
A Framework for Generalized Control Dependence

Gianfranco Bilardi Keshav Pingali

DEI� Universit�a di Padova� ����� Padova� Italy Department of Computer Science

EECS� University of Illinois� Chicago� IL ����� Cornell University� Ithaca� NY ��	��

Abstract

We generalize the notion of dominance by de
ning a
generalized dominance relation with respect to a set of
paths in the control �ow graph G � 
V�E�� This new
de
nition leads to a generalized notion of control de�
pendence� which includes standard control dependence
and weak control dependence as special cases�
If the set of paths underlying a generalized domi�

nance relation satis
es some natural closure conditions�
that dominance relation is tree�structured� Given this
tree� the corresponding control dependence relation can
be computed optimally by reduction to the Roman
Chariots Problem� which we have developed previously
for computing standard control dependence� More pre�
cisely� given linear preprocessing time and space� we
can answer the 
generalized version of the� so called
cd� conds� and cdequiv queries in time proportional
to the output of the query�
To illustrate the utility of the framework� we show

how weak control dependence can be computed opti�
mally in O
jEj� preprocessing space and time� This
improves the O
jV j�� time required by the best previ�
ous algorithm for this problem�

� Introduction

Control dependence was introduced by Ferrante� Ot�

�Gianfranco Bilardi �bilardi�art�dei�unipd�it� was supported
in part by the ESPRIT III Basic Research Programme of the
EC under contract No� ���� �Project GEPPCOM� and by the
Italian Ministry of University and Research�

�Keshav Pingali �pingali�cs�cornell�edu� was supported by
NSF grants CCR����	
�� and CCR��
��
��� ONR grant
N���
�����
��
��� and a grant from Hewlett�Packard Corpora�
tion�

tenstein and Warren �FOW	�� to solve a number of
problems in program analysis and parallelization� In
this paper� we refer to it as classical control depen�
dence since it was the 
rst formalization of the intu�
itive idea that the execution of predicate nodes in a
program determines how control �ows through a pro�
gram� For some applications� other de
nitions of con�
trol dependence have proved to be useful� For exam�
ple� Podgurski and Clarke have proposed the notion of
weak control dependence for proving total correctness
of programs �PC���� Both classical and weak control
dependence are reviewed in Section ��
In Section �� we present a generalized notion of con�

trol dependence� and show that classical and weak con�
trol dependence are special cases of this general de
�
nition� We do this as follows� First� we de
ne a gen�
eralized notion of dominance which is parameterized
with respect to a set of paths in the control �ow graph

CFG�� Then� we use this to generalize the notion of
control dependence in a natural way� and show that
classical and weak control dependence are special cases
of this general notion of control dependence� Appli�
cations of control dependence usually require answers
to queries known as cd� conds� and cdequiv in the
literature �CFS���� For classical control dependence�
we have developed an optimal computational approach
based on a reduction to the Roman Chariots Prob�
lem �PB���� For generalized control dependence� we
show that if the set of paths used in the underlying
dominance relation satis
es some natural closure prop�
erties� the dominance relation is tree�structured� for
such control dependence relations� our solution to the
Roman Chariots Problem immediately provides an op�
timal computational approach�
In Sections � and �� we focus on weak control depen�

dence� and its underlying dominance relation� which
we call loop postdominance� In Section �� we show that
the loop postdominance relation is tree structured� and
that its transitive reduction� the loop postdominance
forest� is a pruning of the standard postdominator tree�
This fact was proved earlier by Podgurski in his the�



sis �Pod	��� However� we give a new characterization of
the set of edges to be pruned� in terms of a set of nodes
called crowns� In Section �� we give an O
jEj� algo�
rithm based on depth�
rst search for computing the set
of crowns� Crowns are used to build the loop postdom�
inator forest in O
jEj� time� Using this data structure�
we exploit our solution to the Roman Chariots Prob�
lem to solve the problem of answering cd� conds and
cdequiv queries on the weak control dependence rela�
tion optimally 
that is� in O
jEj� preprocessing time�
and query time proportional to the size of the answer
to a query�� This improves the O
jV j�� preprocessing
time required by Podgurski and Clarke�s algorithm for
answering cd and conds queries� it also provides an
optimal algorithm for answering cdequiv queries�

� Two Control Dependence Re�

lations

The following de
nitions are standard�

De�nition � A control �ow graph �CFG� G �

V�E� is a directed graph in which nodes represent
statements� and an edge u� v represents possible �ow
of control from u to v� Set V contains two distinguished
nodes� START� with no predecessors and from which ev�
ery node is reachable� and END� with no successors and
reachable from every node�

It is convenient to assume that E contains edges
START� END 
as in �FOW	��� and END� END�

De�nition � A node w postdominates a node v if
every path from v to END contains w� If� in addition�
w �� v� then w is said to strictly postdominate v�

It can be shown that postdominance is a transi�
tive relation with a tree�structured transitive reduction
called the postdominator tree� which can be constructed
in O
jEj�
jEj�� time by an algorithm due to Tarjan
and Lengauer �LT���� or in O
jEj� time by a rather
more complicated algorithm due to Harel �Har	���
Classical control dependence can be de
ned formally

as follows �FOW	���

De�nition � A node w is control dependent on
edge 
u� v� � E if

�� w postdominates v� and
�� w does not strictly postdominate u�

Intuitively� this means that if control �ows from node
u to node v along edge u� v� it will eventually reach
node w� however� control may reach END from u with�
out passing through w� Thus� u is a �decision�point�
that in�uences the execution of w� Figure � shows a
CFG� its postdominator tree and its classical control

dependence relation� We will often use the term con�
trol dependence� without any quali
cations� to refer to
classical control dependence�
Podgurski and Clarke have introduced weak control

dependence �PC���� which is more appropriate than
the classical one for proving total correctness of pro�
grams� In this paper� we call it loop control depen�
dence because we give an alternative de
nition of it
based on the concept of loop postdominance� given be�
low� Figure � shows a program in which classical and
loop control dependence di�er� Consider node k in the
CFG� In the classical notion� k is control dependent on
g� a� However� to prove that k will be executed� it is
necessary to prove that the loop a� b� a terminates�
Therefore� in the context of proving total correctness of
programs� it is more appropriate to make k loop con�
trol dependent on the exit of the loop � namely� the
edge b � k� In programs without cycles� the classical
and loop control dependence relations are identical�

De�nition � Assume that END� END � E� A node w
loop postdominates a node v if every in�nite path
starting at v contains w� If� in addition� w �� v� then
w is said to strictly loop postdominate v�

In other words� if control reaches a node v� and w

loop postdominates v� then control will reach w in a

nite number of steps� whether or not the program ter�
minates 
that is� whether or not control reaches END��

De�nition � A node w is loop control dependent
on edge 
u� v� � E if

�� w loop postdominates v� and
�� w does not strictly loop postdominate u�

Intuitively� this means that 
i� if control reaches v� it
must reach w in a 
nite number of steps� and 
ii� from
u� it is possible for control to reach a cycle of nodes

possibly� the self loop at END� without encountering
w� It can be shown that loop control dependence is
equivalent to Podgurski and Clarke�s weak control de�
pendence�
In applications of any control dependence relation�

the following queries arise naturally for a given edge e
or node v �CFS����

�� cd
e�� which nodes are control dependent on e�
�� conds
v�� which edges is v control dependent on�
�� cdequiv
v�� which other nodes are control depen�

dent on the same set of edges as v�

� The Framework

We now discuss a general framework which uni
es clas�
sical and weak control dependence� and supports the
design of optimal algorithms for answering queries on
such relations�



a

END

h

fe

g

START

b

dc

END

d

fe

c

END

d

fe

c
k

a

b b

a

(a) Control Flow Graph (b) Postdominator tree

: control dependence

g START STARThk hk g

gSTART
g d
g a
f c

d
a
h
h
k

a b c d e f g h k

b
f
e
b
e

E V

(d) Control Dependence and Loop control dependence

: loop control dependence

(c) Loop  postdominator  forest

Figure �� A Program and Two Control Dependence Relations

By the standard de
nition of postdominance�w post�
dominates v if every path from v to END contains w� In
other words� all terminating executions that reach v

eventually reach w� We generalize this notion by con�
sidering an arbitrary class of possible executions� mod�
eled as a set of paths P in the CFG� Di�erent notions
of dominance and� correspondingly� of control depen�
dence� arise from di�erent choices for P �
Let I be a 
possibly in
nite� interval on the integer

line� A path of the CFG is a sequence of nodes fvi � V �
i � Ig such that if i� i� � � I then 
vi � vi��� � E� A
path is �nite� of length n� when I � f�� �� � � � � ng and
becomes trivial when n � �� A path is right in�nite
when I is the set of positive integers and is left in�nite
when I is the set of negative integers�

De�nition 	 Given a set of paths P in a directed
graph G � 
V�E�� let Pv denote the subset of paths
in P that contain v � V � We say that v P�dominates
u� denoted v � u� if and only if Pv � Pu�

Technically� �P would be a more appropriate nota�
tion� we omit the subscript for simplicity�

De�nition 
 We say that w � V is P�control de�
pendent upon edge 
u� v� � E if

� w � v� and
� if u �� w� then w �� u�

Here are some interesting path sets� and the corre�
sponding dominance relations�

De�nition �

�� S� the set of �nite paths starting at START�
S�dominance 	 predominance 
classical domi�
nance��

�� E� the set of �nite paths ending at END�
E�dominance 	 postdominance�

�� B� the set of �nite paths from START to END�
B�dominance 	 predominance OR postdominance�


� L� the set of left�in�nite paths�
L�dominance 	 loop predominance�

�� R� the set of right�in�nite paths�
R�dominance 	 loop postdominance�

In the following two subsections� we study properties
of P that lead to a forest�structured dominance rela�
tion and enable the formulation of control dependence
queries in terms of the Roman Chariots Problem�

��� The P�dominance Relation

The following properties of a set of paths P are of in�
terest�

De�nition 


� Pre
x Closure� Any pre�x of a path in P is in P�
� Su�x Closure� Any su�x of a path in P is in P�
� Junction Closure� Whenever ��v�� and ��v�� are
in P� then ��v�� is also in P�

� Preaugmentation Closure� If 
u � v� � E and

v�� � P then 
uv�� � P�



� Postaugmentation Closure� If 
u � v� � E and

�u� � P then 
�uv� � P�

It is easy to verify that S and L satisfy pre
x�
postaugmentation� and junction closure� E and R
satisfy su�x� preaugmentation� and junction closure�
while B satis
es junction closure� It is trivial to show
that su�x and preaugmentation closure 
or symmetri�
cally� pre
x and postaugmentation closure� of P imply
junction closure of P �
Next� we establish su�cient conditions on P that

guarantee that the P�dominance relation is forest�
structured�

Theorem � Let P be a set of paths with pre�x 
or
su�x� and junction closure� such that set Pv�s are not
empty and are distinct from each other�
Then� P�dominance is a partial order 
i�e�� a re�ex�

ive� transitive� and antisymmetric relation�� and its
transitive reduction is forest�structured 
i�e�� a node
has at most one predecessor in the reduction��

Proof� Re�exivity and transitivity follow from De�ni�
tion � and the analogous properties of set inclusion�
Antisymmetry follows from the distinctness of the Pv�s�
Below� we assume su�x closure� the argument for pre�

�x closure being similar�
We begin by claiming that �v � u and w � u	 implies

�v � w or w � v	� In fact� let � � Pu �exploiting the
assumption that Pu is not empty	� By de�nition of dom�
inance� � contains both v and w� By the su�x property�
assume that � starts at u and� w�l�o�g�� assume that v
occurs before w on �� Then� we can write � 
 ��v���
with �� w�free� Let now � 
 ��v�� be any path in Pv�
By the junction property� ��v�� � Pu� hence it contains
w� Since �� is w�free� w must occur on ��� Therefore�
� � Pw� In conclusion� Pv � Pw� hence w � v�
Assume that �u� v	 and �u�w	 are related by the tran�

sitive reduction of P�dominance� We claim that v 
 w�
In fact� by the previous claim� either v dominates w or
vice versa� Say v � w� Then� u � w is a transitive conse�
quence of u � v and v � w� therefore the pair �u�w	 can
not be in the transitive reduction� unless w 
 v� In con�
clusion� at most one node can immediately P�dominate
u� which implies that the P�dominance relation is forest�
structured� �

Theorem � and the observations preceding it imme�
diately lead to the following result�

Corollary � The transitive reductions of the classical
dominance relation� classical postdominance relation�
loop predominance relation� and loop postdominance re�
lation are all forest�structured�

It is useful to represent the transitive reduction of
a P�dominance relation as a graph� called the P�
dominance graph� Under the assumptions of Theorem
�� this graph is a forest� directed from root to leaves� It

is convenient to make this forest into a tree by adding
to V a distinguished node � and an edge from it to
each node of V with no parent in the forest 
such as
nodes g�b�e and f in Figure ��� Node � is not shown
in Figure �
c� to avoid cluttering the diagram�
The tree just introduced will be referred to as the

P�dominator tree� In it� each node v � V has a
parent called the immediate P�dominator of v� and de�
noted iPdom
v�� When P � S� the P�dominator tree
becomes the classical dominator tree� and iPdom
v�
is the immediate dominator of v� Similarly� when
P � E � the classical postdominator tree is obtained
and iPdom
v� is the immediate postdominator of v�

��� Control Dependence Computations
and the Roman Chariots Problem

In �PB���� it was shown that the computation of clas�
sical control dependence can be reduced to the Ro�
man Chariots Problem� Based on the following result�
we extend this reduction to any forest�structured P�
dominance relation�

Theorem � Given a P�dominator tree and a control
�ow edge 
u � v� � E� let z denote the least com�
mon ancestor 
denoted by lca� of v and iPdom
u��
Then� the nodes of V that are P�control dependent upon

u� v� are exactly those in the simple path in the P�
dominator tree from v to z� not including z�

Proof� Consider a node w that is P�control dependent
upon �u � v	� With reference to the two clauses of
De�nition �� we have�

� w must P�dominate v hence� by the tree�structured
property� must lie on the path �v from v to the root
� of the P�dominator tree�

� if w �
 u� then w must not P�dominate u hence� by
the tree�structured property� must lie outside the
path �iPdom�u� from iPdom�u	 to the root � of
the P�dominator tree�

Then� w must lie on �v � �iPdom�u� � This di
erence is
a path starting at v and going up to� but not including
the �rst intersection of �v and �iPdom�u�� which is the
nearest common ancestor z of v and iPdom�u	� �

For example� in Figure �� the nodes that are loop
control dependent on 
g � d� are d and f � The im�
mediate loop postdominator of g is �� and the least
common ancestor of d and� is�� The nodes that are
loop control dependent on 
g � d� are the nodes on the
path from d to�� excluding�� namely� nodes d and
f � Given the P�dominator tree� this least common an�
cestor computation for all CFG edges simultaneously
can be done in O
jEj� time using the well�known algo�
rithm of Harel and Tarjan �HT	���
We now recall the formulation of the Roman Chari�

ots problem�



Roman Chariots Problem� The major arteries of
the Roman road system are organized as a rooted tree
in which nodes represent cities� edges represent roads
and the root represents Rome� Public transportation
is provided by chariots� and the cities on each chariot
route are totally ordered by the ancestor relation in the
tree� Given a rooted tree T �� V�F�ROME � and an
array A����m� of chariot routes in which each route is
speci�ed by its end points� design a data structure to
answer the following queries optimally�

�� cd
e�� Enumerate the cities on route e�
�� conds
v�� Enumerate the routes that serve city v�
�� cdequiv
v�� Enumerate the cities served by ex�

actly the same routes that serve city v�

To make the connection with the control dependence
problem� let the P�dominator tree be the rooted tree T �
For each edge 
u � v� � E� insert in array A a char�
iot route with endpoints v and lca
v� iPdom
u��� as
described in Theorem �� Then� a control dependence
query can be reformulated immediately as a Roman
Chariots query� Therefore� these queries can be pro�
cessed in time proportional to their output size� using
the APT 
augmented P�dominator tree� data struc�
ture introduced in �PB����
Therefore� given a CFG G � 
V�E� and a set of

paths P satisfying the assumptions of Theorem �� we
can build a data structure to answer P�control depen�
dence queries optimally� provided we can build the P�
dominance tree e�ciently�

��� An Important Special Case

For classical control dependence� it is well�known that
the nodes that are control dependent on a given edge
form a simple path in the postdominator tree �FOW	���
Indeed� in this special case� a stronger property holds�
if 
u � v� � E� then iPdom
u� is an ancestor of v�
Therefore� we see that the least common ancestor of
v and iPdom
u� is z � iPdom
u�� and this node can
be identi
ed without recourse to the Harel and Tarjan
algorithm�
Although not essential� this property does simplify

the reduction to the Roman Chariot Problem� and it
can be useful in other ways� We show below that su�x
and preaugmentation closure are su�cient conditions
for it� 
As these two properties together imply junction
closure� Theorem � holds��

Proposition � Let P be a set of paths with su�x and
preaugmentation closure� If 
u � v� � E� then every
w �� u that P�dominates u also P�dominates v� i�e��
iPdom
u� is an ancestor of v�

Proof� Let � � Pv� Then� � contains v and hence a suf�
�x of the form v�� Due to su�x closure� �v�	 � Pv�
Due to the preaugmentation property� we have that

�uv�	 � P� As u occurs on this path� any w that P�
dominates u must also occur on it� in particular �being
w �
 u	 w must occur on the portion v�� Since the latter
is a su�x of �� we conclude the w occurs on �� and that
Pv � Pw� �

An analogous proposition holds under pre
x and
postaugmentation closure� The assumptions of Propo�
sition � simplify the algorithm considerably� If these
assumptions are met� then the set of nodes control de�
pendent on an edge u� v are simply the nodes on the
simple path from v to parent
u�� excluding parent
u��
The critical step remains the computation of the

P�dominator tree� Linear time solutions are known
�Har	�� for P � S and P � E � that is� for the classi�
cal dominator and postdominator tree� In the rest of
the paper� we develop a linear time algorithm for loop
postdominance 
P � R��

� Relating Loop Postdomi�

nance to Postdominance

We now take a close look at the relation between R�
dominance� also called loop postdominance� and E�
dominance� i�e�� classical postdominance� We shall as�
sume that the edge END � END is present in the CFG�
Then� the paths in E 

nite paths terminating at END�
are in a natural correspondence with the right�in
nite
paths inR� � R in which only a 
nite number of nodes
di�er from END� In fact� postdominance could be de�

ned by letting P � R��
It is a straightforward consequence of De
nition �

that dominance is nondecreasing with the path set P �
in the sense that if Q � P � then Q�dominance � P�
dominance� As a corollary 
when P � R� and Q � R��
we see that loop postdominance is a subset of postdom�
inance�
In general� inclusion between two transitive relations

does not imply inclusion between their transitive re�
ductions� Fortunately� we can show that the loop post�
dominance forest 
denoted lpd�forest� is obtained by a
suitable pruning of the postdominance tree 
denoted
pd�tree�� This can be seen in Figure � for the running
example� First� we introduce some notation�

� v pd u� v postdominates 
E�dominates� u�
� v lpd u� v loop postdominates 
R�dominates� u�
� ipd
a�� iEdom
a�� the immediate postdominator
of a�

� ilpd
a�� iRdom
a�� the immediate loop postdom�
inator of a�

Proposition � If ilpd
a� �� � then ilpd
a� �
ipd
a��

Proof� Let b 
 ilpd�a	 � V � By contradiction� assume
that b �
 ipd�a	� Then� there is a c � V such that b pd c



and c pd a� Let � � Ra be a right�in�nite path starting
at a� We distinguish two cases�

� END occurs on �� Then� let �� be the smallest pre�x
of � from a to END� Since c pd a� then c occurs on
��� hence it occurs on � and � � Rc�

� END does not occur on �� Since b lpd a� node b

must occur on �� Moreover� since b pd c� there is a
c�free path � from b to END� Let �� be the smallest
pre�x of � from a to b� Then� ��� goes from a to
END and� considering that c pd a� it must contain
c� Since � is c�free� c must occur on ��� hence it
occurs on � and � � Rc�

In both cases� we see that Ra � Rc� so conclude that
c lpd a� By Theorem �� b and c are ordered by loop
postdominance� Given that b 
 ilpd�a	� it must be
true that c lpd b which� since loop postdominance im�
plies postdominance� yields c pd b� in contradiction with
b pd c �postdominance is acyclic	� �

From Proposition �� we see that we can build the
loop postdominance tree by starting with the postdom�
inator tree� and replacing each edge 
ipd
v� � v� with

� � v� for all nodes v for which ilpd
v� �� ipd
v��
A computationally convenient characterization of such
nodes 
in Figure �� nodes b�e�f �g� is the next goal� The
necessary concepts are now introduced�

De�nition �� With reference to a CFG G � 
V�E�
and nodes a�w� x � V � we introduce the following ter�
minology and notation�

� w is prereachable from a� there is a non trivial
path from a to w not containing ipd
a��

� x is a crown� x is prereachable from itself�
� K� the set of crowns of G�
� K�� the set of nodes from which some crown is
prereachable�

Clearly� all the nodes of a path from a to w not con�
taining ipd
a� are strictly postdominated by ipd
a��
In Figure �� e is prereachable from f because the path
f � c � e does not contain ipd
f� � h� Intuitively�
this means e is reachable from f by a path in which all
nodes lie within that subtree of the postdominator tree
that is rooted at ipd
f� � h�
A crown is a node that lies on a cycle that does not

contain its postdominator� In Figure �� b is a crown
since it lies on the cycle a � b � a� and k � ipd
b�
does not� Similarly� e and f are crowns since they lie on
cycle c� e� d� f � c� and h does not� Intuitively�
it is clear that if v is a crown� then ilpd
v� and ipd
v�
are di�erent nodes because there is an in
nite path
starting at v that does not contain ipd
v��
Note that ipd
g� is distinct from ilpd
g� but g is not

a crown� However� there is a path from g to crown f


g � d � f� which does not contain ipd
g�� In other
words� g � K�� We show next that membership in
K� identi
es all nodes for which ipd
v� is distinct from

ilpd
v�� Obviously� membership in K is a special case�
as K � K��

Theorem � For any a � V � if a � K� then
ilpd
a� �� else ilpd
a� � ipd
a��

Proof� As ilpd�END	 
 ipd�END	 
�� the statement is
trivially true for a 
 END� Hereafter� we assume a �
 END�
Part �� a � K� � ilpd�a	 
 �� Consider �rst

the case where there is a crown x prereachable from a�
Let C 
 x�x be a cycle containing x but not ipd�x	�
such a cycle exists by De�nition ��� Let �x be a path
from a to x whose nodes are all strictly postdominated
by b 
 ipd�a	� such a path exists by De�nition ���
Clearly� ��x�	� �where � denotes in�nite repetition� is a
path in Ra � Rb� showing that 	�b lpd a	� Therefore�
by Proposition �� ilpd�a	 
�� and the then clause is
established�
Part �� ilpd�a	 
� � a � K�� In conjunction with

Proposition �� this establishes the else clause�
We let b 
 ipd�a	 and assume that 	�b lpd a	� By

de�nition of loop postdominance� there is a b�free right�
in�nite path � � Ra starting at a� Since � is in�nite�
some node must occur repeatedly� Consider the shortest
pre�x �� of � where a repetition occurs� so that �� has
the form �y�y�
We claim that all nodes on �� are strictly postdomi�

nated by b� Indeed� if some z on �� were not postdomi�
nated by b� the pre�x �� of �� terminating with z could
be augmented with a b�free path � to END� The concate�
nation ��� would then be a b�free path from a to END�
contradicting the assumption that b 
 ipd�a	�
Consider now the cycle C 
 y�y� which is part of ���

and the nearest ancestor x of y whose parent in the pd�
tree is not on C� Clearly� x is a crown prereachable from
a� hence a � K�� �

To summarize� the computation of the loop post�
dominance forest has been reduced to that of set K��
In the next section� we shall 
rst develop an algo�

rithm to compute K from G� Then� we show how
the well known connection between prereachability and
conversion of a program to single static assignment
form �BJP��� CFR���� Wei��� can be exploited to
compute K� from K�

� Optimal Computation of the

Loop Postdominance Forest

We introduce a graph called the sibling connectivity
graph associated with any CFG� which facilitates the
computation of crowns� Speci
cally� while in the CFG
a node is a crown if it lies on a cycle that does not
contain the immediate postdominator of that node� in
the sibling connectivity graph a node is a crown if it
simply lies on a cycle�



�� Initialize the SCG to 
V � fENDg� ���
�� For each node v � V � create an initially empty list L
v��
�� For each edge 
x� v�� if v �� ipd
x� then append 
x � v� to list L
v��
�� Create an initially empty stack ST �
�� For each node v visited during a depth�
rst walk over the pd�tree� do�

�� When entering v for the 
rst time� push v on stack ST �
For each x� v in L
v�� let y be the node pushed immediately on top of ipd
x� in ST �
Add edge x� y to the SCG�

�� When retreating out of v� pop v from stack ST �

fThis computes the SCG�g
�� Determine the set K� of nodes with self loops in the SCG 
during its construction��
�� Find the strongly connected components 
scc�s� of the SCG�

Let K� be the set of nodes contained in scc�s of two or more nodes�
	� Output K � K� 	K� as the set of crowns�

Figure �� Computing the Sibling Connectivity Graph and the Set of Crowns

a

END

h

fe

g

START

b

dc

k

(a) Control Flow Graph 

END

d

fe

ca

b

(b) Postdominator tree

g STARThk

d

e

ca

START

f

hk g

b

(c) Sibling Connectivity Graph

Figure �� The Sibling Connectivity Graph

��� Sibling Connectivity Graph

In this subsection� we de
ne the sibling connectivity
graph and describe a linear time algorithm to compute
it�

De�nition �� With each node b of CFG G � 
V�E��
we associate a graph Gb � 
Vb� Eb� where

Vb � fx � V � ipd
x� � bg

is the set of children of b in the pd�tree� and

Eb � fx� y � x� y � Vb� 

x� v� � E s�t� y pd vg�

The collection of graphs Gb for all nodes b in the
program is called the sibling connectivity graph 
SCG��

An intuitive description of the SCG is the following�
Let x � v be a CFG edge with v �� ipd
x�� If y is
the sibling of x that is an ancestor of v� the SCG has
an edge x � y� 
a self�loop if y � x�� For example� in
Figure �� edge 
g � a� � E� and k is the sibling of g
that is an ancestor of a� therefore� edge 
g � k� occurs

in the SCG� Figure � shows the SCG for the running
example� component Gh consists of the set of nodes
fe� fg and the edges between these nodes�

Proposition � The SCG corresponding to a CFG
G � 
V�E� can be constructed in time O
jV j� jEj��

Proof� The procedure is shown in Figure �� steps ����
A depth��rst walk is performed over the postdominator
tree� First� we construct a list L of edges at each node v �
if x� v is a CFG edge and v is not ipd�x	� then this edge
is entered into list L�v	� During the depth��rst walk� we
maintain a stack of nodes such that when the walk is at
a node n� the stack consists of the ancestors of n ordered
by ancestorship� This is accomplished by pushing a node
n on the stack when the walk �rst reaches n� and popping
it from the stack when retreating out of node n� When
the walk reaches a node v� we examine the list of edges
L�v	 � if x� v is an edge in this list� we �rst locate the
parent of x in the postdominator tree �say p	� and then
�nd the node pushed immediately on top of p in the stack
�say y	� The SCG has an edge x� y� The stack can be
implemented as a doubly�linked list to support this ��nd�
operation �as well as pushing and popping	 in constant
time� The correctness of this procedure follows trivially
from properties of depth��rst search� It is also easy to
show that the entire procedure takes time proportional
to the number of vertices and edges in the CFG� �

��� Crowns

In this subsection� we characterize the crowns with re�
spect to the SCG and develop a fast algorithm to com�
pute the set K of all crowns�

Proposition � With the notation of De�nition ���
y � Vb is prereachable from x � Vb in G if and only if
y is reachable from x in Gb�



Proof� Assume �rst that y is prereachable from x is G�
say via path �� Decompose � as u���u������ur���rur�
with u� 
 x and ur 
 y� where u����ur are those nodes on
� that belong to Vb� while the nodes on �i are descendant
of ui in the pd�tree� Such decomposition �possibly� with
some of the �i�s empty	 is always possible because�

�� by de�nition of prereachability� all nodes on � are
strictly postdominated by b� and

�� if edge u � v is on �� then whenever u and v are
descendant of di
erent children of b in the pd�tree�
then u must be a child of b �by the characterization
of CFG edges with respect to the pd�tree	�

Now� let vi be the node immediately following ui on ��
Then� �ui�� � vi	 � E implies that �ui�� � ui	 � Eb�
Hence� �x 
 u�	u����ur���ur 
 y	 is a path from x to y
in Gb�

For the converse� assume now that y is reachable from
x in Gb� say via a path � 
 u�u����ur� with u� 
 x and
ur 
 y� Then� for i � �� by De�nition �� of Eb� there
is a descendant vi of ui�� in the pd�tree such that �ui �
vi	 � E� Clearly� ui�� is reachable �in G	 from vi via a
path �i entirely postdominated by b �since ui�� pd vi	�
Hence� u�������r is a path from u� 
 x to ur 
 y� �

As a corollary of the preceding proposition� we have
the following characterization of the crowns�

Proposition � A node x is a crown if and only if it
lies on some cycle 
possibly� a self loop� of the SCG�

Proof� Assume �rst that x is a crown of cycle C� in G�
and let �x� v	 � E be the edge of C emanating from x�

If x pd v� then� by De�nition �� of Eipd�x�� Gipd�x�
contains the self loop x� x as stated�

Else� let y ��
 x	 be the sibling of x among the an�
cestors of v� It is easy to see that y is also on C� so
that x and y are reachable from each other� in G� More�
over� since all nodes of C are strictly postdominated by
ipd�x	� x and y are prereachable from each other� in G�
By Proposition �� x and y are reachable from each other
in Gipd�x�� hence x lies on a cycle of Gipd�x��

For the converse� assume that x lies on a cycle C � of
Gipd�x��

If C � is a self loop x� x� then� by De�nition ��� there
is an edge �x� v	 � E where x pd v� As there is always
a path� say v�x� from a node v to a postdominator of it
x� we can construct the cycle C 
 xv�x in G having x
as a crown�

Else C � contains at least a node y �
 x� Clearly� x
and y are reachable from each other in Gipd�x� so that�
by Proposition �� they a prereachable from each other in
G� say� via paths x�y and y�x� Then� C 
 x�y�x is a
cycle in G whose nodes are all postdominated by ipd�x	
�
 ipd�x		� whence x �as well as y	 is a crown of C�

�

Proposition 	 The set K of the crowns of a CFG
G � 
V�E� can be computed in time O
jV j� jEj��

END

v

Ts
c

l

R c

p
R l

Q T

R2

S
p

Figure �� Paths in Lemma �

Proof� The complete procedure is shown in Fig�
ure �� Having constructed the SCG �Proposition �	�
its strongly connected component �scc�s	 are computed
in O�jV j� jEj	 time by the algorithm of Tarjan �Tar����
�see also �CLR���	� Based on Proposition �� the crowns
of G can be determined by identifying those nodes of the
SCG that lie either on a self loop or on a cycle �which is
equivalent to membership in a scc of size at least two	�
Both conditions are easily checked� �

��� Prereachability to Crowns

Finally� we must compute the set K� of those nodes
from which some crown is prereachable�
Our approach consists in reducing this problem to

that of 
nding the single static assignment 
SSA� form
of a program whose CFG is the reverse of G � 
V�E��
that is� GR � 
V�ER�� where ER � fv � u � 
u �
v� � Eg� We show that if K represents the set of
assignments to some dummy variable X� then K� is
precisely the set of the so�called join nodes �CFR����
where ��functions must be introduced to convert GR

to SSA form 
with respect to X��
We begin by recalling the de
nition of join nodes

�CFR����� in a form that is convenient for the present
developments�

De�nition �� Let S � V � The set JR
S� of join
nodes for S in GR is the set of all nodes z such that

there are in G two non trivial paths z
�
� x� and z

�
� x��

with x�� x� � S� intersecting only at z�

The following lemma is the key step to make the
connection between prereachability in G and join nodes
in GR�

Lemma � With reference to CFG G� if c is prereach�

able from v� then there exist paths P� � v
�
� c and

P� � v
�
� END intersecting only at v�

Proof� The proof is an induction on the length of the

shortest non trivial path P 
 v
�
� c which establishes

the prereachability of c from v�



Suppose the length of P is �� i�e�� P 
 vc� Since c does

not postdominate v� there is a path P� 
 v
�
� END not

containing c and hence disjoint from P� 
 P � except for
node v�
Assume the lemma is true for paths of length less than

n� Let P 
 v
�
� p � c be a path of length n� By the

inductive assumption� there is a path R� 
 v
�
� END that

is disjoint� except for node v� from a path Sp 
 v
�
� p�

WLOG� assume that R� is acyclic� Appending the edge
p � c to path Sp gives a path Q from v to c� If c does
not occur on path R�� or if c 
 v� the lemma is proved
by setting P� 
 Q� and P� 
 R��
Otherwise� c occurs on R� and is distinct from v� Let

Rc be the pre�x v
�
� c of R�� Note that Q and Rc are

two paths from v to c that are disjoint except for v and

c� Consider an acyclic path T 
 v
�
� END that does

not contain c� such a path must exist because c does
not strictly postdominate v� Let l be the last node on
T that occurs on either Q or Rc � that is� the su�x

Ts 
 l
�
� END of path T is disjoint �other than node

l	 from paths Q and Rc �l must exist because all three
paths contain v	�
If l 
 v� then let P� 
 Q and P� 
 T �
Otherwise� l is distinct from v� and it is contained in

exactly one of paths Rc and Q� Suppose l is contained

in Rc� Path Rc can be written as v
�
� l

�
� c where the

pre�x v
�
� l is called Rl� Concatenate Rl and Ts to get a

path P� 
 v
�
� END which is disjoint from P� 
 Q� The

case when l is contained in Q is identical� �

We can now make the connection to SSA computa�
tion�

Theorem � Let S � V with END � STARTR � S�
Then� v � JR
S� if and only if there is a c � S that is
prereachable from v in G�

Proof� ��	 By De�nition �� of JR�S	� there are two
distinct nodes c� and c� in S and two non trivial paths

v
�
� c� and v

�
� c� in G intersecting only at v� At

least one of these two paths does not contain ipd�v	�
thus establishing the prereachability of its endpoint �c�
or c�	 from v in G�

��	 From Lemma �� there are two paths v
�
� END and

v
�
� c in G that are disjoint except for v� Since c and

END are both in S� by De�nition ��� v � J�S	� �

In our running example� the crowns are fb� e� fg� if
these nodes and END are treated as assignments to some
variable in the reverse CFG GR� we need ��functions
at nodes fb� e� f� gg� The set of nodes fb� e� f� gg is pre�
cisely the set of nodes that in G are not loop postdom�
inated by their immediate postdominator�
It is worth observing that� while in general S is not

necessarily a subset of JR
S�� it is the case that K �
JR
K� when K is the set of crowns� This is because 
i�
END is a crown 
due to the sel�oop END� END� and each
crown is prereachable from itself 
by De
nition ����

In conclusion� K� � JR
K�� which can be computed
in O
jEj� time by any of several SSA algorithms in the
literature �SG��� PB���� such as the one described in
our earlier work on APT �PB����

��� Summary

The following theorem summarizes the result of our
approach to loop control dependence computations�

Theorem � Given a CFG G � 
V�E� containing the
edge END � END� the corresponding Augmented Loop
Postdominator Tree can be constructed in linear time
and stored in linear space� It can answer loop con�
trol dependence queries of the cd� conds� and cdequiv

types in time proportional to the size of their answers�

Proof� Figure � summarizes the procedure developed
in this paper� The linear bound follows� for Step �� by
�Har���� for Step �� by Proposition �� for Step �� by the
known results on SSA �e�g�� �PB���	� for Steps � and ��
by straightforward procedures� for Step �� by the prepro�
cessing algorithms for the APT data structure presented
in �PB���� �

� Conclusions

We have presented a framework� based on a generalized
notion of dominance� that permits a uniform treatment
of classical and loop control dependence� We have ap�
plied this framework to compute the weak 
or loop�
control dependence relation optimally�
It would be interesting to include Ballance and Mc�

Cabe�s hierarchical control dependence �BM��� in our
framework� Unfortunately� this relation has been de�

ned by specifying a procedure for computing it� The
formulation of this relation in graph�theoretic terms is
a prerequisite for 
tting it into our framework�

Acknowledgements� We are obligated to Tom Reps
for pointing us to the work of Podgurski and Clarke�
Andy Podgurski was kind enough to send us a copy
of his dissertation at short notice� We also thank Ron
Cytron� Jeanne Ferrante� Bjaarne Steensgard and Mike
Wolfe for useful discussions on control dependence� Fi�
nally� we would like to mention that we found the PLDI
��� referee reports very useful in revising the extended
abstract�

References

�BJP��� Micah Beck� Richard Johnson� and Keshav Pin�
gali� From control �ow to data�ow� Journal

of Parallel and Distributed Computing� �������
���� �����



�� Build the postdominator tree pd�tree of the given CFG G � 
V�E�� including the distinguished
node � as described in Subsection ����

�� Compute the set of crowns K as shown in Figure ��
�� In the reverse CFG GR� mark all crowns 
K� as assignments to some dummy variable X� and

perform an SSA computation to obtain the set K� of nodes where the SSA form will require
��functions for variable X�

�� For each a � K�� replace pd�tree edge 
ipd
a�� a� with lpd�tree edge 
�� a��
�� For each edge 
u � v� � E such that v does not loop postdominate u� append to 
an initially

empty� route array A a chariot route with end points v and ilpd
u��
�� Construct the APT for the Roman Chariot Problem in which the tree is the loop postdominator

tree and the route array is A�

Figure �� Computing the Loop Control Dependence Relation

�BM��� Robert Ballance and Arthur McCabe� Program
dependence graphs for the rest of us� Technical
Report ������ University of New Mexico� Octo�
ber �����

�CFR���� R� Cytron� J� Ferrante� B� K� Rosen� M� N� Weg�
man� and F� K� Zadeck� E�ciently computing
static single assignment form and the control de�
pendence graph� ACM Transactions on Pro�

gramming Languages and Systems� ����	�����
���� October �����

�CFS��� Ron Cytron� Jeanne Ferrante� and Vivek Sarkar�
Compact representations for control depen�
dence� In Proceedings of the SIGPLAN ��� Con�

ference on Programming Language Design and

Implementation� pages �������� White Plains�
New York� June ������ �����

�CLR��� Thomas Cormen� Charles Leiserson� and Ronald
Rivest� Introduction to Algorithms� The MIT
Press� Cambridge� MA� �����

�FOW��� J� Ferrante� K� J� Ottenstein� and J� D� War�
ren� The program dependency graph and its
uses in optimization� ACM Transactions on

Programming Languages and Systems� ���	�����
���� June �����

�Har��� D� Harel� A linear time algorithm for �nd�
ing dominators in �owgraphs and related prob�
lems� In Proceedings of the ��th ACM Sympo�

sium on Theory of Computing� pages ��������
Providence� Rhode Island� May ���� �����

�HT��� Dov Harel and Robert Endre Tarjan� Fast
algorithms for �nding nearest common ances�
tors� Siam Journal of Computing� ����	�����
���� �����

�LT��� Thomas Lengauer and Robert Endre Tarjan�
A fast algorithm for �nding dominators in a
�owgraph� ACM Transactions on Program�

ming Languages and Systems� ���	���������
July �����

�PB��� Keshav Pingali and Gianfranco Bilardi� APT�
A data structure for optimal control dependence

computation� In Proceedings of the ACM Con�

ference on Programming Language Design and

Implementation� June �����

�PC��� Andy Podgurski and Lori Clarke� A formal
model of program dependences and its implica�
tions for software testing� debugging and main�
tenance� IEEE Transactions on Software Engi�

neering� ����	��������� Septmeber �����

�Pod��� Andrew Podgurski� The signi�cance of program
dependences for software testing� debugging and

maintenance� PhD thesis� University of Mas�
sachusetts� Amherst� �����

�SG��� Vugranam C� Sreedhar and Guang R� Gao� A
linear time algorithm for placing ��nodes� In
Conference Record of POPL ���	 

nd ACM

SIGPLAN�SIGACT Symposium on Principles

of Programming Languages� pages ������ San
Francisco� California� January �����

�Tar��� Robert E� Tarjan� Depth �rst search and linear
graph algorithms� SIAM Journal of Computing�
���	��������� �����

�Wei��� Michael Weiss� The transitive closure of control
dependence� The iterated join� ACM Letters on

Programming Languages and Systems� ���	�����
���� June �����


