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ABSTRACT 

Any power quality disturbance waveform can be seen as 

superimposition of  various oscillating modes.  It becomes 

necessary to separate different components of single frequency or 

narrow band of frequencies from a non stationary signal to 

identify the causes which contribute to power quality 

disturbances.  In this paper a method is proposed to detect and 

classify voltage sag causes based on Empirical Mode 

Decomposition (EMD) with Hilbert Transform ( called Hilbert-

Huang Transform) and Probabilistic Neural Network (PNN). The 

key feature of EMD is to decompose a non stationary signal into 

mono component signals called Intrinsic Mode Functions (IMFs). 

Further the Hilbert transform of each IMF provides frequency 

information evolving with time and variation in  magnitude and 

phase  due to oscillation at different time scales and locations. The 

characteristic features of the first three IMFs of each disturbance 

waveform are obtained. Finally PNN is used to classify the 

characteristic features for identification of voltage sag causes. 

Three voltage sag causes are taken for classification (i) Three 

phase short circuit (ii) Starting of induction motor and (iii) Three 

phase transformer energization. Results show that the classifier 

can detect and classify the voltage sag causes efficiently.    

Keywords 

Empirical mode decomposition, intrinsic mode functions, hilbert 

transform, probabilistic neural network, voltage sag causes.  

1. INTRODUCTION 
Power quality has become an important issue of electrical power 

system operation in recent years [1], because of the increased use 

of modern power electronic devices that are very sensitive to 

voltage disturbances. The most commonly attributed power 

quality disturbances are voltage sag, voltage swell, interruptions, 

voltage flicker, voltage fluctuations and harmonics. To mitigate 

The power quality disturbances, one has to know about the 

sources of power system disturbances or the actual causes behind 

them. This can be achieved by detecting and classifying the 

different power system disturbances. Disturbance data and power 

quality data have become important information both for 

statistical purposes and for decision making in mitigation devices. 

This requires the analysis of data and classification so that a lot of 

time could be saved if they are done automatically.  

Voltage sag is one of the most disturbing power quality problem. 

The voltage sags are mostly due to short circuit fault, starting of 

induction motor or due to transformer energizing. A simple way 

to analyze any signal is by Fourier Transform [2](FT). However it 

provides only frequency content, therefore this method is 

applicable for stationary signals. To over come this drawback, 

Short Time Fourier Transform (STFT)   is proposed [3-4] which 

maps a signal into a two dimensional function of time and 

frequency. The STFT extracts time and frequency information, the 

disadvantage is that the size of the window is fixed for all 

frequencies. The wavelet analysis [5-7] represents a windowing 

technique with variable regions to overcome   the deficiency. It 

provides a unified methodology to characterize power quality 

events by decomposing the signal into time and frequency 

resolution. A wavelet transform expands a signal in terms of 

trigonometric polynomial by using wavelets generated using 

transition (shift in time) and dilation (compression in time) of a 

fixed wavelet function. So wavelet function is localized both in 

time and frequency, yielding wavelet coefficients at different 

scales. The draw back of wavelet transform is that its ability to 

detect under noisy conditions is not accurate.  The S-transform[8] 

on the other hand is an extension to wavelet transform and is 

based on  moving  and scalable localizing Gaussian window.   

 This paper presents the Empirical Mode Decomposition 

(EMD), introduced by Huang [9], together with Hilbert transform 

for extracting mono component and symmetric components using 

the varying instantaneous amplitude and frequency from multi 

component non stationary signals. These mono component signals 

are called the Intrinsic Mode Functions. The advantage of this 

method is that it does not require predetermined set of functions 

as in previous methods and it allows projection of a non stationary 

signal onto a time frequency plane using a mono component 

signals, from the original signal itself thus making it adaptive in 

nature.  

 This   paper is organized into eight sections, section 2 gives 

introduction to EMD and its implementation on  a distorted 

waveform  to extract IMFs. Section 3 presents the application of 

Hilbert transform to the IMFs. Section 4 deals with three voltage 

sag causes and various  features extracted from the respective 

IMFs. Section 5 explains the probabilistic neural  network  

classification for voltage sag causes. Section 6 gives the results 

and discussion about the methodology. Section 7   gives the 

conclusions of the work.  In the end  section 8 gives the 

references. 
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2. EMPIRICAL MODE DECOMPOSITION 
When a signal is not stationary amplitude and frequency change  

with time as in the case of most power quality disturbances. 

Representing such a non-stationary signal as a combination of 

different sinusoidal signals will not be accurate and single 

frequency can not be defined. This accounts for a parameter which 

vary with time. So it is necessary to have a more flexible and 

extended notion of frequency. This gives rise to an idea of 

Instantaneous  frequency. (IF) which means for a signal having a 

single frequency  or narrow band of frequencies. Many of the 

power quality  disturbances are non stationary and the concept of 

IF would be of great help. Therefore it becomes important for 

such an algorithm which separates different components of single 

frequency  such that IF can be defined for each signal. Empirical 

mode decomposition is a method which extracts mono component  

and symmetric components from   the non linear and non 

stationary signals by sifting  process. The name, sifting, indicates 

the process of removing the lowest frequency information until 

only the highest frequency remains. The key feature of  EMD is to 

decompose a signal into so called Intrinsic mode functions. These 

Intrinsic Mode Functions extracted from the original signal are 

mono component composing of single frequency or narrow band 

of frequencies. Huang   et al.  defined an oscillating wave as an 

IMF if it satisfies the following two conditions : 

(a) For a data set, the number of extreme and the number of zero  

crossings must either be equal or differ at most by one. 

(b) At any point, the mean value of the envelope defined by the 

local maxima and the local minima is zero. 

The essential step of extracting an IMF is by iteratively 

conducting the sifting process as given below:    

(i) The upper and the lower envelopes are constructed by 

connecting  all the maxima  and all the minima with cubic 

splines, respectively. 

(ii)  Take the mean of the two envelopes and let it be  defined as 

m(t). 

(iii)  Subtract the mean m(t)  from the original signal x(t) to get a 

component h1(t), where 

(1)                            )()()(1 tmtxth  

(iv) If  h1(t) satisfies the two conditions of IMFs , then  h1(t) is 

the first intrinsic mode function else it is treated as the 

original function and steps (i) - (iii) are repeated to get 

component h11(t)  such that 

(2)                         )()()( 1111 tmthth  

(v) The above sifting process is repeated k times, h1k(t)  becomes 

an first IMF and be known as IMF1. 

(vi) Separate IMF1  from x(t) and let it be r1(t), such that 

  (3)                                )()()( 11 thtxtr k  

(vii) Now taking the signal r1(t)  as the original signal and 

repeating the steps (i) – (vi)  second IMF is obtained. 

(viii)The above procedure is repeated n times and such n IMFs are 

obtained. 

(ix) The stopping criterion for the decomposition process is when   

rn(t) becomes a monotonic function from which no more IMF 

can be extracted. 

 

An example of voltage sag with harmonics is taken for 

implementation of EMD to extract intrinsic mode functions. The 

following figure 1. shows the IMFs. 
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Figure 1. Empirical mode decomposition with corresponding 

IMFs (a) voltage sag with harmonics (b)-(f) IMFs. 

 

3.  HILBERT TRANSFORM 
The Instantaneous frequency of each IMF is calculated by using 

the Hilbert Transform[10]. The Hilbert Transform of a real valued 

time domain signal  x(t) is another real valued time domain signal, 

denoted by x̂ (t), such that z(t) = x(t) + j x̂ (t) is an analytic 

signal. From z(t), one can define a magnitude function A(t) and a 

phase function θ(t), where the first describes  the envelope of the 

original function x(t) versus time and  θ(t)   describes the 

instantaneous phase of x(t) versus time. 

The Hilbert transform of a real-valued function x(t) extending 

over the range -∞ < t < + ∞ is a real-valued function x̂ (t) defined 

by: 

           

Thus x̂ (t) is the convolution integral of x(t) and (1/πt), written as:  

           
Like Fourier transforms, Hilbert transforms are linear operators.  

A useful point of view to understand and to compute the Hilbert 

Transform  of x̂ (t) is using the analytic signal  z(t) associated 

with x(t),  as  

 
that can be rewritten also as:  

                
where A(t) is called the envelope signal of x(t) and θ(t) is called 

the instantaneous phase signal of x(t).  

In terms of x(t) and x̂ (t), it is clear that:  

 

 
and the “instantaneous frequency” is given by:  

  
                                            

4.   VOLTAGE SAG CAUSES AND THEIR 

FEATURE EXTRACTION 

4.1 Fault – induced voltage sag (rectangular) 
Fault-induced voltage sags are considered as they are  severe and  

cause problems to a large number of customers and propagate in 

the system. The magnitude of this type of voltage sag at a certain 

point in the system depends mainly on the type of the fault, the 

distance to the fault, the system configuration and the fault 

resistance. Its duration depends on the type of protection that is 

used. Faults are either symmetrical (three phase or three phase-to 

ground fault) or non-symmetrical (single phase or double phase or 

double phase-to-ground faults). Depending on the type of fault the 

magnitudes of the voltage sag of each phase might be equal 

(symmetrical fault) or unequal (non symmetrical faults). Here 

symmetrical fault is considered as it is balanced voltage sag.  They 

are rectangular sags, voltage drops very fast and remains almost 

constant to a new lower value until protection operates. The 

characteristics of such sags are  (1) Immediate recovery of voltage   

(2) The change in the phase angle and (3) No harmonic distortion. 

A three phase short circuit was applied on 11Kv power system 

network for different values of fault resistance (Rf) were 

simulated. The duration of fault applied and time of application 

were varied. The disturbance is referred as VSC1. All the power 

quality disturbances are generated using MATLAB/SIMULINK 

software.   Figure 2.(a), shows  waveform of the voltage sag  due  

three phase short circuit  (magnitude (pu)),(b), voltage magnitude 

(rms), (c)-(h),corresponding IMFs.  
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Figure  2.  (a)  voltage sag due to three phase short circuit 

(Rf=10 Ω) ,(b) voltage magnitude (rms), (c)-(h)   IMFs . 

 

4.2 Voltage sag due to transformer 

energization (non-rectangular) 
Transformer saturation might occur during energizing or changes 

in the voltage at the transformer terminals. It causes non-

rectangular voltage sags and temporary harmonic distortion. The 

voltage sag caused by transformer energization presents different 

RMS magnitude. The characteristics of such sags are  (1) 

Unbalanced sag in all three phases  (2) Shallow voltage sag  

(3)Gradual recovery of voltage (4) No phase angle shift (5)  

Harmonic distortions. In this case a 500Kv power system 

consisting of a 500/315Kv  two winding transformer was 

energized for simulating the waveforms. The point on wave for 

energizing the transformer was varied. The simulations were 

carried out for star/delta, star/star, and delta/star connections.  The 

disturbance is referred as VSC2.  Figure 3. (a) Shows the voltage 

sag  waveform due transformer energization  (magnitude (pu)), 

(b),  voltage magnitude (rms) , (c)-(k) corresponding IMFs.  
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Figure  3.  (a)  voltage sag due to  transformer energization   

(b) voltage magnitude (rms), (c)-(k)   IMFs . 

 

4.3  Voltage Sag due to Induction Motor 

Starting(non-rectangular) 
During starting, motors draw approximately five-times their full-

load running current, and at a very low power factor. This starting 

current causes shallow voltage sags. The magnitude of the voltage 

sag depends on the characteristics of the induction motor and the 

strength of the system at the point that the motor is connected.  

The characteristics  of such sags are  (1) Balanced sag in all three 

phases  (2) Shallow voltage sag  (3) Gradual recovery of voltage 

(4) No phase angle shift (5) No  harmonic distortions.  In this case  

a 400v power system network with the following 5.4, 

10,20,50,100,150HP rating of the induction motor were 

considered.  The disturbance is referred as VSC3. Figure 4.(a) 

shows the voltage sag waveform due  starting of induction motor , 

(b) voltage magnitude (rms) , (c)-(h) corresponding IMFs.  
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Figure 4.  (a)  voltage sag due to starting of induction motor 

(b) voltage magnitude (rms), (c)-(h)   IMFs . 

 

Feature exaction is a pre-processing  operation that transforms a 

pattern from its original form to a new form suitable for further 

processing like classification of events. Features of the 

disturbance signal are extracted  by applying the Hilbert transform 

to the IMFs obtained from the EMD. The first three IMFs are 

considered for the feature extraction, as the number of  IMFs are 

not the same all the disturbances. The reason for this is, that the 

number of IMFs  depends on the nature of the original signal. The 

following three features are  

(a) Energy distribution 

(b) Standard deviation of the amplitude 

(c) Standard deviation of the phase. 

Thus, we have   nine features from the three IMFs for each 

disturbance.             

 

5.  PROBABILISTIC NEURAL NETWORK 

FOR CLASSIFICATION OF VOLTAGE 

SAG CAUSES 
The probabilistic neural network [11] (PNN) is a supervised 

neural network that is widely used in the area of pattern 

recognition, nonlinear mapping, and estimation of the probability 

of class membership.  It is closely related to Bayes classification 

rule, and Parzen nonparametric probability density function 

(PDF) estimation theory. The fact that PNNs offer a way to 

interpret the network’s structure in terms of probability density 

functions is an important merit of this type of networks. The 

standard training procedure for PNNs requires a single pass over 

all the patterns of the training set. This characteristic renders 

PNNs faster to train suitable for classification of power quality 

events. The architecture of PNN is composed of radial basis layer 

and competitive layer as shown in figure 5.  

 

 

Figure 5. Architecture of  PNN 

 

For a classification application, the training data is classified 

according to their distribution values of probabilistic density 

function. A simple PDF is given by 

(11)               
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Modifying and applying (11) to the output vector H of the hidden 

layer in the PNN is given by  

(12)                      
2
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i
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where  

i   number of input layers; 
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h  number of hidden layers; 

j   number of output layers; 

k  number of training examples; 

N number of classifications (clusters); 

 σ smoothing parameter (standard deviation); 

X input vector;  

kjXX Euclidean distance between the vectors X and Xkj; 

xh

ihW  connection weight between the input layer X and the 

hidden layer H; 

hy

hjW   connection weight between the hidden layer H and the 

output layer Y; 

Figure 6. shows the block diagram for classification of voltage sag 

causes using PNN.  

 

 

6.  RESULTS AND DISCUSSION 
Three voltage sag causes are taken they are  (i) Three phase short 

circuit (ii) Starting of induction motor and (iii) Three phase 

transformer energization.  The input signal  is decomposed into 

number of modes by applying the Empirical mode decomposition. 

These decomposed mono component signals  are called the IMFs. 

Hilbert transform of the first three IMFs is taken.  Three features 

energy distribution, standard deviation of the amplitude and 

standard deviation of the phase of the three IMFs  are extracted. 

These features are given as inputs to PNN. Simulations are 

performed to generate about 145 signals, 45 data set are used for 

training the PNN classifier and 100 are used for testing the 

classifier. When PNN is trained, the spread factor is tuned by trial 

and error method to 0.1, which has given better results. As shown 

in the Table.1 the PNN classifies all the testing samples 

accurately.  However 3    disturbances events are classified 

incorrectly and the overall efficiency is 96.67 %. 

 

 

Table 1. Classification results using PNN 

Cases VSC1 VSC2 VSC3 

VSC1 40 0 0 

VSC2 0 27 3 

VSC3 0 0 30 

Classification 

efficiency in % 

100 90 100 

Classification  

error in % 

0 10 0 

Overall efficiency 96.67 % 

 

7.  CONCLUSIONS 
In this paper PNN classifier combined with Hilbert transform is 

used  to classify the type of voltage sag causes. EMD is used to 

decompose the original signal into mono component signals 

called the IMFs.  Hilbert transform is applied to extract  the 

features from first three IMFs.  PNN classifier is used to classify 

the power quality disturbances. The results show that the method 

is efficient in classifying the voltage sag causes.   

8.  REFERENCES 
[1] Damarla, G. P., Chandrasekaran, A., & Sundaram, A.  

“Classification of power system disturbances through fuzzy 

neural network” in Electrical and Computer Engineering 

conference (pp. 68–71). Canada.owman, M., Debray, S. K., 

and Peterson, L. L. 1993. 

[2] R. A. Flores, “State of art in the classification of power 

quality events, an overview,”, in  Proc. 10th Int. Conf. 

Harmonics Quality Power,2002, vol. 1,pp.17-20. 

[3] Y. H. Gu and M. H. J. Bollen, “ Time-frequency and time-

scale domain analysis of voltage disturbances,” IEEE Trans. 

Power Delivery, vol. 15, no.4 pp. 1279-1284, October 2000.  

[4] F. Jurado, N. Acero, and B. Ogayar, “Application of signal 

processing tools for power quality ,” in Proc. Canadian  

Conf. Electrical and Computer Engineering ,May 2002, 

vol.1,pp 82-87. 

[5] S. Santoso, W. M. Grady, E. J. Powers, J. Lamoure, and S. 

C. Bhatt, “Characterization of distribution power quality 

events with Fourier and Wavelet transforms,”IEEE Trans. 

Power Delivery , vol.15, no.1,pp. 247-245,January 2000.  

Voltage waveform sampled data 

 

Empirical mode decomposition 

 

Hilbert Transform of each IMF 

 

Three Features are extracted 

1) Energy distribution 

2) Standard deviation of amplitude  

3) Standard deviation of phase  

 

        VSC1 
     

VSC2 

         

VSC3 

Classification using 

Probabilistic Neural Network 

 

IMF1 IMF2 

 

IMFn 

 

Figure 6.  Block diagram for classification of 

voltage sag causes. 

 



©2010 International Journal of Computer Applications (0975 - 8887) 

Volume 1 – No. 20 

 

29 

 

[6] Z. L. Gaing , “ Wavelet based neural network for power 

disturbance recognition and classification,” IEEE Trans. 

Power Delivery , vol.19, no.4,pp.1560-1568,Oct. 2004.  

[7] M.Gaouda, M.M.A.Salama and M.R.Sultan, A.Y.Chikhani, 

"Power Quality Detection and Classification Using Wavelet 

Multiressolution Signal Decomposition”, IEEE Transactions 

on Power Delivery, Volume 14, Issue 4 October 1999, pp. 

1469-1476. 

[8] M. V.  Chiukuri and P. K. Dash, “Multiresolution S-

Transform based fuzzy recognition system for power quality 

events,” IEEE Trans. Power Delivery ,vol.19,no.1, pp.323-

330,January 2004. 

[9] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. 

Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode 

decomposition and hilbert spectrum for nonlinear and 

nonstationary time series analysis, Proceedings of the Royal 

Society, London, Series A 454, 903–995, 1998. 

[10] H. Amaris, C. Alvarez, M. Alonso, D. Florez, T. Lobos, P. 

Janik, J. Rezmer, Z. Waclawek,” Application of advanced  

signal processing methods for accurate detection of voltage 

dips,’ 13th International Conference on Harmonics and 

Quality of Power, ICHQP 2008,Wollongong,Australia, pp.6 

28th September 2008. 

[11] S. Mishra, C. N. Bhende, and B. K. Panigrahi, “ Detection 

and classification of power quality using S-transforms  and 

probabilistic neural network, “ IEEE Transactions on Power 

Delivery, Vol 23, Issue 1, January 2008, pp.280-287.284. 

 

 


