1992).
This pseudo-randomness plays the same role as the spatial disorder in
the real-space Anderson problem, and it essentially leads to a destructive
interference in the temporal evolution of the QKR hindering the spread of
the wave packet in momentum space (after some transient time which is
known as the “break time” [Shepelyansky, 1987]).

The above mentioned phases exp(− iτn2/2) allow us to understand the
origin of quantum resonant motion as well. QRs occur for rational val-
ues of τ/4π leading to a complete (i.e., for all momenta n) or partial (i.e.,
for a subset of momenta) phase revivals in-between two successive kicks.

1The notion dynamic or dynamical localization is unfortunately also used in different contexts, one
example being the suppression of tunneling by a periodic driving force (Dunlap & Kenkre, 1986), for
experimental realizations of this effect see, e.g., (Kierig et al., 2008; Lignier et al., 2007).
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Those revivals are analogous to the Talbot effect or the fractional Talbot
effect, respectively, of interfering light or matter waves diffracted and
recombined at a series of gratings, see, e.g., (Dubetsky & Berman, 1997;
Talbot, 1836) for a discussion of this constructive interference effect. In the
following, we concentrate on the principal QRs of the QKR at which a com-
plete revival happens, i.e., exp(− iτn2/2) ≡ 1 for all n ∈ Z, or for real atoms
moving along a line, exp(− iτ(n+ β)2/2) ≡ 1, which occurs at τ = 2π` (` a
positive integer) and β = 1/2+ j/`mod(1), j = 0, `, . . . , `− 1 (Wimberger
et al., 2003).

2.2 Exact Results at Quantum Resonance

The existence of QRs in the QKR was noticed by Izrailev and Shepelyan-
sky (1979, 1980) shortly after the discovery of DL. They obtained the exact
quasi-momentum spectrum for some major resonances. This spectrum
must be continuous to support unlimited ballistic growth with the number
of kicks t for the mean energy of the QKR, i.e., E(t) = E(t = 0)+ αt+ γ t2,
for appropriate values of the α and γ constants (Guarneri, 2009; Izrailev,
1990). For the principal QR at τ = 4π and β = 0, one can immediately
see from Equation (2) that the spectrum is given by e(θ) = k cos(θ) for
θ ∈ [0, 2π). Hence it is a continuous function of the θ angle variable of
the rotor. Nevertheless, exact results at QR have been rare until recently
(Guarneri, 2009; Izrailev, 1990; Tian & Altland, 2010), not least because
the resonances were regarded as a rather peculiar property of the QKR.
Inspired by experiments by d’Arcy et al. (2001), new theoretical as well
as experimental progress has been made over the last decade. As a back-
ground for the pseudoclassical theory introduced in the next subsection,
we review briefly some aspects of this theoretical progress at exact QR
for δ−kicked noninteracting atoms having a flat uniform distribution f (β)
of quasi-momenta β ∈ [0, 1). As derived in detail in (Wimberger et al.,
2003), the average energy of such an atomic ensemble at τ = 2π` (` ∈ N)
increases linearly with the number of kicks t

〈E(n0,β, t)〉n0 ,β ∼ 〈E(β, t = 0)〉n0 ,β +
k2t
4

, (3)

where n0 are the integer parts of the atomic momenta at time t = 0. For the
momentum distribution of the kicked ensemble, we have the asymptotic
result valid at large t→∞ and for n � n0

P(n) ∼
4k
π 3n2

. (4)

In essence, the contribution of many nonresonant rotors or nonresonant
values of β and very few resonant ones (see end of previous subsection)
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averages to a linear increase of the mean energy. This continued increase
of the energy means that higher and higher momentum classes become
populated with increasing time. This builds up the algebraic distribution
of momenta (which, at finite t, shows a time-dependent cutoff momen-
tum ncut ≈ πkt/2 up to which Equation (4) faithfully describes the actual
distribution [Wimberger et al., 2003]).

The experimental possibility of adding noise to the system (Ammann
et al., 1998; d’Arcy et al., 2001, 2004; Klappauf et al., 1998; Milner et al.,
2000; Oskay et al., 2003; Sadgrove et al., 2004) inspired a number of
theoretical treatments yielding exact results, which typically are rare for
noisy dynamical systems. Here, we quickly review two interesting cases of
noise which will be extended later on in Sections 3.3.2 and 3.3.1 for values
of τ not exactly but close to QR condition. The first of these results at exact
QR describes the effect of amplitude noise in the kick pulse on the dynam-
ical evolution of the atoms (Brouard & Plata, 2003; Sadgrove et al., 2008).
It predicts a linear increase of the average energy of an atomic ensem-
ble under the same assumptions as made above (now averaged over the
ensemble and over many noise realizations):

〈E(n0,β, t)〉n0 ,β,δk ∼ 〈E(β, t = 0)〉n0 ,β +
k2t
4

(
1+

L2

12

)
, (5)

where the actual kick strength is k+ δk, with δk uniformly distributed in
[−L/2, L/2]. The second term on the right side of the equation is now cor-
rected with respect to Equation (3) by the standard deviation of the noise
L2/12. Since the conditions for QRs do not depend on the kick strength but
just on τ and β, this case of amplitude noise is still fairly simple to analyze.

More work is needed to extend the above Equations (3) and (4) to
a perturbation arising from spontaneous emission acting on the kicked
atoms. For the specific realization of such an experiment at Oxford by
d’Arcy et al. (2001, 2004), spontaneous emission was induced in a very
controlled way by an additional light field independently of the kick-
ing laser. It was then shown in Wimberger et al. (2003) that this kind
of spontaneous emission acts as additional kicks (with random distribu-
tions of kick strengths) on the atoms, which occur in-between successive
δ−kicks of the original model. The result is that the average energy of an
ensemble (averaged over many realizations of the random spontaneous
emission events) again increases linearly in time. The momentum dis-
tribution approaches a Gaussian form with zero mean and a standard
deviation k2t/2+Dt (as long as the initial – at t = 0 – momentum distribu-
tion of the atoms is symmetric around zero), where D is now the diffusion
constant given by the mean square momentum change per period τ due to
spontaneous emission. These results are based on exact proofs to be found
in Wimberger et al. (2003), but one may intuitively understand them as
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describing a diffusive process in momentum space driven by the random
kicks from spontaneous emission.

2.3 Pseudoclassical Theory for Principal Quantum Resonances

This subsection presents the essentials of the pseudoclassical theory which
has proven very powerful for describing the QKR and its experimental
realizations in the vicinity of the QRs. This method allows us to extend
our theoretical understanding to a regime for which direct quantum cal-
culations would be extremely difficult in general. The pseudoclassical
approach is inspired by a rescaling usually done for the standard semiclas-
sical limit of the QKR. The latter is obtained by simultaneously letting the
kick period τ → 0 and the kick strength k→∞ but keeping their product
Ks ≡ τk fixed. Fixing the “stochasticity parameter” Ks fixes also the clas-
sical phase space structure described by the standard map, the classical
correspondence of the QKR:

It+1 = It + Ks sin(θt+1), θt+1 = θt + It mod(2π). (6)

Here, the momentum I is rescaled with respect to the physical momentum
p viz. I = τp, just as the kick strength above. In the standard semiclassi-
cal limit, the quantum version of the rotor now has less and less time for
free phase evolutions while the kicks dominate more and more over these
phases, c.f. the Floquet operator in Equation (2). Nevertheless, the classi-
cal phase space is not at all affected since Ks is kept constant, and it can
either describe regular (for sufficiently small Ks � 1), chaotic (for Ks & 5),
or mixed regular-chaotic motion (for intermediate values of Ks).

The same idea of rescaling variables can now be applied for kick peri-
ods which are not at all small, i.e., far away from the standard classical
limit, but for τ = 2π`+ ε (` ∈ N and ε small) in the vicinity of the QR
condition on τ . The crucial difference to the scaling for the standard semi-
classical limit is that the scaling factor is not directly τ but ε = τ − 2π`,
the detuning from the exact resonant value (Hogg & Huberman, 1983).
As we will see below, this gives a pseudoclassical map which is always
integrable in the limit ε → 0, even if the system has a completely chaotic
classical analog in the unscaled coordinates p and θ . Rescaling I ≡ |ε|N
(for p = N + β) and k̃ ≡ |ε|k, we can rewrite the Floquet operator of the
quantum map, c.f. Equation (2), in the following way:

Ûβ,k(t) = e−
i
|ε|

k̃ cos(θ̂) e−
i
|ε|
Ĥβ , (7)

with

Ĥβ(Î, t) =
1
2

sign(ε)Î2
+ Î(π`+ τβ). (8)
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To arrive at Equation (7), we have just rewritten the free evolution part of
the Floquet operator for the β−rotor given in Equation (2) as follows:

e− i τ2 (n+β)
2
= e− iπ`n2

e− i ε2 n2
e− iτnβe− i τ2 β

2
= e− iπ` I

|ε| e− isign(ε) I2
2|ε| e− iτβ I

|ε| e− i τ2 β
2
, (9)

using the identity exp(−iπ`n2) = exp(−iπ`n) and where the last factor
does not depend on I and may be omitted.

If |ε| is now regarded as the Planck constant, then Equation (7) formally
defines just the quantized version of either of the following classical maps:

It+1 = It + k̃ sin(θt+1), θt+1 = θt ± It + π`+ τβ mod(2π), (10)

where ± has to be chosen according to the sign of ε. We stress that “clas-
sical” here is not related to the τ → 0 limit but to the limit ε → 0 instead.
The small−|ε| asymptotics of the quantum β−rotor is thus equivalent to
a quasi-classical approximation based on the “classical” dynamics given
by Equation (10), that has been dubbed ε-classical in (Fishman et al.,
2002; Wimberger et al., 2003). Changing variables to J = ±I + π`+ τβ,
ϑ = θ + π(1− sign(ε))/2 turns the maps in Equation (10) into a single
standard map (c.f. Equation [6]), known as the ε-classical standard map
(εSM), independent of the value of β:

Jt+1 = Jt + k̃ sin(ϑt+1), ϑt+1 = ϑt + Jt. (11)

As we have already noted above, the semiclassical limit of the εSM is
quite different from the one for the usual standard map of Equation (6).
Equation (11) always describes a completely integrable system for ε → 0,
since the effective kick strength k̃ ∝ ε also tends to zero in this limit.

To get a feeling for how powerful the method just introduced actu-
ally is, we compare in Figure 4 the average energies of an ensemble of
rotors as a function of τ in a neighbourhood of the QR at τ = 2π . All
data are obtained from numerical simulations of the quantum map, Equa-
tion (2), and the ε-classical map, Equation (10), respectively, for the same
initial ensemble of momenta and quasi-momenta. For any given parti-
cle in the initial ensemble, the map in Equation (10), with β equal to the
quasi-momentum of the particle, was used to compute a set of trajecto-
ries started at I = n0|ε| with uniformly distributed θ0 ∈ [0, 2π). The final
energies ε−2I2

t /2 at t = 30 of the individual trajectories were averaged over
θ0,β, n0 with the appropriate weights. This is equivalent to using the εSM
in all cases, with different initial ensembles J0 = const = ±n0|ε| + π`+ τβ.

The main qualitative features emerging of Figure 4 are: (1) on a larger
scale along the τ axis, the curves are shaped in the form of a basin
with a high, narrow spike in the centre, closely flanked by a much
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Figure 4 Atomic mean energy vs. τ , after t = 30 kicks, for k = 0.8π near the QR at
τ = 2π . Quantum data (solid lines) are compared with ε-classical results (circles) for
the same initial momentum distribution.

smaller peak on either side. (2) Quantum and ε-classical curves agree
very well at small |ε|, in particular the structure of the spike is the
same. Their behavior at large |ε|, i.e., for τ & 6.6 and τ . 6 is qualita-
tively similar but quantitatively different. This overall behavior may be
explained in ε-classical terms, and an approximate scaling law for the
t, k, ε dependence of the average energy close to the QRs can be obtained,
as shown in the Section 3.1. The ε-classical standard map is different
from the map obtained in the classical limit proper τ ∝ ~→ 0. In partic-
ular, if τk > 1, then the classical and the ε-classical dynamics are at sharp
variance whenever k̃ < 1. In the former, unbounded diffusion occurs,
whereas in the latter, the dynamics is quasi-integrable instead. In this
quasi-integrable system, the ε-classical trajectories remain trapped for-
ever in-between impenetrable phase space barriers, which survive small
perturbations according to the Kolmogorov–Arnold–Moser (KAM) theo-
rem (Lichtenberg & Lieberman, 1992). It is exactly the change occurring in
the ε-classical phase space (see Figure 5) as τ is varied at constant k that
accounts for the energy vs. τ dependence at fixed time (Figure 4).

In the following, we show that the introduced ε-classical technique
allows us to fully recover the exact quantum result for the average energy
reviewed above, see Equation (3), at exact QR. We assume for simplic-
ity an initially flat distribution of p0 ∈ [0, 1); then I0 = 0, and J0 = π`+ τβ0

with β0 uniformly distributed in [0, 1) and n0 = 0. Without loss of gen-
erality we only consider ` = 1. Hence if |ε| � 1, then J0 is practically
uniformly distributed over one period (in action) (π , 3π) of the εSM. Since
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Figure 5 Poincaré surfaces of section for the standard map of Equation (11), and
k = 0.8π , ε = 0.01 (a), ε = 0.1 (b). As ε increases, the invariant curves (right panels)
become more and more distorted, with a primary resonance island (left panels)
having a width of δJres ≈ 4(k̃)1/2. The black boxes in the right panels represent the
Planck cell of area 2π |ε|.

Jt = ±It + π + τβ, and I0 = 0, the mean energy of the rotor after a total
number of kicks t is:

〈Et,ε〉 = ε
−2
〈I2

t 〉/2 =

〈
(δJt)

2
〉

2ε2
, with δJt = Jt − J0. (12)

The exact QR at ε = 0 corresponds to the integrable limit of the εSM,
where δJt = 0. However, 〈Et,ε〉 is scaled by ε−2, so to compute it at ε = 0
one has to compute δJt at first order in ε. This is done by substituting the
0-th ε-order of the second part of Equation (11), i.e., ϑt ' ϑ0, into the first
part of Equation (11). This leads to

δJt = |ε|k
t−1∑
s=0

sin(θ0 + J0s)+ r(ε, t), (13)

where r(ε, t) = O(ε) as ε → 0 at any fixed t. The energy at time t is found
from Equation (13) by taking squares, averaging over θ0, J0, dividing by
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2|ε|2, and finally letting ε → 0:

〈Et,ε〉 =
1

8π 2

2π∫
0

dθ0

3π∫
π

dJ0
(δJt)

2

ε2

ε→0
−→

k2

8π 2

2π∫
0

dθ0

3π∫
π

dJ0

(
t−1∑
s=0

sin(θ0 + J0s)

)2

=
k2

8π

3π∫
π

dJ0
sin2

(J0t/2)
sin2

(J0/2)
. (14)

With the help of
∫ 2π

0 dx sin2
(tx)/ sin2

(x) = 2π t, this yields:

〈Et,0〉 = 〈E(β, t = 0)〉β +
k2

4
t, (15)

where we have added in the first term on the right hand side the small con-
tribution of the initial quasi-momenta in energies which we had neglected
so far. Equation (15) reproduces the quantum behavior at exact QR, given
by Equation (3) of Section 2.2.

The integral over J0 in Equation (14) collects contributions from all the
invariant curves J0 = const of the εSM at ε = 0. Of these, the one at J0 = 2π
leads to quadratic energy growth because it consists of (period 1) fixed
points (Lichtenberg & Lieberman, 1992). This is called a classical nonlinear
resonance and it can be seen clearly in Figure 5. It is responsible for the
linear growth of energy in Equation (15), because the main contribution to
the integral in Equation (14) comes from a small interval∼ 2π/t of actions
around J0 = 2π . Note that J0 = 2π corresponds to β0 = 1/2, the resonant
value of quasi-momentum at the QR at τ = 2π . It is hence seen that the
ε- or pseudoclassical approximation explains the quantum resonances of
the QKR in terms of the principal classical resonance of a quasi-integrable
standard map.

Before we come to actual applications of the pseudoclassical method,
we briefly discuss its range of validity. The ε-quasi-classical approxima-
tion is exact at all times for ε = 0, as shown above. At nonzero ε, it is valid
when the number of kicks t is not too large, and in the long run it is spoiled
by quantum, non-ε-classical effects. At |ε| < |ε|cr, the ε-classical motion is
bounded by KAM curves, so the main quantum mechanism leading to
non-ε-classical behavior is tunnelling across the regular regions. Estimat-
ing the related time scales is not at all easy, because the 2π -periodicity
in action of the ε-classical phase space may enhance tunnelling, and
even result in delocalization, depending on the degree of commensura-
tion between 2π and the “Planck constant” |ε|. For instance, if |ε|/2π is
rational, then the quantum motion will be ballistic at some stage asymp-
totically in time (it would just realize a high-order QR). In order that such
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a resonance with |ε| = 4πs/q exists at |ε| less than some |ε0|, it is neces-
sary that the order q of the QR obeys q > 4π/|ε0|. It will show up after a
time roughly estimated by |ε| times the inverse bandwidth of the continu-
ous quasi-energy spectrum at this QR (Guarneri, 2009). The bandwidth is
estimated to decrease faster than exponentially at large q (Guarneri, 2009;
Izrailev, 1990), so one may infer that the time of validity of the ε-quasi-
classical approximation is at least exponentially increasing with 1/|ε| as
the exact resonance at ε = 0 is approached. At |ε| > |ε|cr, the ε-classical
motion is unbounded, and the difference between ε-classical and quan-
tum energy curves vs. τ is basically set by various quantum localization
effects, including localization by cantori close to the |ε|cr (Fishman et al.,
1987; Grempel et al., 1984). As a consequence, if t is large enough, then the
ε-classical curve lies higher than the quantum one (see Figure 4 at the very
right and left).

3. APPLICATION OF THE PSEUDOCLASSICAL METHOD

3.1 Scaling Functions for Mean Energy of the AKOR

Having reviewed the fundamentals of the ε-classical method, we now
turn to one of the most useful corollaries of the theory. By approximat-
ing the near-resonant quantum dynamics of the AOKR with a classical
standard map of small kicking strength, the ε-classical model allows a pen-
dulum approximation (Lichtenberg & Lieberman, 1992) to the dynamics to
be made. It turns out that the near-resonant quantum dynamics can be
captured by a single parameter description, so long as appropriate scaling
of the momentum or energy is made—a fact which has been confirmed
experimentally (Wimberger et al., 2005b). We now derive this so-called
scaling law with emphasis on a heuristic explanation which arises from
inspection of the ε-classical phase space (see Figure 6).

We start by considering the difference in the phase space for on-
resonant and off-resonant kicked rotors. Figure 6b shows the on-resonant
(ε = 0) phase space—a continuum of flat “orbits” which give rise to the
maximum energy at quantum resonance. In contrast, away from reso-
nance (|ε| > 0) a nonlinear resonance island disturbs the phase space as
shown in Figure 6a. Inspecting the change in the phase space structure as
|ε| is increased suggests the following relation between the off-resonant
energy Eε,t and the on-resonant energy 〈Eε=0,t〉 = k2t/4:

〈Eε,t〉 ≈
k2t
4
−8(t)+ 〈Et〉res, (16)

where the term 8(t) corresponds to the energy associated with the shaded
region in Figure 6b. (Note that we neglect any initial energy of the atoms
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Figure 6 A depiction of the construction of the ε-classical scaling function in phase
space. In (a), the entire phase space is shown as generated by iterating the εSM of
Equation (11). The regions outside the influence of the central nonlinear resonance
are shaded grey. The dynamics in the unshaded region where the dynamical
resonance is seen are well modeled by the function G introduced in Equation (18)
which calculates the mean energy due of the analogous pendulum trajectories. On
the other hand, (b) shows the “flat” phase space when the rotor is perfectly on
resonance and the mean energy is simply (k2/4)t as given by Equation (15). The
shaded region in (b) shows the area which will be affected by the nonlinear resonance
for the parameters used in (a). The energy in this shaded region is represented by the
8 function introduced in Equation (16). The figure (c) shows an approximation to the
true phase space (a) found by taking (b), subtracting the shaded region and adding in
the unshaded region (i.e., the resonance portion) of (a). This is the graphical
equivalent of Equation (16), which is used to derive the scaling function.

in the above treatment; initial momentum does not change the periodic
structure of the phase space, and the relevant energy can simply be
added on to the final result, or subtracted from experimental and simu-
lation results before comparison with theory). Off-resonance, this region
is destroyed by the phase space island and so the 8(t) term must be sub-
tracted from the resonant energy and replaced with a term which gives the
energy in the portion of phase space disturbed by the island. This term is
〈Et〉res—the energy associated with the resonance island itself in Figure 6a.
In fact, the approximation in Equation (16) can be seen as corresponding to
the approximation of the off-resonant phase space as shown in Figure 6a
by adding the unshaded portions of Figure 6b and 6a to give Figure 6c.
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We can extract analytic expressions for 8(t) and 〈Et〉res from considera-
tions of the portion of the entire phase space cell the island occupies and
the solutions to the pendulum equations of motion. The latter solutions
describe continuous time motion induced by the pendulum Hamiltonian

Hres =
1
2
(J′)2
+ k̃ cos(ϑ), (17)

in the canonical variable J′ and ϑ of Equation (11), where J′ measures
the deviation from the island centre. The resonance width of the princi-

pal nonlinear island δJres ≈ 4
√

k̃ is estimated by the separation (in action)
between the separatrices of the pendulum motion (Lichtenberg & Lieber-
man, 1992). The period of the small pendulum oscillations is 2π tres where
tres = k̃−1/2 (Lichtenberg & Lieberman, 1992), so tres defines a character-
istic time scale for the elliptic motion in the resonant zone. One may
altogether remove |ε| from Hamilton’s equations as induced by Equa-
tion (17), by scaling momentum and time by factors k̃−1/2

= 4/δJres, k̃1/2
=

1/tres, respectively. Therefore,

〈(δJt)
2
〉 = 〈(J′t − J′0)

2
〉 ∼ k̃G

(
t
√

k̃
)

, (18)

for an ensemble of orbits started inside the resonant zone, where G(.) is a
parameter-free function, whose explicit expression involves elliptic inte-
grals. G(.) represents the average energy contribution from trajectories in
the primary island of the εSM. Hence, this function results from averaging
over nonlinear pendulum motions with a continuum of different periods,
so it saturates to a constant value when its argument � 1. At small values
(� 1) of the argument, it behaves quadratically. This behavior is illustrated
in Figure 7 below, where G is plotted vs. the scaled variable x ≡ t/tres. The
contribution to the total energy is then obtained on multiplying Equa-
tion (18) by |ε|−2δJres/(4π), because only a fraction∼δJ.res/(2π) of the initial
ensemble is trapped in the resonant zone. As a result,

〈Et,ε〉res ∼
δJres

2π

〈
(δJt)

2
〉

2ε2
∼

k2

π
√

k̃
G
(

t
√

k̃
)

. (19)

Furthermore, if we divide through by the peak energy k2t/4 (c.f. Equa-
tions [3] and [15]), it turns out the right hand side of Equation (16) can be
written solely as a function of the scaled time variable x, as we expect
given the scaling property of the pendulum. The scaling function we
finally arrive at is

〈Eε,t〉

〈Et,0〉
≈ H(x) ≡ 1−80(x)+

4
πx

G(x). (20)
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Figure 7 G(x) used in Equation (20) (solid line) is shown along with Gcl from
Equation (26) (dashed line). The differences between the two scaling functions arise
due to the different initial conditions in phase space in the classical and ε-classical
limits.

Explicit expressions for 80(x) and G(x) may be found in refs. (Sadgrove,
2005; Sadgrove et al., 2005; Wimberger, 2004; Wimberger et al., 2003)
together with methods for calculating these functions.

To gain an appreciation for the convenience of the scaling function for-
mulation from an experimental point of view, consider the experimental
data shown in Figure 8 (Wimberger et al., 2005b). In the left panel, simula-
tion energies are shown, and in the right panel experimental energies were
measured for three different kick numbers. Both simulations and experi-
mental results make clear that the peaks have different widths and even
different structures, with side peaks flanking the main quantum resonance
being visible in the case of 15 kicks. Nonetheless, the three different experi-
mental data sets, when scaled by the peak energy, all collapse onto a single
curve as shown in Figure 92.

Considering that comparison of experimental data with theory typi-
cally requires the estimation of the theoretical parameter k along with
time-consuming quantum simulations, for all values of t and ε used in
the experiment, the scaling function can immediately be seen to be a huge
boon for experimentalists, who now need only compare data with a single
analytical function of one variable.

2Because of imperfect experimental detection, the wings of momentum distributions where resonant
atoms are concentrated are inevitably underestimated in measurements, leading to deviation from the
exact theory for very small |ε|. When comparing with the scaling function, we typically suppress these
points as in Wimberger et al. (2005b).
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Figure 8 ε-classical simulation energies (left panel) and experimental results (right
panel) demonstrating the change in the QR peaks as the total number of kicks is
increased from 5 (circles), 10 (triangles) to 15 (squares) for similar values of kicking
strength. Note both the narrowing of the peak and the appearance of small peaks to
the side of the main resonance. In the right panel, we show a representative error bar
which gives the standard error of the mean over five experimental runs. (Adapted
figure from Wimberger et al. (2005b).)

3.2 Comparison of Near-Resonant Method with the Standard
Semiclassical Limit

We now consider an intuitive question regarding the ε-classical standard
map: since it describes the pseudoclassical limit near exact quantum reso-
nance so well, can it also describe dynamics in the standard semiclassical
limit, that is, when ε = τ → 0?. As might be expected, the answer is
indeed “yes”. However, there are some interesting differences between
the dynamics in the ε-classical and standard semiclassical limit.

To investigate the regime of vanishing τ , we can use the ε-classical stan-
dard map as derived in Section 2 with ` = 0 (i.e., choosing the “zeroth”
quantum resonance) and setting ε = τ . The appropriate map is then again
given by Equation (11), but now with k̃ = kτ = Ks. Plotting the phase
space of the map of Equation (11) for various values of ε = τ , as done
in Figure 10, immediately reveals differences with the standard ε-classical
phase space. In particular, we note that all trajectories are now contained
within the central phase space island. This means that in calculating the
off-resonant energy, only the kinetic energy from the pendulum approx-
imation to the motion within the island needs to be considered and not
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Figure 9 Experimental (discrete points) and analytical results (solid) for the scaled
data near the first and second QRs. The plus, star, and diamond symbols show points
taken near the first primary QR at τ = 2π for 5, 10, and 15 kicks, respectively. Circles,
triangles, and squares show data near τ = 4π for the same respective kick numbers as
the τ = 2π case. Note again the representative error bar as explained in Figure 8.
(Adapted figure from Wimberger et al. (2005b).)
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that due to the regular phase space outside the island. We proceed to
find a version of the scaling function as follows: scaling momentum by
1/tres = 1/

√
τk as before, the mean energy due to the nonlinear resonance

island may be written as

〈Et〉res,cl =
〈(J′t − J′0)

2
〉

2τ 2
= k

Gcl(t
√
τk)

2τ
, (21)

where the subscript “cl” denotes “classical” and the Gcl function depends
weakly on the ratio of τ and k. As τ → 0, Gcl tends to

Gcl,τ=0(x) =
1

2π

2π∫
0

dϑ0J′(x,ϑ0, J′0 = 0)2 , (22)

for x = t
√
τk.

In the limits of small and “large τ”, two interesting results can be
derived for the mean energy (Sadgrove et al., 2005). First, as shown in
Figure 7, as τ → 0, Gcl(x) ≈ x2/2 and thus the energy in this limit is

〈Et,τ→0〉 =
k2t2

4
, (23)

that is, the energy grows quadratically with the number of kicks t. Such
ballistic energy growth occurs in this case just as it does for quantum res-
onance for an ideal kicked rotor in an initial momentum eigenstate. This
growth is much faster than the linear increase predicted for the quantum
resonance peaks for the same broad initial momentum distribution. From
Figure 7, it may be seen that ballistic growth occurs only for x . 1 which
implies that

tball. .
1
√
τk
= tres , (24)

which shows that ballistic energy growth may occur so long as t is less
than the characteristic resonance period of the pendulum approximation.

Additionally, for large τ , Figure 7 shows that Gcl(x) saturates to a value
α ≈ 0.75. Thus, the mean energy is

〈Et,τ � 0〉 '
k

2τ
α. (25)

This result implies that, after gaining energy in the first kick, the kicked
rotor ensemble ceases to absorb energy from subsequent kicks—energy
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growth is frozen. This result is as one would expect in the presence of
DL except here we have a completely classical explanation for the frozen
energy growth (Sadgrove et al., 2005).

Finally, ignoring the small τ dependence of the Gcl function, a scal-
ing function for the τ → 0 resonance may be written as for the quantum
resonance peaks:

〈Et,τ 〉

〈Et,τ=0〉
≈ R(x) ≡

2Gcl(x)
x2

. (26)

Figure 11 shows experimental data (discrete points) and theory for the
standard ε-classical and the τ → 0 limit cases (Wimberger et al., 2005b).
The experimental data for the two different limits clearly lie on differ-
ent curves and in particular are in good agreement with their respective
theoretical scaling functions.

Once again, we would like to emphasize that extending the scaling
function to a new domain is not an inconsequential theoretical exercise;
rather it can reveal new physics “hiding” in the opaque quantum for-
mulation, such as the ballistic and frozen growth regimes seen in the
semiclassical limit.
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Figure 11 Experimental (symbols) and analytical results (solid line) for the scaled
data near the semiclassical limit. The data shown is for 5 kicks (circles), 10 kicks
(triangles), and 15 kicks (squares). Experimental data (diamonds) and theory (dashed
line) for the first primary quantum resonance are reproduced from Figure 9 for
comparison. (Adapted figure from Wimberger et al. (2005b).)
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3.3 Noise and Decoherence

Surprisingly, the pseudoclassical description and the scaling of the mean
energy introduced in Section 3.1 works in the presence of perturbations
of the quantum evolution as well. In the following, we show this for two
special cases where noise acts on the kicking strength (amplitude noise)
and, even more interestingly, mainly on the phase evolution of the free
rotational parts of the Floquet operator (i.e., on the second factor on the
right hand side of Equation [2]). We start out with the latter in the next
subsection.

3.3.1 Spontaneous Emission

Early experiments which perturbed the phase evolution of kicked cold
atoms in a controlled manner used a kicking beam closer to resonance
with the internal atomic transition of the atoms. This enhanced the spon-
taneous emission (SE) rate of the atoms, leading to random momentum
kicks in additional to the conservative part of the potential (Ammann
et al., 1998; Daley et al., 2002). Better control on the impact of SE is obtained
by separating both effects, the kicks, and the SE events. This was imple-
mented at Oxford some time ago, using a second laser (again closer to
resonance than the kick laser) to induce SE events after each kick and in a
short time interval compared with the kicking period (d’Arcy et al., 2001,
2004). Such SE events not only lead to a dephasing of the unperturbed
quantum evolution of the kicked particle, but also to a heating of its cen-
tre of mass motion (since they correspond to additional kicks). Both can
be taken into account in an amended version of the classical mapping
describing the evolution close to quantum resonance (i.e., small ε). The
amended mapping is given by

It+1 = It + |ε|δt+1 + k̃ sin(θt+1),

θt+1 = θt ± It + π`+ 2π`ηt,

ηt+1 = ηt + δt+1 with η0 =
τβ

2π`
. (27)

β is the initial quasi-momentum which is effectively shifted by the SE
events (see third equation). Also the momenta It (corresponding to the
ε-rescaled integer parts of momentum in the original physical system) are
affected which is taken into account by the term |ε|δt+1 in the first equa-
tion. The δt describe the sum of momentum changes arising from SE up to
the number of kicks t and they are independent random variables, whose
distribution is determined by the statistics of SE. Numerical simulations
using Equation (27) are shown in Figure 12, and the results are found to
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Figure 12 Mean energies of the same initial ensemble of atoms as shown in
Figure 4 as a function of the kicking period τ scanned over the quantum resonance at
τ = 2π ; for k = 0.8π and in the presence of SE. Results of full quantum calculations
(circles) and of ε-classical ones using the map of Equation (27) (solid lines) are
compared for different SE rates (a) nSE ≈ 0.1, t = 50 and (b) nSE ≈ 0.2, t = 50. We note
the asymmetry of the peaks which is best visible for larger nSE. Its origin has not yet
been discussed in the literature but it certainly lies in the asymmetry of the initial
ensemble in the pseudoclassical phase space with respect to the sign of ε, which
enters into the term τβ of the mappings of Equations (10) and (27).

match the true quantum evolution very well at small |ε|. Under the substi-
tution Jt = ±It + π`+ 2π`ηt, the map of Equation (27) reduces to a noisy
pseudoclassical standard map, which differs from Equation (11) by a ran-
dom shift τδt of the action J at each step. The scaling law of Equation (20)
shows that the only relevant time scale for the evolution of the quantum

motion sufficiently near to τ = 2π` (` ∈ N) is given by tres = 1/
√

k̃. The
noisy time evolution brings an additional time scale into play that char-
acterises the strength of the noise. In the following, we indeed find an
equivalent of the scaling law of Equation (20) in the presence of SE, which
is based on the two time scales tres and tc, where tc is the mean waiting
time between two SE events. Then, the structure of the resonance peak in
the mean energy in the presence of SE may be analytically studied, using
essentially the same ideas developed above in Section 3.1.

Let us assume an initially uniform quasi-momentum distribution. At
any SE event, the distribution of the ensemble in the phase space of the
pseudoclassical standard map is reshuffled by the random action change.
Under the assumption of homogeneous distribution of single SEs in an
interval of integer length (in units of two photon recoils), the resulting
distribution of Jmod(2π) is approximately homogeneous over the unit cell
of the map of Equation (11). Such randomization may be assumed to wash
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out correlations between the past and the subsequent random dynamics.
Hence, the scaling of Equation (20) may be used to write the energy after
a number of kicks t as

〈Et,ε〉 ∼
k2

4

〈
Nt−1∑
j=0

1j H(1j/tres)

〉
+

1
2

DnSEt, (28)

where 〈.〉 stands for the average over all realizations of the times of SE
events and Nt−1 is is the number of SE events up to a number of kicks
t− 1. nSE is the average number of SE per period, and D = nSE

−1
〈δ2

t 〉 is
the mean square momentum imparted by a single SE. For an individ-
ual realization, Equation (28) states that the energy is given by the sum
of the SE-free scaling function H of the evolutions over time intervals 1j.
The SE resets the evolution after each event at times 1j, apart from the
momentum shift contained in the second term in Equation (28). If tc is suf-
ficiently large compared with 1, one may replace the random process of SE
events by a continuous time Poisson process with the characteristic time
tc = 1/nSE (Wimberger et al., 2003). This process has delays 1 distributed
with density t−1

c exp(−1/tc). Its statistic reduces to that of the unit Pois-
son process (with tc = 1) by just rescaling all times by the factor 1/tc. This
reasoning allows the following approximation〈

Nt−1∑
j=0

1j H(1j/tres)

〉
≈ 4tcQ(t/tc, tc/tres), (29)

where

Q(u, v) ≡
1
4

〈
N1

u∑
j=0

11
j H(11

j v)

〉
. (30)

The superscript 1 specifies that the average is now over the realizations
of the unit Poisson process: each realization has a continuous time inter-
val [0, u] divided in subintervals 11

j by a random number N1
u of Poisson

events. We are hence led to the following scaling law:

〈Et,ε〉 ∼ D′
t

2tc
+ k2tcQ

(
t
tc

,
tc

tres

)
(31)

or, equivalently introducing u = t/tc, v = tc/tres,

2〈Et,ε〉 −D′t/tc

2k2tc
∼ Q(u, v). (32)
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The scaling function Q(u, v)may be explicitly written in terms of the func-
tion H(x). This is shown in detail in appendix D of Wimberger et al. (2003)
and it gives:

4Q(u, v) = uH(uv)e−u
+

u∫
0

dx e−xxH(xv)(2+ u− x). (33)

Limiting behaviors of the scaling function Q(u, v) immediately follow
from this equation, or from Equation (30) itself. On one hand, for u =
t/tc � 1, the right-hand side in Equation (30) is a sum of a large num-
ber ∼t/tc of terms. In that limit, such terms are weakly correlated and can
be averaged independently which gives

u � 1 : Q(u, v) ∼
1
4

u

∞∫
0

dx H(vx)xe−x. (34)

On the other hand, for t/tc � 1, the sum reduces to the single term j = 0,
with 11

0 = t/tc; hence

u � 1 : Q(u, v) ∼
1
4

uH(uv). (35)

In particular, Equation (35) shows that Equation (31) coincides with Equa-
tion (20) in the SE-free limit tc →∞. In the opposite limit, Equation (34)
shows that, if k is fixed, then the width in ε of the resonant peak will not
shrink any more with time when t � tc, and its width thereafter scales like
(t2

c k)−1. The spike is therefore erased (i.e., it is absorbed in the background)
in the strong noise limit tc ∼ 1. In the latter limit, the method developed
above breaks down, because on average after each kick an SE event hap-
pens, which does not let the time evolution recover for some time interval.
The result is then a completely random motion which does not depend on
the system specific dynamics, and hence not on the chosen value of the
kicking period τ .

The spreading of the resonance peaks with increasing noise, as can be
seen in Figure 12, explains why they are more stable and easier to observe
experimentally than in the case without noise for broadly distributed
initial momenta of the atoms (d’Arcy et al., 2001, 2004). An intuitive argu-
ment for the spreading of the resonance peaks is that for a fixed value of ε,
due to SE there is an enhanced chance to find a quasi-momentum β, such
that the free evolution part of the Floquet operator is approximately the
identity. This is the condition for quantum resonant motion.

Numerical simulations in Figure 13 support the scaling law of Equa-
tion (31). Data were obtained in a similar manner to the case without SE;
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Figure 13 Demonstrating the scaling law of Equation (31) in a right neighbourhood
of τ = 2π . In (a), (b) the Q(u, v) quantity on the left-hand side of Equation (32) is
plotted vs. one of the parameters u = t/tc or v = tc/tres, whereas keeping the other
fixed: (a) v = 2, (b) u = 4. In (c), the ratio u/v = 4 is fixed. Open circles correspond to
different values of the parameters t, tc , k , ε, randomly generated in the ranges
1 < t < 200, 5 < tc < 60, 0.001 < ε < 0.1, 0.1 < k < 20, with the constraints
0.001 < kε < 0.2 and tc

√
kε = 2 in (a), t/tc = 4 in (b), t = 4t2

c

√
kε in (c). In each case,

an ensemble of 2× 106 ε-classical rotors was used, with a uniform distribution of
initial momenta in [0, 1) and a uniform distribution of initial θ in [0, 2π). The random
momentum shifts at each step of the ε-classical evolution of Equation (27) were
generated from the uniform distribution in [−1/2, 1/2]. Crosses represent the results
of quantum simulations for k = 0.8π , and ε = 0.01 in (a), ε = 0.05 in (c), and t = 50 and
t = 100 in (b). The solid lines correspond to the theoretical prediction of Equation (33).
(Adapted figure from Wimberger et al. (2003).)

however, one of the parameters u, v is varied, while keeping fixed either
the other parameter or the ratio u/v. The theoretical scaling function
Q(u, v) was calculated numerically using in Equation (33) the function
H(x) introduced above in Section 3.1.

3.3.2 Amplitude Noise

Spontaneous emission is a dissipative noise process directly altering
the momentum of individual atoms, and thus altering the otherwise
coherent dynamics associated with the AOKR. But other types of noise
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processes are also present in experimental implementations of the kicked
rotor—particularly noise in the kicking parameters themselves. An exam-
ple of some interest is caused by fluctuating laser power which gives rise
to so-called amplitude noise—that is noise due to the strength of kicking
fluctuating randomly.

To analyze the effects of this nondissipative noise, fluctuations are typ-
ically added in a controlled manner using a random number generator
along with an optical attenuator to create a pulse amplitude with any
desired noise distribution and noise strength. In studies up to now, it has
been typical to use a uniform noise distribution and vary the noise from
0 to 200%—the latter indicating that pulses can vary in strength from 0
to twice the nominal kicking strength. Figure 14(a) depicts a kicked rotor
experiment for which pulses with amplitude noise are applied.

The ε-classical method was co-opted for use in amplitude noise
studies to explain the following puzzling observation: although in
general, the amplitude noise was found to completely destroy the
AOKR quantum correlations (Klappauf et al., 1998; Milner et al., 2000),

(a) (b)

90

85

80

75

70

E
 (

tw
o
-p

h
o
to

n
 r

e
c
o
il 

u
n
it
s
)

65

60

55

50

45

40

0 0.1 0.2 0.3

MOT

Kicking beam

t

B
e
a
m

 i
n
te

n
s
it
y

ε

Figure 14 In (a) diagram illustrating the experimental setup used for amplitude
noise experiments. The important difference in comparison with the system of
Figure 1 is the time varying pulse amplitudes. In (b), experimental measurements for
the E atomic mean kinetic energy (y-axis) vs. the ε detuning from quantum resonance
(x-axis) demonstrating QR peaks broadened under the influence of amplitude noise.
The noise level ranged from 0 (squares), 0.5 (circles), 1.0 (triangles), 1.5 (plus sign),
and 2.0 (stars). (Adapted figure with permission from Sadgrove et al. (2008).
Copyright 2008 of the American Physical Society.)
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Sadgrove et al. (2004) demonstrated that in the vicinity of the quantum
resonance, the peak structure is not destroyed even by maximum noise,
as shown in Figure 14b. One intuitive interpretation of this phenomenon
is to note that quantum resonance is dependent on the frequency of the
applied pulses, and not their amplitude, and so the resonance condition
itself is robust against amplitude fluctuations. This does not, however,
explain why for a range of kicking frequencies which are merely close to
quantum resonance, the effect of amplitude noise is minimal.

To explain the stability of the peak, we modify the ε-classical map as
follows. Given a uniform noise level L ∈ [0, 2], we introduce a stochastic
parameter Rt which is drawn from [−L/2,+L/2] for each pulse as labeled
by the discrete time (i.e., the total number of kicks) t. We then simply multi-
ply the kicking strength k by (1+ Rt) to give uniform random fluctuations
in the kicking strength about a mean of k. The modified εSM is then

Jt+1 = Jt + εk (1+ Rt) sin(θt+1), θt+1 = θt + Jt. (36)

From this map, we can immediately plot the phase space for various ε and
look for answers regarding the stability of the quantum resonance in the
changing phase space structure. Figure 15a shows the phase space away
from resonance for a high level of noise—specifically for L = 1.5 (150%
amplitude noise). The important thing to note is that even away from per-
fect quantum resonance (ε = 0) the broad structure of the phase space is
undamaged by noise, meaning that an energy peak is still present even at
high noise levels.

We can formalize this intuition regarding the phase space and the
associated stability of quantum correlations near resonance by seeking
to extend the ε-classical scaling function to the amplitude noise case.
Figure 15b shows the pendulum phase space which approximates the
phase space in Figure 15a. The shaded gray area marks the region of the
phase space around the separatrix which is most affected by the noise, as
calculated by considering the fluctuations in k which directly determines
the separatrix position (Sadgrove et al., 2008). Modification of trajectories
near the separatrix has the largest effect on the near-resonant energy since
stable librations may become higher energy rotation orbits if the separatrix
becomes transparent. Applying this reasoning, an approximate scaling
law for the AOKR quantum resonances in the presence of amplitude noise
can be derived, specifically (Sadgrove et al., 2008):

〈Et,ε〉

〈Et,0〉
≈ 1+

L2

12
− [1− L/(8π)]80(x)+

4
πx

G(x) , (37)

where the average is taken over the initial conditions in the pseudoclassi-
cal phase space.



AAMOP 11-ch07-315-370-9780123855084 2011/9/26 17:53 Page 349 #35

A Pseudoclassical Method for the Atom-Optics Kicked Rotor 349

(a)

0 2 4 6 0 2 4 6

9

8.5

7.5

7

6.5

J 8

(b)

θ θ

Figure 15 (a) The ε-classical phase space in the presence of amplitude noise.
(Compared with Figure 6c). (b) Shows the pendulum phase space approximation to
(a) with the area around the separatrix shaded. It is trajectories in this area (for a
noise level L = 1.5 in [b]) which have the most effect on the energy when amplitude
noise is added to the system. (Adapted figure with permission from Sadgrove et al.
(2008). Copyright 2008 of the American Physical Society.)

In Figure 16, the modified scaling law is compared with experimental
data (left column) and simulation results (right column) showing good
agreement. Thus, with the addition of an additional parameter L, we find
that the stability of the quantum resonances in the presence of amplitude
noise may be characterized by a scaling law as in the noise-free case, and
all of the usual benefits of a scaling law for data analysis and consolidation
of experimental parameters are still available even in the noisy system.

3.4 Directed Transport at Quantum Resonance

This subsection and the following one present new theoretical results
which have not all been tested experimentally yet. Specifically, in the
present subsection, we consider a scaling function explanation for the
results published in (Dana et al., 2008; Sadgrove et al., 2007), but we
also use the pseudoclassical theory to predict new effects (Sadgrove &
Wimberger, 2009).

Numerous reasons exist for studying directed transport due to non-
biased forcing in quantum systems. These range from the motivation to
explore fundamental physics (in particular thermodynamics which Feyn-
man famously used as a motivator for the study of the ratchet and pawl
system [Feynman, 1963]) to the more practical desire to find new ways
to transport atoms and other quantum objects. Reviews of the broad
area of ratchet dynamics are available (see, e.g., [Hänggi & Marchesoni,
2009; Reimann, 2002]). Here, we will restrict our discussion to cold atom
ratchet systems and focus in particular on the “resonance ratchet” system
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Figure 16 The ε-classical scaling function is compared with simulation data (a,b)
and experimental data (c,d). In (a), simulation data for L = 1 (squares) and L = 2
(circles) are compared with the scaling functions (solid line, dash-dotted line) for the
same respective noise values. (c) Experimental data, and scaling functions, using the
same symbols for the same parameters as in (a). In (b), simulation data for L = 0.5
(crosses) and L = 1.5 (stars) are compared with the scaling functions (dashed line,
dotted line) for the same respective noise values. In (d), experimental data and
scaling functions with the same symbols corresponding to the same parameters as in
(b). The scaling function in this case is augmented by additional terms dependent on
the noise level L, although to a good approximation the energy contribution from the
nonlinear resonance (the last term on the right hand side of Equation [37]) is not
affected. Note that in all figures, the thick black line shows the standard (zero-noise)
scaling function for comparison.

(Dana et al., 2008; Sadgrove et al., 2007) where ε-classical techniques may
be used.

The resonance ratchet system, as realized in refs. (Dana et al., 2008;
Sadgrove et al., 2007) uses ultra-cold atoms (so far sourced from a BEC)
which are initially coherently split into two momentum components using
a momentum conserving Bragg pulse. The quantum phase between the
two components may be adjusted by allowing a free evolution period after
the Bragg pulse. After this preparation phase, kicks are delivered to the
atoms with period equal to the Talbot time. Figure 17 depicts the experi-
mental setup used in Sadgrove et al. (2007), where a BEC was created on
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Figure 17 Depiction of the experimental system used to realize directed motion at
QR. A BEC is created and split into two momentum components by an initial Bragg
pulse, where counter-propagating beams have a frequency difference δ. After a phase
evolution period, standard kicks (where both beams have frequency f ) are applied
giving rise to a momentum current.

an “atom chip” before being exposed to an optical standing wave giving
rise to the ratchet effect.

Unlike the usual case for the kicked rotor, where atoms are always
found to gain energy symmetrically about zero momentum, in the reso-
nance ratchet configuration, the mean momentum of the atoms increases
linearly with each kick with a direction and coefficient determined by the
phase between the two initial momentum components. Figure 18 shows
the ratchet behavior as a function of the number of pulses applied to the
split condensate with both the raw data (left panel) and the measured
mean momentum clearly showing a momentum current (right panel).
With this brief background on the effect, we now turn to the ε-classical
analysis of the resonance ratchet phenomenon, and show what addi-
tional light the method can shed on the conditions for and nature of the
momentum current.

Because the ratchet effect takes place at or very near to quantum res-
onance, the system may be analyzed using an ε-classical treatment with
a focus on the mean momentum of the atoms rather than their energy.
There is, however, an important point to consider before diving into the
analysis: how should we represent the initial momentum superposition
state in the ε-classical formalism. Strictly, this is a problem without a
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Figure 18 Left panel: absorption images for the momentum components of a
Bose–Einstein condensate following a resonance ratchet experiment. In this case, the
momentum components show a momentum current toward negative momentum.
For each subpanel, the total number of kicks t is indicated on the y-axis. Initially, a
coherent atomic superposition of the p = 0 and p = −2~k = −2h/λ momentum
components was created using a Bragg pulse. In this initial absorption, image (at
t = 0) that superposition appears as two “spots” with the momentum components
labeled. The experimental data were taken at exact quantum resonance and with
φ = 0. The right panel shows experimentally measured mean momenta for the same
experiment for two different phases 0 (triangles) and π (squares), which give opposite
momentum currents. Dashed lines show linear fits to the data. The circles show
measured mean momenta for a standard AOKR experiment (i.e., with no initial
superposition). The results are for a kicking strength k ≈ 0.1. (Adapted figure with
permission from Sadgrove et al. (2007). Copyright 2007 of the American Physical
Society.)

clear answer: the difference between quantum mechanics and classical
mechanics arises precisely because of the existence of classically imper-
missible superpositions in the quantum theory, and the ε-classical theory
which contains no operators and treats atoms as classical particles cannot
accommodate the quantum initial state any better than a standard classi-
cal treatment could. For now, we delay discussion of this issue and simply
present our method which produces useful ε-classical results in agreement
with quantum simulations.

After the initial Bragg pulse, the atomic wave function is split into
two momentum components. We can represent such an initial condition
classically (i.e., non-coherently) by the distribution

P(p0) =
1
2
(δp0 ,0 + δp0 ,1). (38)
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where, as in Subsection 1.2, θ ≡ z mod 2π . Fourier transforming the
momentum space wave function gives the position space wave function.
For the ε-classical atoms, we can choose the position space distribution to
be the norm squared of this quantum wave function:

P(θ) = |ψ(θ)|2 =
1

2π
(1+ cos(θ + φ)). (39)

Note that the role of the quantum phase is captured by adding the phase
φ in the cosine term of Equation (39), physically signifying a phase differ-
ence between the (classical) atomic density distribution and the sinusoidal
driving field.

Having made these choices, we now proceed as in Section 2.3, arriving
at the on-resonance result (this time for momentum rather than energy)
averaged over the initial conditions given in (Equations 39 and 38)

〈pt,0〉 =
kt

2|ε|
cos(φ). (40)

This result agrees with the purely quantum expressions found in (Dana
et al., 2008; Sadgrove et al., 2007). Furthermore, the result can also be
modified to predict the effects of an arbitrary initial quasi-momentum,
as explored experimentally in (Dana et al., 2008). The emergence of a
momentum current is seen in the ε-classical phase space (see Figure 19)
as an asymmetry in the trajectories at finite times.

Next, we consider a question which has not yet been experimentally
investigated: what happens to the momentum current if the pulse rate
moves off-resonance? Once again, we proceed as in Section 3.1, and with
our new initial conditions. Intriguingly, we find that the off-resonant
momentum scales just as the energy does as a function of the scaled time
x = t/tres.

Figure 20 shows the ε-classical scaling function for the momentum
which is arrived at by dividing Equation (40) by−kt cos(φ) to give a single
parameter scaling law on the RHS:

〈pt,ε〉

−kt sin(φ)
≈ A(x)/x, (41)

where A(x) is a function derived from the average momentum over gen-
eral solutions of the pendulum dynamics (Sadgrove & Wimberger, 2009).
More explicitly, it is given by the expression

A(x) =
1

2π

π∫
−π

dθ0 [sin(θ0)× J′(θ0, J′0 = 0, x)]. (42)
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Figure 19 ε-classical phase space for the ratchet system at 25 and 100 kicks with
k = 1 and ε = 5× 10−4. The asymmetry of the initial conditions, Eq. (39), in the phase
space gives rise to the momentum current. (Adapted figure with permission
from Sadgrove and Wimberger (2009). Copyright 2009 of the New Journal of Physics.)

The one parameter scaling may be seen to capture the full dynamics of
the resonance ratchet system. Indeed, Equation (41) reveals a nontrivial
feature of the off-resonant dynamics: current reversal (that is a negative
mean momentum) is possible for certain parameter regimes independent
of the quantum phase φ. This intriguing prediction has yet to be tested
experimentally.

We now briefly return to the question of why replacing quantum super-
position states with their associated classical probability distributions was
a successful strategy here, when typically it would lead to a loss of the very
quantum effects that are being modeled. One answer arises from a consid-
eration of the role that momentum plays in ε-classical formalism. Say we
start by setting the classical atomic position distribution to Equation (39),
as above. The problem is that with no uncertainty principle in play, the fix-
ing of the position space distribution does not constrain the momentum
distribution in the ε-classical system, as it does in the quantum system
(according to the Fourier transform). Thus, our choice of Equation (38) is
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Figure 20 The absolute value of the ε-classical scaling function (solid line) from
Equation (41). Here, we compare the theory with simulation results for a range of
parameters (symbols) as indicated in the legend. (Adapted figure with permission
from Sadgrove and Wimberger (2009). Copyright 2009 of the New Journal of Physics.)

rather arbitrary. However, when the quasi-momentum distribution is very
narrow (or τ → 0) and, more importantly, when ε is small, the precise
details of the momentum distribution are unimportant in the ε-classical
model, as inspection of Equation (11) along with the definition of I = |ε|N
shows. Thus, our choice of the classical analog to the quantum position
distribution rewards us by successfully capturing position space correla-
tions important to the ratchet dynamics, and the ε-classical formalism’s
indifference to the exact details of the momentum distribution mean that
we do not have to pay any price for its ill-defined nature.

3.5 Fidelity as a Measure of Stability

In this section, we present a further tool to characterize the stability of the
QR and near QR motion of the QKR, supporting our results in Sections
3.1–3.3.

Entanglement measures or witnesses have become modern tools of cor-
relation analysis in multipartite quantum systems (Horodecki et al., 2009).
For single-particle systems, some correlations can only build up during
their temporal evolution, just like the kick-to-kick correlations for the QKR
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(see Section 1.1). It is then the evolution of relative phases and the super-
position principle which distinguish quantum from classical dynamics.
Correlation functions may be used to monitor phase evolutions (Walls &
Milburn, 2008). A related quantity which has gained much interest in the
last decade is fidelity (Gorin et al., 2006), defined as the overlap of two
wave functions subjected to slightly different temporal evolutions. The
temporal evolution of this quantum fidelity crucially depends on evolv-
ing relative phases. For many-particle systems, fidelity can be viewed
as a Hilbert space measure to study quantum phase transitions (Buon-
sante & Vezzani, 2007) or local and global spectral properties (Plötz et al.,
2011). Fidelity was introduced originally as a measure for the stability
of quantum motion with respect to changes in some control parameter
of the Hamiltonian (Peres, 1984). In our case, this parameter will be the
kicking strength. The predicted saturation of fidelity at exact QR (Wim-
berger & Buchleitner, 2006) reported in the following subsection has only
recently been confirmed experimentally (Wu et al., 2009), whereas our pre-
dictions for finite detunings (Abb et al., 2009) of Subsection 3.6 still await
experimental verification.

3.5.1 Fidelity at Exact Quantum Resonance

Using the kick-to-kick operator from Equation (2), the fidelity can be
written (Wimberger, 2004; Wimberger & Buchleitner, 2006)

F(k1, k2, t) =
∣∣∣∣

1∫
0

dβ ρ(β)〈Û t
β,k1
9β |Û t

β,k2
9β〉

∣∣∣∣2, (43)

where we note that the kick-to-kick operator is applied t times, and the
kicking strengths k1 and k2 have distinct values, their difference giving
the strength of the relative perturbation under the two time evolutions.
The fidelity results from averaging the scalar product under the inte-
gral sign over β with the weight ρ(β). Note that the rotor’s fidelity is
the squared modulus of this quantity, so the fidelity of Equation (43)
of atomic evolution does not coincide with the β-average of the rotors’
fidelities (Wimberger & Buchleitner, 2006). In good approximation of
experiments, the initial rotor states 9β can be taken to be plane waves.
9β(θ) = (2π)−1/2 if only the zero momentum class is initially populated
(which we will assume in the following discussion). For kicking periods
at exact QR, i.e., τ = 2π` (` ∈ N), the fidelity may be derived analytically to

be
∣∣∣∣〈Û t

β,k1
9β |Û t

β,k2
9β〉

∣∣∣∣2 = J2
0(|Wt|1k), where J0 is the Bessel function of 1st

kind and order 0, 1k = k2 − k1 and |Wt| = | sin(π t`(β − 1
2 ) csc(π`(β − 1

2 )|

(Wimberger et al., 2003; Wimberger & Buchleitner, 2006). With |Wt| = t
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for resonant quasi-momenta β and using the asymptotic expansion for-
mula (9.2.1) from (Abramowitz & Stegun, 1972) for Bessel function J0, one
further arrives at Fβres(t) '

2
π1kt cos2

(
1kt− π

4

)
. This shows that the fidelity

decay is very slow obeying a power law ∝ 1/t for the resonant β-states.
For an ensemble of initial atoms representing a broad quasi-momentum
distribution with ρ(β) = 1, an interesting freeze or saturation of fidelity
occurs, typically already after a small number of kicks which immedi-
ately made this result accessible to experiments performed by the Harvard
group (Wu et al., 2009):

F(k1, k2, t→∞)→ F∗(1k) ≡
1

(2π)2

 2π∫
0

dy J2
0

(
1k

2 sin(y)

)2

. (44)

This result is strictly true only in the limit of a large number of kicks, but
practically the saturation is reached after t ∼ 1k−1 kicks. This follows from
the minima in the inset in Figure 21 which are found by differentiating the
time-dependent fidelity with respect to 1k. Then, the first zero of the 1st
order Bessel function J1(t1k) at t1k ' 3.83 is essentially responsible for
the observed minima. Interestingly, F∗(1k) oscillates quasi-periodically
rather than dropping monotonically as a function of the perturbation 1k,
another feature which highlights the stability of the QR dynamics of the
QKR. The aforementioned features are all illustrated in Figure 21 which
also shows that strict saturation is destroyed by arbitrarily small detun-
ings ε ≡ 2π`− τ from resonance. However, the temporal decay of the
fidelity depends continuously on ε and is again slow for small ε. This
implies that the predicted saturation is an experimentally robust observable
(Wu et al., 2009). In the following subsection, we will use the pseudoclas-
sical approach of Section 2.3 to compute the long-time behavior of fidelity
for near-resonant rotors.

3.6 Pseudoclassical Theory for Fidelity

We have seen above in Section 2.3 that the resonant rotor dynamics
essentially corresponds to the pseudoclassical motion astride a nonlinear
resonance island, provided ε is sufficiently small. We consider from now
on only initial atomic states with a narrow distribution of momenta near
p = 0. This means that we restrict ourselves to a portion of the pseudoclas-
sical phase space that contains only the principal resonance island which
is located at J = 2π or I = 0 (assuming ` = 1 for the rest of this subsec-
tion). At the centre of that island, we have a stable elliptic fixed point of
the pseudoclassical standard map, and the motion around it can be locally
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Figure 21 F ∗(1k) from Equation (44) (solid line) compared with numerical data (red
squares) obtained by evolving ensembles of 104 β−rotors with an initially uniform
momentum distribution in [0, 1), at τ = 2π and t = 50. Inset: numerically computed
fidelity (F (t) ≡ F (k1, k2, t)) vs. t1k for τ = 2π , k1 = 0.8π , and fixed 1k = 0.6283
(triangles), 1.257 (circles), 1.885 (diamonds). The position of the minima corresponds
to the time 3.83/1k . The fidelity saturates for times t1k & 20 at 1k-dependent,
constant values, indicated by the thin horizontal lines. Data for finite detunings
ε = 0.025 (red dashed) and 0.1 (blue thick solid line) are shown for 1k = 0.6283.
(Adapted figure from Wimberger and Buchleitner [2006]).

approximated by a simple harmonic oscillator Hamiltonian

H(I, θ) =
1
2
(I + β̄)2

+
ω2

2
θ 2, (45)

where ω ≡
√

k̃, β̄ ≡ τβ − π ≈ τ(β − 0.5), and a shift of θ by π is under-
stood. Using this approximation of the dynamics along the nonlinear
resonance island, we can directly compute the fidelity using semiclassical
wave functions of the form

Û t
β,k9β(θ) ∼

1
√

2π

∑
s

∣∣∣∣ ∂θ∂θ ′
∣∣∣∣−1/2

θ ′=θ ′s

e
i
ε 8s(θ ,t)−i π2 νs , (46)

where we chose as initial state a zero momentum plane wave 9β(θ) =

(2π)−1/2 and ε > 0 is assumed with no limitation of generality. The sum
is over all trajectories (labeled by the index s) which start with I = 0 at
t = 0 and reach position θ at after a number of kicks t. θ ′ = θ ′s are their ini-
tial positions, and the function whose derivative is taken in the pre-factor
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yields θ at time t as a function of position θ ′ at t = 0, given that the initial
momentum I′ = 0. Finally, the function8s(θ , t) = S(θ , θ ′s , t) is the action of
the s-th trajectory and νs is the Morse-Maslov index (Haake, 2000; Schul-
man, 1981). Except at exact multiples of the period, there is one harmonic
oscillator trajectory in the sum in Equation (46); moreover, Maslov indices
do not depend on the trajectory in this case. Straightforward calculation of
the action integral (Abb, 2009) yields θ ′(θ , t) = sec(ωt)

(
θ − β̄ω−1 sin(ωt))

and 8(θ , t) = β̄θ
(
sec(ωt)− 1

)
− (ω−1β̄2

+ ωθ 2) tan(ωt)/2, giving

〈Û t
β,k1
9β |Û t

β,k2
9β〉 ∼

eiλ(t)

2π
√
| cos(ω1t) cos(ω2t)|

π∫
−π

dθ e
i

2ε {A(t)θ
2
+C(t)β̄2

−2β̄θB(t)},

(47)

where ω1,2 ≡

√
k̃1,2. Additionally, we have defined A(t) = ω2 tan(ω2t)− ω1

tan(ω1t), B(t)= sec(ω2t)− sec(ω1t), and C(t)=ω−1
2 tan(ω2t)−ω−1

1 tan(ω1t).
λ(t) is a phase factor accumulated by the Maslov indices which depends
only on time, rendering it irrelevant to the computation of fidelity. We next
insert Equation (47) in Equation (43) and choose for ρ(β) a uniform dis-
tribution in some interval

[
1
2 − b, 1

2 + b
)
, with 0 ≤ b ≤ 1/2. It is necessary

to assume that b is smaller than the halfwidth of the pseudoclassical res-
onant island, because the harmonic approximation we have started from
is, of course, valid just inside the island. Then

F(k1, k2, t) ∼

∣∣∣∣∫ π−π dθ e−
i

2ε 31(θ ,ε,t)
∫ τb

−τb dβ̄ e−
i

2ε 32(β̄,θ ,ε,t)

∣∣∣∣2
16π 2b2τ 2| cos (ω1t) cos (ω2t)|

, (48)

where 31(θ , ε, t) = (A(t)− B2(t)C(t)−1)θ 2 and 32(β̄, θ , ε, t) =
(
β̄
√

C(t)−
B(t)C(t)−1/2θ

)2
. As 32 ∼ ε

−1/2 in the limit when ε → 0 and t
√
ε ∼const.,

the limits in the β̄-integral in Equation (48) can be taken to ±∞ to yield∫ τb

−τb dβ̄ e−
i

2ε 32(β̄,θ ,ε,t)
∼ (2π)1/2ε1/2C(t)−1/2e−iπ/4. Due to this approximation,

Equation (49) below is valid in the regime where ε is small compared with
b2. The remaining θ -integral is dealt with similarly, because the prefactor
of θ 2 in 31 is ∼ ε−1/2. Thus finally

F(k1, k2, t) ∼
ε2

16π 2b2|C(t)A(t)− B(t)2|| cos(ω1t) cos(ω2t)|

=
ε2ω1ω2

8π 2b2|4ω1ω2 − ω2
+

cos(ω−t)− ω2
−

cos(ω+t)|
, (49)

where ω± = ω1 ± ω2. Singularities of this expression are artifacts of the
approximations used in evaluating the integrals in Equation (48), which
indeed break down when the divisor in Equation (49) is small compared
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with ε. However, they account for the “revivals” of the fidelity occurring
periodically with the beating period T12 = 2π/|ω−|. For purely resonant
rotors (here β = 1/2), the revivals occur with the period T12/2. This can be
seen by evaluating Equation (48) with just one, the purely resonant β, to
arrive at

F(k1, k2, t) ≡ Fres(k1, k2, t)

∼
ε/(2π)

|ω2 cos(ω1t) sin(ω2t)− ω1 cos(ω2t) sin(ω1t)|
, (50)

which has singularities with the mentioned periodicity of T12/2. This
behavior of resonant rotors has a simple qualitative explanation. The
stationary-phase trajectories of the two harmonic oscillators, which were
started at I = 0, exactly return to I = 0 whenever time is a multiple of the
half-period T12/2, and so fully contribute to fidelity, in spite of their angles
being different by π in the case of odd multiples. At β 6= 0 this symmetry
is lost, which suppresses each second revival according to Equation (49).

Comparing numerical data (obtained by repeated application of the
Floquet operator to the initial wave function) with the analytical pre-
dictions, we find fairly good agreement. We observe the expected peak
structure of the revivals in Figure 22a and the loss of intermediate revival
peaks at T12/2 in Figure 22b. An experimental observation of these revivals
is quite challenging since a good control over a narrow initial distribution
of quasi-momenta and a stable experiment over a relatively large num-
ber of kicks are both required. The time scale on which the revivals occur
is proportional to ε−1/2 and of crucial impact to experimental measure-
ments. A conservation of coherence has been shown for up to 150 kicks
(see e.g., ref. [Schlunk et al., 2003b]) with cold atoms, making an obser-
vation of the revivals for reasonable ε . 0.01 possible. Earlier realizations
of the QKR were implemented using cold atoms (Ammann et al., 1998;
Bharucha et al., 1999; d’Arcy et al., 2001, 2004; Moore et al., 1995; Sadgrove
et al., 2005) with broad distributions in quasi-momentum. Nowadays,
much better control of quasi-momentum is provided by using BECs (see
[Duffy et al., 2004b; Ramareddy et al., 2010; Ryu et al., 2006]), which allows
for a restriction in β up to 0.2% of the Brillouin zone (as achieved, e.g.,
in [Ryu et al., 2006]). This would allow the verification of our results
by reducing the intervals in quasi-momentum and thus retracing the
revivals with period T12/2 to the exactly resonant and the revivals with
period T12 to the near-resonant rotors. There exists a second possibility
to measure the transition from Equation (50) to Equation (49) with just
cold atoms, since the β̄ we use scales with the kicking period, i.e., β̄ ≈
τ(β − 1/2). Due to this scaling, the limit τ → 0 (automatically implying
also ε → 0, c.f. Section 3.2) permits a measurement of Equation (50), even
with an ensemble of cold atoms whose quasi-momenta occupy the full



AAMOP 11-ch07-315-370-9780123855084 2011/9/26 17:53 Page 361 #47

A Pseudoclassical Method for the Atom-Optics Kicked Rotor 361

0

0.2

0.4

0.6

0.8

1
F

(t
)

200 400 600 800 1000

t

0

0.1

0.2

0.3

0.4

(a)

(b)

Figure 22 (a) Fidelity as predicted by Equation (50)—because of the singularities of
the analytical formula the curve is folded with normalized Gaussians with a standard
deviation of t ≈ 6 kicks (dashed black line)—and numerical data for a single-resonant
rotor (grey/green curve) and a coherent initial state built up for fixed resonant β = 1/2
and centred at the elliptic fixed point of the island (solid red/dark line), for k1 = 0.8π ,
k2 = 0.6π and detuning ε = 0.01 from τ − ε = 2π . The coherent state shows almost
perfect revivals at T12 and slightly smaller ones at the intermediate peaks. (b) Same as
in (a) for an ensemble of 5000 equidistantly chosen rotors (grey/green curve) with a
width of 1β = 0.05 (or 1β̄ ≈ 0.31) around the resonant value, covering half the width
of the resonance island in the phase space induced by Equation (11) compared with
the smoothed version of Equation (49) (dashed black line). The intermediate revival
peaks observed in (a) disappear as predicted by Equation (49).

Brillouin zone. This subsection exclusively focused on the evolution
of fidelity corresponding to librational motion within the nonlinear
resonance island of the pseudoclassical phase space. Ongoing research is
currently extending our understanding to nonresonant values of quasi-
momentum corresponding to rotational orbits in phase space (Probst,
2010; 2011). It remains to combine these two classes of motion to provide
a full account of the behavior seen in the inset of Figure 21 for finite ε.

4. CONCLUSIONS AND OUTLOOK

4.1 Review of the State of the Art

Although the principle aim of this review is to introduce the ε-classical
method to a wider audience, we would also like to think that it serves
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to illustrate the way that physics progresses in a microcosm. The inter-
play between theory and experiment in this particular field has driven the
method well beyond the tasks for which it was originally conceived. At
times, the desire to verify new details turned up by the theory has been the
driving force of investigations. Just as often, the observation of new phe-
nomena, or the modification of an experiment has motivated the extension
of the theory.

Below, we recap the uses to which the ε-classical theory has so far been
put in list form:

1. Analysis of quantum accelerator modes. Although outside the scope
of this review, we note that these studies marked the invention of the
ε-classical map (Fishman et al., 2002).

2. Reduction of near-resonant quantum dynamics to a one-parameter
scaling law. The quantum kicked rotor until very recently remained a
theoretically opaque system in that quantum correlations between kicks
could only be evaluated precisely up to N ∼ 5 and the exact behav-
ior was sensitive to three principle parameters—kick strength, kick
number, and the period of the kicks. The application of a pendulum
approximation to the ε-classical approximation allowed the entire prob-
lem to be reduced to a one parameter scaling function for the dynamics
near to resonance.
New features predicted and measured by the scaling law. The ε-
classical scaling law for dynamics of the AOKR near QR predicted
some features which had not been noticed before in experimental
or numerical studies. In particular, side peaks around the quantum
resonance where predicted and measured, and anomalous behavior
including frozen and ballistic energy growth near the actual semiclassi-
cal limit were predicted and observed experimentally. The observation
of these effects also served to demonstrate that quantum resonance
peaks exhibit sub-Fourier narrowing with respect to the applied pulse
train—a phenomenon predicted clearly by the scaling law for the
resonances.

3. Modelling of the effect of spontaneous emission near quantum res-
onance. The study of spontaneous emission in the kicked rotor near
quantum resonance showed that the effect on the dynamics of a deco-
herence process could be captured using a quasi-classical model.

4. Explanation of stability of QR against large amplitude fluctuations.
The puzzle of why amplitude fluctuations destroy some quantum
coherent effects (notably dynamical localization) but leave near-
resonant dynamics largely unchanged was solved by modifying the
ε-classical map to include amplitude fluctuations. However, such fluc-
tuations have little effect on the phase space, explaining why the
quantum resonance peaks are robust.
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5. Scaling law in the presence of amplitude fluctuations. An explana-
tion of the stability of the QR peaks in the presence of amplitude
noise was finally given in terms of a scaling law. By observing that the
noise changed the phase space predominantly around the separatrix,
an approximate scaling law was derived, extending analytical results to
the system in the presence of a common source of decoherence.

6. Scaling law for directed transport experiments (quantum resonance
ratchets). Choosing the appropriate classical initial conditions allows
the pseudoclassical method to be extended to the case where the ini-
tial state is a quantum superposition of momentum states. Once again,
extending the scaling law to this variant of the kicked rotor predicts new
dynamics such as current reversal for slight detunings from exact QR.

7. Fidelity of kicked rotors described pseudoclassically. Although the
concept of fidelity is inherently quantum mechanical, the pseudoclas-
sical method was once again extended to describing the evolution of
the phase sensitive fidelity in the AOKR near QR.

4.2 Future Perspectives for the Pseudoclassical Method

The state of the art in AOKR experiments is arguably represented by
experiments on atoms with very narrow initial momentum distributions
(typically sourced from a BEC) and indeed for the last two topics listed
above, a BEC would be necessary to fully test the new phenomena sug-
gested by the theory. We note that, of course, there are topics outside of
quantum resonance where studies of the kicked rotor are being extended
and even thermal atoms still allow the measurement of very interesting
new results (such as the metal-insulator transition reported in Chabé et al.
[2008]). Such studies are outside the scope of the present review.

However, we tend to believe that the quantum resonance phenomenon
in the AOKR provides the most fertile ground for new applications of
cold atoms in time-dependent optical lattices. It is interesting to note,
for example, that the momentum current in the first “atom motor” (i.e.,
Hamiltonian quantum ratchet) experiment was sharply peaked around
quantum resonance (Salger et al., 2009). Additionally, the extension of the
pseudoclassical method to quantum fidelity and the fact that the Talbot
effect has been used to perform factorization (Bigourd et al., 2008; Mack
et al., 2002) suggests that the ε-classical method might be applicable in
quantum information settings.

Slightly more prosaically, it should be noted that the extension of
the ε-classical theory to fractional quantum resonances still represents
a challenge (c.f. results in this direction for the accelerator modes in
the amended QKR [Guarneri & Rebuzzini, 2008]), even though the frac-
tional resonances have been measured carefully in both ultra-cold by
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Ryu et al. (2006) and cold atom settings by Kanem et al. (2007). That this
task represents more of a challenge than extending the theory to some of
the interesting variants of the AOKR explored above, serves as a reminder
that the derivation of analytical results in the AOKR system is still not a
trivial task in general.

Qualitatively, new directions of research would include the effects of
either atom–atom interactions (Monteiro et al., 2009; Rebuzzini et al.,
2005, 2007; Wimberger et al., 2005a) or the dissipative opening of kicked
atomic systems (Benenti et al., 2001; Carlo et al., 2006; Facchini et al., 2007;
Romanelli, 2009; Schomerus & Tworzydło, 2004; Tomadin et al., 2006).
For instance, the stability of QR motion with respect to typical values of
a mean-field nonlinearity arising from atom–atom interactions in a BEC
was numerically predicted in Wimberger et al. (2005a) and experimen-
tally tested in Ryu et al. (2006), yet an extension to near-resonant motion is
desirable, in particular by analytical means. New ideas based on the pseu-
doclassical method may allow us to take into account such complications
in a more or less rigorous way.
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Abstract Recent progress in attosecond technology has determined an
increasing interest in the application of attosecond pulses in
atomic, molecular, and solid state-physics. Novel techniques
have been introduced for the generation of subfemtosec-
ond pulses and for their applications. We report on recent
advances in attosecond science, with particular emphasis on
the generation and use of isolated attosecond pulses, pro-
duced by using the process of high-order harmonic generation
in gases. Several techniques have been proposed and partly
implemented for the confinement of the harmonic generation
process to a single event: in this article, we analyze various
temporal gating techniques. Various schemes for attosec-
ond measurements have been proposed and experimentally
demonstrated in the last decade; here, we review important
applications of isolated attosecond pulses.

1. INTRODUCTION

After a decade from the first experimental demonstration of the gener-
ation of attosecond pulses (Hentschel et al., 2001; Paul et al., 2001), the
attosecond research area has shown exciting experimental and theoreti-
cal developments (Krausz & Ivanov, 2009; Nisoli & Sansone, 2009). Novel
experimental methods have been introduced for the measurement and
application of attosecond pulses. The attosecond technology is now well
developed, and attosecond techniques are common in a number of labo-
ratories around the world. This is particularly true in the case of trains of
attosecond pulses, produced by high-order harmonic generation (HHG)
in noble gases (Macklin et al., 1993); (L’Huillier & Balcou, 1993) exposed
to intense (peak intensity I ∼ 1013

− 1015 W/cm2) ultrashort light pulses.
As a result of the physical processes at the basis of harmonic generation,
bursts of extreme ultraviolet (XUV) pulses are emitted with subfemtosec-
ond duration every half optical cycle of the fundamental radiation, as
first theoretically proposed in 1992 (Farkas & Tóth, 1992). The attosec-
ond metrology with trains of attosecond pulses has achieved relevant
results: particularly important is the observation of nonlinear effects in the
attosecond regime (Midorikawa et al., 2008). In 2003, by using the process
of two-photon absorption in atoms, Tzallas et al. demonstrated the first
autocorrelation measurement of a train of attosecond pulses (Tzallas et al.,
2003); Coulomb explosion of diatomic molecules by two-photon double
ionization has been used for the measurement of the interferometric auto-
correlation of an attosecond pulse train (Nabekawa et al., 2006; Shimizu
et al., 2007). Trains of attosecond pulses have been used in various exper-
iments. In particular, in 2006, they have been used, in combination with a
novel interferometric method, for the determination of the phase variation
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of electronic wave packets in momentum space (Remetter et al., 2006);
in 2008, an attosecond quantum stroboscope method has been proposed
and experimentally demonstrated capable of capturing electron motion
on an attosecond time scale (Mauritsson et al., 2008). A number of exper-
imental and theoretical works have been published, based on the use of
trains of attosecond pulses.

The generation and the applications of isolated attosecond pulses
present peculiar characteristics. From the point of view of laser technol-
ogy, the confinement of the XUV generation process to a single event
requires the use of femtosecond driving pulses with controlled electric
field. This is not required in the case of trains of attosecond pulses, thus
relaxing the requirements on laser characteristics. The stabilization of
the carrier-envelope phase (CEP) of laser pulses after amplification was
experimentally demonstrated in 2003 (Baltuška et al., 2003). Since the
first demonstration of the generation of isolated subfemtosecond pulses,
various techniques have been proposed and partly implemented for the
production of such pulses. In particular, a number of temporal gating
schemes have been used, which will be discussed in this chapter. Since
the first application of isolated subfemtosecond pulses in the investiga-
tion of the ultrafast dynamics of Auger electrons (Drescher et al., 2002),
impressive results have been obtained.

The aim of this study is to present recent advances in the field of attosec-
ond science in the case of isolated attosecond pulses. Section 2 reviews the
methods proposed so far for the generation of isolated attosecond pulses.
Particular emphases will be devoted to the temporal gating schemes.
Section 3 briefly discusses numerical methods developed for the investiga-
tion of the physical processes at the basis of attosecond pulse generation.
Finally, Section 4 reviews the main applications of isolated attosecond
pulses to atomic, molecular, and solid-state physics.

2. SCHEMES FOR GENERATION OF ISOLATED
ATTOSECOND PULSES

There are currently two methods for the generation of isolated attosecond
pulses. The first approach is based on bandpass filtering of the highest
energy region of the XUV emission obtained by HHG in gases (Christov
et al., 1997; Hentschel et al., 2001). Indeed, this portion of the XUV spec-
trum can only be emitted near the peak intensity of the laser field, and
thus the corresponding XUV light is naturally confined within one-half
of the laser oscillation period. This generation scheme requires the use
of intense sub-5-fs driving pulses, with stabilized carrier-envelope phase
(CEP) and linear polarization. Depending on the CEP value of the driving
field, it is possible to generate a single pulse or a couple of pulses. Isolated
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attosecond pulses with a temporal duration down to 80 as have been
generated by using this approach (Goulielmakis et al., 2008), employing
sub-4-fs driving pulses obtained by using the hollow-fiber compression
technique (Nisoli et al., 1996, 1997).

An alternative way for the production of isolated attosecond pulses is
to apply a temporal gate on the harmonic generation process. With such
a method, the XUV generation is confined within a temporal window,
which can be shorter than half an optical cycle of the driving field. Sev-
eral approaches have been proposed and implemented to perform such
temporal confinement of the XUV emission. One method (polarization
gating, PG) relies on the strong sensitivity of the HHG process and on
the ellipticity of the fundamental field. Indeed, if the polarization of the
driving pulse is temporally modulated from circular to linear and back to
circular, the XUV emission is limited during the temporal window where
the driving field is linearly polarized. By applying such a method, which
requires CEP-stabilized few-cycle pulses, isolated attosecond pulses with
a duration down to 130 as were generated (Sansone et al., 2006).

In order to relax the constraint on the short temporal duration of the
driving field, Chang (2007) proposed to add a second harmonic field to
the PG field resulting in a double optical gating (DOG) scheme . Indeed,
if the second harmonic is intense enough, one half cycles of the driving
field are suppressed, and thus the time interval between two consecutive
attosecond pulses is increased, with two main consequences: neutral atom
population depletion is reduced and a wider temporal gate can be applied.
This allows to generate isolated attosecond pulses by using multiple-cycle
laser pulses.

In 2009, it was experimentally demonstrated (Abel et al., 2009;
Thomann et al., 2009) that laser-induced ionization can be used to create a
temporal gate on the harmonic generation process (ionization gating, IG).
Indeed, it has been shown that, under proper conditions, plasma density
rapidly increases on the leading edge of the laser driving field, therefore
creating a phase mismatch responsible for the suppression of HHG for
all later half cycles. Such IG allows one to confine the harmonic emission
on the leading edge of the driving field. However, the temporal gate is
not narrow enough to select an isolated attosecond pulse, and additional
bandpass filtering is required. Recently, a novel approach based on the
combined action of complete population depletion and spatial filtering of
the XUV beam has been proposed to obtain an efficient temporal gating
on the harmonic generation process. Isolated attosecond pulses having a
temporal duration of 155 as and a pulse energy on target of 2.1 nJ have
been generated by using such a method (Ferrari et al., 2010).

Exploiting all the earlier mentioned techniques, the generation of iso-
lated attosecond pulses has been successfully obtained below 100 eV. Since
the maximum photon energy emitted in the HHG process scales as the
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square of the driving wavelength, parametric sources operating in the
infrared (IR) have been proposed as a way to extend the attosecond pulse
production from the XUV to the soft-X region (Shan & Chang, 2001).
In this contest, it has been demonstrated that by properly combining an
IR parametric source with a Ti:Sapphire source in a two-color scheme, it is
possible to create a temporal gate on the harmonic generation process that
results in a supercontinuous emission extending up to 200 eV (Calegari
et al., 2009).

Since the spectral filtering technique has been already well analyzed
in several review papers (Agostini & DiMauro, 2004; Corkum & Krausz,
2007; Scrinzi et al., 2006), in the following, we will focus on the earlier
listed temporal gating methods.

2.1 Polarization Gating

It is well known that HHG allows one to produce a train of attosecond
pulses separated by one half of the fundamental period. This physical
process has been already depicted in several studies, and it can be eas-
ily described in a semiclassical picture, in which an electron is first tunnel
ionized by the laser electric field, then it is accelerated in the continuum,
and finally it recombines with the parent ion by emitting an XUV photon
(Corkum, 1993; Krause et al., 1992a). As mentioned in the previous section,
the polarization gating method allows one to generate isolated attosec-
ond pulses by properly manipulating the ellipticity of the driving field.
Indeed, an elliptically polarized field gives rise to a transverse displace-
ment in the trajectory of the ionized electron. If this displacement exceeds
an amount that can be compensated for by the initial transverse momen-
tum distribution of the electron, the electron never rencounters the parent
ion again, and harmonic production is no more possible. In a full quan-
tum mechanical picture, the spreading of the recolliding electron wave
packet increases with the ellipticity of the electric field, thus reducing
the superposition with the ground state wave function and therefore the
probability of recombination. Thus, if a driving field with time-dependent
polarization state, characterized by a short temporal window of linear
polarization, is used to drive the harmonic generation process, the XUV
emission can be confined during the temporal window of linear polariza-
tion, and isolated attosecond pulses can thus be obtained, as first proposed
in 1994 (Corkum et al., 1994). The proposed PG scheme was based on the
use of two orthogonallypolarized light pulses, with slightly different car-
rier frequencies, ω1 and ω2, such that 1ω/ω � 1, where 1ω = ω2 − ω1 and
ω = (ω1 + ω2)/2. The resulting field is characterized by a time-dependent
ellipticity, ε:

ε = tan(1ω t/2), (1)
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and it is linearly polarized at time, t = nπ/1ω, where n is an integer
number. This synthesized field, combined with a suitable filtering of the
low-order harmonics, allows one to obtain efficient harmonic generation
only in a single half cycle of the laser field. A second implementation of
the PG scheme was proposed by Altucci et al. (1998): in this case, the tem-
poral gate was achieved by sending a positively chirped laser pulse in a
birefringent quartz plate. A single gate at the maximum of the electric field
or two gates symmetric with respect to the central part of the pulse could
be obtained.

One of the major limitations of the earlier listed schemes is represented
by the fixed duration of the gate. To overcome this limitation, a different
approach, based on a Michelson interferometer and three quarter-wave
plates, was implemented (Kovacěv et al., 2003). The Michelson interferom-
eter and two quarter-wave plates (one for each arm of the interferometer)
are used to create two delayed pulses having orthogonal linear polar-
izations. At the output of the interferometer, the linear polarizations are
transformed into right and left circular polarizations respectively by the
third quarter-wave plate. The superposition of these two delayed and
circularlypolarized components results in a polarization that varies from
circular to linear and back to circular, thus generating a gate whose dura-
tion can be arbitarily set by changing the temporal delay δ between the
two replica. A similar approach for PG was introduced in 2003 based on a
simple linear setup, which allows one to eliminate residual fluctuations
due to the interferometric configuration (Tcherbakoff et al., 2003). The
experimental setup is schematically reported in Figure 1: a first quartz
plate creates two delayed replica of the incoming pulse with perpendic-
ular polarizations propagating along the ordinary and the extraordinary
axes of the plate. In this configuration, the temporal delay δ between the
two components depends on the thickness of the plate. If the polariza-
tion of the incoming pulse forms an angle of α = 45◦ with the axis of
the plate, the total output pulse is linearly polarized on the leading and

β

α

Figure 1 Scheme of collinear polarization gating based on two birefringent plates.
The first plate transforms the linearly polarized input pulse into a pulse that is
polarized on the leading and trailing edges and is circularly polarized in the center. An
additional quarter wave plate allows one to obtain a final output polarization which
changes from circular to linear and back to circular.
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trailing edges, and it is circularly polarized in the center. An additional
zero-order quarter-wave plate, having the axis at β = 0◦ with respect to
the polarization direction of the incident beam, allows one to obtain an
output polarization which changes from circular to linear and back to cir-
cular. The width of the temporal gate τg (defined as the temporal interval
in which the ellipticity is smaller than 13%) is imposed by the delay δ,
the angle β, and the input pulse duration τ according to the following
expression:

τg =
εth

ln 2| cos(2β)|
τ 2

δ
, (2)

where εth is the threshold (13%) ellipticity. This equation clearly indicates
that the narrowest gate (required for the isolation of single attosecond
pulses) can be obtained either by reducing the pulse duration τ or by
increasing the temporal delay δ. However, for large delays, the efficiency
of the process is strongly reduced due to the appearance of a dip in the
temporal intensity profile in correspondence of the linear polarization.
A good compromise can be obtained for δ ' τ , since in this case, the
synthesized pulse exhibits an almost flat top intensity profile. In this con-
dition, pulses having a duration shorter than 7 fs are required to obtain
isolated attosecond pulses.

By applying such a PG scheme, in combination with 5-fs driving pulses
with stable CEP, the generation of isolated attosecond pulses at 36 eV pho-
ton energy has been demonstrated by Sansone et al. (2006). In this experi-
ment, the first quartz plate was 181 µm thick, thus splitting the incoming
linearly polarized pulse into two orthogonally polarized pulses separated
by δ = 5.8 fs. A CEP value of the driving field that determines the emission
of an attosecond pulse at the center of the gate (ε ' 0) was selected. The
complete temporal characterization of the isolated attosecond pulses was
performed by frequency-resolved optical gating for complete reconstruc-
tion of attosecond bursts (FROG CRAB) (Mairesse & Quéré, 2005). This
method is an extension to the attosecond domain of the well known FROG
technique (Trebino et al., 1997) used for the temporal characterization of
femtosecond pulses. The basic idea of the measurement is the following:
the attosecond pulse ionizes a gas, thus generating an attosecond electron
pulse, which is a replica of the optical pulse. The conversion of the XUV
pulse into an electron wave packet is obtained in the presence of a streak-
ing IR pulse, whose electric field acts as an ultrafast phase modulator
on the generated electron wave packet. In this way, a time-nonstationary
filter, which is required to achieve the temporal characterization of the
ultrashort pulse, is realized. The evolution of the photoionization spectra
as a function of the delay between the attosecond and the IR pulses allows
one to retrieve the temporal intensity profile and phase of the XUV pulses,
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Figure 2 (a) Experimental FROG CRAB trace; isolated attosecond pulses were
generated by phase-stabilized 5-fs pulses with modulated polarization state.
(b) Reconstructed temporal intensity profile of the attosecond pulses obtained
from the FROG CRAB trace. Figure adapted from Sansone et al. (2006).

as well as the electric field of the IR pulse. Figure 2a shows the acquired
FROG CRAB trace; Figure 2b displays the retrieved temporal intensity
profile of the XUV pulse, obtained by using the principal component gen-
eralized projections algorithm (PCGPA) (Kane, 1999). The reconstructed
pulse has a duration (FWHM) of 130 as, close to the Fourier limit, thus
indicating that the 300-nm-thick Al filter used in the experimental setup
allows to compensate for the intrinsic chirp (atto chirp).

A different PG scheme suitable for multicycle driving pulses has been
recently implemented by Altucci et al. (2010). Such a scheme is based
on the combined action of PG and group-delay dispersion (GDD). The
key idea is to produce a time window of nearly linear polarization at



AAMOP 12-ch08-371-414-9780123855084 2011/9/26 18:05 Page 379 #9

Principles and Applications of Attosecond Technology 379

the maximum possible laser intensity before population depletion occurs.
This is achieved by sending 15-fs driving pulses into a Michelson inter-
ferometer having one arm equipped with both a half-wave plate and a
variable amount of glass. The plate rotates the polarization of one of the
two replica of 90◦, whereas the glass provides the amount of GDD neces-
sary to chirp the pulse to a final duration of about 35 fs. Two single-shot
harmonic spectra generated in kripton by the synthesized field for tem-
poral delays between the short and the chirped pulse of 15 fs (solid black
line) and 15.5 fs (dashed red line), respectively, are reported in Figure 3.
As it can be seen from this figure, for a delay of 15 fs (with the short
pulse ahead in time), the recollision is confined within the gate, and one
can observe the emission of a continuum spectrum. On the other hand,
upon changing the delay of just 0.5 fs, more than one recollision events
are selected, thus giving rise to a modulated spectrum.

Finally, it is worth mentioning a completely different approach for
tailoring the polarization of the driving field, which has been recently
demonstrated by Negro et al. (2010). The idea is to achieve a polariza-
tion shaping by birefringence effects in an aligned molecular gas. This
approach requires a first IR pulse (pump) undergoing optical filamenta-
tion in a molecular gas, and a second, delayed visible pulse (driver), lin-
early polarized at 45◦ with respect to the pump polarization, propagating
through the aligned medium. The refractive index modulation induced by
the impulsive molecular alignment results in a time-dependent modula-
tion of the polarization of the driver pulse. In this case, the alignment was
induced in N2, and a strong suppression of the harmonic signal was mea-
sured in correspondence to the maximum and minimum of the rotational
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Figure 3 Single-shot harmonic spectra generated in krypton for delays of 15 fs (solid
curve) and 15.5 fs (dashed curve), respectively, between the short and long driving
pulse (short pulse ahead). Figure adapted from Altucci et al. (2010).
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revival where the driver is elliptically polarized. With this approach, the
temporal modulation of the polarization state depends on the duration
of the rotational revival, and thus using lighter molecules (H2 and D2)
would allow in principle to induce a polarization that varies from circular
to linear and back to circular along the driver pulse.

2.2 Double Optical Gating

As discussed earlier, to keep a high efficiency in the XUV generation pro-
cess, conventional PG requires the use of driving pulses shorter than∼7 fs.
In order to relax the requirements on pulse duration of high-intensity
pulses, several approaches have been proposed for the generation of
isolated attosecond pulses in the case of multiple-optical-cycle driving
pulses. Mauritsson et al. (2006) demonstrated that by adding a second
harmonic field to a linearly polarized fundamental field, it was possible
to halve the number of recollision events during the HHG process. The
use of a two-color gating in the case of multiple-cycle driving field gives
rise to the generation of a train of attosecond pulses spaced by one period
of the fundamental field. In order to isolate a single pulse, additional
cut-off filtering is required, thus leading to the reduction of the available
bandwidth.

The combination of two-color gating and PG techniques (double opti-
cal gating, DOG) allows one to avoid cut-off filtering, thus opening the
possibility to produce broadband attosecond pulses with multiple-cycle
laser sources (Chang, 2007). The added second harmonic field in the DOG
scheme also reduces population depletion caused by the leading edge of
the driving field. The collinear configuration of DOG requires two quartz
plates and a β-barium borate (BBO) crystal: the first quartz plate creates
two delayed replica of the incoming pulse with perpendicular polariza-
tions as in a conventional PG setup. The optical axis of the second quartz
plate and the BBO are aligned and form an angle of 45◦ with respect to the
axis of the first plate. They work together as a quarter-wave plate to cre-
ate a polarization which varies from circular to linear and back to circular.
In contrast to PG, the first plate thickness is set to obtain a polarization
gate with a duration of one full optical period of the fundamental field.
As a result, the longest pulse duration, which can be used for generating
single attosecond pulses with DOG, is almost two times larger compared
with the one used by conventional PG. By applying DOG to 8-fs pulses
with 0.85 mJ energy at 790 nm carrier wavelength, the efficient genera-
tion of continuous XUV spectra in argon and neon have been successfully
demonstrated by Mashiko et al. (2008). Pulses as short as 107 as have been
obtained by Mashiko et al. (2009) using such a method.

In 2009, the same group extended the DOG method to longer driv-
ing pulses by introducing a similar approach, dubbed generalized double
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optical gating (GDOG) (Feng et al., 2009). The idea is to create a driving
field having a polarization which varies from elliptical to linear and back
to elliptical with an ellipticity, ε. It is possible to demonstrate that in these
conditions the width of the temporal gate τg is given by:

τg = ε
εth

ln 2
τ 2

δ
, (3)

where εth is the threshold ellipticity, δ is the delay, and τ is the input pulse
duration. The advantage of using GDOG instead of DOG for long driving
pulses can be easily understood by calculating the intensity profile of the
output driving field in the two cases. Figure 4 shows the calculated driving
(dashed red line) and gating (solid blue line) fields, as well as the ellip-
ticity (dotted green line) in DOG (top panel) and GDOG (bottom panel)
cases for an input pulse duration of 20 fs (Feng et al., 2009). As can be seen
from this figure, in order to have a gate width corresponding to one opti-
cal cycle, DOG (ε = 1) requires a delay δ = 48 fs, whereas the same τg can
be achieved with GDOG (ε = 0.5) by halving the time delay. As a result,
the field strength before the gate is lower for GDOG than for DOG, thus
allowing a strong reduction of population depletion even for very long
laser pulses. The GDOG experimental setup is similar to the DOG one: it
requires again two quartz plates and a BBO crystal. In addition, a fused
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Figure 4 Comparison of laser field components for polarization gating in DOG
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solid blue lines, respectively; the ellipticity is plotted as dotted green line. Figure
adapted from Feng et al. (2009).
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silica Brewster window is placed in between the two plates in order to cre-
ate the desired ellipticity by rejecting half of the driving pulse. By applying
the GDOG method, isolated attosecond pulses having a temporal dura-
tion of 148 as have been generated and completely characterized for the
first time by driving the process with 28-fs pulses coming directly from
the CPA laser system (Feng et al., 2009).

2.3 Temporal Gating by Sub-Cycle Ionization Dynamics

The role of ionization in the generation of attosecond pulses was theoret-
ically studied in several works (Cao et al., 2006; Gaarde et al., 2008; Kim
et al., 2004), and experimentally investigated in the case of 8-fs (Pfeifer
et al., 2007) and 15-fs (Thomann et al., 2009) driving pulses. In the work
of Pfeifer et al., (2007) it has been demonstrated that plasma generation,
due to strong ionization, is responsible for the propagation of induced
mechanisms such as phase mismatch and defocusing, which inhibit the
harmonic generation process at a certain time during the leading edge of
the driving pulse, even for a relatively low level of population depletion
(5%–10%) of the ground state. Indeed, in the presence of high-intensity
driving pulses, ionization reaches a critical level at which the negative
dispersion due to free electrons cannot be compensated for by the pos-
itive dispersion of the remaining neutral gas, therefore phase matching
of the harmonic emission is no longer possible. Since this rapid loss of
phase matching confines the HHG process to the leading edge of the
driving field, the method was dubbed ionization gating (IG). As already
mentioned, IG does not allow to isolate a single recollision event, and
additional spectral filtering is required. In this experiment, the XUV emis-
sion obtained by HHG in neon at a gas pressure of 75 torr was filtered
by a multilayer Mo/Si mirror having a reflectivity band centered at 93 eV
with 4 eV bandwidth (FWHM). This split mirror was used also to induce
a variable temporal delay between the attosecond pulse and the streaking
field in order to perform the temporal characterization of the XUV pulses.
For a proper value of the CEP of the driving field, isolated pulses having
a temporal duration of 430 as have been obtained with this method (Abel
et al., 2009).

In a similar experiment performed by Thomann et al. (2009), the role
of IG was studied in presence of a multiple-cycle CEP-unstable driving
field. In this case, the harmonic radiation was generated by focusing the
laser pulses into a 150-µm-diameter, 3.5-cm-long hollow-core waveguide
filled with argon at a gas pressure of 10 torr. Also in this experiment, IG
was combined to spectral filtering by a Mo/Si multilayer mirror centered
at 47 eV with 13-eV bandwidth (FWHM). The temporal characteriza-
tion of the attosecond pulses was obtained by reconstructing the FROG
CRAB traces with both a PCGPA and direct simulations extended to a 2π
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detection scheme and CEP- unstabilized pulses. Both reconstruction meth-
ods retrieved a near-transform limited isolated XUV burst with 200-as
duration.

More recently, it has been demonstrated by Ferrari et al. (2010) that
the combined action of subcycle ionization dynamics during the HHG
process and efficient spatial filtering in the XUV beamline allows one to
efficiently generate isolated attosecond pulses with energy up to 2.1 nJ
on target. This result indicates a pulse energy enhancement from one to
three orders of magnitude compared with the generating methods demon-
strated so far. The key elements of this technique are as follows: (1) the
use of CEP-stable few-optical-cycle driving pulses, with linear polariza-
tion and peak intensity beyond the saturation intensity of the gas used
for HHG, (2) the optimization of the interaction geometry in terms of gas
pressure, position, and thickness of the gas cell, and (3) the presence of a
200-µm-diameter pinhole used for spatial filtering of the XUV radiation.
In particular, the XUV emission was produced by focusing CEP-stable
5-fs pulses into a 2.5-mm-thick cell filled with xenon at static pressure
(2.5–3 Torr), and a laser peak intensity I ' 2.3× 1015 W/cm2. As can be
seen in Figure 5, the generated XUV spectra display an evolution from a
continuous behavior to a modulated one upon changing the CEP value
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pulses in the case of two different CEP values. The spectra were measured after the
aluminum filter was used to block the fundamental radiation and the low-order
harmonics. Figure adapted from Ferrari et al. (2010).
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of the driving field by π/2. The energy of the XUV pulses in the case of
continuous spectra was 2.1 nJ, after a 100-nm-thick aluminum filter was
used to block the fundamental radiation and the low-order harmonics.
The XUV pulses were temporally characterized by using the FROG CRAB
technique: pulses as short as 155 as were measured.

The physical mechanisms at the basis of this temporal gating are related
to the subcycle ionization dynamics in the generating medium. Indeed,
the fast depletion of the neutral atom population induced by such an
intense and ultrashort driver leads to the confinement of the generation
process to a single contribution in the very beginning of the laser pulse.
A theoretical calculation based on the Ammosov, Delone, and Krainov
(ADK) theory (Ammosov et al., 1986), clearly indicates a strong depen-
dence of the temporal evolution of the ionization rate on the CEP value of
the driving field. This dependence strongly affects the shape of the tem-
poral gate, thus leading to the production of isolated attosecond pulses
or a couple of attosecond bursts depending on the CEP value. Unlike
the IG method, in this case, the spatio-temporal reshaping of the driv-
ing pulses is weak, also considering multiple ionization of the generating
medium, as a consequence of the very low pressure used in the experi-
ment. Moreover, spectral filtering is not required, since the temporal gate
created by the subcycle ionization dynamics is narrow enough to isolate a
single attosecond pulse.

2.4 Heterodyne Mixing of IR and Visible Pulses

High-energy laser systems operating in the spectral region between 1.5
and 3 µm have been suggested for the generation of isolated attosecond
pulses with photon energies exceeding 100 eV. Indeed, the maximum pho-
ton energy achievable in the HHG process is given by hν = Ip + 3.17Up,
where Ip is the ionization potential of the neutral atom and Up is the pon-
deromotive energy, which turns out to be proportional to λ2

0I, where λ0

is the wavelength of the driving field and I is the excitation intensity. For
this reason, parametric sources operating in the IR (Vozzi et al., 2007) have
been developed to extend the harmonic emission up to kiloelectron volt
energies (Popmintchev et al., 2008; Takahashi et al., 2008). However, the
main drawback of using longer wavelength is the reduction of the har-
monic yield expected to decrease as λ−6 (Colosimo et al., 2008; Shiner et al.,
2009). A first approach to gate the harmonic emission driven by a para-
metric source was experimentally investigated by Vozzi et al. (2007), and
it is based on the combination of a few-cycle IR field (I ∼ 2× 1014 W/cm2)
and a weak multicycle 800-nm field (I ∼ 3× 1013 W/cm2). The idea at
the basis of this temporal gate was first theoretically proposed by Merdji
and coworkers (Merdji et al., 2007): the generation of isolated attosecond
pulses can be achieved by a multiple-cycle two-color field having one
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component at frequency ω0 and the other one at a frequency ω1 slightly
detuned from the second harmonic. Exploiting the tunability of the IR
parametric source, the HHG process was studied both in a combination of
1.6-µm + 800-nm pulses and 1.5-µm + 800-nm pulses. Adding the 800-nm
component to the 1.6-µm driving pulse allowed only for field symmetry
breaking, which corresponds to the appearance of even harmonics in the
XUV spectrum. A completely different situation was obtained when the
800-nm component was added to the 1.5-µm driving pulse: in this case,
the acquired spectra showed a clear even and odd harmonic structures
for some shots and a broad continuum for some other shots (Vozzi et al.,
2009). This behavior was attributed to the CEP-unstabilized Ti:Sapphire
source used in the experiment. The broad continuous spectrum generated
in argon, extending up to 100 eV, is a strong indication of the presence
of an isolated attosecond pulse. Nevertheless, in this method, the role of
the 800-nm field is limited to a gentle perturbation of the strong IR driv-
ing pulse, which dominates the generation process, thus keeping a low
conversion efficiency.

To overcome this limitation, an alternative approach was proposed,
based on a proper mixing of intense IR and visible (VIS) few-cycle laser
pulses (Calegari et al., 2009). In this case, the role of the IR pulse is to signif-
icantly extend the harmonic emission to higher photon energies, whereas
the intense VIS pulse improves the conversion efficiency of the process.
The IR and the VIS sources were developed starting from an amplified
Ti:sapphire laser system (60-fs pulse duration, 800-nm central wavelength,
10-Hz repetition rate, and 10-mJ pulse energy). The IR parametric source
generated up to 1.6-mJ CEP-stable pulses, with a nearly transform limited
duration of 18 fs at 1.45-µm carrier wavelength. The 800-nm, 13-fs, and
0.8-mJ VIS pulses originated from optical filamentation of a fraction of the
Ti:sapphire beam. The IR and the VIS beams were collinearly recombined,
and the polarizations of the two beams were set parallel by a broadband
half-wave plate. The peak intensities of IR and VIS pulses at the focus
were estimated to be IIR = 2× 1014 W/cm2 and IVIS = 8.5× 1014 W/cm2.
Left panel of Figure 6 shows the harmonic spectrum generated in argon
acquired (by averaging over 30 laser shots) as a function of the delay
between the two-color pulses. As can be seen from this figure, at zero
delay, the harmonic emission is dramatically extended, and the harmonic
spectrum becomes continuous, whereas when the two pulses do not over-
lap in time, the harmonic spectrum is dominated by the VIS component.
Right panel of the same figure shows the comparison between the typical
high-order harmonic spectra generated by the strong VIS pulse (dashed
curve) and the synthesized two-color pulse at zero delay (solid curve).
The harmonic emission driven by the VIS pulse is limited to 100 eV, since
at the peak intensity, IVIS, the medium is almost fully ionized. On the other
hand, by driving the process with the two-color field, the XUV spectrum
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Figure 6 Left panel: sequence of harmonic spectra generated in argon as a function
of the delay between the two-color pulses (logarithmic color map). Right panel:
high-order harmonic spectra(number of photons) generated in argon by VIS pulses
(dashed curve) and two-color pulses at zero delay (solid curve). Figure adapted from
Calegari et al. (2009).

is extended up to 160 eV, and the harmonic peaks merge to a continuum
as a result of the temporal gating. It is worth mentioning that the contin-
uous emission was measured also for some single shot spectra, since the
VIS pulses were CEP unstable. By performing the same measurement in
neon, it was possible to obtain at synchronization a broad and continu-
ous emission extending up to 200 eV. This was the first demonstration of
the possibility to efficiently produce attosecond pulses at high energies
exploiting the heterodyne mixing of intense and few-cycle IR and visible
pulses.

In a recent work, Takahashi and coworkers investigated the possibility
of generating isolated attosecond pulses from a multiple-cycle two-color
laser field, obtained by mixing an 800-nm, 30-fs pulse with a 1300-nm,
40-fs pulse (Takahashi et al., 2010). The idea is to combine long driving
pulses in order to relax the constraint on the CEP stabilization of the
source. Moreover, the synthesized field significantly reduces the ioniza-
tion probability in the multiple-cycle region, thus allowing to efficiently
generate intense attosecond pulses from the neutral medium. Top panel
of Figure 7 shows the acquired single-shot XUV 2D-spectrum generated
at synchronization, and the corresponding 1D-spectrum is reported in the
bottom panel of the same figure. As can be seen from this figure, a dense
harmonic structure appears in the plateau region, whereas a continuum
XUV spectrum can be observed in the cut-off region (33rd to 45th order).
Thus, in this case the two-color gate is not narrow enough to isolate a
single attosecond pulse, and additional spectral filtering is required. To
evaluate the role of CEP, they simultaneously measured the harmonic
spectrum and corresponding CEP for each laser shot using a nonlinear
interferometer, which records the interference fringes between the pump
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Figure 7 Top panel: 2D single-shot harmonic image driven by the two-color field.
Bottom panel: single-shot 1D harmonic spectrum driven by the two-color field. Figure
adapted from Takahashi et al. (2010).

pulse spectrally broadened by white light generation in a sapphire plate
and the second harmonic of the idler pulse near 1 µm. The experimental
results indicate that a continuous cut off emission can be obtained for all
the CEP values, although the intensity of the cutoff is affected by the CEP
drift. Such a scheme reduces the requirements for the pump laser system,
thus opening new perspectives for the generation of isolated attosecond
pulses exploiting TW-class, high-power laser systems.

3. NUMERICAL METHODS FOR THE INVESTIGATION
OF THE HARMONIC GENERATION PROCESS

In order to analyze the physical processes leading to the generation
of attosecond pulses, various numerical methods have been used. In
this section, we will review in particular the nonadiabatic saddle-point
method and a three-dimensional numerical propagation model. Physical
insights in the strong-field process at the basis of HHG can be obtained
with an intuitive classical model, the socalled three-step model (Corkum,
1993; Kulander et al., 1993). During the interaction between a strong IR
driving field and the generating medium, the electric field can bend the
bonding potential of atoms in such a way that tunnel ionization can occur.
The electron sent in the continuum is then accelerated by the external field
and acquires a large kinetic energy. Since the IR field changes its sign dur-
ing its oscillations, it is possible that the the electron is driven back to
the parent ion. During the recollision with the parent ion, the acquired
energy can be released in the form of a high-energy photon. The various
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harmonic frequencies correspond to different field-driven electron trajecto-
ries resulting in different kinetic energies at the recollision time. The saddle
point method analyzes the generated XUV radiation in terms of complex
trajectories, in space and time, followed by the electron from the ionization
instant until the recombination with the parent ion. The three-step model
is the classical limit of the saddle-point model; indeed, the real part of such
quantum paths largely agrees with the classical electron trajectories. The
imaginary part is related to the quantum origin of the electron by tunnel
ionization. In general, we do not need to consider a great number of such
quantum paths to describe the properties of the HHG process. The most
relevant paths are those characterized by a single recollision event and an
electron travel time in the continuum shorter than one-half or one optical
period of the driving electric field. These are the socalled short and long
quantum paths, respectively.

3.1 Saddle-Point Approximation

Following the first quantum idea of the “atomic antenna” (Kuchiev, 1987)
and the three-step model, it is possible to obtain a more convenient semi-
classical picture. As pointed out in Lewenstein et al. (1994), the component
of the x(t) nonlinear time-dependent dipole moment along one direction
defined by the unit vector n can be written as

xn(t) = i

t∫
0

dt′
∫

d3p n·d∗(p−A(t))

× E(t′)·d(p−A(t′)) exp[−iS(p, t, t′)]+ c.c, (4)

where E(t) and A(t) are the electric field and the vector potential of the
driving field, respectively; p = v+A(t) is the canonical momentum and
d(v) is the atomic dipole matrix for bound-free transition. In Equation (4),
we can recognize the three steps of the classical model. Indeed, the term
E(t′)·d(p−A(t′)) in the integral expresses the probability amplitude for
an electron to make the transition to the continuum at the time t′ with the
canonical momentum p. The quantity

S(p, t, t′) =

t∫
t′

dt′′
(

[p−A(t′′)]2

2
+ Ip

)
(5)

is called quasi-classical action, and the term exp[−iS(p, t, t′)] represents
the phase factor acquired by the electron wave function in its propagation
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in the continuum until the time t. At that time, the electron can recollide
with the parent ion with an amplitude probability given by d∗(p−A(t)).
If we analyze the time dependence of the quantities in Equation (4), it is
possible to observe that, when the time τ = t− t′ spent by the electron in
the continuum is of the order of one period of the laser field, the semi-
classical action varies faster than the other terms. Therefore, the major
contribution to the integration over the momentum space comes from the
stationary points of the semi-classical action. According to this discussion,
we can perform the integral over p using the saddle-point approximation
(SPA), thus obtaining the integral of Lewenstein et al. (1995):

x(t) = i

∞∫
0

dτ
(

π

ε + iτ/2

)3/2

d∗
(
pst(t, τ)−Ax(t)

)
× E(t− τ)·d(pst(t, τ)−Ax(t− τ)) exp [−iSst(t, τ)]+ c.c, (6)

where ε is a positive regularization constant and Sst is defined as

Sst(t, τ) =
1
2

t∫
t−τ

dt′′
(
pst −A(t′′)

)2
, (7)

where pst is the stationary value of the momentum. Since the harmonic
emission rate is related to the Fourier transform of the atomic dipole
moment x(ω), in order to evaluate it, we have to calculate a double
integral in the (t, τ) space. Following the previous considerations, it is
possible to apply the SPA to the two-dimensional integral, thus obtain-
ing complex saddle-point solutions (pst, tst, τst), which allow one to write
the Fourier transform of the dipole moment as a coherent superposition
of the contribution of complex quantum paths:

x(ω) =
∑

st

|xst(ω)| ei8st(ω) =

=

∑
st

i2π√
det(S′′)

[
π

ε + iτst/2

]3/2

d∗[pst −A(tst)]

× E(tst − τst)·d[pst −A(tst − τst)] exp[−iS(pst, tst, τst)+ iωtst], (8)

where the term det(S′′) is the determinant of the matrix of the second
time derivative of the phase 2 with respect to t and t′ evaluated in
correspondence of the saddle-point solutions.
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According to Milošević and Becker (2002), for each photon energy ω,
the most relevant saddle-point solutions can be grouped into few classes
depending on the time spent by the electron in the continuum. In partic-
ular, we can take into account only the contribution coming from the so
called short and long trajectories characterized by Re(τst) < T0 (T0 being
the optical period of the driving field). For this reason, Equation (8) can be
further approximated as

x(ω) =
∑

s∈short

|xs(ω)| ei8s(ω) +

∑
s∈long

|xs(ω)| ei8s(ω). (9)

Long and short trajectories can be grouped in couples having the same
cutoff energy, ω(c) identified by

Im{8short(ω
(c))} = Im{8long(ω

(c))}. (10)

The saddle-points solutions of the short and long path coalesce in corre-
spondence of the cutoff spectral region. In this region, the imaginary part
of action became positive for the short quantum paths. This leads to an
unphysical solution in which their contribution to the harmonic emission
rate diverges and has to be discarded. In order to avoid the discontinuities
introduced by simply removing the unphysical solution, it is possible to
implement the uniform approximation, which takes into account simulta-
neously the solutions associated to the short and long paths (Figueira de
Morisson Faria et al., 2002).

3.1.1 Nonadiabatic Saddle Point Approximation

When few-optical-cycle driving pulses are used for HHG, it is required to
use a nonadiabatic generalization of the SPA, in which the full electric field
of the light pulse is used to calculate the dipole moment (Sansone et al.,
2004a). Upon considering a linearly polarized driving field,

E(t) = E0 cos2(t/t̄) cos(ω0t+ ψ), (11)

where ω0 is the fundamental angular frequency; ψ is the CEP; t̄ is related
to the driving pulse duration T (T = 2t̄ arccos(2−1/4)), it is possible to cal-
culate the contribution of each electron quantum path. Figure 8 shows
the harmonic emission rate produced by an increasing number of tra-
jectories. Upon using the nonadiabatic SPA, it is possible to calculate all
the physical quantities related to the generated trajectory such as: tun-
nelling time, electron birth position and time, initial velocity of tunnelled
electrons, canonical momentum, recombination rate and time, harmonic
energy and phase. Upon considering the contribution of the short electron
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Figure 8 Harmonic emission rates produced by coherent superposition of an
increasing number of long (left) and short (right) electron quantum paths for a 6-fs
driving field with 7× 1014 W/cm2 peak intensity and ψ = π/2 in neon gas.
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trajectories in the case of few-optical-cycle driving pulses (nonadiabatic
regime), shown in Figure 8 (right panel), the calculated XUV spectrum
is not a discrete spectrum made of odd harmonics of the fundamental
radiation. Indeed, three distinct regions can be identified, in good qual-
itative agreement with the experimental results of Baltuška et al. (2003)
and Nisoli et al. (2003). In the lower plateau region, the spectrum is char-
acterized by well resolved odd harmonic peaks. In the upper plateau
region, irregular peaks are present. Finally, the cutoff region is character-
ized by resolved peaks, which do not necessarily correspond to harmonics
of the fundamental beam. The position of the spectral peaks is deter-
mined by the condition of constructive interference while summing in
Equation (9). With the nonadiabatic SPA method, it is possible to calcu-
late the phase difference between two quantum paths, thus explaining
the spectral structures of the XUV spectrum (Sansone et al., 2004a). The
same analysis can be performed considering the contribution of the long
trajectories. In this case, shown in Figure 8 (left panel), the condition
for constructive interference does not correspond to the generation of
odd harmonics of the fundamental radiation even for the lower plateau
region.

Another advantage of the SPA is that it is an ideal tool for the inves-
tigation of the effects of the CEP on the XUV emission rate for both the
complete spectrum and a particular collection of trajectories. If we address
again separately the long and short quantum paths, it is clear that they
should display a different behavior with respect to the CEP variation
(Sansone et al., 2004b).

Indeed, since the electron final energy is strongly determined by the
electric field experienced during its motion in the continuum, as a con-
sequence of the longer time spent by the electron in the continuum, the
long quantum paths are more sensitive to even small changes in the laser
field induced by different CEPs with respect to the short quantum paths.
This is clearly shown in Figure 9, which displays the emission rates cal-
culated for long and short paths as a function of the CEP of the driving
pulses. The only part of the short-path spectrum that is affected by the
CEP is the cutoff region, since the recollision times are longer at higher
energies.

In order to calculate the HHG spectral and temporal characteristics
as a function of the driving field laser intensity, the ground-state deple-
tion cannot be neglected in the high-intensity regime. It is possible to
add the ground-state depletion effect in the SPA upon introducing a suit-
able weight function in Equation (9). Since we know the ionization time
Re{t′s} for every electrons of each quantum path, we can obtain the total
emission rate by multiplying the single-trajectory emission rate for the
fraction of neutral atoms still present at time Re{t′s}. This fraction can be
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Figure 9 Emission rates calculated for long and short paths as a function of the CEP.
Same parameters as in Figure 8.

evaluated using the theory of Ammosov et al. (1986) to calculate the ion-
ization rate w(t). The sum in Equation (9) can be then written as follows
(Sansone et al., 2006):

x(ω) =
∑

s∈short

|xs(ω)| ei8s(ω) exp

−
Re(t′s)∫
−∞

w(t′′)dt′′

+
+

∑
s∈long

|xs(ω)| ei8s(ω) exp

−
Re(t′s)∫
−∞

w(t′′)dt′′

 , (12)

If the intensity of the driving field is high enough, the number of neu-
tral atoms changes quickly during the interaction, and the total emission
rate is deeply modified. This is shown in Figure 10, which displays the
calculated emission rate in xenon in the case of a 5-fs driving pulse with
2.5× 1015 W/cm2 peak intensity and CEP ψ = 0.6π . The pulse parameters
used in the calculation correspond to the experimental parameters used
by Ferrari et al. (2010) for the demonstration of the temporal gating tech-
nique based on subcycle ionization dynamics, discussed in Section 2.3.
As shown in Figure 10, the selection of a single electron trajectory is pos-
sible by taking advantage of the fast depletion of the ground state. It is
worth noting that with such a fast dynamics of the ground-state popu-
lation, the nature of the generated radiation shows a strong dependence
on the CEP variation. In particular, by changing the value of the phase
π/2, it is possible to select two short trajectories instead of one (which
correspond to two distinct attosecond pulses), thus obtaining a generated
radiation characterized by a discrete spectrum.
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Figure 10 Calculated emission rate for a 5-fs IR driving pulse with 2.5× 1015 W/cm2

peak intensity and CEP ψ = 0.6π in xenon gas. Panel (a) shows the fast varying
ionization rate that explains the selection of a single quantum path (figure adapted
from Ferrari et al. [2010]). Panel (b) shows the comparison between the normalized
HHG spectra calculated with or without the ADK term (dashed and solid curves,
respectively).

The SPA model can be used also in the case of driving fields with a
time-dependent polarization state (e.g., as in the polarization gating tech-
nique). In this case, the driving field has to be treated as a superposition
of two orthogonal linearly polarized waves. As discussed in Section 2, the
electron trajectories are affected by both fields and so they are no longer
monodimensional, but they belong to a two-dimensional space (Sansone,
2009). When the ellipticity is too strong, the complex trajectory does not
return to the parent ion, and so there is no HH emission. Figure 11 shows
the ionization and recombination times calculated for the driving field
used in the polarization gating technique. It is possible to notice that the
relevant complex trajectories are those generated inside the gate, where
the driving field is linearly polarized.

3.2 Nonadiabatic Three-Dimensional Propagation Model

The nonadiabatic saddle-point approach discussed in the last subsection
allows one to obtain interesting physical insights in the harmonic gener-
ation process. In order to calculate the spatial and spectral characteristics
of the XUV radiation emitted by a macroscopic gas target irradiated by
an ultrashort driving pulse, it is particularly important to use a nonadia-
batic three-dimensional (3D) numerical propagation model (Priori et al.,
2000). Indeed, the harmonic generation process is crucially affected by the
spatial properties of the driving electric field (Gaarde et al., 2008).
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In order to describe the propagation of the radiation through the
nonlinear medium, it is necessary to solve the Maxwell wave equation.
Assuming a radial symmetry, we can write

∇
2E(r⊥, z, t)−

1
c2

∂2

∂t2
E(r⊥, z, t) =

1
ε0c2

∂2

∂t2
P(r⊥, z, t), (13)

where E(r⊥, z, t) is the total time and position-dependent electric field,
and P(r⊥, z, t) is the polarization field. For relatively long IR pulses, it is
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possible to solve Equation (13) within an adiabatic approximation, assum-
ing that the atomic response is determined by the instantaneous laser
intensity (Antoine et al., 1997; L’Huillier et al., 1992). As already discussed
in the previous subsection, this approximation cannot be applied in the
case of few-optical-cycle driving pulses. In such a case, it is better to use a
nonadiabatic approach (Kan et al., 1995; Tempea et al., 1999).

In a coordinate frame moving at the group velocity vg of the pulse
(z = z′ and t′ = t− z/c) and applying the slowly evolving wave approx-
imation (SEWA) (Brabec & Krausz, 2000), we obtain

∇
2
⊥

E(t′)−
2
vg

∂2

∂z′∂t′
E(t′)+

(
1
v2

g

−
1
c2

)
∂2

∂t′2
E(t′) =

1
ε0c2

∂2

∂t′2
P(t′). (14)

Hereafter, for simplicity, we do not write the explicit spatial dependence
of the field and polarization. Equation (13) can be solved directly in the
time and space domain (Haworth et al., 2007) or in the frequency domain
after Fourier transforming with respect to t′ (Priori et al., 2000):

∇
2
⊥

Ẽ(ω)+
2iω
vg

∂Ẽ(ω)
∂z′

+

[
ω2

c2
−
ω2

v2
g

]
Ẽ(ω) = −

ω2

ε0c2
P̃(ω). (15)

Since the generated XUV radiation is usually much weaker than the driv-
ing pulse, it is possible to assume that we can solve the propagation
equation separately for the two fields. Furthermore, due to the short prop-
agation lengths and moderate medium densities, we can neglect all linear
dispersion and absorption effects for the driving field Ẽl(ω). If we denote
the source terms for the driving field and the generated field with P̃ion(ω)

and P̃dip(ω) respectively, we obtain

∇
2
⊥

Ẽl(ω)+
2iω

c
∂Ẽl(ω)

∂z′
= −

ω2

ε0c2
P̃ion(ω), (16)

∇
2
⊥

Ẽh(ω)+
2iω

c
∂Ẽh(ω)

∂z′
+

iω
c
α̃(ω)Ẽh(ω) = −

ω2

ε0c2
P̃dip(ω), (17)

where α̃(ω) is the frequency dependent absorption coefficient for the gen-
erated field Ẽh(ω). The source term for the driving field is mainly due to
the loss of energy spent to move the free electrons in the laser field and the
energy used to ionize the medium, this last term being in general small in
the HHG process and negligible. As pointed out in Rae and Burnett (1992),
the source term can be calculated from the time-dependent current density
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J(t) = ∂Pion(t)/∂t. Following the above mentioned discussion, the current
density may be written as a sum of two terms (Geissler et al., 1999):

J(t) = Jpl(t)+ Jabs(t) =
e2

m

t∫
−∞

dt′′ne(t′′)E(t′′)+ Ip

(
∂tne(t)
E(t)

)
, (18)

where Ip is the ionization potential of the atom in the nonlinear medium
and ne(t) is the free-electron density, to be calculated with the ADK the-
ory or with a numerical integration of the time-dependent Schrödinger
equation (TDSE) in the single-active-electron approximation (Schafer &
Kulander, 1997). The ADK theory can be also used with a corrective fac-
tor in order to obtain a better agreement with the TDSE solution (Gaarde
et al., 2006). The source term for the generated field is calculated from the
time-dependent nonlinear polarization, which is supposed to be propor-
tional to the single-atom dipole moment x(t) and to the density of neutral
atoms natom.

P̃dip(ω) = F {natom(t)x(t)} , (19)

where F denotes a Fourier transform.
Of course, the most accurate way to obtain x(t) is to solve the TDSE for

the atom-laser field interaction (Christov et al., 1997; Krause et al., 1992b);
however, such an approach is too time consuming. For this reason, it is
preferred to use an analytical model based on the approximate solution of
the Schrödinger equation as the Lewenstein integral of Equation (6). The
SPA model is not usually used to evaluate the dipole moment inside the
dipole source term because it needs to know the values of the driving field
for complex times. Even if this is not a severe requirement if one knows
the analytical form of the driving field, it does not fit with the numeri-
cal definition of the electric field inside a propagation code. Recently, a
new approach has been proposed by Tosa et al. (2009) and by Kovács and
Toşa (2010) to overcome the problem and to allow one to solve the saddle-
point equations with an arbitrary numerical field, thus making possible
its integration in a propagation model .

4. APPLICATIONS OF ISOLATED ATTOSECOND PULSES

So far, measurements with attosecond temporal resolution have been per-
formed by using an isolated attosecond pulse as pump and an infrared
femtosecond pulse as probe, or vice versa. Attosecond pump-probe exper-
iments present characteristics completely different with respect to the
well-established and used femtosecond pump-probe method, where the
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probe pulse measures the changes of the optical properties of the sample
(i.e., absorption or reflection coefficients) induced by the pump pulse.
Novel experimental techniques to initiate and probe electron dynamics
on an attosecond temporal scale are required. Due to the high photon
energy of the attosecond pulses (ranging from a few tens to a few hun-
dreds of electron volt), the excitation of the sample almost inevitably leads
to valence or core photoelectron emission, followed by a rearrangement of
the electronic system. Depending on the system, such electron rearrange-
ment can be in the form of Auger decay, population of excited ionic states
by shake-up processes, charge transfer and migration in large molecules,
etc. So far, the electron dynamics initiated by an isolated attosecond
pulse has been measured by using the electric field of a phase-stabilized
few-cycle IR pulse (Krausz & Ivanov, 2009). The schemes for attosecond
measurements proposed and experimentally demonstrated in the case of
isolated pulses are the following:

1. Streaking spectroscopy, based on XUV ionization followed by accele-
ration of the ionized electron in a strong IR field: such a scheme has
been used by Hentschel et al. (2001) for the temporal characterization of
XUV pulses and for the investigation of the ultrafast dynamics in atoms
by Drescher et al. (2002) and solids by Cavalieri et al. (2007).

2. Ion-charge-state chronoscopy, based on the use of the subcycle time
dependence of strong-field ionization rates to measure electron dynam-
ics in bound states of atoms (Xe and Ne) (Uiberacker et al., 2007).

3. Attosecond transient absorption spectroscopy, recently implemented
by Goulielmakis et al. (2010) and by Wang et al. (2010) for the mea-
surement of valence electron motion in krypton ions.

4. Attosecond electron interferometry, based on the measurement of a
time-dependent interference between the ionization of bound electronic
wave packet and a reference wave packet, and used by Mauritsson et al.
(2010) to measure electron wave packets generated in He after excitation
by isolated attosecond pulses .

5. Measurement of a time-dependent asymmetry in dissociative ioniza-
tion, recently introduced by Sansone et al. (2010) in order to study the
electron localization process in molecules after attosecond excitation.

In the following, we will briefly review the main results obtained using
such attosecond measurement methods.

4.1 Attosecond Streaking Spectroscopy

In 2002, just one year after the first experimental demonstration of the gen-
eration of isolated attosecond pulses by Hentschel et al. (2001), Drescher
et al. (2002) reported on the real-time observation of Auger decay in kryp-
ton: 0.9-fs soft x-ray pulses were used for excitation of krypton atoms and
sub-7-fs IR pulses for probing electron emission. The attosecond pump
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pulses, with a central photon energy of 97 eV, lead to photoemission of
valence electrons, from the 4s and 4p subshells, and of core electrons
from the 3d subshell. Upon measuring the evolution of the kinetic energy
of such photoelectrons in the presence of the IR streaking pulse, it is
possible to characterize the temporal evolution of the attosecond pump
pulses, according to the streak-camera approach for attosecond metrol-
ogy. In Drescher et al. (2002), the kinetic energy spectra of the 4s and 4p
photoelectrons were not periodically modulated by the vector potential
of the streaking pulse, since the CEP of the driving pulses was not stabi-
lized and the duration of the XUV pulses used to excite the Kr atoms was
comparable to half of the optical cycle of the streaking field. The photoe-
mission of a core electron, with corresponding generation of a core hole,
is followed by an ultrafast rearrangements of the electronic system. The
core hole is filled by an outer-shell electron: the excess energy is released
in the form of an XUV fluorescence photon, or it is transferred by elec-
trostatic force to a second Auger electron, which can subsequently escape
from the atom. Upon measuring the evolution of the kinetic energy of such
Auger electron as a function of the delay between pump and probe pulses,
it is possible to characterize the temporal evolution of the core hole and
the Auger ultrafast dynamics. Indeed, the streaking spectrograms of the
Auger electron emission calculated by Yakovlev and Scrinzi (as reported
in the Supplementary Information of Drescher et al. (2002)) show peculiar
characteristics as a function of the decay time of the core hole. Within the
strong field approximation, the spectrum of the Auger electrons can be cal-
culated by using the quantum mechanical model of laser dressed single
x-ray photoionization reported by Kitzler et al. (2002), considering that
the generation of free electrons is not due to dipole transitions induced
by the streaking electric field E(t) = −∂tA(t) (in atomic units), but by an
Auger process. In such a case, the electron spectrum can be calculated as

b(p) ∝ i

∞∫
t0

exp

−i

∞∫
t′

1
2
(p−A(t′′))2dt′′ + iWkint′

√ρ(t′)χ(p−A(t′)) dt′,

(20)

where p is the electron momentum, b(p) is the momentum space wave
function of the free electron, ρ(t) is the population of the Auger state, and
χ is the continuum wave function. The evolution of the Auger electron
emission as a function of the delay between XUV and streaking pulses
calculated by using Equation (20) is shown in Figure 12.

In the case of a core-hole decay time, τh, shorter than one half the opti-
cal period of the streaking pulse (TL = 2.5 fs) (see Figure 12a), the
Auger electron maps out the oscillation of the streaking field. From the
corresponding streaking spectrogram, it is possible to retrieve the lifetime
of the core hole. For core-hole decay times of the order of TL or longer
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Figure 12 Calculated streaking spectrograms of Auger electron emission for various
core-hole decay times, (a) τh = 0.2 fs, (b) τh = 1 fs, (c) τh = 5 fs. Duration of the pump
pulse: τX = 500 as, at ~ωX = 100 eV; duration and peak intensity of the streaking
pulse, at ~ωL ≈ 1.6 eV: τL = 5 fs (FWHM) and Ip = 5× 1011 W/cm2, respectively. Figure
adapted from Drescher et al. (2002).

than TL, the spectrogram of the Auger electron exhibits the generation of
sidebands spaced by the photon energy, ~ωL, of the streaking pulse. In
this case, the dynamics of the Auger electrons is revealed by the evolution
of the area of the sidebands as a function of the delay between the XUV
and the IR pulses. The measured evolution of the electron spectra follow-
ing excitation reported in Drescher et al. (2002) showed the presence of
sidebands spaced by ~ωL ≈ 1.6 eV, thus indicating a core-hole decay time
comparable to or longer than TL. Indeed, a decay time τh ≈ 7.9 fs was
extracted from the experimental data.

The streaking spectroscopy has been also extended to condensed mat-
ter systems: photoelectron emission from single-crystal tungsten, induced
by isolated attosecond pulses, has been probed by the electric field of a
5-fs light pulse, showing a 100-as delay between the emission of photo-
electrons that originate from localized 4f states of the metal, and those
that are freed from delocalized conduction-band states (Cavalieri et al.,
2007).
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4.2 Ion-Charge-State Chronoscopy

The second attosecond technique, which has been proposed and experi-
mentally demonstrated by Uiberacker et al. (2007) to investigate electron
dynamics with subfemtosecond temporal resolution, is based on XUV
excitation of bound states followed by ionization by intense IR field. The
photoexcitation of an atom by XUV attosecond pulses is usually accom-
panied by the transition of an outer shell electron to an unoccupied state
by a shake-up process. Such shake-up state can be ionized by an IR pulse,
with controlled electric field. Upon measuring the number of ions gen-
erated during this process, it is possible to probe, with subfemtosecond
resolution, the population of the shake-up states. At the same time, it is
possible to investigate the process of strong-field ionization. In the exper-
iment reported in Uiberacker et al. (2007), neon atoms were ionized by
isolated 250-as pulses (with a photon energy of 95 eV) in the presence
of a strong IR pulse (τL = 5 fs) with controlled electric field. A fraction
of such photoionization processes leads to the excitation of Ne+ ions to
excited states (shake-up process), which can be further ionized by the IR
field (with intensity I = (7± 1)× 1013 W/cm2), thus increasing the Ne2+

population. The Ne2+ ion yield as a function of the delay between the
attosecond pump pulse and the IR probe pulse shows a subcycle evolu-
tion, with consecutive steps separated by half the optical cycle of the probe
strong field, thus providing a strong evidence of the crucial role of optical
field ionization as the main cause of the depletion of the excited valence
states. This experimental observation is particularly important since, as
first theoretically pointed out in Yudin and Ivanov (2001), it demonstrates
that light-field-induced tunnelling plays a central role in the ionization
process in a broad excitation intensity region, where multiphoton ioniza-
tion was predicted to be the dominant ionization mechanisms. Indeed, the
Keldysh parameter γ =

√
Ip/2Up (where Ip is the ionization potential and

Up is the ponderomotive potential) was of the order of three, assuming
the laser parameters used in the experiment, and the nonadiabatic tun-
nelling theory of Yudin and Ivanov (2001) predicts that at these values
of γ , the ionization rate still presents a clear subcycle temporal evolution.
The attosecond real-time observation of electron tunnelling in atoms is an
important example of the use of attosecond methods for the investigation
of basic electronic processes and for an experimental test of theoretical
models.

4.3 Attosecond Transient Absorption Spectroscopy

Femtosecond transient absorption spectroscopy in the XUV spectral
region was reported in the last few years by Loh et al. (2007) and
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Loh and Leone (2008), based on a high-order harmonic generation source.
Such a technique was implemented to investigate the dissociative ion-
ization of CH2Br2 induced by 800-nm strong-field irradiation (Loh et al.,
2007) and to investigate the strong-field ionization of xenon induced by
800-nm excitation, in order to resolve the complete quantum state distri-
bution of the resulting Xe+ ions (Loh & Leone, 2008). More recently, the
same experimental method has been used with isolated attosecond pulses
by Goulielmakis et al. (2010) and Wang et al. (2010). In the former case,
krypton ions were generated by using sub-4-fs light pulses with controlled
electric field, resulting in the generation of a broadband valence electron
wave packet (or hole), characterized by a high degree of coherence. The IR
pump pulse determines the emission of electrons from the 4p subshell and
leaves the ions in a coherent superposition of 4p−1

3/2 and 4p−1
1/2 states. Isolated

attosecond pulses were used to probe the temporal evolution of such elec-
tron wave packet. In particular, single-photon XUV absorption promotes
the ions from the 4p−1

3/2 and 4p−1
1/2 states to the core-excited 3d−1

3/2 state. It
turned out that the ensemble-averaged hole density distributions in the
4p subshell of Kr+ is characterized by a periodic oscillation, with a period
T = 6.3± 0.1 fs (Goulielmakis et al., 2010), in excellent agreement with
the value calculated on the basis of the energy separation, 1E = 0.67 eV,
between the 4p−1

3/2 and 4p−1
1/2 states.

Wang et al. (2010) used the attosecond transient absorption spec-
troscopy technique to investigate the autoionization process of Fano
(1961) in argon. In this case, 3s3p6np 1P autoionizing states were populated
by isolated attosecond pulses. In the presence of a strong 750-nm pulse,
the autoionization peak broadens and the central energies of the autoion-
izing peaks are shifted, as a consequence of additional coupling between
the autoionizing states and Ar∗+ (3s3p6εl) continuum states.

4.4 Attosecond Electron Interferometry

In 2010, Mauritsson et al. reported on a novel interferometric pump-probe
technique for the characterization of attosecond electron wave packets
that uses a free wave packet as a reference to measure a bound wave
packet (Mauritsson et al., 2010). The method was experimentally demon-
strated by measuring an attosecond wave packet in helium, prepared
using an isolated 350-as pulse with a central energy in the vicinity of
the ionization threshold. The portion of the XUV spectrum below the
ionization potential of He can excite one electron from the initial bound
state |i〉 to the bound |np〉 state by single-photon absorption. According
to the theoretical model reported by Choi et al. (2010), such a transition
can be described by the transition probability amplitude M(X)

n,i = an eiφn .
At the same time the spectral components above the ionization thresh-
old can determine a transition to an ionized state with photoelectron
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momentum p, with a corresponding transition probability amplitude
M(X)

p,i = ap eiφp . In the same way, the probability amplitude for transitions
induced by the IR pulse from the bound |np〉 state to an ionized state with
photoelectron momentum p can be written as M(L)

p,n = bp,n eiφp,n . The total
ionization probability density, which is a function of the delay τ between
the XUV and IR pulses, is therefore given by the following expression:

|Mp,i|
2
= a2

p +

∑
n

b2
p,n a2

n + 2
∑

n

ap bp,n an cos[φp,n − (Ep − En)τ ]

+ 2
∑
n<m

bp,n bp,m an am cos[φm,n − (Em − En)τ ] (21)

The phase φp,n contains the terms due to the Volkov phase and the dipole
phases involved in transition from the ground state to the continuum p
and in transition first from the ground state to the bound |np〉 state and
then to the continuum p. Similarly, the phase φm,n is related to the phase
difference between the path from the ground state to the continuum p,
through the bound states |mp〉 and |np〉. En is the energy of the |np〉 state
and Ep is the energy of the continuum states. The first and second terms
on the right-hand side of Equation (21) correspond to direct ionization
to the p states by the XUV and ionization by the combination of the IR
and XUV field, respectively. The third term corresponds to an interference
term between a direct ionization to the p state and ionization by the IR
field of a bound state |np〉 excited by the XUV pulse. Finally, the fourth
term corresponds to the interference between two bound states excited
by the XUV (|np〉 and |mp〉) ionized by the IR field. The two interference
patterns are characterized by a different evolution in the two-dimensional
space (τ , Ep). Indeed, the last interference term in Equation (21) indicates
that the equiphase surfaces in the (τ , Ep) plane can be written as

cos[φm,n − (Em − En)τ ] = C, (22)

where C is a constant value, so that τ ∝ C/(Em − En). Such equiphase sur-
faces do not depend on the continuum energy Ep and are represented
by parallel lines in the (τ , Ep) plane. The equiphase surfaces for the
first interference term in Equation (21) can be obtained by the following
expression:

cos[φp,n − (Ep − En)τ ] = C, (23)

so that the equiphase surfaces are given by τ ∝ C/(Ep − En) and are
represented by hyperbolic curves in the (τ , Ep) plane.

From the experimental point of view, a linearly polarized phase sta-
bilized 5-fs IR laser pulse was divided into a central and annular part
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using a mirror with a hole in the center. The polarization of the cen-
tral part was modulated in time using two birefringent plates and was
focused by a spherical mirror into a xenon gas cell with 3 mm length. The
outgoing beam was frequency filtered using an aluminum filter (100 nm
thickness) and was focused by a grazing incident toroidal mirror. The
annular part (probe pulse), reflected by the drilled mirror, was delayed
using a piezoelectric translation stage, and it was focused by means of a
spherical mirror. The two pulses were recombined using a second drilled
mirror, and they were focused into the active region of a velocity map
imaging spectrometer (VMIS) (Eppink & Parker, 1997), which was used
to record the photoelectron momentum distributions. The isolated atto-
second pulses were characterized by a central frequency of 24 eV with
a bandwidth exceeding 10 eV and excited helium from its ground state
to a coherent superposition of bound and continuum states. Figure 13
shows the experimental photoelectron spectra in He as a function of
delay between the XUV pump pulse and the IR probe pulse. The spectra
were obtained by selecting a small collection angle along the polarization
direction. In the region of temporal overlap a clear streaking pattern is
observed. In the region where the attosecond pulse precedes the IR pulse,
interference fringes are clearly observed in the low-energy region of the
spectrum, up to about 2 eV. As expected from the earlier discussion, the
interference fringes, defined as the curves of constant phase difference,
are hyperboles, which become more closely spaced as the delay increases.

It is interesting to observe that the characterization of the angular
distribution of the photo-electrons allows one to distinguish between

10 20 30 40
Time delay (fs)

E
le

ct
ro

n 
en

er
gy

 (e
V

)

5

6

7

4

3

2

1

0
0

Figure 13 Photoelectron spectrum measured in helium as a function of the delay
between the attosecond and the IR pulses. Figure adapted from Mauritsson et al.
(2010).
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the two interference terms of Equation (21). Indeed the two ionization
channels are characterized by the absorption of a different number of
photons: the direct channel involves the absorption of a single XUV pho-
ton, leading to the emission of an electron in a p (l = 1) state. On the
other hand, the indirect channel requires the absorption of one XUV pho-
ton and one IR photon (or more, depending on the IR intensity), leading
to the emission on an electron in an s (l = 0) or d state (l = 2). Apply-
ing a decomposition in Legendre polynomials of the measured angular
distribution, the different contributions can be separated as shown in
Mauritsson et al. (2010).

4.5 Time-Dependent Asymmetry in Molecular
Dissociative Ionization

Sansone et al. (2010) reported on the first attosecond pump-probe mea-
surement on molecules. Isolated attosecond pulses, with spectrum extend-
ing from 20 to 40 eV, were used to excite H2 and D2 molecules. The kinetic
energy and angular distribution of H+ and D+ ionic fragments were mea-
sured as a function of the delay between the XUV pump and a 6-fs, IR
pulse with stable CEP. The attosecond excitation leads to dissociative ion-
ization of the molecule, following various pathways, which are strongly
related to the photon energy and to the observation angle of the ionic
fragment with respect to the laser polarization (Ito et al., 1996). The XUV
photons with energy below 25 eV lead to direct dissociative ionization
via the 26+g (1sσg) state, with the generation of ionic fragment with low
kinetic energy (< 1 eV). A simplified scheme of the neutral and singly
ionized potential energy curves of H2, relevant for the discussion of the
XUV-IR pump-probe measurement reported in this section, is shown in
Figure 14. For photon energies between 25 and 36 eV, excitation of the
doubly-excited Q1

16+u state becomes possible for molecules aligned along
the polarization axis of the pump pulse. Autoionization of the Q1 state
to the 26+g (1sσg) state produces fragments with a kinetic energy in the
range 0–10 eV (but preferentially between 2 and 7 eV) (Sanchez & Martı́n,
1997, 1998). The XUV spectral components above 30 eV can determine
direct ionization to the repulsive 26+u (2pσu) state, with the generation of
high-kinetic-energy fragments (5–10 eV). Above 31 eV, a perpendicular
transition preferentially excites molecules that are orthogonally aligned to
the laser polarization axis to the Q1

25u doubly-excited states. These states
autoionize to both the 26+g (1sσg) and the 26+u (2pσu) states, with the gener-
ation of fragments with kinetic energies of 1–5 eV and 5–8 eV, respectively
(Ito et al., 1996).

Figure 15 shows the temporal evolution of the kinetic energy distri-
bution of the D+ ions after dissociative ionization induced by isolated
attosecond pulses, as a function of the delay, τ , between the XUV pump
and the IR probe pulse. At low kinetic energy (Ek < 1 eV), bond softening
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Figure 15 Experimental kinetic energy distributions of D+ ions as a function of the
delay between the attosecond pump pulses and the infrared probe pulses. Color scale
represents fragment yield in arbitrary units. Figure adapted from Sansone et al. (2010).

(Bucksbaum et al., 1990) induced by the IR pulse is evident, with a
maximum when the bound electron wave packet is at the outer turn-
ing point of the potential curve. The increase of the ion signal at kinetic
energies around 8 eV for τ < 10 fs can be associated with two effects:
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(1) IR-induced photoionization of the Q1
16
+

u doubly-excited state produc-
ing 2pσu states; (2) increase in the excitation cross-section of the 2pσu state
caused by IR-induced mixing of the 2pσu and 1sσg states. Particularly inter-
esting is the measured temporal evolution of the asymmetry parameter,
reported in Figure 16, defined as:

A(Ek, τ) =
NL(Ek, τ)−NR(Ek, τ)
NL(Ek, τ)+NR(Ek, τ)

, (24)

where NL(Ek, τ) and NR(Ek, τ) are the numbers of ions arriving within
45◦ of the polarization axis on the left-hand and right-hand sides of the
detector, respectively. Such a parameter is directly associated with the
electron localization process after the photoionization process initiated by
the attosecond excitation. The asymmetry parameter is characterized by
a subcycle temporal evolution in the Ek kinetic energy range between 2
and 10 eV; moreover, the phase of the asymmetry oscillations depends on
Ek. A left-right asymmetry is necessarily caused by a coherent superpo-
sition of gerade and ungerade states, and the relative phase between the
two states leads to electron localization. In the case of H2 (D2), molecules
the states involved in such coherent superposition are the two lowest
electronic states, 26+g (1sσg) and 26+u (2pσu), of the molecular ion. The phys-
ical process leading to the localization dynamics has been investigated
by Sanz-Vicario et al. (2006) by using a close-coupling method to solve
the time-dependent Schrödinger equation for H2, that includes the bound
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states, the 26+g (1sσg) and the 26+u (2pσu) ionization continua, and the dou-
bly excited states. An important result of the numerical simulation is that
the infrared probe pulse can cause an asymmetry either by changing
the wave function of the continuum electron (hereafter called mecha-
nism I), or by changing the wave function of the molecular ion (hereafter
called mechanism II). In the first case, which is the predominant local-
ization mechanism during the XUV-IR temporal overlapping period, the
interaction of the IR pulse with the photoelectron generated by the XUV
excitation leads to a redistribution of the electron angular momentum over
various angular momentum states. At the same time, the autoionization
of the Q1 doubly-excited states determines the production of a dissociative
wave packet on the 1sσg state with p-electron emission. Such two chan-
nels are completely indistinguishable, and therefore, they lead to quantum
interference between the two states. In the case of mechanism II, the IR
pulse determines a coupling between the 26+g (1sσg) and the 26+u (2pσu)

states by population transfer and requires high intensity of the IR pulse
during the dissociation of the molecule (Kling et al., 2006).

5. CONCLUSIONS

In this review, we have discussed recent progress in the field of attosec-
ond science. Various schemes for the generation of isolated pulses have
been proposed and implemented in the last years: we have concentrated
our attention on different temporal gating methods. The applications of
attosecond pulses reported so far in atomic, molecular, and solid-phase
physics, have demonstrated that attosecond technology can offer unique
tools for the investigation of ultrafast electronic processes on atomic
scales.
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Antoine, P., Milošević, D. B., L’Huillier, A., Gaarde, M. B., Salières, P., & Lewenstein, M.
(1997). Generation of attosecond pulses in macroscopic media. Physical Review A, 56(6),
4960–4969.
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Abstract We present a formalism for evaluating various atomic-
structure parameters affecting performance and ultimate
accuracy of the optical lattice-based atomic clocks. We evalu-
ate a number of important properties such as the hyperfine-
induced transition width of the clock transition, multipolar
and vector dynamic polarizabilities, static polarizabilities,
“magic” trapping wavelengths, hyperfine-induced g-factors,
and blackbody radiation shifts. Accurate numerical calcula-
tions of these parameters are carried out for several divalent
atoms presently under investigation. The numerical values are
obtained with relativistic many-body techniques.

1. INTRODUCTION

Atomic clocks based on the ultranarrow 3P0 −
1S0 transition in divalent

atoms may offer a new level of time-keeping accuracy and stability.
In addition, they may facilitate tracking changes in fundamental con-
stants over time, measuring gravitational red shifts, and timing pulsars.
Compared with microwave atomic clocks, such as the present-day Cs
frequency standard, the optical clocks have an advantage that optical
transitions have a much higher frequency and potentially much higher
resonance quality factors.

To motivate our theoretical work, below we briefly review the recent
developments and main features of optical lattice clocks. Detailed reviews
may be found in Derevianko and Katori (2011) and Lemonde (2009). In
the Katori scheme (Katori, 2002), ultracold atoms are confined in an opti-
cal lattice, largely eliminating Doppler and recoil shifts. The lattice laser
wavelength is selected in such a way that the dominant perturbation of the
clock frequency, the induced AC Stark shifts, for both clock states exactly
cancel. At this “magic” wavelength of the lattice laser, the clock frequency
is relatively insensitive to laser polarization and power. Although other
effects still perturb the clock frequency, estimates of Takamoto et al. (2005)
and Porsev et al. (2004) indicate that the projected fractional uncertainty of
such clocks may be as low as 10−18. By comparison, a few 10−16 is the frac-
tional uncertainty of the current Cs standard realizing the SI definition
of the unit of time. Since millions of atoms are trapped and interrogated
simultaneously, the optical lattice clocks have an exceptional stability.

There was a rapid progress in developing the lattice clocks over the
past few years. The initial 2002 idea of Katori (2002) was followed in
2003 by a detailed theoretical proposal by Katori et al. (2003) for the
Sr clock. For Sr, the magic wavelength was determined experimentally
by Takamoto and Katori (2003), and finally, the Sr clock was demonstrated
just a couple of years later in three different laboratories in Tokyo by
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Takamoto et al. (2005, 2006), in Boulder by Ludlow et al. (2006), and in
Paris by Le Targat et al. (2006). Recognizing this success, as early as 2006,
the Sr optical lattice clock was adopted by the International Committee for
Weights and Measures (CIPM) as one of the secondary representations of
the second. The contender status of the lattice clocks was further solidified
in 2008 when the international frequency comparison carried out in Boul-
der (Campbell et al., 2008), Paris (Baillard et al., 2008), and Tokyo (Hong
et al., 2009) agreed with a fractional uncertainty of 6× 10−16 that was only
limited by the uncertainty of the Cs primary frequency standard. Simi-
larly, a theoretical analysis of Yb clock performance was carried out in
2004 (Porsev et al., 2004); the Yb clock was demonstrated in 2006 (Barber
et al., 2006) and the clock frequency was measured with the accuracy near
that of the Cs standard in 2009 (Kohno et al., 2009; Lemke et al., 2009).

The advantages of the optical lattice clocks have motivated a num-
ber of recent proposals: the original Katori’s scheme (Katori, 2002) with
fermionic Sr isotopes has been extended to Mg (He et al., 2009), Ca (Riehle
et al., 2003), Yb (Lemke et al., 2009; Porsev et al., 2004), and Hg (Hachisu
et al., 2008) atoms and to bosonic isotopes (Barber et al., 2008; Hong et al.,
2005; Malossi et al., 2005; Santra et al., 2005). In addition, various schemes
of probing the highly forbidden nsnp 3P0 − ns2 1S0 clock transition have
been proposed as follows: three-photon transition, electromagnetically-
induced transparency, and transition assisted by magnetic field (Hong
et al., 2005; Santra et al., 2005; Taichenachev et al., 2006a).

The goal of this work is to present a rigorous theory for evaluating
various atomic-structure parameters affecting performance and ultimate
accuracy of the lattice-based atomic clocks. We start with an introduction
to the correlation problem for divalent atoms in Section 2. In that section,
we also describe a relativistic many-body code used in our calculations
and demonstrate its capabilities by computing energies, dipole-matrix
elements, hyperfine-structure constants, and static polarizabilities. We
further evaluate parameters of the optical lattice clocks as follows: the
magic wavelengths and multipolar polarizabilities (Section 3), hyperfine-
induced natural width of the clock transitions (Section 4), vector polar-
izabilities (Section 5), hyperfine-induced electronic magnetic moments
(g-factors, Section 6), blackbody radiation shifts (Section 7), and Rayleigh
heating rates (Section 8). Numerical estimates are presented for a num-
ber of divalent atoms currently under investigation, with a particular
emphasis on the ytterbium clock.

This review is partially based on our previous publications (Porsev
et al., 2004), (Porsev & Derevianko, 2004, 2006b), (Derevianko et al., 2009;
Hachisu et al., 2008), (Dzuba & Derevianko, 2010). In this review, we
put an emphasis on developing a uniform relativistic formalism. We
also present previously unpublished details of our derivations. Also,
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we compile various atomic parameters for several atomic candidates for
optical lattice clocks; the tables will be useful for design considerations
and comparison of various clocks.

Unless specified otherwise, we use atomic units (|e| = ~ = me ≡ 1)
throughout this review. In these units, the speed of light is c = 1/α, where
α ≈ 1/137 is the fine-structure constant. We use the Gaussian electromag-
netic units. Temperature is expressed in units of Eh/kB, where Eh is the
Hartree (atomic unit of energy) and kB is the Boltzmann constant.

2. SOLVING THE ATOMIC MANY-BODY PROBLEM

The clockwork in optical lattice clocks takes advantage of the electronic
structure of atoms with two valence electrons outside a closed-shell core.
Such systems include group II atoms, such as magnesium, calcium, and
strontium, or more complex divalent atoms, such as ytterbium and mer-
cury atoms. A typical level structure of such atoms is shown in Figure 1.
The clock transition is between the ground ns2 1S0 state and the J = 0 com-
ponent of the lowest energy triplet state fine-structure manifold, nsnp 3PJ.
In the following presentation, we will also require nuclear parameters for
the stable isotopes; these are compiled in Table 1.

Most of the enumerated atoms are relatively heavy and the rela-
tivistic effects play an important role (for example, the nuclear charge
of Hg is Z = 80). Moreover, certain properties, e.g., hyperfine-induced
decay rates depend on the wave functions near the nucleus where the
relativistic effects dominate. Because of this relativistic nature of the

3PJ(nsnp)

1S0(ns2)

1P1(nsnp)

2

1
0

3D3(ns n −1d)  

3D2(ns n −1d) 
3D1(ns n −1d)  

Figure 1 A diagram of the low-lying energy levels for Mg (n = 3), Ca (n = 4),
Sr (n = 5), and Yb (n = 6). The relative position of the levels above the 3PJ

fine-structure manifold depends on the atom. This diagram reflects the Yb energy
levels (the core-excited states are not shown). The clock transition is between the
ground and the lowest-energy 3P0 state.
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Table 1 Nuclear parameters of the stable
fermionic isotopes of Mg, Ca, Sr, and Yb.
Here I are the nuclear spins and µI/µN are
the nuclear magnetic moments expressed
in units of the nuclear magneton µN .

Isotope I µI/µN

25Mg 5/2 −0.85546
43Ca 7/2 −1.31727
87Sr 9/2 −1.09283
171Yb 1/2 0.4919
173Yb 5/2 −0.6776

problem, below we present a theoretical analysis that is uniformly based
on the Dirac equation and ab initio relativistic methods of atomic struc-
ture. In most cases, we reduce the derived expressions to the more familiar
nonrelativistic formulas.

In addition, an accurate description of the atomic structure of the
heavy neutral divalent atoms requires treating the correlation problem.
A variety of atomic-structure methods have been developed since the
inception of quantum mechanics. One of such methods is the multicon-
figuration Hartree–Fock method with relativistic effects included through
the Breit-Pauli Hamiltonian (Froese Fischer et al., 2006). Another method
for solving the electronic-structure problem for divalent atoms relies on
the model potential approximation, see e.g., Santra et al. (2004). In this
method, one starts by solving the one-electron eigenvalue problem for
a singly charged alkaline-earth ion with a single valence electron. Next,
using the solutions of the one-electron problem, one constructs two-
electron basis functions and an effective two-electron Hamiltonian, which
fully incorporates valence-electron correlation. In this way, the eigenener-
gies and eigenvectors of the two-electron valence shell can be obtained.
Another approach (used in our work; see next section for details) is
to employ a systematic formalism that combines advantages of both
configuration interaction (CI) method and many-body perturbation the-
ory (MBPT) (Dzuba et al., 1996). In the following, we refer to it as the
CI+MBPT method. Relativistic effects are included exactly as the formal-
ism starts from the Dirac Hamiltonian and employs relativistic bi-spinor
wave functions. Resulting theoretical accuracy of the CI+MBPT calcu-
lations is an order of magnitude better than that of the conventional CI
method.

2.1 CI+MBPT Method

Many-body perturbation theory provides a systematic prescription for
solving the atomic many-body problem (Lindgren & Morrison, 1986).
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Basically, the interaction between the electrons is treated as a perturbation
and one applies a formalism similar to the textbook stationary perturba-
tion theory. The MBPT produces excellent results for alkali-metal atoms,
which have only one electron outside closed shells. Even for atoms as
heavy as Cs (55 electrons), the modern ab initio many-body relativistic
techniques demonstrate an accuracy of 0.1% for energy levels and a few
0.1% for hyperfine structure constants and lifetimes (Porsev et al., 2010).

One could easily see that bringing the MBPT techniques from univalent
to divalent atoms requires substantial revision of the methods. Indeed,
let us examine perturbative calculations of the ground state wave func-
tion of Be atom (1s2 2s2 configuration). If we start our treatment from the
Coulomb wave functions, the 2s and 2p orbitals have the same energies,
and because of the degeneracy, we immediately acquire infinitely large
terms in the perturbative expansion. Even if we start our analysis from
the more accurate Hartree–Fock approximation, the levels remain nearly
degenerate and the perturbative treatment breaks down.

These near-degenerate cases have to be treated essentially nonper-
turbatively using the configuration interaction or multiconfiguration
Hartree–Fock methods. The accuracy of the CI is limited only by the com-
pleteness of the set of configurations used. For a many-electron atom, the
number of possible configurations is enormous and one has to select only
a small fraction of them (this subspace is usually referred to as the model
space). In our treatment, the model space is limited to valence excitations.
Contributions of remaining configurations (i.e., the ones involving excita-
tions of core electrons) are treated within the MBPT. The convergence of
the perturbative expansion involving the core-excited states is sufficiently
rapid because of a relatively large energy gap between low-lying valence
and core-excited states.

To summarize, the accuracy of the MBPT and the (restricted) CI meth-
ods is limited in two distinct sectors of the many-body problem. MBPT
is not accurate in describing valence-valence interactions, whereas the CI
fails to fully account for the core-valence and core-core correlations. For
this reason, it is natural to combine the two methods in an attempt to
reach higher accuracy for multivalent atoms. A general treatment of the
correlation problem along these lines can be found, e.g., in the mono-
graph on atomic MBPT (Lindgren & Morrison, 1986). In our case, we
employ the CI+MBPT method as implemented by Dzuba et al. (1996). It
was initially employed for accurate calculations of low-lying energy levels
and then extended to calculations of various observables such as hyper-
fine structure constants, oscillator strengths, lifetimes, polarizabilities, and
parity nonconserving amplitudes (Dzuba et al., 1998; Kozlov and Porsev,
1999a,b; Kozlov et al., 2001a,b; Porsev et al., 2001, 1999a,b).

A detailed description of the CI+MBPT method can be found in the
papers cited earlier. Here we only briefly recapitulate its main features.
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We consider Mg, Ca, Sr, and Yb as atoms with two valence electrons
outside the closed-shell core. The strong repulsion between the two
valence electrons is treated nonperturbatively using the configuration-
interaction method. The core-valence and core-core correlations are taken
into account with the help of the many-body perturbation theory.

The atomic spectrum is found from the equation for the valence
electrons:

Heff(En)|9n〉 = En|9n〉, (1)

where the effective Hamiltonian consists of two parts

Heff(E) = HFC +6(E).

Here HFC is the Hamiltonian in the frozen core approximation and 6 is
the energy-dependent correction, which takes into account virtual core
excitations. Representative diagrams entering the operator6 are shown in
panels (b) and (c) of Figure 2. It is worth emphasizing that the underlying
calculations are ab initio relativistic and are based on the Dirac equation
and involve relativistic bi-spinors with large and small components of the
electronic wave function.

At this stage, we are able to fully account for the second order of the
perturbation theory and partially for the high-order corrections of the
MBPT. The latter requires special discussion. The second-order correc-
tions to the Hamiltonian include both one-electron (self-energy diagrams
in panel (b) of Figure 2) and two-electron diagrams (see the screening
diagrams in panel (c) of Figure 2). The latter are specific for atoms with
several valence electrons. The number of the two-electron diagrams is
very large and their calculation is exceedingly time-consuming. In higher
orders, the calculation of two-electron diagrams becomes impractical: we
rather account for the high orders of MBPT indirectly. One of such meth-
ods was suggested in Kozlov and Porsev (1999a), where it was shown
that a proper choice of the optimum initial approximation for the effec-
tive Hamiltonian substantially improves the agreement between calcu-
lated and experimental spectra of a multielectron atom. In this approach,
one introduces an empirical energy shift δ and makes a replacement in
self-energy operator 6(E) −→ 6(E− δ). This leads to equation

Heff(En − δ)|9n〉 = En|9n〉.

By solving this equation with different values of δ, we obtain para-
metric dependence of eigenenergies, En(δ). Choice δ = 0 recovers the
Brillouin–Wigner variant of MBPT, and the Rayleigh–Schrödinger flavor
of MBPT corresponds to δ = En − E(0)

n , where E(0)
n is the zero-order energy
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Figure 2 Major correlation effects for the divalent atoms. Panel (a): strong repulsion
between the two valence electrons. Panel (b): self-induced (or self-energy)
core-polarization attraction. Panel (c) cross-induced (or screening) core-polarization
effect. We depict two valence electrons as dots above the closed shell core.
Polarization of the core by the electrons is shown as deformation of the core with the
heavy arrow showing the direction of the polarization. The induced dipole field
causes attraction of either perturbing (panel (b)) or spectator (panel (c)) electron. The
formulas below the sketches represent an approximation characteristic of model
potential treatments, αc being core polarizability and r1 and r2 being coordinates of
the valence electrons. Their many-body analogs are represented by the
Brueckner–Goldstone diagrams in the lower part of the figure.

of the level n. For few electron systems an intermediate value of δ is opti-
mal. This optimal value can be found by fitting computed energy levels to
experimental spectra.

As an example, in Table 2, we present numerical results for the low-
lying energy levels of the atomic Sr. The results are tabulated for both
pure two-electron CI and CI+MBPT method. As seen from the table,
the two-electron binding energies are reproduced very well. Already at
the CI stage, an agreement of the calculated and experimental energies is
on the level of 5%. Additional incorporation of MBPT corrections allows
us to improve the accuracy by approximately an order of magnitude,
and the use of the optimal value of δ improves the accuracy further to
∼0.1%–0.2%.

After the optimized effective Hamiltonian is constructed, we find wave
functions of the ground and the low-lying excited states. With these wave
functions, we may compute other observables such as hyperfine structure
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Table 2 Two-electron binding energies Eval in atomic units and energy differences
between a state and the ground state 1 in cm−1 for low-lying levels of Sr (Porsev
et al., 2001).

Experiment
CI CI+MBPT (Moore, 1971)

Configuration Level Eval 1 Eval 1 Eval 1

5s2 1S0 0.586538 — 0.6144091 — 0.6146012 —
5s4d 3D1 0.497148 19619 0.532110 18063 0.531862 18159.1
5s4d 3D2 0.497077 19635 0.531809 18129 0.531590 18218.8
5s4d 3D3 0.496941 19664 0.531298 18242 0.531132 18319.3
5s4d 1D2 0.494339 20235 0.522311 20213 0.522792 20149.7
5s6s 3S1 0.460940 27566 0.481533 29162 0.482291 29038.8

5s 5p 3P0 0.529636 12489 0.548754 14410 0.549366 14317.5
5s5p 3P1 0.528850 12662 0.547896 14598 0.548514 14504.4
5s5p 3P2 0.527213 13021 0.546079 14997 0.546718 14898.6
5s5p 1P1 0.491616 20833 0.515901 21621 0.515736 21698.5

1This value is obtained with δ = −0.3 a.u.
2For the ground state, Eval = IP (Sr)+ IP (Sr+), where ionization potential (IP) for Sr= 45925.6 cm−1 and
IP (Sr+)= 88964.0 cm−1 (Moore, 1971).

constants, E1 transition amplitudes, and polarizabilities. For calculation
of the matrix elements, we apply the technique of effective all-order
(“dressed”) operators. Technically, we employ the random-phase approx-
imation (RPA). The RPA sequence of diagrams describes a shielding of
externally applied field by the core electrons. We additionally incorporate
the following smaller corrections: Brueckner corrections to core orbitals,
subtraction and two-particle diagrams, structural radiation and normal-
ization corrections. Detailed discussion of these corrections may be found
elsewhere (Kozlov et al., 2001a).

To demonstrate the quality of the constructed wave functions and the
accuracy of the effective-operator approach, we present in Tables 3 and 4
the calculated magnetic-dipole hyperfine structure constants A for the
3P1,2 states and the reduced matrix elements 〈ns2 1S0||D||nsnp 3,1P1〉 of the
electric-dipole operator D for the transitions from the low-lying odd-
parity 3,1P1 states to the ground state (Porsev et al., 2001). As seen from
Table 3, the differences between computed and experimental values for
the constants A, even for heavy Yb, do not exceed 1%. For the heaviest
and more computationally demanding Yb, the corrections to the effective
hyperfine operator tend to cancel (Porsev et al., 1999a), and we simplify
the calculations for Yb by using bare operators (no RPA “dressing”).

The results presented in Table 4 illustrate an increasing importance of
correlations when progressing from lighter to heavier atoms. For heav-
ier atoms, MBPT corrections to matrix elements grow larger, and as
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Table 3 Magnetic-dipole hyperfine structure constants A for
the nsnp 3P1 and nsnp 3P2 states. The computed CI+MBPT
values (Porsev & Derevianko, 2004) are compared with the
experimental data.

A(3P1) (MHz) A(3P2) (MHz)

25Mg CI+MBPT −146.1 −129.7
Experiment −144.977(5)1

−128.445(5)1
43Ca CI+MBPT −199.2 −173.1

Experiment −198.890(1)2
−171.962(2)3

87Sr CI+MBPT −258.7 −211.4
Experiment −260.083(5)4

−212.765(1)4
171Yb CI+MBPT 3964 2704

Experiment 3957.97(47)5 2677.66
173Yb CI+MBPT −1092 −745

Experiment −1094.20(60)5 737.76

1Lurio (1962), 2Arnold et al. (1981), 3Grundevik et al. (1979),
4Heider and Brink (1977), 5Clark et al. (1979), 6Budick and Snir (1969).

Table 4 Reduced matrix elements for transitions from the low-
lying nsnp 3,1P1 states to the ground ns2 1S0 state are presented
in atomic units. The computed values are compared with the
experimental data.

|〈ns2 1S0||D||nsnp 3P1〉| |〈ns2 1S0||D||nsnp 1P1〉|

CI+MBPT Experiment CI+MBPT Experiment

Mg 0.0064(7)1 0.0053(3)2 4.03(2)1 4.12(6)3

0.0056(4)4 4.06(10)5

Ca 0.034(4)1 0.0357(4)6 4.91(7)1 4.905(22)7

0.0352(10)8

Sr 0.160(15)1 0.1555(16)9 5.28(9)1 5.249(2)10

Yb 0.54(8)11 0.549(4)12 4.4(8)11 4.148(2)13

1Porsev et al. (2001), 2Godone and Novero (1992), 3Smith and Gallagher
(1966), 4Kwong et al. (1982), 5Lundin et al. (1973), 6Husain and Roberts
(1986), 7Degenhardt et al. (2003), 8Drozdowski et al. (1997), 9Husain and
Schifino (1984), 10Yasuda et al. (2006), 11Porsev et al. (1999b), 12Bowers
et al. (1999), 13Takasu et al. (2004).

a result, the accuracy of calculations becomes worse. For example, for
the 〈ns2 1S0||D||nsnp 1P1〉 electric-dipole matrix element, the accuracy of
the CI+MBPT method is 0.5% for Mg but only 18% for Yb. In the
work of Savukov and Johnson (2002), a similar relativistic approach was
used for calculating E1 transition amplitudes for divalent atoms, and the
obtained results are in a fair agreement with our results (Porsev et al.,
2001).
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Poor accuracy for Yb is hardly surprising because we fully account for
only the second order of the perturbation theory. For heavy atoms, higher
orders of MBPT play a significant role. In case of Yb, the state 6s6p 1P1

requires special attention. As noted in Porsev et al. (2001), the nearby
f 135d6s2 core-excited state of the same symmetry lies only 3800 cm−1 above
this state and their interaction is not negligible. The resulting admixture
of the configuration f 135d6s2 to the 6s6p 1P1 state is on the level of several
percent, therby noticeably influencing the magnitude of the matrix ele-
ment 〈6s2 1S0||D||6s6p 1P1〉 in Yb. This problem was discussed in detail in a
recent paper by Dzuba and Derevianko (2010).

2.2 Sternheimer–Dalgarno–Lewis Method

A generic problem encountered in evaluating atomic properties relevant
to lattice clocks is a computation of second-order sums over a complete
set of atomic many-body states. One of such properties is the dynamic
polarizability of atomic states entering Stark shift of atomic levels in the
laser field. Directly determining the complete set of CI+MBPT many-
body states needed for summations is impractical for divalent atoms. It
is more convenient to lump contributions of the intermediate states into
a single “perturbed” state. This method is conventionally referred to as
the Sternheimer–Dalgarno–Lewis method (Dalgarno & Lewis, 1955; Stern-
heimer, 1950). Below we recapitulate the main features of this method, its
implementation in the CI+MBPT framework, and illustrate the technique
by computing static polarizabilities of divalent atoms. Computed static
polarizabilities are relevant to evaluating blackbody radiation shifts, see
Section 7.

We would like to evaluate a second-order sum F that depends on
matrix elements of operators A and B,

F =
∑

k

〈90|A|9k〉〈9k|B|90〉

Ek − E0
. (2)

The states 9k are the eigenfunctions of the atomic Hamiltonian, H, with
energies Ek. Instead of direct summation over the intermediate states,
one can find an intermediate-state “lumped” wave function |δ9〉 from an
inhomogeneous equation

(H − E0)|δ9〉 =
∑

k

|9k〉〈9k|B|90〉 = B|90〉. (3)

With the computed |δ9〉, the quantity of interest, Equation (2), is obtained
simply as

F = 〈90|A|δ9〉. (4)
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This approach is generalized in a straightforward way to higher orders of
the perturbation theory, i.e., when Equation (2) includes more than two
operators and several summations over intermediate states.

To illustrate an application of the Sternheimer–Dalgarno–Lewis
method in the CI+MBPT, in Table 5, we present our numerical results for
the static scalar electric-dipole polarizabilities of the ns2 1S0 and nsnp 3P0

clock states. Details of calculations may be found in Porsev and Dere-
vianko (2006b) and Dzuba and Derevianko (2010). Here we only briefly
describe the main points. In the framework of the CI+MBPT method,
all electronic orbitals are separated into two groups: valence and core
orbitals. Accordingly, intermediate states in Equation (2) can be sepa-
rated into valence-excited states and core-excited states. The first group
of states is generated when promoting valence electrons to other valence
shells. As a result, the intermediate state remains in the model (CI) space
of the effective Hamiltonian, Equation (1). The second group of states, in
addition, involves real excitations from the core orbitals. These excitations
necessarily live in the space complementary to the model space.

Static scalar electric-dipole polarizability of atomic state |90〉 of the total
angular momentum J = 0 may be expressed as

α
(E1)
0 (0) = 2

∑
k

〈90|D0|9k〉〈9k|D0|90〉

Ek − E0
, (5)

where D0 is the z-component of the operator of the electric-dipole
moment. Apparently, the polarizability may be computed with the help
of Equations (2)–(4) with A = B ≡ D0. For brevity in this subsection, we
denote α ≡ α(E1)

0 (0).
Following the approach suggested in Derevianko et al. (1999), we

decompose the polarizability, Equation (5), into three parts

α = αv + αc + αcv. (6)

Table 5 Static electric-dipole polarizabilities (in a.u.)
for the ground 1S0 and the lowest-energy 3P0 excited
states of Mg, Ca, Sr, and Yb atoms. Theoretical uncer-
tainties are indicated in parentheses.

Mg1 Ca1 Sr1 Yb2

α1S0
71.3(7) 157.1(1.3) 197.2(2) 141(6)

α3P0
101.2(3) 290.3(1.5) 458.3(3.6) 302(14)

1Porsev and Derevianko (2006b), 2Dzuba and Derevianko (2010).
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Here αv encapsulates contribution of intermediate states characterized by
excitations of valence electrons within the model two-electron space, αc

involves core-excited intermediate states (i.e., states outside the model
space), and αcv is the so-called “Pauli-principle corrective term” related
to details of computational scheme (see below).

The valence part, αv, is the dominant contribution to the polarizabil-
ity. Once the wave functions of the valence electrons |90〉 are found from
the eigenvalue equation, Equation (1), αv are computed with the for-
mally exact Sternheimer–Dalgarno–Lewis method implemented in the
CI+MBPT framework. From Equation (3) we find

|δ9〉 =
1

Heff − E0

∑
k

|9k〉〈9k|D0|90〉 =
1

Heff − E0
D0|90〉, (7)

and finally, obtain the valence part of the polarizability,

αv = 2 〈90|D0|δ9〉. (8)

The contribution of core-excited states to the polarizability, αc, has to be
added separately. Here we follow the approach of Derevianko et al. (1999)
and use the relativistic random-phase approximation (Johnson, 1988) to
determine the core polarizability as

αc =

∑
ωµ>0

fµ
ω2
µ

. (9)

Here the summation is over particle-hole excitations from the ground state
of the atomic core; ωµ are excitation energies and fµ are the correspond-
ing electric-dipole oscillator strengths. Accounting for core excitations is
essential in our accurate calculations, especially for heavier atoms.

Finally, a small counter term αcv is related to excitations of core electrons
to occupied valence orbitals. Because we include the Pauli-principle-
forbidden excitations in the calculations of core polarizabilities, we have
to introduce this counter term.

Table 5 summarizes our numerical results for the static scalar elec-
tric polarizabilities. First, we discuss the results for the ground-state
polarizabilities. Values for Mg, Ca, and Sr were obtained in Porsev and
Derevianko (2006a). To estimate their uncertainties, we notice that the
intermediate state nsnp 1P1 contributes to the polarizability of the ground
ns2 1S0 state at the level of 95%–97%. Taking this into account, we can sin-
gle out this contribution to Equation (5) and rewrite αv as the sum of two
terms

αv = α
p
v + αv′ , (10)
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where

αp
v ≡ 2

|〈nsnp 1P1|D0|ns2 1S0〉|
2

E1P1 − E1S0

, (11)

and αv′ includes all the other terms in Equation (5).
For calculating the dominant contribution αp

v , we employ the most accu-
rate literature values of the reduced matrix elements 〈ns2 1S0||D||nsnp 1P1〉

tabulated in Porsev and Derevianko (2006a). For instance, for Sr, this
matrix element was obtained from a high-precision measurement of the
lifetime of the 5s5p 1P1 state (Yasuda et al., 2006): |〈5s2 1S0||D||5s5p 1P1〉| =
5.249(2) a.u. leading to the 0.1% uncertainty in αv(

1S0). Contribution of the
core corrections to the polarizability for this case (αc + αcv = 5.4 a.u. [Porsev
& Derevianko, 2006a]) is less than 3%. Because the uncertainty of the lat-
ter can be roughly estimated as 1% (Porsev & Derevianko, 2002), the final
uncertainty of the polarizability α is at the level of 0.1%. The uncertainties
in the remaining polarizabilities were estimated as one half of the differ-
ence between two predictions obtained with δ = 0 and with δ determined
with the best fit to the experimental energies (thus mimicking omitted
higher order many-body corrections).

The polarizabilities of the 1S0 and 3P0 states for Yb can be found with the
very same technique as for Sr, but their calculation is more involved. In
particular, accurate calculation of the ground-state polarizability have to
account for contributions of the (4f 13 5d5/26s2, J = 1) and (6s6p 1P1) states.
The details of this evaluation can be found in Dzuba and Derevianko
(2010). Finally, the uncertainties in the ground-state polarizabilities range
from 0.1% for Sr to 4% for Yb.

For the 3P0 states, the uncertainties range from 0.3% for Mg to 5% for
Yb. Unlike the case of the ground state, the polarizability of the 3P0 states
is accumulated because of several transitions: the lowest energy 3D1 states
contribute only at the level of 50%–60%. Generally, the accuracy of the
calculations becomes worse for heavier atoms. This follows the general
trend of many-body calculations, where the correlations, and thus the
omitted higher orders of perturbation theory, become increasingly impor-
tant as the number of electrons grows. The results presented in Table 5
for the ground states of divalent atoms are in good agreement with other
calculations (see, e.g., Mitroy & Bromley [2003]; Patil [2000]) and with
experimental results of Degenhardt et al. (2003) and Lundin et al. (1973).
Unfortunately, the existing experiments are not sufficiently accurate to test
our predictions.

In this section, we briefly described the main features of the
CI+MBPT method that couples the configuration interaction technique
with the many-body perturbation theory. We presented the results of
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calculations of different quantities (energies of the low-lying levels for
Sr, hyperfine structure constants, and E1 transition amplitudes for diva-
lent atoms) in the CI+MBPT framework. We also discussed evaluation
of sums over a complete set of intermediate states using the Stern-
heimer–Dalgarno–Lewis method and random-phase approximation. We
illustrated this technique by evaluating the static scalar electric-dipole
polarizabilities of the clock states for Mg, Ca, Sr, and Yb. In general,
we find that the CI+MBPT approach is capable of reliably and accu-
rately predicting a wide variety of experimental observables, ranging
from hyperfine constants to lifetimes and energies.

3. MAGIC WAVELENGTH

Armed with the accurate CI+MBPT atomic structure toolbox, in the fol-
lowing sections, we evaluate optical lattice clock–related parameters. In
the optical lattice clocks, the atoms are confined to sites of an optical lat-
tice (formed by a standing-wave laser field). We start off with analyzing
the quantity central to the Stark-free spectroscopy: a specific choice of the
wavelength of the lattice laser. At a certain, “magic”, value of the wave-
length, the laser-induced perturbations of both clock levels are identical
and the atom responds spectroscopically as if it were placed in laser-free
vacuum. The determination of the magic wavelength does not, fortu-
nately, require magic: it involves computation of dynamic polarizabilities.
Although usually knowing the dominant electric-dipole polarizability is
sufficient, other (e.g., magnetic-dipole, electric-quadrupole, etc) polariz-
abilities may introduce additional corrections to the Stark shifts and affect
values of the magic wavelength. Therefore, based on the Floquet approach
and multipolar expansions, we derive in this section the general multipo-
lar dynamic polarizabilities. Further, we illustrate the derived expressions
by numerically determining the magic wavelength for ytterbium clock.

3.1 Second-Order Dynamic Response

In this section, we start with reviewing the formalism of quasi-energy
states (Floquet formalism) and then apply it to deriving atomic proper-
ties relevant to the design of lattice clock. The Floquet formalism, as it
applies to the atom-laser interaction, was reviewed, for example, by Man-
akov et al. (1986). One considers an interaction of a quantum system with
a monochromatic perturbation

V (t) = v(−)e−iωt
+ v(+)e+iωt. (12)
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This perturbation drives a system characterized by the time-independent
Hamiltonian H0 and the “bare” eigenspectrum {ψa, Ea}, so that

H0ψa = Eaψa.

In the Floquet formalism, the entire Hamiltonian is replaced by

H→ H − i
∂

∂t
,

and the inner product is extended to include the time-averaging over the
period of the perturbation T = 2π/ω,

〈〈φi|φk〉〉 =
1
T

T∫
0

〈φi|φk〉dt, (13)

〈φi|φk〉 being the traditional inner product. In the lowest order, we deal
with the “dressed” atomic states

φa,k = ψaeikωt, k = 0,±1,±2, . . . (14)

Ea,k = Ea + kω, (15)

where the functions φa,k satisfy the modified Schrodinger equation(
H0 − i

∂

∂t

)
φa,k = Ea,kφa,k.

Since the time derivative is already incorporated in the formalism, one
may show that the expressions from the stationary perturbation theory
may be employed to describe the response to the monochromatic V (t).
In the “upgraded” expressions, all the “bare” eigenfunctions and energies
are replaced by their “dressed” counterparts and the inner products are
extended according to the prescription (13). For example, the lowest order
correction reads

E(1)
a = 〈〈φa,0|V|φa,0〉〉.

This correction vanishes for the electric-dipole interactions and the atomic
states of definite parity. The second-order expression, however, is nonzero
and will be of particular interest to us

E(2)
a =

∑
b,k

〈〈φa,0|V|φb,k〉〉〈〈φb,k|V|φa,0〉〉

Ea − Eb,k
.
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Explicit evaluation of the extended inner products limits the sums to
single-photon transitions (k = ±1) leading to the familiar result

E(2)
a =

∑
b

∣∣〈ψa|v(+)|ψb〉
∣∣2

Ea − (Eb − ω)
+

∑
b

∣∣〈ψa|v(−)|ψb〉
∣∣2

Ea − (Eb + ω)
. (16)

Although the above second-order result can be recovered in the more tra-
ditional secular approximation (see, e.g., Section 7) of the time-dependent
perturbation theory, the advantage of the Floquet formalism is that one
could employ the higher order expressions from the less complicated
time-independent perturbation theory and readily derive corresponding
high-order corrections (such as hyperpolarizability) to the energy shift
in the oscillating fields. We will employ this technique for deriving
hyperfine-induced light shifts in Section 5.

As a familiar example, consider perturbation by a linearly polarized
electric field

V (t) ≡ VE1 (t) = −DzE0 cosωt = −
1
2

DzE0

(
eiωt
+ e−iωt

)
,

where Dz is the component of the atomic electric-dipole moment along the
electric field. By comparing with Equation (12), we identify v(+) = v(−) =
−DzE0/2, and from Equation (16), we immediately recover the well-known
result

E(2)
a = −

1
4
E2

0 α
E1
a (ω) , (17)

αE1
a (ω) = 2

∑
b

Eb − Ea

(Eb − Ea)
2
− ω2

|〈ψa|Dz|ψb〉|
2, (18)

with αE1
a (ω) being the dynamic (a.c.) electric-dipole polarizability of the

state a.

3.2 Dynamic Multipolar Polarizabilities

Here we apply the Floquet formalism to derive the expressions for the
dynamic multipolar polarizabilities. We use the relativistic approach. Inci-
dentally, compared with the nonrelativistic treatment, the relativistic for-
mulation leads to more concise derivations, as the couplings are linear in
the vector potential. An interaction of an electron with the electromagnetic
field reads (to unclutter notation, here we consider only a single electron,
the generalization for the many-electron case being straightforward)

V = α ·A (r, t)−8(r, t),



AAMOP 13-ch09-415-460-9780123855084 2011/9/26 18:04 Page 432 #18

432 Andrei Derevianko and Sergey G. Porsev

where A and 8 are the magnetic and electric potentials, respectively
and α represents a collection of the conventionally defined Dirac matri-
ces (Bjorken & Drell, 1964). For an electromagnetic wave in the transverse
gauge (where 8 ≡ 0), the perturbation reduces to V = (α ·A) with the
vector potential

A =
1
2
ε̂A0ei(k·r)e−iωt

+ c.c.,

where ε̂ is the polarization vector (this may include circular and linear
polarizations) and c.c. stands for the complex conjugate. The amplitude
A0 is related to the laser intensity I as I = ω2

8πc
|A0|

2 and the corresponding
amplitude of the electric field E0 = A0ω/c. The wavevector k (in atomic
units) is given by k = ω/c = α ω. We identify,

v(−) =
1
2

A0

(
α · ε̂

)
ei(k·r), v(+) =

1
2

A0

(
α · ε̂

∗
)

e−i(k·r).

3.2.1 Multipolar Expansion

At this point, we focus on multipolar fields. We will use the outlined
multipolar formalism in this section and later in Section 7. The reader is
referred to Berestetskii et al. (1982); Johnson et al. (1995) for additional
details.

We make use of the multipolar expansion of εei(k·r) in vector spherical
harmonics Y(λ)

JM (Varshalovich et al., 1988)

εei(k·r)
= 4π

∑
JMλ

iJ−λ
(

Y(λ)

JM

(
k̂
)
· ε̂
)

a(λ)JM (r), (19)

where λ = 0 is for magnetic (MJ) and λ = 1 is for electric (EJ) 2J-polar
amplitudes. Explicit expressions for the expansion amplitudes a(λ)JM (r) in
terms of the spherical Bessel functions can be found in Johnson et al.
(1995). Since no expansion is made in powers of k · r, the retardation is
built in into the formalism from the onset. We may introduce a similar
multipolar expansion for the coupling

t (ω, r) =
(
α · ε̂

)
eik·r
= 4π

∑
JMλ

iJ−λ
(

Y(λ)

JM

(
k̂
)
· ε̂
)
τ
(λ)

JM , (20)

where the tensors τ (λ)JM =
(
α · a(λ)JM (r)

)
.
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The irreducible tensor operators τ (λ)JM of rank J may be related to the
conventional multipolar operators q(λ)JM as

τ
(λ)

JM = i(−1)λ+1

(
(2J + 1) (J + 1)

4π J

)1/2 kJ

(2J + 1) !!
q(λ)JM.

Relativistic expressions with retardation for matrix elements of q(λ)JM can
be found in Johnson et al. (1995). Neglecting retardation effects, q(1)JM

become the conventional frequency-independent EJ moments (in the
length gauge)

q(1)JM ≈ rJCJM

(
r̂
)
,

where CJM

(
r̂
)

are the normalized spherical harmonics. In the case of
magnetic-dipole transitions in the nonrelativistic limit,

q(0)1M ≈ −
α

2
(L+ 2S)M .

This expression is essentially the nonrelativistic atomic magnetic moment
µ = −µB(L+ 2S), with the Bohr magneton µB = |e|~/(2mec) expressed in
the Gaussian/atomic units. Further, the retardation brings correction on
the order of (αω)2 to these expressions, and it may be safely discarded
for transitions between low-lying states of neutral systems. For example,
neglecting retardation, for the E1 tensor

τ
(1)
1M ≈ i

k
√

6π
DM,

where DM ≡ q(1)1M are the spherical components of the traditional electric-
dipole operator.

Now we turn our attention to the effect of the multipolar fields on the
second-order shift of the atomic energy level

E(2)
a =

1
4

A2
0

{∑
b

|〈ψb|t (ω, r) |ψa〉|
2

Ea − (Eb − ω)
+

∑
b

|〈ψa|t (ω, r) |ψb〉|
2

Ea − (Eb + ω)

}
. (21)

The problem can be solved in general by substituting the expansion of
Equation (20) in the above expression. Because of our particular emphasis
on the lattice clocks, we limit our consideration to spherically symmetric
(Ja = 0) atoms. Then only the rotationally invariant (scalar) component is
of relevance.
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Below we demonstrate that various multipoles contribute to the light-
shift of Equation (16) incoherently; E(2)

a may be represented as a sum
over individual multipolar contributions. Indeed, a typical summation in
Equation (16) reduces to

|〈ψb|t (ω, r) |ψa〉|
2
= (4π)2

∑
JMλ

1
(2J + 1)

δJJbδMMb

∣∣∣Y(λ)

JM

(
k̂
)
· ε̂

∣∣∣2 ∣∣〈ψb||τ
(λ)

J ||ψa〉
∣∣2 ,

where we used the Wigner–Eckart theorem. To simplify this expression
further, we choose the z-axis along the wavevector k and fix the linear
polarization along the x-axis (ε̂ = êx). The result for the scalar polarizabil-
ity would not depend on the polarization direction. Then for λ = 0, 1, we

arrive at Y(λ)

JM

(
êz

)
· êx =

√
2J+1
16π

(
δM,−1 + (−1)λ δM,+1

)
. The final result may be

represented as a sum over multipolar a.c. polarizabilities,

E(2)
a (Ja = 0) =

E2
0

4

∑
Jλ

α(Jλ)a (ω) , (22)

each being defined as

α(Jλ)a (ω) =
J + 1

J
k2J−2

[(2J − 1)!!]2

∑
b

Ea − Eb

(Ea − Eb)
2
− ω2

∣∣〈ψb|q
(λ)

J0 |ψa〉
∣∣2. (23)

In the lattice clocks, the frequency of the lattice laser is chosen in
such a way that the a.c. Stark shifts of the two clock levels are exactly
the same (“magic” frequency). To the leading order, the E1 polarizabil-
ity overwhelms the a.c. Stark shift, Equation (22). Compared with the E1
contribution, the higher order multipole polarizabilities are suppressed
by a factor of (αω)2J−2 for EJ and by a factor of α2(αω)2J−2 for MJ multi-
poles. Nevertheless, the higher order multipolar a.c. shifts may modify the
value of the magic frequency. From the general formula, Equation (23), we
immediately obtain for the magnetic-dipole polarizability,

α(M1)
a (ω) = 2

∑
b

Ea − Eb

(Ea − Eb)
2
− ω2

∣∣〈ψb|q
(0)
10 |ψa〉

∣∣2 , (24)

and for the electric-quadrupole a.c. polarizability,

α(E2)
a (ω) =

1
6
(α ω)

2
∑

b

Ea − Eb

(Ea − Eb)
2
− ω2

∣∣〈ψb|q
(1)
20 |ψa〉

∣∣2 . (25)
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3.3 Ytterbium Magic Wavelength

Now we illustrate the developed formalism by presenting numerical
results for Yb lattice clock (Porsev et al., 2004). First, we compute the
E1 a.c. polarizabilities, Equation (18), with the CI+MBPT method, as
described in Section 2. The results of the calculations for both 6s2 1S0 and
6s6p 3P0 states are shown in Figure 3. According to our calculations, the
two dynamic polarizabilities intersect at the “magic” wavelength λm ≈

752 nm. This result is in a good agreement with the experimental value
759.25(2) nm obtained recently in Barber et al. (2006). It is worth noting
that at ωm, the sum (18) for the ground state is dominated by the 6s6p 1P1

state and for the 6 3P0 level by the 6s7s 3S1 state. We estimate that the
computed scalar a.c. polarizabilities are a few percent accurate.

We verified that at the magic frequency, there are no resonant con-
tributions for the next-order E2 and M1 polarizabilities, and we expect
α(E2,M1) . 10−6α(E1), similar to the case of Sr (Katori et al., 2003). At the
same time, we notice that the core-excited state 4f 13(2F7/2)5d5/26s2 J = 5
may become resonant with an excitation from the 6 3P0 level. The relevant
M5 polarizability is highly suppressed, and we anticipate that the magic
frequency will be only slightly shifted by the presence of this state.

740 760720

260
6s2 1S0

6s6p 3P0

λ (nm)

α
E

1  
(λ

) 
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.u
.)
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Figure 3 Electric-dipole a.c. polarizabilities for 6 1S0 (solid line) and 6 3P0 (dashed
line) states of Yb. The polarizabilities are shown as a function of lattice laser
wavelength λ. Crossing point of two polarizabilities yields the value of the magic
wavelength.
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Table 6 Magic wavelengths for the 1S0−
3P0

clock transition in divalent atoms. The val-
ues of the magic wavelengths, λm, for
Sr (Takamoto & Katori, 2003) and Yb (Bar-
ber et al., 2006) are experimental. The values
for other atoms are the theoretical results
(Derevianko et al., 2009).

atom νclock (Hz) λm (nm)

Mg 6.55× 1014 466
Ca 4.54× 1014 739
Sr 4.29× 1014 813
Yb 5.18× 1014 759
Zn 9.69× 1014 416
Cd 9.03× 1014 419
Hg 11.3× 1014 362

Higher order correction to the a.c. Stark frequency shift arises because
of terms quartic in the field strength E0. This fourth-order contribu-
tion is expressed in terms of the a.c. hyperpolarizability. The expres-
sion for hyperpolarizability (Manakov et al., 1986) has a complicated
energy denominator structure exhibiting both single- and two-photon res-
onances. Although for the ground state there are no such resonances, for
the 6 3P0, a two-photon resonance may occur for 6s8p 1P1 and 6s8p 3PJ inter-
mediate states. We cannot predict if the two-photon resonances would
occur, but the experiments (Barber et al., 2006) indicate that these are not
an issue at least presently. For Sr (Katori et al., 2003), the hyperpolarizabil-
ity shifts the energy levels by a few millihertz at a trapping laser intensity
of 10 kW/cm2.

3.4 Compilation of Magic Wavelengths

Calculations for other divalent atoms (Mg, Ca, Sr, Zn, Cd, and Hg) fol-
low the same pattern as the Yb calculations of the previous section. These
calculations were carried out in Derevianko et al. (2009). In Table 6, we
compile these wavelengths.

4. HYPERFINE QUENCHING OF THE 3P0 STATES

The lifetime of the 3P0 state determines the natural width of the clock tran-
sition between the ground and the 3P0 state. For all bosonic isotopes of
divalent atoms, the nuclear spin I vanishes and these isotopes lack hyper-
fine structure. For bosonic isotopes, the 3P0 state may decay only through
very weak multiphoton transitions. However, for the fermionic isotopes,
I 6= 0, a new radiative decay channel becomes available because of the
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hyperfine interaction (HFI). The HFI admixes J = 1 atomic states, open-
ing a fast E1 decay route. The resulting HFI-induced decays determine the
lifetimes of the 3P0 states and set the natural width of the clock transition.

Below we derive the hyperfine-induced decay rates for fermionic
isotopes and compute the decay rates with the CI+MBPT method.

4.1 Derivation of Hyperfine Quenching Rates

In the presence of nuclear moments, the total electronic angular momen-
tum J no longer remains a good quantum number. The atomic energy
levels are characterized instead by the total angular momentum F = J + I.
We develop the formalism in terms of the hyperfine states |γ (IJ)FMF〉.
Here the angular momenta I and J are conventionally coupled to pro-
duce a state of definite total momentum F and its projection MF, and γ

encapsulates all other atomic quantum numbers. To the lowest order in the
hyperfine interaction, HHFI, the correction to the hyperfine level |γ (IJ)FMF〉

reads

|γ (IJ)FMF〉
(1)
=

∑
γ ′J′

|γ ′(IJ′)FMF〉
〈γ ′(IJ′)FMF|HHFI|γ (IJ)FMF〉

E (γ ′J′)− E (γ J)
, (26)

where E (γ J) are the energies of atomic states.
In general, a nucleus may possess a number of magnetic and electric

multipole moments. These moments couple to the internal atomic fields
and give rise to the hyperfine structure. In this review, we are mainly con-
cerned with the properties of the J = 0 clock states. For all the considered
properties, only the magnetic-dipole moment of the nucleus, µI, is rele-
vant (this comes from angular selection rules and more general analysis).
The magnetic-dipole hyperfine Hamiltonian, HHFI, may be represented by
a rotationally invariant expression

HHFI =
(
M(1)

· T (1)
)
. (27)

Here M(1) is the nuclear magnetic moment operator, with the nuclear
moment defined as an expectation value of M(1) in the stretched nuclear
state

µI ≡ 〈IMI = I|M(1)
0 |IMI = I〉. (28)

We list the moments for the isotopes of interest in Table 1. The electronic
part of the coupling for a point-like nucleus is given by

T (1)
λ = i

√
2
(
α · C(0)

1λ

(
r̂
))
/r2, (29)
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where C(0)
1λ

(
r̂
)
= (4π/3)1/2 Y(0)

1λ

(
r̂
)

is the normalized vector spherical har-
monic (Varshalovich et al., 1988).

Using the Wigner–Eckart theorem, the matrix element of the hyperfine
interaction in Equation (26) may be simplified to

〈γ ′
(
IJ′
)

FMF|HHFI|γ (IJ)FMF〉 = δFF′δMFM′F
(30)

× (−1)I+J′+F
〈I ||M(1)

|| I〉〈n′J′||T (1)
||nJ〉

{
I I 1
J J′ F

}
.

Now we turn to the derivation of the hyperfine quenching rate. The rate
of spontaneous emission for an E1 transition is given by the Fermi golden
rule

Aa→b =
4α3

3
ω3

ab

∣∣〈a|D|b〉∣∣2 , (31)

where ωab = Ea − Eb is the transition frequency. Summing over all possible
momenta Fb and magnetic quantum numbers Mb of the final state, while
disregarding small F-dependent energy correction, one obtains the rate

Aa→b =
4α3

3
ω3

ab

1
2Fa + 1

∑
Fb

∣∣〈a||D||b〉∣∣2 . (32)

For the case at hand, the initial state is the HFI-perturbed nsnp 3P0 state
decaying to the ground ns2 1S0 state. Taking into account Equation (26), we
arrive at the hyperfine quenching rate

AHFI

(
nsnp 3P0 → ns2 1S0

)
=

4α3

27
ω3

0µ
2
I

I + 1
I

∣∣∣∣∣∑
γ ′

〈ns2 1S0||D||γ ′J′〉〈γ ′J′||T (1)||nsnp 3P0〉

E (γ ′J′)− E
(
nsnp 3P0

) ∣∣∣∣∣
2

. (33)

Notice that because of the angular selection rules, the total electronic
angular momentum of the intermediate states is limited to J′ = 1.

4.2 Results and Conclusions

We carry out numerical evaluation of the HFI-induced rate, Equation (33),
in several logical steps. First, we solve the CI+MBPT eigenvalue prob-
lem (see Section 2) and determine the ground and the nsnp 3P0 state wave
functions and energies. At the next step, we evaluate the sum over the
intermediate states using the Sternheimer–Dalgarno–Lewis method, as
discussed in Section 2.2.



AAMOP 13-ch09-415-460-9780123855084 2011/9/26 18:04 Page 439 #25

Accurate Evaluation of Parameters of Optical Lattice Clocks 439

The values of the sums over intermediate states grow larger for heavier
atoms. This is because of increasing matrix elements of the hyperfine inter-
action (see Table 3). Further, a direct investigation of the sums shows that
the contributions of both nsnp 3P1 and nsnp 1P1 intermediate states are com-
parable. Qualitatively, the triplet state is separated from the metastable
states by a small fine-structure interval, but its E1 matrix element with the
singlet ground state vanishes nonrelativistically. For the singlet state, the
situation is reversed; compared with the triplet contribution, the involved
energy denominator is much larger, but the electric-dipole matrix element
is allowed.

In Table 7, we present our ab initio relativistic CI+MBPT results for
the transition rates. Based on a better than 1% accuracy of the ab initio
hyperfine constants (Table 3) and energy levels (Porsev et al., 2001, 1999a),
we expect that the computed hyperfine quenching rate is accurate within
at least a few percent. In Table 7, the CI+MBPT values are also compared
with the results from the literature. For Mg, the hyperfine quenching rates
for the 3P0 state were estimated more than four decades ago by Garstang
(1962) (this was motivated by astrophysical applications). Our result is in
a reasonable agreement with his values and with previous, less complete,
estimates for 87Sr (Katori et al., 2003) and Yb isotopes (Porsev et al., 2004).

It is worth mentioning one more process that can potentially lead to
a shortening of lifetimes of the metastable states. As demonstrated by
Yasuda and Katori (2004), the blackbody radiation (BBR) induced decay
rate of the 5s5p 3P2 state for Sr is equal to 8.03×10−3 s−1 at 300 K. Our order-
of-magnitude estimate of the BBR quenching for Mg, Ca, and Yb shows
that at room temperature (T = 300 K), the BBR quenching is negligible
compared with the rates caused by the vacuum fluctuations of the elec-
tromagnetic field (T = 0). The reader, however, should be cautioned that
the BBR rate strongly depends on the ambient temperature and it may
become important, for example, if a hot oven is used as a source of atoms.

Table 7 The hyperfine E1-quenching rates for the meta-
stable 3P0 states in sec−1. The rates are compared with
values from the literature. Our CI+MBPT results were
previously published in (Porsev & Derevianko, 2004). The
notation y[x] means y × 10x .

Atom F CI+MBPT Other

25Mg 5/2 4.44[−4] 4.2[−4]1
43Ca 7/2 2.22[−3]
87Sr 9/2 7.58[−3] 6.3[−3]2
171Yb 1/2 4.35[−2] 5.0[−2]3
173Yb 5/2 3.85[−2] 4.3[−2]3

1Garstang (1962), 2Katori et al. (2003), 3Porsev et al. (2004).
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To summarize the main results of this section, the resulting natural
widths of the 3P0 −

1S0 clock transition are 0.44 mHz for 25Mg, 2.2 mHz
for 43Ca, 7.6 mHz for 87Sr, 43.5 mHz for 171Yb, and 38.5 mHz for 173Yb.
These narrow widths translate into the high-resonance quality factors
characteristic of the lattice-based optical clocks.

5. HYPERFINE-INDUCED VECTOR LIGHT SHIFT
IN THE 3P0 STATE

The second-order light shift involves two interactions with the laser field.
The product of two interactions (D · E)(D · E∗) may be recoupled into the
scalar, vector (axial), and tensor components of the dynamic polarizabil-
ity (these are irreducible tensors of rank 0, 1, and 2 acting in the electronic
space). Because of the angular selection rules, for the J = 0 clock states,
only the scalar polarizability is of relevance and it was the focus of our dis-
cussion in Section 3. The hyperfine interaction, nevertheless, removes the
spherical symmetry of the atoms and leads to residual vector, αA

γF (ω), and
tensor, αT

γF (ω) a.c., polarizabilities. These may affect the performance of
the clock: the vector light shift may cause a small Stark-shift dependence
on the polarization of the trapping light.

To determine the effect of the HFI on the a.c. polarizability, we carry out
an analysis in the third-order perturbation theory. We apply the Floquet
formalism (Section 3.1) with respect to a combined operator

V = VHFI + VE1 (t) .

The third-order energy shift of the atomic energy level reads

E(3)
a =

∑
b,c 6=a

VabVbcVca(
E(0)

b − E(0)
a

) (
E(0)

c − E(0)
a

) − Vaa

∑
b 6=a

VabVba(
E(0)

b − E(0)
a

)2 ,

where matrix elements are evaluated with respect to the dressed basis and
inner products involve time-averaging. The relevant terms (involving two
E1 laser-atom interactions and one HFI coupling) are

E(3)
a =

∑
b,c6=a

(VHFI)ab (VE1)bc (VE1)ca(
E(0)

b − E(0)
a

) (
E(0)

c − E(0)
a

) +∑
b,c 6=a

(VE1)ab (VHFI)bc (VE1)ca(
E(0)

b − E(0)
a

) (
E(0)

c − E(0)
a

)
+

∑
b,c 6=a

(VE1)ab (VE1)bc (VHFI)ca(
E(0)

b − E(0)
a

) (
E(0)

c − E(0)
a

) − (VHFI)aa

∑
b6=a

(VE1)ab (VE1)ba(
E(0)

b − E(0)
a

)2 .

Notice that we work in the dressed atom picture, i.e., the states a, b, c are
products of atomic and photonic states. Also (VE1)aa = 0 because of the
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parity/angular/photon number selection rules leading to a simplification
of the last term. Explicitly, after the time averaging, Equation (13), (now
a, b, c are the “bare” atomic states and the matrix elements are computed
using the traditional inner products)

E(3)
a (ω) = Ta (ω)+ Ca (ω)+ Ba (ω)+Oa (ω) ,

Ta (ω) =
∑
b,c 6=a

(VHFI)ab v(+)bc v(−)ca(
E(0)

b − E(0)
a

) (
E(0)

c − ω − E(0)
a

)
+

∑
b,c 6=a

(VHFI)ab v(−)bc v(+)ca(
E(0)

b − E(0)
a

) (
E(0)

c + ω − E(0)
a

) ,

Ca (ω) =
∑
b,c 6=a

v(+)ab (VHFI)bc v(−)ca(
E(0)

b − ω − E(0)
a

) (
E(0)

c − ω − E(0)
a

)
+

∑
b,c 6=a

v(−)ab (VHFI)bc v(+)ca(
E(0)

b + ω − E(0)
a

) (
E(0)

c + ω − E(0)
a

) ,

Ba (ω) = [Ta (ω)]
∗ ,

Oa (ω) = − (VHFI)aa

∑
b 6=a

v(+)ab v(−)ba(
E(0)

b − ω − E(0)
a

)2

− (VHFI)aa

∑
b6=a

v(−)ab v(+)ba(
E(0)

b + ω − E(0)
a

)2 .

If we represent these contributions diagrammatically, then Ta (ω), Ca (ω),
and Ba (ω) can be treated as the top, center, and bottom diagrams, respec-
tively. The naming convention reflects the position of the HFI in the
diagram. Oa (ω) combines other corrective terms; for the case at hand, the
Oa (ω) term is irrelevant since the expectation value (VHFI)aa = 0 for J = 0
states.

We carry out the angular reduction of these diagrams. We find that the
magnetic-dipole HFI does not bring in neither the scalar nor the tensor
contribution: there is only the vector component of the a.c. polarizability.
In principle, the tensor contribution to J = 0 polarizability might appear
because of the electric-quadrupole moment of the nucleus; the strength of
this interaction is typically two orders of magnitude smaller than that of
the magnetic HFI and we neglect this effect. The final result simplified for
the J = 0 states reads

δEa = −

(
1
2
E
)2

A αA
γF (ω)

MF

2I
,
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MF being the projection of F (i.e., the projection of the nuclear spin I
for J = 0). The degree of the circular polarization is defined in terms
of A = sin 2θ for an electromagnetic wave E = Eex cos θ cos

(
ωt− kz

)
+

Eey sin θ sin
(
ωt− kz

)
. The shift is expressed in terms of the vector

polarizability

αA
γF (ω) = −

√
2

27

{
C(1)

1,1 (γ J,ω)+ 2T(1)
1,1 (γ J,ω)

}
,

where the dynamic reduced sums are expressed in terms of the reduced
matrix elements of the dipole operator and the HFI coupling

T(K)
J′ ,J′′ (γ J,ω) = µI

∑
γ ′

∑
γ ′′ 6=γ

〈γ J||T (1)
||γ ′′J′′〉〈γ ′′J′′||D||γ ′J′〉〈γ ′J′||D||γ J〉

×

(
1

E− E′′
1

E− E′ + ω
+ (−1)K

(ω→−ω)

)
,

C(K)
J′ ,J′′ (γ J,ω) = µI

∑
γ ′γ ′′

〈γ J||D||γ ′J′〉〈γ ′J′||T (1)
||γ ′′J′′〉〈γ ′′J′′||D||γ J〉

×

(
1

E− E′ + ω
1

E− E′′ + ω
+ (−1)K

(ω→−ω)

)
.

In these formulas, E is the energy of the state of interest. Notation
(−1)K

(ω→−ω)means that the preceding term is multiplied by (−1)K and
ω is replaced by −ω. For J = 0, the selection rules require J′ = J′′ = 1 for
both reduced sums.

Analyzing these expressions numerically in the CI+MBPT approach,
we find that the vector polarizability of the 6 3P0 state of Yb is much larger
than that for the ground state, as in the case of Sr (Katori et al., 2003).
For Sr, Katori et al. (2003) estimated the vector polarizability by adding
HFS correction to the energy levels of intermediate states. Our analysis
is more complete and we find that the dominant effect is not because of
corrections to the energy levels, but it is rather because of perturbation
of the 63P0 state by the HFS operator. The resulting values of αA

63P0
(ω∗) are

−0.10 a.u. for 171Yb and 0.075 a.u. for 173Yb. Recently, the value αA
63P0
(ω∗)

for 171Yb was experimentally found to be −0.08 (Lemke et al., 2009) in
very good agreement with the theoretical result. In practice, this translates
to requiring A < 10−6 at laser intensities of 10 kW/cm2 for keeping the
induced clock shifts below the mHz level.
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6. ZEEMAN EFFECT

When an atom is placed in the magnetic field, magnetic moments of its
electrons and nuclei interact with the magnetic field, leading to the famil-
iar Zeeman effect. The advantage of the J = 0 levels used in the lattice
clocks is that because of their scalar nature, to the lowest order in the field
strength, they are not Zeeman-shifted. However, if we include the nuclear
spin into the analysis, the linear Zeeman shift does appear because the
total angular momentum F no longer vanishes in general. Qualitatively,
the linear Zeeman shift appears for I 6= 0 because of the nuclear magnetic
moment. This moment contributes both directly (through the coupling of
the magnetic moment with the B-field) and indirectly. The indirect contri-
bution is because of the mechanism of the HFI mixing, which brings in
contribution of J 6= 0 levels with a large electronic magnetic moment. The
two corrections are of the same order of magnitude.

We will present the discussion in terms of the so-called Lande g-factors
gF. It is introduced by considering the lowest-order perturbation by a
sufficiently weak B-field,

δEMF = 〈FMF|HB|FMF〉 = µB gFB MF,

the direction of the B-field being chosen as the quantization axis.
The direct contribution of the nuclear moment to the atomic g-factor

is well known, see e.g., Haken and Wolf (1994). For the J = 0 level, it
simplifies to

δgn
F=I = −

1
I

(
me

mp

)(
µI

µN

)
and involves the ratio of the electron and proton masses. The ratio µI/µN

is simply the nuclear magnetic moment expressed in nuclear magnetons.
Notice that the textbook derivation of the above expression implies that
the magnetic field acting on the nuclear magnetic moment is the same as
the externally applied field. Generally, this is not the case, as the currents
induced inside the atom by external fields tend to shield the fields. This
effect is usually parameterized in terms of the shielding constant σ : Bnuc =

(1− σ)Bexternal. Values for the shielding factors σ for closed shell are listed
in Kolb et al. (1982), indicating that the δgn

F=I may be modified by as much
as a few percent. The shielding depends on the electronic state and should
be different for the two clock states. This parallels the “chemical shift”
effect in nuclear magnetic resonance. We are not aware of evaluation of
the shielding correction for any of the atoms of interest to the lattice clocks.
Considering that even the early clock experiments (Boyd et al., 2006) were
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able to measure the differential g-factors to a 0.5%-level accuracy, such
calculations may become of relevance.

Now we turn to the indirect contribution of the nuclear magnetic
moment to the atomic g-factor. We consider an atom placed in the uniform
magnetic field B. The vector potential because of this field A = (B× r) /2
determines the coupling

HB = (α ·A) =
∑
λ

(−1)λ S (1)λ B−λ,

with the irreducible tensor operator of rank 1 defined as

S (1)λ =
i
√

2

(
α · C(0)

1λ

(
r̂
))

.

Nonrelativistically, the interaction HB reduces to

H(NR)
B = µB B ·

(
L+ geS

)
, (34)

where ge ≈ 2.0023 is the g-factor of the electron (the quoted value also
includes radiative QED corrections, which are beyond the present con-
sideration).

Neglecting coupling of the nuclear spin to the B-field, we obtain

ge
F =

1
µBMF

〈FMF|S (1)0 |FMF〉.

Nonvanishing correction to the g-factor arises because of HFI-induced
admixture to wave functions. This is the same mechanism that causes
the 3P0 state to decay radiatively (see Section 4). The first-order correction
| (IJ) ; FMF〉

(1) to the wave function is given by Equation (26), leading to the
correction to the g-factor

δge
F µBMF

= 2
∑
γ ′J′

〈γ (IJ) ; FMF|S (1)0 |γ
′ (IJ′) ; FMF〉〈γ

′ (IJ′) ; FMF|HHFI|γ (IJ) ; FMF〉

E (γ ′J′)− E (γ J)

When restricting the summation over intermediate states, we took into
account the scalar character of HHFI. The operator S (1)λ involves only
electronic degrees of freedom; this restricts the intermediate electronic
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momentum to |J − 1| ≤ J′ ≤ J + 1. For the J = 0 state, F = I and the
nonvanishing HFI matrix element is

〈(I, J = 1) F MF|HHFI| (I, J = 0)FMF〉

=

(
µI

µN

)(
I + 1

3I

)1/2
α

2mp
〈γ ′J′ = 1||T (1)

||γ J = 0〉.

The matrix elements of the interaction with the external B-field are most
easily evaluated in the nonrelativistic approximation. The nonrelativistic
operator is diagonal with respect to the radial part of the wave function,
implying that the only intermediate state that would admix to the nsnp 3P0

state is the state nsnp 3P1 of the same fine-structure multiplet. This leads to

δge
F = −

2
√

2
3 I

(
ge − 1

)( µI

µN

)
α

2mp

〈nsnp 3P1||T (1)||nsnp 3P0〉

E
(
nsnp 3P1

)
− E

(
nsnp 3P0

) . (35)

While using this expression, one should be careful with the relative phase
convention between the 3P1 and 3P0 states: both states are assumed to nomi-
nally arise from the traditional coupling of S and L to their respective J
with the same radial part of the total wave function. We emphasize that
Equation (35) was obtained using the nonrelativistic expression for the
B-field coupling, Equation (34), whereas the relativistic calculations are
required for the HFI coupling, which is primarily accumulated near the
nucleus.

Now we carry out CI+MBPT numerical estimates for Yb. Here the
CI+MBPT value of the HFI matrix element is α

2mp
〈

3P1||T (1)||3P0〉 = 6522
MHz , and the fine-structure splitting has the value of 703.6 cm−1. Numeri-
cal results for the nuclear δgn

F and the electronic δge
F corrections to the

g-factor are given in Table 8. One should observe that both corrections are
of a comparable size. When analyzing the differential g-factors for the clock
transition, one should keep in mind that δgn

F factors are essentially the
same for the ground and the excited state (the only difference is because

Table 8 Lande g-factors for the 3P0 state of fermionic isotopes of Yb. The values are
from Porsev et al. (2004). δgn

F are the nuclear and δge
F are the electronic corrections.

The total δg is the sum of the two δg-factors.

Isotope µI/µN I δge
F δgn

F δg, Total

171 0.4919 1/2 −2.9× 10−4
−5.4× 10−4

−8.3× 10−4

173 −0.6776 5/2 7.9× 10−5 1.5× 10−4 2.3× 10−4
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of the “chemical shift” for the two levels), whereas in the nonrelativistic
approximation, the ge

F of the ground state vanishes. The computed val-
ues imply that mHz shifts would be produced by µG magnetic fields.
Fields can readily be calibrated and stabilized to this level using magnetic
shielding.

7. BLACKBODY RADIATION SHIFT

Considering advantages of optical lattice clocks, here we investigate an
important systematic effect of the blackbody radiation on the frequency
of the 3P0 −

1S0 clock transition. The current SI definition of the second
explicitly involves atomic clock operating at the absolute zero of tem-
perature (Taylor, 2001). Although the present definition of the second is
based on the microwave Cs clock, one may anticipate that the rapidly
progressing optical lattice clocks may be used to redefine the unit of time
in the future. Beyond the metrologically important BBR correction to the
clock frequency, the BBR shifts also affect the error balance of the clocks: a
nonuniform distribution of the temperature inside the clock chamber may
lead to the effective broadening of the lines (Boyd et al., 2006; Takamoto
et al., 2005).

Presently, the BBR is the leading source of systematic errors in the
best optical lattice clocks, and there are dedicated efforts (see e.g.,
Middelmann et al. [2010]) to measure the BBR clock shifts in the lattice
clocks.

In a laboratory environment with an ambient temperature T, one needs
to introduce the T-dependent BBR correction to the observed frequency.
Even in Cs, the value of the BBR shift was a subject of a recent contro-
versy (Angstmann et al., 2006; Beloy et al., 2006; Levi et al., 2004). Here we
setup the relativistic multipolar theory of the BBR shifts, and using tech-
niques of many-body relativistic atomic structure, we compute the BBR
shift for Mg, Ca, Sr, Yb (Porsev & Derevianko, 2006b), and Hg (Hachisu
et al., 2008) and evaluate uncertainties of the calculations. This section is
mostly based on our paper (Porsev & Derevianko, 2006b) and provides
additional details.

As summarized in Table 9, the resulting fractional uncertainties in the
clock frequencies at T = 300 K are large, ranging from 2× 10−19 for Hg to
3× 10−16 for Yb.

The main conclusions of this section are (1) the present uncertainty
in our computed BBR shift is an obstacle on the way towards the pro-
jected 10−18 accuracy goal (except for Hg); (2) because of T4 scaling of the
BBR shift, it may be beneficial to operate at cryogenic temperatures; (3)
if operating at room temperatures, high-precision (0.02%-accurate for Sr)
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Table 9 Blackbody radiation shift for clock transitions between the lowest
energy 3P0 and the 1S0 states in divalent atoms. δνBBR is the BBR shift at
T = 300 K with our estimated uncertainties. ν0 is the clock transition fre-
quency, and δνBBR/ν0 is the fractional contribution of the BBR shift. The last
column lists fractional errors in the absolute transition frequencies induced
by the uncertainties in the BBR shift.

Atom δνBBR (Hz) ν0 (Hz) δνBBR/ν0 uncertainty

Mg −0.258(7) 6.55× 1014
−3.9× 10−16 1× 10−17

Ca −1.171(17) 4.54× 1014
−2.6× 10−15 4× 10−17

Sr −2.354(32) 4.29× 1014
−5.5× 10−15 7× 10−17

Yb −1.25(13) 5.18× 1014
−2.4× 10−15 3× 10−16

Hg −0.181 11.3× 1014
−1.6× 10−16 2× 10−19

measurements of the BBR shifts or related quantities are required; (4) Mg-
based clock is one of the least susceptible to BBR; compared with Sr, the
Mg BBR shift is an order of magnitude smaller (see Table 9). Addition-
ally, we develop a general relativistic theory of the BBR shift caused by
multipolar components of the radiation field.

7.1 Multipolar Theory of the Blackbody Radiation Shift

The BBR shift is caused by perturbation of the atomic energy levels by the
oscillating thermal radiation. Both atomic levels involved in the clock tran-
sition are perturbed and the overall BBR correction is a difference of the
BBR shifts for the two levels. We find that determining shift for the upper
3P0 level requires certain care. This level is a part of the 3PJ fine-structure
manifold, J = 0, 1, 2. The separation between the levels in the manifold
is comparable to the characteristic wave number of the BBR radiation,
208.51 cm−1, at T = 300 K, and contributions of the BBR-induced magnetic-
dipole and electric-quadrupole transitions to the levels of the manifold
may be enhanced. Taking these induced transitions into account requires
going beyond the conventional electric-dipole approximation (Farley &
Wing, 1981).

Considering a potential importance of the multipolar contributions,
here we derive the relevant formulas for the BBR-induced energy shifts.
Although we show that the M1 and E2 contributions can be neglected
at the present level of uncertainty for the dominant E1 shift, incorporat-
ing M1 multipoles will be required when the lattice clocks reach their
projected 10−18 accuracy level.

We start with the usual box quantization for the photon field and
expand the magnetic potential inside the box of side L over the plane
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waves (see, e.g., Friedrich [2004])

A (r, t) =
∑
λ

qλAλe−iωλt
+ c.c.

with

Aλ =
1

L3/2
ελei(kλ·r).

A periodic boundary condition is imposed on A (r, t), effectively quantiz-
ing the modes, kλ = ωλ/c. In the Gaussian units and the Coulomb gauge,
the electron-field interaction Hamiltonian reads

H′ = (α ·A) =
1

L3/2

∑
λ

qλv
(−)

λ e−iωλt
+

1
L3/2

∑
λ

q∗
λ
v(+)λ e+iωλt

with v(±)λ = (α · ελ) e∓i(kλ·r). We are interested in the time evolution of atomic
states caused by these oscillating fields. To this end, we expand the
atomic wave function ψ (t) over the complete set of stationary states

∣∣k〉
of the atom

|ψ (t)〉 =
∑

k

ck (t) e−iEkt
∣∣k〉,

where the time-dependent amplitudes satisfy a set of coupled equations

i
d
dt

ck (t) =
∑

p

eiωkptH′kp (t) cp (t).

Here ωkp = Ek − Ep and H′kp ≡ 〈k|H
′
|p〉 are the matrix elements of the

Hamiltonian H′.
To solve this set of equations, we employ the secular approximation.

Indeed, the perturbing field is weak and we assume that it does not lead
to large population transfer from the initial (perturbed) state ψg (t). On the
r.h.s. of the equation for the excited (perturbing) state amplitude, we may
neglect contributions of other excited states

i
d
dt

ck 6=g (t) ≈ eiωkgtH′kg (t) cg (t)

=
1

L3/2

∑
λ

{
qλ
[
v(−)λ

]
kg

ei(ωkg−ωλ)t
+ q∗

λ

[
v(+)λ

]
kg

ei(ωkg+ωλ)t
}

cg (t).
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We expect that the reference state amplitude follows cg (t) = cg (0)
exp

[
−iδEgt

]
, where the light shift δEg �

(
ωkg ± ωλ

)
. Under this assump-

tion, we may disregard the time-dependence of cg (t) while integrating
the above equations. The resulting amplitudes for the excited states
adiabatically follow the reference state amplitude

ck 6=g (t) = Xkgcg (t),

Xkg =
1

L3/2

∑
λ

{
qλ

[
v(−)λ

]
kg

ωgk + ωλ
ei(ωkg−ωλ)t

+ q∗
λ

[
v(+)λ

]
kg

ωgk − ωλ
ei(ωkg+ωλ)t

}
.

We substitute this solution into the time-dependent equation for the cg (t)
amplitude, arriving at

i
d
dt

cg (t) = δEgcg (t),

δEg =

∑
k

eiωgktH′gk (t)Xkg.

As the next step, we carry out statistical averaging of the above expression
over the field amplitudes qλ and q∗

λ
. The only nonvanishing combina-

tions are

〈qλq∗λ〉 =
2π
α2

1
ωλ

n̄ωλ ,

where the mean occupation number for photons is

n̄ω =
1

exp (ω/T)− 1
.

Therefore,

δEg=
α

4π 2
P.V.

∞∫
0

dωω n̄ω
∑
ε

∫
d�k

∑
p

{[
v(+)

]
gp

[
v(−)

]
pg

ωgp + ω
+

[
v(−)

]
gp

[
v(+)

]
pg

ωgp − ω

}
,

where we made a transition
∑

λ
→
(

L
2π

)3 ∑
ε

∫ ∫
d�kk2dk in the limit of

L→∞. The quantity P.V.
∫

dω stands for the Cauchy’s principal value
of the integral; as elucidated by Farley and Wing (1981), it is required for
a proper treatment of nominally divergent resonant contributions.

So far, the derivation paralleled the method discussed, for example,
in Farley and Wing (1981) for the electric-dipole transitions. At this point,
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we focus on multipolar fields. While evaluating matrix elements of oper-
ators v(±), we make use of the multipolar expansion of εei(k·r) in vector
spherical harmonics, Equation (19). To simplify the light-shift expression,
we employ the following property of the harmonics∑

ε

∫
d�k

(
Y(

λ′)
∗

J′M′

(
k̂
)
· ε

)(
Y(λ)

JM

(
k̂
)
· ε
)
= δJJ′δλλ′δMM′ .

As a result, we find that the BBR shift is a sum over independent multi-
polar contributions

δEg =

∑
Jλ

δE(Jλ)
g , (36)

where λ = 0 is for magnetic (MJ) and λ = 1 is for electric (EJ) multipolar
amplitudes. The individual multipolar shifts are

δE(Jλ)
g = −π

J + 1
J[(2J − 1) !!]2

α2(J−1)P.V.

∞∫
0

dω ω2(J−1) uω(T) ᾱ(Jλ)g (ω), (37)

where α(Jλ)g (ω) are the generalized dynamic multipolar scalar polariza-
bilities

ᾱ(Jλ)g (ω) =
2

2J + 1

∑
p,M

∣∣〈p∣∣ q(λ)JM

∣∣g〉∣∣2 ωpg

ω2
pg − ω

2
. (38)

Here the transition operator was expressed in terms of the multipole
moments q(λ)JM of Section 3. The polarizabilities ᾱ(Jλ)g (ω) are proportional to
the scalar polarizabilities, Equation (23) of Section 3. Here for convenience,
we pulled out frequency-dependent prefactor for clarifying the following
derivation.

A cursory examination of Equations (37) and (38) reveals that compared
with 2J multipole, the contribution of 2J+1 multipole is suppressed by a fac-
tor of α2. Also for the same J, the magnetic contribution is α2 weaker than
that of the EJ photons. As in the theory of multipolar radiative transitions,
the E(J+1) and the MJ contributions are of the same order in α. To illumi-
nate the T-dependence of contributions of individual intermediate states,
we recast the BBR shifts into the following form, where Jg is the total angu-
lar momentum of the reference state and 〈g||q(λ)J ||p〉 is the reduced matrix
element, and we separate out factor of α2 for MJ matrix elements:

δE(Jλ)
g = −

(αT)2J+1

2Jg + 1
(α2)λ−1

∑
p

(α2)1−λ
∣∣〈g||q(λ)J ||p〉

∣∣2 FJ

(ωpg

T

)
, (39)



AAMOP 13-ch09-415-460-9780123855084 2011/9/26 18:04 Page 451 #37

Accurate Evaluation of Parameters of Optical Lattice Clocks 451

with the universal functions (x = ω/T)

FJ

(
y
)
=

1
π

J + 1
J (2J + 1) !! (2J − 1) !!

P.V.

∞∫
0

(
1

y+ x
+

1
y− x

)
x2J+1

ex − 1
dx. (40)

The universal functions FJ

(
y
)

are multipolar generalizations of function
F
(
y
)

introduced by Farley and Wing (1981) in the E1 case. We computed
FJ functions using standard integration routines built-in into Mathemat-
ica. A plot of FJ(y) for several J may be found in Porsev and Derevianko
(2006b). FJ rapidly change around y ∼ 1 and slowly fall off for y � 1.
Depending on the value of excitation energy, ωpg = y T, a particular inter-
mediate state may introduce either negative or positive BBR shift. FJ are
broad distributions and have comparable values for |y| . 20.

The limit y � 1 corresponds to the case when the transition energy is
much larger than T. Here

∣∣y∣∣ � 1, FJ(y) ∝ 1/y. If all virtual transitions
satisfy this requirement, then the leading contribution to the multipolar
BBR shift can be expressed in terms of static polarizabilities

δE(Jλ)
g = −

ζ(2J + 2)(2J + 2)!
2π J [(2J − 1) !!]2

α2J+1T2J+2ᾱ(Jλ)g (0), (41)

where ζ is the Riemann zeta-function. As the scaling factor, α2J+1T2J+2, is
expressed in atomic units, we observe that as multipolarity J increases
by one, in addition to the usual α2 suppression, there is a temperature
suppression factor of

(
kBT/Eh

)2
. For T = 300 K, this suppression is sizable,

as
(
kBT/Eh

)2
≈ 9.0× 10−7.

7.2 BBR Shift for the Clock Transition in Divalent Atoms

Below we apply the developed formalism to compute the BBR shift for the
1S0 −

3 P0 clock transition in divalent atoms. We will assume that the atoms
are at the ambient temperature of T = 300 K. Both clock levels experience
the BBR shift and the total shift is the difference between the individual
shifts, δνBBR = δνBBR(

3P0)− δνBBR(
1S0).

Consider first the BBR shift of the ground 1S0 state. Here transition ener-
gies of various multipolar transitions to the upper levels are much larger
than T, i.e., we are in the y � 1 limit. Here compared with the domi-
nant E1-induced shift, the contribution of M1 transitions is suppressed by
α2
∼ 10−4 and E2 by α2

(
kBT/Eh

)2
∼ 10−10. Higher order multipoles are sup-

pressed even more. As to the retardation effects in E1 matrix elements, we
expect that they would be suppressed by a factor of α2

(
kBT/Eh

)2
∼ 10−10.

Nevertheless, since the fractional contribution of the BBR shift to the clock
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frequency is at 5× 10−15 level (see Table 9), one would need to introduce
the M1 corrections at the projected accuracy of 10−18.

For the 3P0 levels, the characteristic thermal photon frequency is com-
parable to the fine-structure intervals for the 3PJ manifold. The 3P0 level is
connected by M1 transition to the 3P1 level and by E2 transition to the 3P2

level. For these transitions, the values of the relevant functions FJ ∼ 1, thus
δE(M1)

g ∼ α2 (αT)3 and δE(E2)
g ∼ (αT)5, while δE(E1)

g ∼ α3 T4/ω3D1−3P0 . Qualita-
tively, we anticipate that M1 and E2 contributions are suppressed by
factors of 10−3 and 10−11, respectively. (Notice that ω3D1−3P0 ≈ 2× 10−2Eh.)
Our numerical estimate, on the basis of the transitions inside the fine-
structure manifold, leads to the following values of the BBR shifts for
Sr: |δE(M1)

g | ≈ 2.4× 10−5 Hz and |δE(E2)
g | ≈ 2.5× 10−8 Hz. Since the E1 BBR

shift for Sr is ∼ 2 Hz, the M1 and E2 contributions can be neglected at the
present 1%-level of accuracy of our calculations.

We find that although the thermal photon energy is close to the fine-
structure intervals, the induced multipole BBR shifts are not amplified.
The main reason is that the BBR energy distribution is broad: the functions
FJ have comparable values for a wide range of excitation energies, |ω| .
20 T. For example, for the Sr 3P0 −

3D1, E1 transition F1 ≈ 0.16, whereas
for the 3P0 −

3P1, M1 transition F1 ≈ −0.41, and for the 3P0 −
3P2 E2 transi-

tion F2 ≈ −0.36. For such a broad distribution, the multipolar BBR shift is
determined by the prefactor in Equation (39) resulting in a suppression of
multipoles beyond E1.

Based on the above discussion, we may exclusively focus on the
electric-dipole (J = 1, λ = 1) contribution to the BBR shift. From our gen-
eral expressions, we obtain an approximate formula,

δE(E1)
g ≈ −

2
15
(απ)3T4α(E1)

g (0) [1+ η] , (42)

η =
(80/63)π 2

α
(E1)
g (0)T

∑
p

|〈p||q(1)1 ||g〉|
2

(2Jg + 1)y3
p

(
1+

21π 2

5y2
p

+
336π 4

11y4
p

)
. (43)

Here yp = ωpg/T and α(E1)
g (0) is the traditional static dipole polarizability.

To arrive at the above equation, we used the asymptotic expansion

F1

(
y
)
≈

4π 3

45y
+

32π 5

189y3
+

32π 7

45y5
+

512π 9

99y7
,

which has an accuracy better than 0.1% for |y| > 10. η represents a
“dynamic” fractional correction to the total shift.
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7.3 Numerical Results

The leading contribution to the BBR shift is determined by the static E1
polarizability. We have evaluated these polarizabilities in Section 2 using
relativistic many-body procedure. The results of calculations for the static
electric-dipole polarizabilities for the ns2 1S0 and nsnp 3P0 states are pre-
sented in Table 5. The discussion of the accuracy of our results is given
in Section 2.2.

With the computed polarizabilities, we find the BBR shifts with Equa-
tion (42). The “dynamic” correction η is negligible for the 1S0 states, but is
needed for the 3P0 calculations. Indeed, for the ground state, the smallest
excitation energy E1P1 − E1S0 is equal to 21698 cm−1 for Sr. At T = 300 K,
the characteristic value of y is ∼100 for all the atoms. By contrast, for
the 3P0 clock level, the transitions to the nearby 3D1 level (see Figure 1)
involve smaller energies. For Sr, the relevant energy is only 3841 cm−1

corresponding to characteristic value of y ∼ 20. At this value, the “static
polarizability” approximation has only a few percent accuracy. While
evaluating η, we find it sufficient to truncate the summation over inter-
mediate states at the lowest energy excitation. This “dynamic” correction
contributes to the BBR shift of the 3P0 state at 0.1% level in Mg, 1% in
Ca, 2.7% in Sr, and 0.7% in Yb. Notice that since the clock BBR shift is
obtained by subtracting BBR shifts of the individual levels, the “dynamic”
correction contributes at an enhanced 5% level in Sr.

Finally, we combine the BBR shifts of the individual clock levels and
arrive at the overall BBR corrections summarized in Table 9. Our com-
puted BBR shift for Sr,−2.354(32)Hz, is in agreement with an estimate by
Takamoto et al. (2005) of −2.4(1) Hz. The uncertainties are better than 3%,
except for Yb where the uncertainty is 10%. These uncertainties are large
compared with the projected 10−18 fractional accuracy of the lattice-based
clocks (see Table 9).

At room temperatures, the uncertainties in BBR shifts seem to be a
major factor in the error budget of these clocks. At the projected 10−18 frac-
tional accuracy, the required accuracies (e.g., 0.02% for Sr) in determining
BBR shifts are beyond the presently demonstrated capabilities of atomic
calculations and related polarizability measurements.

If any experimental (theoretical) progress is achieved (for instance,
if sufficiently accurate values of the dipole matrix elements such as
〈

3P0|D0|
3D1〉 become available), the uncertainties in the BBR shifts because

of E1 polarizabilities can be reduced. In this case, the accurate calculation
of the BBR shift contributions from M1 and E2 transitions will be needed
using the formalism developed in this section. At present, the uncertain-
ties of the E1 polarizabilities are so large that the projected 10−18 fractional
accuracy of the optical lattice clocks seem to be difficult to attain (if the
future definition of the second involves atoms at T = 0 K). In any case,
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the BBR contribution has to be taken into account when evaluating uncer-
tainties because of either spatial or temporal fluctuations of the thermal
radiation.

8. RAYLEIGH HEATING RATES

Clock atoms are trapped in an optical lattice; the scattering of lattice pho-
tons causes heating because of scattered photon recoil. Below we show
that at the magic wavelength, the heating rates for J = 0 clock levels are
expressed in terms of dynamic polarizability of Section 3. Moreover, we
demonstrate that at the magic wavelength, the heating rates for both clock
levels are the same.

To estimate the heating rate, we need to evaluate the rate of Rayleigh
scattering. According to Equation (59.5) of Berestetskii et al. (1982), the
differential cross section for nonresonant Raman scattering from the initial
state i to the final state f reads (notice that the original equation has a
typo—it should be ωk1 instead of ωk2 in the equation)

dσR

d�s
=
ωlω

3
s

c4

∣∣∣∣∣∑
k

(
〈 f
∣∣ε∗s ·D∣∣ k〉〈k |εl ·D| i〉

~ (ωki − ωl)
+
〈f |εl ·D| k〉〈k

∣∣ε∗s ·D∣∣ i〉
~ (ωki + ωs)

)∣∣∣∣∣
2

,

where ωl and εl are the frequency and (linear) polarization of the laser light
and ωs and εs are those for the scattered light.

We are interested in the elastic Rayleigh process where the atom
remains in the initial state after the scattering event and ωs = ωl . Since
the clock states are spherically symmetric, Ji = Jf = 0 for both clock lev-
els, and the derivation is simplified. By choosing the z-axis along the laser
polarization εl, we arrive at

dσR

d�s
=
ω4

l

c4

[
α
(E1)
i (ωl)

]2 ∑
εs

(
ε∗s · εl

) (
ε∗l · εs

)
,

where α(E1)
i (ωl) is the electric-dipole dynamic polarizability of the atomic

state i (see Section 3). The polarization sum
∑

εs

(
ε∗s · εl

) (
ε∗l · εs

)
= sin2

θ ,
where θ is the angle between laser polarization and k̂s. Integrating over
angles, we arrive at the total cross section,

σR =
8π
3
ω4

l

c4
[α(E1)

i (ωl)]2. (44)

For a laser of local intensity IL, this cross section leads to the heating rate

γh =
8π
3
ω3

l

~c4
[α(E1)

i (ωl)]2IL.
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Notice that since α(E1)
1S0
(ωm) = α

(E1)
3P0
(ωm) at the magic wavelength, the heat-

ing rates for the both clock states are the same.
For example, for Yb clock at the magic wavelength, the values of a.c.

polarizability for both states are equal to 160 a.u. (see Figure 3). For a
laser intensity of 10 kW/cm2, the resulting rate is in the order of 10−2 sec−1

(we took into account that the maximum of intensity in an optical lattice,
where the atoms are trapped, is four times larger than IL).

9. SUMMARY

In this review, we presented a detailed evaluation of a number of impor-
tant atomic-structure parameters affecting design and ultimate accuracy
of optical lattice clocks. The calculations were carried out using ab ini-
tio relativistic many-body methods of atomic structure. Overall, we find
that the calculations are reliable and the underlying formalism provides
a clear systematic way on improving theoretical accuracy further. In par-
ticular, we evaluated the hyperfine-induced transition widths of the clock
transitions, multipolar and vector a.c. polarizabilities, static polarizabil-
ities, “magic” trapping wavelengths, hyperfine-induced g-factors, and
blackbody radiation shifts. Among the remaining parameters, one of the
important systematic effects is because of hyperpolarizability, i.e., contri-
bution to the Stark shifts quartic in the atom-laser interaction (Katori et al.,
2003). Evaluation of this quantity is discussed in detail in Taichenachev
et al. (2006b)
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Abstract Confinement-induced resonances (CIRs) arise when particle
scattering takes place in the presence of an external potential
that spatially confines the motion of the particles. One finds
that for some combinations of the values of the parameters
governing the collision—the scattering energy, the parame-
ters that govern the confining potential, and the parameters
that govern the interatomic potential—the scattering cross
section reaches the unitary limit: this is CIR. We provide
details on one paradigmatic case of CIR and review the types
of CIRs that have so far been studied theoretically and, more
recently, experimentally. The rich variety of examples sug-
gests that CIRs arise under generic confining conditions and
that therefore we should expect to continue encountering
new examples of them.

1. INTRODUCTION

Although confinement-induced resonances (CIRs) properly belong to the
physics of two-particle scattering, they were discovered—and much work
on them continues to be done—within the context of many-body physics
of ultra-cold atomic gases (Bloch et al., 2008). In their initiating works,
for example, Olshanii (1998) and Petrov et al. (2000a) considered ultra-
cold Bose gases in strongly anisotropic harmonic traps, in which the
motion of atoms was effectively confined to a line or to a plane, respec-
tively. Experimentally, atomic traps are created by superimposing one
or more (depending on the desired dimensionality of the trap) counter-
propagating laser beams. The light is slightly off-resonant and causes
the atoms to experience an AC Stark shift. The interference of the laser
beams creates an optical standing wave, which leads to spatial variation
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in the AC Stark shift experienced by the atoms, and thus to a dipole
force. With Gaussian beams, the end result is a trapping potential that is
approximately harmonic near the potential minimum (Grimm et al., 2000).
Low-dimensional (low-D) confinement happens when the typical kinetic
energy of an atom is much less than the energy difference between the
ground and the first excited state of the confining potential; in many-body
systems, one requires that both the chemical potential and the temperature
(kBT) be less than that energy difference (Moritz et al., 2003). If these condi-
tions are satisfied, then the motion of the atoms is “frozen” in the ground
state of the confining potential, and therefore limited to the unconfined
directions.

The main motivation for the initial studies was that, broadly speaking,
in low-D, strongly correlated many-body regimes are easier to study than
in 3D (Tolra et al., 2004). The initiating papers sought to develop approxi-
mate theories, “effective low-D” theories, in which the frozen-out degrees
of freedom are eliminated. The details of the confinement enter a low-D
theory only parametrically, e.g., determining the value of the coupling
constant in the effective low-D interaction potential.

At this point, we may give a preliminary definition of a confinement-
induced resonance (CIR): a CIR is a unitarity-bound-saturating local
maximum in the scattering cross section as one varies the confinement
strength while keeping all the other parameters fixed.

In more detail, one starts with a two-body scattering problem in 3D
with the confining potential present. The boundary condition is such that,
asymptotically far in the unconfined directions, the state is a product of
the ground state of the confining potential and of some free-space solution
in the unconfined directions. (Here, one must further impose appropriate
boundary conditions for the free-space solution, usually either periodic or
of the form “incoming plane wave plus a scattered wave”; for an example,
see Equation [33]). One finds that, when viewed as a function of what-
ever parameter governs the strength of the confinement (with all other
parameters held fixed), the scattering cross section exhibits at least one
local maximum. Now, the conservation of probability sets an upper limit
on how large the scattering cross section can possibly get, the so-called
unitarity bound (Capri, 2002, p. 437). If the local maximum actually sat-
urates this bound, i.e., if it is as large as the conservation of probability
allows, then this maximum is called a CIR.

As we said, the real goal is usually to eliminate the confined degrees of
freedom from the theory. A well-constructed effective low-D theory will
also feature a CIR, although the agreement with the full 3D theory as to
the location of the CIR may be only approximate. For example, in the full
3D theory, there is usually a weak dependence on the scattering energy,
which may disappear in the low-D effective theory (e.g., compare Equa-
tions [78] and [79] below). An important feature of effective low-D theories
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is that the low-D effective interaction potential changes from repulsive to
attractive as one crosses the CIR, as evidenced in the change of the sign of
the low-D coupling constant. Indeed, some sources take this sign change
to be the definition of a CIR (e.g., Bloch et al. [2008]).

Returning now to the historical background: as we said, the main moti-
vation for the early (and much of the later) work on atomic gases in
confining potentials was not two-body physics, but rather many-body
physics. Not only are (as we said) strongly correlated many-body regimes
more easily studied in low-D, but also many interesting and important
phases of matter exist only in low dimensions. In either case, ultra-cold
atoms seemed to promise a uniquely clean and controllable setting for
study—a promise on which they have since more than delivered, as Bloch
et al. (2008) have reviewed in great detail. For example, Olshanii (1998)
was suggesting that an ultra-cold Bose gas confined to 1D can be a real-
ization of the Tonks-Girardeau gas (TG gas, the 1D gas of hard-core, or
impenetrable, bosons [Girardeau, 1960; Tonks, 1936]). The TG gas has
at least three remarkable properties: first, it is an integrable many-body
quantum system (Girardeau, 1960); second, it is the bosonic member of a
pair of systems (one Bose, one Fermi) manifesting a type of Bose–Fermi
equivalence (Girardeau, 1960); and third, it is a bosonic Luttinger liq-
uid (Haldane, 1981a,b). For each of these three properties, the TG gas is
famous for being one of the simplest systems to exhibit it. The experimen-
tal realization of the TG gas using ultra-cold atoms came several years
after the initial proposal (Kinoshita et al., 2004; Paredes et al., 2004).

The two-body scattering theory enters the story—in these initial stud-
ies, as well as in many subsequent ones—because a key approximation
in the derivation of the effective low-D theories is that only binary col-
lisions between atoms matter. As we said, the scattering cross section
depends on (among other parameters) the strength of the low-D con-
finement. In cases of harmonic confinement, this strength is usually
parametrized through the length of the confining harmonic oscillator, a⊥
in Equation (65) and az in Equation (97), below; the smaller the length, the
stronger the confinement. This much was as anticipated—low-D physics
should parametrically depend on the details of the confinement. What
was not anticipated was that this dependence should include resonant
behavior, the CIR: namely, that a⊥ and az could be adjusted, while keeping
all the other parameters constant, so that the low-D two-body scattering
takes place at the unitary limit (i.e., so that the cross section saturates the
unitarity bound [Braaten & Hammer, 2007]).

At least to its discoverer (M. Olshanii), this unexpected effect initially
seemed spurious. It seemed that as one tunes any one of the relevant
parameters (keeping the other parameters constant) closer and closer to
the value that should result in a CIR, one should also leave the domain
of validity of the low-D theory. If so, then as far as the low-D theory
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is concerned, the CIR itself is unphysical. What did seem safe to claim
was that the mean-field many-body coupling changed sign as one tuned
a⊥ through the would-be resonance. Only several years later was it con-
firmed, through numerical study and additional theoretical work, that the
scattering resonance is not spurious and actually does happen; we discuss
this below in Sections 3.7, 3.11, and 3.12.

Because of the suspicions of spuriousness, the original paper (Olshanii,
1998) never suggested that the CIR could be used to reach the regime of
hard-core, TG Bose gas. It turns out that the figure of merit for reaching
this regime, γ , is the ratio between the two-particle interaction strength
and the 1D atomic density (namely, γ = (m/~2) g1D/n1D, where n1D is the
particle 1D density and g1D is the 1D coupling constant; the 1D two-body
interaction potential has the form V(z1, z2) = g1D δ(z2 − z2)). The original
suggestion for reaching the TG regime was rather to decrease the density,
and this was precisely the route followed by Kinoshita et al. (2004) in their
experimental realization. In contrast, Paredes et al. (2004) used an opti-
cal lattice to increase the effective mass, which also enters the figure of
merit.

It turned out, however, that CIR can be used to achieve the hard-core
regime after all. This was accomplished by Haller et al. (2009), whose work
is at the same time the first experimental demonstration of a CIR in an
effectively 1D system (see Section 5.1, below). Interestingly, here, many-
body properties serve as probes for detecting and studying the CIR (Haller
et al., 2010). Slightly before the work of Haller et al., Lamporesi et al. (2010)
observed the CIR in scattering between one unconfined atomic species,
and one that is confined to move only in 2D (see Section 5.2).

Much subsequent work on CIR, say in the context of optical latices
(Section 4.2) and higher partial waves (Section 4.4), remains incidental to
the development of two-body effective theories that are principally meant
to be included into many-body analysis. Other developments, however,
such as those of Peano et al. (2004) in Section 4.3 and Naidon et al. (2007)
in Section 4.5, as well as the experimental studies of Haller et al. (2010)
and (in large part) of Lamporesi et al. (2010), had no overt many-body
motivations.

2. CONFINEMENT AND EFFECTIVE THEORIES

Consider quantum-mechanical particles in three spatial dimensions, but
subject to a one-body external potential U3D(Er) that effectively confines
the particle motion to a subspace S of reduced spatial dimensionality. Let
the collisions between the particles be governed by a 3D, pairwise, short-
range (i.e., decaying faster than 1/r3 at large distances [Landau & Lifshitz,
1991, §132]) interparticle potential V3D(Er1, Er2). To understand how spatial
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confinement works, let us first consider the case of noninteracting parti-
cles, V3D = 0. If there is to be confinement, the presence of U3D should
result in two classes of single-particle eigenstates: those that are spatially
localized around the low-dimensional subspace S and those that are not.
Importantly, there should be an energy gap1Ecnf between the two classes,
with the localized class having the lower energy. We are interested in cases
where the localization is so strong that in the Hilbert space spanned by
the class of localized states, there is simply no dynamics in the spatial
directions that are orthogonal to S.

As an example (still with V3D = 0), take the external potential U3D to be
isotropically harmonic in the x- and y-directions but flat in the z-direction:
U3D(rx, ry, rz) =

1
2 mω2

⊥
(r2

x + r2
y), where m is the particle mass and ω⊥ is

the characteristic frequency of the harmonic oscillator. Our “subspace of
reduced dimensionality” S will turn out to be just the z-axis, resulting in
an effective 1D system. The motions in the longitudinal (z) and transverse
(x and y) directions decouple. The transverse problem is just a 2D isotropic
harmonic oscillator with the energy gap ~ω⊥ (which will turn out to be
1Ecnf in this case) between its ground and first excited states. The class
of eigenstates that are spatially localized around the z-axis (which is the
subspace S in this case) consists of states that are each a product of a plane
wave in the z-direction, and of the ground state of the transverse harmonic

oscillator (which is a Gaussian of half-width
√

~
mω⊥

). In the Hilbert space
spanned by this class, there is no dynamics in the transverse directions,
because transversely one is always in the ground state.

Returning to the case of general U3D, let us reintroduce the interparticle
potentials V3D. Consider initial conditions such that the energy gap 1Ecnf
is large compared with typical collision energies. There will still be no
dynamics in the spatial directions orthogonal to the low-dimensional sub-
space S, except possibly at the very moment of collision. During collision, the
interaction energy may become comparable to the energy gap; put another
way, we may not neglect the matrix elements of the interparticle poten-
tial involving one localized and one nonlocalized state. Still, except at the
very point of collision (it is appropriate to speak of a “point”of collision
because V3D is assumed to be short ranged), the particle motion becomes
“frozen” to the low-dimensional subspace S . In such a situation, one can
in principle derive low-dimensional equations of motion for such a system
(meaning, equations of motion that only involve spatial coordinates inter-
nal to S), valid at collision energies much lower than 1Ecnf. Importantly,
all of the complications that exist at the point of collision add up to a single
effect: namely, that the strength of the interactions in the effective theory
is a nonobvious function of the parameters of the underlying 3D theory.
In particular, the correct low-dimensional equations of motion cannot be
obtained by simply integrating out the spatial directions orthogonal to
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the low-dimensional subspace S. Although the effective Hamiltonian that
results from such integrating out does generally have the correct func-
tional form, nevertheless, the strength of the interparticle interaction in
this Hamiltonian may be incorrect. The reason is that the integrating-
out procedure neglects the virtual transitions, which take place during
collisions, to the high-energy nonlocalized states. When these virtual tran-
sitions are taken into account, one finds that the scattering amplitude,
considered as a function of the 3D parameters, in general has peaks in its
modulus squared for certain values of the parameters. These peaks are not
predicted by the Hamiltonian obtained through simple integrating-out
procedure. Moreover, at these peaks, the modulus squared of the scatter-
ing amplitude reaches the absolute maximum allowed by unitarity. These
peaks are termed CIR.

3. THE CIR IN EFFECTIVELY 1D SYSTEMS

Even though this is a review paper, we feel it is worthwhile to present
at least one example of CIR in a self-contained manner and in detail.
The example we have chosen is the confinement to 1D by transverse
2D-isotropic harmonic potential. We have two reasons: one is to explain
certain basic concepts that are common to nearly all CIRs, but that are
best explained on a specific example. The other reason is that many works
on other CIRs make references to and even use results derived for the CIR
in effectively 1D systems.

3.1 The Underlying 3D Theory

Let us examine how the scenario outlined in Section 2 plays out in the
example of harmonic transverse confinement. The full two-particle Hamil-
tonian is separable in relative and center-of-mass coordinates, and the
Hamiltonian for the relative motion becomes

Ĥ3D = −
~2

2µ
∂2

∂z2
+ Ĥ⊥ + V3D(Er1, Er2), (1)

where the transverse Hamiltonian Ĥ⊥ may be written in polar coordi-
nates as

Ĥ⊥ = −
~2

2µ

(
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂φ2

)
+

1
2
µω2

⊥
ρ2. (2)

Here, ρ, φ, and z are cylindrical coordinates of the relative displace-
ment vector Er = Er1 − Er2, where Er1 and Er2 are the position vectors of par-
ticles 1 and 2, respectively; µ = m1m2/(m1 +m2) is the reduced mass,
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whereas m1 and m2 are the masses of the two particles. In our case, m1 = m2

(let us call this common mass m0) and soµ = m0/2. The harmonic potential
1
2µω

2
⊥
ρ2, characterized by the transverse trap frequency ω⊥, provides the

transversal 2D-isotropic harmonic confinement. Since Ĥ⊥ commutes with
the angular momentum along the z-axis, L̂z = −i~ ∂/∂φ , we may work
with their common eigenstates. They can be labeled |n, m〉⊥ according to
the radial and azimuthal quantum numbers n and m:

Ĥ⊥ |n, m〉⊥ = ~ω⊥(2n+ |m| + 1) |n, m〉⊥, (3)

L̂z |n, m〉⊥ = ~m |n, m〉⊥, (4)

where n and m independently assume the values

n = 0, 1, 2, . . . ,∞, and m = 0,±1,±2, . . . ,±∞. (5)

The eigenfunctions are well-known:

〈ρ,φ|n, m〉⊥ =

√
n!

πa2
⊥(n+ |m|)!

e−
1
2 ρ

2/a2
⊥ (ρ/a⊥)

|m| eimφ L( |m| )n

(
ρ2/a2

⊥

)
, (6)

where

a⊥ =

√
~
µω⊥

(7)

is the transverse harmonic oscillator length, and L(k)j (x) are the generalized
Laguerre polynomials, e.g., L(k)0 (x) = 1, L(k)1 (x) = 1+ k− x, etc.

We will take the 3D interparticle potential to be given by the Fermi-
Huang pseudopotential, an approximation standard in physics of ultra-
cold gases: V3D(Er1, Er2) = VF-H(Er2 − Er2), where the action of VF-H on a wave
function represented in spherical coordinates as 9(r, θ , φ) is given by

VF-H(Er)9(Er) = g3D δ
3(Er)

∂

∂r

(
r9(r, θ , φ)

)
, (8)

g3D =
2π~2a3D

µ
; (9)

here, a3D is the 3D scattering length (Huang, 1987). The pseudopotential
correctly describes the scattering off of any realistic short-range potentials
with scattering length a3D provided that (1) only s-wave scattering mat-
ters, and (2) the scattering energy is small enough, i.e., the wave vector k
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of the incident wave satisfies
∣∣ a3Dk

∣∣ � 1; see Leggett (2001, Section IV)
for a discussion of the validity of Fermi-Huang pseudopotential in the
context of ultra-cold quantum gases. To understand the role of the “reg-
ularizing operator” ∂

∂r (r ·) in Equation (8), we note that (as we will show
in a moment) a wave function 9(Er) will be a solution to a Schrödinger
equation with the pseudopotential in Equation (8) if and only if 9 satis-
fies the Bethe–Peierls boundary condition, or “contact condition,” (Bethe
& Peierls, 1935; Wigner, 1933)

9(Er) = A(1/r− 1/a3D)+O(r) as r→ 0+, (10)

where A may be a function of θ and φ. Note that for functions that satisfy

9(Er) = A/r+ B+O(r) as r→ 0+ (11)

we have δ3(Er) ∂
∂r [r9(r)] = δ3(Er)B; we refer to B as the regular part of 9(r) as

r→ 0+. So on the space of functions that satisfy Equation (11), the regularizing
operator ∂

∂r (r·) removes the term that would otherwise result in a diver-
gence once the delta function sets r to zero. (There are other operators that
can do the same job; see Olshanii and Pricoupenko [2001].) When VF-H acts
on a function which has A = 0 (i.e., functions of the form of Equation [11]
that are nevertheless finite at r = 0), the regularizing operator has no effect
and can be dropped.

To see the equivalence of the pseudopotential in Equation (8) and the
contact condition in Equation (10), recall that −1/(4πr) is the Green’s
function of the 3D Laplacian, so ∇2(1/r) = −4πδ3(Er). Substituting a wave
function satisfying Equation (11) into the Schrödinger equation and real-
izing that the terms proportional to the 3D delta function must cancel
among themselves, we get Equation (10) in the form A+ B a3D = 0.

In our consideration of the scattering problem, we will be considering
an incident wave that factorizes into longitudinal and transverse parts,
with the longitudinal wave vector k and the transverse quantum num-
bers n and m (almost always we will be interested only in the transverse
ground mode, n = m = 0): 〈Er|90〉 = 〈ρ,φ|n, m〉⊥eikz. This is the form that
the eigenstates of Ĥ3D from Equation (1) would have if the interparticle
potential were zero—and it is nonzero only at the origin.

Since the value of |n, m〉⊥ at the origin is given by

〈Er = 0|n, m〉⊥ = δm,0
1
√
πa⊥

, (12)

the incident wave is nonzero at the origin only for m = 0. Given that the
scattering potential has zero-range, it has no effect on incident waves that
are zero at the origin, and thus only incident waves with zero-angular
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momentum will scatter (an analog of s-wave scattering in unconfined
3D problems), for any incident energy. For realistic potentials, a similar
result holds for low-energy scattering, which (not coincidentally) is also
the regime in which they can be approximated by a zero-range potential.

If the scattering particle is in the transverse ground mode, then the
energy of the scattering process is

E = EG +
~2 k2

2µ
, (13)

where EG = ~ω⊥ is the ground-state energy of the system, equal to the
ground-state energy of the confining potential. The first excited state of
the confining potential is at 2~ω⊥. We will be interested in situations when
~2 k2

2µ is much less than ~ω⊥, in which case we expect that the scattering
particles will not leave the transverse ground state (except virtually, at the
single point of collision). The exact solution of the problem will allow us
explicitly to compute the probability W←n(k) that after a collision of two
particles with the relative momentum k and relative transverse excitation
n (see Equation [4]), the particles will not remain in the same transverse
state (Moore et al., 2004). It will turn out that for particles in the ground
transverse state, n = 0, this probability vanishes, just as physical intu-
ition suggests; see Equation (73) below and the discussion that follows it.
Our aim is to eliminate the inert transverse degrees of freedom from the
scattering problem. This will result in a 1D theory, with z the only variable.

Let us recall the main features of 1D theories.

3.2 General Features of 1D Scattering

In 1D scattering, there are just two kinds of partial waves: even and odd.
The asymptotic form of the scattering wave function is thus

ψ(z) ∼ eikz
+ feven(k) eik|z|

+ fodd(k) sign (z) eik|z|. (14)

Since in our case the 3D potential is zero-range, we expect that interactions
in our effective 1D theory will also be zero-range, in which case the odd
scattering amplitude fodd must be zero: the odd component of the wave
function is zero at the origin, and thus a zero-range scatterer at the origin
cannot have any effect.

We may also consider a different sort of boundary conditions, namely
one where ψ(z) is an even function. One reason why even-wave scattering
wave functions are of interest is that the 1D even-wave scattering phase
1(k) is defined using their asymptotic form, which is always

ψ(z) ∼ sin [k|z| +Q(k))] as z→±∞, (15)
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where Q(k) is some function of k but not of z. By definition, the scatter-
ing phase in any particular case is just this function: 1(k) = Q(k). The
important concept of the 1D scattering length is then defined through

a1D = lim
k→0+

[
−

d
dk
1(k)

]
, (16)

although it can also be read off from the scattering amplitude, see
Equation (19).

3.3 Unitarity and CIR

The integrated equation of continuity in 1D reads

b∫
a

∂

∂t
|ψ(z, t)|2 dz =

b∫
a

∂

∂z
j(z, t) dz = j(b, t)− j(a, t), (17)

where

j(z, t) =
~

2 m i

[
ψ∗(z, t)

∂

∂z
ψ(z, t)− ψ(z, t)

∂

∂z
ψ∗(z, t)

]
is the probability flux. In a time-independent situation, we have j(b)−
j(a) = 0. In the case of scattering with the asymptotic form of Equation (14)
with fodd = 0, we may use that form to evaluate j(+∞)− j(−∞). This,
too, should be zero, which results in the “unitarity relation”

∣∣ feven(k)
∣∣2 =

Re feven(k). It immediately follows that

1
feven

=
f ∗even∣∣ feven(k)

∣∣2 = f ∗even

Re feven
= 1− i

Im feven

Re feven
,

in other words, that the complex-valued function feven must be parametriz-
able by a single real-valued function hreal (which is −Im feven/Re feven)
through

feven(k) = −
1

1+ i hreal(k)
. (18)

One can show that the small-k expansion of hreal(k) includes the 1D
scattering length, Equation (16), in the leading order:

hreal(k) = k a1D +O(k2). (19)
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Let us consider now the modulus squared of the scattering amplitude,
| feven|

2. Unitarity, i.e., the representation in Equation (18), shows that
| feven|

2
= 1/

(
1+ h2

real

)
. Therefore, unitarity implies that | feven|

2 is at most 1,
attained when hreal = 0; this maximum is called the unitarity bound, and if
a scattering process saturates this bound, it is said to take place at the uni-
tary limit. There is no a priori guarantee that hreal(k) ever vanishes for k > 0.
But hreal depends on a number of parameters, including the strength of the
confinement (e.g., a⊥ for transverse 2D-isotropic harmonic confinement).
If, as the confinement strength is varied with all the other parameters (e.g.,
k and a3D) being held fixed, hreal either crosses or touches zero at a point,
the corresponding maximum of | feven|

2 is a CIR. From Equation (19), we
may expect that for small k, the CIR happens approximately when a1D = 0;
we will confirm this expectation in Equation (76), below.

3.4 Properties of the 1D Zero-Range Potential

The low-D effective theory may or may not lend itself to a formulation in
terms of a low-D Hamiltonian with a low-D effective potential. For exam-
ple, we will see below that in the case of 1D harmonic confinement, one
does get an effective 2D description, but encoding this description into a
2D potential is tricky. As it turns out, in the present case of 2D harmonic
confinement, we will eventually get a nice effective 1D delta-function
potential of the form

V1D(z) = g1D δ(z), (20)

and so it makes sense to review its properties. One begins by realizing
that if a wave function ψ(z) is to satisfy the 1D Schrödinger equation with
the delta-function potential, then the second derivative ofψ must produce
a delta function at zero, so that ψ itself is continuous at zero but its first
derivative is not. The delta-function potential thus gives a jump condition
on the derivative. To get this condition, we integrate the equation

−
~2

2µ
∂2

∂z2
ψ(z)+ g1D δ(z) ψ(z) = Eψ(z)

in a small window z ∈ [−ε, ε] and then take the limit ε → 0+. Because of
the continuity of ψ(z) at z = 0, the term proportional to E vanishes and we
obtain

lim
ε→0+

[ψ ′(ε)− ψ ′(−ε)] =
2µ
~2

g1D ψ(0) = −
2

aδ1D
ψ(0). (21)
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Here,

aδ1D = −
~2

µg1D

(22)

will turn out to be the 1D scattering length for the potential in Equa-
tion (20), see Equation (25) and the text that follows. As in the 3D case,
Equation (10), we may express the jump condition of Equation (21) as a
contact condition on the wave function:

ψ(z) = ψ(0) (1− |z|/aδ1D)+O(z2) as z→ 0. (23)

It is the absolute value in z that generates the delta function. Indeed, if f (z)
is a twice-differentiable function, we have

d2

dz2
f (|z|) = f ′′(|z|)+ 2f ′(0) δ(z), (24)

where we used d
dz |z| = 2θ(z)− 1 and d

dz θ(z) = δ(z), with θ(z) the step
function (0 if z < 0 and 1 if z > 0).

Away from zero, the wave function ψ(z) must satisfy the free
Schrödinger equation, and so it must be a superposition of incoming and
outgoing plane waves. However, the jump condition says that the super-
positions for z > 0 and for z < 0 will not be analytic continuations of each
other. To fix the form of the superpositions, in addition to the jump con-
dition, one needs another condition that the wave function must satisfy;
this additional condition will determine the physical meaning of the final
solution. Our first scattering solution will come from requiring that ψ(z)
be even; from this solution, we can read off the 1D even-wave scattering
phase1(k) and determine the 1D scattering length, see Equations (15) and
(16). An independent motivation is that from the two-body perspective,
bosonic symmetry requires that the wave function in relative coordinate
be even. Up to normalization, the even-wave scattering wave function
works out to be

ψ(z) =
[

b(k)− i sign (z)
]

eikz
+
[

b(k)+ i sign (z)
]

e−ikz (25)

= A sin
[
k|z| +1δ(k)

]
. (26)

Here, b(k) = ~2k
µ g1D

, 1δ(k) = arctan b(k) is the scattering phase, and A =
2/ cos1δ(k). Note that for general short-range 1D interaction potentials,
the form ψ(z) ∼ sin [k|z| +1(k)], i.e., the form of Equation (15), only holds
for large |z|. But for zero-range 1D potentials, this form turns out to be cor-
rect for all z; in other words, for a zero-range scatterer at the origin, any
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nonzero z is already asymptotically far from the origin. The 1D scattering
length is then given by a1D = limk→0+ [−1′(k)], Equation (16), which gives
Equation (22). We then also have b(k) = −aδ1D k.

Another useful type of additional condition that we may require of our
wave function is that the superpositions of plane waves that make upψ(z)
match asymptotically the form in Equation (14); obviously, from this type
of scattering solution, we will be able to read off the scattering amplitude.
Once again the asymptotic form will turn out to be the form of the full
solution,

ψ(z) = eikz
+ feven(k) eik|z|, all z, (27)

since the scatterer has zero range. We get

f δeven(k) = −
1

1+ i k aδ1D
, (28)

so that hδreal(k) = k aδ1D; this is consistent with the general result that
hreal(k) = k a1D +O(k2), Equation (19).

The scattering amplitude has a pole for k = i/aδ1D. On general grounds,
a pole of the scattering amplitude at k = i κ with κ > 0 corresponds to a
bound state with energy −~2 κ2/(2µ); thus, the 1D delta-function poten-
tial supports a bound state whenever a1D > 0, which means g1D < 0, see
Equation (22). Away from the origin, the bound state satisfies the free
Schrödinger equation but must decay to zero at infinity, and so it must
be ∼ e−κz for z > 0 and ∼ eκz for z < 0; in other words, ∼ e−κ|z|. The con-
stant κ may be read off either from Equation (23) or from the fact that
the energy must match that predicted from the pole of the scattering
amplitude. Either way, the normalized bound-state wave function and its
energy read

ψB(z) =
1

(aδ1D)
1/2

e−|z|/a
δ
1D , EB = −

~2

2µ
1

(aδ1D)
2
, (29)

again provided a1D > 0 (g1D < 0).
We see that for 1D delta-function potential, a CIR would correspond

to the vanishing of aδ1D, that is, to a divergence in g1D. From the jump
condition in Equation (21), we see that a diverging g1D means that a scat-
tering wave function must go to zero at z = 0. For if not, if ψ(0) 6= 0,
then the right-hand side, 2µ

~2 g1D ψ(0), would be infinite as g1D →±∞.
But the left-hand side, limε→0+ [ψ ′(ε)− ψ ′(−ε)], would not be: away from
the origin, the wave function must satisfy a Schrödinger equation with-
out the delta potential, with standard finite-energy boundary conditions
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such as those in Equation (14), and such a problem cannot have any
solutions whose derivatives diverge at zero. Clearly, both types of scat-
tering solutions we considered, ψ(z) = A sin

[
k|z| +1δ(k)

]
and ψ(z) =

exp(ikz)+ f δeven(k) exp(ik|z|), become zero at z = 0 if aδ1D = 0, since then
1δ(k) = − arctan (aδ1D k) = 0 and f δeven(k) = −1.

In two-body language, we have a wave function that vanishes for
zero separation between the scattering particles, which are, therefore, said
to have hard cores. In many-body setting, the limit g1D →+∞ results
in a regime called the Tonks-Girardeau (TG) gas of hard-core bosons
(Girardeau, 1960; Tonks, 1936). The limit g1D →−∞ is called the super-
Tonks gas, introduced and studied by Astrakharchik et al. (2005) (see also
Sec. 5.1).

3.5 Preliminary Step in Building an Effective 1D Theory: Simple
Integrating Out

We proceed with a preliminary, heuristic analysis of the elimination of
the transverse degrees of freedom from our problem with 2D confine-
ment, Equation (1). As we said, since the 3D potential is zero-range, the
interactions in our effective 1D theory will also be zero-range, and we
assume that we can describe them using the 1D zero-range potential
g1D δ(z), which according to Equations (19) and (28) should be true at least
for low energies. All that remains is to determine the value of the cou-
pling constant g1D. The incident wave is taken to have the factorized form
9(Er) = φ0(ρ)ψ(z), where φ0(ρ) = exp(−ρ2/2a2

⊥
)/(a⊥
√
π) is the transverse

ground state. The function ψ(z) is expected to be the solution to a problem
with 1D delta-function potential, so it should satisfy the contact condition
in Equation (23). But then 9(Er) is finite at the origin, and so it does not
satisfy the contact condition in Equation (10) as the true solution to the 3D
scattering problem would have to. We conclude that in the true solution,
the requisite 1/r divergence at the origin must somehow come from an
admixture of transversely excited states.

Let us figure out under what conditions we are justified in neglecting
the admixture of transversally excited states. What we need is for the con-
fining potential to be approximately flat on the length scale relevant for
3D scattering. This would suggest the condition |a3D| � a⊥. The same can
be guessed from dimensional analysis: there are only three length scales
in the problem: a3D, a⊥, and 1/k. When a3D = 0, there is no admixture at all,
and so the condition under which the admixture may be neglected must
involve a3D. We have already found the meaning of the comparison of
a3D to 1/k: when |a3D| k � 1, then the 3D pseudopotential approximation is
valid. Therefore, the validity of neglecting the admixture must involve the
remaining parameter, a⊥, just as we had guessed. Below, we will be able
to confirm from the exact solution that |a3D| � a⊥ is indeed the correct
condition; see the text following Equation (79).
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Plugging our factorized 9(Er) into the Schrödinger equation with Ĥ3D
from Equation (1), we see that the terms apart from the interparticle
potential return the same factorized form back (remember that φ0(ρ) is an
eigenstate of Ĥ⊥). As we have noted above, the 3D Schrödinger equation
with nonzero interactions is not exactly satisfied by any state of this factor-
ized form; but we will assume that |a3D|/a⊥ � 1 and that therefore we may
neglect the admixture of excited transverse waves, so that the factorized
form of 9(Er) does satisfy the equation approximately:

−
~2

2µ
∂2

∂z2
φ0(ρ)ψ(z)+ Ĥ⊥ φ0(ρ)ψ(z)+ g3D δ

3(Er)
∂

∂r

(
rφ0(ρ)ψ(z)

)
≈ Eφ0(ρ)ψ(z).

We may now eliminate the ρ and φ coordinates by applying ⊥〈0, 0| =∫ 2π

0 dφ
∫
∞

0 ρ dρ φ∗0 (ρ) to both sides of this equation. Everywhere except at
the interaction term, we simply get the normalization integral for φ0(ρ),
which is 1. Turning now to the interaction term: since 9(Er) is finite at the
origin, the regularizing operator has no effect, and so we get

∞∫
0

dρ 2πρ |φ0(ρ)|
2 2π~2a3D

µ
δ3(Er) ψ(z) = gint

1D δ(z) ψ(z), (30)

where

gint
1D =

2~2a3D

µa2
⊥

, (31)

with the corresponding 1D scattering length obtained via Equation (22):

aint
1D = −

a2
⊥

2a3D

. (32)

In this way we have obtained an effective 1D Schrödinger equation,
where only the z coordinate appears, and where the 1D potential is given
by gint

1D δ(z), with gint
1D from Equation (31).

This completes the preliminary heuristic analysis. So far, we have found
no CIRs; however, what we did is valid only for |a3D| � a⊥. We now turn
to a more careful analysis, which will reveal our first example of a CIR.

3.6 An Exact 1D Effective Theory

Our goal is to model the longitudinal behavior of the 3D system in the
presence of transversal harmonic confinement, as described by the Hamil-
tonian in Equation (1). Remarkably, this 3D problem admits of an exact
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solution (Moore et al., 2004; Olshanii, 1998). This exact solution can then be
matched to the asymptotic scattering form; as in the previous two sections,
this form should hold if we take the longitudinal kinetic energy ~2k2/(2µ)
to be small when compared with ~ω⊥, and |z| to be so large that k |z|� 1.
Again only even partial waves (1D analog of s-wave scattering) should
matter, and we write

9(z, ρ) ∼
{
eikz
+ feven(k; a3D, a⊥) eik|z|

}
φ0(ρ), |z|� 1/k, (33)

where feven is the scattering amplitude for even partial waves. To obtain
the exact solution, we expand the 3D wave function in the |n, m〉⊥ eigen-
states of the transverse Hamiltonian Ĥ⊥, see Equation (3). In fact, accord-
ing to the discussion following Equation (12), only the φn(ρ) = 〈ρ,φ|n, m =
0〉⊥ states are relevant:

9(z, ρ) =
∞∑

n=0

ψn(z) φn(ρ), all z. (34)

We substitute this expansion in the Schrödinger equation Ĥ3D9(z, ρ) =
E9(z, ρ), with Ĥ3D given in Equation (1), and impose the boundary condi-
tion in Equation (33). The boundary condition is appropriate if the energy
E is less than 3~ω⊥, the energy of the first m = 0 excited transverse state,
|n = 1, m = 0〉⊥ in Equation (3). Note that although our principal interest
is in situations when E is much less than 3~ω⊥, for now we merely assume
that it is less than that. The transverse ground state energy is ~ω⊥, so

E = ~2 k2/(2µ)+ ~ω⊥ with ~2 k2/(2µ) < 2~ω⊥. (35)

Because 9(z, ρ) satisfies a Schrödinger equation with the regularized
pseudopotential in Equation (8), it must satisfy the contact condition in
Equation (10). We will be most interested in the behavior of 9(z, ρ) at
ρ = 0. Since r = (ρ2

+ z2)1/2, the contact condition reads

9(z, ρ = 0) = A(1/|z| − 1/a3D)+O(z) as z→ 0. (36)

We will be interested in the regular part of the wave function at z = 0,
ρ = 0, which we denote by η. The simplest way to obtain it is to read it
off as the z-independent term in the expansion of 9(z, ρ = 0) about z = 0.
More formally, we have η = ∂

∂r [r9(Er)]r→0+ =
∂

∂z [z9(z, ρ = 0)]z→0+ , where
we used ∂

∂r = (ρ/r)
∂

∂ρ
+ (z/r) ∂

∂z . The contact condition in Equation (36) may
be expressed as

η = −A/a3D with A = lim
z→0+

[z9(z, ρ = 0)]. (37)
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At the level of the individual terms entering the infinite sum in Equa-
tion (34), what must happen is the following. Clearly, it is the action of the
kinetic part of Ĥ3D onto 9(z, ρ = 0) that must produce a regularized delta
function, which then cancels the one coming from the pseudopotential in
Equation (8). Moreover, since the transverse states φn(ρ) are analytic at
ρ = 0, the delta function must come from the action of −~2

2µ
∂2

∂z2 on (at least
some of) the longitudinal functions ψn(z). From Section 3.4, we know that
these functions of a single variable can indeed produce 1D delta functions,
provided ψn(z) = A+ B|z| +O(z2), cf. Equations (23) and (24). Motivated
by the wave functions we found in Section 3.4 (Equations [25], [27], and
[29]) and Equation (24), we make the ansatz (which we will confirm in
Equations [46] and [47] below) that for each ψn there is a function pn(z)
such that

ψ ′′n (z) = pn(z)+ µnδ(z), pn(z) finite at z = 0, (38)

for some µn. Let us denote the functions pn(z) byRψ ′′n (z) (“the regular part
of ψ ′′n (z)”). The Schrödinger equation can then be written as

∞∑
j=0

[
−

~2

2µ
Rψ ′′j (z) φj(ρ)+ψj(z) Ĥ⊥φj(ρ)

]
+� = E

∞∑
j=0

ψj(z) φj(ρ), (39)

where

� =

∞∑
j=0

[µjφj(ρ) δ(z)]+ g3D δ(z)
δ(ρ)

πρ
η (40)

contains the terms proportional to delta functions. Here, η is the regular
part of the wave function at z = ρ = 0, see the text following Equation (36),
and we have used the representation δ3(Er) = δ(z) δ(ρ)/(πρ).

As we said, � must be zero on its own, because it contains all the delta
functions in the equation. We will return to that requirement shortly; for
now, we assume that it is zero, and apply

∫
∞

0 2πρ dρ φ∗n(ρ) to both sides of
Equation (39). The orthonormality of the transverse wave functions φn(ρ)

gives separate equations for each n. Away from z = 0, Rψ ′′n (z) = ψ ′′n (z),
and we have just the free Schrödinger equations

−
~2

2µ
∂2

∂z2
ψn(z)+ (2n+ 1)~ω⊥ψn(z) = Eψn(z), z 6= 0, (41)

so that ψn(z) is a superposition of exponentials e±κnz, with κn’s (which
may be complex-valued) to be determined presently. As in Section 3.4,
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the superposition for z < 0 may be different from the one for z > 0, i.e.,
the wave function for z < 0 need not be the analytic continuation of the
wave function for z > 0, because the Schrödinger equation contains a delta
function at zero. Using Equation (35), we get that κ0 = i k, whereas for each
n > 0 one gets a real-valued κn:

κn =

√
2µ
~2

(
2n~ω⊥ −

~2 k2

2µ

)
=

2
a⊥

√
n+ ε, n = 1, 2, . . . , (42)

ε = −a2
⊥

k2/4 = −
E− ~ω⊥

2~ω⊥
, −1 < ε < 0

(
cf. Equation [35]

)
. (43)

The boundary condition in Equation (33) implies that

ψ0(z) = eikz
+ f eik|z|, (44)

as in Equation (27), from which it also follows that for n > 0, ψn(z) must
vanish as z→±∞. Thus, we obtain bound states:

ψn(z) = an e−κn |z|, n > 1, (45)

compare with Equation (29). Note that without interactions, i.e., the delta
function, the functions ψn(z)would have to be analytic through z = 0, and
so would for n > 0 have to be of the form a e−κn z

+ b eκn z for all z. But this
can vanish at both −∞ and +∞ only if a = b = 0; so we see explicitly that
a wave function 9(z, ρ) satisfying our boundary conditions can contain
an admixture of transversely excited states only if there are interactions.

Now we make sure that � from Equation (40) is zero. From Equa-
tion (24), it follows that

−
~2

2µ
∂2

∂z2
ψn(z) =


~2 k2

2µ ψ0(z)− i ~2

µ
k f δ(z), n = 1, (46)

−
~2 κ2

n
2µ ψn(z)+ ~2

µ
an κn δ(z), n > 1, (47)

(48)

which is consistent with our ansatz in Equation (38). The equation � = 0
becomes

− i
~2

µ
k f δ(z) φ0(ρ)+

∞∑
n=1

~2

µ
an κn δ(z) φn(ρ)+ g3D δ(z)

δ(ρ)

πρ
η = 0; (49)
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now we apply
∫
∞

0 2πρ dρ φ∗j (ρ) to both sides of Equation (49). Orthonor-
mality of the functions φn(ρ) gives

f = −i 2
√
π

a3D

a⊥
η

1
k

(50)

an = −2
√
π

a3D

a⊥
η

1
κn

, (51)

where we have used the fact that φn(ρ = 0) = 1/(a⊥
√
π) for all n, see

Equation (12).
We plug the results in Equations (44), (45), (42), (50), and (51) into the

expansion in Equation (34). At ρ = 0 , we have

9(z, ρ = 0) =
1

a⊥
√
π

eikz
− i

2
k

a3D

a2
⊥

η eik|z|
−

a3D

a⊥
η3(x, ε), (52)

with ε = −a2
⊥

k2/4 as in Equation (43), x = 2|z|/a⊥, and

3(x, ε) =
∞∑

n=1

e−x
√

n+ε

√
n+ ε

. (53)

Note that the first two terms in Equation (52) match the asymptotic form
of Equation (33), while the function3 decays to zero at for large |z|. On the
other hand, it is the function3 that contains the admixture of transversally
excited states. Further, the contact condition in Equation (37) says that the
wave function must diverge at z = 0, ρ = 0. As all the functions ψn(z) and
φn(ρ) that enter the sum in Equation (34) are finite at the origin, it follows
that the requisite divergence must come from the divergence of the infinite
sum. In terms of Equations (52) and (53), it means that the divergence at
z = 0, i.e., at x = 0, must come from 3. This is indeed the case, as is easy
to see from Equation (53).

Our main interest is to obtain the scattering amplitude f . According to
Equation (50), we therefore need to find η, the regular part of the wave
function at z = ρ = 0 (see the text following Equation [36]). Note that in
the expression in Equation (52), some of the regular terms (such as the
second one) are themselves expressed in terms of η. Thus, when we set
the regular part of the wave function (which is η) to the sum of all the
regular terms, η will appear on both sides—we will get an equation for it
(see Equation [64] below).

We will now isolate the divergence at z = 0 from the sum in Equa-
tion (53). A divergence occurs already at the level of a related integral,∫
∞

0 e−x
√
ν/
√
ν dν = 2/x, and so we may hope that the difference between
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the sum and the integral is finite at zero. Let 3N be the N-th partial sum
for 3. We add and subtract to it the integral

N∫
1

e−x
√
ν+ε

√
ν + ε

dν = 2
e−x

√
1+ε
− e−x

√
N+ε

x

(note that many other integrals would work just as well), and take the
limit N→∞. We also add and subtract 2/x and write the result as

3(x, ε) = 2/x+ 3̃(x, ε) (54)

with

3̃ (x, ε) = −
2
x
+ 2

e−x
√

1+ε

x
+ lim

N→∞

(
−2

e−x
√

1+ε
− e−x

√
N+ε

x
+

N∑
n=1

e−x
√

n+ε

√
n+ ε

)
.

(55)

The point of this is that the limit x→ 0+ of 3̃ is finite, and is all we will
need to extract η:

3(x, ε) = 2/x+ 3̃(0+, ε)+ terms that vanish at x = 0, (56)

where

3̃(0+, ε) = lim
N→∞

(
N∑

n=1

1
√

n+ ε
− 2
√

N + ε

)
. (57)

If the sum in Equation (57) went from n = 0 rather than from n = 1, it
would be the s = 1/2 case of the Hurwitz zeta function :

ζ(s, α) = lim
N→∞

[(
N∑

n=0

1
(n+ α)s

)
−

1
1− s

1
(N + α)s−1

]
. (58)

The representation above is valid when Re(s)> 0 and−2π <arg(n+α) 6 0
(Apostol, 1976). The Riemann zeta function is the special case with α = 1:

ζ(s) = ζ(s, 1). (59)

For s = 1/2, Equation (58) gives

ζ(1/2, α) = lim
N→∞

[(
N∑

n=0

1
↓
√

n+ α

)
− 2 ↑
√

N + α

]
, (60)
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where ↑
√ and ↓

√ denote two different branches of the square root:
↑

√
|z|eiφ =

√
|z|eiφ/2 for 06φ<2π , and ↓

√
|z|eiφ =

√
|z|e

iφ/2
for −2π<φ60.

There are two ways to relate the sum in Equation (57) to ζ(1/2, ε): first,
we may reinterpret n+ ε as (n− 1)+ (1+ ε), which gives

3̃(0+, ε) = ζ(1/2, 1+ ε). (61)

Secondly, we may add and subtract the missing n = 0 term, obtaining

3̃(0+, ε) = ζ(1/2, ε)− 1/ ↓
√
ε. (62)

Since ε = −a2
⊥

k2/4 , we have 1/ ↓
√
ε = −2i/(|k|a⊥).

Another way to make sense of the sum in Equation (57) is
to use the expansion 1/

√
n+ ε = 1/

√
n+

∑
∞

j=1 cj ε
j /nj+1/2, with cj =

(2j− 1)!!(−1)j/(2j j!). One obtains the N→∞ limit of
(∑N

n=1 1/
√

n−
2
√

N + ε
)
+
∑
∞

j=1 cj dj(N) ε j, with dj(N) =
∑N

n=1 1/nj+1/2. According to
Equation (60), the first two terms add up to ζ(1/2, 1) = ζ(1/2) (see Equa-
tion [59]), whereas according to Equation (58) with s = j+ 1/2 > 1, the
limit of dj(N) is ζ(j+ 1/2, 1) = ζ(j+ 1/2). Let us write the result in the form

3̃(0+, ε) =
∞∑

j=0

bj(1/2) ε j (63)

with bj(s) = (−1)j

j! s(s+ 1)(s+ 2) · · · (s+ j− 1) ζ(j+ s). Rane (1993) has
proven that for any complex number s 6= 1, the series

∑
∞

j=0 bj(s) ε j con-
verges uniformly and absolutely on every compact subset of the com-
plex plane with |ε| < 1, and that the series also converges for ε = 1 if
0 < Re s < 1. Plugging the series into Equation (62) then yields the s = 1/2
case of the expansion ζ(s, x) = x−s

+
∑
∞

j=0 bj(s) xj.
Returning to Equation (52), we express the function 3 through Equa-

tion (56), which gives

9(z, ρ = 0) = −
a3D η

|z|
+

1
a⊥
√
π
− i

2
k

a3D

a2
⊥

η −
a3D

a⊥
η 3̃(0+, −a2

⊥
k2/4)︸ ︷︷ ︸

regular part of 9(r→ 0+) = η

+O(z).

(64)

Note that the form of the singular term is just that required by the contact
condition in Equation (37). As expected, the other terms enter an equation
for η, which is easily solved; the scattering amplitude follows by Equa-
tion (50). It will be useful to express 3̃(0+, ε) through the Hurwitz zeta
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function, via Equation (62). The result is

feven(k; a3D, a⊥) = −
i

a⊥ k
2

1[
a⊥
a3D
+ ζ(1/2, − a2

⊥
k2

4 )
] . (65)

This form is most convenient for finding bound-state energies, as we will
do below in Section 3.9. If we wish to extract the 1D scattering length a1D
that appears in Equation (19), then it is better to write 3̃(0+, ε) in terms
of the expansion in Equation (63), where we single out the constant term:
3̃(0+, ε) = ζ(1/2)+ L̃(ε), with

L̃(ε) =
∞∑

j=1

bj(1/2) ε j. (66)

We get

feven(k; a3D, a⊥) = −
1

1+ i
[
a1D k− a⊥ k

2 L̃
(
−

a2
⊥

k2

4

)] , (67)

where

a1D =
a⊥
2
(C− a⊥/a3D) = aint

1D

(
1− C a3D

a⊥

)
(68)

is the 1D scattering amplitude, see Equation (19), with

C = −ζ(1/2) = 1.4603 . . . , (69)

and where aint
1D = −a2

⊥
/(2a3D) is the result of the integrating-out procedure,

Equation (32). The expression for the 1D scattering length, Equation (68),
is arguably the key result of the whole analysis.

In terms of hreal(k) introduced in Equation (18), we have found

hreal(k; a3D, a⊥) = a1D k−
a⊥ k

2
L̃
(
−

(
a⊥k

2

)2
)

(70)

= a1D k+O
((

a⊥k
2

)3
)

, (71)

with a1D given by Equation (68) and L̃(α) given by Equation (66); note
the agreement with Equation (19). On the other hand, one can use
Equation (61) to show that

hreal(k; a3D, a⊥) = −
a⊥k
2

[
a⊥
a3D

+ ζ

(
1/2, 1−

a2
⊥

k2

4

)]
(72)
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This form is convenient for identifying the CIR, which we will do in the
next section.

In Moore et al. (2004), we relaxed the assumption that the scattering
energy is below the first excited transverse level, Equation (35), and com-
puted the kinetic coefficients governing the transitions between various
transverse levels. The most important is the probability of transversely
inelastic collision, W←n(k). This is the probability that after a collision
of two particles with the relative momentum k and relative transverse
excitation n (see Equation [4]), the particles will not remain in the same
transverse state:

W←n(k) =
2
√
Et

η(E)− 1/
√
Et

[ a
a⊥
+ ζ(1/2, 1− δE)]2 + η2(E)

, (73)

where

Et = (ka⊥/2)2
=

E− Etransv

2~ω⊥
, (74)

Etransv = ~ω⊥(2n+ 1) is the transverse energy of particles with relative
transverse excitation n (see Equation [3]; recall that we only con-
sider cases with m = 0), E = n+ Et, δE = E − bEc (0 6 δE< 1), and η(E) =∑
bEc
n′=0 1/

√
E − n′; here bxc is the greatest integer less than x.

When n = 0 and 0 < Et � 1 (see Equation [13] and the discussion that
follows it), we have E = Et, bEc = 0, δE = Et, η(E) = 1/

√
Et, and thus

W←n(k) = 0.

3.7 CIR for the Exact Scattering Amplitude

The condition for CIR is that there be a combination of values of k > 0,
a3D, and a⊥ for which hreal(k; a3D, a⊥) vanishes. We also require a2

⊥
k2/4<1

so that we remain one dimensional, see Equations (43) and (35). From
Equation (72), the condition for CIR is therefore

ζ

(
1/2, 1−

a2
⊥

k2

4

)
= −

a⊥
a3D

and 0< a2
⊥

k2/4< 1 (the exact CIR condition).

(75)

As we will discuss in more detail in Section 3.9, ζ(1/2, x) for 0 < x < 1 is a
monotonically decreasing function, diverging to +∞ for small x as 1/

√
x,

reaching zero for x = 0.3027 . . ., and continuing to ζ(1/2) = −1.4603 . . . for
x = 1; compare with Equations (84–86) below. Thus given a k in the range
of interest indicated, a⊥/a3D can be adjusted so that there is a CIR at that k.
On the other hand, given a⊥ and a3D, there will be a CIR for some k in the
range of interest only if a⊥/a3D < −ζ(1/2) = C = 1.4603 . . . .
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Of greatest interest is the case of small k, 0 < a2
⊥

k2/4 � 1. Here, the
existence of a CIR follows already from Equation (71)—which says that
as k→ 0+, hreal(k; a3D, a⊥) tends to k a1D faster than k a1D itself tends to
zero—and from Equation (68), which says that depending on a⊥/a3D, a1D
may be positive or negative. Say a1D is positive for some a+3D and a+⊥ and
negative for some a−3D and a−⊥. Then for some small enough k0 > 0, we will
have hreal(k0; a+3D, a+⊥) > 0 and hreal(k0; a−3D, a−⊥) < 0. By continuity, there are
some intermediate values of a3D and a⊥ for which hreal(k0; a3D, a⊥) = 0.

For small k, Equation (75) becomes

a⊥/a3D = C−
1
2
ζ(3/2)

(
a⊥k

2

)2

+O
((

a⊥k
2

)4
)

(exact CIR condition, small k).

(76)

At k = 0, we have a⊥/a3D = C, which is precisely the point when a1D = 0,
see Equation (68). But a1D = 0 is the condition for CIR within the theory
with an effective 1D delta-function potential, to which we will turn in the
next subsection.

However, while still remaining exact, one may write down a 1D dif-
ferential equation, satisfied by the scattering solution, which is almost a
Schrödinger equation except that the potential-like term depends on the
energy. From Equation (44), we see thatψ0(z = 0) = 1+ f , which we use to
we rewrite the delta-function term in Equation (46) as−i ~2

µ
k f

1+f δ(z) ψ0(z).
But then that equation becomes

−
~2

2µ
∂2

∂z2
ψ0(z)+ g(E) δ(z) ψ0(z) = Eψ0(z), (77)

with

g(E) =
~2

µ

2 a3D

a2
⊥

1

1+ ζ
(

1/2, 1−
a2
⊥

k2(E)
4

)
a3D
a⊥

. (78)

Here, k(E) is defined as usual through E = ~2 k2

2µ + ~ω⊥, and we have
used Equations (72) and (18). The above equations immediately suggest
regimes when we may have a bona fide 1D effective potential, as we
discuss next.

3.8 Effective 1D Potential for Low Scattering Energies

A great advantage of having an effective potential at one’s disposal is that
one may readily incorporate it into many-body theories. In the present
case, such a potential is easily obtained (compare with the second para-
graph of Section 4.1). We simply identify the regimes when we can neglect
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the E-dependence in g(E) in Equation (78). Our energy interval of inter-
est is 0 < a2

⊥
k2/4 < 1 (see Equations [43] and [35]); if the highest energy

of interest kmax is still so small that a2
⊥

k2
max/4 � 1, the zeta function may

simply be replaced by ζ(1/2), and we obtain a 1D delta-function potential
valid for any value of |a3D|. From the coupling constant and Equation (22),
we obtain the corresponding a1D, which is the same as what we found in
Equation (68). Alternatively, we may use the known exact value for a1D in
Equation (68) as a starting point. In Equation (71), we neglect the terms
beyond the leading order in a⊥ k/2. But then the resulting 1D scattering
amplitude, Equation (18), assumes the form in Equation (28). We con-
clude that the scattering is well-described by a 1D delta-function potential
g1D δ(z) whose scattering length aδ1D is given by a1D from Equation (68).
Equation (22) then gives the coupling constant. Either way, we get

g1D = −
~2

µa1D
=

2~2a3D

µa2
⊥

1
1− Ca3D/a⊥

, 0 < a2
⊥

k2/4 � 1. (79)

Note that g1D=gint
1D/(1−Ca3D/a⊥), where gint

1D is the result of the integrating-
out procedure, Equation (31).

On the other hand, Equation (78) also says that we can have an effec-
tive 1D potential that is valid all the way up to some a2

⊥
k2

max/4 . 1,

provided
∣∣∣ζ(1/2, 1−

a2
⊥

k2(E)
4 )

a3D
a⊥

∣∣∣ � 1. Using the expansion given in Equa-

tion (84) below, this works out to the condition |a3D|

a⊥
�

√
1− a2

⊥k2
max/4; this

is the regime of “small” |a3D|when the integrating-out procedure gives the
correct result, Equation (31).

Within the theory with the coupling constant given in Equation (79),
the scattering amplitude manifests a CIR—reaches the unitary limit
whenever a1D = 0. According to Equation (68), this happens whenever

a⊥
a3D

= C ≈ 1.4603 (the “δ-CIR” condition). (80)

From Equation (76), the δ-CIR condition agrees with the exact one up
to first order in k. At δ-CIR, g1D diverges and so within the theory with
a delta-function potential, we have hard-core bosons; see the end of
Section 3.4. There is no CIR in the theory with the coupling constant gint

1D.
So far we have been discussing scattering; now we turn to bound states.

3.9 Exact Results for Bound-State Energies

Bound states are crucial to the description of the CIR as a Feshbach res-
onance, the subject of the next section. In an unconfined system where
particle interaction is well-described by the regularized pseudopotential,



AAMOP 14-ch10-461-510-9780123855084 2011/9/26 18:03 Page 487 #27

Confinement-Induced Resonances 487

Equation (8), a two-particle bound-state exists only if a3D is positive:

9B
3D δ(Er) = e−r/a3D/( r

√
2πa3D ), EB

3D δ = −~2/(2µa2
3D), (81)

where Er is the relative displacement vector. Regal et al. (2003) has veri-
fied this fact experimentally. In contrast, as we will see shortly, theory
predicts that in the presence of transverse confinement there should be a
bound state for any sign of a3D. This key feature has been experimentally
confirmed by Moritz et al. (2005).

It is easy enough to construct bound states using the results in
Section (3.6): the energy is now less than ~ω⊥, Equation (42) is valid for
n = 0, and instead of Equations (44) and (46), we extend Equations (45)
and (47), respectively, to n = 0. Repeating much the same steps as before,
we arrive at the analog of Equation (52):

9(z, ρ = 0) = −
a3D

a⊥
η

∞∑
n=0

e−x
√

n+ε

√
n+ ε

, x = 2|z|/a⊥. (82)

Note that ε = −(E− ~ω⊥)/(2~ω⊥) = a2
⊥
κ2/4 is now positive, where E =

~ω⊥ − ~2 κ2

2µ . To isolate the singularity in the infinite sum, we use the
same integral as before, except with ν = 0 as the lower bound. As in
Equation (64), the singular term has the form required by the contact
condition in Equation (37). The regular part of 9(z, ρ = 0) as z→ 0 is
just −(a3D/a⊥)η ζ(1/2, ε); but this is η, and so we get that the bound-state
energy EB

1D is the solution to the equation

ζ(1/2, ε) = −
a⊥
a3D

, where ε = −
EB

1D − ~ω⊥
2~ω⊥

> 0. (83)

An alternative method of finding the bound-state energy is to analytically
continue the scattering amplitude into the complex k-plane, and locate the
pole lying on the positive imaginary axis, k = i κ , κ > 0. The bound-state
energy is obtained by plugging this purely imaginary value into Equa-
tion (13), E = ~ω⊥ + ~2 k2

2µ . We use the expression for the exact scattering
amplitude in Equation (65); note that in the course of analytic continua-
tion in k one should not cross the branch cuts of the zeta function, and
so one must keep to the first quadrant, 0 6 Arg (k) 6 π

2 . We find that the
location of the pole is given precisely by Equation (83).

Now ζ(1/2, x) for x > 0 is a monotonically decreasing function; as x
increases from 0 to +∞, ζ(1/2, x) monotonically decays from +∞ to −∞.
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We have

ζ(1/2, x) = 1/
√

x+ ζ(1/2)+O(x) 0 < x � 1 (84)

ζ(1/2, 0.3027 . . .) = 0 (85)

ζ(1/2, x) = −2
√

x+
1

2
√

x
+O(1/x3/2) x � 1; (86)

for Equation (84) see the text following Equation (63); for Equation (86)
see Paris (2005). Therefore, Equation (83) always has a solution–and the
system always has a bound state, in contrast to the unconfined 3D prob-
lem–for any value of a3D. In terms of the “energy-dependent potential”
in Equation (77), using the identity ζ(1/2, 1+ ε) = ζ(1/2, ε)− 1/ ↓

√
ε, see

Equations (61) and (62), we see that for energies satisfying Equation (83),
we have g(EB

1D) = −
~2

µ

,a3D
a⊥
κ , which is consistent with Equation (47). In par-

ticular, g(EB
1D) is always negative, as it must be for the 1D delta-function

potential in Equation (77) to support a bound state (see the paragraph
preceding Equation [29]).

As a⊥/a3D →∞ (equivalently, |EB
3D δ
| � ~ω⊥/2), the 3D and 1D bound

states must be basically the same, since the confining potential is then
energetically negligible as well as flat on the length scale of the state
(which is, of course, a3D; compare with the discussion in the second para-
graph of Section 3.5). As far as Equation (83), the limit a⊥/a3D →+∞

means then we can replace the zeta function on the left-hand side by the
expansion in Equation (86). As anticipated,

EB
1D = E3D δ

B +O(1/(a⊥/a3D)
2) when a⊥

a3D
→+∞, (87)

where EB
3D δ
= −~2/(2µa2

3D), Equation (81). In the context of Section 4.7
below, Equation (87) describes the “BEC” limit: when the theory is applied
to confined nonidentical fermions, the tightly bound state corresponds
to a ↑↓ dimer, a compound boson. A gas of ↑ and ↓ fermions may, at
low temperatures, become a Bose–Einstein condensate of such dimers
(in the homogenous 1D case it is really a quasi-condensate, provided
dimer–dimer interactions are weak; if they are strong, one has the Tonks-
Girardeau gas mentioned at the end of Section 3.4 [Astrakharchik et al.,
2004c; Fuchs et al., 2004; Petrov et al., 2000b; Recati et al., 2005; Tokatly,
2004]).

Next we consider the opposite limit, a⊥/a3D →−∞. Instead of using
Equation (84), we look for the pole of the scattering amplitude, Equa-
tion (18). We solve 1+ ihreal = 0. using the expansion in Equations (70) and
(66). We can see the that a1D is now a better expansion variable, because a1Dk
is equal to a series with a two-order gap (k and k2) between the leading and
subleading orders, producing a correspondingly accurate leading-order
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solution for k2
∼ E1D,δ

B − ~ω⊥. We get

E1D,δ
B = ~ω⊥ −

~2

2µa2
1D

+O((a⊥/a1D)
5) when

a⊥
a1D

→ 0+
(

a⊥
a3D

→−∞

)
,

(88)

Note that −~2/(2µa2
1D) is the energy of the bound state of the 1D effective

potential in Equation (20), see Equation (29), with the coupling constant
given in Equation (79).

It is interesting to look at how well the 1D effective potential pre-
dicts the bound-state energy as a⊥/a3D is increased from −∞ to +∞.
The bound-state energy given by the effective potential is correct to
1% for a⊥/a3D= − 5. When a⊥/a3D = 0, the discrepancy is 55%; finally, at
a⊥/a3D = 1.4603 . . . the predicted bound-state energy is−∞, Equation (80),
whereas the true energy is EB

1D = −~ω⊥, corresponding to ε = 1 in Equa-
tion (83). As a⊥/a3D is increased even further, the effective delta potential
does not support bound states–as discussed in the paragraph preceding
Equation (29), the 1D delta-function potential supports a bound state only
if a1D > 0 (g1D< 0)–while true bound-state energies get deeper without
bound, as we saw in Equation (87).

In the context of Section 4.7 below, Equation (88) describes the “BCS”
limit. In this case, a 1D gas of ↑ and ↓ fermions at low tempera-
tures becomes a gas of weakly bound ↑↓ dimers–Cooper pairs (Fuchs
et al., 2004)–whose spatial extent (a1D) is much larger than the average
interparticle spacing (Krivnov & Ovchinnikov, 1974).

3.10 CIR as a Feshbach Resonance

In Bergeman et al. (2003), we emphasized that the CIR is a Feshbach res-
onance, occurring when the energy of a bound state of the asymptotically
closed channels (i.e., the excited transverse modes) coincides with the
continuum threshold of the open channel (lowest transverse mode).

Following the Feshbach–Fano partitioning method, we divide the space
of our problem into channels. The full Hamiltonian is Ĥ3D = Ĥz ⊗ Îd ⊥ +

Îd z ⊗ Ĥ⊥ + V̂F-H , see Section 3.1, where Îd ⊥ and Îd z are the identity oper-
ators in the transverse and longitudinal spaces, respectively. Because the
only states that matter are those whose transverse angular momentum
is zero (see the paragraph following Equation [12]), we take our whole
space to be spanned by states of the form |ψn〉|n〉⊥, where |ψn〉 is any state
in the unconfined direction, 〈z|ψn〉 = ψn(z), whereas |n〉⊥ = |n, 0〉⊥ are the
m = 0 eigenstates of the transverse Hamiltonian Ĥ⊥, see Equation (3). The
ground channel (g-channel) is the subspace spanned by states |ψα〉|0〉⊥; its
complement is the excited channel (e-channel). Projectors to the g- and e-
channels are P̂g = Îd z ⊗ |0〉⊥⊥〈0| and P̂e = Îd z ⊗

∑
∞

n=1 |n〉⊥⊥〈n|, respectively.
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We see that P̂g + P̂e = Îd , the identity on the whole space, while P̂2
g = P̂g,

P̂2
e = P̂e, and P̂gP̂e = P̂eP̂g = 0. Now we write the Schrödinger equation as

Ĥ3D (̂Pg + P̂e)|9〉 = E |9〉 and act–from the left—on both sides of it first by
P̂g and then by P̂e. We obtain a system equivalent to the original equation:

Ĥg |9g〉 + V̂ge |9e〉 = E |9g〉 g-channel equation (89)

(Ĥe − E) |9e〉 = −V̂eg |9g〉 e-channel equation, (90)

where |9g〉 = P̂g|9〉, Ĥg = P̂gĤ3DP̂g, V̂ge = P̂g Ĥ3D P̂e, and so on. Note that
P̂g Ĥ3D P̂e = P̂g V̂F-H P̂e, and similarly for P̂e Ĥ3D P̂g. Thus in real-space rep-
resentation, V̂ge and V̂eg have zero range and are located at the origin.

As we will see below, Ĥg and Ĥe have continuum thresholds at EC,g and
EC,e, respectively, separated by a gap 1 = EC,e − EC,g > 0; also Ĥe supports
a bound state |9B〉 of energy EB. We are considering incident waves whose
total energy E is above the continuum threshold of Ĥg but below that of
Ĥe: EC,g < E < EC,e, compare with Equation (35). Therefore, the g-channel
equation Ĥg|9〉 = E|9〉 supports scattering solutions, whereas the corre-
sponding e-channel equation (with the same energy) does not; we say that
the g-channel is open and the e-channel, closed.

Resonances in the g-channel are now easy to spot: they occur whenever
(Ĥe − E) |9e〉 in Equation (90) is zero at the origin (i.e., when its projection
onto 〈z|〈ρ,φ| is). This is because V̂eg is not zero at the origin, and so |9g〉

must be, which is equivalent to there being an infinitely strong zero-range
scatterer at the origin.

To make the preceding more concrete, let us apply 〈z|⊥〈0| to both
sides of Equation (89). We see that Ĥg becomes precisely the Hamiltonian
obtained in Section 3.5; what is new here is the coupling to the e-channel:[

−
~2

2µ
∂2

∂z2
+ gint

1D δ(z)
]
ψ0(z)+ gge δ(z)

∂

∂z
[z9e(z, ρ = 0)]z→0+

= (E− ~ω⊥)ψ0(z), (91)

where gge =
~2

µ

2
√
πa3D
a⊥

, and gint
1D is the ‘bare’ coupling constant from Equa-

tion (31). Away from z = 0, Equation (91) is a free Schrödinger equation
for ψ0(z), and so any scattering solution must be of the form in Equa-
tion (27), ψ0(z) = eikz

+ feven(k) eik|z|. And now if Equation (90) says that
ψ0(z = 0) = 0, then feven(k) = −1, i.e., the scattering amplitude is at its
unitary limit.

In our system—and even more generally, as we will see—when (Ĥe −

E) |9e〉 becomes zero at the origin, it accomplishes this in the most obvi-
ous way: by |9e〉 being an eigenstate of Ĥe with energy E. Because the
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continuum threshold of Ĥe is above E, |9e〉 must be a bound state of Ĥe.
It is intuitively plausible that Ĥe should support a bound state at least for
some range of parameters (imagine there was just one excited transverse
state and consider the Schrödinger equation with the delta-function scat-
terer, compare with Equation (45) and the text that follows it). Below we
will show that in our system, Ĥe always has a bound state.

In fact, the existence of a bound state of Ĥe is all we need to assume
to show that for a zero-range scatterer, there must be a scattering reso-
nance in the g-channel. So let |φB

e 〉 be a bound state of Ĥe, of some energy
EB

e ; let |9E
〉 be the scattering solution of energy E, and let |9g〉 = P̂g|9

E
〉

and |9e〉 = P̂e|9
E
〉. We claim that if E is set to EB

e , then there is a scattering
resonance. We will prove this by showing that if E = EB

e , then there is a
solution |9e〉, |9g〉 of the system in Equations (89) and (90) such that, first,
|9g〉 vanishes at the origin, and second, |9e〉 = a |φB

e 〉 for some constant a.
We can show this by assuming |9e〉 = a |φB

e 〉 as an ansatz, and showing
that a constant a can be found so that the system is indeed solved. In
Equation (90), the ansatz gives zero for the left-hand side, which implies
(by the reasoning we outlined above) that |9g〉 must be zero at the loca-
tion of the potential. Turning to Equation (89), we see that |9g〉 satisfies
Ĥg|9g〉 = E|9g〉 except at the location of the potential, where the action of
Ĥg produces a finite zero-range object at the location of the potential (see
Equation [24]). In terms of the discussion at the end of Section 3.4 and
Equation (21), the product g1D ψ(0) remains finite even though ψ(0)→ 0).
But V̂ge|9e〉 is also a zero-rage object at that location, so the two can be
made to cancel by an appropriate choice of a, and we are done.

In our system, we can explicitly demonstrate the scenario just out-
lined. Let |9̃E

3D〉 =
∑
∞

n=0 |ψ̃
E
n 〉|n〉⊥ be the bound state of Ĥ3D (recall that Ĥ3D

always has a bound state, see Section 3.9), whose energy E = −~2κ2/4+
~ω⊥ is given by Equation (83); let |9E

3D〉 =
∑
∞

n=0 |ψ
E
n 〉|n〉⊥ be a scattering

state of Ĥ3D of energy E, and let |9E
e 〉 = P̂e|9

E
3D〉 and |9E

g 〉 = P̂g|9
E
3D〉. Note

that |9E
g 〉 and |9E

e 〉 by construction are the solutions of the system in
Equations (89) and (90).

The statement is that when E = E + 2~ω⊥, then |9E
e 〉 is in fact a bound

state of Ĥe with Ĥe|9
E
e 〉 = E |9E

e 〉. Once this is shown, the arguments out-
lined above kick in, i.e., it follows that the left-hand side of Equation (90)
is zero, and thus |9E

g 〉 must be zero at the origin, so that there is indeed a
resonance.

To prove the statement we will need two facts. The first fact is that

|ψ̃E
n 〉 = a |ψE

n+1〉 n = 0, 1, 2, . . . provided E = E− 2~ω⊥, (92)

where a is the same for all n. To see this, recall the construction of the
bound-state solution as given in the text surrounding Equation (82). In
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the present case, E and E are separated precisely by the transverse level
spacing, and thus if κE

n are the quantities in Equation (42) for the scatter-
ing state, while κEn are the corresponding quantities for the bound state,
we have κEn = κ

E
n+1 for n > 0; Equations (45) and (51) then establish Equa-

tion (92), with a the ratio of the regular parts (η’s) of |9̃E
3D〉 and |9E

3D〉 for
ρ = 0, z→ 0.

The second fact is a peculiar property of confinement by a 2D harmonic
oscillator: the ‘excited’ Hamiltonian Ĥe and the full Hamiltonian Ĥ3D can
be transformed to each other via a simple “level-shifting” transformation

Ĥe = Â†Ĥ3DÂ+ 2~ω⊥P̂e, where Â†
= Îd z ⊗

∞∑
n=0

|n+ 1〉⊥⊥〈n|. (93)

Note that Â†Â = P̂e and ÂÂ†
= Îd . If it were not for the presence of the

interparticle potential in Ĥ3D, Equation (93) would be trivial: it would use
no more than the fact that the eigenenergies of E⊥n of Ĥ⊥ (corresponding
to the states |n〉⊥) satisfy E⊥n+1 = E⊥n + 2~ω⊥. The potential term, however,
produces

∞∑
n=1

∞∑
k=1

〈n|V̂|k〉 |n〉〈k|

within Ĥe = P̂eĤ3DP̂e, and

∞∑
n=1

∞∑
k=1

〈n−1|V̂|k−1〉 |n〉〈k|

within Â†Ĥ3DÂ (here “|j〉〈k|” is a shorthand for Îd z ⊗ |j〉⊥⊥〈k|). These two
double sums must be the same if Equation (93) is to hold. Luckily, (i) V̂ is
located at the origin and has zero range, and (ii) all m = 0 eigenfunctions
of the 2D harmonic oscillator have the same value at the origin, see Equa-
tion (12). It follows that the two double sums are the equal after all, and
so Equation (93) does hold.

Armed with these two facts, we can finally prove the statement that
when E = E + 2~ω⊥, then |9E

e 〉 is a bound state of Ĥe with energy E. Start-
ing with Ĥ3D|9̃

E
3D〉 = E |9̃E

3D〉, we act by Â† on both sides and insert ÂÂ†
=

Îd after Ĥ3D. In the resulting equation, we write Â†Ĥ3DÂ as Ĥe − 2~ω⊥P̂e,
see Equation (93). Then, we use the fact that P̂eÂ†

= Â†, and the result
says that Â†

|9̃E
3D〉 is an eigenstate of Ĥe with energy E + 2~ω⊥, in other

words, with energy E. Finally, from Equation (92) it follows that Â†
|9̃E

3D〉 =

a P̂e|9
E
3D〉, and thus P̂e|9

E
3D〉, which is |9E

e 〉, is an eigenstate of Ĥe with



AAMOP 14-ch10-461-510-9780123855084 2011/9/26 18:03 Page 493 #33

Confinement-Induced Resonances 493

energy E, as claimed. And now all the previous arguments follow: we note
that the left-hand side of Equation (90) is zero, so that |9E

g 〉 must be zero
at the origin, etc.; we have a resonance.

We have just shown that the g-channel resonance occurs whenever
the scattering energy E is above the bound-state energy E by 2~ω⊥.
Now, E satisfies ζ(1/2, −E−~ω⊥

2~ω⊥
) = − a⊥

a3D
, see Equations (83) and (43); upon

substituting E = E− 2~ω⊥, we get that a resonance occurs whenever
ζ(1/2, 1− E−~ω⊥

2~ω⊥
) = − a⊥

a3D
, thereby recovering the exact result in Equa-

tion (75).
For low-energy scattering, 0 < (E− ~ω⊥)/(2~ω⊥) � 1, and we see that

the resonance occurs when the bound-state energy of Ĥe is E ≈ ~ω⊥. This
is in accordance with the general expectation that the Feshbach reso-
nance should occur approximately when the bound-state energy of the
closed channel crosses the continuum threshold of the open channel, and
corresponds to the δ-CIR criterion in Equation (80).

In a more formal development, one would introduce an inverse of the
operator (Ĥe − E), let us call it GE

e . Equation (90) gives |9e〉 = −GE
e V̂eg |9g〉,

which we substitute into Equation (89) to get an equation involving only
|9g〉, Ĥg |9g〉 − V̂ge GE

e V̂eg |9g〉 = E |9g〉. In our case, this would result in
Equation (77). If EC,g < E � EC,e, one may obtain a genuine potential if we
approximate GE

e by GEC,g
e , as was done in Section 3.8.

Finally, note that almost by definition, any problem with confined scat-
tering should be describable within the paradigm of open and closed
channels: a system is confined precisely because the next excited state
of the confining potential is higher in energy than the incident wave.
Results of this section suggest that Ĥe generically has a bound state, and
that therefore (at least in the case of zero-range potentials) in the g-channel
there is a scattering resonance whenever the scattering energy equals the
energy of that bound state. We conclude that scattering resonances should
be a generic feature of confined systems.

3.11 Is CIR Spurious as Far as Low-D Two-Body Physics?

On the face of it, a resonance is a dramatic effect, of unknown robustness
with respect to tampering with the underlying assumptions of the the-
ory. The most obvious weak link is the pseudopotential approximation,
Equation (8). Can the CIR exist in the regime when the pseudopotential
approximation is valid?

As we showed in Bergeman et al. (2003), the answer is that it can. In fact,
there are regimes where even the 1D effective theory—which we took in
the form with an effective 1D delta-function potential, see Section 3.8—is
both physically valid as well as correctly predicting a CIR. We considered



AAMOP 14-ch10-461-510-9780123855084 2011/9/26 18:03 Page 494 #34

494 V. Dunjko et al.

harmonically confined scattering in the presence of either the Lennard-
Jones potential, or the spherical well potential, and numerically computed
the interaction strength

gstrength
1D = lim

k→0+

~2 k
µ

Refeven(k)
Imfeven(k)

(94)

for various values of the control parameter a3D/a⊥ (note that Equation [94]
is an identity if feven(k) and gstrength

1D are as they would be for a 1D delta-
function potential, i.e., as in Equations [28] and [22], respectively). We
then compared these values to the analytic prediction of the theory with
an effective 1D potential, which simply says that gstrength

1D should equal
g1D given by Equation (79). The effective 1D theory predicts that g1D
diverges at CIR, and this is precisely what we saw numerically. The over-
all numerical agreement was very good below the resonance (as a3D/a⊥
is approaching the CIR value of 1/C from below); above the resonance,
there were systematic deviations, which are due to the finite range of the
3D potentials; more on that in Section 4.5.

The second most obvious weak link is the assumption of harmonic con-
finement. What happens when this assumption is relaxed is the subject of
Section 4.3.

3.12 Is CIR Spurious as Far as Many-Body Physics?

Because the effective 1D potential may be incorporated into many-body
theories, it is possible to test the predictions of the 1D effective theory
not only at two-body level but also at the quantum many-body level. In
particular, Astrakharchik and collaborators (Astrakharchik et al., 2004a,b)
considered a gas of five particles interacting through finite-range poten-
tials. The particles were trapped strongly in the transverse direction and
weakly in the longitudinal direction. They used two different types of 3D
interparticle potentials: one was a purely repulsive hard-sphere potential,
VHS(r) = ∞ for r < a3D and zero otherwise; the other potential, which they
called simply a “short-range” potential, was VSR(r) = −V0/ cosh2

(r/r0).
Unlike the hard sphere potential, VSR can support two-body bound states.
These transversely confined 3D systems were to be compared with effec-
tive 1D systems of five particles in a longitudinal harmonic potential,
with the particle interaction given by a pairwise delta-function potential.
The observable quantity that was used for comparison was the many-
body energy per particle, which was computed (using quantum Monte
Carlo techniques) for both 3D systems (corresponding to either VHS or
VSR being chosen as interparticle potential), and for two 1D systems with
1D delta-function potentials: one where the potential was g1D δ(z), with
g1D given by Equation (79), and another where the 1D potential was
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gint
1D δ(z), with gint

1D given by Equation (31). The results showed excellent
agreement between the 3D system with VSR potential and the 1D sys-
tem with the potential g1D δ(z), extending right through the CIR as one
varied the governing parameter 1

√
2

a3D/a⊥. The gint
1D δ(z) potential showed

good agreement only for small positive values of the governing parame-
ter. The 3D system with hard-sphere potentials also deviated from the 3D
system with VSR potentials (and so from the 1D system with g1D poten-
tial). What distinguishes the two 3D potentials is the presence or absence
bound states, which, as we saw in Section 3.10, play a crucial role in the
physical mechanism whereby the CIR is generated.

We should mention that at the many-body level, the CIR has been used
to produce—in Monte Carlo numerical experiments as well as, recently, in
experiments (see Section 5.1)—both the Tonks-Girardeau (TG) gas of hard-
core bosons (Girardeau, 1960; Tonks, 1936), where g1D →+∞, as well as
the super-Tonks gas (Astrakharchik et al., 2005), where g1D →−∞ (recall
the discussion at the end of Section 3.4).

4. OTHER TYPES OF CIR

The above example of zero-range 3D scattering in the presence of 2D
transversal harmonic potential, resulting in an effective 1D theory with
1D delta-function interparticle potential, was the first setting in which CIR
was found (Bergeman et al., 2003; Olshanii, 1998). Here, the particles were
bosons, but the results immediately carry over to the case of nonequal
fermions (Fuchs et al., 2004; Tokatly, 2004).

4.1 CIR in Effectively 2D Systems

A related resonance occurs when the harmonic confinement exists in only
one direction, so that the effective theory is 2D (Petrov et al., 2000a; Petrov
& Shlyapnikov, 2001). The easiest way to see the CIR is once again to look
at the scattering amplitude.

Our definition of CIRs makes sense even in the absence of effec-
tive low-D potentials, and this gives us an excuse to avoid the lengthy
topic of 2D pseudopotentials. Nevertheless, here is an incomplete
list of works that discuss these objects: Wódkiewicz (1991); Olshanii and
Pricoupenko (2001); Idziaszek and Calarco (2006); Kanjilal and Blume
(2006); Pricoupenko and Olshanii (2007); and Pricoupenko (2008).

In 2D, for short-range interactions, the asymptotic expression at large
relative distances ρ for the scattering wave function is

9(ρ) = eikρ
−

i
4

f2D(k)H
(1)
0 (kρ), (95)
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where H(1)
0 (x)

(
∼
√

2/π e−i π4 eix
√

x for x � 1
)

is the first Hankel function, k is
the amplitude of the scattering wave vector, related to scattering energy
through E(k) = ~2

2µ k2, µ = m/2 is the reduced mass, and

f2D(k) =
2π

i π2 − ln
(
k R2D eγ /2

) (96)

is the scattering amplitude. Here, γ = 0.57721 . . . is the Euler–Mascheroni
constant, and R2D is the effective radius of the 2D potential (not to be con-
fused with the effective range). The effective radius is sometimes called
the “2D scattering length”, for example by the very people who intro-
duced it (Verhaar et al., 1984). Note that we cannot define the scattering
length as in 3D (through the derivative of the phase shift with respect to k
at k = 0 ) because the phase shift is proportional to 1/ ln k for small k and
thus its derivative always diverges at k = 0 . The meaning of R2D is that
both the bound and the scattering states must for small ρ have the asymp-
totic form 9(ρ) = const. ln ρ

R2D
+O(ρ). The effective radius depends on

the parameters of the underlying 3D system through (Pricoupenko and
Olshanii, 2007)

R2D =
1

eγ /2

√
π

B
az exp

(
−

√
π

2
az

a3D

)
, (97)

where az =

√
~

mωz
is the size of the harmonic potential responsible for 1D

confinement, U3D(rx, ry, rz) =
1
2 mω2

z r2
z , m is the particle mass, a3D is the 3D

scattering length, and B = 0.9049 . . . is a numerical constant. The modu-

lus squared of the scattering amplitude, 4π 2
[
π2

4 + ln2 (k R2D eγ /2
)]−1

, has a
maximum when the log-squared term is zero, that is, when

k R2D eγ /2 = 1; (98)

this maximum is the CIR in the case of an effectively 2D system. Note
that unlike in the case of an effectively 1D system, it is not obvious how
to approximately remove the dependence on k (and so on the scattering
energy) from the resonance condition.

4.2 3D Optical Lattices

Fedichev et al. (2004) have considered the scattering of a pair of atoms
confined in an isotropic and uniform 3D optical lattice, considered within
the tight-binding model.
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The lattice is characterized by the depth V0 of the lattice potential
and by the lattice spacing d. Additionally, the WKB tunneling exponent
between the neighboring wells is supposed to be small: ts =

√
Dsω/π ,

with Ds � 1. Here, s labels the Bloch bands corresponding to the rela-
tive coordinate of the two particles (the lattice potential is separable to a
good approximation), and ω2

= V0/(m d2) is the curvature within a single
lattice site, where m is the particle mass. The effective mass is given by
ms = 2/(ts d2).

The interparticle potential has the 3D scattering length a3D. The poten-
tial range is assumed short, and in particular shorter than either the lattice
spacing or the size `0 of the ground state wave function in an individual
optical well. The lattice spacing is also assumed to be small relative to the
de Broglie wavelength of the colliding particles.

The result for lowest-band scattering, s = 0, is that at low energies the
scattering amplitude fs=0, s′=0 is given by

f00(k) =
4π
m0

1
i k+ 1/aeff

(99)

with the effective scattering length

aeff = a3D

(
d
`0

)3

ms
1

1+ a3D/`∗
, (100)

where `∗ = 1
4 ln 2 `0

√
D0.

The authors also introduce the effective pseudopotential

V(Er) =
4π~2

ms
aeff δ

3(Er)
∂

∂r
r · (101)

acting on wave functions ψp of the pair of atoms averaged over many
lattice sites.

The results in Equations (99) and (100) imply that for repulsive 3D inter-
action (a3D > 0), as a3D increases from zero to large values, aeff increases
from zero to the asymptotic universal limiting value a∞ = m0 `∗ (d/`0)

3.
The rate of growth of aeff begins positive and then steadily decreases
toward zero.

In the case of attractive 3D interactions (a3D < 0), as the magnitude
|a3D| increases from zero to large values, aeff displays resonant behavior:
it starts at zero and steadily becomes more and more negative, diverging
to negative infinity when

|a3D| = `∗ (102)
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This is the CIR. As |a3D| increases past the resonant point, aeff switches
sign to positive and starts to steadily decay from positive infinity to the
asymptotic value a∞ mentioned above.

Just after the effective scattering length passes through resonance and
switches its sign to positive, it is very large. Such a large and positive
effective scattering length implies a pole in the scattering amplitude at
k = i p∗ with p∗ = 1/aeff, which means that there is a bound state with
binding energy p2

∗
/ms = 1/(a2

eff ms). The size of such a dimer is of the
order of aeff, and therefore very large, possibly extending over many
sites. Such dimers are called Wannier–Mott molecules, in analogy to the
Wannier–Mott excitons in semiconductors (Yu & Cardona, 2001).

Köhl et al. (2005) have observed a shift in the location of the Feshbach
resonance in a quantum-degenerate Fermi gas in a 3D optical lattice, an
effect they attribute to CIR.

Recently, Cui et al. (2010) have extended these studies to the situa-
tions where the approximation of separable potentials is not valid (see
Section 4.3). Their approach, which uses the momentum-shell renormal-
ization group (Kaplan et al., 1998), captures most dominating higher-band
effects as well as all intraband scattering within the lowest band. The
approach is valid for the study of resonances in deep lattices at small a3D,
as well as shallow lattices with large a3D. When applied to 1D and 2D
traps, the approach reproduces the results reported in the sections above.

Resonances correspond to the divergence of the scattering length of the
Bloch wave, aBloch. For small a3D, one has the simple result

aBloch

aL
=

1
4π

(
t

UH
−
γ

16

)−1

, (103)

where aL is the lattice constant, t is the lattice hopping parameter, UH the
on-site interaction, and γ ≈ 4; the CIR occurs at t/UH ≈ −1/4. Away from
the limit of small a3D, there are many resonances, but it would be beyond
the scope of this review to go into details.

4.3 CIR in a System Where Center-of-Mass and Relative Coordinates
are Not Separable

In the problems considered so far, the scattering problem was tractable
in part because the center-of-mass and relative coordinates were sepa-
rable. Peano et al. (2004) (see also Peano et al. [2005]) have considered
a general situation of 2D confinement where such a separation was not
possible. They found that as one tunes the 3D scattering length a3D, gen-
erally a resonance occurs at every bound state (i.e., whenever the size of
a given bound state is equal to a3D, up to some multiplicative constants)
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of the operator which is the projection of the full Hamiltonian to the sub-
space of states orthogonal to the open channel. The resonances tend to
be extremely sharp, there can in principle be an infinite number of them,
and most of them tend to appear for a3D/a⊥→ 0, where a⊥ is the typical
size of the 2D confinement. Quantitative analysis can generally only be
done numerically. Aside from the pioneering effort of Peano et al. (2004),
however, the topic of CIRs—and more generally of effective theories—in
situations when the relative and the center-of-mass motions are not sepa-
rable remains largely unexplored. However, recently Cui et al. (2010) have
succeeded in analyzing resonance scattering in optical lattices without
assuming separable potentials; see the Section 4.2.

4.4 Higher Partial Waves

So far we have considered only s-wave scattering. Resonances have been
found for scattering of higher partial waves, both in the cases of 1D
(Granger & Blume, 2004) and 2D confinement (Kanjilal & Blume, 2006;
Pricoupenko, 2008) (see also Idziaszek and Calarco [2006] and Kim et al.
[2005]). The general character of the resonances is similar to their s-wave
counterparts, though the analysis becomes more involved. What becomes
even more involved is the construction of effective low-dimensional theo-
ries. Since it is not clear if the dust has completely settled in this field, we
refer the reader to the primary literature for details.

4.5 Effects of Finite Range of the Underlying Interaction

Naidon et al. (2007) have shown that the predictions of the effective 1D
and 2D theories—in particular, the positions of the CIRs in Equations (80)
and (98)—can be noticeably improved if one takes into account the finite
range of the underlying potential. As before, one systematically matches
the expansions of the effective and exact results. However, since now the
finite range of the underlying potential is being taken into account, one
can go up to second order in r/a⊥. The main result is the following simple
recipe: in the effective theory, one should replace all appearances of a3D by

are
3D(k) =

a3D

1− (1/2)k2a3Dre
. (104)

Here, re is the effective range of the underlying potential, and k is the col-
lisional momentum, defined through ~k =

√
2(m/2)E3D. The energy E3D is

the full energy of the collision, which in confined settings is dominated by
the energy of confinement, rather than by the kinetic energy in the uncon-
fined directions. Thus, as far as the effective low-dimensional theory is
concerned, E3D is constant, resulting in an improved effective potential.
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4.6 CIR in the Scattering Off a Finite-Range Potential
in a Multimode Waveguide

Gattobigio et al. (2010) have analyzed the interaction of a propagating
guided matter wave with a localized potential (intuitively, a ‘defect’ in
the waveguide) whose range is of the order of or larger than the harmonic
oscillator length of the transverse confinement. Additionally, they do not
assume that scattering energy is small—the matter wave does not nec-
essarily propagate in a single mode. The calculations are set in 2D: one
direction is unconfined, whereas the other is confined due to 1D harmonic
potential. Using a treatment that is nonperturbative in the strength of the
scattering potential, and the specific example of square potential, they
find multiple scattering resonances. They explain the physical origin of
these resonances as follows: when the incident wave is within the range
of the scattering potential, there is a strong coupling between the trans-
verse and longitudinal degrees of freedom. When the transverse excited
modes get virtually excited, the longitudinal energy enters the range of
values for which total reflection would occur in 1D. The understand-
ing of the detailed structure of the transmission probabilities will require
further study.

4.7 CIR in the Scattering of Dimers

In the context of the study of the BCS-BEC crossover (Fuchs et al.,
2004; Tokatly, 2004) in a two-species Fermi gas with zero-range interac-
tions between particles of unlike species, Mora et al. (2005) have treated
the four-body problem under 2D confinement (resulting in 1D effective
theory). In particular, they have studied dimer-dimer scattering by solving
the full fermionic four-body problem under confinement.

They assume that atoms are of identical fermionic species with two
spin states, labeled ↑ and ↓. They also assume that atoms interact
only via a two-body s-wave interaction, which is modeled with a zero-
range interaction, i.e., the Huang-Fermi pseudopotential of Equation (8).
Within the zero-range approximation, interaction exists only between
fermions in unlike spin states (↑↓). For fermions in like spin states
(↑↑ or ↓↓), the two-body wave function must be antisymmetric with
respect to the exchange of particles, and so must be zero when the
particle positions coincide. Thus, in the Schrödinger equation, the poten-
tial term g3D δ

3(Er) ∂

∂r

(
r9(Er, ER)

)
= g3D δ

3(Er) × regular part of 9(Er = 0, ER) is
zero because 9(Er = 0, ER) is zero (here, Er is the relative coordinate and ER
is the center-of-mass coordinate); and so there is no interaction between
fermions in like spin states.
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The four-body problem considered by Mora et al. (2005) involves two
↑ and two ↓ particles under 2D confinement (resulting in a 1D effective
theory). The results of Section 3.9 imply that at the two-body level, one
↑ and one ↓ fermion always have a single bound state, called a ‘dimer,’
which is therefore a composite boson. Its binding energy�B is determined
through Equation (83), where we relabel ε by �B; the longitudinal dimer
size aB is defined through �B = [a⊥/(2 aB)]2. In the “BEC” limit, a⊥/a3D →

+∞ (see the text following Equation [87]), we have aB ≈ a3D (intuitively,
a very small, compact dimer) and �B ≈ [a⊥/(2 a3D)]2

� 1; in the “BCS”
limit, a⊥/a3D →−∞ (see the last paragraph of Section 3.9), we have �B ≈

(a3D/a⊥)2
� 1 and aB ≈ a2

⊥
/(2 |a3D|) (intuitively, a very delocalized dimer).

The 1D atom-atom scattering length is given by Equation (68), where we
relabel a1D by a1D

aa .
Mora et al. (2005) consider the 3D four-body (↑↑↓↓) problem under

confinement in the regime when the relative dimer-dimer momentum k
is sufficiently small (k a⊥ < 1) so that the relative dimer-dimer motion is
in the lowest transverse state when the dimers are far apart. The solution
of the resulting dimer-dimer scattering problem shows that the scatter-
ing amplitude may be expanded in terms of a dimer-dimer 1D scattering
length, a1D

dd . For |k a1D
dd | � 1 (but without any restrictions on the value of

a⊥/a3D), one may introduce an effective 1D dimer-dimer delta-function
potential, V1D

dd = g1D
dd δ(Z). Here, Z is the longitudinal component of ER =

[(Ex1 + Exa)− (Ex2 + Exb)]/
√

2, the relative vector between the two dimers (Ex1,2

and Exa,b are the position vectors of the ↑ and ↓ particles, respectively). The
coupling constant is given as in Equation (79), g1D

dd = −~2/(m0a1D
dd), with m0

the mass of a single fermion.
In the BCS limit, one may solve the 1D four-body problem using Bethe

ansatz. This analysis shows that even in the BCS limit, the dimers are
not broken, and a1D

dd = a1D
aa /2. The treatment can be extended to the N-

body case provided the 1D particle density n satisfies n a⊥< 1. Because the
dimers are not broken, the ground state can be bosonized, i.e., described as
a gas of N/2 delta-function-interacting bosons, where the bosonic interac-
tion has the scattering length a1D

aa /2. The resulting Lieb-Liniger equations
(Lieb & Liniger, 1963) for N/2 bosons in this case coincide with Yang-
Gaudin equations (Gaudin, 1967; Yang, 1967) for N fermions with attrac-
tive interaction. Chen et al. (2010) have shown that the N/2-particle Bose
system with attractive interactions and the N-particle attractive Fermi sys-
tem can be mapped into each even when the interaction strengths are
finite. It is even true that the mapping remains the same: the bosonic scat-
tering length should be half the fermionic one, and the mass of a boson
should be twice the mass of a fermion.

As long as n a⊥ < 1, the typical momenta k will satisfy |k a1D
dd |� 1 even as

one moves away from the BCS limit (a⊥/a3D →−∞, a1D
aa →+∞) through
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the crossover regime (a⊥/|a3D| ≈ 1, which includes the atom-atom CIR at
a⊥/a3D = 1.4603 . . .) and into the BEC limit (a⊥/a3D →+∞, a1D

aa →−∞).
Thus, the effective 1D dimer-dimer delta-function potential remains valid
throughout. In the BEC limit, the dimer size aB is much less than the
size of transverse confinement (aB ≈ a3D � a⊥), and so the confinement
has no effect on four-body collisions. Therefore, the 3D four-body theory
developed in Petrov et al. (2004) and Petrov et al. (2005) becomes valid,
and so one has 3D dimer-dimer scattering with the dimer-dimer scatter-
ing length a3D

dd ≈ 0.6 a3D. This results in a1D
dd = −a2

red,⊥/[2 (0.6 a3D)], where
ared,⊥ =

√
~/(m0 ω⊥) is the transverse oscillator length for dimers.

Notice that a1D
dd is positive in the BCS limit and negative in the BEC

limit; therefore, it should be zero for some intermediate value of a⊥/a3D,
which means that we have a CIR for dimer-dimer scattering. An inter-
esting question is whether this CIR happens at the same value of a⊥/a3D

(or, equivalently, of �B, since the latter is a one-to-one function of the
former) as the atom-atom CIR. Answering this question requires treat-
ing the dimer-dimer scattering problem away from the limiting cases
a⊥/a3D →±∞, leading to a fairly complicated integral equation. The result
is that the dimer-dimer CIR happens for �B ≈ 0.3. This is different from
the atom-atom CIR, which takes place at �B ≈ 1 (= 1 in the theory with
the effective 1D potential).

4.8 CIR in the Scattering in Mixed Dimensions

See Section 5.2.

5. EXPERIMENTAL REALIZATIONS

5.1 Experimental Study of CIR in Scattering in
an Effectively 1D System

Haller et al. (2009) have experimentally realized the CIR in an effectively
1D system. In fact, they used the CIR as an engineering tool to realize a
new state of matter—the super-Tonks gas (Haller et al., 2009). Immediately
afterwards, they studied the CIR in its own right (Haller et al., 2010).

Both sets of experiments were conducted in Hanns-Christoph Nägerl’s
group in Insbruck. In the first set, the group studied an ultra-cold gas of
cesium atoms in a 2D optical lattice, which formed an array of elongated
tubes with an aspect ratio of between 100 and 1000. Atoms in each tube
are very well described as a delta-function-interacting 1D Bose gas (Bloch
et al., 2008). As we mentioned above, different values of the 1D two-body
coupling constant, g1D, result in different regimes of the gas. From Equa-
tion (79), we have that g1D = gint

1D/(1− Ca3D/a⊥), where gint
1D = 2~2a3D/(µa2

⊥
)

is the result of the integrating-out procedure, Equation (31). Thus, if a3D .
a⊥/C, then g1D is large and positive, resulting in the Tonks-Girardeau (TG)
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gas, whereas if a3D & a⊥/C, then g1D is large and negative, and one has the
super-Tonks (sTG) gas. But a3D may be adjusted experimentally via mag-
netic Feshbach resonance (FR) (Bloch et al., 2008); Nägerl’s group used a
combination of a broad and a narrow FR with poles at B = −11.1 G and
B = 47.78 G and widths of about 29.2 G and 164 mG, respectively. Using
the FR, a3D could be tuned from 0 a0 to over 4000 a0 (where a0 is the Bohr
radius); the CIR value is a⊥/C = 1304 a0. Thus, as one is ramping a3D from
the values below 1304 a0 to the values above it (i.e., though the CIR), one
should see the state of the gas change from TG to sTG. To detect the state of
the gas, Haller et al. took advantage that the 1D coupling constant indeed
passed through a CIR.

To detect the state of the gas, the Nägerl group took advantage of the
weak harmonic confinement along the axial direction of the confining
tubes. As it turns out, the frequency ωD of the lowest dipole mode depends
only on the confinement and not on the interparticle interaction, whereas
the frequency ωC of the lowest axial compressional mode depends on the
atom–atom interaction (Menotti & Stringari, 2002). The figure of merit was
chosen to be R = ω2

C/ω
2
D. The theoretical prediction was that as one tunes

g1D from zero to positive infinity, R would change from 4 (ideal gas) to 3
(1D Thomas-Fermi regime), then back to 4 (TG regime, in which the den-
sity profile is the same as for the gas of noninteracting fermions) (Moritz
et al., 2003). Values R > 4 correspond to the sTG regime (Astrakharchik
et al., 2005), i.e., to large and negative values of g1D. And indeed, as a3D was
being increased from zero (using the FR), one could see R starting from 4,
dipping to 3, and increasing to 4 as a3D approached the CIR point at 1304 a0

from below. Then, as a3D became larger than 1304 a0, R increased beyond
4 up to a maximum of 4.5, after which it started decreasing again. The
values of R > 4 are a clear signature of sTG regime; moreover, the switch
from R 6 4 to R > 4 happens exactly where theory predicts the CIR to be.

Additionally, the Nägerl group looked at particle loss and kinetic
energy of the various regimes. They entered the TG regime adiabati-
cally, to prevent the excitation of collective modes. The magnetic field
was then ramped up to a specific value within 0.2 ms, and held there
for the duration of τ = 10, 50, 100, or 200 ms; the lowest value of τ was
also the duration of the measurements of the R-values described in the
previous paragraph. For τ = 10 ms, the particle loss was virtually nil on
the TG regime, starting to increase slightly as a3D increases away from the
CIR on the sTG side. Also very smooth—as a3D passed through the CIR
value—was the change in the kinetic energy of the gas. This was probed
by measuring the axial width of the atomic cloud after release from the
tubes, where the particle interactions are switched off immediately after
the release.

For the larger values of τ , the particle loss changes rather discontinu-
ously at the CIR, from lower values on the TG side to the higher values
on the sTG side. The kinetic energy, in turn, develops a clear peak at the
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CIR. The reason for these features is that sTG is really an excited state of
the gas, lying above a family of lower-lying many-body excited states into
which the system may decay. Also, at the two-body level, near the CIR
there is a possibility of the formation of confinement-induced molecules
in transversally-excited states of the confining potential (Bergeman et al.,
2003). Finally, near the CRT, inelastic three-body collisions become sig-
nificant (Weber et al., 2003), leading to molecule formation and to the
conversion of the binding energy into kinetic energy, which in turn causes
trap loss and heating. Figure 1a shows the rapid increase in the particle
loss as the magnetic field (and thus a3D) is increased through the point
where the CIR is expected to occur. Moreover, as the transverse confine-
ment a⊥ is stiffened, we see a shift in the point at which the rapid particle
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Figure 1 Particle loss and heating rates in the vicinity of a CIR, as observed in the
experiment of Haller et al. 2010. (a) The number of atoms N remaining after
τ = 200 ms shows a distinct drop, or edge, when the magnetic field B is scanned
across the CIR. As the transverse confinement is stiffened — ω⊥ = 2π ×x ×14.2(2) kHz
with x = 0.84 (circles), 0.95 (squares), and 1.05 (triangles)—the position of the edge
shifts to the lower values of B. (b) The position of the edge (circles) as determined
from the intersection point of a second-order polynomial fit to the minimum for N
and the initial horizontal baseline as shown in (a), converted into values of a3D. The
position of the minimum (triangles) is also shown. (c) The heating rates near the CIR
(circles); for comparison, N is also shown (triangles). Here, ω⊥ = 2π ×12.0(2) kHz. The
error bars correspond to 1σ statistical uncertainty. Reprinted figure with permission
from Haller et al., Phys. Rev. Lett. 104, 153203 (2010). Copyright (2010) by the
American Physical Society.
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loss begins, as expected for a CIR. Figure 1b shows a plot (the circles) of
the value of a3D corresponding to the onset of the rapid particle loss vs.
the strength of the transverse confinement a⊥, compared with the CIR pre-
diction a3D = (1/C) a⊥ (the line); the two agree very well. However, since
there is, at present, no detailed theory for the shape of the particle loss
vs. the magnetic field curve, also plotted is the position of the minimum
of that curve (the triangles), which is shifted accordingly. Figure 1c shows
the increase in the heating rate as the CIR is crossed. To measure it, one
keeps the system at a given a3D for a time. One then reduces a3D to 250 a0 in
20 ms, switches off the lattice potential, and determines the release energy
from the measurement of the momentum distribution in free-space expan-
sion. The heating rate peaks at the magnetic field value that corresponds
to the CIR.

Haller et al. (2010) have also studied what happens if the confine-
ment is made more and more anisotropic, all the way up to converting
the effectively 1D system into an effectively 2D one. In Section 3.10, we
explained that CIR is a Feshbach resonance, occurring when the scatter-
ing energy is equal to the bound state energy of the full Hamiltonian
shifted up by the energy gap between the ground and first excited state
of the transverse potential. Now, the transverse energy levels can be
labeled by quantum numbers n1 and n2 belonging to the two Cartesian
directions of the 2D harmonic trap. The lowest states to which atoms
scattering in their transversal ground state, (0, 0), can couple are (2, 0)
and (0, 2). This is because only these states both preserve the parity
of the total wave function (Kim et al., 2005) and have wave functions
which do not vanish at the point of contact between the atoms (this lat-
ter requirement disqualifies the [1, 1] state). With anisotropy present, the
degeneracy between the (2, 0) and (0, 2) states is lifted; the energy lev-
els are split as En1, n2 = ~ω⊥, 1 (n1 + n2 + 1)+ ~1ω (n2 + 1/2), where 1ω =
ω⊥, 2 − ω⊥, 1 is the anisotropy. The Feshbach mechanism would now predict
two resonances, corresponding to the two near-in-energy excited states
(2, 0) and (0, 2).

Since sharp features in the atom loss and the heating rate were estab-
lished as experimental CIR signatures in Haller et al. (2009), the CIRs
could now be detected simply by observing such features. For small
anisotropy, the Nägerl group indeed observed two distinct values of the
magnetic field for which there was a distinct increase in atom loss. How-
ever, as the anisotropy was increased, there appeared features, which
Haller et al. identified as additional resonances, clustered near one of the
two original split CIRs. The origin of these additional features is not yet
clear. Haller et al. suggest that they may come from the opening of addi-
tional scattering channels, or from the circumstance that the confinement
is sufficiently anharmonic for the parity conservation rule to be violated
(Kim et al., 2005).
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The greatest surprise was that one of the features identified as a CIR
persisted for negative a3D even in the limit of a 2D system. This is surpris-
ing because all workers agree that known theory predicts that in 2D the
CIR occurs only for positive a3D (Naidon et al., 2007; Petrov & Shlyap-
nikov, 2001); see Section 4.1. Haller and collaborators checked that the
increase in the atom loss in the 2D, negative a3D case is indeed the result
of the confinement: they varied the confinement strength a⊥,2D, and found
that the position of the feature as a function of a⊥,2D satisfies the scaling
a⊥,2D = C2D a3D with C2D ≈ 1.19 (recall that in the 1D case we have a⊥ =
C a3D with C ≈ 1.46; see Equation [80]). At present, there is no complete
theory accounting for this behavior. We do know, however, that transverse
anisotropy in the confinement cannot be the explanation (Peng et al. 2010).
In fact, the very recent work of Sala et al. (2011) makes a strong case that
what is important is the coupling of the relative and the center-of-mass
motion due to the anharmonicities in the trapping potential.

5.2 Experimental Study of CIR in the Scattering
in Mixed Dimensions

Using the technique of species-selective dipole potential (Catani et al.,
2009; LeBlanc & Thywissen, 2007; Massignan & Castin, 2006), it is possible
to study the scattering of an unconfined atomic species off of a confined
one. Lamporesi et al. (2010) have implemented the 1D confinement (result-
ing in a 2D effective theory) of 41K atoms, and studied their scattering with
unconfined, fully 3D atoms of 87Rb. They observed a series of up to five
scattering resonances. These resonances disappear when both species are
either unconfined or confined with potentials of equal harmonic frequen-
cies. Experimentally, the resonances are detected as sharp peaks in the
atom loss (the loss is due to the increase in the 3-body recombination rate
at the resonance).

To obtain a theory of these resonances that is quantitatively valid, one
must take into account the fact that the 41K atoms have enough time during
the experiment to delocalize over the lattice. In other words, one needs to
account for the lattice band structure. The results are then in good agree-
ment with the experiment, especially if the lattice strength is not too great.
Notably, the Bloch wave theory predicts, and the experiment observes,
resonances that are due to the coupling to odd harmonic oscillator levels;
this would not be possible in the case of simple harmonic confinement,
because it would violate the conservation of parity. On the other hand, for
larger lattice strengths, there appear resonant features that are so far not
accounted for by any theory.
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6. FUTURE DIRECTIONS

Experience as well as worked-out theory suggests that resonances are
to be expected generically when scattering takes place in the presence
of an external potential that in some way limits the motion of particles.
Thus, there is every reason to believe we will continue to encounter new
examples of CIRs.

The experimental realizations of the CIRs have already demonstrated
the usefulness of these resonances as tools in manipulating atoms, most
spectacularly by allowing the creation in the laboratory of the super-
Tonks gas (Haller et al., 2009)—a highly correlated, and highly excited
but metastable many-body state. It is hard to predict in what way will
the experimentalists use the CIRs next. To name just one possibility, one
might consider the settings in which a CIR modifies the properties of
another resonance—for example, the positions of the magnetic Feshbach
resonances (Wouters et al., 2003; Yurovsky, 2005, 2006) and of the “opti-
cal” Feshbach resonances (Naidon & Julienne, 2006). Optical Feshbach
resonances refer to the situation when photoassociation of atoms creates
bound states of colliding atoms, by making them absorb a resonant pho-
ton; the presence of such bound states alters the scattering properties of
the atoms. In addition to shifting the position of the Feshbach resonances,
the presence of CIR may result in narrower lines, as it does for optical Fes-
hbach resonances (Naidon & Julienne, 2006). Thus, CIRs could result in
improved spectroscopic resolution.

The two experiments that have so far observed the CIRs (Haller et al.,
2009; Lamporesi et al., 2010) have certainly opened up new theoretical
challenges, of which perhaps the most urgent one is to explain the unex-
pected persistence, in the 2D limit, of the atom-loss feature for negative
a3D, in the experiments of Haller et al. (2010). Also, much theoretical work
awaits in extending the efforts of Peano et al. (2004) and Cui et al. (2010) in
making sense of the CIRs in the case of nonseparable confining potentials,
and of Gattobigio et al. (2010) in the case of finite-range, realistic scat-
tering potentials. Those who dare venture in these directions will almost
certainly encounter a rich variety of new resonant effects and theoretical
challenges.
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Weber, T., Herbig, J., Mark, M., Nägerl, H.-C., & Grimm, R. (2003). Three-body recombination
at large scattering lengths in an ultracold atomic gas. Physical Review Letters, 91, 123201.
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fluorescence measurements in,
95f

Gated photomultiplier tube, 173
Gaussian mode, 211
Gaussian transmission, 153
Ge detectors, 86, 87
Generalized double optical gating

(GDOG), 380–381, 381f
g-factor ratio, 178
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GHZ theorem. see
Greenberger-Horne-Zeilinger
theorem

Gravity, 165
Greenberger–Horne–Zeilinger (GHZ)

theorem, 302, 303
Ground-state density, 135
Group-delay dispersion (GDD), 378

Halogen cycle, 74
Harmonic emission rates, 391f
Harmonic generation process,

numerical methods for,
387–397

Helium
angular distribution measurements

of, 55f
DCS for, 33–36, 34f , 35f

Hemispherical deflector analyzer, 4,
54, 56f , 58

Hermite-Gaussian modes, 207
Heterodyne detection technique, 183
Heterodyne mixing, of IR and visible

pulses, 384–387
Heterodyne signal, 168
HID. see High-intensity discharges
High field physics region, 258–259,

259f , 260t
High transparency MAC, 10–11, 11f
High-intensity discharges (HID), 66

convective flow in lamp, 106f
and metal-halide lamps, 68–75

High-order harmonic generation
(HHG), 372

High-pressure arcs, 66
High-pressure sodium (HPS) lamps,

69
High-resolution photoelectron studies

of H2, 58
Hilbert space, 204
Huang-Fermi pseudopotential of

equation, 500
Hurwitz zeta function, 481
Hybrid entanglement, 301–302

Hydrogen, high-resolution
photoelectron studies of, 58

Hyperentangled photon states,
295–296

Hyperentangled (HE) state, 293, 299
Hyperentanglement, 292–295

assisted polarization purification
protocol, 308–309, 309f

in different degrees of freedom, 299
polarization-momentum, 299–300,

300f
for quantum information, 302–309

Hyperfine interaction (HFI), 437
Hyperfine quenching rates, derivation

of, 437–438
Hyperfine-induced vector light shift,

440–442

Ideal Gas Law, 97, 110
Impulsive molecular alignment,

277–278
Inelastic DCS, measurement of, 4, 18
Inelastic electron scattering, 30–32,

32f
DCS for, 32–36
resonances in, 44–45

Infrared (IR) pulses, 384–387
Intense x-ray induced ionization,

266–267
Internal state labeled interferometer,

171–174
Iodide salts, 70
Ion time-of-flight spectra, 267f , 268,

268f
Ion-charge-state chronoscopy, 398,

401
Ionization

coincidence studies in, 47–53
differential cross section, 48f
experiments, 47–50
photodouble, 58–59

Ionization gating (IG), 382
Iron-cored system of solenoids,

12–14, 12f , 13f
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Irreducible tensor operators, 433
Isolated attosecond pulses

applications of, 397, 405–408
attosecond electron

interferometry, 402–405
attosecond streaking spectroscopy,

398–400, 400f
attosecond transient absorption

spectroscopy, 401–402
ion-charge-state chronoscopy, 401

generation schemes, 373–375
double optical gating method,

380–382, 381f
heterodyne mixing of IR and

visible pulses, 384–387
polarization gating method,

375–380, 376f
temporal gating by sub-cycle

ionization dynamics, 382–384

Jaynes–Cummings model, 202

KAM theorem. see
Kolmogorov-Arnold-Moser
theorem

Kapitza-Dirac diffraction, 135
Keldysh parameter, 249
KFR approximation, 250–252, 251f
Klein–Nishina formula, 83
Knudsen cell method, 108
Kolmogorov–Arnold–Moser (KAM)

theorem, 331
Krypton

elastic DCS in, 23–25
elastic electron scattering in, 41f
Feshbach resonances in, 41–43
integral and momentum transfer

cross sections, 25–27, 26f
K-shell, 79

LAMP, 284–285
Lamp measurements, 95
Lande g-factors gF, 443, 445t

Larmor frequency, 171
Larmor oscillations, 177

uniform magnetic field effects on,
174–178

Laser-cooled rubidium atoms, 187
Lattice interferometry

description of, 152–153
signal calculation, 153–154

Lattice laser beams, 152
LCLS. see Linac Coherent Light

Source
Lieb-Liniger equation, 501
Light, coherence properties of,

246–247
Light-emitting diodes (LEDs), 68
Lighting, 66, 68
Linac Coherent Light Source (LCLS),

241, 263, 277, 281
experimental layout, 256f

AMO instrument, 255–261, 257f ,
259f , 260t

CAMP instrument, 263
pump-probe experiments,

261–262, 262f
Lin⊥Lin excitation, 177
Local oscillator (LO), 167
Long quantum paths, 388
Longitudinal velocity distribution, 160
Low-D effective theory, 472
Low-dimensional (low-D)

confinement, 463
Luminous efficacy, 66, 102

MAC. see Magnetic angle changer
Magic wavelength

dynamic multipolar polarizabilities,
431–432

second-order dynamic response,
429–431

Magnetic angle changer (MAC), 3
action of, 8
angular resolution of, 33
applicability of, 5–6, 32
arrangement of, 6f
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Magnetic angle changer (continued)
conical solenoid design, 14–15, 14f
feature of, 5, 6–7
high transparency, 10–11, 11f
multisolenoid systems, 15–17
for photoelectron spectroscopy, 53
principles of operation, 6–9
prototype manchester design, 9–10
relative positions of, 56f
for use in measurements of

angle-resolved DCS, 18–20
Magnetic deflection, 5
Magnetic dipole moment, 7
Magnetic field

distribution, 5
gradient, 144, 145

Magnetic grating echoes (MGE), 172,
173

uniform magnetic field effects on,
178–180

Magnetic grating free induction decay
(MGFID)

uniform magnetic field effects on,
174–178

Magnetic sublevels, 140–142
Magnetic-dipole hyperfine

Hamiltonian, 437
Magnetic-dipole hyperfine structure,

423
Magneto-optical trap (MOT), 133, 172

fluorescence, 191
Manchester prototype, 9–10
Many-body perturbation theory

(MBPT), 419
Maxwell wave equation, 395
Maxwell–Boltzmann distribution, 172,

173
Maxwellian velocity distribution, 125
Measurement of rotation, 163–165
Mercury

arc lamps, 69
role of, 74

Metal-halide lamps
HID and, 66, 68–75, 71f

measurement of densities in, 85, 86f
metal-halide salts used in, 72, 73t
mixing ratio for, 106f

Metal-halide salts, 70
measuring equilibrium vapor

pressures of, 109f
in metal-halide lamps, 72, 73t

Michelson interferometer, 376, 379
Microbunching process, 244–245
Mixing ratios, 102, 103f , 106f
Modern metal-halide lamps, 71
Molecular dissociative ionization,

time-dependent asymmetry in,
398, 405–408

Molecular dynamics/clusters, 283
Multi DOF states, 301–302

photon states, 295–296
Multimode waveguide, CIR, 500
Multipolar expansion, 432–434
Multi-pulse atom interferometer,

146–147
Multipulse interferometer, 128
Multiqubit states, realization of,

305–306
Multisolenoid systems, MAC, 15–17

Near-resonant method, with
semiclassical limit, 338–341,
339f , 341f

Near-resonant quantum dynamics,
reduction of, 362

Negative charge, distribution of,
105f

Neon
angle-differential excitation cross

sections, 45–46, 46f
elastic DCS in, 21–22

Neon rapid sequential ionization,
263–265

Nitrogen molecular dication,
dissociation of, 277

Noise
amplitude, 346–349, 347f , 349f ,

350f
and decoherence, 342
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Nonadiabatic saddle point
approximation, 390–394

Nonadiabatic three-dimensional
propagation model, 394–397

Nonlinear absorption, 265–266
Nonlinear crystal, 297f
Nonlinear x-ray ionization, DCH in N2

by, 269–272
Nonsequential multiphoton processes,

265–266
Numerical methods, for harmonic

generation process, 387–397

OAM. see Orbital angular momentum
Octupole moments, 8–9
Off-resonant optical standing wave,

123
1D effective theory, 476–484

preliminary step in building an,
475–476

1D scattering, 470–471
1D zero-range potential, properties of,

472–475
One-pulse atom interferometer,

134–137
Optical emission spectroscopy, 75
Optical lasers, 260–261
Optical lattice, 152, 155
Orbital angular momentum (OAM),

298
angle entanglement, 298–299
polarization-OAM-time

hyperentanglement, 300–301,
301f

Oscillation frequency, 178
Oxygen, energy loss spectrum of,

37–38, 37f

P, A, and V-type process, 253–254,
255f

Partial ionization, cross section, 54,
55, 56f

Path-position entanglement, 296–297
Perturbation theory, 248

Photoabsorption, cross section for,
79f , 84f

Photodouble ionization, 58–59
Photoelectron spectra, 271, 272, 273f ,

274f
of atoms, 53–57, 55f , 56f
MAC for, advantages of, 53–54

Photoelectron studies of H2, 58
Photoexcitation and photoionization

ADK, 249
field ionization, 248
Floquet formalism, 250
ionization saturation, 252–253, 254f
Keldysh parameter, 249
KFR approximation, 250–252, 251f
multiple ionization, 252–253, 254f
P, A, and V-type processes,

253–254, 255f
Volkov state, 250–252, 251f

Photomultiplier tube (PMT), 134
Photon(s)

degenerate, sources of, 296f
echo intensity, 183
polarization-path hyperentangled,

308
quantum states of, 292
scattering, 159

fraction of, 93, 93f
Polarization

entanglement, 296
gating method, 375–380, 394

Polarization-momentum
hyperentanglement, 299–300,
300f

Polarization-OAM hyperentangled
state, 305, 305f

Polarization-OAM-time
hyperentanglement, 300–301,
301f

Polarization-path hyperentangled
photon, 308

Polycrystalline alumina (PCA), 70, 73
Ponderomotive potential, 249
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Potassium atom, excited levels of, 77,
78f

Principal quantum resonances,
seudoclassical theory for,
329–334

Pseudoclassical method
application of, 334
future perspectives for, 363–364

Pseudoclassical model, 318
Pseudoclassical theory

for fidelity, 357–361, 361f
for principal quantum resonances,

329–334, 331f
Pulse duration, 158, 241

frustrated absorption, 267–269
x-ray, 269, 270f

Pulsed-laser fields, 159
Pump-probe experiments, 261–262,

262f
Purcell factor, 218

QKR. see Quantum kicked rotor
QRs. see Quantum resonances
Quantum accelerator modes, analysis

of, 362
Quantum dynamics, 158
Quantum electrodynamics (QED), 129
Quantum entanglement, 293
Quantum information,

hyperentanglement for,
302–309

Quantum kicked rotor (QKR),
316–318

atom-optics realization of, 318–325
Quantum mechanical expression, for

cooperativity parameter,
230–231

Quantum nonlocality tests, 302–303,
327–329

Quantum resonances (QRs), 317
behavior, manifestations, 323, 324f
directed transport at, 349–355, 351f ,

354f , 355f
dynamical localization and, 325–327
fidelity at, 356–357, 358f

Quarter-wave plates, 376
Quasi-classical action, 388

Rabi flopping, 253
Radial demixing, 102, 105, 106f
Radiative electric-dipole transitions,

80, 81f
Radio frequency (RF), 133
Raman interferometers, 165
Raman–Nath condition, 151, 323
Ramsey fringe experiments, 160
Random-phase approximation (RPA),

423
Ratchet effect, 351f
Ratchet system

ε-classical phase space, 354f
resonance, 350

Rayleigh heating rates, 454–455
Rayleigh scattering rate, 454
Recoil frequency, systematic effects

on, 128
Recoil signal, 137, 138
Resonance ratchet system, 350
Resonances

autoionizing, 54–58
in elastic electron scattering, 38–45
in electron–molecule scattering,

42–44, 43f
in gas atoms, 38–40
in inelastic electron scattering, 45
structure in angle-differential

excitation, 45–46, 46f
Resonant quantum motion,

pseudoclassical method for,
325–334, 331f

Riemann zeta function, 481
Rotating wave approximation (RWA),

210, 212
Rotation matrix, 175, 178
Rotor momentum, quantization of, 317

Saddle-point approximation (SPA),
388–390

advantage of, 392
model, 394
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SASE. see Self-amplified spontaneous
emission

Scaling law, 334, 362, 363
of equation, 343, 345–346, 346f

Scattered field amplitude, 136, 147
Scattered photon recoil, 454
Scattering

angles, 3, 17, 23f , 29f , 30f
into cavity mode, 222–227
1D, 470–471
of electrons, 21
by ensemble into cavity mode,

229–230
from free-space mode, 210–212
into free-space mode, 207–209

Scattering amplitude, CIR for,
484–485

Scattering energies, effective 1D
potential for low, 485–486

Scattering length
2D, 496
3D, 468

Schrödinger equation, 478
SE. see Spontaneous emission
Second intensity-dependent process,

254
Second-order dynamic response,

429–431
Self-amplified spontaneous emission

(SASE), 245
Semiclassical limit, near-resonant

method with, 338–341, 339f ,
341f

SF. see Superfluorescence
Shake-off process, 253–254
Shake-up process, 254
Short quantum paths, 388
Short standing-wave pulse, 125
Short-range potential, 494
Single atom interaction

with cavity mode, 215–227
with free-space mode, 206–212

Single site and double-core holes
(SSDCH) states, 275–276

Single-photon absorption formula,
252–253

Single-photon Rabi frequency, 203
Single-state echo type interferometer,

165
SLAC. see Stanford Linear

Accelerator
Soft x-ray (SXR) beam line, 283–284
Solenoid formers, 10
Solenoid system, magnetic properties

of, 9
Solenoids, iron-cored system of,

12–14, 12f , 13f
SPA. see Saddle-point approximation
Spatial ordering, cooperative effects

from, 213–215
SPDC process. see Spontaneous

parametric down-conversion
process

Spectroscopy, 242
electron energy loss, 36–38
optical emission, 75
x-ray induced fluorescence, 85

Spontaneous emission (SE), 130, 185,
342–346, 343f , 362

Spontaneous parametric
down-conversion (SPDC)
process, 292

SSDCH states. see Single site and
double-core holes states

Standard map
definition of, 317
Poincaré surfaces of, 332f
quantization of, 317
realization of, 319

Stanford Linear Accelerator (SLAC),
261

injector and Linac, 245–246
Static electric-dipole polarizabilities,

426, 426t
Sternheimer–Dalgarno–Lewis

Method, 425–429
sTG. see Super-Tonks gas
Stimulated Raman Adiabatic Passage

(STIRAP), 190
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Sub-cycle ionization dynamics,
temporal gate by, 382–384

Subpicosecond dynamics, 242
Superelastic scattering, 50–53, 51f
Superfluorescence (SF), 186
Super-Tonks gas (sTG), 475, 503,

504
SXR beam line. see Soft x-ray beam

line
Synchrotron pulses, 242
Synchrotron radiation, 67, 76

Talbot time, 156
Tapered amplifier (TA), 173
Temperature distributions, 97–99,

98f
Temporal gate

by sub-cycle ionization dynamics,
382–384

width of, 381
Temporary negative ion, 19, 38
10-qubit entangled state, 301–302,

302f
3D Laplacian, 469
3D optical lattices, 496–498
3D theory, 467–470
3P0 states, 436–437

hyperfine-induced vector light shift
in, 440–442

Three-dimensional propagation model
nonadiabatic, 394–397

3P0 −
1S0 clock transition, 446

Three-pulse atom interferometer,
147–151

Time-dependent asymmetry, 398,
405–408

Time-dependent Schrödinger equation
(TDSE), 397, 408

Time-domain atom interferometer,
129–130

experimental work, 132–134
multi-pulse atom interferometer,

146–147

one-pulse atom interferometer,
134–137

physical description of, 130–132
two-pulse atom interferometer,

137–138
Ti:Sapphire ring laser, 133
Tonks-Girardeau (TG) gas, 464, 475,

503
Transient alignment experiments,

277–278
Transistor-transistor logic (TTL), 133
Transition rate, 249
Transit-time-limited recoil

experiments, 165
Trapping chamber, 173
Trochoidal analyzer, 5
TSDCH states. see Two-side

double-core hole states
Tunnel ionization probability, 248
2D-isotropic harmonic confinement,

468
Two-body scattering theory, 464
Two-level Hamiltonian, 135
Two-pulse atom interferometer,

137–138
B-field gradients effects, 143–145
magnetic sublevels effects, 140–142
SE effects, 138–140
spatial profile, 142–143

Two-pulse standing wave
interferometer, 121–123

Two-side double-core hole (TSDCH)
states, 272–275

Type-I polarization entanglement,
296f

Ubiquitous effect, 326
Ultra-cold atoms, 323, 350
Ultra-cold Bose gas, 464
Ultrafast process, 243
Ultraviolet protection, 71
Undulator axis, 244
Unitarity bound, 472
Unitarity limit, 472
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Vacuum Rabi frequency, 203
Vapor cells, 109
Vapor densities, 110
Velocity map imaging spectrometer

(VMIS), 404
Velocity-map imaging, 281
Vibrational excitation

in molecular nitrogen, 27, 30f
in molecules, 27–28

Visible pulses, 384–387
Volkov state, 250–252, 251f

Wannier–Mott molecules, 498
Wigner–Eckart theorem, 434, 438

Xenon
elastic DCS in, 23–25
elastic scattering spectra in, 40f

X-ray focusing optics, 257–258, 258f
X-ray induced fluorescence (XRIF),

66, 67
accuracy, 112–113
chemical partitioning, 99–102, 101f
demixing, 102–106, 106f
density measurements, 85–97, 95f ,

96f

equilibrium vapor pressures,
107–112, 111f

temperature distributions, 97–99,
98f

X-ray photoionization
frustrated absorption, 267–269
molecular SSDCH states, 275–276
molecular TSDCH states, 272–275
neon rapid sequential ionization,

263–265
nonsequential multiphoton

processes, 265–266
X-ray probe experiments,

optical-pump, 277–279
X-rays

interaction with atoms, 77–85
laser interactions with atoms,

241–242
methods, 67, 75–77
optical properties of, 243–247

XRIF. see X-ray induced fluorescence

Ytterbium magic wavelength,
435–436

Zeeman effect, 443–446
Zero-angular momentum, 469
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B. Milošević and Fritz Ehlotzky

Hot Atoms in the Terrestrial Atmosphere,
Vijay Kumar and E. Krishnakumar

Volume 50
Assessment of the Ozone Isotope Effect,

K. Mauersberger, D. Krankowsky,
C. Janssen and R. Schinke

Atom Optics, Guided Atoms, and Atom
Interferometry, J. Arlt, G. Birkl, E. Rasel
and W. Ertmet

Atom–Wall Interaction, D. Bloch and
M. Ducloy

Atoms Made Entirely of Antimatter: Two
Methods Produce Slow Antihydrogen,
G. Gabrielse

Ultrafast Excitation, Ionization, and
Fragmentation of C60, I.V. Hertel,
T. Laarmann and C.P. Schulz

Volume 51
Introduction, Henry H. Stroke
Appreciation of Ben Bederson as Editor of

Advances in Atomic, Molecular, and
Optical Physics

Benjamin Bederson Curriculum Vitae
Research Publications of Benjamin

Bederson
A Proper Homage to Our Ben, H. Lustig

Benjamin Bederson in the Army, World
War II, Val L. Fitch

Physics Needs Heroes Too, C. Duncan Rice
Two Civic Scientists—Benjamin Bederson

and the other Benjamin, Neal Lane
An Editor Par Excellence, Eugen

Merzbacher
Ben as APS Editor, Bernd Crasemann
Ben Bederson: Physicist–Historian, Roger

H. Stuewer
Pedagogical Notes on Classical Casimir

Effects, Larry Spruch
Polarizabilities of 3P Atoms and van der

Waals Coefficients for Their Interaction
with Helium Atoms, X. Chu and
A. Dalgarno

The Two Electron Molecular Bonds
Revisited: From Bohr Orbits to
Two-Center Orbitals, Goong Chen, Siu
A. Chin, Yusheng Dou, Kishore
T. Kapale, Moochan Kim, Anatoly
A. Svidzinsky, Kerim Urtekin, Han
Xiong and Marlan O. Scully

Resonance Fluorescence of Two-Level
Atoms, H. Walther

Atomic Physics with Radioactive Atoms,
Jacques Pinard and H. Henry Stroke

Thermal Electron Attachment and
Detachment in Gases, Thomas M. Miller

Recent Developments in the Measurement
of Static Electric Dipole Polarizabilities,
Harvey Gould and Thomas M. Miller

Trapping and Moving Atoms on Surfaces,
Robert J. Celotta and Joseph A. Stroscio

Electron-Impact Excitation Cross Sections
of Sodium, Chun C. Lin and John
B. Boffard

Atomic and Ionic Collisions, Edward
Pollack

Atomic Interactions in Weakly Ionized
Gas: Ionizing Shock Waves in Neon,
Leposava Vušković and Svetozar
Popović
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