
Journal of Embedded Systems, 2014, Vol. 2, No. 3, 39-52
Available online at http://pubs.sciepub.com/jes/2/3/2
© Science and Education Publishing
DOI:10.12691/jes-2-3-2

Studying the Impact of Scheduler Implementation on
Task Jitter in Real-Time Resource-Constrained

Embedded Systems

Mouaaz Nahas*

Department of Electrical Engineering, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah, KSA
*Corresponding author: mmnahas@uqu.edu.sa

Received March 15, 2014; Revised August 05, 2014; Accepted August 20, 2014

Abstract Over recent decades, many studies have considered the development, assessment and refinement of
scheduling algorithms for use in real-time embedded applications. Various studies have also considered the impact
of variations in the interval between the executions of periodic tasks (i.e. jitter) on the behaviour of such systems.
Despite interest in both of these areas, there has been comparatively little attention paid to the impact of scheduler
implementation techniques on jitter behaviour. This is unfortunate because – as we demonstrate in the course of this
paper – there is a ‘one-to-many’ mapping between scheduler algorithms and scheduler implementations, and even
comparatively small changes in the scheduler implementation can have a significant impact on jitter behaviour.
Throughout this paper, our focus is on implementations of a form of “cyclic executive” which is one of the simplest
scheduling algorithms in widespread use. The results presented demonstrate that – even for this very simple
scheduling algorithm – implementation decisions can have a significant impact on both jitter behaviour and on
resource requirements. We would expect that the results obtained would also apply to more complicated algorithms:
indeed, as the algorithms grow more complicated, we would expect that the number of implementation options
would increase, with a corresponding increase in the jitter variation.

Keywords: real-time, scheduling algorithm, scheduler implementation, jitter, time-triggered co-operative, cyclic
executive, on-line schedule, off-line schedule

Cite This Article: Mouaaz Nahas, “Studying the Impact of Scheduler Implementation on Task Jitter in Real-
Time Resource-Constrained Embedded Systems.” Journal of Embedded Systems, vol. 2, no. 3 (2014): 39-52. doi:
10.12691/jes-2-3-2.

1. Introduction
In this paper, we are concerned with the

implementation of schedulers for use in real-time
resource-constrained embedded systems. Such systems
usually require high degrees of reliability and
predictability while having severe resource constraints.
Our particular focus is on the impact of scheduler
implementation decisions on the timing behaviour of the
system: in particular, variations in the interval between the
release times of periodic tasks (namely, the task jitter).

There have been many previous studies which looked at
the topic of jitter. Jitter has been found to arise due to
clock drift, branching in the code, the scheduling
algorithm employed, or as a consequence of using specific
hardware [1]. In real-time systems, the jitter is mainly
considered at task level (e.g. release time), and most
concern about task jitter has been in the context of
scheduling [2]. For example, standard scheduling
algorithms based on fixed timing constraints (e.g. fixed
periods and deadlines) can induce jitter if a task is blocked
in a high-load situation: to deal with such issues, a range
of flexible solutions have been proposed for use at run-
time [3]. In distributed systems, reducing the variations in

message transmission delays can help to reduce the jitter
levels [4,5,6]

The presence of jitter can have a detrimental impact on
the performance of many real-time systems where
particular tasks must be executed at precise timing. For
example, [7] show that – during data acquisition tasks –
jitter rates of 10% or more may result in a meaningless
interpretation of the sampled signal. Serious impacts of
jitter on a wide range of applications have been discussed
in [8,9,10,11].

While jitter has been widely investigated, the impact of
scheduler implementation on jitter behaviour has not
received widespread attention. This is unfortunate because
– as we demonstrate in the course of this paper – there is a
‘one-to-many’ mapping between scheduler algorithms and
scheduler implementations, and even comparatively small
changes in the scheduler implementation can have a
significant impact on the jitter behaviour [6,12-18].

Our focus in the paper is on implementations of a form
of “cyclic executive” [12,19]. This algorithm is also called
“time-triggered co-operative” (TTC) scheduling algorithm
and it is one of the simplest schedulers that is in
widespread use. The paper discusses a wide range of TTC
scheduler implementations for use in both single- and
multi-processor designs. It provides a systematic method

40 Journal of Embedded Systems

for comparing between the various implementations and
demonstrates how – with a little modification during the
implementation stage of a scheduler (in the source code) –
the jitter at the task level can be significantly reduced or
entirely eliminated. Also, it will be shown how
manipulating the scheduler implementation can have
impacts on the computational as well as memory resources.

We would expect that the results obtained from this
algorithm would also apply to more complicated
algorithms (e.g. “Earliest Deadline First” algorithms: [20]).
Indeed, as the algorithms grow more complicated, we
would expect that the number of implementation options
would increase, with a corresponding increase in the jitter
variation.

The remainder of the paper is organised as follows.
Section 2 presents a review of previous work in the area of
scheduler implementation. In Section 3, we discuss
possible sources of jitter in the TTC scheduling algorithm
which is considered in this study. In Section 4, we assess
the jitter levels in the original implementation of the TTC
scheduler that forms the benchmark against which later
implementations are evaluated. We then, in Section 5,
explore several new TTC implementations which produce
lower levels of jitter in single-processor systems. A
similar study is repeated in Section 6 and Section 7, this
time using a multi-processor TTC algorithm as the
benchmark. In Section 8, we discuss the findings and
present the overall paper conclusions.

2. Previous work on scheduler
Implementations

The implementation of schedulers is a major problem
which faces designers of real-time scheduling systems
[21]. In their useful publication, Cho and colleges clarified
that the well-known term scheduling is used to describe
the process of finding the optimal schedule for a set of
real-time tasks, while the term scheduler implementation
refers to the process of implementing a physical (software
or hardware) scheduler that enforces – at run-time – the
task sequencing determined by the designed schedule.
While there has been a great deal of interest in
development, assessment and refinement of scheduling
algorithms [19,20,22,23,24], we have found evidence of
only a limited amount of work on scheduler
implementation.

Some early work concerning the implementation of
cyclic executives (in the Ada programming language) was
carried out by [12]. Later on, [25] looked at the problems
of implementing forms of cyclic executive in assembly
language. Phatrapornnant and Pont [17] have also looked
at implementation of a form of cyclic executive: they have
described techniques to maintain low jitter behaviour
when dynamic voltage scaling is employed (in order to
reduce system power consumption). Hughes and Pont [26],
[27] described an implementation of TTC schedulers with
a wide range of “task guardian” mechanisms to reduce the
impact of a task-overrun problem on the real-time
performance of the system. In our previous publication
[28], we described a low-jitter TTC scheduler framework
and compared it with an early scheduler implementation
(as in [14]). Two jitter-reduction techniques were later on

developed and integrated with the TTC algorithm to
enhance its timing predictability [29]. Such techniques
form the basis of some of the TTC implementations
described in this paper.

Looking more generally at scheduler implementation
techniques, Katcher et al. [30] argue that that there is a
wide gap between scheduling theory and its
implementation in operating system kernels running on
specific hardware platforms. They also note that the
implementation of a particular algorithm can introduce
costs which must be taken into account when validating
the timing correctness properties of a real-time system.
Moreover, they consider four generic scheduler
implementations for a fixed priority scheduling algorithm:
two time-triggered-based and two event-triggered-based.
When applied to two realistic task sets – corresponding to
avionics and inertial navigation applications – the
different implementations demonstrated different levels of
schedulability degradation. In [13], it was reported that the
choice of particular implementation can have a major
impact on the critical success factors for a real-time
system. Xu [31] emphasised that “the simplified high-
level abstraction of code” is only an approximation of “the
actual real-time software implementation” which does not
take into account all the implementation details that may
affect timing. Therefore, the performance of the real-time
system would critically depend on implementation details
of the task scheduler [32]. In addition, as the system
expands, the scheduler design and implementation
processes will increase in complexity and, consequently,
the impact on the entire system performance becomes
more significant [21].

Our discussions in this paper will also concern multi-
processor architectures. In this case, as we will discuss in
Section 7.2, we need to implement techniques which
maintain synchronisation of the clocks on the different
CPUs. In this case, the impact of the underlying network
protocol must be considered. For example when – for
example – the Controller Area Network (CAN: [33]
protocol is used to link the various processor nodes, jitter
can be caused by variations in the lengths of transmitted
messages. To reduce such variations, [34] proposed a
technique by which transmitted data are masked before
transmission. An alternative (and, it is claimed, more
general) approach to reducing the variation in CAN
message durations has been described in [5,6].

3. Sources of Jitter in Single-processor
TTC Implementations

In order to reduce levels of task jitter in any scheduler,
it is necessary to identify possible sources of timing
variations. As outlined in the introduction, our focus in
this paper is on time-triggered co-operative schedulers. In
such schedulers, possible sources of task jitter (in single-
processor implementations) can be divided into three
categories:
• Scheduling overhead variation.
• Task placement.
• Tick drift.
We consider each of these categories in turn in this

section.

 Journal of Embedded Systems 41

3.1. Scheduling overhead variation
The overhead of a conventional scheduler arises mainly
from context switching. In some systems, the scheduling

overhead is comparatively large and may have a highly
variable duration. As an example, Figure 1 illustrates how
a TTC system can suffer release jitter as a result of
variations in the scheduler overhead.

Speed
Over
head Task

OverheadTask

Task
Period

OverheadTask
Over
headTask

Task
Period

Task
Period

Figure 1. Release jitter caused by variation of scheduling overhead

3.2. Task Placement
Even if variations in the scheduler overhead are avoided,

we may still have problems with jitter in a TTC design as
a result of the task placement.

To illustrate this, consider Figure 2. In this schedule,
Task C runs sometimes after A, sometimes after A and B,

and sometimes alone. Therefore, the period between every
two successive runs of Task C is highly variable.
Moreover, if Task A and B have variable execution
durations, then the jitter levels of Task C will be even
larger.

Speed

Task
A

Task
C

Task
Period

Task
Period

Task
Period

Task
C

Task
A

Task
C

Task
B

Task
C

Task
B

Figure 2. Release jitter caused by task placement in TTC schedulers

3.3. Tick Drift
For completeness, we also consider tick drift as a

source of task jitter. In the TTC designs considered in this
paper, a clock tick is generated by a hardware timer that is
linked to an interrupt service routine (see Section 4). This
mechanism relies on the presence of a timer that runs at a
fixed frequency: in these circumstances, any jitter will
arise from variations at the hardware level (e.g. through
the use of a low-cost frequency source, such as a ceramic
resonator, to drive the on-chip oscillator: see [14]).

In the scheduler implementations considered in this
paper, the software developer has no control over the
clock source. However, in some circumstances, those
implementing a scheduler must take such factors into
account. For example, in situations where “dynamic
voltage scaling” (DVS) is employed to reduce CPU power
consumption, it may take a variable amount of time for the
processor’s “phase-locked loop” (PLL) to stabilise after
the clock frequency is changed (see Figure 3). As
discussed elsewhere, it is possible to compensate for such
changes in software and thereby reduce jitter (see [17]).
Such techniques are not considered further in this paper.

Expected
Tick Period

Expected
Tick Period

Speed

Task

Expected
Tick Period
Expected

Tick Period
Timer

Counter

Task

Timer
Counter

Task

Timer
Counter

Figure 3. Tick drift in DVS systems

4. Assessing a Single-processor TTC
Implementation

Having considered three possible sources of jitter in
TTC algorithm, we explore the operation of a particular
TTC scheduler which was originally described and fully
documented [14]. We will refer to this implementation
here as “Original TTC-Dispatch” 1 scheduler
implementation.

1 The name is derived from the way the scheduler is implemented in
software. This was to distinguish it from the earlier simpler
implementations: e.g. schedulers based on super loop (TTC-SL) and
interrupt service routine (TTC-ISR) (see [14] for more details).

4.1. The Original TTC-Dispatch
Implementation

The Original TTC-Dispatch scheduler is driven by
periodic interrupts generated from an on-chip timer. When
an interrupt occurs, the processor executes an “Update”
function (see Listing 1). In the Update function, the
scheduler checks to see if any tasks are due to run and sets
appropriate flags. After these checks are complete, a
Dispatch function (Listing 2) will be called, and the
identified tasks (if any) will be executed. When not
executing the Update and Dispatch functions, the system
will usually enter a low-power (“idle”) mode.

42 Journal of Embedded Systems

Listing 1. “Update” ISR of Original TTC-Dispatch scheduler

Listing 2. Dispatch function of Original TTC-Dispatch scheduler

4.2. Measuring the Task Jitter
The experimental methodology used to obtain jitter

results from the TTC implementations on a single-
processor system is outlined here.

4.2.1. Hardware Platform
In order to explore the impact of the TTC

implementations in practical designs, we used a Phytec
board supporting a 16-bit C167 microcontroller with an
oscillation frequency of 20 MHz. The Keil C166 compiler
was used [35].

4.2.2. Tasks
In the single processor design considered in this study,

we used four different tasks with randomly-varying
durations. The task schedule was chosen here in such a
way that the jitter for each task was maximised. More
specifically, all tasks begin to execute at time delay equals
to 0 (i.e. in the first tick interval). However, the first task
(called task A) runs every 2 scheduler ticks, the second

task (called task B) runs every 3 scheduler ticks, the third
task (called task C) runs every 4 scheduler ticks, and the
fourth task (called task D) runs every scheduler tick. In
this design, the Major Cycle(The Major Cycle is a period
equal to the lowest common multiple of the periods of the
scheduled tasks: see, for example, [12].) for the schedule
is equal to 12 ticks (Figure 4). The scheduler tick interval
used was 10 ms.

Figure 4. Scheduler tasks used in this study for measuring the jitter
levels

4.2.3. Jitter Measurements
To measure the jitter on each task, we set a pin high at

the beginning of the task (for a short time) and then
measure the periods between every two successive rising
edges. We recorded 25,000 samples in each experiment.
The periods were measured using a National Instruments
data acquisition card ‘NI PCI-6035E’ [36], used in
conjunction with appropriate software LabVIEW 7.1 [37].

To assess the jitter levels, we report two values: the
average jitter and the difference jitter. The difference jitter
is obtained by subtracting the minimum period from the
maximum period from the measurements in the sample set.
The average jitter is represented by the standard deviation
in the measure of average periods. Note that there are
many other measures that can be used to represent the
levels of task jitter, but these measures were felt to be
appropriate for this study.

4.3. Results from Original TTC-Dispatch
Scheduler

Table 1 shows the periods and jitter measurements for
all tasks when the Original TTC-Dispatch scheduler is
used.

Table 1. Task jitter from the Original TTC-Dispatch scheduler (all
values in µs)

Task A B C D

Min 19994.3 29598.5 39240.6 8894

Max 20003.1 30397.7 40738.9 11073.2

Average 19999 30033.1 39999 9948.2

Diff. jitter 8.8 799.2 1498.4 2179.1

Avg. jitter 2.7 189.7 249.7 360.1

We can clearly see from the results shown in the table
that all tasks in the system – including the first one – have
a jitter in their release times. Moreover, we notice that the
jitter levels increase as the task order increases (that is, the
jitter is higher for Task B than Task A, and higher for
Task C than Task B, etc.). Despite that the Original TTC-
Dispatch scheduler (developed by [14] was made so
simple, reliable and cost-effective, it suffers high jitter at
the task release times as jitter levels in this
implementation largely depend on the task schedule itself.
In more severe cases this would degrade the overall real-
time system performance.

 Journal of Embedded Systems 43

5. Reducing Jitter in Single-processor
TTC Implementations

In this section, we explore different ways in which a
TTC scheduler can be implemented. In each case we base
our solution on the Original TTC-Dispatch
implementation. As we will see, different implementations
provide different levels of task jitter.

5.1. Reducing Variations in the Scheduler
Overhead (Modified TTC-Dispatch)

In the Original TTC-Dispatch scheduler
implementation, the scheduler first determines – in the
Update function (Listing 1) – which tasks are due to
execute and then executes the tasks from the Dispatch
function (Listing 2). A consequence of this arrangement is
that the scheduler overhead varies depending on the
number of tasks that are to be implemented in a given tick

interval. This means that even the first task to be executed
(which is, implicitly, the task with the highest priority) can
suffer from release jitter.

In order to reduce the jitter in the first task, we can re-
arrange the activities performed in the Update and
Dispatch functions, as illustrated in Listing 3 and Listing 4,
respectively. In this modified implementation (which we
will call Modified TTC-Dispatch), the Update (Listing 3)
function simply keeps track of the number of Ticks and all
scheduling and dispatch activities are now carried out in
the Dispatch function (Listing 4).

Listing 3. “Update” ISR of the Modified TTC-Dispatch scheduler

Listing 4. Dispatch function in the Modified TTC-Dispatch scheduler

5.2. Results from Modified TTC-Dispatch
Scheduler

Table 2 shows the impact of the scheduler
modifications. The task set is identical to that used to
produce the results shown in Table 1.

Table 2. Task jitter from the Modified TTC-Dispatch scheduler (all
values in µs)

Task A B C D

Min 19999.4 29603.9 39245.2 8888.3

Max 19999.5 30394.4 40738.7 11103.6

Average 19999.4 29966.5 40000.2 9989.6

Diff. jitter 0.1 790.5 1493.5 2215.3

Avg. jitter 0 199.8 248 373.2

As can be seen from the table, the changes to the
scheduler implementation have been successful in
reducing the jitter in Task A (almost to 0). Remember that
Task A is implicitly the highest-priority task in the cyclic
executive scheduling algorithm. This task in many

applications requires high degrees of predictability (which
can be manifested by low jitter characteristics).

5.3. Reducing Variations in the Scheduler
Overhead (Offline TTC-Dispatch)

One way of classifying scheduling algorithms is by the
time at which scheduling decisions are made. If the
scheduling decisions for the entire task set are made
before the system activation, then the algorithm is called
an “off-line” scheduler: if, instead, the decisions are made
at run-time, we have an “on-line” scheduler [24,38]. In
many cases, scheduling implementations may be on-line,
off-line or some combination of the two.

The Original and Modified TTC-Dispatch schedulers
make the scheduling decisions online. One approach to
reducing variations in the scheduler overhead (at run time)
is to make most or all of the scheduling decisions offline.
We explore this option in what we will call Offline TTC-
Dispatch scheduler.

In Offline TTC-Dispatch, we use an array to store the
task schedule. Since all tasks are periodic, this array needs
to be able to store information for the whole Major Cycle.
In the implementation of Offline TTC-Dispatch, we used a

44 Journal of Embedded Systems

desktop C program to calculate the schedule information
for all tasks and stored the results in a two-dimensional
array. The size of the schedule array As is given as:

 s task tickA N . N= (1)

Where Ntask is the total number of tasks in the scheduler
and Ntick is the total number of ticks in the major cycle.

Listing 5 shows the Dispatch function for Offline TTC-
Dispatch scheduler.

Listing 5. Dispatch function in the Offline TTC-Dispatch scheduler

5.4. Results from Offline TTC-Dispatch
scheduler

Table 3 presents the results obtained with Offline TTC-
Dispatch scheduler.

Table 3. Task jitter from the Offline TTC-Dispatch scheduler (all
values in µs)

Task A B C D
Min 19999.4 29607.4 39266.4 8920.7
Max 19999.5 30390.9 40731.5 11079.6

Average 19999.4 29974.8 39998.3 9987.4
Diff. jitter 0.1 783.5 1465.1 2158.9
Avg. jitter 0 193.1 245.2 367.7
Looking at Table 3, we can see that – although the use

of an offline scheduler has produced a slight reduction in
the levels of task jitter for Task B, Task C and Task D –

there is still considerable room for improvement. More
clearly, special techniques may need to be implemented
with the scheduler to take care of the task jitter.

5.5. Reducing the Impact of Task Placement
(Offline TTC-SD)

In Section 3.2, we considered the impact of task
placement on “low-priority” tasks running in TTC
schedulers. In order to reduce the variation in the starting
times of such tasks, the Offline TTC-SD scheduler
implementation places a “Sandwich Delay” (SD: [39])
around tasks which execute prior to other tasks in the
same tick interval.

Briefly, a Sandwich Delay (SD) is a mechanism – based
on a hardware timer – which can be used to ensure that a
particular code section always takes approximately the
same period of time to execute. The SD operates as
follows: 1) we set a timer running; 2) we perform an
activity; 3) we wait until the timer reaches a
predetermined count value. In these circumstances – as
long as the timer count is set to a duration that
corresponds to the WCET of our sandwiched activity – we
have the potential to fix the execution period.

In the Offline TTC-SD scheduler, we use SDs to
provide execution “windows” of fixed sizes in situations
where there is more than one task in a tick interval. To
clarify this, consider again the set of tasks shown in Figure
2 and compare this with same set of tasks executed by an
Offline TTC-SD scheduler, as shown in Figure 5. In
Figure 5, the required SD prior to Task C is equal to the
WCET of Task A plus the WCET of Task B. This implies
that in the first tick, the scheduler runs Task A and then
waits for the period equals to the WCET of Task B before
running Task C. The figure shows that when a SD is used
(as part of the TTC scheduler) prior to Task C, the periods
between the successive runs of this task become equal.
Note that this scheduler is based on the TTC-SD scheduler
implementation we presented elsewhere [29]. The only
differences are that here the whole task schedule
(including estimates of tasks’ WCETs) is made offline and
that the hardware platform used is based on the 16-bit
C167 microcontroller.

Listing 6. Dispatch function in the Offline TTC-SD scheduler

 Journal of Embedded Systems 45

Figure 5. Using SDs to reduce release jitter in TTC schedulers

Note that – in this study – the WCET for each task is
calculated offline by picking the maximum duration out of
thousands of runs of the task. Dispatch code for the
Offline TTC-SD scheduler is shown in Listing 6.

5.6. Results from the Offline TTC-SD
Scheduler

Table 4 shows the periods and jitter measurements for
all tasks when the Offline TTC-SD scheduler
implementation is employed.

Table 4. Task jitter from the Offline TTC-SD scheduler (all values in
µs)

Task A B C D
Min 19999.5 29998.8 39998.5 9999.2
Max 19999.6 29999.9 39999.6 10000.3

Average 19999.6 29999.3 39999.1 9999.8
Diff. jitter 0.1 1.1 1.1 1.1
Avg. jitter 0 0.3 0.2 0.2
The table shows how the use of sandwich delays prior

to the execution of each task helped to remove most of the
jitter in the release time of low-priority tasks. However,
there is still some jitter in these tasks which is resulted
from the use of software delay [29].

5.7. Reducing the Impact of Task Placement
(Offline TTC-MTI)

Although the SD technique can help to fix the release
time of low-priority tasks, the use of software loop – to

check if the required SD for the concerned task is
complete – can still result in a low level of jitter since the
time taken to leave the loop and run the task is not fixed.
In addition, we are forced to run the processor in normal
operating mode while the SD is executing: this is likely to
result in increased power consumption. In order to address
both of these issues, we can use a modified sandwich
mechanism employing “multiple timer interrupts” (MTIs).
We will call this scheduler implementation Offline TTC-
MTI. This is to distinguish it from the TTC-MTI
scheduler we presented elsewhere [29] that is based on
online scheduling rather than offline.

As with the Offline TTC-SD, the tasks in the Offline
TTC-MTI scheduler execute in predetermined time
intervals (set to match the WCET of the task concerned).
In this implementation, multiple timer interrupts are used
to generate the execution slots: this allows more precise
control of timing. The use of interrupts also allows the
processor to enter an “idle” mode after completion of each
task, allowing a reduction of power consumption.

In order to achieve this, we require two timers: 1) a
“Tick timer”: which is used to generate the scheduler
periodic tick interrupts and trigger the execution of the
first task in the interval (as normal) and, 2) a “Task timer”:
which is used – within Tick intervals – to trigger the
execution of any further tasks which are due to run in the
Tick interval. The process is illustrated in Figure 6.

Figure 6. Using MTIs to reduce release jitter in TTC schedulers

Listing 7. “Update” ISR of the Tick-Timer-Interrupt in the Offline TTC-
MTI scheduler

Listing 8. “Update” ISR of the Task-Timer-Interrupt in the Offline TTC-
MTI scheduler

Code for the Offline TTC-MTI scheduler is shown in
Listing 7 to Listing 9.

46 Journal of Embedded Systems

Listing 9. Dispatch function in the Offline TTC-MTI scheduler

5.8. Results from the Offline TTC-MTI
Scheduler

Table 5 shows the periods and jitter measurements for
all tasks when the Offline TTC-MTI scheduler
implementation is employed.

Table 5. Task jitter from the Offline TTC-MTI scheduler (all values
in µs)

Task A B C D
Min 19999.4 29999.2 39998.9 9999.7
Max 19999.5 29999.3 39999 9999.8

Average 19999.4 29999.3 39998.9 9999.8
Diff. jitter 0.1 0.1 0.1 0.1
Avg. jitter 0 0 0 0
By looking at the results presented in
Table 5, we can see that the use of the “idle” mode

prior to tasks in the multiple timer interrupts method
helped to further reduce the jitter in the release times of all
tasks running in the system (almost to 0).

5.9. Comparing CPU overheads
In Table 6, the CPU overheads for all of the considered

TTC schedulers are presented. This reflects the processor
utilisation by each scheduler implementation.

To make these measurements, we set a pin high at the
start of each tick and then low just before the processor
goes to sleep. We report the readings for 1000 scheduler
cycles. In order to compare the scheduler overhead of each
model, we fixed the task durations in this experiment to
make sure that the task overhead is identical in all
programs.

Table 6. CPU overhead in all considered scheduler methods

Method CPU overhead
per cycle (ms)

CPU overhead per
tick (ms)

Original TTC-Dispatch 4.55 0.38
Modified TTC-Dispatch 4.49 0.37
Offline TTC-Dispatch 4.34 0.36

Offline TTC-SD 20.49 1.71
Offline TTC-MTI 5.02 0.42

We can see from the table that the Offline TTC-
Dispatch scheduler implementation has the lowest CPU
overhead. However, since our TTC design is so simple,
we see very little difference between the CPU time in on-
line and off-line implementations. In more sophisticated
designs, we would expect to see significant reduction in
CPU processing when off-line schedulers are employed
(see [40]). The difference in CPU overhead between
Offline TTC-SD and Offline TTC-MTI is around 15.5 ms
per cycle (1.3 ms per tick) which is so significant: this is –

as expected – caused by the presence of the SDs in the
Offline TTC-SD scheduler.

5.10. Comparing Memory Requirements
Table 7 presents the memory requirements for

implementing the described schedulers on the CPU
hardware platform considered in this study (i.e. 16-bit
C167 processor).

Table 7. Data and code memory requirements in all considered
scheduler implementations

Method RAM requirements
(Bytes)

ROM requirements
(Bytes)

Original TTC-Dispatch 46 1016
Modified TTC-Dispatch 36 1022
Offline TTC-Dispatch 70 988

Offline TTC-SD 78 1070
Offline TTC-MTI 176 1194

Please note that the Original TTC-Dispatch
implementation requires more RAM memory than the
Modified TTC-Dispatch implementation. Also note that
the off-line designs considered in our study required
additional data memory (RAM) to store the schedule table.
However, due to the simplicity of the off-line scheduler,
the code memory (ROM) requirements for these
schedulers are lower than the on-line equivalents.

Table 7 also shows that the Offline TTC-MTI
implementation requires more data and code memory as
compared to the Offline TTC-SD implementation. When
choosing between these schedulers, a developer would
need to weigh up jitter and resource requirements.

6. Assessing a Multi-processor TTC
Implementation

Having considered possible implementation options for
single-processor TTC schedulers, we now consider multi-
processor designs. We begin with describing the hardware
and software platforms used to implement a multi-
processor testbed.

6.1. A S-C TTC Scheduler Implementation
We have previously sought to demonstrate that a

“Shared-Clock” (S-C) architecture provides a simple and
low-cost software framework for multi-processor TTC
systems, without requiring specialized hardware [14,41].
We will employ such an architecture here, with nodes
connected using a CAN protocol [33].

The scheduler used in the examples in this paper is
based on the “shared-clock CAN scheduler” described
previously [14]. For consistency with our previous studies
[42,43], we will refer to this scheduler implementation as
“TTC-SCC1”.

In the multi-processor study, we investigate the levels
of jitter (and implementation costs) in a simple testbed
which contains two nodes: Master and Slave. To consider
the impact of the transmission protocol as well as the
scheduler implementation, we implement the described
TTC models (original and low-jitter) in the Slave node.

Listing 10 shows the Update function for the TTC-
SCC1 scheduler. The Dispatch function, used in single-
processor Original TTC-Dispatch design (Listing 2), is
again used in this multi-processor design.

 Journal of Embedded Systems 47

Listing 10. “Update” ISR in the TTC-SCC1 scheduler (Slave node)

6.2. Measuring the Task Jitter
To measure the timing, computational costs and

memory requirements in the multi-processor designs
considered in this paper, we used an experimental
methodology based on that outlined in Section 4.2. A
summary of the methodology is presented here.

6.2.1. Hardware Platform
In the multiple processor design, two Phytec boards

supporting C167 microcontroller were used to implement
the Master and Slave nodes. Both processors ran at 20
MHz. The Master and Slave were connected using CAN
bus running at 1 Mbit/sec data rate.

6.2.2. Software Setup
On the Master node, we only set one task to run. On the

Slave node, we scheduled four different tasks with
different periods as outlined in Section 4.2: this is, again,
to maximise the software jitter levels on the Slave tasks.

A TTC-SCC1 scheduling algorithm was implemented
over the CAN protocol as follows (based on [14]): the first
byte of the 8 transmitted bytes in the CAN data segment
was reserved for the Slave identifier (ID) to which tick
message – sent from Master – is addressed. Only the
addressed Slave will reply an acknowledgement message
to the Master where this message must be sent back within
the same tick interval in which the tick message is
received. The remaining 7 bytes of the CAN data segment
contained pseudo-random values, in order to maximise the
jitter caused by bit stuffing mechanism in CAN hardware
[34].

Please note that since we need to incorporate a data-
coding technique (see Section 7.2) – which use two bytes
in each Tick message – all results include values from 8-
bytes and 6-bytes models. This helps to obtain meaningful
comparisons.

Please also note that a Keil C166 compiler was used for
software development in all studies.

6.2.3. Jitter Measurements
The jitter in the multi-processor case is represented by

measuring the interval between the release time of the

(single) Master task and the release times of the tasks on
the Slaves. The jitter measured by this method involves
both the transmission jitter (i.e. any jitter caused by
variations in the time taken to transmit a CAN message)
and the software jitter (i.e. any jitter caused by the
scheduler architectures on the Master and Slave nodes).

To make these measurements, a pin on the Master node
was set high (for a short period) at the start of the Master
task. Another pin on the Slave (initially high) was set low
at the start of the Slave task we wished to study. The
signals from these two pins were then AND-ed (using a
74LS08N chip: [44]), to give the transmission delays
between Master and Slave. In all cases, the widths of the
resulting pulses were measured using a National
Instruments data acquisition card ‘NI PCI-6035E’, used in
conjunction with LabVIEW 7.1 software.

To represent the results, maximum, minimum and
average message transmission times are reported here. To
assess the jitter levels, average jitter and the difference
jitter were reported. The difference jitter is obtained by
subtracting the best-case (minimum) transmission time
from the worst-case (maximum) transmission time from
the measurements in the sample set. The average jitter is
represented by the standard deviation in the measure of
average message transmission time.

6.3. Results from the TTC-SCC1 scheduler
Table 8 shows the transmission delays and jitter

measurements for all Slave tasks when the TTC-SCC1
scheduler implementation is employed.

Table 8. Task jitter from the TTC-SCC1 scheduler (all values in µs)
Slave Task No. of data bytes A B C D

Min
8 181 183.4 201 59.6
6 162.7 165.1 182.4 57.3

Max
8 194 589.1 979.4 1214.5
6 176.1 568 960.2 1177.7

Average
8 186.1 278.5 465.1 257
6 167.3 259.9 445.5 255.2

Diff. jitter
8 13 405.7 778.4 1154.9
6 13.4 402.9 777.8 1120.4

Avg. jitter
8 2.1 116.4 160.9 213.7
6 2 116.6 160.7 213.6

48 Journal of Embedded Systems

The results in the table show that all tasks have
measurable levels of jitter.

7. Reducing Task Jitter in Multi-
Processor Implementations

In this section we describe how task jitter, on Slave
node, can be reduced by employing the low-jitter TTC
schedulers in the multi-processor design considered. In
this case, we consider only multi-processor designs based
on Offline TTC-MTI scheduler (described in Section 5.7)
as the best TTC implementation in terms of jitter
behaviour.

7.1. The TTCj-SCC1 Implementation

The described scheduler here is referred to as TTCj-
SCC1 scheduler. This is to denote that the TTC scheduler
used in the Slave node is with minimum jitter. Thus, the
“multiple timer interrupts” (MTI) method described in
Section 5.7 is used here (with the Slave scheduler). This is
again to minimise the task jitter which arises from the
original implementation of the TTC scheduler.

Note that when implementing the MTI method in the
Slave scheduler using S-C protocol, the “Tick Interrupt” is
generated by the arrival of tick messages sent periodically
from the Master node where the “Task Interrupt” is
generated by a Slave’s on-chip timer (Listing 11 and
Listing 12). The Dispatch function for this scheduler
implementation is illustrated in Listing 13. Note that after
the last task completes execution, the scheduler checks the
network status before entering the “idle” mode.

Listing 11. “Update” ISR of the Tick-Timer-Interrupt in the TTCj-SCC1 scheduler (Slave node)

Listing 12. “Update” ISR of the Task-Timer-Interrupt in the TTCj-SCC1 scheduler (Slave node)

 Journal of Embedded Systems 49

Listing 13. Dispatch function in the TTCj-SCC1 scheduler (Slave node)

Table 9 shows the transmission delays and jitter
measurements for all Slave tasks when the TTC-SCC1-
MTI scheduler implementation is employed. The results
show that the Slave tasks still suffer from jitter (in this
case, caused by the CAN communication protocol).

Table 9. Task jitter from the TTCj-SCC1 scheduler (all values in µs)
Slave Task No. of data bytes A B C D

Min 8 167.8 744.5 1320 1894.4
6 149.6 723.6 1296.8 1868.8

Max 8 178 754.6 1330.1 1904.6
6 157.9 731.9 1305.1 1877.1

Average 8 171.2 747.9 1323.5 1897.9
6 152.4 726.6 1299.7 1871.7

Diff. jitter 8 10.2 10.1 10.1 10.2
6 8.3 8.3 8.3 8.3

Avg. jitter 8 1.5 1.5 1.5 1.5
6 1.3 1.4 1.3 1.3

7.2. The TTCj-SCC1j implementation

The use of low-jitter schedulers can only compensate
for the jitter caused by the software implementation of the
TTC algorithm. In a multi-processor system, jitter can also
arise from the characteristics of the communication
protocol used (in this case CAN).

CAN uses ‘non-return to zero’ (NRZ) coding for bit
representation. Under this scheme, a drift in the receiver’s
clock may occur if a long sequence of identical bits is
transmitted on the bus. To overcome such a problem,
CAN – at its physical layer – employs a bit stuffing
mechanism in which the sending controller stuffs the
opposite-polarity bit after each sequence of five identical
bits detected in the data stream [45]. The bit stuffing
causes the CAN frame length, and hence the transmission
period, to become (in part) a complex function of the data
contents. In S-C TTC schedulers, where Slaves are
triggered by arrivals of messages sent from the Master,
variations in the transmission time can cause variations in
the release times of tasks running on the Slave nodes
(Figure 7).

Figure 7. Impact of message-length variations on the Slave ticks in the TTC-SCC system

Researchers have previously described techniques
which aim to compensate for jitter caused by “bit-
stuffing” in CAN networks. For example, Nolte and
colleagues [4,34] have proposed techniques which have
the potential to reduce the number of stuff-bits in
particular set of CAN data without imposing large
computational or memory overheads. In a previous study
[6], an alternative method based on “software bit stuffing”
(SBS), was developed and applied to a wide range of low-
cost microcontroller families. SBS uses two bytes – in the
CAN data segment – for stuff coding. This helps to fix the
data length in all transmitted frames on the CAN bus. As a
result, SBS had the capability to reduce the message-
length variation (i.e. jitter) by around 40% when the
technique is incorporated in practical implementations.

In the study presented in this paper, SBS is incorporated
in the low-jitter TTC schedulers (TTCj-SCC1) in order to
minimise the jitter caused by the CAN hardware. The
resulting scheduler is referred to here as “TTCj-SCC1j”.
The reason for using this name is to denote that such a
scheduler has minimum jitter in the TTC scheduler
employed in the Slave node as well as minimum jitter
caused by the CAN messages transmission in the S-C
scheduling protocol.

Table 10 shows the transmission delays and jitter
measurements for all Slave tasks when the TTCj-SCC1j
scheduler is employed. Note that only 6-bytes are used
here for data since two bytes are required for message
decoding.

50 Journal of Embedded Systems

Table 10. Task jitter from the TTCj-SCC1j scheduler (all values in
µs)

Slave Task A B C D
Min 167.8 744.8 1320 1894.4
Max 173 750 1325.2 1899.6

Average 169.3 746.4 1321.7 1896.1
Diff. jitter 5.2 5.2 5.2 5.2
Avg. jitter 0.8 0.8 0.9 0.8
The jitter values in the table demonstrate that when the

TTCj-SCC1j scheduler is implemented with SBS
technique, the overall jitter on each task in the Slave node
can be reduced down to approximately 5 µs on the used
hardware. Remember that, in our shared-clock design, the
data segment of the transmitted CAN frames contained
random bytes. In practical CAN implementations, jitter
levels cannot be entirely eliminated by removing all bit
stuffing from the CAN data field since other fields can
still induce some jitter (for more details, see [6]).

7.3. CPU Overheads
In Table 11, the CPU overhead (on the Slave) for the

various TTC-SC schedulers considered in this paper are
presented. To obtain these measurements, we used the
methodology outlined in Section 5.9.

Table 11. CPU overhead in all considered scheduler methods

Method No. of data bytes
CPU

overhead per
cycle (ms)

CPU overhead
per tick (ms)

TTC-SCC1 8 4.84 0.40
6 4.81 0.40

TTCj-SCC1 8 6.08 0.51
6 5.96 0.50

TTCj-SCC1j 6 + 2 stuff coding 11.16 0.93
The results in the table show that – as in the single-

processor systems – the scheduler employing multiple
timer interrupts requires more CPU time (than the original
scheduler) to set the timing for execution slots and keep
tracking of the major cycle. The results also show that
when SBS coding method is applied, an additional CPU
load is imposed. The increase in the CPU overhead is
approximately 0.4 ms / tick which is equal to the time
required to perform the decoding process in SBS method
when the microprocessor platform considered in this study
is used [6].

7.4. Memory Requirements
Table 12 the memory requirements (on the Slave) for

the various TTC-SCC schedulers considered in this paper
are presented.

Table 12. Data and code memory requirements in the considered
scheduler methods

Method No. of data
bytes

RAM requirements
(Bytes)

ROM requirements
(Bytes)

TTC-
SCC1

8 64 1586
6 58 1552

TTCj-
SCC1

8 240 1916
6 236 1882

TTCj-
SCC1j

6 + 2 stuff
coding 243 2070

From the table, we can see that when the SBS technique
is employed in the TTCj-SCC1 scheduler, additional
RAM and ROM overheads are imposed. However, it
should be noted that each C167 processor used in this
study has 2 Kbytes of on-chip RAM and 32 Kbytes of on-

chip ROM [46]: as a consequence, the increase in memory
requirements may not prove significant in most
applications.

8. Conclusions
While there has been a great deal of interest in the

development, assessment and refinement of real-time
scheduling algorithms, we have found evidence of only
limited amount of work on scheduler implementation. For
example, although the impact of jitter has been widely
investigated in real-time embedded systems, the impact of
scheduler implementation on jitter behaviour has not
received widespread attention. In order to begin to address
this issue, we have explored some possible
implementations of a simple TTC scheduler in this paper
and reported the jitter behaviour (and resource
requirements) for each implementation. It is clear from the
results that even a small (and by no means exhaustive)
selection of TTC scheduler implementations demonstrated
a wide range of different patterns of timing behaviour.

More generally, it might be argued that – despite an
enormous effort in the theoretical studies of scheduling
algorithms – the results of such studies are often
incomplete. The first reason for making such a claim is
that (as we have demonstrated in this paper) it is not
enough to say that “the system implements an XYZ
scheduling algorithm”, because there is a ‘one-to-many’
mapping between scheduler algorithms and scheduler
implementations. As a consequence, even under normal
operating conditions, we can only define the scheduler
behaviour through the source code or (given potential
ambiguities in the translation of the source code: [47])
from the binary code. The second reason for arguing that
many scheduling algorithms are incomplete is that they do
not take into account the system behaviour when
something goes wrong. For example, the most basic TTC
scheduling algorithm assumes that – if a task overruns –
all subsequent tasks will be delayed. This is fine, in theory,
but it seems unlikely that any practical TTC
implementation can ever achieve this. For example, if a
task overruns for a week – or a year – then, in theory, the
TTC scheduler should keep track of all “missing” tasks
and execute them “immediately” when the overrunning
task completes. Providing full support for such a
mechanism requires a large memory capacity (potentially
an infinite memory capacity).

In practice, users of a TTC scheduler will provide some
mechanism for dealing with task overruns (even if these
are not complete, or not completely defined). For example,
general mechanisms for dealing with task overruns (in
software) are discussed by [48] while a complete software
implementation is discussed by [27]. Whether or not such
mechanisms are incorporated in the scheduler
implementation, a scheduler description is not complete if
– like all aspects of the system behaviour – the recovery
mechanisms are not explicitly defined.

The results (and discussions) in this paper do not
simply apply to TTC schedulers. Indeed, we would expect
that – as the algorithms grow more complicated – the
number of implementation options would increase with a
corresponding increase in the jitter variations. We would
also expect that the jitter-reduction techniques described

 Journal of Embedded Systems 51

in this study can be applied, in full or in part, when
implementing other scheduling algorithms.

Acknowledgement
The work presented in this paper was conducted in the

Embedded Systems Laboratory (ESL) at University of
Leicester, UK, under the supervision of Professor Michael
Pont, to whom the author is thankful.

References
[1] M. Sanfridson, “Timing problems in distributed real-time

computer control systems,” Mechatronics Lab, Dept. of Machine
Design, Royal Inst. of Technology, Stockholm, 2000.

[2] K.-J. Lin and A. Herkert, “Jitter control in time-triggered
systems,” in System Sciences, 1996., Proceedings of the Twenty-
Ninth Hawaii International Conference on ,, 1996, vol. 1, pp. 451-
459.

[3] P. Marti, J. M. Fuertes, G. Fohler, and K. Ramamritham, “Jitter
compensation for real-time control systems,” in 22nd IEEE Real-
Time Systems Symposium, 2001. (RTSS 2001). Proceedings, 2001,
pp. 39-48.

[4] T. Nolte, H. Hansson, and C. Norstrom, “Minimizing CAN
response-time jitter by message manipulation,” in Eighth IEEE
Real-Time and Embedded Technology and Applications
Symposium, 2002. Proceedings, 2002, pp. 197-206.

[5] M. Nahas and M. J. Pont, “Using XOR operations to reduce
variations in the transmission time of CAN messages: A pilot
study,” in Proceedings of the Second UK Embedded Forum,
Birmingham, UK, 2005, pp. 4-17.

[6] M. Nahas, M. J. Pont, and M. Short, “Reducing message-length
variations in resource-constrained embedded systems implemented
using the Controller Area Network (CAN) protocol,” Journal of
Systems Architecture, vol. 55, no. 5-6, pp. 344-354, May 2009.

[7] F. Cottet and L. David, “A Solution to the Time Jitter Removal in
Deadline Based Scheduling of Real-time Applications,” presented
at the 5th IEEE Real-Time Technology and Applications
Symposium-WIP, Vancouver, Canada, 1999, pp. 33-38.

[8] A. J. Jerri, “The Shannon sampling theorem #8212; Its various
extensions and applications: A tutorial review,” Proceedings of the
IEEE, vol. 65, no. 11, pp. 1565-1596, Nov. 1977.

[9] S. H. Hong, “Scheduling algorithm of data sampling times in the
integrated communication and control systems,” IEEE
Transactions on Control Systems Technology, vol. 3, no. 2, pp.
225-230, Jun. 1995.

[10] A. Stothert and I. M. Macleod, “Effect of Timing Jitter on
Distributed Computer Control System Performance,” in
Proceedings of the 15th IFAC Workshop on Distributed Computer
Control Systems (DCCS’98), 1998.

[11] M. Nahas, M. Short, and M. J. Pont, “The impact of bit stuffing on
the real-time performance of a distributed control system,”
presented at the Proceeding of the 10th International CAN
conference iCC, Rome, Italy, 2005, pp. 10-1-10-7.

[12] T. P. Baker and A. Shaw, “The cyclic executive model and Ada,”
Real-Time Syst, vol. 1, no. 1, pp. 7-25, Jun. 1989.

[13] B. Koch, “The Theory of Task Scheduling in Real-Time Systems:
Compilation and Systematization of the Main Results,” Studies
Thesis, University of Hamburg, 1999.

[14] M. J. Pont, Patterns for time-triggered embedded systems:
building reliable applications with the 8051 family of
microcontrollers. Harlow: Addison-Wesley, 2001.

[15] S. K. Baruah, “The Non-preemptive Scheduling of Periodic Tasks
upon Multiprocessors,” Real-Time Systems, vol. 32, no. 1-2, pp. 9-
20, Feb. 2006.

[16] C. Mwelwa, “Development and Assessment of a Tool to Support
Pattern-Based Code Generation of Time-Triggered (TT)
Embedded Systems,” PhD Thesis, University of Leicester,
Leicester, UK, 2006.

[17] T. Phatrapornnant and M. J. Pont, “Reducing jitter in embedded
systems employing a time-triggered software architecture and
dynamic voltage scaling,” IEEE Transactions on Computers, vol.
55, no. 2, pp. 113-124, Feb. 2006.

[18] M. J. Pont, S. Kurian, H. Wang, and T. Phatrapornnant, “Selecting
an appropriate scheduler for use with time-triggered embedded
systems.,” in Proceedings of the 12th European Conference on
Pattern Languages of Programs (EuroPLoP ’2007), Irsee,
Germany, 2007, pp. 595-618.

[19] C. D. Locke, “Software architecture for hard real-time applications:
Cyclic executives vs. fixed priority executives,” The Journal of
Real-Time Systems, vol. 4, no. 1, pp. 37-53, Mar. 1992.

[20] C. L. Liu and J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,” J. ACM,
vol. 20, no. 1, pp. 46-61, Jan. 1973.

[21] Y. Cho, S. Yoo, K. Choi, N.-E. Zergainoh, and A. A. Jerraya,
“Scheduler implementation in MP SoC design,” in Design
Automation Conference, 2005. Proceedings of the ASP-DAC 2005.
Asia and South Pacific, 2005, vol. 1, pp. 151-156 Vol. 1.

[22] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-
priority scheduling of periodic, real-time tasks,” Performance
Evaluation, vol. 2, no. 4, pp. 237-250, Dec. 1982.

[23] A. K.-L. Mok, “Fundamental design problems of distributed
systems for the hard-real-time environment,” Thesis,
Massachusetts Institute of Technology, 1983.

[24] G. C. Buttazzo, Hard real-time computing systems: predictable
scheduling algorithms and applications. New York: Springer,
2005.

[25] S. Key, M. J. Pon, and S. Edwards, “Implementing Low-cost
TTCS Systems using Assembly Language.,” in Proceedings of the
Eighth European conference on Pattern Languages of Programs
(EuroPLoP 2003), Germany, 2003, pp. 667-690.

[26] Z. H. Hughes and M. J. Pont, “Design and test of a task guardian
for use in TTCS embedded systems,” in Proceedings of the UK
Embedded Forum 2004, Birmingham, UK, 2004, pp. 16-25.

[27] Z. M. Hughes and M. J. Pont, “Reducing the impact of task
overruns in resource-constrained embedded systems in which a
time-triggered software architecture is employed,” Transactions of
the Institute of Measurement and Control, vol. 30, no. 5, pp. 427-
450, Dec. 2008.

[28] M. Nahas, M. J. Pont, and A. Jain, “Reducing task jitter in shared-
clock embedded systems using CAN,” in Proceedings of the UK
Embedded Forum 2004, Birmingham, UK, 2004, pp. 184-194.

[29] M. Nahas, “Employing Two ‘Sandwich Delay’ Mechanisms to
Enhance Predictability of Embedded Systems Which Use Time-
Triggered Co-Operative Architectures,” Journal of Software
Engineering and Applications, vol. 04, no. 07, pp. 417-425, 2011.

[30] D. I. Katcher, H. Arakawa, and J. K. Strosnider, “Engineering and
analysis of fixed priority schedulers,” IEEE Transactions on
Software Engineering, vol. 19, no. 9, pp. 920-934, Sep. 1993.

[31] J. Xu, “On inspection and verification of software with timing
requirements,” IEEE Transactions on Software Engineering, vol.
29, no. 8, pp. 705-720, Aug. 2003.

[32] G. S. Avrunin, J. C. Corbett, and L. K. Dillon, “Analyzing
partially-implemented real-time systems,” IEEE Transactions on
Software Engineering, vol. 24, no. 8, pp. 602-614, Aug. 1998.

[33] Bosch, CAN Specification Version 2.0. Bosch, 1991.
[34] T. Nolte, H. Hansson, C. Norström, and S. Punnekkat, “Using bit-

stuffing distributions in CAN analysis,” presented at the IEEE
Real-Time Embedded Systems Workshop, London, 2001.

[35] Keil Software, “C166 Compiler, Optimizing 166/167 C Compiler
and Library Reference, User Guide.” Keil Elektronik GmbH., and
Keil Software, Inc., 1998.

[36] National Instruments, “Low-Cost E Series Multifunction
DAQ 12 or 16-Bit, 200 kS/s, 16 Analog Inputs.” [Online].
Available: http://www.ni.com/pdf/products/us/4daqsc202-
204_ETCx2_212_213.pdf. [Accessed: 08-Mar-2014].

[37] “LabVIEW System Design Software,” National Instruments.
[Online]. Available: http://www.ni.com/labview/. [Accessed: 08-
Mar-2014].

[38] K. Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Kohout, C. Smit,
T. Zhang, and B. Jacob, “The performance and energy
consumption of embedded real-time operating systems,” IEEE
Transactions on Computers, vol. 52, no. 11, pp. 1454-1469, Nov.
2003.

[39] M. J. Pont, S. Kurian, and R. Bautista-Quintero, “Meeting Real-
Time Constraints Using ‘Sandwich Delays,’” in Transactions on
Pattern Languages of Programming I, J. Noble and R. Johnson,
Eds. Springer Berlin Heidelberg, 2009, pp. 94-102.

[40] J. Xu and D. L. Parnas, “Priority Scheduling Versus Pre-Run-
Time Scheduling,” Real-Time Systems, vol. 18, no. 1, pp. 7-23,
Jan. 2000.

52 Journal of Embedded Systems

[41] D. Ayavoo, M. J. Pont, M. Short, and S. Parker, “Two novel
shared-clock scheduling algorithms for use with ‘Controller Area
Network’ and related protocols,” Microprocessors and
Microsystems, vol. 31, no. 5, pp. 326-334, Aug. 2007.

[42] M. Nahas, “Estimating Message Latencies in Time-Triggered
Shared-Clock Scheduling Protocols Built on CAN Network,”
Journal of Embedded Systems, vol. 2, no. 1, pp. 1-10, 2014.

[43] M. Nahas, “Developing a Novel Shared-Clock Scheduling
Protocol for Highly-Predictable Distributed Real-Time Embedded
Systems,” American Journal of Intelligent Systems, vol. 2, no. 5,
pp. 118-128, Dec. 2012.

[44] Texas Instruments, “74LS08 Datasheet.” [Online]. Available:
http://www.cs.amherst.edu/~sfl<aplan/courses/spring-
2002/cs14/74LS08-datasheet. pdf. [Accessed: 08-Mar-2014].

[45] M. Farsi and M. B. M. Barbosa, CANopen implementation:
applications to industrial networks. Baldock, Hertfordshire,
England; Philadelphia, PA: Research Studies Press, 1999.

[46] Infineon Technologies, “C167CR Derivatives: 16-Bit Single-chip
Microcontroller; Microcontrollers. User’s manual V 3.1.” Mar-
2000.

[47] L. Hatton, “Programming Languages and Safety-Related
Systems,” in Achievement and Assurance of Safety, F. Redmill and
T. Anderson, Eds. Springer London, 1995, pp. 48-64.

[48] J. A. de la Puente and J. Zamorano, “Execution-time Clocks and
Ravenscar Kernels,” in Proceedings of the 12th International
Workshop on Real-time Ada, New York, NY, USA, 2003, pp. 82-
86.

