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Abstract

We model quantum space-time on the Planck scale as dynamical net-
works of elementary relations or time dependent random graphs, the time
dependence being an effect of the underlying dynamical network laws. We
formulate a kind of geometric renormalisation group on these (random)
networks leading to a hierarchy of increasingly coarse-grained networks of
overlapping lumps. We provide arguments that this process may generate a
fixed limit phase, representing our continuous space-time on a mesoscopic
or macroscopic scale, provided that the underlying discrete geometry is
critical in a specific sense (geometric long range order).

Our point of view is corroborated by a series of analytic and numerical
results, which allow to keep track of the geometric changes, taking place on
the various scales of the resolution of space-time. Of particular conceptual
importance are the notions of dimension of such random systems on the
various scales and the notion of geometric criticality.
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1 Introduction

Among the various approaches to quantum gravity (or (quantum) space-time
physics) there exists one which assumes that physics and, in particular, space-
time itself are basically discrete on the presumed fundamental Planck level. This
working philosophy is shared by a variety of more or less related research programs
which, however, employ different technical concepts and follow different lines of
reasoning when it comes to the concrete realisation of such a program (for a small
and incomplete list of papers of other groups see e.g. [8] to [23], [28], [29], [30]
and [36] to [38], for further references see below).

Our own approach has been developed in [1] to [7]. It generalizes the concept
of cellular automata to so-called cellular networks which live on, in general, very
large irregular and dynamical graphs. That is, both the nodes and the bonds
are assumed to be dynamical degrees of freedom and interact with each other.
An important ingredient of the dynamical laws is the possibility that bonds are
switched on and off in the course of network evolution so that also the overall
wiring or the geometry of the global network is a dynamically changing structure.

If one starts from such discrete model theories, two important points are the
following. First, the definition of a (class of) primordial dynamics, which, in one
way or the other, have the potential to lead to our wellknown effective (causal)
dynamical evolution laws on an emergent continuum space-time. Second (and
closely related to the first problem), the control of this continum limit as a limit
of a sequence of increasingly coarse grained intermediate theories. That is, one
of the central issues is it, to reconstruct and recover the ordinary continuum
physics and mathematics, starting from the remote Planck level. Some steps
in this direction have been made in the above mentioned papers. They depend
of course crucially on the kind of model theory being adopted and the general
working philosophy.

In the following we will develop a kind of geometric renormalisation process
leading, as we hope, in the end to a fixed point (or rather, phase), representing
some continuum theory. Our renormalisation scheme carries the flavor of our
particular framework, that is, the global structure and large scale patterns, ex-
isting in large networks and graphs. In some qualitative sense it is inspired by
the real-space block variable approach to renormalisation in the critical regime of
statistical mechanics. One should however note that the implementation of such
a program on the Planck scale is necessarily much more involved and ambitious
as compared to the typical scales of standard physics. The reason is that both
the patterns, living in the ambient network or space and the background space
itself have to be renormalized, and it turns out to be an ambitious enterprise to
keep track of the relevant geometric changes and characteristics on the various
scales of resolution of space-time. In particular, among other things, also the
dimension of the underlying spaces will change in general during the renormali-
sation process.
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Remark: We want to emphasize that, in the absence of a fixed background space,
the clue consists of performing the renormalisation steps in an intrinsic way,
without referring to some embedding space or other external geometric concepts.
On the other hand, the technical methods being developed are expected to be
useful also in other areas of modern physics and can be employed in other coarse-
graining schemes, for example in the field of dynamical triangulation and simpli-
cial complexes.

Before we begin with the discussion of the technical details of our program,
we want to add some remarks about the wider physical context to which such
ideas may belong. Illuminating ideas about discreteness on a fundamental level
have already been entertained by Wheeler et al, see e.g. the last pages in [24]
or [25],[26] respectively, another early source is Myrheim, [27]. Discrete struc-
tures like partial orders have for example been treated by Isham and coworkers,
[28]. A broad and general approach towards discrete physics in general has been
developed by T.D.Lee and his group (for a collection see vol.3 of his selected
papers, [31]). Last but not least, there is the huge body of work subsumed under
the catchword random geometry or dynamical triangulation ([32] or [33]) which
is however mostly concerned with the discretisation of a preexisting continuous
initial manifold. There may be interesting connections between our framework
and these other approaches but, for the time being, we refrain from commenting
on them in this paper to keep our paper within reasonable length.

As a last point we want to mention some interesting cross-fertilisation. In the
papers mentioned above we based our analysis on a class of dynamical network
laws which incorporate a mutual interaction between the local states defined on
the nodes of the underlying graph and the near by bonds. This allows us to
treat both the dynamics of the ordinary degrees of freedom on the graph and the
dynamical change of the geometry of the network on the same footing.

We recently observed that similar ideas have been entertained within the
framework of cellular automata (see e.g. [34] and [35]), the models being called
structurally dynamic cellular automata or SDCA. As far as we can see at the
moment, the adopted technical framework is not exactly the same but we think,
a comparison of both approaches should turn out to be profitable. We conclude
this introduction with a brief description of what we are going to do in the
following.

In the next section we explain the basics of the framework we are employing.
In section 3 we briefly introduce the concept of a random graph. To establish
some contact to other existing approaches, we show in section 4 that our network
naturally carries also the structure of causal sets. The concrete construction of
the renormalisation steps towards an envisaged continuum theory begins with
section 5 which contains also a series of rigorous analytical and numerical results
which are of technical relevance in the subsequent reasoning. In section 6 we
study some simple toy models which (despite of their simplicity) show that there
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indeed do exist fixed points in the category of infinite graphs under our geometric
renormalisation process. In section 7 we study the behavior of the particularly
important geometric concept of graph or network dimension and its behavior
under renormalisation and in section 8, which is kind of a conclusion, we analyse
the kind of geometric criticality which is in our view essential in order to arrive
at non-trivial macroscopic limit space-times.

We recently came upon a beautiful discussion of some work of Gromov ([47]),
which shows that there may be some deep and interesting connections between
our framework, developed in the following, and ideas of coarse graining in, for
example, geometric group theory by Gromov (see also the references [48],[49],[50]
cited in section 7).

2 Protogeometry and Protodynamics

In a first step we want to motivate why we choose exactly the kind of model theory,
we are discussing in the following. On the one side we have a working philosophy
which is similar to the one, expounded by ’t Hooft in e.g. [36] to [38]. That is,
we entertain the idea that for example quantum theory may well emerge as an
effective (continuum) theory on the mesoscopic scale of an underlying discrete
more microscopic theory. As we want our underlying (pre)geometry to coevolve
with the patterns living in this substratum, we developed the above mentioned
generalisation of the more regular cellular automata.

Another essential property of such discrete dynamical systems is , while the
basic ingredients and elementary building blocks are reasonably simple, their
potential for the emergence of very complex behavior on the more macroscopic
scales, thus supporting the speculation that such systems may be capable of
generating viable continuum theories.

We now begin to introduce the necessary technical ingredients. We start with
the definition of some notions of graph theory.

Definition 2.1 A simple, countable, labelled, undirected graph, G, consists of a
countable set of nodes or vertices, V , and a set of edges or bonds, E, each con-
necting two of the nodes. There exist no multiple edges (i.e. edges, connecting the
same pair of nodes) or elementary loops (a bond, starting and ending at the same
node). In this situation the bonds can be described by giving the corresponding
set of unordered pairs of nodes. The members of V are denoted by xi, the bonds
by eij, connecting the nodes xi and xj.

Remarks: We could also admit a non-countable vertex set. The above restriction
is only made for technical convenience. From a physical point of view one may
argue that the continuum or uncountable sets are idealisations, anyhow. The
notions vertex, node or edge, bond are used synonymously. Furthermore, the
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labeling of the nodes is only made for technical convenience (to make some dis-
cussions easier) and does not carry a physical meaning. As in general relativity,
all models being invariant under graph isomorphisms (i.e. relabelling of the nodes
and corresponding bonds) are considered to be physically equivalent.

In the above definition the bonds are not directed (but oriented; see below).
In certain cases it is also useful to deal with directed graphs.

Definition 2.2 A directed graph is a graph as above, with E consisting now of
directed bonds or ordered pairs of nodes. In this case we denote the edge, pointing
from xi to xj by dij. There may also exist the opposite edge, denoted by dji.

Observation 2.3 An undirected graph, as in definition 2.1, can be considered
as a particular directed graph with eij corresponding to the pair of directed edges,
dij, dji.

Remark 2.4 We introduced and studied algebraic and functional analytic struc-
tures like e.g. Hilbert spaces and Dirac operators on such graphs in [3],[5]. In
such situations, the bonds, eij, dij, can be given a concrete algebraic meaning with

eij := dij − dji = −eji (1)

It is now suggestive to regard the edges between pairs of points as describing
their (direct) interaction. This becomes more apparent if we impose dynamical
network laws on these graph structures so that they become a particular class
of discrete dynamical systems. Henceforth we denote such a dynamical network,
which is supposed to underly our continuous space-time manifold, by QX (“quan-
tum space”). We want to make the general remark that the cellular networks,
introduced in the following, can either be regarded as mere models of a perhaps
more hypothetical character, encoding, or rather simulating, some of the expected
features of a surmised quantum space-time or, on the other hand, as a faithful
realisation of the primordial substratum, underlying our macroscopic space-time
picture. Up to now, this is a matter of taste.

For technical convenience and to keep matters reasonable simple, we choose
a discrete overall clock-time (not to be confused with the physical time which
is rather supposed to be an emergent and intrinsic characteristic, related to the
evolution of quasi-macroscopic patterns in such large and intricately wired net-
works). In principle the clock-time can also be made into a local dynamical
variable. Furthermore, we assume the node set of our initial network to be fixed
and being independent of clock-time (in contrast to the bonds). We will see in the
following sections that this feature will change under the renormalisation steps,
i.e. on the highler levels, the class of lumps may become dependent on time.
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We assume that each node, xi, or bond, eik, carries an internal (for simplicity)
discrete state space, the internal states being denoted by si or Jik. In simple
examples we chose for instance:

si ∈ q · Z , Jik ∈ {−1, 0, +1} (2)

with q an elementary quantum of information and

eki = −eik ⇒ Jki = −Jik (3)

In most of the studied cellular automata systems even simpler internal state
spaces are chosen like e.g. si ∈ {0, 1}. This is at the moment not considered to
be a crucial point. The above choice is only an example.

In our approach the bond states are dynamical degrees of freedom which, a
fortiori, can be switched off or on (see below). Therefore the wiring, that is, the
pure geometry (of relations) of the network is a clock-time dependent, dynamical
property and is not given in advance. Consequently, the nodes and bonds are
typically not arranged in a more or less regular array, a regular lattice say, with
a fixed nea-/far-order. This implies that geometry will become to some degree a
relational (Machian) concept and is no longer a static background.

As in cellular automata, the node and bond states are updated (for conve-
nience) in discrete clock-time steps, t = z · τ , z ∈ Z and τ being an elementary
clock-time interval. This updating is given by some local dynamical law (exam-
ples are given below). In this context local means that the node/bond states are
changed at each clock time step according to a prescription with input the over-
all state of a certain neighborhood (in some topology) of the node/bond under
discussion.

A simple example of such a local dynamical law we are having in mind is
given in the following definition (first introduced in [3]).

Definition 2.5 (Example of a Local Law) At each clock time step a certain
quantum q is exchanged between, say, the nodes xi, xk, connected by the bond eik

such that
si(t + τ) − si(t) = q ·

∑

k

Jki(t) (4)

(i.e. if Jki = +1 a quantum q flows from xk to xi etc.)
The second part of the law describes the back reaction on the bonds (and is,
typically, more subtle). We assume the existence of two critical parameters 0 ≤
λ1 ≤ λ2 with:

Jik(t + τ) = 0 if |si(t) − sk(t)| =: |sik(t)| > λ2 (5)

Jik(t + τ) = ±1 if 0 < ±sik(t) < λ1 (6)
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with the special proviso that

Jik(t + τ) = Jik(t) if sik(t) = 0 (7)

On the other side

Jik(t + τ) =

{

±1 Jik(t) 6= 0
0 Jik(t) = 0

if λ1 ≤ ±sik(t) ≤ λ2 (8)

In other words, bonds are switched off if local spatial charge fluctuations are too
large or switched on again if they are too small, their orientation following the
sign of local charge differences, or remain inactive.

Another interesting law arises if one exchanges the role of λ1 and λ2 in the
above law, that is, bonds are switched off if the local node fluctuations are too
small and are switched on again if they exceed λ2.

We make the following observation:

Observation 2.6 (Gauge Invariance) The above dynamical law depends nowhere
on the absolute values of the node “charges” but only on their relative differences.
By the same token, charge is nowhere created or destroyed. We have

∆(
∑

QX

s(x)) = 0 (9)

(∆ denoting the change in total charge of the network between two consecutive
clocktime steps). To avoid artificial ambiguities we can e.g. choose a fixed refer-
ence level, taking as initial condition at t = 0 the following constraint

∑

QX

s(x) = 0 (10)

We resume what we consider to be the crucial ingredients of network laws, we
are interested in

1. As in gauge theory or general relativity, our evolution law should imple-
ment the mutual interaction of two fundamental substructures, put a little
bit vaguely : “geometry” acting on “matter” and vice versa, where in our
context “geometry” is assumed to correspond in a loose sense to the local
and/or global array of bond states and “matter” to the structure of the
node states.

2. By the same token the alluded selfreferential dynamical circuitry of mutual
interactions is expected to favor a kind of undulating behavior or selfexcita-
tion above a return to some uninteresting equilibrium state (being devoid of
stable structural details), as is frequently the case in systems consisting of a
single component which directly acts back on itself. This propensity for the
autonomous generation of undulation patterns is in our view an essential
prerequisite for some form of “protoquantum behavior” we hope to recover
on some coarse grained and less primordial level of the network dynamics.
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3. In the same sense we expect the large scale pattern of switching-on and -off
of bonds to generate a kind of “protogravity”.

Remark: The above dynamical law shows that bonds with Jik = 0 at clock time t
do not participate in the dynamics in the next time step. We hence may consider
them as being temporally inactive. The shape of the network, neglecting all the
internal states on the nodes and bond together with the inactive bonds we call
the wiring diagram.

If one concentrates solely on this wiring diagram, figure 1 describes one
clocktime step in the life of a dynamic graph. In the picture only a small subgraph
is shown and the deletion and creation of edges (that is, elementary interactions
among nodes or possible information channels). The new bonds are represented
as bold lines. It should be emphasized that the graph is not assumed to be a
triangulation of some preexisting smooth manifold. This is emphasized by the
existence of edges, connecting nodes which are not necessarily close with respect
to e.g. the euclidean distance.

Figure 1:

We have pictured our proto space-time on the Planck scale as a fluctuating
network of dynamic relations or exchange of pieces of information between a
given set of nodes. At each fixed clock-time step there exist in this network
certain subclusters of nodes which are particularly densely entangled and the
whole graph can be covered by this uniquely given set of subclusters of nodes
and the respective induced subgraphs. We dealt with these distinguished clusters
of nodes (called cliques or lumps) in quite some detail in e.g. [4] or [6]. We
emphasize the interesting relations to earlier ideas of Menger, Rosen et al, which
have been discussed in [6].
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One of our core ideas is it that the seemingly structureless (mathematical)
points, making up our ordinary continuous manifolds, would display a rich nested
internal structure if looked at under a magnification or resolution so that the
lumpy structure of space-time became visible. We think this hidden substructure
will become particularly relevant when it comes to the interpretation of quantum
phenomena ( [7], where possible relations to some interesting ideas of Connes
have been set up).

From a more technical or practical point of view we need a general principle
which allows us to lump together subsets of nodes, living on a certain level of
resolution of space-time, to get the building blocks of the next level of coarse
graining (see below). After a series of such coarse graining steps we will wind up
with a nested structure of lumps, containing smaller lumps and so forth, which,
after appropriate rescaling, may yield in the end some quasi-continuous but nested
structure. This principle is provided by the following mathematical concept.

Definition 2.7 (Subsimplices and Cliques) With G a given fixed graph and
Vi a subset of its vertex set V , the corresponding induced subgraph over Vi (that
is, its edges being the corresponding edges, occurring in G) is called a subsim-
plex, if all its pairs of nodes are connected by a bond. In this class, which is in
fact partially ordered, the order being given by graph inclusion, there exist certain
maximal subsimplices, that is, subsimplices so that every addition of another node
of the underlying graph(together with the respective bonds existing in G (pointing
to other nodes of the chosen subset) destroys this property. These maximal sim-
plices are usually called cliques in combinatorics (we call them also lumps) and
are the candidates for our construction of physical points. Henceforth we denote
them by Ci.

It has been described in detail in e.g. section 4 of [4] how these cliques can
be constructed in an algorithmic way, starting from an arbitrary node. Note in
particular that a given node will, in general belong to many different (overlapping)
cliques or lumps. The situation is illustrated by the following picture: In this
picture we have drawn a subgraph of a larger graph. (1) denotes a clique, i.e.
a maximal subsimplex. Subsets of nodes of such a clique support subsimplices
(called faces in algebraic topology), the clique being the maximal element in this
partial ordered set. (2) and (3) are other, smaller cliques which overlap with
(1) in a common bond or node. (4) is an example of a subgraph which is not
a clique or subsimplex. Evidently, each node or bond lies in at least one clique.
The smallest possible cliques which can occur in a connected graph consist of two
nodes and the corresponding edge.
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(1)

(2)

(3)

(4)

Figure 2:

3 Dynamical Networks as Random Graphs

3.1 The Statistical Hypothesis

As we are dealing with very large graphs, which are, a fortiori, constantly chang-
ing their shape, that is, their distribution of (active) bonds, we expect the dy-
namics to be sufficiently stochastic so that a point of view may be appropriate,
which reminds of the working philosophy of statistical mechanics. This does how-
ever not imply that our evolving network is nothing but a simple random graph
as introduced below (cf. the remarks at the end of this section). It rather means
that some of its geometric characteristics can, or should, be studied within this
well-developed context.

Visualizing the characteristics and patterns being prevalent in large and “typ-
ical” graphs was already a notorious problem in combinatorial graph theory and
led to the invention of the random graph framework (see the more complete dis-
cussion in [4]). The guiding idea is to deal with graphs of a certain type in a
probabilistic sense. This turns out to be particularly fruitful as many graph char-
acteristics (or their absence) tend to occur with almost certainty in a probabilistic
sense (as has been first observed by Erdös and Rényi). The standard source is
[39] (for further references see [4]).

Another strand of ideas stems from the theory of dynamical systems and cel-
lular automata, where corresponding statistical and ensemble concepts are regu-
larly employed. Typically, we are looking for attractors in phase space, which are
assumed to correspond to large scale, that is, after coarse graining and rescaling,
quasi continuous or macroscopic patterns of the system. Experience shows, that
such a structure or the approach towards attractors is in many cases relatively
robust to the choice of initial configurations or microscopic details and, hence,
suggests an ensemble picture.
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Furthermore, since the early days of statistical mechanics, the ensemble point
of view (see for example [46]) is, at least partly, corroborated by the philosophy
that time averages transform (under favorable conditions) into ensemble averages.
In our context this means the following. Denoting the typical length/time scale
of ordinary quantum theory by [lqm], [tqm], we have

[lqm] ≫ [lpl] , [tqm] ≫ [tpl] (11)

the latter symbols denoting the Planck scale. Under renormalisation the meso-
scopic scales comprise a huge number of microscopic clock time intervals and
degrees of fredom of the network under discussion.

A fortiori, the networks, we are interested in, correspond to graphs, having a
huge vertex degree, i.e. channels, entering a given typical node of the graph. That
is, we expect large local fluctuations in microscopic grains of space or time. Put
differently, the network locally traverses a large number of different microscopic
states in a typical mesoscopic time interval, [tqm]. This observation suggests that,
on a mesoscopic or macroscopic scale, microscopic patterns will be washed out
or averaged over.

3.2 The Random Graph Framework

One kind of probability space is constructed as follows. Take all possible labeled
graphs over n nodes as probability space G (i.e. each graph represents an el-
ementary event). The maximal possible number of bonds is N :=

(

n

2

)

, which
corresponds to the unique simplex graph (denoted usually by Kn). Give each
bond the independent probability 0 ≤ p ≤ 1, (more precisely, p is the probability
that there is a bond between the two nodes under discussion). Let Gm be a graph
over the above vertex set, V , having m bonds. Its probability is then

pr(Gm) = pm · qN−m (12)

where q := 1 − p. There exist
(

N

m

)

different labeled graphs Gm, having m bonds,
and the above probability is correctly normalized, i.e.

pr(G) =
N

∑

m=0

(

N

m

)

pmqN−m = (p + q)N = 1 (13)

This probability space is sometimes called the space of binomially random graphs
and denoted by G(n, p). Note that the number of edges is binomially distributed,
i.e.

pr(m) =

(

N

m

)

pmqN−m (14)

and
〈m〉 =

∑

m · pr(m) = N · p (15)
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The really fundamental observation made already by Erdös and Rényi (a
rigorous proof of this deep result can e.g. be found in [40]) is that there are what
physicists would call phase transitions in these random graphs. To go a little bit
more into the details we have to introduce some more graph concepts.

Definition 3.1 (Graph Properties) Graph properties are certain particular
random variables (indicator functions of so-called events) on the above probability
space G. I.e., a graph property, Q, is represented by the subset of graphs of the
sample space having the property under discussion.

To give some examples: i) connectedness of the graph, ii) existence and number
of certain particular subgraphs (such as subsimplices etc.), iii) other geometric
or topological graph properties etc.

In this context Erdös and Rényi made the following important observation.

Observation 3.2 (Threshold Function) A large class of graph properties (e.g.
the monotone increasing ones, cf. [39] or [40]) have a so-called threshold func-
tion, m∗(n), with m∗(n) := N · p∗(n), so that for n → ∞ the graphs under
discussion have property Q almost shurely for m(n) > m∗(n) and almost shurely
not for m(n) < m∗(n) or vice versa (more precisely: for m(n)/m∗(n) → ∞ or 0;
for the details see the above cited literature). That is, by turning on the proba-
bility p, one can drive the graph one is interested in beyond the phase transition
threshold belonging to the graph property under study. Note that, by definition,
threshold functions are only unique up to “factorization”, i.e. m∗

2(n) = O(m∗
1(n))

is also a threshold function.

Calculating these graph properties is both a fascinating and quite intricate en-
terprise. In [4] we mainly concentrated on properties of cliques, their distribution
(with respect to their order, r, i.e. number of vertices), frequency of occurence of
cliques of order r, degree of mutual overlap etc. We then related these properties
to the various assumed stages and phases of our space-time manifold.

We can introduce various random function on the above probability space.
For each subset Vi ⊂ V of order r we define the following random variable:

Xi(G) :=

{

1 if Gi is an r-simplex,

0 else
(16)

where Gi is the corresponding induced subgraph over Vi in G ∈ G (the probability
space). Another random variable is then the number of r-simplices in G, denoted
by Yr(G) and we have:

Yr =

(n

r
)

∑

i=1

Xi (17)
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with
(

n

r

)

the number of r-subsets Vi ⊂ V . With respect to the probability measure
introduced above we have for the expectation values :

〈Yr〉 =
∑

i

〈Xi〉 (18)

and
〈Xi〉 =

∑

G∈G

Xi(G) · pr(Gi = r-simplex in G). (19)

These expectation values were calculated in [4]. We have for example

〈Xi〉 = p(r

2
) (20)

The probability that such a subsimplex is maximal, i.e. is a cliques is then

pr(Gr is a clique) = (1 − pr)n−r · p(r

2
) (21)

As there exist exactly
(

n

r

)

possible different r-sets in the node set V , we arrive at
the following conclusion:

Conclusion 3.3 (Distribution of Subsimplices and Cliques) The expecta-
tion value of the random variable ‘number of r-subsimplices’ is

〈Yr〉 =

(

n

r

)

· p(r

2
) (22)

For Zr, the number of r-cliques (i.e. maximal! r-simplices) in the random graph,
we have then the following relation

〈Zr〉 =

(

n

r

)

· (1 − pr)n−r · p(r

2) (23)

These quantities, as functions of r (the order of the subsimplices) have quite a
peculiar numerical behavior. We are interested in the typical order of cliques oc-
curring in a generic random graph (where typical is understood in a probabilistic
sense.

Definition 3.4 (Clique Number) The maximal order of occurring cliques con-
tained in G is called its clique number, cl(G). It is another random variable on
the probability space G(n, p).

It is remarkable that this value is very sharply defined in a typical random graph.
Using the above formula for 〈Zr〉, we can give an approximative value, r0, for this
expectation value and get

r0 ≈ 2 log(n)/ log(p−1) + O(log log(n)) (24)

12



(cf. chapt. XI.1 of [39]). It holds that practically all the occurring cliques fall
in the interval (r0/2, r0). We illustrate this with the following tables. Our choice
for n, the number of vertices, is 10100. The reason for this seemingly very large
number is, that we want to deal with systems ultimately simulating our whole
universe or continuous space-time manifolds (see the more detailed discussion in
[4]). We first calculate r0.

p 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
r0 4370 2063 1291 901 664 502 382 286 200

(25)

(for reasons we do not understand we made some numerical errors in the orriginal
table 1 in [4], p.2043).

It is more complicated to give numerical estimates of the distribution of
cliques, that is 〈Zr〉. After some manipulations and approximations we arrived
in ([4],p.2051f) at the following approximative formula and numerical table (the
numerical values are given for p = 0.7; note that for this parameters the maximal
order of occurring cliques, r0, was approximately 1291)

log(〈Zr〉) ≈ r · log(n) + n · log(1 − pr) + r2/2 · log(p) (26)

(with r2/2 an approximation of r(r − 1)/2) for r sufficiently large).

r 600 650 800 1000 1200 1300 1400
log(〈Zr〉) −5.7 · 106 3.2 · 104 3.2 · 104 2.5 · 104 8.4 · 103 −0.75 · 102 −1.1 · 104

(27)
(In the original table 2 of [4] the numerical values for small and large r’s, lying
outside the interval (r0/2, r0), were wrong as we neglected numerical contributions
which are only vanishingly small in the above interval. The above table nicely
illustrates how fast the frequency of cliques of order r drops to zero outside the
above interval.

As to the interpretation of these findings, one should remind the reader that
the above results apply to the generic situation, that is, do hold for typical graphs
(in very much the same sense as in corresponding discussions in the foundations of
statistical mechanics). An evaluation of the combinatorial expressions in this and
the following sections show that frequently the same kind of extreme probabilistic
concentration around, for example, most probable values occurs as in ordinary
statistical mechanics.

What is not entirely clear is, how far the random graph approach can be
applied to our complex dynamical networks. Our working philosophy is that these
results serve to show, what we hope, is the qualitative behavior of such systems.
As our systems follow deterministic dynamical laws, starting from certain initial
conditions, the behavior cannot be entirely random in the strict sense. This
holds the more so since we expect the systems to evolve towards attracting sets
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in phase space and/or generate some large scale patterns. On the other hand, due
to the constant reorientation of the bonds, being incident with an arbitrary but
fixed node and the generically large vertex degrees of the nodes, one may assume
that the system is sufficiently random on small scales, so that the random graph
picture reproduces at least the qualitative behavior of such extremely complex
systems.

To make this picture more quantitative, the general strategy is the following.
We count the typical number of active bonds in our evolving network at a given
clock time t, calculate from this the corresponding bond probability, p(t), and
relate this snapshot of our network to a random graph with the same! bond
probability. This should yield at least some qualitative clues. That is, we expect
that qualitative characteristics of our evolving network can, at each given clock
time, be related to the characteristics of a corresponding random graph. In this
specific sense, one may regard the bond probability, p(t), as the crucial order
parameter of our network, regarded as a statistical system. (We note that we
implemented such networks on a computer and made detailed studies of their
dynamical behavior and stochastic properties, see [41]. Our investigations showed
that at least qualitatively the expected phenomena came out correctly).

4 Cellular Networks as Causal Sets

In this section we want to make contact with an approach to quantum gravity,
being based on the concept of causal sets. We again emphasize that, for reasons
of technical simplicity, we treat time as a global non-dynamical quantity, being
well aware that this may be a severe restriction. On the other hand, the notorious
so-called problem of time has not yet been settled anyhow in quantum gravity
and needs an extra and careful treatment. Under this proviso we want to show,
that our cellular networks and lump-spaces automatically have the structure of
causal sets, with this extra structure being induced by our local dynamical laws.
On the most elementary level we start from our above initial network.

We argued above that we want to neglect the details of the (time dependent)
internal states of nodes and bonds and keep only track of the bonds which are in
operation at a given clock-time, t, that is, the bonds with Jik 6= 0. Doing this,
we arrive at the concept of time dependent graphs, G(t).

Definition 4.1 G(t) is a graph with a fixed (time independent) node set, V , but
a time dependent set of active bonds, E(t). In principle we could also make the
node set time dependent, the above assumption is mainly made for convenience.

The local dynamical laws can as well be viewed as a prescription, by which
local pieces (quanta) of information are transported between the active bonds of
the network. The nodes, which can be reached from a given node in a single clock
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time step, are called its nearest neighbors, nn, the next-nearest neighbors, nnn,
are correspondingly defined and so on.

What we have defined up to now corresponds to the foliation of space-time
into an aggregate of space-like slices. We now form the union of these slices and
define

G :=
⋃

t

G(t) (28)

In our above mentioned papers (see in particular [1]) we exploited the fact that
graphs carry a natural metric structure

d(xi, xj) := inf{length of paths, connecting xi and xj} (29)

where path length is the discrete number of edges of the path. This defines a
neighborhood structure on a graph.

Ul(x0) := {nodes xi with d(x0, xi) ≤ l} (30)

We now will transform G into a partial ordered set (poset) by introducing
additional (causal) bonds and relabeling the nodes. From now on we denote the
nodes in G(t) by xi(t), that is, one and the same node xi carries an additional
time label t ∈ Z · τ , depending on the time slice G(t) under discussion and is
denoted by xi(t). For each node, xi(t) we draw new edges to the nodes xj(t + 1)
lying in G(t + 1), provided that xj(t) is a nn of xi(t) in G(t) (including the node
xi(t + 1) itself!). For convenience we usually drop the extra time element τ .

Definition 4.2 We call the edges lying in G(t), that is the original edges of the
(time dependent!) graph, the spatial edges (at time t), the edges which connect
the neighbors in consecutive slices, G(t), G(t + 1), are dubbed causal edges. That
is, an elementary causal neighborhood of, say, xi(t) consists of all the nodes,
xj(t + 1), in G(t + 1), with xj(t), having spatial distance, d(xi(t), xj(t)) ≤ 1, in
G(t) (that is, the node, xi(t + 1) itself plus the nodes having distance one).

(It may be helpful to envisage the spatial edges as carrying a red colour and the
causal edges a green one).

We can now proceed by introducing the forward - or future cone, backward - or
past cone, respectively.

Definition 4.3 To the forward cone of x(t) belong those nodes, y(t′), t′ ≥ t,
which can be connected by a causal edge sequence, γ, starting in x(t). Such an
admissible sequence consists of (t′− t) elementary steps. An analogous definition
holds for the members of the past cone. Given two nodes, x(t), y(t′) with t′ ≥ t,
we can intersect the forward cone of x(t) with the backward cone of y(t′) and get
the corresponding double cone.
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Remark: Note that the causal and metric relations are relatively subtle as com-
pared to, for instance, ordinary special relativity, where we deal with one and the
same topological space structure for all times. In our space-time graph, G, the
spatial wiring is constantly changing on a microscopic scale, due to the imposed
local dynamical law. That is, two nodes may become nearest neighbors in G(t)
while being far apart for earlier or later times and vice versa. This can happen
since bonds are permanently annihilated and created.

Conclusion 4.4 The above causal distance concept has already some of the cru-
cial ingredients of the metric properties, known from general relativity. Further-
more, it is of a markedly stochastic character.

What we have said above, creates in a natural way some partial order on
the set of nodes. We do not want to reproduce all the technical notions, which
are presumably well known or can be found in e.g. the papers of Sorkin et al,
mentioned above, or in, say, [42] or [43]. In the definition of the partial ordered
set (poset), only the causal (green) bonds enter (whith their (non)existence being
a consequence of the respective (non)existence of the spatial (red) bonds).

Definition 4.5 We have xj(t
′) ≥ xi(t) , t′ ≥ t if the nodes can be connected

by a causal path, lying in the forward cone. The nodes, lying on a causal edge
sequence, we call chains, sets of mutually space like nodes are called antichains.

This order relation is clearly reflexive, antisymmetric and transitive. We remark
the following point.

It trivially holds (by assumption) that xi(t
′) ≥ xi(t), that is, for the same

node at different times. This implies that for two nodes, xi, xj it follows

xj(t
′) ≥ xi(t) ⇒ xj(t

′′) ≥ xi(t) (31)

for all times, t′′ ≥ t′, as we can continue the causal path from xi(t) to xj(t
′) by

the trivial path, xj(t
′) − xj(t

′′).

5 The Geometric Coarse-Graining or Renormal-

isation Process

5.1 The General Picture

One of our central hypotheses is it, to regard the ordinary space or space-time
as a medium having a complicated internal dynamical fine structure, which is
largely hidden on the ordinary macroscopic scales due to the low level of (only
mesoscopic) resolution of space-time processes as compared to e.g. the Planck
scale. The corresponding process of coarse graining, described in the following,
may be also called a geometric renormalisation, in which the resolution of the
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details of space-time is steadily scaled down to the level of ordinary continuum
physics. Some preliminary ideas of this renormalsation process have already been
been decribed in [4] and [6].

In the following we deal with a generic large network or graph, G, as a typ-
ical representative of the members of the class {G(t)}, described above. The
individual renormalisation steps consist of the following constructions.

• Starting from a given fixed graph, G, pick the (generic) cliques, Ci, in G,
i.e. the subgraphs, forming maximal subsimplices or cliques in G with their
order lying in the above mentioned interval, (r0/2, r0).

• These cliques form the new nodes of the clique-graph, Gcl of G. The corre-
sponding new bonds are drawn between cliques, having a (sufficient degree
of) overlap. Size, overlap and distribution of cliques in a generic (random)
graph have been analyzed in [4], for more details see the following subsec-
tion.

• That is, both marginal cliques (if they do exist at all) and marginal overlaps
are deleted. In this respect a coarse-graining step includes also a certain
purification of the graph structure.

Remark 5.1 What is considered to be a “sufficient overlap” depends of course
on the physical context and the general working philosophy. As we noted above,
a particular node will in general belong to several, and in the case of densely
entangled graphs to many, cliques. The minimal possible overlap is given by a
single common node. If, on the other hand, the cliques on a certain level of coarse
graining are comparatively large, comprising, say, typically several hundred nodes,
it may be reasonable to neglect marginal, i.e. to small, overlaps as physically
irrelevant and define a sufficient degree of overlap to consist of an appreciable
fraction of the typical clique order. Correspondingly, too small cliques, not lying
in the above introduced interval, (r0/2, r0), are deleted (if they do exist at all!, see
the estimates in section 3). The numerical effect of such choices will be studied
in the following.

Definition 5.2 We call the graph, defined above, the (purified) clique graph, Gcl,
constructed from the initial graph, G.

It is an important question whether graphs and networks are connected, that
is, if there exists a path or edge sequence, connecting each pair of vertices. This
question becomes, a fortiori relevant, in the following (sub)sections if the coarse-
graining or renormalisation steps are performed on a given fixed graph. The
following lemma is useful.

Lemma 5.3 If G is a connected graph, that is, each pair of vertices, x, y can be
connected by a finite path or edge sequence, depicted as x = x0−x1−· · ·−xn = y,
then the ordinary (unpurified) clique graph, Gcl is again connected.
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Proof: Let x0 lie in a certain clique, C0 and y in a clique Cn+1. By algorithmic
construction (cf. [4]), the vertices x0 − x1, x1 − x2, . . . , xn−1 − xn are lying in
certain cliques C1, . . . , Cn with

C0 ∩ C1 6= ∅ , C1 ∩ C2 6= ∅ . . . , Cn ∩ Cn+1 6= ∅ (32)

by construction (xi ∈ Ci ∩ Ci+1). Hence, each pair of cliques, C, C ′, can be
connected by a finite sequence of pairwise overlapping cliques. In other words,
the ordinary clique graph is again connected. 2

This result is, for example, useful in cases where graphs are so sparsely con-
nected that, viewed in the random graph picture, there is a non-zero probability
that they are disconnected. The above construction shows that at least the con-
secutive sequence of unpurified clique graphs G0 → G1 → G2 → · · · consists of
connected graphs, provided the initial graph, G0, is connected, with Gi+1 being
the clique graph of Gi. On the other hand, if we take instead the purified clique
graph, in which only overlaps of a certain degree are taken into account which
are greater than some prescribed value, it may happen that the clique graph is
no longer connected.

We want to repeat the above described coarse-graining process several or
perhaps many times (if necessary) without the necessity of introducing new prin-
ciples at each step of the construction. The transition from a graph to its clique
graph represents such a universal principle, which works on each level of the
renormalisation process. In the end we hope to arrive at a (quasi-)continuous
manifold, displaying, under appropriate magnification, an intricate internal fine
structure. This should (or rather, can only expected to) happen if the original
network has been in a (quasi-)critical state as will be described in the following
(see in particular section 8).

On each level of coarse-graining, that is, after each renormalisation step, la-
belled by l ∈ Z, we get, as in the block spin approach to critical phenomena, a
new level set of cliques or lumps,C l

i , (i labelling the cliques on renormalisation
level l), consisting on their sides of (l − 1)-cliques which are the l-nodes of level
l, starting from the level l = 0 with G =: G0. That is, we have

C l
j =

⋃

i∈j

C
(l−1)
i , C

(l−1)
i =

⋃

k∈i

C
(l−2)
k etc. (33)

(i ∈ j denoting the (l− 1)-cliques, belonging, as meta nodes, to the l-clique, Cj).
These cliques form the meta nodes in the next step.

Definition 5.4 The cliques, C0
i , of G =: G0 are called zero-cliques. They become

the one-nodes, x1
i , of level one, i.e. of G1. The one-cliques, C1

i , are the cliques
in G1. They become the 2-nodes, x2

i , of G2 etc. Correspondingly, we label the
other structural elements, for example, 1-edges, 2-edges or the distance functions,
dl(x

l
i, x

l
j). These higher-level nodes and edges are also called meta-nodes, -edges,

respectively.
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The following figure shows how the (meta) nodes and bonds form in two
consecutive steps. In this example and in the selected subgraph under discussion
the cliques on level 0 are triangles. Some of them have a common bond but all
of them are hanging together via a common (central) node. In this example we
draw a bond on level 1 if the cliques of level 0 have at least one node in common.
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Figure 3:

Remark 5.5 The picture may lead to the wrong impression that the network
becomes sparser after each step. Quite to the contrary, the number of cliques in
Gcl may be much larger than the number of nodes in the original graph, G (cf.
the table in section 3). This happens if there is an appreciable overlap among the
occurring cliques, that is, a given node may belong to many different cliques. On
the other hand, after several renormalisation steps, the picture becomes stable in
the generic case (see the following subsection).

The above illustration can be understood in two different ways. On the one
hand, read from left to right, the resolution of space appears to be reduced. The
cluster of cliques on the left happens to be contracted to a single node of the
next level. On the other hand, according to our working philosophy, we can
regard the node on the right as still containing the structure on the left, which
could, in principle, be recovered when increasing the resolving power of our space-
time microscope, i.e., by increasing e.g. the energy. This is expressed in the
following picture (where for the sake of graphical clarity, the mutual overlaps of
the occurring cliques of the same level is not represented!). Understood in this
latter sense we call these space-time points also lumps, that is, we regard them
as objects, having an inner structure. Different aspects of this structure emerge
on the respective scale of resolution or magnification. We provided arguments in
[7] that in our view even quantum theory is just such an emergent aspect which
shows up at the typical quantum scale.

We want to briefly mention the possibly far-reaching interplay on the higher
levels of coarse-graining between these deleted, too marginal, overlaps and the
more local wiring stemming from the non-marginal overlaps. We discussed this
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Figure 4:

point at length in [7]. We argued there that these deleted meta bonds are re-
sponsible for the translocal behavior of quantum theory. In the following we are,
however, chiefly be concerned with the emergence of smooth and local behavior,
leading, hopefully, to (quasi)classical space-time structures).

5.2 The Analytic and Numerical Results

We begin this subsection with a general remark concerning the character of our
approximations.

Remark 5.6 As the individual terms in our combinatorial expressions are typi-
cally either extremely large or small and are frequently, as in statistical mechanics,
very sensitive to the given range of parameters, it is a quite delicate matter to
make safe estimates. Among other things we usually have to take logarithms and
compare them. That is, if for example log(a) ≫ log(b), we sometimes choose
to neglect log(b) in a contribution like log(a) + log(b) in the further calculations.
For the original expression this may have the effect that we replace b · a by a. To
give an example; we sometimes approximate 102 · 10100 by 10100. Otherwise we
had to take into account a lot of only marginal contributions which would make
the calculations rather cumbersome. On the other hand, this is of course only
justified, if we are only interested in qualitative results and provided that the final
result is insensitive to such an approximation.

We made more detailed remarks in [4] formulas (62) ff., where we discussed the
approximation of e.g. binomial coefficients and their logarithms.

We have seen that the cliques in a large generic random graph of order n and
bond probability p are with high probability concentrated in the interval (r0/2, r0)
with respect to their order, r, with

r0 ≈ 2 log(n)/ log(p−1) + O(log log(n)) (34)

20



and with the expectation of r-cliques

〈Zr〉 =

(

n

r

)

· (1 − pr)n−r · p(r

2) (35)

We can test our general working philosophy concerning the effects of coarse grain-
ing and renormalisation by analytically and numerically calculating various prop-
erties of the clique graph of a generic random graph. These calculations become
increasingly intricate with increasing complexity of the asked questions. Some of
the analysis has already been done in e.g. sect. 4.2 of [4] (called ‘The Unfolded
Epoch’) to which we refer the reader for more technical details.

The meta nodes of the clique graph, Gcl, are the cliques of G. The meta bonds
in Gcl are given by the overlap of cliques in G. As we want, on physical grounds,
to ignore marginal, that is, too small overlaps, it is important to calculate the
expected number of r′-cliques, 〈N(C0; r

′, l)〉, having an overlap of order l with a
given fixed r-clique, C0 with both r and r′ lying in the above interval of generic
cliques.

In [4] sect. 4.2 we derived the following formula for this stochastic quantity
(C0 being a fixed r-clique):

〈N(C0; r
′, l)〉 =

(

r

l

)

·
(

n−r

r′−l

)

· p(r
′

2
)−(l

2
)

(1 − pr)n−r·
· Pr′,l (36)

with Pr′,l a lengthy combinatorial expression (formula (69) in [4]) which we can
neglect for the parameters n, r, r′, chosen by us, that is n ≫ r, r′ ≫ l. That is,
in this regime we approximated Pr′,l by one. It can however not be neglected if
this assumption is violated!.

After some manipulations we arrive at the following approximative formula
([4], formula (74)), where we choose, for convenience, r′ = r, as we are at the
moment only interested in qualitative or generic results:

log〈N(C0; r
′, l)〉 ≈ (r′ − l) · (log(n) − log(r′ − l)) + 1/2 · (r′)2 · log(p)

≈ log〈Zr′〉 − l · log(n) − r′ log(r′) (37)

with
log〈Zr〉 ≈ r log(n) + 1/2 · r2 · log(p) (38)

for this range of parameters (cf. also [4] formula (60)ff).
The total expected number of r′-cliques, having an overlap l ≥ l0 with a given

r-clique is
∑

l≥l0

〈N(C0; r
′, l)〉 (39)

(the admissible l’s being bounded by the minimum of r and r′). For l = 0 we
get the expected number of r′-cliques, having zero overlap with the given fixed r-
clique, C0, that is we have approximately (remember our simplifying assumption
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r = r′):
log〈N(C0; r

′, l = 0)〉 ≈ log〈Zr′〉 − r′ · log(r′) (40)

As n is so large, the total number of r′-cliques, having overlap l ≥ l0 with C0

can be approximated by the number of cliques fullfilling the lower bound l0. On
the other hand, the total number of expected generic cliques, Ncl, in the random
graph, G, that is, the cliques with order lying in the respective interval (r0/2, r0)
is roughly

Ncl ≈ r0/2 · 〈Zr̄〉 (41)

with r̄ an appropriate value in the above interval (this replacement can be made as
the numerical values in this interval behave relatively uniformly). We define the
local group of a generic clique as the set of generic cliques, having non-marginal
overlap with the fixed given clique. From the above reasoning we can now infer
the following important conclusion

Conclusion 5.7
〈Nloc.gr.〉 ≈ Ncl/(nl0 · r̄r̄) (42)

with n the number of nodes in the graph, G, Ncl the number of generic cliques
in the corresponding clique graph, l0 the degree of overlap of the generic cliques,
r̄ some appropriate value in the interval [r0/2, r0], n ≫ r, r′ ≫ l0 being assumed
(where the second ≫ is not so pronounced as the first one; n is usually gigantic
compared to the clique size r!).

Such estimates are central in the following as they provide information about the
local structure of the clique graph.

From the above formulas and numerical results we can now infer interesting
properties of the clique graph of a typical graph of order, n, and bond probability,
p. The expected order of the local group in the clique graph is, by the same token,
the average vertex degree in the clique graph. That is

〈vcl〉 ≈ Ncl/(nl0 · r̄r̄) (43)

From this we can immediately infer the bond probability of the clique graph:

pcl = 〈vcl〉/(Ncl − 1) ≈ 〈Nloc.gr.〉/Ncl ≈ n−l0 · r̄−r̄ (44)

and see that it is already considerably smaller than the bond probability of the
underlying microscopic graph we started from which, in our numerical example,
was assumed to be of order one.

We take our above numerical example, n = 10100 , p = 0.7 which implies
r0 = 1291 and assume that an appreciable overlap for generic cliques should be
of the order of, say, 50 nodes. As typical clique size we take r̄ = r0/2 (remember
that we are at the moment only interested in qualitative results). The clique
graph has roughly Ncl ≈ 10104

generic cliques, that is, meta nodes of the first
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level. With the bond probability in the clique graph, pcl ≈ 10−7·103

, we now can
calculate the distribution and order of cliques of the first level, that is, cliques of
cliques. This provides important information about the near order of the clique
graph and the effects of the renormalisation steps.

As the order of these cliques of the first level turns out to be already quite
small, it is reasonable to avoid our approximative formulas and determine the
respective clique number, r0, by explicitly calculating the number where 〈Zr〉
drops from a very large number to effectively zero. The result shows, that for
overlap = 50 of the original cliques (of the zero level), the cliques of the next
higher level comprise only very few cliques of the zero level. That is, the near-
order of G1 := Gcl is already much coarser or less erratic as compared to the near
order in the original graph. The results are described in the following observation.

Observation 5.8 For the above numerical parameters we get a typical clique
size on the first coarse grained level of order r = 2 or 3 and an expected number
of cliques of the first level of the order of log(Ncl) = 104 (which is comparable to
the number of cliques of the zero level!).

We can control the sensitivity of our results to the chosen degree of overlap. We
see below that the results do not depend critically on the numerical details as
long as the parameters are roughly of the same order. For e.g. overlap = 30 we
get, performing the corresponding calculations, the following result.

Observation 5.9 For clique-overlap = 30 the clique size on the first level in-
creases sligtly to a value of r0 = 4.

In the following we present some more characteristics of the clique graph with
overlap 50.

• average vertex degree ≈ 10(104−7·103+3)

• expected number of bonds = 〈vcl〉 · 0.5 · 〈ncl〉 ≈ 0.5 · 105·103+104+6

An important question is whether the (purified) clique graph, G1, is still con-
nected. In [4] we gave the threshold value for the corresponding p∗(n), which is

p∗(Ncl) = log(Ncl)/Ncl ≈ 104/10104

= 10−(104−4) ≪ pcl ≈ 10−7·103

(45)

that is,
pcl/p

∗(n) ≈ 103·103

(46)

Conclusion 5.10 For the numerical data we employed the web of lumps is al-
most surely connected. On the other hand, after one renormalisation step, the
purified net of cliques is much sparser connected than the initial microscopic net.
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Summing up, what we have accomplished so far in this subsection, we have
the following row of graph characteristics for the particular set of numerical pa-
rameters we employed.

• l = 0: number of nodes n0 = 10100, bond probability p0 = 0.7, clique
number r0 = 1291.

• l = 1: n1 ≈ 10104

, p1 ≈ 10−7·103

, r1 = 3, 〈vertex degree〉 ≈ 100.3·104

The respective values were calculated by using the following approximative for-
mulas:

p1 = n−l0
0 · r̄−r̄ , l0 = 50 , n1 ≈ r0/2 · 〈Z

(0)
r̄ 〉 (47)

(〈Z
(0)
r 〉 the distribution function of cliques in the initial graph, G0, r̄ some average

or typical value).
The expected order of cliques on level 1 is only 2 or 3. That is, taking the next

step from level 1 to level 2 we may assume an overlap l1 = 1, i.e., we may take
the ordinary clique graph. With this value we can calculate the corresponding
characteristics of G2, the graph having as nodes cliques, consisting of nodes of
level 1. Before we proceed with the numerical estimates we first have to check
whether the approximations we have made above are still valid for this new regime
of parameters!

Now, r, r′, l are both very small and of comparable size. That is, our above
approximative formulas are no longer valid. On the other hand, for r, r′, l near
one, it becomes possible to evaluate the combinatorial expressions directly. For
the expected number of nodes on level 2, that is, expected number of cliques on
level 1, we insert our parameters into the formula for 〈Z

(1)
r (cf. formula (35)) and

get an approximate value, n2 ≈ 10104

(which is of the same order as n1!).
The calculation of the vertex degree, that is, 〈N (1)(C0, r

′, l)〉 with e.g. r′ =
2, l = 1, is numerically more delicate since now we have to take into account also
the term Pr′,l in formula (36), we up to now approximated by one. Furthermore
we now face the problem of having to deal with small differences of extremely large
numbers in the various occurring expressions and/or factors which are extremely
small or large and tend to cancel each other.

Fortunately, there is a more direct way to get sufficiently precise results in
this regime. We saw that typical cliques in G1 are of order two or three. The
assumed overlap is l = 1. We can hence infer that the expected number of cliques,
overlapping with a fixed given clique, C0, is roughly the same as the number of
nodes, being connected with one of the nodes of C0. We conclude that

p2 = 〈N (1)(C0, r
′, l)〉 ≈ p1 ≈ 10−7·103

(48)

With these values for n2, p2, we can calculate r2 and again get r2 = 3. We hence
have for l = 2:
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• n2 ≈ 10104

(number of cliques of level 1)

• p2 ≈ p1 ≈ 10−7·103

, r2 = 3

For the following levels the parameters are now stable and the same as for level
two.

Conclusion 5.11 We see that after only two steps we have arrived at a coarse
grained graph with a large number of nodes, a very small bond probability and
small cliques, which shows that the geometric near- and far-order has unfolded.
We further conclude that the following renormalsation steps would no longer alter
appreciably the graph characteristics calculated above for the levels G1, G2. That
is, at least as far as these particular graph properties are concerned, we have
already reached a quasi-stable regime, so that the assumption of the existence of
fixed phases or attractors does not seem too far-fetched. We can also infer that
all the graphs are almost shurely connected.

On the other hand, we do not expect that a smooth limit manifold, having e.g.
a fixed integer dimension, does emerge quasi automatically in the pure random
graph framework. A further important ingredient will be the action of some ap-
propriately chosen local law as we have introduced it above. (see the corresponding
discussions in our mentioned prior work).

6 Fixed Point Behavior

Starting from a sufficiently large network or graph, G = G0, and performing the
consecutive steps, described above, denoting the transition from Gl to Gl+1, i.e.
from a graph to its (purified) clique graph, by R (standing for renormalisation),
we have

R : Gl → Gl+1 , Gl = RlG0 , Rl = R · · ·R (l-times) (49)

The philosophy of the renormalisation group is, that initial systems, lying on
the critical submanifold, approach a fixed point under Rl for l → ∞. In statistical
mechanics the limit systems represent rather a limit phase, i.e. a statistical system
with the finer details still fluctuating. In the same sense we can at best hope that
our presumed limit network of lumps represents a similar limit phase, that is, a
network which is only invariant and homogeneous on a larger scale of resolution,
while the fine structure is still constantly changing.

The geometric concepts, which have to be further clarified, are the notions of
geometric (fixed) phase and critical network state. We want to emphasize that
we cannot expect that these characterisations will be a simple task. Quite to
the contrary, both concepts represent subtle and delicate properties. In general,
the emerging array of lumps will not fit automatically into something which does
resemble a smooth macroscopic manifold, having for example a well-defined and
integer (macroscopic) dimension (among other things). Possible obstacles are

25



already well-known on the much simpler level of simplicial complexes. In order
that such a complex has the chance to approximate a manifold, a variety of subtle
incident relation between the occurring individual simplices have to be fulfilled
(see e.g. [44]).

In our context these relations on the more coarse-grained scales will depend
on the appropriate choice of the microscopic local dynamical laws on the Planck
scale we started from. Experience with complex systems in general and cellular
automata in particular tells us, that the class of appropriate laws will be a very
small and peculiar set in the space of possible interaction laws. See the corre-
sponding findings in the regime of selforganized criticality ([45]), the catchword
being complexity at the edge of chaos.

In other words, as the whole approach appears to be relatively new and the
task formidable, we will make what are perhaps only some first steps towards
a solution of these problems. In a first step we will convince ourselves that the
renormalisation procedure described by us does not lead to nonsensical results (we
have already previously seen that some gross characteristics of the network seem
to become stable after only a few renormalisation steps). We show that there
do exist examples of graphs which display fixed point or fixed phase behavior
in a more microscopic sense. These graphs are however simple and very regular
and are not meant to represent possible examples of networks, underlying our
continuum space-time. They rather serve at best as illustrative toy models.

In the following section we then introduce a geometrical core concept designed
to classify such irregular network structures, i.e. the notion of graph dimension.
We show, how it behaves under our renormalisation process. The corresponding
analytic results indicate what kind of critical behavior is presumably needed to
have a physically reasonable limit behavior.

We illustrate our framework with the help of some simple examples (see also
the following figure 5). Note that in the following examples the minimal admis-
sible clique overlap is assumed to be one common node!

1)The graph Z
2:

The set of nodes are parametrized as V = {(i, j), i, j ∈ Z}. Edges are drawn
between the following nodes:

(i, j), (i′, j′) with |i′ − i| + |j′ − j| = 1 (50)

We determine the cliques at the various levels, given by Gl (see also the following
figure).

G0) A node, (i, j), belongs to the following 0-cliques:

{(i + 1, j), (i, j)} {(i, j + 1), (i, j)} (51)

and + replaced by −. That is, the order of the 0-cliques is 2, the diameter (that
is, the maximal distance between two nodes) is 1, the maximal mutual overlap is
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1.

G1) A 0-node, (i, j) belongs to the following 1-cliques

{(i, j), (i± 1, j)(i, j ± 1)} (52)

and the cliques, formed around the nn-nodes of (i, j). The order relative to G0

is 5, the diameter is 2, maximal overlap is 2.

G2) The order of 2-cliques relative to G0 is 13, diameter is 3, maximal overlap is
8.

Remark: Note that the above values of order and diameter refer to the start
graph G0.

With increasing l, the maximal overlap becomes large, due to the particular
structure of the graph, Z

2. One sees that for large l the hierarchical structure
of the corresponding tower of graphs, Gl, becomes very dense and entangled, a
feature one would also expect from something like a continuum.

On the other side, it is instructive, to perform also the above mentioned rescal-
ing and compare the various levels at the same scale, viz., inspect the pure graph
structure. This will make explicit the fixed point behavior, we are particularly
interested in.

G0 → G1) The 1-nodes of G1 (i.e. the 0-cliques) we represent by the midpoints of
the edges of the start graph, G0 := Z

2. Four of these 0-cliques meet at a common
node, (i, j), say. We represent the 1-edges as the line segments, connecting these
midpoints. This yields a new, rotated lattice (pus two extra diagonal edges).

G1 → G2) These four 1-nodes (the 1-cliques) form now the 2-nodes. They form
a simplex having 6 1-edges. We inscribe these 2-nodes in G0 by placing them in
the centers of the 1-cliques, that is the original lattice points of G0. We draw a
2-edge if two of these 1-cliques have a common 1-node (that is, a 0-clique!). We
can convince ourselves that the emerging graph, G2 is isomorphic to the start
graph, G0. We hence make the interesting observation:

Observation 6.1 Starting from G0 = Z
2, we see that G2 is combinatorially

isomorphic to G0, meaning that there exists an invertible map, Φ : G0 → G2,
mapping nodes on nodes and bonds on bonds and preserving the combinatorial
structure in the following way (with eij an edge of G0)

eij ∈ E(G0) ↔ Φ(eij) connects Φ(xi), Φ(xj) (53)

The same holds for G1, G3 etc.

Conclusion 6.2 The sequence of graphs, G0, G1, G2, . . ., decomposes in exactly
two sets of isomorphic graphs,

{G0, G2, . . .} , {G1, G3, . . .} (54)
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under the renormalisation group

R := {Ri} , Ri : G0 → Gi , R2 : Gi → Gi+2 (55)

Corollary 6.3 A corresponding observation can be made for a general lattice,
Z

n.

Figure 5:

2)The trivalent infinite tree:

In order to get a better feeling for what can happen, we study some more el-
ementary examples. Let us take an infinite trivalent tree. The 0-cliques are
again 2-sets of vertices or line segments, connecting nn. The graph, G1, is again
represented by connecting the midpoints of these line segments. The resulting
1-cliques are 3-sets or triangles. Taking them as the 2-nodes of G2, we see that
G2 is again isomorphic to G0 as in the Z

2-case.

Observation 6.4 For a trivalent infinite tree, the sequence of graphs, G0, G1, G2, . . .,
decomposes into two subsets. The situation is the same as for the preceding ex-
ample.

3)The triangulated R
2:

We introduce another simple example. We triangulate R
2 by using the above

lattice, Z
2, and complement it by drawing the diagonals, pointing from (i, j) to

(i + 1, j + 1). The 0-cliques are these triangles. Without a purification, bonds
in the graph, G1, are drawn if two 0-cliques meet at a common node or 0-edge.
The emerging 1-cliques have the shape of hexagons, i.e. they are 6-simplices.
Repeating this process, one sees that G2 is isomorphic to G1.
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Observation 6.5 In the case of the above triangulation of R
2, we have a start

graph, G0, while all the graphs, G1, G2, . . ., are isomorphic. In other words, we
now have a fixed point of the renormalisation group.

Conclusion 6.6 We have seen that there exist examples in the category of graphs
which display phenomena like invariant sets or fixed points under our geometric
renormalisation group.

These observations open up interesting vistas. While we have not yet shown
that the above invariant sets or fixed points have the character of attracting sets,
that is, whether there exist large basins of attraction in the category of graphs
under the repeated application of the map, R, we strongly surmise that this is
true. Furthermore, the concept of selfsimilarity suggests itself (see also the next
section), a notion we have already introduced and studied in [1], to construct
graphs with fractal dimension.

7 Graph Dimension under the Renormalisation

Group

We repeatedly mentioned the possibility of geometric or topological phase transi-
tions in evolving networks of the kind we are having in mind. In [1] we developed
and studied the concept of graph dimension in quite some detail. We concluded
that, from the physical point of view, the number of nodes which can be reached
by, say, l steps starting from a given node, is an important characteristic as is its
limiting and scaling behavior as a function of l. This is the crucial and intrinsic
property, which underlies implicitly most of the calculations in the physics of
phase transitions and many other phenomena, which are triggered by the collec-
tive interaction of many constituents. Its true significance is however frequently
hidden as the reasoning is usually performed by using the properties of the em-
bedding space (viz., its ordinary dimension).

Remark: We learned recently that such growth properties are also important
characteristics in geometric group theory and related subjects in pure mathemat-
ics (see e.g. [48],[49] or [50]).

We will investigate the behavior of this quantity under the application of our
renormalisation group. In [1] we introduced the two variants, defined below.
They are not strictly equivalent but coincide in the more regular situations. In
the following, for the sake of brevity, we only use the first notion.

Definition 7.1 (Internal Scaling Dimension) Let x be an arbitrary node of
G. Let #(Un(x)) denote the number of nodes in Un(x).We consider the sequence

of real numbers Dn(x) := ln(#(Un(x))
ln(n)

. We say DS(x) := lim infn→∞ Dn(x) is the
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lower and DS(x) := lim supn→∞ Dn(x) the upper internal scaling dimension of
G starting from x. If DS(x) = DS(x) =: DS(x) we say G has internal scaling
dimension DS(x) starting from x. Finally, if DS(x) = DS ∀x, we simply say G
has internal scaling dimension DS.

Definition 7.2 (Connectivity Dimension) Let x again be an arbitrary node
of G. Let #(∂Un(x)) denot the number of nodes in the boundary of Un(x). We

set D̃n(x) := ln(#(∂Un(x))
ln(n)

+ 1 and define DC(x) := lim infn→∞ D̃n(x) as the lower

and DC(x) := lim supn→∞ D̃n(x) as the upper connectivity dimension. If lower
and upper dimension coincide, we say G has connectivity dimension DC(x) :=
DC(x) = DC(x) starting from x. If DC(x) = DC for all x we call DC simply the
connectivity dimension of G.

Remark: The above does not imply, that this notion is the only relevant topolog-
ical characteristic of large networks. It clearly is not sufficient, to describe all of
the mesoscopic or macroscopic properties, but we think it is, as in the continuum,
a very important concept.

We already proved in [1] that this kind of dimension is stable under a variety of
transformations, in particular under local ones. In section 5.2.5 of [1] we showed
that, in order to change the dimension of a graph, we have to introduce long-range
effects or interactions. This reminds one of the behavior of critical systems.

We now compare the dimension of a graph, G, with the dimension of its
clique graph, Gcl, where, for the time being, we take the clique graph in its
original meaning. That is, we draw a bond if two cliques have a non-void overlap
of arbitrary size.

Let us assume, for convenience, that G has the scaling dimension, D, that is,
for every node, x0, we have

lim
l

ln (#(Ul))/ ln l = D (56)

Furthermore, we assume for simplicity that the node degree of G is globally
bounded, i.e.

vi ≤ v < ∞ for all xi (57)

We choose a fixed node, x0, lying in a fixed clique, C0. We have to calculate
the number of 1-nodes, that is, the number of 0-cliques, #(U cl

l (C0)), lying in
U cl

l (C0) with the distance, d1 now measured in the clique graph, Gcl. That is, a
clique, Cl, lies in U cl

l (C0) if C0 and Cl can be connected by a sequence of l′ cliques
with l′ ≤ l so that two consecutive cliques have a non-zero overlap. For each 0-
node, x′

l, lying in some Cl′ with d1(C0, Cl′) ≤ l, we can estimate the distance to
the node x0 in C0. There exists, by definition, a sequence of overlapping cliques,

Co, C1, . . . , Cl′ , l′ ≤ l (58)
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For two neighboring cliques, Ci, Cj, we have

d0(xi, xj) ≤ 2 , xi ∈ Ci, xj ∈ Cj (59)

For each intermediate consecutive pair of cliques we need one step (a bond
from a node in the overlap Ci−1 ∩ Ci to a node in Ci ∩ Ci+1), for the initial and
final pair we need at most two steps, we hence get

d0(x0, xl′) ≤ l′ + 2 (60)

Lemma 7.3 For two arbitrary nodes

x0 ∈ C0, xl′ ∈ Cl′ with d1(C0, Cl′) ≤ l (61)

we have
d0(x0, xl′) ≤ l′ + 2 (62)

and hence
|U cl

l (C0)| ⊂ Ul+2(x0) (63)

with |U cl
l (C0)| the set of 0-nodes, lying in U cl

l (C0) (the latter set now understood
as the set of its 0-nodes). This implies

#(|U cl
l (C0)|) ≤ #(Ul+2(x0)) (64)

From observation 4.2 of [4] we know that each node, xi, can lie in at most 2vi

different cliques, with vi ≤ v. This yields the crude, but apriori estimate

#(U cl
l (C0)) ≤ #(Ul+2(x0)) · 2

v (65)

which is the desired upper bound on the number of cliques, lying in U cl
l (C0). We

conclude that, for an infinite graph with vi ≤ v < ∞, we have for the dimension
of its clique graph:

Dcl ≤ D (66)

since

ln(#(U cl
l (C0)))/ ln(l) ≤ ln(#(Ul+2(n0)))/ ln(l) + v · ln(2)/ ln(l) (67)

For l → ∞ we get the above result.
We want to prove a corresponding lower bound. Take an arbitrary node, xl′ ,

in Ul(x0). By definition, there exists a node- (edge-)sequence

x0 − x1 − · · · − xl′ with l′ ≤ l (68)

On the other side, there exists a sequence of cliques, Ci, with each consecutive
pair of nodes, (xi−1, xi) ∈ Ci. These cliques do exist because, starting from the
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connected pair,(xi−1, xi), we get such a clique by extending this germ in one of
(possibly) several ways to a clique (cf. section 4 of [4]). We can conclude that
for each node, xl′ ∈ Ul(x0), and x0 ∈ C0, we have

xl′ ∈ |U cl
l+1(C0)| (69)

(note that the clique, containing both x0 and x1 may be different from the start
clique, C0!).

We then have

Ul(x0) ⊂ |U cl
l+1(C0)| and #(Ul(x0)) ≤ #(|U cl

l+1(C0)|) (70)

With vi ≤ v for all xi, the maximal order of a clique is bounded from above by
(v + 1). This implies

#(|U cl
l+1(C0)|) ≤ (v + 1) · #(U cl

l+1(C0)) (71)

and
#(U cl

l+1(C0)) ≥ #(Ul(x0))/(v + 1) (72)

We hence get

ln(#(U cl
l+1(C0)))/ ln(l + 1) ≥ ln(#(Ul(x0)))/ ln(l + 1)− ln(v + 1)/ ln(l + 1) (73)

With
ln(l + 1) = ln(l · (1 + l−1)) = ln(l) + ln(1 + l−1) (74)

and l → ∞, we see that
Dcl ≥ D (75)

and get the important theorem:

Theorem 7.4 Assuming that G has dimension D and globally bounded node
degree, vi ≤ v < ∞, we have that Dcl also exists and it holds

Dcl = D (76)

Note that this result does hold for the ordinary clique graph, viz. arbitrary overlap,
viz., no purification. In other words, under these assumptions, the renormalisa-
tion steps do not change the graph dimension.

This result is reminiscent of a similar observation in statistical mechanics where
the non-coarse-grained Gibbsian entropy happens to be a constant of motion.
The same happens here. In the ordinary clique graph each original bond occurs
in at least one clique, i.e. there is no real (or, more precisely, not enough) coarse
graining.
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8 Critical Network States

In subsection 5.2 we derived formulas for the size of the so-called local group of a
clique in a random graph, that is the set of cliques with which a given clique has a
(sufficient) common overlap. If one is in the parameter regime in which the cliques
are still densely and complicately entangled (typically the first renormalisation
steps) and compares the number of bonds in the purified clique graph, that is,
bonds being defined by a sufficient! overlap, with the number of bonds in the
corresponding (unpurified) clique graph, the latter number exceeds the former
one by many orders. Put differently, in this situation the number of marginal
overlaps of cliques is much bigger. All these marginal overlaps are deleted in the
purification or renormalisation process.

The last theorem in the preceding section shows that we will not get a dimen-
sional reduction without sufficient purification. If we go through the proof we
see that the first part does hold unaltered for the purified clique graph. In the
second part, however, we used an argument which does only hold for ordinary
clique graphs (see the remarks following formula (68). The existence of the row
of overlapping cliques, employed there, can only be guaranteed if the degree of
overlaps are left arbitrary. We hencecan infer:

Corollary 8.1 For the purified clique graph, with overlaps exceeding a certain
fixed number, l0, we can only prove

Dcl ≤ D (77)

Having for example the picture in mind, frequently invoked by Wheeler and
others, of a space-time foam, with a concept of dimension depending on the
scale of resolution (see e.g. Box 44.4 on p.1205 in [24]), we infer from our above
observations that this may turn out to be both an interesting and not entirely
trivial topic. We have to analyze under what specific conditions the dimension
can actually shrink under coarse-graining, so that we may start from a very erratic
network on, say, the Planck scale, and arrive in the end at a smooth macroscopic
space-time having perhaps an integer dimension of, preferably, value 4 or so.

We remarked already in the introduction that geometric change or geometric
phase transitions are supposed to be related to some sort of critical state of the
network. Our previous observations about the possibility of dimensional change
under coarse graining together with an interesting observation already made in
[1], lemma 4.10, allows us to almost rigorously prove what kind of criticality is
in fact necessary to achieve this goal.

We showed there that it is not so easy to modify the dimension of a graph by
local alterations.

Proposition 8.2 Additional insertions of bonds between arbitrarily many nodes,
y, z, having original graph distance, d(y, z) ≤ k , k ∈ N arbitrary but fixed, do
not change D(x) or D(x).
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From this we learn the following. Phase transitions in graphs, changing the
dimension, have to be intrinsically non-local. That is, they necessarily involve
nodes, having an arbitrarily large distance in the original graph. We think, this
is a crucial observation from the physical point of view. On the one side, it shows
that systems have to be critical in a peculiar way, that is, having a lot of distant
correlations or, rather, correlations on all scales (cf. also Smolins’s discussion
in e.g. [11] and elsewhere). On the other side, it fits exactly with our working
philosphy that quantum theory is a residual and coarse grained effect of such
largely hidden long range correlations ([7]).

If we apply these findings to our renormalisation steps, that is, passing from
a graph to its associated (purified) clique graph, this implies the following. We
saw that assuming a network or graph, G, having a dimension, D, the unpurified
clique graph still has

Dcl = D (78)

On the other hand, denoting the purified clique graph by Ĝcl, we have the estimate

D̂cl ≤ Dcl = D (79)

The transition from Gcl to Ĝcl consists of the deletion of marginal over-
laps among cliques (with the necessary criteria provided by the physical con-
text). That is, Ĝcl lives on the same node set (the set of cliques) but has fewer
(meta)bonds. The above proposition shows that this does not automatically
guarantee that we really have

D̂cl < Dcl (80)

Quite to the contrary, we learned that this can only be achieved if the bond
deletions happen in a very specific way.

On Gcl we have, as on any graph, a natural distance or neighborhood struc-
ture, given by the canonical graph metric, dcl(Ci, Cj). Note that the above propo-
sition holds as well for bond deletions instead of insertions. We thus infer that
bond deletions in Gcl between cliques which are not very far apart in the final
purified graph Ĝcl cannot alter the final dimension of Ĝcl. More precisely, only
bond deletions between cliques having distances in Ĝcl which approach infinity
in a specific way, can have an effect.

Conclusion 8.3 We conclude that only the bond deletions between very distant
cliques (with respect to Ĝcl), with this distance being unbounded, can decrease the
dimension of Ĝcl as compared to Gcl. More precisely, there has to be a substantial
bond deletion on all scales up to infinity.

The above observation reminds one of the scale invariance of critical systems in
other contexts. We exemplify this by a simple but instructive example.

This (inhomogeneous; it slightly depends on the reference point (0, 0)) con-
struction has already been given in section 5.2.5 of [1]. One takes the lattice,
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Z2, inscribes in it, starting from the point (0, 0), two non-intersecting outwardly
spiraling edge sequences:

(0, 0) → (1, 0) → (1, 1) → (0, 1) → (−1, +1) → (−2, +1) → (−2, 0) → · · · (81)

and

(0, 0) → (−1, 0) → (−1,−1) → (0,−1) → (+1,−1) → (+2,−1) → (+2, 0) → · · ·
(82)

We consider this inscribed graph as a representation of the one-dimensional
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Figure 6:

lattice, Z1, with the node labelling running from −∞ to +∞.

0 → 1 → 2 → 3 → 4 → 5 → · · · (83)

and
0 → −1 → −2 → −3 → −4 → −5 → · · · (84)

Remark 8.4 The embedded graph, being isomorphic to Z1, is in fact a spanning
tree relative to the ambient graph, Z2.

One can now see that the extra bonds, occurring in Z2, not belonging to the
representation of Z1, connect nodes of a larger and larger distance with respect
to the labelling of Z1. We have for example bonds in Z2 between pairs of nodes
with the Z1-labels,

0, 3 ; 3,−10 ; −10, 21 ; 21,−36 . . . (85)
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and correspondingly for other sequences of nodes. That is, the embedded graph
is one-dimensional, lying in a two-dimensional graph, while the node sets are
identical. The preceding discussion and the figure illustrate and confirm what we
have said above about the type of necessary criticality and long-range correlations.

To employ this example for our renormalisation group approach, we can re-
place the original nodes (with the Z1-labelling) by certain cliques of arbitrary
order, choose the overlaps appropriately, so that the above representation of Z1

becomes the purified clique graph of the total graph. We arrive at a coarse-
grained graph of dimension one, starting from an unpurified graph of dimension
two or a larger dimension.
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