An Epistemic Strategy Logic (Extended Abstract)

Xiaowei Huang Ron van der Meyden
The University of New South Wales The University of New South Wales

Introduction

There are many subtle issues concerning agent knowledge in settings where multiple agents act strategi-
cally. In the process of understanding these issues, there has been a proliferation of modal logics dealing
with epistemic reasoning in strategic settings, e.g., [7, 8} 14]]. The trend has been for these logics to contain
large numbers of operators each of which combines several different concerns, such as the existence of
strategies, and knowledge that groups of agents may have about these strategies. We argued in a previous
work [3] that epistemic temporal logic already has the expressiveness required for many applications of
epistemic strategy logics, provided that one works in a semantic framework in which strategies are ex-
plicitly rather than (as in most alternating temporal epistemic logics) implicitly represented, and makes
the minor innovation of including new agents whose local states correspond to the strategies being used
by other agents. This gives a more compositional basis for epistemic strategic logic. In the case of im-
perfect recall strategies and knowledge operators, and a CTL* temporal basis, this leads to a temporal
epistemic strategy logic with a PSPACE complete model checking problem.

However, some of our applications in [3|] required a restriction to cases not involving a common
knowledge operator. In the present paper, we develop a remedy for this weakness. We propose an epis-
temic strategy logic which, like [1} 6], supports explicit naming and quantification over strategies. How-
ever we achieve this in a slightly more general way: we first generalize temporal epistemic logic to
include operators for quantification over global states and reference to their components, and then apply
this generalization to a system that includes strategies encoded in the global states and references these
using the strategic” agents of [3]] . The resulting framework can express many of the subtly different
notions that have been the subject of proposals for alternating temporal epistemic logics. In particular,
it generalizes the expressiveness of the logic in [3] but is able to also deal with the common knowledge
issues that restricted the scope of that work. Moreover, the extra expressiveness comes without extra cost:
model checking remains PSPACE-completeEI

An extended temporal epistemic logic

The following definitions are used in the standard semantics for temporal epistemic logic. Consider a
system for a set of agents Ags. Let Prop be a set of atomic propositions. A global state is an element
of the set G = L, X Il;eagsL;, Where L, is a state of the environment and each L; is a local state for agent
i. A run is a mapping r : N — G giving a global state at each moment of time. A point is a pair (r,m)
consisting of a run r and a time m. An interpreted system is a pair I = (R,n), where R is a set of runs and
7 is an interpretation, mapping each point (r,m) with r € R to a subset of Prop. For n <m, write r[n...m]
for the sequence r(n)r(n+1)...r(m). For each agent i € Ags U {e}, we write r;(m) for the component of

1Our workshop presentation would have some more detail on the applications treated in [3] than given in this abstract, where
we focus on formulating the extended version of our logic. We intend to reformulate these applications in the framework of the
present paper for purposes of an archival publication.

© X. Huang & R. van der Meyden
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
SR2014

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 An Epistemic Strategy Logic

r(m) in L;, and then define an equivalence relation on points by (r,m) ~; (+',m’) if r;(m) = r{(m"). We also
define ~2= Nicg ~i, and ~E= Ujeg ~;, and ~E= (Ujeg ~i)* for G € Ags. We take ~2 to be the universal
relation on points.

We extend temporal epistemic logic with a set of variables SVar, an operator {x) and a construct
(i,x), where x is a variable and {x)¢ says, intuitively, that there exists in the system a global state x such
that ¢ holds, and (7, x) says that agent i has the same local state at the current point and at the global state
x. Formally, the language ETLK(Ags, Prop,SVar) has syntax given by the grammar:

P=pl-¢|d1Vd2|Ad | O ¢1U2 [(x| (i,x) | Do | Coé

where p € Prop, x € SVar, i € Ags, and G C Ags. The construct D¢ expresses that agents in G have
distributed knowledge of ¢, i.e., could deduce ¢ if they pooled their information, and Cg¢ says that ¢ is
common knowledge to group G. The temporal formulas Op, ¢1U¢,, A¢ have the standard meanings from
CTL*. Other operators can be obtained in the usual way, e.g., ¢1 A @2 = =(=d1 V =), OP = (truelU¢),
O¢ = =0, etc. The universal form [[x]]¢ = ={x)—¢ expresses that ¢ holds for all global states x. For an
agent i € Ags, we write K;¢ for Dy;)¢; this expresses that agent i knows the fact ¢. The notion of everyone
in group G knowing ¢ can then be expressed as Eg¢ = A cq Kid-

A context for an interpreted system 7 is a mapping I from SVar to global states occurring in 7. We
write I'[g/x] for the result of changing I" by assigning g to variable x. The semantics of the language
ETLK is given by a relation I', 7, (r,m) = ¢, representing that formula ¢ holds at point (r,m) of the
interpreted system 7, relative to context I'. This is defined inductively on the structure of the formula ¢,
as follows:

o I'1,(rnm)E pif p € n(r,m);

o I 1, (rrm)E-¢gifnotl, I, (r,m)E ¢;

o I1,(rmE¢AY I, I,(rrm)E¢and ', 1,(r,m) E

o I, I,(rrm)EA@pifI,I,(r',m)E ¢ for all ¥ € R with r[0...m] =r'[0...m];

o I'I,(rm ECpif I, I, (r,m+1) E ¢;

o [,1,(r,m) E ¢Uy if there exists m’ >m such that I', 7, (r,m") E ¥ and I, 7, (r,k) = ¢ for all k with

m<k<m';

o [, 1, (r,m)E(x)p if I'[r'(m")/x],1,(r,m) E ¢ for some point (+',m’) of T;

o I.Z,(r,m) E (i,x) if ri(m) = I'(x);;

o I 1,(rrm)EDgpif I, I,(r',m’) [¢ for all (+',m’) such that (+',m’) ~g (r,m);

o 1T, (rrm)E CgoifI',I,(r',m’) E ¢ for all (+',m’) such that (+',m") ~g (r,m).

Since interpreted systems are infinite objects, for purposes of model checking, we work with a finite
state object from which an interpreted system is generated. Define an epistemic transition system for a
set of agents Ags to be a tuple & = (S§,1,—,{0;}icags,), Where S is a set of states, I/ C § is the set of
initial states, =C § X § is a state transition relation, for each i € Ags, component O; : S — L; is a function
giving an observation in some set L; for the agent i at each state, and 7 : § — P(Prop) is a propositional
assignment. A run of & is a sequence r : N — § such that r(0) € I and r(k) — r(k+ 1) for all k € N. To
ensure that every partial run can be completed to a run, we assume that the transition relation is serial,
i.e., that for all states s there exists a state 7 such that s — ¢.

Given an epistemic transition system &, we obtain an interpreted system 7 (&) = (R, n’) as follows.
Forarun r: N — § of &, define the lifted run 7 : N — S X IjcaqsL; (here L, = S), by 7.(m) = r(m) and
7i(m) = O;(r(m)) for i € Ags. Then we take R to be the set of lifted runs 7 with r a run of &. The assignment
7’ is given by 7’ (r,m) = n(r(m)).

X. Huang & R. van der Meyden 3

Strategic Environments

In order to deal with agents that operate in an environment by strategically choosing their actions, we
introduce a richer type of transition system that models the available actions and their effects on the
state. An environment for agents Ags is a tuple £ = (S,1,Acts, —,{O;}icags,), Where S is a set of states,
I is a subset of S, representing the initial states, Acts = Il;eagsActs; is a set of joint actions, where each
Acts; is a nonempty set of actions that may be performed by agent i, component -C § X Acts X S is
a transition relation, O; : S — L; is an observation function, and 7 : § — P(Prop) is a propositional
assignment. An environment is said to be finite if all its components, i.e., S,Ags,Acts;, L; and Prop are
finite. Intuitively, a joint action a € Acts represents a choice of action a; € Acts; for each agent i € Ags,
performed simultaneously, and the transition relation resolves this into an effect on the state. We assume
that — is serial in the sense that for all s € S and a € Acts there exists ¢ € § such that (s,a,t) €—.

A strategy for agent i € Ags in such an environment E is a function @ : S — P(Acts;) \ {0}, selecting
a set of actions of the agent at each state. EI We call these the actions enabled at the state. A strategy is
deterministic if a(s) is a singleton for all s. A group strategy is deterministic if a;(s) is a singleton for
all states s and all i € G. A strategy «; for agent i is uniform if for all states s,t¢, if O;(s) = O;(¢), then
ai(s) = ai(t). A strategy ag = (a;j)ieg for a group G is locally uniform (deterministic) if a; is uniform
(respectively, deterministic) for each agent i € G. Given an environment E, we write X%(E) for the set
of deterministic strategies, X" (E) for the set of all locally uniform joint strategies, and X“*/%/(E) for
the set of all deterministic locally uniform joint strategies.

We now define an interpreted system that contains all the possible runs generated when agents Ags
behave by choosing a strategy from some set X of joint strategies in the context of an environment E.
This interpreted system is obtained as the system generated from an epistemic transition system that we
now define. One innovation, introduced in [3]], is that the construction of this epistemic transition system
introduces new agents o (i), for each i € Ags. The observation of o (i) is the strategy currently being used
by agent i. Agent o(i) is not associated with any actions, and is primarily for use in epistemic operators
to allow reference to what can be deduced were agents to reason using information about each other’s
strategies. For G C Ags, we write o(G) for the set {o7(7) | i € G}. Additionally, we include an agent e for
representing the state of the environment.

Given an environment E = (S,1,Acts,—,{O;}icaqs,) for agents Ags, and a set X of strategies for the
group Ags, we define the strategy space epistemic transition system &(E,X) = (S *, [*, =7, {OZ.‘ YicAgsuo(Ags)ute)> T)
for agents Ags U a(Ags) U {e} as follows. The state space is defined by S* = § XX, i.e., a state (s,a) € S*
consists of a state s of E together with a joint strategy « for the set of all agents in E. The transition rela-
tion is given by (s,a) — (¢,a’) if @ = @’ and there exists a joint action a such that (s,a,t) €— and a; € @;(s)
for all agents i € Ags. Intuitively, in a transition, each agent in Ags first selects one of the actions enabled
by its strategy, and we then make a transition in £ using the resulting joint action. There are no changes
to the agents’ strategies resulting from the transition. The initial states are given by I* = I XX, i.e., an
initial state consists just of an initial state in £ and a choice of joint strategy in X. For the observation
functions, the definition of Oj. at a state (s,@) € S* depends on the type of j. We define Oj.(s,a/) = 0j(s),
for j e Ags. For j = o(i), with i € Ags, we define Oj.(s, @) = ;. For j = e, we define Oj(s, a) = s. Finally,
m*(s,a) = n(s) for all states (s,a) € ™.

Our epistemic strategy logic is now just an instantiation of the extended temporal epistemic logic
in the strategy space generated by an environment. That is, we start with an environment £ and an
associated set of strategies X, and then work with the language ETLK(Ags U o (Ags) U {e}, Prop,SVar)

2More generally, a strategy could be a function of the history, but we focus here on strategies that depend only on the final
state.

4 An Epistemic Strategy Logic

in the interpreted system J(&E(E,X)). We call this instance of the language ETLK(Ags, Prop, SVar), or
just ETLK when the parameters are implicit. For brevity, given a set G C Ags of agents, we write (G, x)
for A;eg(o (i), x). This says that at the current point, the agents in G are running the same strategies as
captured by the global state named by variable x.

Connections to Other Logics

In 3], we proposed a logic CTL*K(Ags U o (Ags), Prop) extending temporal epistemic logic with strat-
egy agents to allow the reasoning about knowledge and strategy by standard epistemic operators. The
language introduced above is a generalization of the definitions in [3]], to which we have added the con-
structs {x)¢ and (i, x). For formulas without these constructs, the semantics ignores the context I', so this
component of the triple I', 7 (&E(E, X)), (r,m) can be removed from the definition, and it collapses to the
definitions for CTL*K(Ags U o(Ags), Prop) in [3]].

In the system 7 (E(E,X)) we may refer, using distributed knowledge operators Dg where G contains
the new strategic agents o(i), to what agents would know, should they take into account not just their own
observations, but also information about other agent’s strategies. For example, the distributed knowledge
Dy; o(i)0(j)) captures what agent i would know, taking into account its own strategy and the strategy
being used by agent j. Various applications of the usefulness of these distributed knowledge operators
containing strategic agents are given in [3l]. For example, we describe an application in computer security
in which we write formulas such as

- Dp—(done A —exploited AEF \/ D{A,o—(A),o—(M)}(CC # X))
xeCCN

to state that it is possible for an attacker A on an e-commerce payment gateway to obtain information
about a credit card number cc even after the transaction is done, provided that the attacker reasons us-
ing knowledge about their own observations, their own strategy, but also knowledge of the strategy being
used by the merchant M. In further applications given in [3]], we showed that CTL*K(AgsU o (Ags), Prop)
can be used to reason about knowledge-based programs [2], and that many variants of alternating tem-
poral epistemic logics that have been proposed in the literature can be expressed using CTL*K(Ags U
o(Ags), Prop). We refer the reader to [3]] for details.

However, we had to make a restriction for some of these expressiveness results to formulas that do
not contain uses of a common knowledge operator. We now show how the extended language of the
present paper can remove this restriction.

Jamroga and van der Hoek [3]] formulate a construct {H));((G)qb that says, effectively, that there is a
strategy for a group H that another group G knows (for notion of group knowledge K, which could be E
for everyone knows, D for distributed knowledge, or C for common knowledge) to achieve goal ¢. The
semantics of this construct is given with respect to an environment £ and a state s, and (in outline) is
given by E,s = (H));((G)¢ if there exists a uniform strategy « for group H such that for all states ¢ with

s ~Z;< t, we have that all paths p from ¢ that are consistent with « satisfy ¢. Here ~Z;< is the appropriate
epistemic indistinguishability relation on states of E.

In the case that K(G) is the common knowledge operator Cg, this definition involves the common
knowledge that a group G of agents would have if they were to reason taking into consideration the
strategy being used by another group H. This does not appear to be expressible using CTL*K(Ags U
0 (Ags), Prop). In particular, the formula Cgusmy¢ does not give the intended meaning. Instead, what
needs to be expressed is the greatest fixpoint X of the equation X = A ;g Djjuo)(X A ¢). The language

X. Huang & R. van der Meyden 5

CTL*K(Ags U o (Ags), Prop) does not include fixpoint operators and it does not seem that the intended
meaning is expressible. On the other hand, it can be expressed with ETLK(Ags, SVar, Prop) in a natural
way by a formula

Co((H,x) = ¢)

which says that it is common knowledge to the group G that ¢ holds if the group H is running the strategy
profile capture by the variable x. Using this idea, the construct {H))'C(G)qﬁ can be represented with ETLK
as

(NCo((H,x) = ¢) .

(We remark that a carefully stated equivalence result requires an appropriate treatment of initial states
in the environment E. We refer to [3] for details.) Applying similar ideas, ETLK can also be used to
eliminate, from the results on reasoning about knowledge-based programs presented in [3], the restriction
to knowledge-based programs not containing common knowledge operators.

Model Checking

Since interpreted systems are always infinite objects, we use environments to give a finite input for the
model checking problem. For an environment E, a set of strategies X for E, and a context I for 7 (E(E, X)),
we write [, E,Z E ¢ if [, 7(E(E, X)), (,0) E ¢ for all runs r of 7 of 7(E(E,X). (Often, the formula ¢ will
be a sentence, i.e., will have all variables x in the scope of an operator {x). In this case I' could be
omitted.) The model checking problem is to determine whether I', E, X |= ¢ for a finite state environment
E, a set X of strategies and a context I', where ¢ is an ETLK(Ags, S Var, Prop) formula.

For generality, we abstract X to a paramaterized class such that for each environment E, the set X(E)
is a set strategies for E. We say that the parameterized class X(E) is PTIME-presented, if it is presented
by means of an algorithm that runs in time polynomial in the size of E and verifies if a given strategy «
is in Z(E). For example, the class X(E) of all strategies for £ can be PTIME-presented, as can suif (E),
Zdet(E) and Zunif,det(E).

A naive model checking algorithm would construct the epistemic transition system E(E,X(E)) and
then apply model checking techniques on it. Note that a joint strategy for an environment E can be
represented in space |S| X |Acts|. Thus, E(E,X(E)) generally has exponentially many states, as a function
of the size of E. This means that the naive procedure would require not less than exponential time. In
fact, it is possible to do better than this (assuming that PSPACE is better than EXPTIME).

Theorem 1 Let X(E) be a PTIME presented class of strategies for environments E. The complexity of
deciding, given an environment E and an ETLK formula ¢, whether E,X(E) | ¢, is PSPACE-complete.

That is, the additional constructs {x)»¢ and (i,x) that we have added to the logic of [3] to obtain
ETLK do not increase the complexity of model checking.

Conclusions

Strategy Logic [1]] is a (non-epistemic) generalization of ATL for perfect information strategies in which
strategies may be explicitly named and quantified. Work on identification of more efficient variants
of quantified strategy logic includes [6l], who formulate a variant with a 2-EXPTIME-complete model
checking problem. In both cases, strategies are perfect recall strategies, rather than the imperfect recall
strategies that form the basis for our PSPACE-completeness result for model checking. The exploration
of our logic over such a richer space of strategies is an interesting topic for future research.

6 An Epistemic Strategy Logic

References

[1] K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. Inf. Comput., 208(6):677-693, 2010.
[2] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning About Knowledge. The MIT Press, 1995.

[3] X. Huang and R. van der Meyden. A temporal logic of strategic knowledge. Submitted to KR’ 14, available
for download at http://www.cse.unsw.edu.au/-meyden/research/atl_obs.pdfl

[4] W.Jamroga and T. Agotnes. Constructive knowledge: what agents can achieve under imperfect information.
Journal of Applied Non-Classical Logics, 17(4):423-475, 2007.

[5] W.Jamroga and W. van der Hoek. Agents that Know How to Play . Fundamenta Informaticae, 62:1-35, 2004.
[6] F. Mogavero, A. Murano, and M. Y. Vardi. Reasoning about strategies. In FSTTCS, pages 133144, 2010.
[7] P.-Y. Schobbens. Alternating-time logic with imperfect recall. ENTCS, 85(2):82-93, 2004.

[8] S. van Otterloo and G. Jonker. On Epistemic Temporal Strategic Logic. ENTCS, 126:77-92, 2005.

http://www.cse.unsw.edu.au/~meyden/research/atl_obs.pdf

	Introduction
	An extended temporal epistemic logic
	Strategic Environments

	Connections to Other Logics
	Model Checking
	Conclusions

