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Introduction

This book is the third collection of William Lowell Putnam Mathematical Competition
problems and solutions, following [PutnamI] and [PutnamII]. As the subtitle indicates,
the goals of our volume differ somewhat from those of the earlier volumes.
Many grand ideas of mathematics are best first understood through simple problems,

with the inessential details stripped away. When developing new theory, research
mathematicians often turn to toy† problems as a means of getting a foothold. For
this reason, Putnam problems and solutions should be considered not in isolation, but
instead in the context of important mathematical themes. Many of the best problems
contain kernels of sophisticated ideas, or are connected to some of the most important
research done today. We have tried to emphasize the organic nature of mathematics,
by highlighting the connections of problems and solutions to other problems, to the
curriculum, and to more advanced topics. A quick glance at the index will make
clear the wide range of powerful ideas connected to these problems. For example,
Putnam problems connect to the Generalized Riemann Hypothesis (1988B1) and the
Weil Conjectures (1991B5 and 1998B6).

1 Structure of this book

The first section contains the problems, as they originally appeared in the competition,
but annotated to clarify occasional infelicities of wording. We have included a list of
the Questions Committee with each competition, and we note here that in addition
Loren Larson has served as an ex officio member of the committee for nearly the
entire period covered by this book. Next is a section containing a brief hint for each
problem. The hints may often be more mystifying than enlightening. Nonetheless, we
hope that they encourage readers to spend more time wrestling with a problem before
turning to the solution section.
The heart of this book is in the solutions. For each problem, we include every

solution we know, eliminating solutions only if they are essentially equivalent to one
already given, or clearly inferior to one already given. Putnam problems are usually
constructed so that they admit a solution involving nothing more than calculus,
linear algebra, and a bit of real analysis and abstract algebra; hence we always

† A “toy” problem does not necessarily mean an easy problem. Rather, it means a relatively tractable

problem where a key issue has been isolated, and all extraneous detail has been stripped away.

vii
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include one solution requiring no more background than this. On the other hand, as
mentioned above, the problems often relate to deep and beautiful mathematical ideas,
and concealing these ideas makes some solutions look like isolated tricks; therefore
where germane we mention additional problems solvable by similar methods, alternate
solutions possibly involving more advanced concepts, and further remarks relating the
problem to the mathematical literature. Our alternate solutions are sometimes more
terse than the first one. The top of each solution includes the score distribution of
the top contestants: see page 51. When we write “see 1997A6,” we mean “see the
solution(s) to 1997A6 and the surrounding material.”
After the solutions comes a list of the winning individuals and teams. This includes

one-line summaries of the winners’ histories, when known to us. Finally, we reprint
an article by Joseph A. Gallian, “Putnam Trivia for the Nineties,” and an article by
Bruce Reznick, “Some Thoughts on Writing for the Putnam.”

2 The Putnam Competition over the years

The competition literature states: “The competition began in 1938, and was designed
to stimulate a healthy rivalry in mathematical studies in the colleges and universities
of the United States and Canada. It exists because Mr. William Lowell Putnam had
a profound conviction in the value of organized team competition in regular college
studies. Mr. Putnam, a member of the Harvard class of 1882, wrote an article for the
December 1921 issue of the Harvard Graduates’ Magazine in which he described the
merits of an intercollegiate competition. To establish such a competition, his widow,
Elizabeth Lowell Putnam, in 1927 created a trust fund known as the William Lowell
Putnam Intercollegiate Memorial Fund. The first competition supported by this fund
was in the field of English and a few years later a second experimental competition
was held, this time in mathematics between two institutions. It was not until after
Mrs. Putnam’s death in 1935 that the examination assumed its present form and was
placed under the administration of the Mathematical Association of America.”
Since 1962, the competition has consisted of twelve problems, usually numbered

A1 through A6 and B1 through B6, given in two sessions of three hours each on the
first Saturday in December. For more information about the history of the Putnam
Competition, see the articles of Garrett Birkhoff and L. E. Bush in [PutnamI].
The competition is open to regularly enrolled undergraduates in the U.S. and

Canada who have not yet received a college degree. No individual may participate
in the competition more than four times. Each college or university with at least
three participants names a team of three individuals. But the team must be chosen
before the competition, so schools often fail to select their highest three scores; indeed,
some schools are notorious for this. Also, the team rank is determined by the sum of
the ranks of the team members, so one team member having a bad day can greatly
lower the team rank. These two factors add an element of uncertainty to the team
competition.
Prizes are awarded to the mathematics departments of the institutions with the

five winning teams, and to the team members. The five highest ranking individuals
are designated Putnam Fellows; prizes are awarded to these individuals and to each
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of the next twenty highest ranking contestants. One of the Putnam Fellows is also
awarded the William Lowell Putnam Prize Scholarship at Harvard. Also, in some
years, beginning in 1992, the Elizabeth Lowell Putnam Prize has been awarded to a
woman whose performance has been deemed particularly meritorious. The winners of
this prize are listed in the “Individual Results” section. The purpose of the Putnam
Competition is not only to select a handful of prize winners, however; it is also to
provide a stimulating challenge to all the contestants.
The nature of the problems has evolved. A few of the changes reflect changing

emphases in the discipline of mathematics itself: for example, there are no more
problems on Newtonian mechanics, and the number of problems involving extended
algebraic manipulations has decreased. Other changes seem more stylistic: problems
from recent decades often admit relatively short solutions, and are never open-ended.
The career paths of recent Putnam winners promise to differ in some ways from those

of their predecessors recorded in [PutnamI]. Although it is hard to discern patterns
among recent winners since many are still in school, it seems that fewer are becoming
pure mathematicians than in the past. Most still pursue a Ph.D. in mathematics or
some other science, but many then go into finance or cryptography, or begin other
technology-related careers. It is also true that some earlier winners have switched from
pure mathematics to other fields. For instance, David Mumford, a Putnam Fellow in
1955 and 1956 who later won a Fields Medal for his work in algebraic geometry, has
been working in computer vision since the 1980s.

3 Advice to the student reader

The first lesson of the Putnam is: don’t be intimidated. Some of the problems relate
to complex mathematical ideas, but all can be solved using only the topics in a typical
undergraduate mathematics curriculum, admittedly combined in clever ways. By
working on these problems and afterwards studying their solutions, you will gain
insight into beautiful aspects of mathematics beyond what you may have seen before.
Be patient when working on a problem. Learning comes more from struggling with

problems than from solving them. If after some time, you are still stuck on a problem,
see if the hint will help, and sleep on it before giving up. Most students, when they
first encounter Putnam problems, do not solve more than a few, if any at all, because
they give up too quickly. Also keep in mind that problem-solving becomes easier with
experience; it is not a function of cleverness alone.
Be patient with the solutions as well. Mathematics is meant to be read slowly and

carefully. If there are some steps in a solution that you do not follow, try discussing it
with a knowledgeable friend or instructor. Most research mathematicians do the same
when they are stuck (which is most of the time); the best mathematics research is
almost never done in isolation, but rather in dialogue with other mathematicians, and
in consultation of their publications. When you read the solutions, you will often find
interesting side remarks and related problems to think about, as well as connections
to other beautiful parts of mathematics, both elementary and advanced. Maybe you
will create new problems that are not in this book. We hope that you follow up on
the ideas that interest you most.
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Cut-off score for
Year Median Top Honorable Putnam

∼ 200 Mention Fellow

1985 2 37 66 91
1986 19 33 51 81
1987 1 26 49 88
1988 16 40 65 110
1989 0 29 50 77
1990 2 28 50 77
1991 11 40 62 93
1992 2 32 53 92
1993 10 29 41 60
1994 3 28 47 87
1995 8 35 52 85
1996 3 26 43 76
1997 1 25 42 69
1998 10 42 69 98
1999 0 21 45 69
2000 0 21 43 90

TABLE 1. Score cut-offs

4 Scoring

Scores in the competition tend to be very low. The questions are difficult and the
grading is strict, with little partial credit awarded. Students who solve one question
and write it up perfectly do better than those with partial ideas for a number of
problems.
Each of the twelve problems is graded on a basis of 0 to 10 points, so the maximum

possible score is 120. Table 1 shows the scores required in each of the years covered
in this volume to reach the median, the top 200, Honorable Mention, and the rank
of Putnam Fellow (top five, or sometimes six in case of a tie). Keep in mind that
the contestants are self-selected from among the brightest in two countries. As you
can see from Table 1, solving a single problem should be considered a success. In
particular, the Putnam is not a “test” with passing and failing grades; instead it is an
open-ended challenge, a competition between you and the problems.
Along with each solution in this book, we include the score distribution of the

top 200 or so contestants on that problem: see page 51. This may be used as a
rough indicator of the difficulty of a problem, but of course, different individuals may
find different problems difficult, depending on background. The problems with highest
scores were 1988A1 and 1988B1, and the problems with the lowest scores were 1999B4
and 1999B5. When an easier problem was accidentally placed toward the end of the
competition, the scores tended to be surprisingly low. We suspect that this is because
contestants expected the problem to be more difficult than it actually was.
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5 Some basic notation

The following definitions are standard in modern mathematics, so we use them
throughout this book:

Z = the ring of integers = {. . . ,−2,−1, 0, 1, 2, . . . }
Q = the field of rational numbers = {m/n : m,n ∈ Z, n �= 0 }
R = the field of real numbers

C = the field of complex numbers = { a+ bi : a, b ∈ R }, where i =
√−1

Fq = the finite field of q elements.

The cardinality of a set S is denoted #S or sometimes |S|. If a, b ∈ Z, then “a | b”
means that a divides b, that is, that there exists k ∈ Z such that b = ka. Similarly,
“a � b” means that a does not divide b. The set of positive real numbers is denoted by
R+.
We use the notation lnx for the natural logarithm function, even though in higher

mathematics the synonym log x is more frequently used. It is tacitly assumed that the
base of the logarithm, if unspecified, equals e = 2.71828 . . . . If logarithms to the base
10 are intended, it is better to write log10 x. More generally, loga x = (log x)/(log a)
denotes logarithm to the base a. In computer science, the notation lgn is sometimes
used as an abbreviation for log2 n. (In number theory, when p is a prime number,
logp x sometimes also denotes the p-adic logarithm function [Kob, p. 87], a function
with similar properties but defined on nonzero p-adic numbers instead of positive real
numbers. But this book will have no need for this p-adic function.)
Rings for us are associative and have a multiplicative unit 1. If R is a ring, then

R[x] denotes the ring of all polynomials

anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where n is any nonnegative integer, and a0, a1, . . . , an ∈ R. Also, R[[x]] denotes the
ring of formal power series

a0 + a1x+ a2x
2 + · · ·

where the ai belong to R.
If R is a ring and n ≥ 1, Mn(R) denotes the set of n× n matrices with coefficients

in R, and GLn(R) denotes the subset of matrices A ∈Mn(R) that have an inverse in
Mn(R). When R is a field, a matrix A ∈ Mn(R) has such an inverse if and only if
its determinant det(A) is nonzero; more generally, for any commutative ring, A has
such an inverse if and only if det(A) is a unit of R. (The reason to insist that the
determinant be a unit, and not just nonzero, is that it makes GLn(R) a group under

multiplication.) For instance, GL2(Z) is the set of matrices
(
a b

c d

)
with a, b, c, d ∈ Z

and ad− bc = ±1.
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Problems

The Forty-Sixth William Lowell Putnam Mathematical Competition
December 7, 1985

Questions Committee: Bruce Reznick, Richard P. Stanley, and Harold M. Stark
See page 35 for hints.

A1. Determine, with proof, the number of ordered triples (A1, A2, A3) of sets which
have the property that

(i) A1 ∪ A2 ∪A3 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and
(ii) A1 ∩ A2 ∩A3 = ∅,
where ∅ denotes the empty set. Express the answer in the form 2a3b5c7d, where a, b,
c, and d are nonnegative integers. (page 53)

A2. Let T be an acute triangle. Inscribe a pair R, S of rectangles in T as shown:

�
�

�
�

�
�

�
�

�❏
❏
❏
❏
❏
❏
❏
❏
❏

S

R

Let A(X) denote the area of polygon X. Find the maximum value, or show that no
maximum exists, of A(R)+A(S)

A(T ) , where T ranges over all triangles and R,S over all
rectangles as above. (page 54)

A3. Let d be a real number. For each integer m ≥ 0, define a sequence {am(j)},
j = 0, 1, 2, . . . by the condition

am(0) = d/2m, and am(j + 1) = (am(j))2 + 2am(j), j ≥ 0.

Evaluate limn→∞ an(n). (page 56)

A4. Define a sequence {ai} by a1 = 3 and ai+1 = 3ai for i ≥ 1. Which integers
between 00 and 99 inclusive occur as the last two digits in the decimal expansion of
infinitely many ai? (page 57)

1
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A5. Let Im =
∫ 2π

0
cos(x) cos(2x) · · · cos(mx) dx. For which integers m, 1 ≤ m ≤ 10,

is Im �= 0? (page 58)

A6. If p(x) = a0 + a1x+ · · ·+ amxm is a polynomial with real coefficients ai, then
set

Γ(p(x)) = a2
0 + a2

1 + · · ·+ a2
m.

Let f(x) = 3x2 + 7x + 2. Find, with proof, a polynomial g(x) with real coefficients
such that

(i) g(0) = 1, and

(ii) Γ(f(x)n) = Γ(g(x)n)

for every integer n ≥ 1. (page 59)

B1. Let k be the smallest positive integer with the following property:

There are distinct integers m1, m2, m3, m4, m5 such that the polynomial

p(x) = (x−m1)(x−m2)(x−m3)(x−m4)(x−m5)

has exactly k nonzero coefficients.

Find, with proof, a set of integers m1, m2, m3, m4, m5 for which this minimum k is
achieved. (page 60)

B2. Define polynomials fn(x) for n ≥ 0 by f0(x) = 1, fn(0) = 0 for n ≥ 1, and

d

dx
(fn+1(x)) = (n+ 1)fn(x+ 1)

for n ≥ 0. Find, with proof, the explicit factorization of f100(1) into powers of distinct
primes. (page 61)

B3. Let
a1,1 a1,2 a1,3 . . .

a2,1 a2,2 a2,3 . . .

a3,1 a3,2 a3,3 . . .
...

...
...

. . .

be a doubly infinite array of positive integers, and suppose each positive integer
appears exactly eight times in the array. Prove that am,n > mn for some pair of
positive integers (m,n). (page 61)

B4. Let C be the unit circle x2 + y2 = 1. A point p is chosen randomly on the
circumference of C and another point q is chosen randomly from the interior of C

(these points are chosen independently and uniformly over their domains). Let R be
the rectangle with sides parallel to the x- and y-axes with diagonal pq. What is the
probability that no point of R lies outside of C? (page 62)

B5. Evaluate
∫∞
0

t−1/2e−1985(t+t−1) dt. You may assume that
∫∞
−∞ e−x2

dx =
√
π.

(page 62)
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B6. Let G be a finite set of real n×n matrices {Mi}, 1 ≤ i ≤ r, which form a group
under matrix multiplication. Suppose that

∑r
i=1 tr(Mi) = 0, where tr(A) denotes the

trace of the matrix A. Prove that
∑r

i=1 Mi is the n× n zero matrix. (page 63)
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The Forty-Seventh William Lowell Putnam Mathematical Competition
December 6, 1986

Questions Committee: Richard P. Stanley,
Harold M. Stark, and Abraham P. Hillman

See page 36 for hints.

A1. Find, with explanation, the maximum value of f(x) = x3 − 3x on the set of all
real numbers x satisfying x4 + 36 ≤ 13x2. (page 65)

A2. What is the units (i.e., rightmost) digit of
⌊

1020000

10100+3

⌋
? Here �x� is the greatest

integer ≤ x. (page 65)

A3. Evaluate
∑∞

n=0Arccot(n
2+n+1), where Arccot t for t ≥ 0 denotes the number

θ in the interval 0 < θ ≤ π/2 with cot θ = t. (page 65)

A4. A transversal of an n×n matrix A consists of n entries of A, no two in the same
row or column. Let f(n) be the number of n × n matrices A satisfying the following
two conditions:

(a) Each entry αi,j of A is in the set {−1, 0, 1}.
(b) The sum of the n entries of a transversal is the same for all transversals of A.

An example of such a matrix A is

A =

 −1 0 −1
0 1 0
0 1 0

 .

Determine with proof a formula for f(n) of the form

f(n) = a1b
n
1 + a2b

n
2 + a3b

n
3 + a4,

where the ai’s and bi’s are rational numbers. (page 67)

A5. Suppose f1(x), f2(x), . . . , fn(x) are functions of n real variables x = (x1, . . . , xn)
with continuous second-order partial derivatives everywhere on Rn. Suppose further
that there are constants cij such that

∂fi
∂xj

− ∂fj
∂xi

= cij

for all i and j, 1 ≤ i ≤ n, 1 ≤ j ≤ n. Prove that there is a function g(x) on Rn such
that fi + ∂g/∂xi is linear for all i, 1 ≤ i ≤ n. (A linear function is one of the form

a0 + a1x1 + a2x2 + · · ·+ anxn.)

(page 68)

A6. Let a1, a2, . . . , an be real numbers, and let b1, b2, . . . , bn be distinct positive
integers. Suppose there is a polynomial f(x) satisfying the identity

(1− x)nf(x) = 1 +
n∑

i=1

aix
bi .
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Find a simple expression (not involving any sums) for f(1) in terms of b1, b2, . . . , bn
and n (but independent of a1, a2, . . . , an). (page 69)

B1. Inscribe a rectangle of base b and height h and an isosceles triangle of base b

in a circle of radius one as shown. For what value of h do the rectangle and triangle
have the same area?

h

b

(page 70)

B2. Prove that there are only a finite number of possibilities for the ordered triple
T = (x − y, y − z, z − x), where x, y, and z are complex numbers satisfying the
simultaneous equations

x(x− 1) + 2yz = y(y − 1) + 2zx = z(z − 1) + 2xy,

and list all such triples T . (page 71)

B3. Let Γ consist of all polynomials in x with integer coefficients. For f and g in
Γ and m a positive integer, let f ≡ g (mod m) mean that every coefficient of f − g

is an integral multiple of m. Let n and p be positive integers with p prime. Given
that f , g, h, r, and s are in Γ with rf + sg ≡ 1 (mod p) and fg ≡ h (mod p), prove
that there exist F and G in Γ with F ≡ f (mod p), G ≡ g (mod p), and FG ≡ h

(mod pn). (page 71)

B4. For a positive real number r, let G(r) be the minimum value of
∣∣r −√m2 + 2n2

∣∣
for all integers m and n. Prove or disprove the assertion that limr→∞ G(r) exists and
equals 0. (page 72)

B5. Let f(x, y, z) = x2 + y2 + z2 + xyz. Let p(x, y, z), q(x, y, z), r(x, y, z) be
polynomials with real coefficients satisfying

f(p(x, y, z), q(x, y, z), r(x, y, z)) = f(x, y, z).

Prove or disprove the assertion that the sequence p, q, r consists of some permutation
of ±x, ±y, ±z, where the number of minus signs is 0 or 2. (page 73)

B6. Suppose A,B,C,D are n × n matrices with entries in a field F , satisfying the
conditions that ABt and CDt are symmetric and ADt−BCt = I. Here I is the n×n

identity matrix, and if M is an n × n matrix, M t is the transpose of M . Prove that
AtD − CtB = I. (page 74)
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The Forty-Eighth William Lowell Putnam Mathematical Competition
December 5, 1987

Questions Committee: Harold M. Stark, Abraham P. Hillman, and Gerald A. Heuer
See page 37 for hints.

A1. Curves A, B, C, and D are defined in the plane as follows:†

A =
{
(x, y) : x2 − y2 =

x

x2 + y2

}
,

B =
{
(x, y) : 2xy +

y

x2 + y2
= 3
}

,

C =
{
(x, y) : x3 − 3xy2 + 3y = 1

}
,

D =
{
(x, y) : 3x2y − 3x− y3 = 0

}
.

Prove that A ∩B = C ∩D. (page 76)

A2. The sequence of digits

123456789101112131415161718192021 . . .

is obtained by writing the positive integers in order. If the 10nth digit in this sequence
occurs in the part of the sequence in which the m-digit numbers are placed, define
f(n) to be m. For example, f(2) = 2 because the 100th digit enters the sequence in
the placement of the two-digit integer 55. Find, with proof, f(1987). (page 76)

A3. For all real x, the real-valued function y = f(x) satisfies

y′′ − 2y′ + y = 2ex.

(a) If f(x) > 0 for all real x, must f ′(x) > 0 for all real x? Explain.

(b) If f ′(x) > 0 for all real x, must f(x) > 0 for all real x? Explain. (page 78)

A4. Let P be a polynomial, with real coefficients, in three variables and F be a
function of two variables such that

P (ux, uy, uz) = u2F (y − x, z − x) for all real x, y, z, u,

and such that P (1, 0, 0) = 4, P (0, 1, 0) = 5, and P (0, 0, 1) = 6. Also let A,B,C be
complex numbers with P (A,B,C) = 0 and |B −A| = 10. Find |C −A|. (page 78)

A5. Let

-G(x, y) =
( −y

x2 + 4y2
,

x

x2 + 4y2
, 0
)
.

Prove or disprove that there is a vector-valued function

-F (x, y, z) = (M(x, y, z), N(x, y, z), P (x, y, z))

with the following properties:

† The equations defining A and B are indeterminate at (0, 0). The point (0, 0) belongs to neither.
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(i) M,N,P have continuous partial derivatives for all (x, y, z) �= (0, 0, 0);

(ii) Curl -F = -0 for all (x, y, z) �= (0, 0, 0);

(iii) -F (x, y, 0) = -G(x, y).

(page 79)

A6. For each positive integer n, let a(n) be the number of zeros in the base 3
representation of n. For which positive real numbers x does the series

∞∑
n=1

xa(n)

n3

converge? (page 79)

B1. Evaluate ∫ 4

2

√
ln(9− x) dx√

ln(9− x) +
√
ln(x+ 3)

.

(page 80)

B2. Let r, s, and t be integers with 0 ≤ r, 0 ≤ s, and r + s ≤ t. Prove that(
s
0

)(
t
r

) + (
s
1

)(
t

r+1

) + · · ·+ (
s
s

)(
t

r+s

) = t+ 1
(t+ 1− s)

(
t−s
r

) .
(Note:

(
n
k

)
denotes the binomial coefficient n(n−1)···(n+1−k)

k(k−1)···3·2·1 .) (page 81)

B3. Let F be a field in which 1 + 1 �= 0. Show that the set of solutions to the
equation x2 + y2 = 1 with x and y in F is given by (x, y) = (1, 0) and

(x, y) =
(
r2 − 1
r2 + 1

,
2r

r2 + 1

)
,

where r runs through the elements of F such that r2 �= −1. (page 83)

B4. Let (x1, y1) = (0.8, 0.6) and let xn+1 = xn cos yn − yn sin yn and yn+1 =
xn sin yn + yn cos yn for n = 1, 2, 3, . . . . For each of limn→∞ xn and limn→∞ yn, prove
that the limit exists and find it or prove that the limit does not exist. (page 85)

B5. Let On be the n-dimensional vector (0, 0, . . . , 0). Let M be a 2n× n matrix of
complex numbers such that whenever (z1, z2, . . . , z2n)M = On, with complex zi, not
all zero, then at least one of the zi is not real. Prove that for arbitrary real numbers
r1, r2, . . . , r2n, there are complex numbers w1, w2, . . . , wn such that

Re

M
 w1

...
wn


 =

 r1

...
r2n

 .

(Note: if C is a matrix of complex numbers, Re(C) is the matrix whose entries are
the real parts of the entries of C.) (page 85)
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B6. Let F be the field of p2 elements where p is an odd prime. Suppose S is a set of
(p2 − 1)/2 distinct nonzero elements of F with the property that for each a �= 0 in F ,
exactly one of a and −a is in S. Let N be the number of elements in the intersection
S ∩ { 2a : a ∈ S }. Prove that N is even. (page 86)
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The Forty-Ninth William Lowell Putnam Mathematical Competition
December 3, 1988

Questions Committee: Abraham P. Hillman, Gerald A. Heuer, and Paul R. Halmos
See page 38 for hints.

A1. Let R be the region consisting of the points (x, y) of the cartesian plane
satisfying both |x| − |y| ≤ 1 and |y| ≤ 1. Sketch the region R and find its area.

(page 88)

A2. A not uncommon calculus mistake is to believe that the product rule for
derivatives says that (fg)′ = f ′g′. If f(x) = ex

2
, determine, with proof, whether

there exists an open interval (a, b) and a nonzero function g defined on (a, b) such that
this wrong product rule is true for x in (a, b). (page 88)

A3. Determine, with proof, the set of real numbers x for which
∞∑
n=1

(
1
n
csc

1
n
− 1
)x

converges. (page 89)

A4.
(a) If every point of the plane is painted one of three colors, do there necessarily exist

two points of the same color exactly one inch apart?

(b) What if “three” is replaced by “nine”?

Justify your answers. (page 90)

A5. Prove that there exists a unique function f from the set R+ of positive real
numbers to R+ such that

f
(
f(x)

)
= 6x− f(x) and f(x) > 0 for all x > 0.

(page 92)

A6. If a linear transformation A on an n-dimensional vector space has n + 1
eigenvectors such that any n of them are linearly independent, does it follow that
A is a scalar multiple of the identity? Prove your answer. (page 93)

B1. A composite (positive integer) is a product ab with a and b not necessarily
distinct integers in {2, 3, 4, . . . }. Show that every composite is expressible as xy +
xz + yz + 1, with x, y, and z positive integers. (page 94)

B2. Prove or disprove: if x and y are real numbers with y ≥ 0 and y(y+1) ≤ (x+1)2,
then y(y − 1) ≤ x2. (page 95)

B3. For every n in the set Z+ = {1, 2, . . . } of positive integers, let rn be the minimum
value of |c − d

√
3| for all nonnegative integers c and d with c + d = n. Find, with

proof, the smallest positive real number g with rn ≤ g for all n ∈ Z+. (page 96)
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B4. Prove that if
∑∞

n=1 an is a convergent series of positive real numbers, then so
is
∑∞

n=1(an)
n/(n+1). (page 97)

B5. For positive integers n, let Mn be the 2n+1 by 2n+1 skew-symmetric matrix
for which each entry in the first n subdiagonals below the main diagonal is 1 and each
of the remaining entries below the main diagonal is −1. Find, with proof, the rank
of Mn. (According to one definition, the rank of a matrix is the largest k such that
there is a k × k submatrix with nonzero determinant.)
One may note that

M1 =

 0 −1 1
1 0 −1
−1 1 0

 and M2 =


0 −1 −1 1 1
1 0 −1 −1 1
1 1 0 −1 −1
−1 1 1 0 −1
−1 −1 1 1 0

 .

(page 97)

B6. Prove that there exist an infinite number of ordered pairs (a, b) of integers such
that for every positive integer t the number at+ b is a triangular number if and only
if t is a triangular number. (The triangular numbers are the tn = n(n + 1)/2 with n

in {0, 1, 2, . . . }.) (page 100)
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The Fiftieth William Lowell Putnam Mathematical Competition
December 2, 1989

Questions Committee: Gerald A. Heuer, Paul R. Halmos, and Kenneth A. Stolarsky
See page 39 for hints.

A1. How many primes among the positive integers, written as usual in base 10, are
such that their digits are alternating 1’s and 0’s, beginning and ending with 1?

(page 101)

A2. Evaluate
∫ a

0

∫ b

0

emax{b2x2,a2y2} dy dx, where a and b are positive. (page 101)

A3. Prove that if
11z10 + 10iz9 + 10iz − 11 = 0,

then |z| = 1. (Here z is a complex number and i2 = −1.) (page 101)

A4. If α is an irrational number, 0 < α < 1, is there a finite game with an honest
coin such that the probability of one player winning the game is α? (An honest coin
is one for which the probability of heads and the probability of tails are both 1/2. A
game is finite if with probability 1 it must end in a finite number of moves.) (page 102)

A5. Let m be a positive integer and let G be a regular (2m + 1)-gon inscribed in
the unit circle. Show that there is a positive constant A, independent of m, with the
following property. For any point p inside G there are two distinct vertices v1 and v2

of G such that ∣∣ |p− v1| − |p− v2|
∣∣ < 1

m
− A

m3
.

Here |s− t| denotes the distance between the points s and t. (page 103)

A6. Let α = 1 + a1x+ a2x
2 + · · · be a formal power series with coefficients in the

field of two elements. Let

an =


1 if every block of zeros in the binary expansion of n

has an even number of zeros in the block,

0 otherwise.

(For example, a36 = 1 because 36 = 1001002, and a20 = 0 because 20 = 101002.)
Prove that α3 + xα+ 1 = 0. (page 107)

B1. A dart, thrown at random, hits a square target. Assuming that any two parts
of the target of equal area are equally likely to be hit, find the probability that the
point hit is nearer to the center than to any edge. Express your answer in the form
(a
√
b+ c)/d, where a, b, c, d are positive integers. (page 108)

B2. Let S be a nonempty set with an associative operation that is left and right
cancellative (xy = xz implies y = z, and yx = zx implies y = z). Assume that for
every a in S the set { an : n = 1, 2, 3, . . . } is finite. Must S be a group? (page 109)
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B3. Let f be a function on [0,∞), differentiable and satisfying
f ′(x) = −3f(x) + 6f(2x)

for x > 0. Assume that |f(x)| ≤ e−
√
x for x ≥ 0 (so that f(x) tends rapidly to 0 as x

increases). For n a nonnegative integer, define

µn =
∫ ∞

0

xnf(x) dx

(sometimes called the nth moment of f).

a. Express µn in terms of µ0.

b. Prove that the sequence {µn3n/n!} always converges, and that the limit is 0 only
if µ0 = 0. (page 109)

B4. Can a countably infinite set have an uncountable collection of nonempty subsets
such that the intersection of any two of them is finite? (page 111)

B5. Label the vertices of a trapezoid T (quadrilateral with two parallel sides)
inscribed in the unit circle as A, B, C, D so that AB is parallel to CD and A, B, C, D

are in counterclockwise order. Let s1, s2, and d denote the lengths of the line segments
AB, CD, and OE, where E is the point of intersection of the diagonals of T , and O is
the center of the circle. Determine the least upper bound of (s1 − s2)/d over all such
T for which d �= 0, and describe all cases, if any, in which it is attained. (page 112)

B6. Let (x1, x2, . . . , xn) be a point chosen at random from the n-dimensional region
defined by 0 < x1 < x2 < · · · < xn < 1. Let f be a continuous function on [0, 1] with
f(1) = 0. Set x0 = 0 and xn+1 = 1. Show that the expected value of the Riemann
sum

n∑
i=0

(xi+1 − xi)f(xi+1)

is
∫ 1

0
f(t)P (t) dt, where P is a polynomial of degree n, independent of f , with 0 ≤

P (t) ≤ 1 for 0 ≤ t ≤ 1. (page 113)
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The Fifty-First William Lowell Putnam Mathematical Competition
December 1, 1990

Questions Committee: Paul R. Halmos,
Kenneth A. Stolarsky, and George E. Andrews

See page 40 for hints.

A1. Let

T0 = 2, T1 = 3, T2 = 6,

and for n ≥ 3,

Tn = (n+ 4)Tn−1 − 4nTn−2 + (4n− 8)Tn−3.

The first few terms are

2, 3, 6, 14, 40, 152, 784, 5168, 40576, 363392.

Find, with proof, a formula for Tn of the form Tn = An + Bn, where (An) and (Bn)
are well-known sequences. (page 116)

A2. Is
√
2 the limit of a sequence of numbers of the form 3

√
n − 3

√
m, (n,m =

0, 1, 2, . . . )? (page 117)

A3. Prove that any convex pentagon whose vertices (no three of which are collinear)
have integer coordinates must have area ≥ 5/2. (page 118)

A4. Consider a paper punch that can be centered at any point of the plane and
that, when operated, removes from the plane precisely those points whose distance
from the center is irrational. How many punches are needed to remove every point?

(page 120)

A5. If A and B are square matrices of the same size such that ABAB = 0, does it
follow that BABA = 0? (page 121)

A6. If X is a finite set, let |X| denote the number of elements in X. Call an ordered
pair (S, T ) of subsets of {1, 2, . . . , n} admissible if s > |T | for each s ∈ S, and t > |S|
for each t ∈ T . How many admissible ordered pairs of subsets of {1, 2, . . . , 10} are
there? Prove your answer. (page 123)

B1. Find all real-valued continuously differentiable functions f on the real line such
that for all x

(f(x))2 =
∫ x

0

(
(f(t))2 + (f ′(t))2

)
dt+ 1990.

(page 124)

B2. Prove that for |x| < 1, |z| > 1,

1 +
∞∑
j=1

(1 + xj)
(1− z)(1− zx)(1− zx2) · · · (1− zxj−1)
(z − x)(z − x2)(z − x3) · · · (z − xj)

= 0.

(page 125)
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B3. Let S be a set of 2 × 2 integer matrices whose entries aij (1) are all squares
of integers, and, (2) satisfy aij ≤ 200. Show that if S has more than 50387 (=
154 − 152 − 15 + 2) elements, then it has two elements that commute. (page 125)

B4. Let G be a finite group of order n generated by a and b. Prove or disprove:
there is a sequence

g1, g2, g3, . . . , g2n

such that

(1) every element of G occurs exactly twice, and

(2) gi+1 equals gia or gib, for i = 1, 2, . . . , 2n. (Interpret g2n+1 as g1.)

(page 126)

B5. Is there an infinite sequence a0, a1, a2, . . . of nonzero real numbers such that for
n = 1, 2, 3, . . . the polynomial

pn(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

has exactly n distinct real roots? (page 127)

B6. Let S be a nonempty closed bounded convex set in the plane. Let K be a line
and t a positive number. Let L1 and L2 be support lines for S parallel to K, and let
L be the line parallel to K and midway between L1 and L2. Let BS(K, t) be the band
of points whose distance from L is at most (t/2)w, where w is the distance between
L1 and L2. What is the smallest t such that

S ∩
⋂
K

BS(K, t) �= ∅

for all S? (K runs over all lines in the plane.)

Support line L1

Support line L2

tw

w

KS
B K,tS( )

L

(page 128)
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The Fifty-Second William Lowell Putnam Mathematical Competition
December 7, 1991

Questions Committee: Kenneth A. Stolarsky,
George E. Andrews, and George T. Gilbert

See page 41 for hints.

A1. A 2 × 3 rectangle has vertices at (0, 0), (2, 0), (0, 3), and (2, 3). It rotates 90◦

clockwise about the point (2, 0). It then rotates 90◦ clockwise about the point (5, 0),
then 90◦ clockwise about the point (7, 0), and finally, 90◦ clockwise about the point
(10, 0). (The side originally on the x-axis is now back on the x-axis.) Find the area of
the region above the x-axis and below the curve traced out by the point whose initial
position is (1, 1). (page 135)

A2. Let A and B be different n × n matrices with real entries. If A3 = B3 and
A2B = B2A, can A2 +B2 be invertible? (page 135)

A3. Find all real polynomials p(x) of degree n ≥ 2 for which there exist real numbers
r1 < r2 < · · · < rn such that

(i) p(ri) = 0, i = 1, 2, . . . , n, and

(ii) p′
(
ri+ri+1

2

)
= 0, i = 1, 2, . . . , n− 1,

where p′(x) denotes the derivative of p(x). (page 135)

A4. Does there exist an infinite sequence of closed discs D1, D2, D3, . . . in the plane,
with centers c1, c2, c3, . . . , respectively, such that

(i) the ci have no limit point in the finite plane,

(ii) the sum of the areas of the Di is finite, and

(iii) every line in the plane intersects at least one of the Di?

(page 137)

A5. Find the maximum value of∫ y

0

√
x4 + (y − y2)2 dx

for 0 ≤ y ≤ 1. (page 138)

A6. Let A(n) denote the number of sums of positive integers a1+a2+ · · ·+ar which
add up to n with a1 > a2 + a3, a2 > a3 + a4, . . . , ar−2 > ar−1 + ar, ar−1 > ar. Let
B(n) denote the number of b1 + b2 + · · ·+ bs which add up to n, with

(i) b1 ≥ b2 ≥ · · · ≥ bs,

(ii) each bi is in the sequence 1, 2, 4, . . . , gj , . . . defined by g1 = 1, g2 = 2, and
gj = gj−1 + gj−2 + 1, and

(iii) if b1 = gk then every element in {1, 2, 4, . . . , gk} appears at least once as a bi.

Prove that A(n) = B(n) for each n ≥ 1.
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(For example, A(7) = 5 because the relevant sums are 7, 6+1, 5+2, 4+3, 4+2+1,
and B(7) = 5 because the relevant sums are 4+ 2+ 1, 2+ 2+ 2+ 1, 2+ 2+ 1+ 1+ 1,
2 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1.) (page 139)

B1. For each integer n ≥ 0, let S(n) = n−m2, where m is the greatest integer with
m2 ≤ n. Define a sequence (ak)∞k=0 by a0 = A and ak+1 = ak + S(ak) for k ≥ 0. For
what positive integers A is this sequence eventually constant? (page 141)

B2. Suppose f and g are nonconstant, differentiable, real-valued functions on R.
Furthermore, suppose that for each pair of real numbers x and y,

f(x+ y) = f(x)f(y)− g(x)g(y),

g(x+ y) = f(x)g(y) + g(x)f(y).

If f ′(0) = 0, prove that (f(x))2 + (g(x))2 = 1 for all x. (page 142)

B3. Does there exist a real number L such that, if m and n are integers greater than
L, then an m×n rectangle may be expressed as a union of 4× 6 and 5× 7 rectangles,
any two of which intersect at most along their boundaries? (page 143)

B4. Suppose p is an odd prime. Prove that
p∑

j=0

(
p

j

)(
p+ j

j

)
≡ 2p + 1 (mod p2).

(page 145)

B5. Let p be an odd prime and let Zp denote† (the field of) integers modulo p. How
many elements are in the set

{x2 : x ∈ Zp } ∩ { y2 + 1 : y ∈ Zp }?
(page 148)

B6. Let a and b be positive numbers. Find the largest number c, in terms of a and
b, such that

axb1−x ≤ a
sinhux
sinhu

+ b
sinhu(1− x)

sinhu
for all u with 0 < |u| ≤ c and for all x, 0 < x < 1. (Note: sinhu = (eu − e−u)/2.)

(page 151)

† This notation is becoming nonstandard in current mathematics; see the warning preceding the

solution.
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The Fifty-Third William Lowell Putnam Mathematical Competition
December 5, 1992

Questions Committee: George E. Andrews, George T. Gilbert, and Eugene Luks
See page 42 for hints.

A1. Prove that f(n) = 1 − n is the only integer-valued function defined on the
integers that satisfies the following conditions:

(i) f(f(n)) = n, for all integers n;

(ii) f(f(n+ 2) + 2) = n for all integers n;

(iii) f(0) = 1. (page 154)

A2. Define C(α) to be the coefficient of x1992 in the power series expansion about
x = 0 of (1 + x)α. Evaluate∫ 1

0

C(−y − 1)
(

1
y + 1

+
1

y + 2
+

1
y + 3

+ · · ·+ 1
y + 1992

)
dy.

(page 154)

A3. For a given positive integer m, find all triples (n, x, y) of positive integers, with
n relatively prime to m, which satisfy (x2 + y2)m = (xy)n. (page 154)

A4. Let f be an infinitely differentiable real-valued function defined on the real
numbers. If

f

(
1
n

)
=

n2

n2 + 1
, n = 1, 2, 3, . . . ,

compute the values of the derivatives f (k)(0), k = 1, 2, 3, . . . . (page 155)

A5. For each positive integer n, let

an =
{
0 if the number of 1’s in the binary representation of n is even,
1 if the number of 1’s in the binary representation of n is odd.

Show that there do not exist positive integers k and m such that

ak+j = ak+m+j = ak+2m+j ,

for 0 ≤ j ≤ m− 1. (page 156)

A6. Four points are chosen at random on the surface of a sphere. What is the
probability that the center of the sphere lies inside the tetrahedron whose vertices are
at the four points? (It is understood that each point is independently chosen relative
to a uniform distribution on the sphere.) (page 159)

B1. Let S be a set of n distinct real numbers. Let AS be the set of numbers that
occur as averages of two distinct elements of S. For a given n ≥ 2, what is the smallest
possible number of elements in AS? (page 160)
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B2. For nonnegative integers n and k, define Q(n, k) to be the coefficient of xk in
the expansion of (1 + x+ x2 + x3)n. Prove that

Q(n, k) =
k∑

j=0

(
n

j

)(
n

k − 2j
)
,

where
(
a
b

)
is the standard binomial coefficient. (Reminder: For integers a and b with

a ≥ 0,
(
a
b

)
= a!

b!(a−b)! for 0 ≤ b ≤ a, with
(
a
b

)
= 0 otherwise.) (page 161)

B3. For any pair (x, y) of real numbers, a sequence (an(x, y))n≥0 is defined as
follows:

a0(x, y) = x,

an+1(x, y) =
(an(x, y))2 + y2

2
, for n ≥ 0.

Find the area of the region { (x, y)|(an(x, y))n≥0 converges }. (page 161)

B4. Let p(x) be a nonzero polynomial of degree less than 1992 having no nonconstant
factor in common with x3 − x. Let

d1992

dx1992

(
p(x)

x3 − x

)
=

f(x)
g(x)

for polynomials f(x) and g(x). Find the smallest possible degree of f(x). (page 163)

B5. Let Dn denote the value of the (n− 1)× (n− 1) determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3 1 1 1 · · · 1
1 4 1 1 · · · 1
1 1 5 1 · · · 1
1 1 1 6 · · · 1
...

...
...

...
. . .

...
1 1 1 1 · · · n+ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Is the set {Dn/n!}n≥2 bounded? (page 164)

B6. LetM be a set of real n× n matrices such that

(i) I ∈M, where I is the n× n identity matrix;

(ii) if A ∈M and B ∈M, then either AB ∈M or −AB ∈M, but not both;

(iii) if A ∈M and B ∈M, then either AB = BA or AB = −BA;

(iv) if A ∈M and A �= I, there is at least one B ∈M such that AB = −BA.

Prove thatM contains at most n2 matrices. (page 166)
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The Fifty-Fourth William Lowell Putnam Mathematical Competition
December 4, 1993

Questions Committee: George T. Gilbert, Eugene Luks, and Fan Chung
See page 43 for hints.

A1. The horizontal line y = c intersects the curve y = 2x−3x3 in the first quadrant
as in the figure. Find c so that the areas of the two shaded regions are equal.

x

y

y = c

y = x – x2 3
3

(page 171)

A2. Let (xn)n≥0 be a sequence of nonzero real numbers such that

x2
n − xn−1xn+1 = 1 for n = 1, 2, 3, . . . .

Prove there exists a real number a such that xn+1 = axn − xn−1 for all n ≥ 1.
(page 171)

A3. Let Pn be the set of subsets of {1, 2, . . . , n}. Let c(n,m) be the number of
functions f : Pn → {1, 2, . . . ,m} such that f(A ∩B) = min{f(A), f(B)}. Prove that

c(n,m) =
m∑
j=1

jn.

(page 173)

A4. Let x1, x2, . . . , x19 be positive integers each of which is less than or equal to
93. Let y1, y2, . . . , y93 be positive integers each of which is less than or equal to 19.
Prove that there exists a (nonempty) sum of some xi’s equal to a sum of some yj ’s.

(page 174)

A5. Show that∫ −10

−100

(
x2 − x

x3 − 3x+ 1

)2

dx+
∫ 1

11

1
101

(
x2 − x

x3 − 3x+ 1

)2

dx+
∫ 11

10

101
100

(
x2 − x

x3 − 3x+ 1

)2

dx

is a rational number. (page 175)

A6. The infinite sequence of 2’s and 3’s

2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, . . .
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has the property that, if one forms a second sequence that records the number of 3’s
between successive 2’s, the result is identical to the given sequence. Show that there
exists a real number r such that, for any n, the nth term of the sequence is 2 if and
only if n = 1 + �rm� for some nonnegative integer m. (Note: �x� denotes the largest
integer less than or equal to x.) (page 178)

B1. Find the smallest positive integer n such that for every integer m, with 0 <

m < 1993, there exists an integer k for which

m

1993
<

k

n
<

m+ 1
1994

.

(page 180)

B2. Consider the following game played with a deck of 2n cards numbered from 1 to
2n. The deck is randomly shuffled and n cards are dealt to each of two players, A and
B. Beginning with A, the players take turns discarding one of their remaining cards
and announcing its number. The game ends as soon as the sum of the numbers on
the discarded cards is divisible by 2n+ 1. The last person to discard wins the game.
Assuming optimal strategy by both A and B, what is the probability that A wins?

(page 182)

B3. Two real numbers x and y are chosen at random in the interval (0,1) with
respect to the uniform distribution. What is the probability that the closest integer
to x/y is even? Express the answer in the form r + sπ, where r and s are rational
numbers. (page 182)

B4. The function K(x, y) is positive and continuous for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and
the functions f(x) and g(x) are positive and continuous for 0 ≤ x ≤ 1. Suppose that
for all x, 0 ≤ x ≤ 1,∫ 1

0

f(y)K(x, y) dy = g(x) and
∫ 1

0

g(y)K(x, y) dy = f(x).

Show that f(x) = g(x) for 0 ≤ x ≤ 1. (page 184)

B5. Show there do not exist four points in the Euclidean plane such that the pairwise
distances between the points are all odd integers. (page 185)

B6. Let S be a set of three, not necessarily distinct, positive integers. Show that
one can transform S into a set containing 0 by a finite number of applications of the
following rule: Select two of the three integers, say x and y, where x ≤ y and replace
them with 2x and y − x. (page 188)
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The Fifty-Fifth William Lowell Putnam Mathematical Competition
December 3, 1994

Questions Committee: Eugene Luks, Fan Chung, and Mark I. Krusemeyer
See page 44 for hints.

A1. Suppose that a sequence a1, a2, a3, . . . satisfies 0 < an ≤ a2n + a2n+1 for all
n ≥ 1. Prove that the series

∑∞
n=1 an diverges. (page 191)

A2. Let A be the area of the region in the first quadrant bounded by the line y = 1
2x,

the x-axis, and the ellipse 1
9x

2 + y2 = 1. Find the positive number m such that A is
equal to the area of the region in the first quadrant bounded by the line y = mx, the
y-axis, and the ellipse 1

9x
2 + y2 = 1. (page 191)

A3. Show that if the points of an isosceles right triangle of side length 1 are each
colored with one of four colors, then there must be two points of the same color which
are at least a distance 2−√2 apart. (page 192)

A4. Let A and B be 2×2 matrices with integer entries such that A, A+B, A+2B,
A + 3B, and A + 4B are all invertible matrices whose inverses have integer entries.
Show that A+ 5B is invertible and that its inverse has integer entries. (page 193)

A5. Let (rn)n≥0 be a sequence of positive real numbers such that limn→∞ rn = 0.
Let S be the set of numbers representable as a sum

ri1 + ri2 + · · ·+ ri1994 ,

with i1 < i2 < · · · < i1994. Show that every nonempty interval (a, b) contains a
nonempty subinterval (c, d) that does not intersect S. (page 194)

A6. Let f1, f2, . . . , f10 be bijections of the set of integers such that for each integer
n, there is some composition fi1 ◦fi2 ◦· · ·◦fim of these functions (allowing repetitions)
which maps 0 to n. Consider the set of 1024 functions

F = {fe1
1 ◦ fe2

2 ◦ · · · ◦ fe10
10 },

ei = 0 or 1 for 1 ≤ i ≤ 10. (f0
i is the identity function and f1

i = fi.) Show that if A
is any nonempty finite set of integers, then at most 512 of the functions in F map A

to itself. (page 195)

B1. Find all positive integers that are within 250 of exactly 15 perfect squares.
(page 196)

B2. For which real numbers c is there a straight line that intersects the curve

y = x4 + 9x3 + cx2 + 9x+ 4

in four distinct points? (page 196)
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B3. Find the set of all real numbers k with the following property: For any positive,
differentiable function f that satisfies f ′(x) > f(x) for all x, there is some number N
such that f(x) > ekx for all x > N . (page 198)

B4. For n ≥ 1, let dn be the greatest common divisor of the entries of An−I, where

A =
(
3 2
4 3

)
and I =

(
1 0
0 1

)
.

Show that limn→∞ dn =∞. (page 198)

B5. For any real number α, define the function fα(x) = �αx�. Let n be a positive
integer. Show that there exists an α such that for 1 ≤ k ≤ n,†

fk
α(n

2) = n2 − k = fαk(n2).
(page 200)

B6. For any integer a, set

na = 101a− 100 · 2a.
Show that for 0 ≤ a, b, c, d ≤ 99, na+nb ≡ nc+nd (mod 10100) implies {a, b} = {c, d}.

(page 202)

† Here fk
α(n

2) = fα(· · · (fα(n2)) · · · ), where fα is applied k times to n2.
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The Fifty-Sixth William Lowell Putnam Mathematical Competition
December 2, 1995

Questions Committee: Fan Chung, Mark I. Krusemeyer, and Richard K. Guy
See page 45 for hints.

A1. Let S be a set of real numbers which is closed under multiplication (that is, if
a and b are in S, then so is ab). Let T and U be disjoint subsets of S whose union is
S. Given that the product of any three (not necessarily distinct) elements of T is in
T and that the product of any three elements of U is in U , show that at least one of
the two subsets T,U is closed under multiplication. (page 204)

A2. For what pairs (a, b) of positive real numbers does the improper integral∫ ∞

b

(√√
x+ a−√x−

√√
x−√x− b

)
dx

converge? (page 204)

A3. The number d1d2 . . . d9 has nine (not necessarily distinct) decimal digits. The
number e1e2 . . . e9 is such that each of the nine 9-digit numbers formed by replacing
just one of the digits di in d1d2 . . . d9 by the corresponding digit ei (1 ≤ i ≤ 9) is
divisible by 7. The number f1f2 . . . f9 is related to e1e2 . . . e9 is the same way: that
is, each of the nine numbers formed by replacing one of the ei by the corresponding
fi is divisible by 7. Show that, for each i, di − fi is divisible by 7. [For example, if
d1d2 . . . d9 = 199501996, then e6 may be 2 or 9, since 199502996 and 199509996 are
multiples of 7.] (page 205)

A4. Suppose we have a necklace of n beads. Each bead is labelled with an integer
and the sum of all these labels is n− 1. Prove that we can cut the necklace to form a
string whose consecutive labels x1, x2, . . . , xn satisfy

k∑
i=1

xi ≤ k − 1 for k = 1, 2, . . . , n.

(page 205)

A5. Let x1, x2, . . . , xn be differentiable (real-valued) functions of a single variable t

which satisfy

dx1

dt
= a11x1 + a12x2 + · · ·+ a1nxn

dx2

dt
= a21x1 + a22x2 + · · ·+ a2nxn

...
dxn
dt

= an1x1 + an2x2 + · · ·+ annxn

for some constants aij > 0. Suppose that for all i, xi(t) → 0 as t → ∞. Are the
functions x1, x2, . . . , xn necessarily linearly dependent? (page 206)
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A6. Suppose that each of n people writes down the numbers 1, 2, 3 in random order
in one column of a 3× n matrix, with all orders equally likely and with the orders for
different columns independent of each other. Let the row sums a, b, c of the resulting
matrix be rearranged (if necessary) so that a ≤ b ≤ c. Show that for some n ≥ 1995,
it is at least four times as likely that both b = a+1 and c = a+2 as that a = b = c.

(page 207)

B1. For a partition π of {1, 2, 3, 4, 5, 6, 7, 8, 9}, let π(x) be the number of elements in
the part containing x. Prove that for any two partitions π and π′, there are two distinct
numbers x and y in {1, 2, 3, 4, 5, 6, 7, 8, 9} such that π(x) = π(y) and π′(x) = π′(y).
[A partition of a set S is a collection of disjoint subsets (parts) whose union is S.]

(page 209)

B2. An ellipse, whose semi-axes have lengths a and b, rolls without slipping on the
curve y = c sin

(
x
a

)
. How are a, b, c related, given that the ellipse completes one

revolution when it traverses one period of the curve? (page 209)

B3. To each positive integer with n2 decimal digits, we associate the determinant
of the matrix obtained by writing the digits in order across the rows. For example,

for n = 2, to the integer 8617 we associate det
(
8 6
1 7

)
= 50. Find, as a function of

n, the sum of all the determinants associated with n2-digit integers. (Leading digits
are assumed to be nonzero; for example, for n = 2, there are 9000 determinants.)

(page 211)

B4. Evaluate

8

√
2207− 1

2207− 1
2207−···

.

Express your answer in the form a+b
√
c

d , where a, b, c, d are integers. (page 211)

B5. A game starts with four heaps of beans, containing 3, 4, 5 and 6 beans. The
two players move alternately. A move consists of taking either

(a) one bean from a heap, provided at least two beans are left behind in that heap,
or

(b) a complete heap of two or three beans.

The player who takes the last heap wins. To win the game, do you want to move first
or second? Give a winning strategy. (page 212)

B6. For a positive real number α, define

S(α) = { �nα� : n = 1, 2, 3, . . . }.
Prove that {1, 2, 3, . . . } cannot be expressed as the disjoint union of three sets
S(α), S(β) and S(γ). (page 214)
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The Fifty-Seventh William Lowell Putnam Mathematical Competition
December 7, 1996

Questions Committee: Mark I. Krusemeyer, Richard K. Guy, and Michael J. Larsen
See page 46 for hints.

A1. Find the least number A such that for any two squares of combined area 1, a
rectangle of area A exists such that the two squares can be packed in the rectangle
(without the interiors of the squares overlapping). You may assume that the sides of
the squares will be parallel to the sides of the rectangle. (page 217)

A2. Let C1 and C2 be circles whose centers are 10 units apart, and whose radii are
1 and 3. Find, with proof, the locus of all points M for which there exists points X

on C1 and Y on C2 such that M is the midpoint of the line segment XY . (page 218)

A3. Suppose that each of 20 students has made a choice of anywhere from 0 to 6
courses from a total of 6 courses offered. Prove or disprove: there are 5 students and 2
courses such that all 5 have chosen both courses or all 5 have chosen neither course.

(page 218)

A4. Let S be a set of ordered triples (a, b, c) of distinct elements of a finite set A.
Suppose that

(1) (a, b, c) ∈ S if and only if (b, c, a) ∈ S;

(2) (a, b, c) ∈ S if and only if (c, b, a) /∈ S [for a, b, c distinct];

(3) (a, b, c) and (c, d, a) are both in S if and only if (b, c, d) and (d, a, b) are both in S.

Prove that there exists a one-to-one function g from A to R such that g(a) < g(b) <
g(c) implies (a, b, c) ∈ S. (page 219)

A5. If p is a prime number greater than 3 and k = �2p/3�, prove that the sum(
p

1

)
+
(
p

2

)
+ · · ·+

(
p

k

)
of binomial coefficients is divisible by p2. (page 220)

A6. Let c ≥ 0 be a constant. Give a complete description, with proof, of the set of
all continuous functions f : R → R such that f(x) = f(x2 + c) for all x ∈ R.

(page 220)

B1. Define a selfish set to be a set which has its own cardinality (number of
elements) as an element. Find, with proof, the number of subsets of {1, 2, . . . , n}
which are minimal selfish sets, that is, selfish sets none of whose proper subsets is
selfish. (page 222)

B2. Show that for every positive integer n,(
2n− 1

e

) 2n−1
2

< 1 · 3 · 5 · · · (2n− 1) <
(
2n+ 1

e

) 2n+1
2

.

(page 224)
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B3. Given that {x1, x2, . . . , xn} = {1, 2, . . . , n}, find, with proof, the largest
possible value, as a function of n (with n ≥ 2), of

x1x2 + x2x3 + · · ·+ xn−1xn + xnx1.

(page 225)

B4. For any square matrix A, we can define sinA by the usual power series:

sinA =
∞∑
n=0

(−1)n
(2n+ 1)!

A2n+1.

Prove or disprove: there exists a 2× 2 matrix A with real entries such that

sinA =
(
1 1996
0 1

)
.

(page 227)

B5. Given a finite string S of symbolsX and O, we write ∆(S) for the number ofX’s
in S minus the number of O’s. For example, ∆(XOOXOOX) = −1. We call a string
S balanced if every substring T of (consecutive symbols of) S has −2 ≤ ∆(T ) ≤ 2.
Thus, XOOXOOX is not balanced, since it contains the substring OOXOO. Find,
with proof, the number of balanced strings of length n. (page 229)

B6. Let (a1, b1), (a2, b2), . . . , (an, bn) be the vertices of a convex polygon which
contains the origin in its interior. Prove that there exist positive real numbers x

and y such that

(a1, b1)xa1yb1 + (a2, b2)xa2yb2 + · · ·+ (an, bn)xanybn = (0, 0).

(page 230)
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The Fifty-Eighth William Lowell Putnam Mathematical Competition
December 6, 1997

Questions Committee: Richard K. Guy, Michael J. Larsen, and David J. Wright
See page 47 for hints.

A1. A rectangle, HOMF , has sides HO = 11 and OM = 5. A triangle ABC has
H as the intersection of the altitudes, O the center of the circumscribed circle, M the
midpoint of BC, and F the foot of the altitude from A. What is the length of BC?

11F

H O

5

M

(page 232)

A2. Players 1, 2, 3, . . . , n are seated around a table, and each has a single penny.
Player 1 passes a penny to Player 2, who then passes two pennies to Player 3. Player
3 then passes one penny to Player 4, who passes two pennies to Player 5, and so on,
players alternately passing one penny or two to the next player who still has some
pennies. A player who runs out of pennies drops out of the game and leaves the table.
Find an infinite set of numbers n for which some player ends up with all n pennies.

(page 233)

A3. Evaluate∫ ∞

0

(
x− x3

2
+

x5

2 · 4 −
x7

2 · 4 · 6 + · · ·
)(

1 +
x2

22
+

x4

22 · 42
+

x6

22 · 42 · 62
+ · · ·

)
dx.

(page 234)

A4. Let G be a group with identity e and φ : G→ G a function such that

φ(g1)φ(g2)φ(g3) = φ(h1)φ(h2)φ(h3)

whenever g1g2g3 = e = h1h2h3. Prove that there exists an element a ∈ G such that
ψ(x) = aφ(x) is a homomorphism (that is, ψ(xy) = ψ(x)ψ(y) for all x, y ∈ G).

(page 237)

A5. LetNn denote the number of ordered n-tuples of positive integers (a1, a2, . . . , an)
such that 1/a1 + 1/a2 + · · ·+ 1/an = 1. Determine whether N10 is even or odd.

(page 237)

A6. For a positive integer n and any real number c, define xk recursively by x0 = 0,
x1 = 1, and for k ≥ 0,

xk+2 =
cxk+1 − (n− k)xk

k + 1
.
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Fix n and then take c to be the largest value for which xn+1 = 0. Find xk in terms of
n and k, 1 ≤ k ≤ n. (page 238)

B1. Let {x} denote the distance between the real number x and the nearest integer.
For each positive integer n, evaluate

Sn =
6n−1∑
m=1

min
({m

6n

}
,
{m

3n

})
.

(Here min(a, b) denotes the minimum of a and b.) (page 242)

B2. Let f be a twice-differentiable real-valued function satisfying

f(x) + f ′′(x) = −xg(x)f ′(x),

where g(x) ≥ 0 for all real x. Prove that |f(x)| is bounded. (page 243)

B3. For each positive integer n, write the sum
∑n

m=1
1
m in the form pn

qn
, where pn

and qn are relatively prime positive integers. Determine all n such that 5 does not
divide qn. (page 244)

B4. Let am,n denote the coefficient of xn in the expansion of (1 + x+ x2)m. Prove
that for all integers k ≥ 0,

0 ≤
� 2k

3 ∑
i=0

(−1)iak−i,i ≤ 1.

(page 246)

B5. Prove that for n ≥ 2,

22···
2
}
n ≡ 22···

2
}
n−1

(mod n).

(page 247)

B6. The dissection of the 3–4–5 triangle shown below has diameter 5/2.

❙
❙

❙
❙

❙
❙

❙
❙

❙

�
�
�
�
�

5

4

3

Find the least diameter of a dissection of this triangle into four parts. (The diameter of
a dissection is the least upper bound of the distances between pairs of points belonging
to the same part.) (page 248)
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The Fifty-Ninth William Lowell Putnam Mathematical Competition
December 5, 1998

Questions Committee: Michael J. Larsen, David J. Wright, and Steven G. Krantz
See page 48 for hints.

A1. A right circular cone has base of radius 1 and height 3. A cube is inscribed in
the cone so that one face of the cube is contained in the base of the cone. What is the
side-length of the cube? (page 250)

A2. Let s be any arc of the unit circle lying entirely in the first quadrant. Let A be
the area of the region lying below s and above the x-axis and let B be the area of the
region lying to the right of the y-axis and to the left of s. Prove that A+B depends
only on the arc length, and not on the position, of s. (page 250)

A3. Let f be a real function on the real line with continuous third derivative. Prove
that there exists a point a such that

f(a) · f ′(a) · f ′′(a) · f ′′′(a) ≥ 0.

(page 251)

A4. Let A1 = 0 and A2 = 1. For n > 2, the number An is defined by concatenating
the decimal expansions of An−1 and An−2 from left to right. For example A3 =
A2A1 = 10, A4 = A3A2 = 101, A5 = A4A3 = 10110, and so forth. Determine all n
such that 11 divides An. (page 252)

A5. Let F be a finite collection of open discs in R2 whose union contains a set
E ⊆ R2. Show that there is a pairwise disjoint subcollection D1, . . . , Dn in F such
that

E ⊆
n⋃

j=1

3Dj .

Here, if D is the disc of radius r and center P , then 3D is the disc of radius 3r and
center P . (page 252)

A6. Let A,B,C denote distinct points with integer coordinates in R2. Prove that
if

(|AB|+ |BC|)2 < 8 · [ABC] + 1

then A,B,C are three vertices of a square. Here |XY | is the length of segment XY

and [ABC] is the area of triangle ABC. (page 253)

B1. Find the minimum value of

(x+ 1/x)6 − (x6 + 1/x6)− 2
(x+ 1/x)3 + (x3 + 1/x3)

for x > 0. (page 253)
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B2. Given a point (a, b) with 0 < b < a, determine the minimum perimeter of a
triangle with one vertex at (a, b), one on the x-axis, and one on the line y = x. You
may assume that a triangle of minimum perimeter exists. (page 254)

B3. Let H be the unit hemisphere { (x, y, z) : x2 + y2 + z2 = 1, z ≥ 0 }, C the unit
circle { (x, y, 0) : x2+ y2 = 1 }, and P the regular pentagon inscribed in C. Determine
the surface area of that portion of H lying over the planar region inside P , and write
your answer in the form A sinα+B cosβ, where A,B, α, β are real numbers.

(page 255)

B4. Find necessary and sufficient conditions on positive integers m and n so that
mn−1∑
i=0

(−1)�i/m+�i/n = 0.

(page 256)

B5. Let N be the positive integer with 1998 decimal digits, all of them 1; that is,

N = 1111 · · · 11.
Find the thousandth digit after the decimal point of

√
N . (page 257)

B6. Prove that, for any integers a, b, c, there exists a positive integer n such that√
n3 + an2 + bn+ c is not an integer. (page 258)
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The Sixtieth William Lowell Putnam Mathematical Competition
December 4, 1999

Questions Committee: David J. Wright, Steven G. Krantz, and Andrew J. Granville
See page 49 for hints.

A1. Find polynomials f(x), g(x), and h(x), if they exist, such that, for all x,

|f(x)| − |g(x)|+ h(x) =


−1 if x < −1
3x+ 2 if −1 ≤ x ≤ 0

−2x+ 2 if x > 0.

(page 262)

A2. Let p(x) be a polynomial that is nonnegative for all real x. Prove that for some
k, there are polynomials f1(x), . . . , fk(x) such that

p(x) =
k∑

j=1

(fj(x))2.

(page 263)

A3. Consider the power series expansion

1
1− 2x− x2

=
∞∑
n=0

anx
n.

Prove that, for each integer n ≥ 0, there is an integer m such that

a2
n + a2

n+1 = am.

(page 264)

A4. Sum the series
∞∑

m=1

∞∑
n=1

m2n

3m(n3m +m3n)
.

(page 265)

A5. Prove that there is a constant C such that, if p(x) is a polynomial of degree
1999, then

|p(0)| ≤ C

∫ 1

−1

|p(x)| dx.

(page 266)

A6. The sequence (an)n≥1 is defined by a1 = 1, a2 = 2, a3 = 24, and, for n ≥ 4,

an =
6a2

n−1an−3 − 8an−1a
2
n−2

an−2an−3
.

Show that, for all n, an is an integer multiple of n. (page 267)
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B1. Right triangle ABC has right angle at C and ∠BAC = θ; the point D is chosen
on AB so that |AC| = |AD| = 1; the point E is chosen on BC so that ∠CDE = θ.
The perpendicular to BC at E meets AB at F . Evaluate limθ→0 |EF |. [Here |PQ|
denotes the length of the line segment PQ.]

�

�

A F D B

E

C

(page 268)

B2. Let P (x) be a polynomial of degree n such that P (x) = Q(x)P ′′(x), where Q(x)
is a quadratic polynomial and P ′′(x) is the second derivative of P (x). Show that if
P (x) has at least two distinct roots then it must have n distinct roots. [The roots
may be either real or complex.] (page 269)

B3. Let A = { (x, y) : 0 ≤ x, y < 1 }. For (x, y) ∈ A, let

S(x, y) =
∑

1
2≤m

n ≤2

xmyn,

where the sum ranges over all pairs (m,n) of positive integers satisfying the indicated
inequalities. Evaluate

lim
(x,y)→(1,1)

(x,y)∈A
(1− xy2)(1− x2y)S(x, y).

(page 271)

B4. Let f be a real function with a continuous third derivative such that f(x), f ′(x),
f ′′(x), f ′′′(x) are positive for all x. Suppose that f ′′′(x) ≤ f(x) for all x. Show that
f ′(x) < 2f(x) for all x. (page 272)

B5. For an integer n ≥ 3, let θ = 2π/n. Evaluate the determinant of the n×nmatrix
I+A, where I is the n×n identity matrix and A = (ajk) has entries ajk = cos(jθ+kθ)
for all j, k. (page 276)

B6. Let S be a finite set of integers, each greater than 1. Suppose that for each
integer n there is some s ∈ S such that gcd(s, n) = 1 or gcd(s, n) = s. Show that
there exist s, t ∈ S such that gcd(s, t) is prime. (page 277)
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The Sixty-First William Lowell Putnam Mathematical Competition
December 2, 2000

Questions Committee: Steven G. Krantz, Andrew J. Granville,
Carl Pomerance, and Eugene Luks

See page 50 for hints.

A1. Let A be a positive real number. What are the possible values of
∑∞

j=0 x
2
j ,

given that x0, x1, . . . are positive numbers for which
∑∞

j=0 xj = A? (page 278)

A2. Prove that there exist infinitely many integers n such that n, n + 1, n+ 2 are
each the sum of two squares of integers. [Example: 0 = 02 + 02, 1 = 02 + 12, and
2 = 12 + 12.] (page 278)

A3. The octagon P1P2P3P4P5P6P7P8 is inscribed in a circle, with the vertices
around the circumference in the given order. Given that the polygon P1P3P5P7 is a
square of area 5 and the polygon P2P4P6P8 is a rectangle of area 4, find the maximum
possible area of the octagon. (page 280)

A4. Show that the improper integral

lim
B→∞

∫ B

0

sin(x) sin(x2) dx

converges. (page 281)

A5. Three distinct points with integer coordinates lie in the plane on a circle of
radius r > 0. Show that two of these points are separated by a distance of at least
r1/3. (page 285)

A6. Let f(x) be a polynomial with integer coefficients. Define a sequence a0, a1, . . .

of integers such that a0 = 0 and an+1 = f(an) for all n ≥ 0. Prove that if there exists
a positive integer m for which am = 0 then either a1 = 0 or a2 = 0. (page 288)

B1. Let aj , bj , cj be integers for 1 ≤ j ≤ N . Assume, for each j, at least one of
aj , bj , cj is odd. Show that there exist integers r, s, t such that raj + sbj + tcj is odd
for at least 4N/7 values of j, 1 ≤ j ≤ N . (page 289)

B2. Prove that the expression

gcd(m,n)
n

(
n

m

)
is an integer for all pairs of integers n ≥ m ≥ 1. (page 290)

B3. Let f(t) =
∑N

j=1 aj sin(2πjt), where each aj is real and aN is not equal to 0.

Let Nk denote the number of zeros† (including multiplicities) of dkf
dtk

. Prove that

N0 ≤ N1 ≤ N2 ≤ · · · and lim
k→∞

Nk = 2N.

(page 290)

† The proposers intended for Nk to count only the zeros in the interval [0, 1).
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B4. Let f(x) be a continuous function such that f(2x2 − 1) = 2xf(x) for all x.
Show that f(x) = 0 for −1 ≤ x ≤ 1. (page 292)

B5. Let S0 be a finite set of positive integers. We define finite sets S1, S2, . . . of
positive integers as follows: the integer a is in Sn+1 if and only if exactly one of
a − 1 or a is in Sn. Show that there exist infinitely many integers N for which
SN = S0 ∪ {N + a : a ∈ S0 }. (page 293)

B6. Let B be a set of more than 2n+1/n distinct points with coordinates of the
form (±1,±1, . . . ,±1) in n-dimensional space with n ≥ 3. Show that there are three
distinct points in B which are the vertices of an equilateral triangle. (page 294)
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The Forty-Sixth William Lowell Putnam Mathematical Competition
December 7, 1985

A1. Interpret the problem as asking for the number of ways of placing the numbers 1
through 10 in a Venn diagram. Alternatively, identify triples of subsets of {1, 2, . . . , 10}
with 10× 3 matrices with entries in {0, 1}. The conditions in the problem correspond
to conditions on the rows of such a matrix.

A2. Draw the altitude in the top subtriangle. Deleting R and S leaves six right
triangles each of which is similar to the left or right part of T cut by its altitude;
minimize the sum of their areas as a fraction of A(T ).

A3. Let bm(j) = am(j) + 1.

A4. If 3 does not divide n, then 3a mod n is determined by a mod φ(n), where φ(n)
denotes the Euler φ-function.

A5. Substitute cosx = (eix + e−ix)/2 everywhere (de Moivre’s Theorem) and
expand.

A6. If p(x)p(x−1) = q(x)q(x−1) as Laurent polynomials, equating coefficients of x0

yields Γ(p(x)) = Γ(q(x)).

B1. A symmetric choice of the mi attains k = 3. Polynomials with k = 1 and k = 2
cannot have distinct integer zeros.

B2. Factor the first few fn(x).

B3. If not, at least how many array entries would be less than or equal to a given
integer k?

B4. The condition is satisfied if and only if the absolute values of the x- and y-
coordinates of q are less than or equal to those of p, respectively.

B5. Substitute u = 1/t and combine the resulting integral with the original integral.

B6. What is (
∑r

i=1 Mi)
2?

35
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The Forty-Seventh William Lowell Putnam Mathematical Competition
December 6, 1986

A1. Factor x4 − 13x2 + 36.

A2. Expand in a geometric series.

A3. Simplify the first few partial sums. Alternatively, note that Arccot(a/b) is the
argument of a+ bi for a ≥ 0.

A4. Given the first row of such a matrix, what are the possibilities for the other
rows? Count the matrices according to the set of distinct values appearing in the first
row.

A5. Find n linear functions hi : Rn → R such that
∂hi
∂xj

− ∂hj
∂xi

= cij .

A6. Write down a differential equation satisfied by F (t) =
∑n

i=1 aie
bit.

B1. Express the altitude of the triangle in terms of h.

B2. Subtract and factor.

B3. Use induction.

B4. The assertion is true. Use a greedy algorithm: for each r, choose the largest m,
and then the largest n, subject to the constraint

√
m2 + 2n2 ≤ r.

B5. It is false!

B6. Consider the (2n)× (2n) block matrix X =
(
A B

C D

)
. Use the identities given

to find X−1 as another block matrix involving transposes of A, B, C, and D.



Hints: The Forty-Eighth Competition (1987) 37

The Forty-Eighth William Lowell Putnam Mathematical Competition
December 5, 1987

A1. Use complex numbers.

A2. Let g(m) denote the total number of digits in the integers with m or fewer
digits. Estimate g(m) to guess the m such that g(m− 1) < 101987 ≤ g(m).

A3. Find the general solution to the differential equation explicitly.

A4. Show that F (Y,Z) = P (0, Y, Z). Prove that F (Y,Z) has the form aY 2+bY Z+
cZ2 and solve for a, b, c.

A5. If -F existed, Stokes’ Theorem would imply that the line integral of -G over a
certain ellipse would vanish.

A6. Convergence is not affected if n3 is replaced by 33k where 3k is the greatest
power of 3 less than or equal to n.

B1. Use the symmetry of the interval.

B2. Use induction on s.

B3. Express r as a rational function of r2−1
r2+1 and

2r
r2+1 . Alternatively, intersect the

circle with lines through (1, 0).

B4. Use the trigonometric substitution (xn, yn) = (cos θn, sin θn).

B5. Write M = A+ iB, and express everything in terms of the 2n× 2n real matrix(
A B

)
.

B6. Compare the product of the elements of { 2a : a ∈ S } to the product of the
elements of S in two different ways.
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The Forty-Ninth William Lowell Putnam Mathematical Competition
December 3, 1988

A1. Graph the part of R in the first quadrant; then use symmetry.

A2. The differential equation satisfied by g admits a solution on some intervals,
either by the existence and uniqueness theorem, or explicitly by separation of variables.

A3. Use Taylor series to estimate 1
n csc

1
n − 1.

A4. (a) The answer is yes. Consider equilateral triangles, and triangles of side
lengths

√
3,
√
3, 1.

(b) Use a chessboard coloring.

A5. For any x, the sequence

x, f(x), f(f(x)), f(f(f(x))), . . .

is linear recursive.

A6. The trace of A is independent of choice of basis.

B1. Take z = 1.

B2. Reduce to the case y > 1, and obtain lower bounds for |x+ 1| and then |x|.

B3. The c− d
√
3 for a fixed n form an arithmetic progression.

B4. Divide the terms according to whether an ≥ 1/2n+1.

B5. The eigenvectors of M are (1, ζ, ζ2, . . . , ζ2n) where ζ2n+1 = 1.

B6. An integer t is a triangular number if and only if 8t+ 1 is a square.
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The Fiftieth William Lowell Putnam Mathematical Competition
December 2, 1989

A1. Note that 100k − 1 = (10k + 1)(10k − 1).

A2. Divide the rectangle into two parts by the diagonal line ay = bx.

A3. Show that the fractional linear transformation 11−10iz
11z+10i interchanges { z : |z| <

1 } and { z : |z| > 1 } ∪ {∞}.

A4. Let coin flips determine digits past the decimal point in the binary expansion
of a real number.

A5. An interval of what length is needed to contain all the distances |p− v|?

A6. Prove α4 + xα2 + α = 0.

B1. Assume that the dartboard has corners at (±1,±1), and find the equations of
the curves bounding one-eighth of the specified region.

B2. The answer is yes. Pick a, and find an identity among the powers of a.

B3. Integrate by parts.

B4. Every real number is a limit of a sequence of rational numbers.

B5. Assume that AB and CD are horizontal, with AB below CD. Let y = mx+ e

be the equation of BD. Use coordinate geometry to show that the least upper bound
is 2.

B6. Write down the answer as a sum of multivariable integrals, and change the order
of integration within each term so that the variable at which f is evaluated is the last
to be integrated over.
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The Fifty-First William Lowell Putnam Mathematical Competition
December 1, 1990

A1. Evaluate Tn − n! for the first few n.

A2. For any increasing sequence {an} with an → ∞ and an+1 − an → 0, the set
S = { an − am : m,n ≥ 1 } is dense in R.

A3. Use Pick’s Theorem, and consider parity of coordinates.

A4. Use punches centered at A = (−α, 0), B = (0, 0), and C = (α, 0) where α2 is
irrational.

A5. Construct a counterexample where each of A and B maps each standard basis
vector to another standard basis vector or to 0.

A6. For each n, the number of admissible ordered pairs of subsets of {1, 2, . . . , n} is
a Fibonacci number.

B1. Differentiable functions g(x) and h(x) are equal if and only if g(0) = h(0) and
g′(x) = h′(x) for all x.

B2. The partial sums factor completely.

B3. If not, then S contains at most one diagonal matrix, at most one multiple of(
1 1
1 1

)
, and at most one of

(
1 1
0 1

)
and

(
1 4
0 1

)
.

B4. A connected directed graph in which each vertex has indegree 2 and outdegree
2 has a closed path traversing each arc once.

B5. Define the an inductively, with |an+1| � |an|. Alternatively, let an =
(−1)n10−n2

and evaluate the polynomial at 1, 102, 104, . . . .

B6. When t ≥ 1/3, the intersection contains the centroid.
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The Fifty-Second William Lowell Putnam Mathematical Competition
December 7, 1991

A1. The region is a disjoint union of triangles and quarter-circles.

A2. Show that A2+B2 times something nonzero is zero. There is only one nonzero
matrix in the problem statement.

A3. If n > 2, then
p′(x)
p(x)

=
1

x− r1
+ · · ·+ 1

x− rn

is positive at (rn−1 + rn)/2.

A4. Cover the coordinate axes by discs Di of radius ai where
∑

ai diverges and∑
a2
i converges.

A5. If u, v ≥ 0, then
√
u2 + v2 ≤ u+ v.

A6. Exhibit a bijection between the sets counted by A(n) andB(n). The inequalities
a1 > a2 + a3, etc., suggest subtracting gr from a1, gr−1 from a2, gr−2 from a3, and so
on. This is on the right track, except that because gr = gr−1+gr−2+1, this operation
may not preserve the strict inequalities. Modify this idea by subtracting something
slightly different, so that strict inequality is preserved.

B1. If ak is not a square, determine whether or not ak+1 can be a square.

B2. Let h(x) = f(x) + ig(x). Alternatively, differentiate the given functional
equations to show that H(x) = f(x)2 + g(x)2 is constant.

B3. If a and b are positive integers, there exists a number g such that every multiple
of gcd(a, b) greater than g may be written in the form ra + sb, where r and s are
nonnegative integers.

B4. The sum is the coefficient of xp in
∑p

j=0

(
p
j

)
(1 + x)p+j .

B5. First count solutions to x2 = y2 + 1 by rewriting as (x + y)(x − y) = 1, and
solving the system x+ y = r, x− y = r−1 for each nonzero r.

B6. Without loss of generality, u > 0 and a ≥ b. Divide by b, set r = a/b, and set
v = eu. Guess a value of v for which equality holds.
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The Fifty-Third William Lowell Putnam Mathematical Competition
December 5, 1992

A1. Apply f to (ii), then use (i) on the left hand side.

A2. Try replacing 1992 with a smaller number such as 2 or 3, and look for a pattern.
Alternatively, show that

C(−y − 1)
(

1
y + 1

+ · · ·+ 1
y + 1992

)
=

d

dy

(
(y + 1) · · · (y + 1992)

1992!

)
.

A3. Substitute x = ad and y = bd where d = gcd(x, y). No prime can divide a.

A4. Let h(x) = f(x) − 1/(1 + x2). Use Rolle’s Theorem and continuity repeatedly
to prove h(n)(0) = 0 for all n.

A5. Suppose there were three identical blocks in a row. Look at such an example
with minimal m. If m is odd, show that each block must consist of alternating 0’s and
1’s. If m is even, halve the even indices in the blocks to find a smaller example.

A6. For every configuration of four points, consider the 16 configurations obtainable
by replacing some of the points by their opposites.

B1. Given a set S of n elements, what is the longest chain of pairs of distinct
numbers of S such that each pair is obtained from the previous pair by replacing one
of its elements by a larger element of S?

B2. Factor 1 + x+ x2 + x3.

B3. By symmetry, it suffices to consider the case where x, y ≥ 0. For fixed (x, y),
the sequence is obtained by iterating a quadratic polynomial (depending on y). If
such a sequence converges, it must converge to a fixed point of the polynomial.

B4. Use partial fractions.

B5. Use row operations to make most entries zero, then use column operations to
make the matrix upper or lower triangular.

B6. If A ∈ M, then A2 commutes with all elements of M, so A2 = I. Given any
linear relation among the elements of M, other relations of the same length can be
obtained by multiplying by elements ofM, and then shorter relations can be obtained
by subtraction. Eventually this leads to a contradiction, so the matrices in M are
linearly independent.
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The Fifty-Fourth William Lowell Putnam Mathematical Competition
December 4, 1993

A1. Let (b, c) be the rightmost intersection point. Interpret
∫ b
0
((2x − 3x3) − c) dx

in terms of areas.

A2. Let an = (xn+1 + xn−1)/xn. Show that two consecutive instances of the given
identity imply an+1 = an.

A3. Each f is determined by its values on S = {1, 2, . . . , n} and Si = S − {i} for
i = 1, 2, . . . , n.

A4. LetXk =
∑k

i=1 xi and Y! =
∑!

j=1 yj . Without loss of generalityX19 ≥ Y93. Let
g(@) be the distance from Y! to the largest Xk (possibly X0 = 0) satisfying Xk ≤ Y!.
Apply the Pigeonhole Principle to the values of g(@).

A5. Substitute x = −1/(t − 1) and x = 1 − 1/t, respectively, into the second and
third integral.

A6. Define a sequence (an)n≥0 by an = 2 if n =
⌊
(2 +

√
3)m
⌋
for some integer

m ≥ 0, and an = 3 otherwise. Prove that (an) satisfies the self-generation property.

B1. To guess the answer, try the problem with 1993 replaced by smaller numbers,
and look for a pattern. Which m forces n to be large?

B2. Player B wins by making each move so that A cannot possibly win on the next
move.

B3. Sketch the set of (x, y) in the unit square for which the integer nearest x/y is
even. Evaluate its area by comparing to Leibniz’s formula

π

4
= 1− 1

3
+
1
5
− 1
7
+ · · · .

B4. Define the linear operator T by

(Th)(x) =
∫ 1

0

h(y)K(x, y) dy.

Let r be the minimum value of f/g on [0, 1]. If f − rg is not identically zero, then
T 2(f − rg) is positive on [0, 1], contradicting T 2(f − rg) = f − rg.

B5. Find a polynomial identity with integer coefficients satisfied by the six distances.
Obtain a contradiction modulo a small power of 2.

B6. It suffices to show that (a, b, c) with 0 < a ≤ b ≤ c can be transformed into
(b′, r, c′) where b = qa + r and 0 ≤ r < a. This is accomplished by a sequence of
transformations dictated by the binary expansion of q.
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The Fifty-Fifth William Lowell Putnam Mathematical Competition
December 3, 1994

A1. Let bm =
∑2m−1

i=2m−1 ai.

A2. Transform the ellipse into a circle by a change of variables.

A3. Let the vertices be (0, 0), (1, 0), and (0, 1). Consider (
√
2 − 1, 0), (0,

√
2 − 1),

(2−√2,√2− 1), and (√2− 1, 2−√2).

A4. The quadratic polynomial det(A+ tB) takes the value ±1 at t = 0, 1, 2, 3, 4.

A5. The set C = { rn : n ≥ 0 } ∪ {0} is compact, so the image of C1994 under the
“sum the coordinates” map R1994 → R is a countable compact set.

A6. Show that if more than 2n−1 of the functions fe1
1 ◦ · · · ◦ fen

n map A to itself,
then fn maps A to itself and more than 2n−2 of the functions fe1

1 ◦ · · · ◦ fen−1
n−1 map A

to itself.

B1. If there are 15 squares within 250 of a given positive integer N , the squares are
m2, (m+1)2, . . . , (m+14)2 for some integer m ≥ 0. For each m, find the possibilities
for N .

B2. By replacing x by x − 9/4 and adding a linear polynomial, reduce to the
analogous problem for x4 + ax2.

B3. The conditions become simpler when rephrased in terms of g(x) = ln f(x) or
even h(x) = ln f(x)− x.

B4. Write A = CDC−1 where D is diagonal. Then An = CDnC−1 gives explicit
formulas for the entries of An.

B5. Use α = 1− 1/n2 or α = e−1/n2
.

B6. Separate into congruences modulo 100 and modulo 101. Show that 2a ≡ 1
(mod 101) if and only if a is divisible by 100.
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The Fifty-Sixth William Lowell Putnam Mathematical Competition
December 2, 1995

A1. Use proof by contradiction.

A2. Estimate the integrand, for example using Taylor series.

A3. Let D = d1d2 . . . d9 and E = e1e2 . . . e9. Write the given condition on D and E

as congruences modulo 7 and sum them.

A4. Let z1, z2, . . . be the labels in order, and set Sj = z1 + · · ·+ zj − j(n− 1)/n.

A5. The coordinates of an eigenvector of the matrix (aij) will be the coefficients in
a linear relation.

A6. Compare the number of such matrices with b = a + 1 and c = a + 2 to the
number of such 3×(n+1) matrices with a = b = c. If the claim were false, the number
of such matrices with a = b = c would grow too slowly with n.

B1. For a given π, the function π(x) takes at most three different values.

B2. Rolling without slipping implies an equality of arc lengths.

B3. Use the antisymmetry and multilinearity of the determinant.

B4. Express L in terms of itself.

B5. Use parity.

B6. Consider the spacing between consecutive members of S(α), S(β) or S(γ).
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The Fifty-Seventh William Lowell Putnam Mathematical Competition
December 7, 1996

A1. Use a trigonometric substitution.

A2. Use vectors.

A3. In how many ways can a student choose 3 courses?

A4. If A were a subset of a circle, and S were the set of (a, b, c) such that a, b, c ∈ A

occur in that order going clockwise around the circle, how could an ordering on A be
defined in terms of S?

A5. Show that
k∑

n=1

1
p

(
p

n

)
≡

k∑
n=1

(−1)n−1

n
=

k∑
n=1

1
n
− 2

�k/2∑
n=1

1
2n

(mod p),

and substitute n = p−m in one of the sums.

A6. Examine the behavior of the sequence x, x2 + c, (x2 + c)2 + c, . . . for various
values of x and c.

B1. Find a recursion for the number of minimal selfish subsets.

B2. Take the logarithm and estimate the resulting sum as an integral.

B3. Find a transformation on any nonoptimal arrangement that increases the sum.

B4. Recall that sinA and cosA are defined by power series; that definition can be
used to prove that certain trigonometric identities still hold for matrices. Alternatively,
use a bit of linear algebra to conjugate A into a simple form before computing sinA
and cosA.

B5. Find a recursion for the number of balanced strings.

B6. The given expression is the gradient of a certain function.
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The Fifty-Eighth William Lowell Putnam Mathematical Competition
December 6, 1997

A1. Use well-chosen Cartesian coordinates, or recall the relationship between H, O
and the centroid of ABC.

A2. Determine how the game progresses by induction.

A3. Use integration by parts.

A4. For ψ to be a homomorphism, ψ(e) must equal e, so try a = φ(e)−1.

A5. Discard solutions in pairs until almost nothing is left.

A6. Use the generating function p(t) =
∑

i≥0 xi+1t
i.

B1. Split the sum up into intervals on which the summand can be computed
explicitly.

B2. Multiply by f ′(x).

B3. Separate the terms of the sum according to whether 5 divides the denominator.

B4. Find a recursion for the sum.

B5. See the solution to 1985A4.

B6. Start with five points spaced as far apart as possible; in the optimal arrange-
ment, many of the distances between them will be equal.
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The Fifty-Ninth William Lowell Putnam Mathematical Competition
December 5, 1998

A1. Take a diagonal cross-section.

A2. The result can be obtained simply by manipulating areas, without evaluating
any integrals.

A3. A function cannot be positive and strictly concave-down over the entire real
line.

A4. Find the number of digits in An, and find a recursion for An modulo 11.

A5. Use a greedy algorithm.

A6. Show that there is a point C ′ such that A,B,C ′ are vertices of a square and
|CC ′| < 1. To do this, work in a new coordinate system in which B = (0, 0) and
A = (s, 0) for some s > 0.

B1. The numerator is a difference of squares.

B2. Use reflections.

B3. Find the area of a spherical cap in terms of its height.

B4. Combine terms from opposite ends of the sum.

B5. Use a Taylor expansion to approximate
√
N .

B6. Work modulo a suitable integer, or show that for suitable n,
√

P (n) eventually
falls between two consecutive integers.
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The Sixtieth William Lowell Putnam Mathematical Competition
December 4, 1999

A1. Guess the form of f, g, h.

A2. Factor p(x) over the real numbers.

A3. Find an explicit formula for an. Alternatively, guess from small examples a
formula for m in terms of n.

A4. Add the series to itself.

A5. A continuous function on a compact set achieves a minimum value.

A6. Let bn = an/an−1.

B1. Compute angles.

B2. Without loss of generality, P has a multiple zero at x = 0. Compare the largest
powers of x dividing the two sides.

B3. Sum the “missing” terms instead, or sort the terms of the sum by congruence
conditions on m and n.

B4. Integrate inequalities to obtain more inequalities.

B5. Find the eigenvectors, or at least the eigenvalues, of A.

B6. Let n be the smallest positive integer such that gcd(s, n) > 1 for all s ∈ S.
There exists s ∈ S dividing n.
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A1. Use geometric series.

A2. Make n+ 1 a perfect square.

A3. Break up the area into triangles.

A4. Use integration by parts to mollify the rapidly oscillating factor.

A5. Relate the sides, area, and circumradius of the triangle formed by the points.

A6. If f is a polynomial with integer coefficients, then m− n divides f(m) − f(n)
for all integers m and n.

B1. Use the Pigeonhole Principle.

B2. Recall that gcd(m,n) can be written as am+ bn for some integers a and b.

B3. Use Rolle’s Theorem to count zeros. To establish the limit, look at the dominant
term of dkf

dtk
as k →∞.

B4. Use a trigonometric substitution.

B5. Use generating functions modulo 2.

B6. There must exist an equilateral triangle of side length 2
√
2.



Solutions

The 12-tuple (n10, n9, n8, n7, n6, n5, n4, n3, n2, n1, n0, n∅) following the problem num-
ber gives the performance of the top 200 or so competitors on that problem: ni is the
number who scored i, and n∅ is the number of blank papers.

51
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The Forty-Sixth William Lowell Putnam Mathematical Competition
December 7, 1985

A1. (125, 6, 0, 0, 0, 0, 0, 0, 0, 0, 61, 9)
Determine, with proof, the number of ordered triples (A1, A2, A3) of sets

which have the property that

(i) A1 ∪ A2 ∪A3 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and
(ii) A1 ∩ A2 ∩A3 = ∅,
where ∅ denotes the empty set. Express the answer in the form 2a3b5c7d,
where a, b, c, and d are nonnegative integers.

Answer. The number of such triples of sets is 210310.

Solution. There is a bijection between triples of subsets of {1, . . . , 10} and 10× 3
matrices with 0, 1 entries, sending (A1, A2, A3) to the matrix B = (bij) with bij = 1 if
i ∈ Aj and bij = 0 otherwise. Under this bijection the set S of triples satisfying

A1 ∪A2 ∪A3 = {1, . . . , 10} and A1 ∩A2 ∩A3 = ∅
maps onto the set T of 10 × 3 matrices with 0, 1 entries such that no row is (000) or
(111). The number of possibilities for each row of such a matrix is 23 − 2 = 6, so
#T = 610. Hence #S = #T = 210310. �
Reinterpretation. Equivalently, this problem asks for the number of ways of placing

the numbers 1 through 10 in the Venn diagram of Figure 1, where no numbers are
placed in the two regions marked with an “×”.

�

�

A1

A2 A3

FIGURE 1.
Venn diagram interpretation of the solution to 1985A1.
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A2. (29, 15, 31, 14, 38, 11, 2, 15, 6, 4, 21, 15)
Let T be an acute triangle. Inscribe a pair R, S of rectangles in T as

shown:

�
�

�
�

�
�

�
�

�❏
❏
❏
❏
❏
❏
❏
❏
❏

S

R

Let A(X) denote the area of polygon X. Find the maximum value, or show
that no maximum exists, of A(R)+A(S)

A(T ) , where T ranges over all triangles
and R, S over all rectangles as above.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

R1

R2

Rn−2

Rn−1

...

FIGURE 2.
A generalization of 1985A2.

Answer. The maximum value of A(R)+A(S)
A(T ) exists and equals 2/3.

Solution. In fact, for any n ≥ 2, we can find the maximum value of

A(R1) + · · ·+A(Rn−1)
A(T )

for any stack of rectangles inscribed in T as shown in Figure 2. The altitude of T
divides T into right triangles U on the left and V on the right. For i = 1, . . . , n−1, let
Ui denote the small right triangle to the left of Ri, and let Un denote the small right
triangle above Rn−1 and to the left of the altitude of T . Symmetrically define V1, . . . ,
Vn to be the right triangles on the right. Each Ui is similar to U , so A(Ui) = a2

iA(U),
where ai is the altitude of Ui, measured as a fraction of the altitude of T . Similarly,
A(Vi) = a2

iA(V ). Hence

A(U1) + · · ·+A(Un) +A(V1) + · · ·+A(Vn) = (a2
1 + · · ·+ a2

n)(A(U) +A(V ))

= (a2
1 + · · ·+ a2

n)A(T ).
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Since T is the disjoint union of all the Ri, Ui, and Vi,

A(R1) + · · ·+A(Rn−1)
A(T )

= 1− A(U1) + · · ·+A(Un) +A(V1) + · · ·+A(Vn)
A(T )

= 1− (a2
1 + · · ·+ a2

n).

The ai must be positive numbers with sum 1, and conversely any such ai give rise to
a stack of rectangles in T .
It remains to minimize a2

1 + · · ·+ a2
n subject to the constraints ai > 0 for all i and

a1 + · · · + an = 1. That the minimum is attained when a1 = · · · = an = 1/n can be
proved in many ways:

1. The identity

n(a2
1 + · · ·+ a2

n) = (a1 + · · ·+ an)2 +
∑
i<j

(ai − aj)2

implies that

a2
1 + · · ·+ a2

n ≥
1
n
(a1 + · · ·+ an)2 =

1
n
,

with equality if and only if a1 = a2 = · · · = an.

2. Take b1 = · · · = bn = 1 in the Cauchy-Schwarz Inequality [HLP, Theorem 7]

(a2
1 + · · ·+ a2

n)(b
2
1 + · · ·+ b2n) ≥ (a1b1 + · · ·+ anbn)2,

which holds for arbitrary a1, . . . , an, b1, . . . , bn ∈ R, with equality if and only if
(a1, . . . , an) and (b1, . . . , bn) are linearly dependent.

3. Take bi = ai in Chebychev’s Inequality [HLP, Theorem 43], which states that if
a1 ≥ · · · ≥ an > 0 and b1 ≥ · · · ≥ bn > 0, then(∑n

i=1 aibi
n

)
≥
(∑n

i=1 ai
n

)(∑n
i=1 bi
n

)
,

with equality if and only if all the ai are equal or all the bi are equal.

4. Take r = 2 and s = 1 in the Power Mean Inequality [HLP, Theorem 16], which
states that for real numbers a1, . . . , an > 0, if we define the rth power mean as

Pr =
(
ar1 + · · ·+ arn

n

)1/r

,

(and P0 = limr→0 Pr = (a1a2 · · · an)1/n), then Pr ≥ Ps whenever r > s, with
equality if and only if a1 = · · · = an.

5. Take f(x) = x2 in Jensen’s Inequality [HLP, Theorem 90], which states that if
f(x) is a convex (concave-up) function on an interval I, then

f(a1) + · · ·+ f(an)
n

≥ f

(
a1 + · · ·+ an

n

)
for all a1, . . . , an ∈ I, with equality if and only if the ai are all equal or f is linear
on a closed interval containing all the ai.

6. Let H denote the hyperplane x1 + · · · + xn = 1 in Rn. The line L through
0 = (0, . . . , 0) perpendicular to H is the one in the direction of (1, . . . , 1), which
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meets H at P = (1/n, . . . , 1/n). The quantity a2
1 + · · ·+ a2

n can be viewed as the
square of the distance from 0 to the point (a1, . . . , an) on H, and this is minimized
when (a1, . . . , an) = P .

In any case, we find that the minimum value of a2
1 + · · ·+ a2

n is 1/n, so the maximum
value of A(R1)+···+A(Rn−1)

A(T ) is 1 − 1/n. For the problem as stated, n = 3, so the
maximum value is 2/3. �
Remark. The minimum is unchanged if instead of allowing T to vary, we fix a

particular acute triangle T .

Remark. While we are on the subject of inequalities, we should also mention the
very useful Arithmetic-Mean–Geometric-Mean Inequality (AM-GM), which states that
for nonnegative real numbers a1, . . . , an, we have

a1 + a2 + · · ·+ an
n

≥ (a1a2 · · · an)1/n ,

with equality if and only if a1 = a2 = · · · = an. This is the special case P1 ≥ P0 of
the Power Mean Inequality. It can also be deduced by taking f(x) = lnx in Jensen’s
Inequality.

A3. (100, 5, 18, 0, 0, 0, 0, 0, 2, 10, 19, 47)
Let d be a real number. For each integer m ≥ 0, define a sequence {am(j)},

j = 0, 1, 2, . . . by the condition

am(0) = d/2m, and am(j + 1) = (am(j))2 + 2am(j), j ≥ 0.

Evaluate limn→∞ an(n).

Answer. The value of limn→∞ an(n) is ed − 1.
Solution. We have am(j + 1) + 1 = (am(j) + 1)2, so by induction on j,

am(j) + 1 = (am(0) + 1)2
j

.

Hence

lim
n→∞ an(n) = lim

n→∞

(
1 +

d

2n

)2n

− 1.

If f(x) = ln(1 + dx), then f ′(x) = d/(1 + dx), and in particular

lim
x→0

ln(1 + dx)
x

= f ′(0) = d.

Applying the continuous function ex yields

lim
x→0

(1 + dx)1/x = ed,

and taking the sequence xn = 1/2n yields

lim
n→∞

(
1 +

d

2n

)2n

= ed,

so limn→∞ an(n) = ed − 1. �
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A4. (72, 30, 6, 23, 0, 0, 0, 0, 1, 5, 33, 31)
Define a sequence {ai} by a1 = 3 and ai+1 = 3ai for i ≥ 1. Which integers

between 00 and 99 inclusive occur as the last two digits in the decimal
expansion of infinitely many ai?

Answer. Only 87 occurs infinitely often.

Solution. Let φ(n) denote the Euler φ-function, which equals the number of
integers between 1 and n inclusive that are relatively prime to n, or more abstractly,
the order of the multiplicative group (Z/nZ)∗. If the prime factorization of n is
pe11 · · · pek

k , then φ(n) can be computed by the formula

φ(n) =
k∏

i=1

φ(pei
i ) =

k∏
i=1

pei−1
i (pi − 1).

Euler’s Theorem [Lar1, p. 148], which is Lagrange’s Theorem (the order of an element
of a finite group divides the order of the group, [Lar1, p. 147]) applied to the group
(Z/nZ)∗, states that aφ(n) ≡ 1 (mod n) whenever gcd(a, n) = 1.
It shows that ai = 3ai−1 modulo 100 is determined by ai−1 modulo φ(100) = 40,

for i ≥ 2. Similarly ai−1 mod 40 is determined by ai−2 mod 16, which is determined
by ai−3 mod 8, for i ≥ 4. Finally ai−3 mod 8 is determined by ai−4 mod 2 for i ≥ 5,
since 32 ≡ 1 (mod 8). For i ≥ 5, ai−4 is odd, so

ai−3 = 3ai−4 ≡ 31 ≡ 3 (mod 8)

ai−2 = 3ai−3 ≡ 33 ≡ 11 (mod 16)

ai−1 = 3ai−2 ≡ 311 ≡ 27 (mod 40)

ai = 3ai−1 ≡ 327 ≡ 87 (mod 100).

Thus the only integer that appears as the last two digits of infinitely many ai is 87. �
Remark. Carmichael’s lambda function. The exponent in Euler’s Theorem is not

always best possible. The function λ(n) giving the best possible exponent for n, i.e.,
the least positive integer λ such that aλ ≡ 1 (mod n) whenever gcd(a, n) = 1, is known
as Carmichael’s lambda function or as the reduced totient function. If n = pe11 · · · pek

k ,
then

λ(n) = lcm(λ(pe11 ), . . . , λ(p
ek

k )),

where
λ(pe) = φ(pe) = pe−1(p− 1),

unless p = 2 and e ≥ 3 in which case λ(2e) = 2e−2 instead of 2e−1. For more
information, see [Ros1, Section 9.6].
One can simplify the computations in the above solution by using λ(n) in place of

φ(n): iteration of λ maps 100 to 20 to 4 to 2, so starting from ai−3 ≡ 1 (mod 2) we
obtain

ai−2 = 3ai−3 ≡ 31 ≡ 3 (mod 4)

ai−1 = 3ai−2 ≡ 33 ≡ 7 (mod 20)

ai = 3ai−1 ≡ 37 ≡ 87 (mod 100).
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Stronger result. More generally, one can show that for any integer c ≥ 1, the
sequence defined by a1 = c and ai+1 = cai for i ≥ 1 is eventually constant when
reduced modulo a positive integer n. To prove this, one can use the Chinese Remainder
Theorem to reduce to the case where n is a power of a prime p. If p divides c, then
the sequence is eventually 0 modulo n; otherwise we can use Euler’s Theorem and
strong induction on n, since φ(n) < n for n > 1. See 1997B5 for a related problem,
and further discussion.

A5. (44, 2, 7, 5, 0, 0, 0, 0, 10, 27, 46, 60)
Let Im =

∫ 2π

0
cos(x) cos(2x) · · · cos(mx) dx. For which integers m, 1 ≤ m ≤ 10,

is Im �= 0?

Answer. The values of m between 1 and 10 for which Im �= 0 are 3, 4, 7, 8.

Solution. By de Moivre’s Theorem (cos θ + i sin θ = eiθ, [Spv, Ch. 24]), we have

Im =
∫ 2π

0

m∏
k=1

(
eikx + e−ikx

2

)
dx = 2−m

∑
εk=±1

∫ 2π

0

ei(ε1+2ε2+···+mεm)x dx,

where the sum ranges over the 2m m-tuples (ε1, . . . , εm) with εk = ±1 for each k. For
integers t, ∫ 2π

0

eitx dx =

{
2π, if t = 0

0, otherwise.

Thus Im �= 0 if and only 0 can be written as

ε1 + 2ε2 + · · ·+mεm

for some ε1, . . . , εm ∈ {1,−1}. If such εk exist, then

0 = ε1 + 2ε2 + · · ·+mεm ≡ 1 + 2 + · · ·+m =
m(m+ 1)

2
(mod 2)

so m(m + 1) ≡ 0 (mod 4), which forces m ≡ 0 or 3 (mod 4). Conversely, if m ≡ 0
(mod 4), then

0 = (1− 2− 3 + 4) + (5− 6− 7 + 8) + · · ·+ ((m− 3)− (m− 2)− (m− 1) +m),

and if m ≡ 3 (mod 4),

0 = (1+2−3)+(4−5−6+7)+(8−9−10+11)+((m−3)− (m−2)− (m−1)+m).

Thus Im �= 0 if and only m ≡ 0 or 3 (mod 4). The integers m between 1 and 10
satisfying this condition are 3, 4, 7, 8. �
Reinterpretation. This is a question in Fourier analysis. The function

cos(x) cos(2x) · · · cos(mx)

is continuous and periodic with period 2π, so it can be written as a Fourier series

cos(x) cos(2x) · · · cos(mx) = a0 +
∞∑
j=1

bj cos(jx) +
∞∑
k=1

ck sin(kx).

The question asks: For which integers m between 1 and 10 is a0 nonzero? By similar
methods, one can show that:
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(i) ck = 0 for all k, and

(ii) bj = p/2m−1, where p is the number of ways to express j as ε1 +2ε2 + · · ·+mεm,
where ε1, . . . , εm ∈ {1,−1}.

In particular, only finitely many bj are nonzero, and a0 +
∑

j bj = 1.

A6. (8, 2, 0, 0, 0, 0, 0, 0, 3, 19, 22, 147)
If p(x) = a0+a1x+ · · ·+amxm is a polynomial with real coefficients ai, then

set

Γ(p(x)) = a2
0 + a2

1 + · · ·+ a2
m.

Let f(x) = 3x2 + 7x + 2. Find, with proof, a polynomial g(x) with real
coefficients such that

(i) g(0) = 1, and

(ii) Γ(f(x)n) = Γ(g(x)n)

for every integer n ≥ 1.

Answer. One such g(x) is 6x2 + 5x+ 1.

Solution. For any polynomial p(x), let γ(p(x)) = p(x)p(x−1), which is a Laurent
polynomial (an expression of the form

∑n
j=m ajx

j where aj are constants and m,n

are integers, not necessarily nonnegative). Then Γ(p(x)) equals the coefficient of x0 in
γ(p(x)).
We have f(x) = (3x+ 1)(x+ 2). Since

γ(x+ 2) = (x+ 2)(x−1 + 2) = (1 + 2x−1)(1 + 2x) = γ(1 + 2x),

and γ(p(x)q(x)) = γ(p(x))γ(q(x)) for any polynomials p(x) and q(x), we find

γ(f(x)n) = γ((3x+ 1)n)γ((x+ 2)n) = γ((3x+ 1)n)γ((1 + 2x)n) = γ(g(x)n),

where g(x) = (3x + 1)(1 + 2x) = 6x2 + 5x + 1. Taking coefficients of x0, we obtain
Γ(f(x)n) = Γ(g(x)n). Moreover g(0) = 1, so we are done. �
Remark. One could also show by brute force that Γ

(
(
∑

aix
i)(
∑

bjx
j)
)
is un-

changed by reversing the order of the bj , without mentioning γ or Laurent polynomials.
The coefficient of x0 in a Laurent polynomial can also be expressed as a contour
integral, via the residue theorem; hence one could begin a solution with the observation

Γ(p(x)) =
1
2πi

∮
|z|=1

p(z)p(z−1)
dz

z
.

Remark. The solution is not unique: for any integer k ≥ 1, the polynomials
g(x) = (3xk + 1)(2xk + 1) and g(x) = (3xk − 1)(2xk − 1) also have the desired
properties. We do not know if these are the only ones. Using the fact that the ring
R[x, 1/x] of Laurent polynomials is a unique factorization domain (UFD), we could
prove that these are the only ones if we could prove the following conjecture of Greg
Kuperberg (communicated electronically):

Suppose h1, h2 ∈ R[x, 1/x] satisfy h1(x) = h1(1/x) and h2(x) = h2(1/x).
Then the following are equivalent:
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(a) The coefficient of x0 in h1(x)n equals the coefficient of x0 of h2(x)n for
all positive integers n.

(b) There exists j ∈ R[x, 1/x] such that for i = 1, 2 we have hi(x) = j(εixki)
for some εi ∈ {1,−1} and ki ≥ 1.

(It is easy to prove that (b) implies (a).)

B1. (112, 29, 0, 0, 0, 0, 0, 0, 0, 30, 13, 17)
Let k be the smallest positive integer with the following property:

There are distinct integers m1, m2, m3, m4, m5 such that the
polynomial

p(x) = (x−m1)(x−m2)(x−m3)(x−m4)(x−m5)

has exactly k nonzero coefficients.

Find, with proof, a set of integers m1, m2, m3, m4, m5 for which this
minimum k is achieved.

Answer. The minimum is k = 3, and is attained for {m1,m2,m3,m4,m5} =
{−2,−1, 0, 1, 2}.
Solution. If k = 1, then p(x) must be x5, but this does not have five distinct

integer zeros. If k = 2, then p(x) = x5 + axr for some nonzero a ∈ Z and 0 ≤ r ≤ 4;
this has x = 0 as double zero if r ≥ 2 and has a nonreal zero if r = 0 or r = 1. Thus
k ≥ 3. The example

x(x− 1)(x+ 1)(x− 2)(x+ 2) = x(x2 − 1)(x2 − 4) = x5 − 5x3 + 4x

shows that in fact k = 3. �
Remark. More generally, we can prove that given n ≥ 1, the smallest integer k for

which there exist distinct integers m1, . . . ,mn such that the polynomial

p(x) = (x−m1) · · · (x−mn)

has exactly k nonzero coefficients is k = �(n+1)/2� = �n/2�+1. The key is Descartes’
Rule of Signs, which states that if p(x) = a1x

r1 + a2x
r2 + · · ·+ akx

rk is a polynomial
with ai ∈ R∗ and r1 > r2 > · · · > rk, then the number of positive real zeros of p(x)
counted with multiplicity is the number of sign changes in the sequence a1, a2, . . . , ak
minus a nonnegative even integer.
If p(x) has k nonzero coefficients, p(x) has at most k−1 positive real zeros. Applying

Descartes’ Rule of Signs to p(−x) shows that p(x) has at most k−1 negative real zeros.
Hence the total number of distinct zeros of p(x) is at most (k−1)+(k−1)+1 = 2k−1,
where the +1 is for the possibility that 0 might be a root. If p(x) has n distinct zeros
all of which are integers, then n ≤ 2k − 1, so k ≥ �(n+ 1)/2�.
On the other hand, given n ≥ 1, we can exhibit a polynomial p(x) = (x −

m1) · · · (x − mn) with distinct integer zeros m1, . . . ,mn and with at most (hence
exactly) k = �(n+ 1)/2� nonzero coefficients:

p(x) =

{
(x+ 1)(x− 1)(x+ 2)(x− 2) · · · (x+ (k − 1))(x− (k − 1)) if n = 2k − 2
x(x+ 1)(x− 1)(x+ 2)(x− 2) · · · (x+ (k − 1))(x− (k − 1)) if n = 2k − 1.
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B2. (3, 89, 3, 1, 0, 0, 0, 0, 2, 11, 37, 55)
Define polynomials fn(x) for n ≥ 0 by f0(x) = 1, fn(0) = 0 for n ≥ 1, and

d

dx
(fn+1(x)) = (n+ 1)fn(x+ 1)

for n ≥ 0. Find, with proof, the explicit factorization of f100(1) into powers
of distinct primes.

Answer. The factorization of f100(1) is 10199.

Solution. By induction, the given properties determine fn(x) uniquely. Comput-
ing and factoring fn(x) for the first few n suggests that fn(x) = x(x + n)n−1. We
prove this by induction on n. The base case n = 0 is given: f0(x) = 1. For n ≥ 0, we
indeed have fn+1(0) = 0 and

d

dx
fn+1(x) = (x+ n+ 1)n + nx(x+ n+ 1)n−1

= (n+ 1)(x+ 1)(x+ n+ 1)n−1

= (n+ 1)fn(x+ 1),

which completes the inductive step. Hence f100(1) = 10199. (Note that 101 is prime.)
�

B3. (95, 15, 15, 11, 0, 0, 0, 0, 5, 3, 23, 34)
Let

a1,1 a1,2 a1,3 . . .

a2,1 a2,2 a2,3 . . .

a3,1 a3,2 a3,3 . . .
...

...
...

. . .

be a doubly infinite array of positive integers, and suppose each positive
integer appears exactly eight times in the array. Prove that am,n > mn for
some pair of positive integers (m,n).

Solution. Suppose not; i.e., suppose that am,n ≤ mn for all m,n ≥ 1. Let

R(k) = { (i, j) : ai,j ≤ k }.
By hypothesis, #R(k) ≤ 8k. On the other hand, R(k) contains all pairs (i, j) with
ij ≤ k, and there are⌊

k

1

⌋
+
⌊
k

2

⌋
+ · · ·+

⌊
k

k

⌋
>

(
k

1
− 1
)
+
(
k

2
− 1
)
+ · · ·+

(
k

k
− 1
)

> k(ln k − 1)

such pairs, since
1
1
+
1
2
+ · · ·+ 1

k
>

∫ k

1

1
x
dx = ln k.

Hence 8k > k(ln k − 1), which is a contradiction for k > e9 ≈ 8103.08. �
Remark. To solve the problem, the explicit lower bound on the rate of growth of

1
1 +

1
2 + · · ·+ 1

k as k →∞ is not really needed: it suffices to know that this sum tends
to ∞, i.e., that the harmonic series diverges.
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B4. (115, 30, 9, 1, 2, 6, 4, 0, 9, 8, 11, 6)
Let C be the unit circle x2 + y2 = 1. A point p is chosen randomly on

the circumference of C and another point q is chosen randomly from the
interior of C (these points are chosen independently and uniformly over
their domains). Let R be the rectangle with sides parallel to the x- and
y-axes with diagonal pq. What is the probability that no point of R lies
outside of C?

Answer. The probability is 4/π2.

Solution. Let p = (cos θ, sin θ) and q = (a, b). The other two vertices of R are
(cos θ, b) and (a, sin θ). If |a| ≤ | cos θ| and |b| ≤ | sin θ|, then each vertex (x, y) of
R satisfies x2 + y2 ≤ cos2 θ + sin2 θ = 1, and no points of R can lie outside of C.
Conversely, if no points of R lies outside of C, then applying this to the two vertices
other than p and q, we find

cos2 θ + b2 ≤ 1, and a2 + sin2 θ ≤ 1,

or equivalently

|b| ≤ | sin θ|, and |a| ≤ | cos θ|. (1)

These conditions imply that (a, b) lies inside or on C, so for any given θ, the probability
that the random point q = (a, b) satisfies (1) is

2| cos θ| · 2| sin θ|
π

=
2
π
| sin(2θ)|,

and the overall probability is

1
2π

∫ 2π

0

2
π
| sin(2θ)| dθ = 4

π2

∫ π/2

0

sin(2θ) dθ =
4
π2
. �

B5. (14, 8, 2, 2, 0, 0, 0, 0, 2, 2, 61, 110)
Evaluate

∫∞
0

t−1/2e−1985(t+t−1) dt. You may assume that
∫∞
−∞ e−x2

dx =
√
π.

Answer. The value of
∫∞
0

t−1/2e−1985(t+t−1) dt is
√

π
1985e

−3970.

Solution (adapted from [Bernau]). For a > 0, let

I(a) =
∫ ∞

0

t−1/2e−a(t+t−1) dt.

The integral converges, since the integrand is bounded by t−1/2 on (0, 1] and by e−at

on [1,∞). Hence

I(a) = lim
B→∞

[∫ 1

1/B

t−1/2e−a(t+t−1) dt+
∫ B

1

t−1/2e−a(t+t−1) dt

]
.

Substitute 1/t for t in the first integral to conclude

I(a) = lim
B→∞

∫ B

1

(t−1/2 + t−3/2)e−a(t+t−1) dt.
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Now use the substitution u = a1/2(t1/2 − t−1/2) to obtain

I(a) = 2a−1/2 lim
B→∞

∫ a1/2(B1/2−B−1/2)

0

e−u2−2a du

= 2a−1/2e−2a

∫ ∞

0

e−u2
du

=
√

π

a
e−2a,

so I(1985) =
√

π
1985e

−3970. �
Remark. The modified Bessel function of the second kind (also known as

Macdonald’s function) has the integral representation

Kν(z) =
∫ ∞

0

e−z cosh t cosh(νt) dt

for Re(z) > 0 [O, p. 250]. When ν = 1/2, the substitution u = et relates this to
expressions occurring in the solution above; to be precise, I(a) = 2K1/2(2a) for all
a > 0. Thus K1/2(z) =

√
π
2z e

−z for z > 0. Similar formulas exist for Kn+1/2(z) for
each integer n. For arbitrary ν, the function w = Kν(z) is a solution of the differential
equation

z2w′′ + zw′ − (z2 + ν2)w = 0.

B6. (5, 0, 0, 0, 0, 4, 0, 0, 9, 7, 26, 150)
Let G be a finite set of real n × n matrices {Mi}, 1 ≤ i ≤ r, which form

a group under matrix multiplication. Suppose that
∑r

i=1 tr(Mi) = 0, where
tr(A) denotes the trace of the matrix A. Prove that

∑r
i=1 Mi is the n × n

zero matrix.

Solution 1. Let S =
∑r

i=1 Mi. For any j, the sequenceMjM1,MjM2, . . . ,MjMr

is a permutation of the elements of G, and summing yields MjS = S. Summing this
from j = 1 to r yields S2 = rS. Therefore the minimal polynomial of S divides
x2 − rx, and every eigenvalue of S is either 0 or r. But the eigenvalues counted with
multiplicity sum to tr(S) = 0, so they are all 0. At this point, we present three ways
to finish the proof that S = 0:

1. Every eigenvalue of S − rI is −r �= 0, so S − rI is invertible. Hence from
S(S − rI) = 0 we obtain S = 0.

2. The minimal polynomial p(x) of S must be x, x− r, or x(x− r). Since every zero
of the minimal polynomial is an eigenvalue, the minimal polynomial is x. By the
Cayley-Hamilton Theorem [Ap2, Theorem 7.8], p(S) = 0; that is, S = 0.

3. The Jordan canonical form of S over the complex numbers has 0’s (the eigenvalues)
on the main diagonal, possible 1’s just above the diagonal, and 0’s elsewhere. The
condition S2 = rS implies that there are no 1’s, so the Jordan canonical form of
S is 0. Thus S = 0. �

Literature note. See [Ap2, Ch. 4] for a quick introduction to eigenvalues and
eigenvectors.
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Solution 2 (based on an idea of Dave Savitt).

Lemma. Let G be a finite group of order r. Let ρ : G→ Aut(V ) be a representation
of G on some finite-dimensional complex vector space V . Then

∑
g∈G tr ρ(g) is a

nonnegative integer divisible by r, and is zero if and only if
∑

g∈G ρ(g) = 0.

Proof. Let η1, . . . , ηs be the irreducible characters of G. Theorem 3 on p. 15 of [Se2]
implies that if χ =

∑s
i=1 aiηi and ψ =

∑s
i=1 biηi are arbitrary characters, then

1
r

∑
g∈G

χ(g)ψ(g) =
s∑

i=1

aibi. (2)

Applying this to the character of ρ and the trivial character 1 shows that 1
r

∑
g∈G tr ρ(g)

equals the multiplicity of 1 in ρ, which is a nonnegative integer.
Now suppose that the matrix S =

∑
g∈G ρ(g) is nonzero. Choose v ∈ V with

Sv �= 0. The relation ρ(h)S = S shows that Sv is fixed by ρ(h) for all h ∈ G. In
other words, Sv spans a trivial subrepresentation of ρ, so the nonnegative integer of
the previous paragraph is positive. �

We now return to the problem at hand. Unfortunately the Mi do not necessarily
define a representation of G, since the Mi need not be invertible. Instead we need to
apply the lemma to the action of G on Cn/K, for some subspaceK. Given 1 ≤ i, j ≤ r,
there exists k such that Mi = MkMj , so kerMj ⊆ kerMi. This holds for all i and j,
so the Mi have a common kernel, which we call K. Then the Mi and S also act on
Cn/K. If v ∈ Cn maps to an element of Cn/K in the kernel of Mi acting on Cn/K,
then MiMiv ∈ Mi(K) = 0, but MiMi = Mj for some j, so v ∈ ker(Mj) = K. Thus
theMi act invertibly on Cn/K. We finish by applying the lemma to the representation
Cn/K of G, using the observation that trS is the sum of the traces of S acting on
Cn/K and on K, with the trace on K being zero. �
Remark. One can also give a elementary variant of this solution (which somewhat

obscures the connection with representation theory). Namely, we prove by induction
on n that trS is a nonnegative integer divisible by r, which is nonzero if S �= 0. The
case n = 1 is straightforward; given the result for n − 1, choose as above a vector
v ∈ Cn with Sv �= 0, so that each of the matrices preserves v. Let V be the span of v;
then the trace of S is equal to the sum of its trace on V and on the quotient Cn/V .
The former is r and the latter is a nonnegative integer divisible by r.

Literature note. See [Se2] for an introduction to representation theory. The
relations given by (2) are known as the orthogonality relations for characters.
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The Forty-Seventh William Lowell Putnam Mathematical Competition
December 6, 1986

A1. (152, 23, 10, 7, 0, 0, 0, 2, 2, 3, 1, 1)
Find, with explanation, the maximum value of f(x) = x3 − 3x on the set

of all real numbers x satisfying x4 + 36 ≤ 13x2.

Answer. The maximum value is 18.

Solution. The condition x4+36 ≤ 13x2 is equivalent to (x−3)(x−2)(x+2)(x+3) ≤
0, which is satisfied if and only if x ∈ [−3,−2] ∪ [2, 3]. The function f is increasing
on [−3,−2] and on [2, 3], since f ′(x) = 3(x2 − 1) > 0 on these intervals. Hence the
maximum value is max{f(−2), f(3)} = 18. �

A2. (155, 0, 0, 0, 0, 0, 0, 0, 0, 0, 33, 13)
What is the units (i.e., rightmost) digit of

⌊
1020000

10100+3

⌋
? Here �x� is the

greatest integer ≤ x.

Answer. The units digit is 3.

Solution. Taking x = 10100 and y = −3 in the factorization
x200 − y200 = (x− y)(x199 + x198y + · · ·+ xy198 + y199)

shows that the number

I =
1020000 − 3200

10100 + 3
=
(
10100

)199 − (10100
)198

3 + · · ·+ 101003198 − 3199 (1)

is an integer. Moreover, I =
⌊

1020000

10100+3

⌋
, since

3200

10100 + 3
=

9100

10100 + 3
< 1.

By (1),
I ≡ −3199 ≡ −33(81)49 ≡ −27 ≡ 3 (mod 10),

so the units digit of I is 3. �

A3. (53, 6, 15, 1, 0, 0, 0, 1, 12, 1, 26, 86)
Evaluate

∑∞
n=0Arccot(n

2 + n + 1), where Arccot t for t ≥ 0 denotes the
number θ in the interval 0 < θ ≤ π/2 with cot θ = t.

Answer. The series converges to π/2.

Solution 1. If α = Arccotx and β = Arccot y for some x, y > 0, then the addition
formula

cot(α+ β) =
cotα cotβ − 1
cotα+ cotβ

shows that

Arccotx+Arccot y = Arccot
xy − 1
x+ y

(1)

provided that Arccotx + Arccot y ≤ π/2. The latter condition is equivalent to
Arccotx ≤ Arccot(1/y), which is equivalent to x ≥ 1/y, and hence equivalent to



66 The William Lowell Putnam Mathematical Competition

xy ≥ 1. Verifying the xy ≥ 1 condition at each step, we use (1) to compute the first
few partial sums

Arccot 1 = Arccot 1

Arccot 1 + Arccot 3 = Arccot(1/2)

Arccot 1 + Arccot 3 + Arccot 7 = Arccot(1/3),

and guess that
∑m−1

n=0 Arccot(n
2 + n+ 1) = Arccot(1/m) for all m ≥ 1. This is easily

proved by induction on m: the base case is above, and the inductive step is

m∑
n=0

Arccot(n2 + n+ 1) = Arccot(m2 +m+ 1) +
m−1∑
n=0

Arccot(n2 + n+ 1)

= Arccot(m2 +m+ 1) + Arccot
(
1
m

)
(inductive hypothesis)

= Arccot
(
(m2 +m+ 1)/m− 1
m2 +m+ 1 + 1/m

)
(by (1))

= Arccot
(

1
m+ 1

)
.

Hence
∞∑
n=0

Arccot(n2 + n+ 1) = lim
m→∞Arccot

(
1
m

)
= Arccot(0) = π/2. �

Solution 2. For real a ≥ 0 and b �= 0, Arccot(a/b) is the argument (between −π/2
and π/2) of the complex number a + bi. Therefore, if any three complex numbers
satisfy (a + bi)(c + di) = (e + fi), where a, c, e ≥ 0 and b, d, f �= 0, then then
Arccot(a/b) + Arccot(c/d) = Arccot(e/f). Factoring the polynomial n2 + n + 1 + i

yields

(n2 + n+ 1 + i) = (n+ i)(n+ 1− i).

Taking arguments, we find that Arccot(n2+n+1) = Arccotn−Arccot(n+1). (This
identity can also be proved from the difference formula for cot, but then one needs
to guess the identity in advance.) The series

∑∞
n=0Arccot(n

2 + n + 1) telescopes to
limn→∞ (Arccot(0)−Arccot(n+ 1)) = π/2. �

Related question. Evaluate the infinite series:

∞∑
n=1

Arctan
(
2
n2

)
,

∞∑
n=1

Arctan
(

8n
n4 − 2n2 + 5

)
.

The first is problem 26 of [WH], and both appeared in a problem due to J. Anglesio
in the Monthly [Mon3, Mon5].

Literature note. The value of series such as these have been known for a long time.
In particular,

∑∞
n=1Arctan

(
2
n2

)
and some similar series were evaluated at least as

early as 1878 [Gl]. Ramanujan [Berndt, p. 37] independently evaluated this and other
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Arctan series shortly after 1903. The generalizations
∞∑
n=1

Arctan
(

2xy
n2 − x2 + y2

)
≡ Arctan

y

x
−Arctan tanhπy

tanπx
(mod π),

∞∑
n=1

Arctan
(

2xy
(2n− 1)2 − x2 + y2

)
≡ Arctan

(
tan

πx

2
tanh

πy

2

)
(mod π)

appear in [GK]. For further history see Chapter 2 of [Berndt].

A4. (21, 3, 4, 4, 5, 7, 0, 6, 3, 7, 23, 118)
A transversal of an n×n matrix A consists of n entries of A, no two in the

same row or column. Let f(n) be the number of n×n matrices A satisfying
the following two conditions:

(a) Each entry αi,j of A is in the set {−1, 0, 1}.
(b) The sum of the n entries of a transversal is the same for all transversals

of A.

An example of such a matrix A is

A =

 −1 0 −1
0 1 0
0 1 0

 .

Determine with proof a formula for f(n) of the form

f(n) = a1b
n
1 + a2b

n
2 + a3b

n
3 + a4,

where the ai’s and bi’s are rational numbers.

Answer. The value of f(n) is 4n + 2 · 3n − 4 · 2n + 1.

Solution (Doug Jungreis).

Lemma. Condition (b) is equivalent to the statement that any two rows of the
matrix differ by a constant vector, i.e., a vector of the form (c, c, . . . , c).

Proof. If two rows differ by a constant vector, then (b) holds. Conversely, if (b)
holds, for any i, j, k, l in {1, . . . , n}, take a transversal containing aik and ajl, and then
switch ail and ajk to get a new transversal. Since these two transversals have the
same sum, aik+ ajl = ail+ ajk, or equivalently, aik− ajk = ail− ajl. Thus rows i and
j differ by the constant vector with all components equal to ai1 − aj1. Since i and j

were arbitrary, each pair of rows differs by a constant vector. �

We compute f(n) by considering four cases.
Case 1: the first row of the matrix is a constant vector. Then each row is constant

by the Lemma, so each row is (0, . . . , 0), (1, . . . , 1), or (−1, . . . ,−1). Thus there are
3n such matrices.
Case 2: both 0 and 1 appear in the first row, but not −1. Then there are

2n − 2 possibilities for the first row. Each other row must differ from the first by
either (0, . . . , 0) or (−1, ...,−1), by the Lemma and condition (a), so there are 2n−1

possibilities for these rows. This gives a total of 2n−1(2n− 2) possibilities in this case.
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Case 3: both 0 and −1 appear in the first row, but not 1. These are just the negatives
of the matrices in case 2, so we again have 2n−1(2n − 2) possibilities.
Case 4: Both 1 and −1 (and possibly also 0) appear in the first row. This covers

all other possibilities for the first row, i.e., the remaining 3n − 2 · 2n + 1 possibilities.
Then every row must be equal to the first, by the Lemma and condition (a), so we
have a total of 3n − 2 · 2n + 1 possibilities in this case.
Adding the four cases gives f(n) = 4n + 2 · 3n − 4 · 2n + 1. �
Related question.

If an n× n matrix M with nonnegative integer entries satisfies condition (b),
that the sum of the n entries of a transversal is the same number m for all
transversals of A, show that M is the sum of m permutation matrices. (A
permutation matrix is a matrix with one 1 in each row and each column, and
all other entries 0.)

For a card trick related to this result, see [Kl].
This result is a discrete version of the following result.

Birkhoff-von Neumann Theorem. The convex hull of the permutation matrices
is precisely the set of doubly stochastic matrices: matrices with entries in [0, 1] with
each row and column summing to 1.

A5. (13, 4, 0, 0, 0, 0, 0, 1, 0, 2, 39, 142)
Suppose f1(x), f2(x), . . . , fn(x) are functions of n real variables x =

(x1, . . . , xn) with continuous second-order partial derivatives everywhere on
Rn. Suppose further that there are constants cij such that

∂fi
∂xj

− ∂fj
∂xi

= cij

for all i and j, 1 ≤ i ≤ n, 1 ≤ j ≤ n. Prove that there is a function g(x) on
Rn such that fi + ∂g/∂xi is linear for all i, 1 ≤ i ≤ n. (A linear function is
one of the form

a0 + a1x1 + a2x2 + · · ·+ anxn.)

Solution. Note that cij = −cji for all i and j. Let hi = 1
2

∑
j cijxj , so

∂hi/∂xj = 1
2cij . Then

∂hi
∂xj

− ∂hj
∂xi

=
1
2
cij − 1

2
cji = cij =

∂fi
∂xj

− ∂fj
∂xi

,

so
∂(hi − fi)

∂xj
=

∂(hj − fj)
∂xi

for all i and j. Hence (h1 − f1, . . . , hn − fn) is a gradient, i.e., there is a differentiable
function g on Rn such that ∂g/∂xi = hi − fi for each i. Then fi + ∂g/∂xi = hi is
linear for each i. �
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A6. (1, 4, 1, 1, 0, 1, 0, 0, 6, 4, 64, 119)
Let a1, a2, . . . , an be real numbers, and let b1, b2, . . . , bn be distinct positive

integers. Suppose there is a polynomial f(x) satisfying the identity

(1− x)nf(x) = 1 +
n∑

i=1

aix
bi .

Find a simple expression (not involving any sums) for f(1) in terms of
b1, b2, . . . , bn and n (but independent of a1, a2, . . . , an).

Answer. The number f(1) equals b1b2 · · · bn/n!.

Solution 1. For j ≥ 1, let (b)j denote b(b − 1) · · · (b − j + 1). For 0 ≤ j ≤ n,
differentiating the identity j times and putting x = 1 (or alternatively substituting
x = y + 1 and equating coefficients) yields

0 = 1 +
∑

ai,

0 =
∑

aibi,

0 =
∑

ai(bi)2,

...

0 =
∑

ai(bi)n−1,

(−1)nn!f(1) =
∑

ai(bi)n.

In other words, Av = 0, where

A =



−1 1 1 · · · 1
0 b1 b2 · · · bn
0 (b1)2 (b2)2 · · · (bn)2
...

...
...

. . .
...

0 (b1)n−1 (b2)n−1 · · · (bn)n−1

(−1)nn!f(1) (b1)n (b2)n · · · (bn)n


and v =


−1
a1

a2

...
an

 .

Since v �= 0, detA = 0. Since (b)j is a monic polynomial of degree j in b with no
constant term, we can add a linear combination of rows 2, 3, . . . , k to row k + 1, for
2 ≤ k ≤ n, to obtain

A′ =



−1 1 1 · · · 1
0 b1 b2 · · · bn
0 b21 b22 · · · b2n
...

...
...

. . .
...

0 bn−1
1 bn−1

2 · · · bn−1
n

(−1)nn!f(1) bn1 bn2 · · · bnn


.
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Expanding by minors along the first column yields 0 = detA′ = −det(V ′) +
n!f(1) det(V ) where

V =


1 1 · · · 1
b1 b2 · · · bn
b21 b22 · · · b2n
...

...
. . .

...
bn−1
1 bn−1

2 · · · bn−1
n

 and V ′ =


b1 b2 · · · bn
b21 b22 · · · b2n
...

...
. . .

...
bn−1
1 bn−1

2 · · · bn−1
n

bn1 bn2 · · · bnn

 .

Factoring bi out of the ith column of V ′ shows that det(V ′) = b1b2 · · · bn det(V ).
Hence −b1b2 · · · bn det(V ) + n!f(1) det(V ) = 0. Since the bi are distinct, det(V ) �= 0
(see below). Thus f(1) = b1b2 · · · bn/n!. �
Remark (The Vandermonde determinant). The matrix V is called the Vandermonde

matrix. Its determinant D is a polynomial of total degree
(
n
2

)
in the bi, and D vanishes

whenever bi = bj for i > j, so D is divisible by bi − bj whenever i > j. These bi − bj
have no common factor, so

∏
i>j(bi − bj) divides D. But this product also has total

degree
(
n
2

)
, and the coefficient of b2b23 · · · bn−1

n in D and in
∏

i>j(bi − bj) both equal
1, so D =

∏
i>j(bi − bj). In particular, if the bi are distinct numbers, then D �= 0.

See Problem 1941/14(ii) [PutnamI, p. 17] for an extension, and 1999B5 for another
application.

Solution 2. Subtract 1 from both sides, set x = et, and expand the left-hand side
in a power series. Since 1− et = t+ (higher order terms), we get

−1 + (−1)nf(1)tn + (higher order terms) =
n∑

i=1

aie
bit. (1)

The right-hand side F (t) satisfies the linear differential equation

F (n)(t)− (b1 + · · ·+ bn)F (n−1)(t) + · · ·+ (−1)nb1b2 · · · bnF (t) = 0 (2)

with characteristic polynomial p(z) = (z− b1)(z− b2) · · · (z− bn). On the other hand,
from the left-hand side of (1) we see that F (0) = −1, F (i) = 0 for i = 1, . . . , n − 1,
and F (n)(0) = (−1)nf(1)n!. Hence taking t = 0 in (2) yields

(−1)nf(1)n!− 0 + 0− 0 + · · ·+ (−1)nb1b2 · · · bn(−1) = 0,

so f(1) = b1b2 · · · bn/n!. �

B1. (183, 3, 7, 0, 0, 0, 0, 0, 4, 2, 1, 1)
Inscribe a rectangle of base b and height h and an isosceles triangle of

base b in a circle of radius one as shown. For what value of h do the
rectangle and triangle have the same area?†

Answer. The only such value of h is 2/5.

Solution. The radius OX (see Figure 3) has length equal to h/2 plus the altitude
of the triangle, so the altitude of the triangle is 1− h/2. If the rectangle and triangle
have the same area, then bh = 1

2b(1−h/2). Cancel b and solve for h to get h = 2/5. �

† The figure is omitted here, since it is almost identical to Figure 3 used in the solution.
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h

b

O

X

FIGURE 3.

B2. (123, 31, 16, 3, 0, 0, 0, 0, 16, 5, 2, 5)
Prove that there are only a finite number of possibilities for the ordered

triple T = (x−y, y−z, z−x), where x, y, and z are complex numbers satisfying
the simultaneous equations

x(x− 1) + 2yz = y(y − 1) + 2zx = z(z − 1) + 2xy,

and list all such triples T .

Answer. The possibilities for T are (0, 0, 0), (0,−1, 1), (1, 0,−1), (−1, 1, 0).

Solution. Subtracting y(y − 1) + 2zx from x(x − 1) + 2yz, z(z − 1) + 2xy from
y(y− 1)+ 2zx, and x(x− 1)+ 2yz from z(z− 1)+ 2xy, we find that the given system
is equivalent to

(x− y)(x+ y − 1− 2z) = 0

(y − z)(y + z − 1− 2x) = 0

(z − x)(z + x− 1− 2y) = 0.

If no two of x, y, z are equal, then x+ y− 1− 2z = y+ z− 1− 2x = z+x− 1− 2y = 0,
and adding gives −3 = 0. Hence at least two of x, y, z are equal. If x = y and y �= z,
then z = 2x+ 1− y = x+ 1, so T = (x− x, x− z, z − x) = (0,−1, 1). By symmetry,
the only possibilities for T are (0, 0, 0), (0,−1, 1), (1, 0,−1), (−1, 1, 0). Finally we give
examples of (x, y, z) giving rise to each of the four possibilities, respectively: (0, 0, 0),
(0, 0, 1), (1, 0, 0), (0, 1, 0). �

B3. (26, 5, 4, 1, 0, 1, 0, 4, 3, 5, 33, 119)
Let Γ consist of all polynomials in x with integer coefficients. For f and g

in Γ and m a positive integer, let f ≡ g (mod m) mean that every coefficient
of f − g is an integral multiple of m. Let n and p be positive integers with
p prime. Given that f , g, h, r, and s are in Γ with rf + sg ≡ 1 (mod p) and
fg ≡ h (mod p), prove that there exist F and G in Γ with F ≡ f (mod p),
G ≡ g (mod p), and FG ≡ h (mod pn).
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Solution. We prove by induction on k that there exist polynomials Fk, Gk ∈ Γ
such that Fk ≡ f (mod p), Gk ≡ g (mod p), and FkGk ≡ h (mod pk). For the base
case k = 1, we take F1 = f , G1 = g.
For the inductive step, we assume the existence Fk, Gk as above, and try to

construct Fk+1, Gk+1. By assumption, h − FkGk = pkt, for some t ∈ Γ. We will
try Fk+1 = Fk+pk∆1 and Gk+1 = Gk+pk∆2, where ∆1,∆2 ∈ Γ are yet to be chosen.
Then Fk+1 ≡ Fk ≡ f (mod p), Gk+1 ≡ Gk ≡ g (mod p), and

Fk+1Gk+1 = FkGk + pk(∆2Fk +∆1Gk) + p2k∆1∆2

≡ FkGk + pk(∆2Fk +∆1Gk) (mod pk+1).

If we choose ∆2 = tr and ∆1 = ts, then

∆2Fk +∆1Gk ≡ trf + tsg = t(rf + sg) ≡ t (mod p),

so pk(∆2Fk+∆1Gk) ≡ pkt (mod pk+1), and Fk+1Gk+1 ≡ FkGk+pkt = h (mod pk+1),
completing the inductive step. �
Remark. This problem is a special case of a version of Hensel’s Lemma [Ei,

p. 208], a fundamental result in number theory. Here is a different version [NZM,
Theorem 2.23], which can be thought of as a p-adic analogue of Newton’s method for
solving polynomial equations via successive approximation:

Hensel’s Lemma. Suppose that f(x) is a polynomial with integral coefficients. If
f(a) ≡ 0 (mod pj) and f ′(a) �≡ 0 (mod p), then there is a unique t (mod p) such that
f(a+ tpj) ≡ 0 (mod pj+1).

B4. (22, 8, 6, 6, 0, 0, 0, 0, 4, 7, 59, 89)
For a positive real number r, let G(r) be the minimum value of∣∣r −√m2 + 2n2

∣∣ for all integers m and n. Prove or disprove the assertion
that limr→∞ G(r) exists and equals 0.

Answer. The limit exists and equals 0.

Solution (Doug Jungreis). First,

0 ≤ |r −
√

m2 + 2n2| = |r2 −m2 − 2n2|
r +

√
m2 + 2n2

≤ |r2 −m2 − 2n2|
r

,

so it will suffice to bound the latter expression. Select the largest integer m ≥ 0 such
that r2 −m2 ≥ 0. Then m2 ≤ r2 < (m+ 1)2, so m ≤ r and r2 −m2 < 2m+ 1. Next
select the largest integer n ≥ 0 such that r2 −m2 − 2n2 ≥ 0. Then 2n2 ≤ r2 −m2 <

2(n+ 1)2. This implies n ≤√(r2 −m2)/2 and

|r2 −m2 − 2n2| = r2 −m2 − 2n2

< 2(2n+ 1)

≤ 2 + 4
√
(r2 −m2)/2

≤ 2 +
√
2m+ 1

≤ 2 +
√
2r + 1.

Hence G(r) ≤ (2 +
√
2r + 1)/r and limr→∞ G(r) = 0. �



Solutions: The Forty-Seventh Competition (1986) 73

B5. (10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 58, 133)
Let f(x, y, z) = x2 + y2 + z2 + xyz. Let p(x, y, z), q(x, y, z), r(x, y, z) be

polynomials with real coefficients satisfying

f(p(x, y, z), q(x, y, z), r(x, y, z)) = f(x, y, z).

Prove or disprove the assertion that the sequence p, q, r consists of some
permutation of ±x,±y,±z, where the number of minus signs is 0 or 2.

Solution. The assertion is false, since (p, q, r) = (x, y,−xy−z) satisfies f(p, q, r) =
f(x, y, z). �
Motivation. Take p = x, q = y, and view

x2 + y2 + r2 + xyr = x2 + y2 + z2 + xyz,

as an equation to be solved for the polynomial r. It is equivalent to the quadratic
equation

r2 + (xy)r + (z2 − xyz) = 0

and we already know one solution, namely r = z, so the quadratic is easy to factor:

(r − z)(r + (xy + z)) = 0.

Thus r = −xy − z is the other solution.
Remark. We now describe the set of all solutions (p, q, r). First, there is (x, y, z).

Second, choose a real number r with |r| > 2, factor p2 + rpq + q2 as (p− αq)(p− βq)
for distinct real numbers α and β, choose c ∈ R∗, and solve the system

p− αq = c

p− βq = (x2 + y2 + z2 + xyz − r2)/c

for p and q as polynomials in x, y, z to obtain a solution (p, q, r). Third, consider
all triples obtainable from the two types above by iterating the following operations:
permuting p, q, r, changing the signs of an even number of p, q, r, and replacing (p, q, r)
by (−qr − p, q, r). All such triples are solutions.
We claim that all solutions arise in this way. It suffices to show that given a

solution (p, q, r), either it is of one of the first two types, or one of the operations
above transforms it to another solution with deg p+deg q+deg r lower, where degree
of a polynomial means its total degree in x, y, z, so xiyjzk has degree i+ j + k.
Let (p, q, r) be a solution. We may assume deg p ≥ deg q ≥ deg r. Also we may

assume deg(p+ qr) ≥ deg p, since otherwise we perform the transformation replacing
p with −qr − p. Since (p, q, r) is a solution,

p(p+ qr)− (x2 + y2 + z2 + xyz) = −(q2 + r2). (1)

Suppose deg p ≥ 2. Then deg(p + qr) ≥ deg p ≥ 2 and deg p(p + qr) ≥ 4, so (1)
implies the middle equality in

deg(p2) ≤ deg p(p+ qr) = deg(q2 + r2) ≤ deg(p2).

The ends are equal, so equality holds everywhere. In particular, deg(p + qr) = deg p
and deg q = deg p. Then deg(qr) ≤ max{deg(p+ qr),deg p} = deg p = deg q, so r is a
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constant. The equation can be rewritten as

p2 + rpq + q2 = x2 + y2 + z2 + xyz − r2.

The quadratic form in p, q on the left must take on negative values, since the right-hand
side is negative for x, y, and z chosen equal and sufficiently negative. Thus its
discriminant ∆ = r2 − 4 is positive, so |r| > 2. The right-hand side is irreducible
in R[x, y, z], since as a polynomial in z it is a monic quadratic with discriminant
∆′ = (xy)2 − 4(x2 + y2 − r2) which cannot be the square of any polynomial, since
∆′ as a quadratic polynomial in x has nonzero x2 and x0 coefficients but zero x1

coefficient. Therefore the factorization (p− αq)(p− βq) of the left-hand side matches
a trivial factorization of the right-hand side, so (p, q, r) is a solution of the second type
described above.
It remains to consider the case deg p < 2. Then p, q, r are at most linear. Equating

the homogeneous degree 3 parts in

p2 + q2 + r2 + pqr = x2 + y2 + z2 + xyz

shows that after permutation, (p, q, r) = (a1x + b1, a2y + b2, a3z + b3) where the ai
and bi are real numbers with a1a2a3 = 1. Equating coefficients of xy yields b3 = 0.
Similarly b1 = b2 = 0. Equating coefficients of x2 yields a1 = ±1. Similarly a2 = ±1
and a3 = ±1. Since a1a2a3 = 1, (p, q, r) is obtained from (x, y, z) by an even number
of sign changes.

Remark. The preceding analysis is similar to the proof that the positive integer
solutions to the Markov equation

x2 + y2 + z2 = 3xyz

are exactly those obtained from (1, 1, 1) by iterations of (x, y, z) !→ (x, y, 3xy − z)
and permutations. For the connection of this equation to binary quadratic forms and
continued fractions and much more, see [CF]. For an unsolved problem about the set
of solutions, see [Guy, p. 166].

Related question. The key idea in this problem is also essential to the solution to
Problem 6 of the 1988 International Mathematical Olympiad [IMO88, p. 38]:

Let a and b be positive integers such that ab + 1 divides a2 + b2. Show that
a2+b2

ab+1 is the square of an integer.

B6. (3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 166)
Suppose A,B,C,D are n× n matrices with entries in a field F , satisfying

the conditions that ABt and CDt are symmetric and ADt−BCt = I. Here I

is the n×n identity matrix, and if M is an n×n matrix, M t is the transpose
of M . Prove that AtD − CtB = I.

Solution. The conditions of the problem are

(1) ABt = (ABt)t = BAt,

(2) CDt = (CDt)t = DCt,

(3) ADt −BCt = I.
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Taking the transpose of (3) gives DAt−CBt = I. These four equations are the entries
in the block matrix identity(

A B

C D

)(
Dt −Bt

−Ct At

)
=
(
I 0
0 I

)
.

(Here the matrices should be considered (2n)× (2n) matrices in the obvious way.) If
X, Y are m×m matrices with XY = Im, the m×m identity matrix, then Y = X−1

and Y X = Im too. Applying this to our product with m = 2n, we obtain(
Dt −Bt

−Ct At

)(
A B

C D

)
=
(
I 0
0 I

)
,

and equating the lower right blocks shows that −CtB +AtD = I, as desired. �
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The Forty-Eighth William Lowell Putnam Mathematical Competition
December 5, 1987

A1. (72, 24, 22, 0, 0, 0, 0, 0, 5, 0, 45, 36)
Curves A, B, C, and D are defined in the plane as follows:†

A =
{
(x, y) : x2 − y2 =

x

x2 + y2

}
,

B =
{
(x, y) : 2xy +

y

x2 + y2
= 3
}

,

C =
{
(x, y) : x3 − 3xy2 + 3y = 1

}
,

D =
{
(x, y) : 3x2y − 3x− y3 = 0

}
.

Prove that A ∩B = C ∩D.

Solution 1. Let z = x + iy. The equations defining A and B are the real and
imaginary parts of the equation z2 = z−1+3i, and similarly the equations defining C

and D are the real and imaginary parts of z3 − 3iz = 1. Hence for all real x and y,
we have

(x, y) ∈ A ∩B ⇐⇒ z2 = z−1 + 3i ⇐⇒ z3 − 3iz = 1 ⇐⇒ (x, y) ∈ C ∩D.

Thus A ∩B = C ∩D. �

Solution 2. Let F = x2−y2− x
x2+y2 , G = 2xy+ y

x2+y2 −3, H = x3−3xy2+3y−1,
and J = 3x2y− 3x− y3 be the rational functions whose sets of zeros are A, B, C, and
D, respectively. The identity (

x −y

y x

)(
F

G

)
=
(
H

J

)
(1)

shows immediately that F = G = 0 implies H = J = 0. Conversely if H = J = 0

at (x, y), then (x, y) �= (0, 0), so det
(
x −y

y x

)
= x2 + y2 is nonzero, so (1) implies

F = G = 0 at (x, y). �
Remark. Solution 1 multiplies z2− z−1− 3i by z to obtain z3− 3iz− 1. Solution 2

is simply doing this key step in terms of real and imaginary parts, so it is really the
same solution, less elegantly written.

A2. (117, 28, 22, 2, 0, 0, 0, 3, 10, 5, 10, 7)
The sequence of digits

123456789101112131415161718192021 . . .

is obtained by writing the positive integers in order. If the 10nth digit
in this sequence occurs in the part of the sequence in which the m-digit
numbers are placed, define f(n) to be m. For example, f(2) = 2 because the

† The equations defining A and B are indeterminate at (0, 0). The point (0, 0) belongs to neither.
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100th digit enters the sequence in the placement of the two-digit integer
55. Find, with proof, f(1987).

Answer. The value of f(1987) is 1984.

Solution. Let g(m) denote the total number of digits in the integers with m or
fewer digits. Then f(n) equals the integer m such that g(m− 1) < 10n ≤ g(m).
There are 10r−10r−1 numbers with exactly r digits, so g(m) =

∑m
r=1 r(10

r−10r−1).
We have

g(1983) ≤
1983∑
r=1

1983(10r − 10r−1) ≤ 1983 · 101983 < 101987

and

g(1984) ≥ 1984(101984 − 101983) = 1984 · 9 · 101983 > 104 · 101983 = 101987

so f(1987) = 1984. �
Motivation. Based on the growth of geometric series one might guess that g(m)

has size roughly equal to its top term, which is 9 ·m · 10m−1. Thus we seek m such
that 9 ·m · 10m−1 ≈ 101987. Using 9 ≈ 10, the condition becomes m ≈ 101987−m. This
leads to the guess m = 1984, since 1984 ≈ 103.

Remark. There is a closed form for g(m):

g(m) =
m∑
r=1

r10r −
m∑
r=1

r10r−1

=
m∑
r=1

r10r −
m−1∑
s=0

(s+ 1)10s

=

(
m10m +

m−1∑
r=0

r10r
)
−

m−1∑
s=0

(s+ 1)10s

= m10m −
m−1∑
s=0

10s

= m10m − (10m − 1)/9.
More generally, there is a closed form for

∑b
r=a P (r)x

r for any integers a ≤ b, fixed
polynomial P , and number x. Rearrangement as above shows that

(1− x)
b∑

r=a

P (r)xr = P (a)xa − P (b)xb+1 +
b∑

r=a+1

(P (r)− P (r − 1))xr,

and the last sum is of the same type but with a polynomial P (r)− P (r − 1) of lower
degree than P , or zero if P was constant to begin with. Hence one can evaluate the
sum by induction on degP .
Alternatively,

∑b
r=a P (r)x

r can be evaluated by repeatedly differentiating the
formula for the geometric series

b∑
r=a

xr =
xb+1 − xa

x− 1
and taking linear combinations of the resulting identities.
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A3. (119, 32, 1, 0, 1, 4, 2, 0, 0, 5, 11, 29)
For all real x, the real-valued function y = f(x) satisfies

y′′ − 2y′ + y = 2ex.

(a) If f(x) > 0 for all real x, must f ′(x) > 0 for all real x? Explain.

(b) If f ′(x) > 0 for all real x, must f(x) > 0 for all real x? Explain.

Answers. (a) No. (b) Yes.

Solution. One solution to the differential equation is x2ex, and the general
solution to the differential equation y′′−2y′+y = 0 with characteristic equation (r−1)2
is (bx+ c)ex, so the general solution to the original equation is f(x) = (x2+ bx+ c)ex.
Then f ′(x) =

(
x2 + (b+ 2)x+ (b+ c)

)
ex. Since the leading coefficient of x2 + bx+ c

is positive, we have

f(x) > 0 for all x ⇐⇒ x2 + bx+ c > 0 for all x ⇐⇒ b2 − 4c < 0.

Similarly

f ′(x) > 0 for all x ⇐⇒ (b+ 2)2 − 4(b+ c) < 0 ⇐⇒ b2 − 4c+ 4 < 0.

Clearly b2 − 4c < 0 does not imply b2 − 4c+ 4 < 0. (Take b = 1, c = 1 for instance.)
But b2 − 4c+ 4 < 0 does imply b2 − 4c < 0. �

A4. (14, 8, 6, 4, 0, 0, 0, 1, 28, 9, 25, 109)
Let P be a polynomial, with real coefficients, in three variables and F be

a function of two variables such that

P (ux, uy, uz) = u2F (y − x, z − x) for all real x, y, z, u,

and such that P (1, 0, 0) = 4, P (0, 1, 0) = 5, and P (0, 0, 1) = 6. Also let A,B,C

be complex numbers with P (A,B,C) = 0 and |B −A| = 10. Find |C −A|.
Answer. The value of |C −A| is (5/3)√30.

Solution. Letting u = 1 and x = 0, we have that F (y, z) = P (0, y, z) is
a polynomial. Also, F (uy, uz) = P (0, uy, uz) = u2P (0, y, z) = u2F (y, z), so F is
homogeneous of degree 2. Therefore

P (x, y, z) = F (y − x, z − x) = a(y − x)2 + b(y − x)(z − x) + c(z − x)2

for some real a, b, c. Then 4 = P (1, 0, 0) = a + b + c, 5 = P (0, 1, 0) = a, and
6 = P (0, 0, 1) = c, so b = −7. Now

0 = P (A,B,C) = 5(B −A)2 − 7(B −A)(C −A) + 6(C −A)2,

so the number m = (C − A)/(B − A) satisfies 5 − 7m + 6m2 = 0. The zeros of
6m2 − 7m + 5 are complex conjugate with product 5/6, so |m| = √

5/6. Thus
|C −A| =√5/6|B −A| = (5/3)

√
30. �
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A5. (8, 0, 2, 0, 0, 0, 0, 0, 1, 1, 57, 135)
Let

-G(x, y) =
( −y

x2 + 4y2
,

x

x2 + 4y2
, 0
)

.

Prove or disprove that there is a vector-valued function

-F (x, y, z) = (M(x, y, z), N(x, y, z), P (x, y, z))

with the following properties:

(i) M,N,P have continuous partial derivatives for all (x, y, z) �= (0, 0, 0);

(ii) Curl -F = -0 for all (x, y, z) �= (0, 0, 0);

(iii) -F (x, y, 0) = -G(x, y).

Answer. There is no such -F .

Solution. Let S be a surface not containing (0, 0, 0) whose boundary ∂S is the
ellipse x2 + 4y2 − 4 = z = 0 parameterized by (2 cos θ, sin θ, 0) for 0 ≤ θ ≤ 2π. (For
instance, S could be the half of the ellipsoid x2+4y2+z2 = 4 with z ≥ 0.) If F exists,
then

0 =
∫∫

S

(Curl -F ) · -n dS (since Curl -F = -0 on S)

=
∫
∂S

-F · d-r (by Stokes’ Theorem, e.g. [Ap2, Theorem 12.3])

=
∫
∂S

-G · d-r (since -F = -G on ∂S)

=
∫ 2π

0

(− sin θ
4

,
2 cos θ
4

, 0
)
· (−2 sin θ, cos θ, 0) dθ

=
∫ 2π

0

1
2
dθ

= π,

a contradiction. �

A6. (5, 10, 2, 0, 1, 0, 0, 3, 1, 4, 80, 98)
For each positive integer n, let a(n) be the number of zeros in the base 3

representation of n. For which positive real numbers x does the series
∞∑
n=1

xa(n)

n3

converge?

Answer. For positive real x, the series converges if and only if x < 25.

Solution. The integer n ≥ 1 has exactly k + 1 digits in base 3 if and only if
3k ≤ n < 3k+1. Define

Sk =
3k+1−1∑
n=3k

xa(n)

n3
, and Tk =

3k+1−1∑
n=3k

xa(n).
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The given series
∑∞

n=1 x
a(n)/n3 has all terms positive, so it will converge if and

only if
∑∞

k=0 Sk converges. For 3k ≤ n < 3k+1, we have 33k ≤ n3 < 33k+3, so
Tk/33k+3 ≤ Sk ≤ Tk/33k. Therefore

∑∞
k=0 Sk converges if and only if

∑∞
k=0 Tk/3

3k

converges. The number of n with k + 1 digits base 3 and satisfying a(n) = i is(
k
i

)
2k+1−i, because there are

(
k
i

)
possibilities for the set of positions of the i zero

digits (since the leading digit cannot be zero), and then 2k+1−i ways to select 1 or 2
as each of the remaining digits. Therefore

Tk =
k∑

i=0

(
k

i

)
2k+1−ixi = (x+ 2)k.

Hence ∞∑
k=0

Tk/33k =
∞∑
k=0

(
x+ 2
27

)k

,

which converges if and only if |(x + 2)/27| < 1. For positive x, this condition is
equivalent to 0 < x < 25. �
Remark. More generally, let αk(n) be the number of zeros in the base k expansion

of n, and let Ak(x) =
∑∞

n=1 x
αk(n)/nk. Then Ak(x) converges at a positive real

number x if and only if x < kk − k + 1.

Literature note. For more other convergent sums involving digits in base b

representations, see [BB]. This article contains exact formulas for certain sums, as
well as approximations by “nice” numbers that agree to a remarkable number of
decimal places.

B1. (148, 5, 4, 1, 0, 0, 0, 0, 1, 0, 15, 30)
Evaluate ∫ 4

2

√
ln(9− x) dx√

ln(9− x) +
√
ln(x+ 3)

.

Answer. The value of the integral is 1.

Solution. The integrand is continuous on [2, 4]. Let I be the value of the integral.
As x goes from 2 to 4, 9− x and x+ 3 go from 7 to 5, and from 5 to 7, respectively.
This symmetry suggests the substitution x = 6− y reversing the interval [2, 4]. After
interchanging the limits of integration, this yields

I =
∫ 4

2

√
ln(y + 3) dy√

ln(y + 3) +
√
ln(9− y)

.

Thus

2I =
∫ 4

2

√
ln(x+ 3) +

√
ln(9− x)√

ln(x+ 3) +
√
ln(9− x)

dx =
∫ 4

2

dx = 2,

and I = 1. �
Remark. The same argument applies if

√
lnx is replaced by any continuous function

such that f(x+ 3) + f(9− x) �= 0 for 2 ≤ x ≤ 4.
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B2. (47, 3, 4, 0, 0, 0, 0, 0, 1, 3, 62, 84)
Let r, s, and t be integers with 0 ≤ r, 0 ≤ s, and r + s ≤ t. Prove that(

s
0

)(
t
r

) + (
s
1

)(
t

r+1

) + · · ·+ (
s
s

)(
t

r+s

) = t+ 1
(t+ 1− s)

(
t−s
r

) .
(Note:

(
n
k

)
denotes the binomial coefficient n(n−1)···(n+1−k)

k(k−1)···3·2·1 .)

Let F (r, s, t) be the left-hand side.

Solution 1. We prove

F (r, s, t) =
t+ 1

(t+ 1− s)
(
t−s
r

)
by induction on s. The base case s = 0 is trivial since

(
0
0

)
= 1.

For s ≥ 1, r ≥ 0 and r + s ≤ t,

F (r, s, t) =

(
s−1
0

)(
t
r

) +

(
s−1
0

)
+
(
s−1
1

)(
t

r+1

) + · · ·+
(
s−1
s−2

)
+
(
s−1
s−1

)(
t

r+s−1

) +

(
s−1
s−1

)(
t

r+s

)
= F (r, s− 1, t) + F (r + 1, s− 1, t).

Applying the inductive hypothesis to the two terms on the right gives

F (r, s, t) =
t+ 1

(t+ 2− s)
(
t+1−s

r

) + t+ 1
(t+ 2− s)

(
t+1−s
r+1

) .
The definition of binomial coefficients in terms of factorials lets us express

(
t+1−s

r

)
and(

t+1−s
r+1

)
in terms of

(
t−s
r

)
; this leads to

F (r, s, t) =
t+ 1

(t+ 2− s)
(

t+1−s
t+1−s−r

) (
t−s
r

) + t+ 1

(t+ 2− s)
(
t+1−s
r+1

) (
t−s
r

)
=

t+ 1
(t+ 2− s)

(
t−s
r

) ( t+ 1− s− r

t+ 1− s
+

r + 1
t+ 1− s

)
=

t+ 1
(t+ 1− s)

(
t−s
r

) ,
completing the inductive step. �

Solution 2. Writing the binomial coefficients in terms of factorials and regrouping,
we find

F (r, s, t) =
s! r! (t− r − s)!

t!

s∑
i=0

(
r + i

r

)(
t− r − i

t− r − s

)
. (1)

If we could prove
s∑

i=0

(
r + i

r

)(
t− r − i

t− r − s

)
=
(

t+ 1
t− s+ 1

)
, (2)

then substituting into (1) would yield

F (r, s, t) =
s! r! (t− r − s)!

t!
· (t+ 1)!
(t− s+ 1)! s!

=
t+ 1

(t+ 1− s)
(
t−s
r

) .
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We now provide three proofs of (2):

Proof 1 (Vandermonde’s identity). We have(
r + i

r

)
=
(
r + i

i

)
=
(r + i)(r + i− 1) · · · (r + 1)

i!

= (−1)i (−r − 1)(−r − 2) · · · (−r − i)
i!

= (−1)i
(−r − 1

i

)
and similarly(

t− r − i

t− r − s

)
=
(
(t− r − s) + (s− i)

s− i

)
= · · · = (−1)s−i

(−t+ r + s− 1
s− i

)
and (

t+ 1
t− s+ 1

)
=
(
(t− s+ 1) + s

s

)
= · · · = (−1)s

(−t+ s− 2
s

)
.

Thus (2) can be rewritten as
s∑

i=0

(−r − 1
i

)(−t+ r + s− 1
s− i

)
=
(−t+ s− 2

s

)
,

by multiplying both sides by (−1)s. This is a special case of Vandermonde’s identity,
which in general states that for integers m,n, s with s ≥ 0,

s∑
i=0

(
m

i

)(
n

s− i

)
=
(
m+ n

s

)
.

Proof 2 (generating functions). The binomial expansion gives

(1− x)−(n+1) =
∞∑
i=0

(−n− 1
i

)
(−x)i =

∞∑
i=0

(
n+ i

n

)
xi,

so taking coefficients of xs in the identity (1 − x)−(r+1)(1 − x)−(t−r−s+1) =
(1− x)−(t−s+2) yields (2).

Proof 3 (bijective proof). We will show that the two sides of (2) count something in
two different ways. First set j = r + i to rewrite (2) as

r+s∑
j=r

(
j

r

)(
t− j

t− r − s

)
=
(
t+ 1
s

)
. (3)

We will show that both sides of (3) count the number of sequences of s zeros and
t− s ones, punctuated by a comma such that the number of ones occurring before the
comma is r. On one hand, the number of such sequences of t+ 1 symbols (including
the comma) equals the right-hand side

(
t+1
s

)
of (3), because they can be constructed

by choosing the s positions for the zeros: of the remaining positions, the (r + 1)st

must contain the comma and the others must contain ones. On the other hand, we
can count the sequences according to the position of the comma: given that there are
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exactly j digits before the comma, there are
(
j
r

)
possibilities for the digits before the

comma (since r of them are to be ones and the rest are to be zeros), and
(

t−j
t−r−s

)
possibilities for the digits after the comma (since one needs t − r − s more ones to
bring the total number of ones to t−s). Summing over j shows that the total number
of sequences is the left-hand side of (3). �
Motivation. To find the generating function solution, first observe that the sum

in (1) looks like the coefficient of xs in a product of two series, and then figure out
what the two series must be.

Remark. Vandermonde’s identity can also be used in 1991B4.

Literature note. Generating functions are a powerful method for proving combi-
natorial identities. A comprehensive introduction to this method is [Wi].

Related question. Problem 20 of [WH] is similar:

Evaluate the sum

S =
n∑

k=0

(
n
k

)(
2n−1
k

)
for all positive integers n.

(Hint: the answer does not depend on n.)

B3. (27, 31, 5, 0, 0, 0, 0, 0, 3, 11, 57, 70)
Let F be a field in which 1 + 1 �= 0. Show that the set of solutions to the

equation x2 + y2 = 1 with x and y in F is given by (x, y) = (1, 0) and

(x, y) =
(
r2 − 1
r2 + 1

,
2r

r2 + 1

)
,

where r runs through the elements of F such that r2 �= −1.
Solution 1. For r2 �= −1, let (xr, yr) =

(
r2−1
r2+1 ,

2r
r2+1

)
. Clearly (1, 0) and (xr, yr)

for r2 �= −1 are solutions.
Conversely suppose x2 + y2 = 1. If x = 1, then y = 0 and we have (1, 0).

Otherwise define r = y/(1 − x). (The reason for this is that yr/(1 − xr) = r.)
Then 1 − x2 = y2 = r2(1 − x)2, but x �= 1, so we may divide by 1 − x to obtain
1 + x = r2(1 − x), and (r2 + 1)x = (r2 − 1). If r2 = −1, then this says 0 = −2,
contradicting 1+1 �= 0. Thus r2 �= −1, x = r2−1

r2+1 = xr, and y = r(1−x) = 2r
r2+1 = yr.

Hence every solution to x2 + y2 = 1 not equal to (1, 0) is of the form (xr, yr) for some
r ∈ F with r2 �= −1. �
Remark. If instead F is a field in which 1 + 1 = 0 (i.e., the characteristic of F

is 2), then x2 + y2 = 1 is equivalent to (x + y + 1)2 = 0, and the set of solutions is
{ (t, t+ 1) : t ∈ F }.
Solution 2. Essentially the same solution can be motivated by geometry. The

only solution to x2 + y2 = 1 with x = 1 is (1, 0). For each (x, y) ∈ F 2 satisfying
x2 + y2 = 1 with x �= 1, the line through (x, y) and (1, 0) has slope y/(x − 1) in
F . Hence we can find all solutions to x2 + y2 = 1 with x �= 1 by intersecting each
nonvertical line through (1, 0) with the circle. (See Figure 4.)
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(1, 0)

( )x, y

x y
2 2

+ = 1

FIGURE 4.
Points with coordinates in F correspond to lines through (1, 0) with slopes in F .

If Ls is the line through (1, 0) with slope s ∈ F , its intersection with x2+y2 = 1 can
be computed by substituting y = s(x− 1) into x2 + y2 = 1, and solving the resulting
equation

x2 + s2(x− 1)2 = 1.

This equation is guaranteed to have the solution x = 1, because (1, 0) is in the
intersection. Therefore we obtain a factorization,

(x− 1) ((s2 + 1)x+ (1− s2)
)
= 0,

which yields the solutions x = 1 and, if s2 �= −1, also x = (s2 − 1)/(s2 + 1). (If
s2 = −1, then 1 − s2 = −2 �= 0, and the second factor gives no solution.) Using
y = s(x− 1), we find that these give (1, 0) and

(
s2−1
s2+1 ,

−2s
s2+1

)
, which, as we verify, do

satisfy x2 + y2 = 1 and y = s(x− 1). We finish by substituting s = −r. �
Remark. Let C be any nondegenerate conic over F with an F -rational point P :

this means that C is given by a polynomial f(x, y) ∈ F [x, y] of total degree 2 that does
not factor into linear polynomials over any field extension of F , and P = (a, b) ∈ F 2

is a point such that f(a, b) = 0. The same method (of drawing all lines through P

with slope in F , and seeing where they intersect f(x, y) = 0 other than at P ) lets one
parameterize the set of F -rational points of C in terms of a single parameter s. In the
language of algebraic geometry, one says that any conic over k with a k-rational point
is birationally equivalent to the line [Shaf, p. 11]. The same method works on certain
equations of higher degree [NZM, Section 5.6].
The parameterization in the preceding paragraph is the reason why indefinite

integrals of rational functions in t and
√

p(t) for a single quadratic polynomial p(t)
can be expressed in terms of elementary functions [Shaf, p. 7]. It also explains why
sin θ and cos θ can be expressed as rational functions of a single function:

(cos θ, sin θ) =
(
1− t2

1 + t2
,

2t
1 + t2

)
where t = tan(θ/2).

This, in turn, explains why rational functions in sin θ and cos θ, such as

sin3 θ − 7 sin θ cos θ
1 + cos3 θ

,

have elementary antiderivatives.
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Remark. The parameterization of solutions to x2+y2 = 1 over Q is closely linked to
the parameterization of primitive Pythagorean triples, i.e., positive integer solutions
to a2 + b2 = c2 with gcd(a, b, c) = 1. In any primitive Pythagorean triple, exactly one
of a and b is even; the set of primitive Pythagorean triples (a, b, c) with b even equals
the set of triples (m2 − n2, 2mn,m2 + n2) with m,n ranging over positive integers of
opposite parity satisfying m > n and gcd(m,n) = 1. A more number-theoretic (less
geometric) approach to this classification is given in [NZM, Section 5.3].

B4. (13, 14, 15, 1, 0, 0, 0, 0, 11, 23, 79, 48)
Let (x1, y1) = (0.8, 0.6) and let xn+1 = xn cos yn − yn sin yn and yn+1 =

xn sin yn + yn cos yn for n = 1, 2, 3, . . . . For each of limn→∞ xn and limn→∞ yn,
prove that the limit exists and find it or prove that the limit does not
exist.

Answer. Both limits exist: limn→∞ xn = −1 and limn→∞ yn = 0.

Solution. Since (0.8)2 + (0.6)2 = 1, we have (x1, y1) = (cos θ1, sin θ1) where
θ1 = cos−1(0.8). If (xn, yn) = (cos θn, sin θn) for some n ≥ 1 and number θn, then
by the trigonometric addition formulas, (xn+1, yn+1) = (cos(θn + yn), sin(θn + yn)).
Hence by induction, (xn, yn) = (cos θn, sin θn) for all n ≥ 1, where θ2, θ3, . . . are
defined recursively by θn+1 = θn + yn for n ≥ 1. Thus θn+1 = θn + sin θn.
For 0 < θ < π, sin θ > 0 and sin θ = sin(π − θ) < π − θ (see remark below for

explanation), so 0 < θ + sin θ < π. By induction, 0 < θn < π for all n ≥ 1. Also
θn+1 = θn + sin θn > θn, so the bounded sequence θ1, θ2, . . . is also increasing,
and hence has a limit L ∈ [0, π]. Since sin t is a continuous function, taking the
limit as n → ∞ in θn+1 = θn + sin θn shows that L = L + sinL, so sinL = 0.
But L ∈ [0, π] and L ≥ θ1 > 0, so L = π. By continuity of cos t and sin t,
limn→∞ xn = cosL = cosπ = −1 and limn→∞ yn = sinL = sinπ = 0. �
Remark. To show that sinx < x for x > 0, integrate cos t ≤ 1 from t = 0 to t = x,

and note that cos t < 1 for t ∈ (0, 2π).
Reinterpretation. This problem is about the limiting behavior of a dynamical

system. For more examples of dynamical systems, see 1992B3, 1995B4, and 1996A6.

B5. (10, 6, 3, 2, 2, 0, 0, 0, 8, 3, 16, 154)
Let On be the n-dimensional vector (0, 0, . . . , 0). Let M be a 2n × n

matrix of complex numbers such that whenever (z1, z2, . . . , z2n)M = On, with
complex zi, not all zero, then at least one of the zi is not real. Prove
that for arbitrary real numbers r1, r2, . . . , r2n, there are complex numbers
w1, w2, . . . , wn such that

Re

M
 w1

...
wn


 =

 r1

...
r2n

 .

(Note: if C is a matrix of complex numbers, Re(C) is the matrix whose
entries are the real parts of the entries of C.)
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Solution. Write M = A + iB where A and B are real 2n × n matrices. If
z =

(
z1 z2 · · · z2n

)
is a row vector with real entries such that z

(
A B

)
= 0, then

zM = zA + izB = 0, so z = 0 by hypothesis. Hence
(
A B

)
is an invertible real

2n× 2n matrix.
Let r be the real column vector (r1, . . . , r2n). If w is a complex column vector

of length n, and we write w = u + iv where u and v are the real and imaginary
parts of w, then the condition Re [Mw] = r is equivalent to Au − Bv = r, and to(
A B

)( u

−v

)
= r. Since

(
A B

)
is invertible, we can find a real column vector(

u

−v

)
satisfying this. �

B6. (8, 1, 1, 1, 0, 0, 1, 2, 1, 3, 62, 124)
Let F be the field of p2 elements where p is an odd prime. Suppose S is

a set of (p2− 1)/2 distinct nonzero elements of F with the property that for
each a �= 0 in F , exactly one of a and −a is in S. Let N be the number of
elements in the intersection S ∩ { 2a : a ∈ S }. Prove that N is even.

We write 2S for { 2a : a ∈ S }.
Solution 1. For a ∈ S, there is a unique way to write 2a = εasa where εa = ±1

and sa ∈ S. Then S ∩ 2S = { a ∈ S : εa = 1 }, so ∏a∈S εa = (−1)#S−N = (−1)N ,
since #S = (p− 1) · (p+ 1)/2 is even. In F , we have

2(p2−1)/2
∏
a∈S

a =
∏
a∈S

εasa = (−1)N
∏
a∈S

a

so (−1)N = 2(p2−1)/2 = (2p−1)(p+1)/2 = 1(p+1)/2 = 1, by Fermat’s Little Theorem
[Lar1, p. 148]. Hence N is even. �
Remark. Gauss based one of his proofs of quadratic reciprocity on the following

lemma† [NZM, Theorem 3.2], whose proof uses the same method as Solution 1:

Lemma. Let p be an odd prime, and suppose that a is an integer prime to p.
Consider the least positive residues modulo p of a, 2a, 3a, . . . , ((p − 1)/2)a. If n is
the number of these that exceed p/2, then the Legendre symbol

(
a
p

)
equals (−1)n.

The case a = 2, which is especially close to Solution 1, easily implies the formula(
2
p

)
= (−1)(p2−1)/8, see [NZM, Theorem 3.3].

Solution 2. Let {1, x} be a basis for F over the field Fp of p elements. Let
H = {1, 2, . . . , (p− 1)/2} ⊂ Fp, and let

S0 = { a+ bx : a ∈ H, b ∈ Fp or a = 0, b ∈ H }.
For each nonzero a ∈ F , exactly one of a and −a is in S0. Also,

S0 ∩ 2S0 = { a+ bx : a ∈ Q, b ∈ Fp or a = 0, b ∈ Q }

† This lemma rarely appears outside the context of the proof of quadratic reciprocity. It should not

be confused with the more important result called Gauss’s Lemma that is stated after Solution 3 to

1998B6.
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where Q = H ∩ 2H, so #(S0 ∩ 2S0) = (#Q)p + (#Q), which is divisible by p + 1,
hence even.
Every other possible S can obtained by repeatedly replacing some α ∈ S by −α, so

it suffices to show that the parity of N = #(S∩2S) is unchanged by such an operation
on S. Suppose S is as in the problem, and S′ is the same as S except with α replaced
by −α. Define N ′ analogously. We will show that N ′ −N is even.
Note that

(i) If β ∈ S ∩ 2S, then β ∈ S′ ∩ 2S′ unless β = α or 2α.

(ii) If β ∈ S′ ∩ 2S′, then β ∈ S ∩ 2S unless β = −α or −2α.
In other words, N ′ can be computed from N by subtracting 1 for each of α and 2α
that belongs to S ∩ 2S, and adding 1 for each of −α and −2α that belongs to S ∩ 2S.
These adjustments are determined according to the four cases in the table below.

Case In S ∩ 2S? N ′ −N

α 2α −α −2α
(1) α/2 ∈ S, 2α ∈ S yes yes no no −2
(2) α/2 ∈ S, −2α ∈ S yes no no yes 0
(3) −α/2 ∈ S, 2α ∈ S no yes yes no 0
(4) −α/2 ∈ S, −2α ∈ S no no yes yes 2

In each row of the table, N ′ −N equals the number of times “yes” appears under the
−α and −2α headers minus the number of times “yes” appears under the α and 2α
headers. Hence N ′ −N is even in each case, as desired. �
Related question. The following problem, proposed by Iceland for the 1985 Inter-

national Mathematical Olympiad, is susceptible to the approach of the second solution.

Suppose x1, . . . , xn ∈ {−1, 1}, and
x1x2x3x4 + x2x3x4x5 + · · ·+ xn−3xn−2xn−1xn

+ xn−2xn−1xnx1 + xn−1xnx1x2 + xnx1x2x3 = 0.

Show that n is divisible by 4.
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The Forty-Ninth William Lowell Putnam Mathematical Competition
December 3, 1988

A1. (202, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0)
Let R be the region consisting of the points (x, y) of the cartesian plane

satisfying both |x| − |y| ≤ 1 and |y| ≤ 1. Sketch the region R and find its
area.

Remark. For this problem, the average of the scores of the top 200 or so participants
was approximately 9.76, higher than for any other problem in this volume. The second
easiest problem by this measure was 1988B1, from the same year, with an average of
9.56. At the other extreme, the average for each of 1999B4 and 1999B5 was under
0.01.

Answer. The area of R is 6.

Solution. The part of R in the first quadrant is defined by the inequalities x ≥ 0,
0 ≤ y ≤ 1, and x − y ≤ 1. This is the trapezoid T with vertices (0, 0), (1, 0), (2, 1),
(0, 1). It is the union of the unit square with vertices (0, 0), (1, 0), (1, 1), (0, 1) and the
half-square (triangle) with vertices (1, 0), (2, 1), (1, 1), so the area of T is 3/2. The
parts of R in the other quadrant are obtained by symmetry, reflecting T in both axes
(see Figure 5), so the area of R is 4(3/2) = 6. �

(2, 1)

(2, –1)(–2, –1)

(–2, 1)

(–1, 0) (1, 0)
x

y

FIGURE 5.
The region R.

A2. (174, 1, 7, 1, 0, 0, 0, 3, 3, 0, 15, 4)
A not uncommon calculus mistake is to believe that the product rule

for derivatives says that (fg)′ = f ′g′. If f(x) = ex
2
, determine, with proof,

whether there exists an open interval (a, b) and a nonzero function g defined
on (a, b) such that this wrong product rule is true for x in (a, b).

Answer. Yes, (a, b) and g exist.
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Solution. We are asked for a solution g to fg′ + gf ′ = f ′g′, which is equivalent
to g′ +

(
f ′

f−f ′

)
g = 0 if we avoid the zeros of f − f ′ = (1− 2x)ex2

, i.e., avoid x = 1/2.
By the existence and uniqueness theorem for first order linear ordinary differential
equations [BD, Theorem 2.4.1], if x0 �= 1/2, and y0 is any real number, then there exists
a unique solution g(x), defined in some neighborhood (a, b) of x0, with g(x0) = y0.
By taking y0 nonzero, we obtain a nonzero solution g. �
Remark. One can solve the differential equation by separation of variables, to find

all possible g. If g is nonzero, the differential equation is equivalent to

g′

g
=

f ′

f ′ − f
=

2xex
2

(2x− 1)ex2 = 1 +
1

2x− 1 ,

ln |g(x)| = x+
1
2
ln |2x− 1|+ c,

from which one finds that the nonzero solutions are of the form g(x) = Cex|2x− 1|1/2
for any nonzero number C, on any interval not containing 1/2.

Related question. What other pairs of functions f and g satisfy (fg)′ = f ′g′? For
some discussion, see [Hal, Problem 2G].

A3. (42, 17, 10, 0, 0, 0, 0, 6, 5, 3, 34, 91)
Determine, with proof, the set of real numbers x for which

∞∑
n=1

(
1
n
csc

1
n
− 1
)x

converges.

Answer. The series converges if and only if x > 1/2.

Solution. Define
an =

1
n
csc

1
n
− 1 = 1

n sin 1
n

− 1.

Taking t = 1/n in the inequality 0 < sin t < t for t ∈ (0, π), we obtain an > 0, so each
term axn of the series is defined for any real x. Using sin t = t− t3/3!+O(t5) as t→ 0,
we have, as n→∞,

an =
1

n
(

1
n − 1

6n3 +O
(

1
n5

)) − 1
=

1
1− 1

6n2 +O
(

1
n4

) − 1
=

1
6n2

+O

(
1
n4

)
.

In particular, if bn = 1/n2, then axn/b
x
n has a finite limit as n → ∞, so by the

Limit Comparison Test [Spv, Ch. 22, Theorem 2],
∑∞

n=1 a
x
n converges if and only

if
∑∞

n=1 b
x
n =

∑∞
n=1 n

−2x converges, which by the Integral Comparison Test [Spv,
Ch. 22, Theorem 4] holds if and only if 2x > 1, i.e., x > 1/2. �
Remark (big-O and little-o notation). Recall that O(g(n)) is a stand-in for a

function f(n) for which there exists a constant C such that |f(n)| ≤ C|g(n)| for all
sufficiently large n. (This does not necessarily imply that limn→∞ f(n)/g(n) exists.)
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Similarly “f(t) = O(g(t)) as t → 0” means that there exists a constant C such that
|f(t)| ≤ C|g(t)| for sufficiently small nonzero t.
On the other hand, o(g(n)) is a stand-in for a function f(n) such that

lim
n→∞

f(n)
g(n)

= 0.

One can similarly define “f(t) = o(g(t)) as t→ 0”.

A4. (45, 29, 2, 2, 1, 25, 11, 0, 3, 3, 25, 62)

(a) If every point of the plane is painted one of three colors, do there
necessarily exist two points of the same color exactly one inch apart?

(b) What if “three” is replaced by “nine”?

Justify your answers.

Answers. (a) Yes. (b) No.

Solution.

A B

Q

P

FIGURE 6.

(a) Suppose, for the sake of obtaining a contradiction, that we have a coloring of the
plane with three colors such that any two points at distance 1 have different colors. If
A and B are two points at distance

√
3, then the circles of radius 1 centered at A and B

meet in two points P,Q forming equilateral triangles APQ and BPQ. (See Figure 6.)
The three points of each equilateral triangle have different colors, and this forces A

and B to have equal colors. Now consider a triangle CDE with CD = CE =
√
3 and

DE = 1. (See Figure 7.) We know that C,D have the same color and C,E have the
same color, so D,E have the same color, contradicting our hypothesis about points at
distance 1.

C

D

E

1

3

3

FIGURE 7.

(b) For P = (x, y) ∈ R2, define

f(P ) = (�(3/2)x� mod 3, �(3/2)y� mod 3) ∈ {0, 1, 2}2.
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Color the nine elements of {0, 1, 2}2 with the nine different colors, and give P the
color of f(P ). (Thus the plane is covered by blocks of 3× 3 squares, where the little
squares have side length 2/3. See Figure 8.) If P and Q are points with the same
color, either they belong to the same little square, in which case PQ ≤ (2/3)

√
2 < 1,

or to different little squares. In the latter case, either their x-coordinates differ by at
least 4/3, or their y-coordinates differ by at least 4/3, so PQ ≥ 4/3 > 1. �

3/2

(0, 0) (1, 0) (2, 0) (0, 0)

(0, 2) (1, 2) (2, 2) (0, 2)

(0, 1) (1, 1) (2, 1) (0, 1)

(0, 0) (1, 0) (2, 0) (0, 0)

FIGURE 8.

Remark. Part (a) appears in [New, p. 7], as does the following variation:

Assume that the points of the plane are each colored red or blue. Prove that
one of these colors contains pairs of points at every distance.

Remark. Figure 9 shows a well-known coloring of the plane with seven colors
such that points at distance 1 always have different colors. Such a coloring can be
constructed as follows. Let ω = −1+

√−3
2 , and view the ring of Eisenstein integers

Z[ω] = { a + bω : a, b ∈ Z } as a lattice in the complex plane. Then p = (2 − ω)Z[ω]
is a sublattice of index |2− ω|2 = 7. (In fact, p is one of the two prime ideals of Z[ω]
that divide (7).) Give each coset of p in Z[ω] its own color. Next color each point in
C according to the color of a nearest point in Z[ω]. This gives a coloring by hexagons.
The diameter of each hexagon equals

√
4/3, and if two distinct hexagons have the

same color, the smallest distance between points of their closures is
√
7/3. Hence if√

4/3 < d <
√
7/3, no two points in the plane at distance d have the same color.

Scaling the whole picture by 1/d, we find a coloring in which no two points in the
plane at distance 1 have the same color.

Remark. Let χ(n) denote the minimum number of colors needed to color the
points in Rn so that each pair of points separated by distance 1 have different colors.
Parts (a) and (b) show χ(2) > 3 and χ(2) ≤ 9, respectively. Because of the hexagonal
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FIGURE 9.

coloring in the previous remark, we know 4 ≤ χ(2) ≤ 7. Ronald L. Graham is offering
$1000 for an improvement of either bound.
The study of χ(n) goes back at least to [Had] in 1944. As n→∞, one has

(1 + o(1))(1.2)n ≤ χ(n) ≤ (3 + o(1))n,

the lower and upper bounds being due to [FW] and [LR], respectively. (See the remark
after the solution to 1988A3 for the meaning of the little-o notation.) For more on
such questions, consult [Gr2] and the references listed there, and browse issues of the
journal Geombinatorics.

A5. (32, 8, 4, 0, 0, 0, 0, 1, 7, 96, 9, 51)
Prove that there exists a unique function f from the set R+ of positive

real numbers to R+ such that

f(f(x)) = 6x− f(x) and f(x) > 0 for all x > 0.

Solution. We will show that f(x) = 2x for x > 0. Fix x > 0, and consider the
sequence (an) of positive numbers defined by a0 = x and an+1 = f(an). The given
functional equation implies that an+2+an+1−6an = 0. The zeros of the characteristic
polynomial t2+ t−6 of this linear recursion are −3 and 2, so there exist real constants
c1, c2 such that an = c12n + c2(−3)n for all n ≥ 0. If c2 �= 0, then for large n, an has
the same sign as c2(−3)n, which alternates with n; this contradicts an > 0. Therefore
c2 = 0, and an = c12n. In particular f(x) = a1 = 2a0 = 2x. This holds for any x.
Finally, the function f(x) = 2x does satisfy the conditions of the problem. �
Related question. The following, which was Problem 5 of the 1989 Asian-Pacific

Mathematical Olympiad [APMO], can be solved using a similar method:

Determine all functions f from the reals to the reals for which

(1) f(x) is strictly increasing,

(2) f(x) + g(x) = 2x for all real x,
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where g(x) is the composition inverse function to f(x). (Note: f and g are
said to be composition inverses if f(g(x)) = x and g(f(x)) = x for all real x.)

Remark (linear recursive sequences with constant coefficients). We can describe the
general sequence x0, x1, x2, . . . satisfying the linear recursion

xn+k + bk−1xn+k−1 + · · ·+ b1xn+1 + b0xn = 0

for all n ≥ 0, where b0, b1, . . . , bk−1 are constants, by considering the characteristic
polynomial

f(t) = tk + bk−1t
k−1 + · · ·+ b1t+ b0

over a field large enough to contain all its zeros. If the zeros r1, . . . , rk of f(t)
are distinct, then the general solution is xn =

∑k
i=1 cir

n
i where the ci are arbitrary

constants not depending on n. More generally, if f(t) =
∏s

i=1(t − ri)mi , then,
provided that we are working over a field of characteristic zero, the general solution
is xn =

∑s
i=1 ci(n)r

n
i where ci(n) is a polynomial of degree less than mi. For any

characteristic, the latter statement remains true if we replace the polynomial ci(n)
by a general linear combination of the binomial coefficients

(
n
0

)
,
(
n
1

)
, . . . ,

(
n

mi−1

)
.

(These combinations are the same as the polynomials in n of degree less than mi if
the characteristic is zero, or if the characteristic is at least as large as mi.) All of
these statements can be proved by showing that the generating function

∑∞
i=0 xit

i is
a rational function of t, and then decomposing it as a sum of partial fractions and
expanding each partial fraction in a power series to get a formula for xi. For more
discussion, see [NZM, Appendix A.4].
For example, these results can be used to show that the Fibonacci sequence, defined

by F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn for n ≥ 0, satisfies

Fn =

(
1+

√
5

2

)n
−
(

1−√
5

2

)n
√
5

.

The formula for the general solution to linear recursions with constant coefficients
can be thought of as the discrete analogue of the general solution to homogeneous
linear ordinary differential equations with constant coefficients.

A6. (59, 14, 10, 7, 0, 0, 0, 0, 5, 0, 21, 92)
If a linear transformation A on an n-dimensional vector space has n + 1

eigenvectors such that any n of them are linearly independent, does it
follow that A is a scalar multiple of the identity? Prove your answer.

Answer. Yes, A must be a scalar multiple of the identity.

Solution 1. Let x1, x2, . . . , xn+1 be the given eigenvectors, and let λ1,
λ2, . . . , λn+1 be their eigenvalues. The set Bi = {x1, . . . , xi−1, xi+1, . . . , xn+1}
is a linearly independent set of n vectors in an n-dimensional vector space, so
Bi is a basis, with respect to which A is represented by the diagonal matrix
diag(λ1, . . . , λi−1, λi+1, . . . , λn+1). Thus the trace of A equals S − λi where S =∑n+1

i=1 λi. But the trace is independent of the basis chosen, so S − λi = S − λj for
all i, j. Hence all the λi are equal. With respect to the basis B1, A is represented by
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a diagonal matrix with equal entries on the diagonal, so A is a scalar multiple of the
identity. �
Remark. One could have worked with the multiset of roots of the characteristic

polynomial, instead of their sum (the trace).

Solution 2 (Lenny Ng). Let x1, . . . , xn+1 be the eigenvectors of A, with
eigenvalues λ1, . . . , λn+1. Since x1, . . . , xn are linearly independent, they span the
vector space; hence

xn+1 =
n∑

i=1

αixi

for some α1, . . . , αn. Multiply by λn+1, or apply A to both sides, and compare:
n∑

i=1

αiλn+1xi = λn+1xn+1 =
n∑

i=1

αiλixi.

Thus αiλn+1 = αiλi for all i between 1 and n. If αi = 0 for some i, then xn+1 can
be expressed as a linear combination of x1, . . . , xi−1, xi+1, . . . , xn, contradicting the
linear independence hypothesis. Hence αi �= 0 for all i, so λn+1 = λi for all i. This
implies A = λn+1I. �

B1. (176, 25, 0, 0, 0, 0, 0, 0, 1, 1, 1, 4)
A composite (positive integer) is a product ab with a and b not necessarily

distinct integers in {2, 3, 4, . . . }. Show that every composite is expressible
as xy + xz + yz + 1, with x, y, and z positive integers.

Solution. Substituting z = 1 yields (x+ 1)(y + 1), so to represent the composite
number n = ab with a, b ≥ 2, let (x, y, z) = (a− 1, b− 1, 1). �
Remark. Although the problem asks only about representing composite numbers,

all but finitely many prime numbers are representable too. Theorem 1.1 of [BC] proves
that the only positive integers not of the form xy+ xz+ yz+1 for integers x, y, z > 0
are the 19 integers 1, 2, 3, 5, 7, 11, 19, 23, 31, 43, 59, 71, 79, 103, 131, 191, 211, 331,
and 463, and possibly a 20th integer greater than 1011. Moreover, if the Generalized
Riemann Hypothesis (GRH) is true, then the 20th integer does not exist. (See [Le]
for earlier work on this problem.)
The situation is analogous to that of the class number 1 problem: for many years it

was known that the squarefree integers d > 0 such that Q(
√−d) has class number 1

were
d = 1, 2, 3, 7, 11, 19, 43, 67, 163

and possibly one more; the existence of this tenth imaginary quadratic field of class
number 1 was eventually ruled out: see the appendix to [Se3] for the history and the
connection of this problem to integer points on modular curves.
In fact, researchers in the 19th century connected the problem of determining the

positive integers representable by xy+xz+yz+1 to problems about class numbers of
quadratic imaginary fields, or equivalently class numbers of binary quadratic forms:
[Mord1] mentions that the connection is present in comments by Liouville, in Jour.
de maths., series 2, tome 7, 1862, page 44, on a paper by Hermite. See also [Bel],
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[Wh], and [Mord2, p. 291]. The GRH implies the nonexistence of a Siegel zero for the
Dirichlet L-functions associated to these fields, and this is what is used in the proof
of Theorem 1.1 of [BC].

B2. (88, 38, 30, 0, 0, 0, 0, 0, 26, 4, 18, 4)
Prove or disprove: if x and y are real numbers with y ≥ 0 and y(y + 1) ≤

(x+ 1)2, then y(y − 1) ≤ x2.

Solution 1. If 0 ≤ y ≤ 1, then y(y − 1) ≤ 0 ≤ x2 as desired, so assume y > 1. If
x ≤ y − 1/2 then

y(y − 1) = y(y + 1)− 2y ≤ (x+ 1)2 − 2y = x2 + 2x+ 1− 2y ≤ x2.

If x ≥ y − 1/2 then
x2 ≥ y2 − y + 1/4 > y(y − 1). �

Solution 2. As in Solution 1, we may assume y > 1. We are given y(y+1) ≤ (x+
1)2, so |x+1| ≥√y(y + 1) and |x| ≥√y(y + 1)−1 ≥√y(y − 1). (The last inequality
follows from taking a = y − 1 and b = y in the inequality

√
(a+ 1)(b+ 1) ≥ √ab+ 1

for a, b > 0, which is equivalent (via squaring) to a+b ≥ 2
√
ab, the AM-GM Inequality

mentioned at the end of 1985A2.) Squaring gives the result. �

Solution 3. As in Solution 1, we may assume y > 1. Let f(y) = y2 − y and
g(x) = x2. For y > 1, we are asked to prove that f(y + 1) ≤ g(x + 1) implies
f(y) ≤ g(x), or equivalently that f(y) > g(x) implies f(y + 1) > g(x+ 1).
In this paragraph we show that for any x and y with y > 1, the inequality

f(y) ≥ g(x) implies f ′(y) > g′(x). If y2 − y ≥ x2 and y > 1, then (2y − 1)2 >

4y2 − 4y ≥ 4x2 = (2x)2 and 2y − 1 > 0, so 2y − 1 > |2x| ≥ 2x, i.e., f ′(y) > g′(x).
Now fix x and y. Let h(t) = f(y + t)− g(x+ t). Given h(0) > 0, and that h(t) > 0

implies h′(t) > 0, we must show that h(1) > 0. If h(1) ≤ 0, then by compactness there
exists a smallest u ∈ [0, 1] such that h(u) ≤ 0. For t ∈ (0, u), h(t) > 0, so h′(t) > 0.
But h(0) > 0 ≥ h(u), so h cannot be increasing on [0, u]. This contradiction shows
h(1) > 0, i.e., f(y + 1) > g(x+ 1). �
Remark. The problem is asking us to decide the truth of the first order sentence

∀x∀y((0 ≤ y) ∧ (y(y + 1) ≤ (x+ 1)(x+ 1))) =⇒ (y(y − 1) ≤ x · x)
in the language (R, 0, 1,+,−, ·,≤). Roughly, a first order sentence in this language
is an expression such as the above, involving logical operations ∧ (“and”), ∨ (“or”),
¬ (“not”); binary operations +,−, ·; the relations =,≤; variables x, y, . . . bound by
quantifiers ∃ (“there exists”) and ∀ (“for all”); and parentheses. For precise definitions,
see Chapter II of [EFT].
Tarski [Tar] proved that the first order theory of the field R is decidable; this means

that there exists a deterministic algorithm (i.e., Turing machine, computer program)
that takes as input any first order sentence and outputs YES or NO according to
whether it is true over the real numbers or not. On the other hand, the first order
theory of Z is undecidable by the work of Gödel [Göd], and J. Robinson [Robi]
combined Gödel’s result and Hasse’s work on quadratic forms to prove that the
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first order theory of Q also is undecidable. Moreover, it is known that there is no
algorithm for deciding the truth of first order sentences not involving ∀ or ¬: this was
Matiyasevich’s negative solution of Hilbert’s Tenth Problem [Mat]. The analogous
question for Q is still open. See [PZ] for more.

B3. (20, 16, 17, 2, 0, 0, 0, 0, 52, 33, 27, 41)
For every n in the set Z+ = {1, 2, . . . } of positive integers, let rn be the

minimum value of |c−d
√
3| for all nonnegative integers c and d with c+d = n.

Find, with proof, the smallest positive real number g with rn ≤ g for all
n ∈ Z+.

Answer. The smallest such g is (1 +
√
3)/2.

Solution. Let g = (1 +
√
3)/2. For each fixed n, the sequence n, (n − 1) − √3,

(n− 2)− 2√3, . . . , −n
√
3 is an arithmetic sequence with common difference −2g and

with terms on both sides of 0, so there exists a unique term xn in it with −g ≤ xn < g.
Then rn = |xn| ≤ g.
For x ∈ R, let “x mod 1” denote x − �x� ∈ [0, 1). Since

√
3 is irrational,

{ (−d
√
3) mod 1 : d ∈ Z+ } is dense in [0, 1). (See the remark below.) Hence for any

ε > 0, we can find a positive integer d such that ((−d
√
3) mod 1) ∈ (g − 1− ε, g − 1).

Then c − d
√
3 ∈ (g − ε, g) for some integer c ≥ 0. Let n = c + d. Then

rn = xn = c − d
√
3 > g − ε by the uniqueness of xn above. Thus g cannot be

lowered. �
Remark. Let α be irrational, and for n ≥ 1, let an = (nα mod 1) ∈ [0, 1). Let

us explain why { an : n = 1, 2, . . . } is dense in [0, 1] when α is irrational. Given a
large integer N > 0, the Pigeonhole Principle [Lar1, Ch. 2.6] produces two integers
p, q ∈ {1, 2, . . . , N+1} such that ap and aq fall into the same subinterval [i/N, (i+1)/N)
for some 0 ≤ i ≤ N − 1. Assume q > p. Then (q − p)α is congruent modulo 1 to a
real number r with |r| < 1/N . Since α is irrational, r �= 0. The multiples of (q − p)α,
taken modulo 1, will then pass within 1/N of any number in [0, 1]. This argument
applies for any N , so any nonempty open subset of [0, 1] will contain some an.
In fact, one can prove more, namely that the sequence a1, a2, . . . is equidistributed

in [0, 1]: this means that for each subinterval [a, b] ⊆ [0, 1],

lim
M→∞

#{n : 1 ≤ n ≤M and an ∈ [a, b] }
M

= b− a.

One way to show this is to observe that the range {1, . . . ,M} can, up to an error of
o(M) terms if M is much larger than N(q−p), be partitioned into N -term arithmetic
sequences of the shape c, c+(q−p), . . . , c+(N −1)(q−p) (notation as in the previous
paragraph), and the an for n in this sequence will be approximately evenly spaced
over [0, 1] when N is large.
Equidistribution can also be deduced from Weyl’s Equidistribution Theorem [Kör,

Theorem 3.1′], which states that a sequence a1, a2, . . . of real numbers is equidistrib-
uted modulo 1 if and only if

lim
n→∞

1
n

n∑
k=1

χm(ak) = 0 (1)



Solutions: The Forty-Ninth Competition (1988) 97

for all nonzero integers m, where χm(x) = e2πimx. In our application, if we set
ω = e2πi

√
3, then the limit in (1) is

lim
n→∞

1
n

n∑
k=1

ωkm = lim
n→∞

1
n

(
1− ω(n+1)m

1− ωm

)
= 0,

since |1 − ω(n+1)m| ≤ 2, while 1 − ωm �= 0, since
√
3 is irrational. (See Solution 4 to

1990A2 for another application of the density result, and see Solution 2 to 1995B6 for
an application of the equidistribution of (nα mod 1) for irrational α. See 1995B6 also
for a multidimensional generalization of the equidistribution result.)

B4. (17, 1, 0, 0, 0, 0, 0, 0, 3, 2, 73, 112)
Prove that if

∑∞
n=1 an is a convergent series of positive real numbers, then

so is
∑∞

n=1(an)
n/(n+1).

Solution. If an ≥ 1/2n+1, then

an/(n+1)
n =

an

a
1/(n+1)
n

≤ 2an.

If an ≤ 1/2n+1, then a
n/(n+1)
n ≤ 1/2n. Hence

an/(n+1)
n ≤ 2an +

1
2n

.

But
∑∞

n=1(2an + 1/2n) converges, so
∑∞

n=1 a
n/(n+1)
n converges by the Comparison

Test [Spv, Ch. 22, Theorem 1]. �

B5. (9, 0, 10, 1, 0, 0, 0, 0, 1, 2, 45, 140)
For positive integers n, let Mn be the 2n + 1 by 2n + 1 skew-symmetric

matrix for which each entry in the first n subdiagonals below the main
diagonal is 1 and each of the remaining entries below the main diagonal is
−1. Find, with proof, the rank of Mn. (According to one definition, the
rank of a matrix is the largest k such that there is a k × k submatrix with
nonzero determinant.)
One may note that

M1 =

 0 −1 1
1 0 −1
−1 1 0

 and M2 =


0 −1 −1 1 1
1 0 −1 −1 1
1 1 0 −1 −1
−1 1 1 0 −1
−1 −1 1 1 0

 .

Answer. The rank of Mn equals 2n.

Solution 1. We use induction on n to prove that rank(Mn) = 2n. We check the
n = 1 case by Gaussian elimination.
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Suppose n ≥ 2, and that rank(Mn−1) = 2(n−1) is known. Adding multiples of the
first two rows of Mn to the other rows transforms Mn to a matrix of the form

0 −1
1 0 ∗

0 −Mn−1


in which 0 and ∗ represent blocks of size (2n− 1)× 2 and 2× (2n − 1), respectively.
Thus rank(Mn) = 2 + rank(Mn−1) = 2 + 2(n− 1) = 2n. �

Solution 2. Let e1, . . . , e2n+1 be the standard basis of R2n+1, and let v1, . . . ,
v2n+1 be the rows of Mn. Let V = { (a1, . . . , a2n+1) ∈ R2n+1 :

∑
ai = 0 }. We will

show that the row space RS(Mn) equals V .
We first verify the following:

(a) For all m, vm ∈ V .

(b) The set { em − em−1 : 2 ≤ m ≤ 2n+ 1 } is a basis of V .
(c) For 2 ≤ m ≤ 2n+ 1, the vector em − em−1 is a linear combination of the vi.

Proof of (a): vm =
∑n

i=1(em−i − em+i).
(All subscripts are to be considered modulo 2n+ 1.)
Proof of (b): The (2n) × (2n + 1) matrix with the em − em−1 as rows is in row

echelon form (with nonzero rows).
Proof of (c): By the formula in the proof of (a),

vm + vm+n =
n∑

i=1

(em−i − em+i) +
n∑

i=1

(em+n−i − em+n+i)

=
n∑

i=1

(em−i + em+n−i)−
n∑

i=1

(em+i + em+n+i)

= (E − em+n)− (E − em) (where E =
∑

em)

= em − em+n

so

em − em−1 = (em − em+n) + (em+n − em+2n)

= (vm + vm+n) + (vm+n + vm+2n).

Now, (a) implies RS(Mn) ⊆ V , and (b) and (c) imply V ⊆ RS(Mn). Thus
RS(Mn) = V . Hence rank(Mn) = dimV = 2n. �

Solution 3. The matrix is circulant, i.e., the entry mij depends only on j − i

modulo 2n+1. Write aj−i = mij , where all subscripts are considered modulo 2n+1.
(Thus ai equals 0,−1, 1 according as i = 0, 1 ≤ i ≤ n, or n + 1 ≤ i ≤ 2n.) For each
of the 2n + 1 complex numbers ζ satisfying ζ2n+1 = 1, let vζ = (1, ζ, ζ2, . . . , ζ2n).
The vζ form a basis for C2n+1, since they are the columns of a Vandermonde matrix
with nonzero determinant: see 1986A6. Since Mn is circulant, Mnvζ = λζvζ where
λζ = a0 + a1ζ + · · · + a2nζ

2n. Thus {λζ : ζ2n+1 = 1 } are all the eigenvalues of Mn
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with multiplicity. For our Mn, λ1 = 0 and for ζ �= 1,

λζ = ζ + · · ·+ ζn − ζn+1 − · · · − ζ2n =
ζ(1− ζn)2

1− ζ
�= 0,

since gcd(n, 2n + 1) = 1. It follows that the image of Mn (as an endomorphism of
C2n+1) is the span of the vζ with ζ �= 1, which is 2n-dimensional, so rank(Mn) = 2n. �
Remark. This method lets one compute the eigenvalues and eigenvectors (and

hence also the determinant) of any circulant matrix. For an application of similar
ideas, see 1999B5. For introductory material on circulant matrices, see [Bar, Sect. 13.2]
and [Da]. Circulant matrices (and more general objects known as group determinants)
played an early role in the development of representation theory for finite groups:
see [Co] for a historical overview.

Solution 4. The sum of the rows of Mn is 0, so Mn is singular. (Alternatively,
this follows sinceMn is skew-symmetric of odd dimension.) Hence the rank can be at
most 2n.
To show that the rank is 2n, we will prove that the submatrix A = (aij) obtained by

deleting row 2n+1 and column 2n+1 ofMn has nonzero determinant. By definition,
detA =

∑
π∈S2n

sgn(π)a1π(1) · · · a(2n)π(2n), where S2n is the group of permutations of
{1, . . . , 2n}, and sgn(π) = ±1 is the sign of the permutation π. We will prove that
detA is nonzero by proving that it is an odd integer. Since aij is odd unless i = j,
the term in the sum corresponding to π is 0 if π(i) = i for some i, and odd otherwise.
Thus detA ≡ f(2n) (mod 2), where for any integer m ≥ 1, f(m) denotes the number
of permutations of {1, . . . ,m} having no fixed points. We can compute f(m) using
the Inclusion-Exclusion Principle [Ros2, §5.5]: of the m! permutations, (m − 1)! fix
1, (m − 1)! fix 2, and so on, but if we subtract all these, then we must add back the
(m− 2)! permutations fixing 1 and 2 (since these have been subtracted twice), and so
on for all other pairs, and then subtract (m−3)! for each triple, and so on; this finally
yields

f(m) = m!−
(
m

1

)
(m− 1)! +

(
m

2

)
(m− 2)!− · · ·

+ (−1)m−1

(
m

m− 1
)
1! + (−1)m

(
m

m

)
0!

≡ (−1)m−1m+ (−1)m (mod 2)

so f(2n) is odd, as desired. �
Remark. Permutations without fixed points are called derangements. The formula

for f(m) can also be written as

f(m) = m!
(
1− 1

1!
+
1
2!
− 1
3!
+ · · ·+ (−1)m

m!

)
,

which is the integer nearest to m!/e.

Solution 5. As in Solution 4, Mn is singular, and hence rank(Mn) ≤ 2n. Let A

be as in Solution 4. Then A2 is equivalent modulo 2 to the 2n× 2n identity matrix,
so detA �= 0. Thus rank(Mn) = 2n. �
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B6. (38, 9, 4, 4, 24, 8, 0, 5, 5, 1, 17, 93)
Prove that there exist an infinite number of ordered pairs (a, b) of integers

such that for every positive integer t the number at+b is a triangular number
if and only if t is a triangular number. (The triangular numbers are the
tn = n(n+ 1)/2 with n in {0, 1, 2, . . . }.)
Solution 1. It is easy to check that t3n+1 = 9tn + 1, while t3n ≡ t3n+2 ≡ 0

(mod 3) for any integer n. Hence for every positive integer t, t is a triangular number
if and only if 9t + 1 is triangular. If the nth iterate of the linear map t !→ 9t + 1 is
t !→ at+ b, then a chain of equivalences will show that t is a triangular number if and
only if at + b is triangular. We obtain infinitely many pairs of integers (a, b) in this
way. �

Solution 2. If t = n(n+1)/2, then 8t+1 = (2n+1)2. Conversely if t is an integer
such that 8t+1 is a square, then 8t+1 is the square of some odd integer 2n+ 1, and
hence t = n(n+ 1)/2. Thus t is a triangular number if and only if 8t+ 1 is a square.
If k is an odd integer, then k2 ≡ 1 (mod 8), and

t is a triangular number ⇐⇒ 8t+ 1 is a square

⇐⇒ k2(8t+ 1) is a square

⇐⇒ 8
(
k2t+

k2 − 1
8

)
+ 1 is a square

⇐⇒
(
k2t+

k2 − 1
8

)
is a triangular number.

Hence we may take (a, b) = (k2, (k2 − 1)/8) for any odd integer k. �
Remark. Let us call (a, b) a triangular pair if a and b are integers with the property

that for positive integers t, t is a triangular number if and only if at+ b is a triangular
number. Solution 2 showed that if k is an odd integer, then (k2, (k2 − 1)/8) is a
triangular pair. In other words, the triangular pairs are of the form ((2m + 1)2, tm),
where m is any integer. We now show, conversely, that every triangular pair has this
form.
Suppose that (a, b) is a triangular pair. For any integer n ≥ 0, atn+ b is triangular,

so 8(atn+ b)+1 = 4an2+4an+(8b+1) is a square. A polynomial f(x) ∈ Z[x] taking
square integer values at all nonnegative integers must be the square of a polynomial
in Z[x]: see 1998B6 for a proof. Hence

4an2 + 4an+ (8b+ 1) = @(n)2 (1)

for some linear polynomial @(x). Completing the square shows that @(x) = 2
√
ax+

√
a.

Since @(n)2 is the square of an integer for any integer n, a = @(0)2 = k2 for some integer
k, and equating constant coefficients in (1) shows that a = 8b+ 1, so b = (k2 − 1)/8.
Finally, k must be odd, in order for b to be an integer.
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A1. (92, 2, 6, 7, 0, 0, 0, 9, 2, 8, 41, 32)
How many primes among the positive integers, written as usual in base

10, are such that their digits are alternating 1’s and 0’s, beginning and
ending with 1?

Answer. There is only one such prime: 101.

Solution. Suppose that N = 101 · · · 0101 with k ones, for some k ≥ 2. Then

99N = 9999 · · · 9999 = 102k − 1 = (10k + 1)(10k − 1).
If moreover N is prime, then N divides either 10k + 1 or 10k − 1, and hence one of

99
10k−1

= 10k+1
N and 99

10k+1
= 10k−1

N is an integer. For k > 2, 10k − 1 and 10k + 1 are
both greater than 99, so we get a contradiction. Therefore k = 2 and N = 101 (which
is prime). �
Remark. Essentially the same problem appeared on the 1979 British Mathematical

Olympiad, reprinted in [Lar1, p. 123] as Problem 4.1.4:

Prove that there are no prime numbers in the infinite sequence of integers

10001, 100010001, 1000100010001, . . . .

A2. (141, 6, 29, 0, 0, 0, 0, 0, 5, 7, 4, 7)

Evaluate
∫ a

0

∫ b

0

emax{b2x2,a2y2} dy dx, where a and b are positive.

Answer. The value of the integral is (ea
2b2 − 1)/(ab).

Solution. Divide the rectangle into two parts by the diagonal line ay = bx to
obtain∫ a

0

∫ b

0

emax{b2x2,a2y2} dy dx =
∫ a

0

∫ bx/a

0

eb
2x2

dy dx+
∫ b

0

∫ ay/b

0

ea
2y2

dx dy

=
∫ a

0

bx

a
eb

2x2
dx+

∫ b

0

ay

b
ea

2y2
dy

=
∫ a2b2

0

1
2ab

eu du+
∫ a2b2

0

1
2ab

ev dv

=
ea

2b2 − 1
ab

. �

A3. (13, 4, 4, 2, 0, 0, 0, 0, 6, 8, 56, 106)
Prove that if

11z10 + 10iz9 + 10iz − 11 = 0,

then |z| = 1. (Here z is a complex number and i2 = −1.)
Solution 1. Let g(z) = 11z10 + 10iz9 + 10iz − 11. Let p(w) = −w−5g(iw) =

11w5 + 10w4 + 10w−4 + 11w−5. As θ increases from 0 to 2π, the real-valued function
p(eiθ) = 22 cos(5θ) + 20 cos(4θ) changes sign at least 10 times, since at θ = 2πk/10
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for k = 0, 1, . . . , 9 its value is 22(−1)k + 20 cos(4θ), which has the sign of (−1)k. By
the Intermediate Value Theorem [Spv, Ch. 7, Theorem 5], p(eiθ) has at least one zero
between θ = 2πk/10 and θ = 2πi(k + 1)/10 for k = 0, . . . , 9; this makes at least 10
zeros. Thus g(z) also has at least 10 zeros on the circle |z| = 1, and these are all the
zeros since g(z) is of degree 10. �

Solution 2. The equation can be rewritten as z9 = 11−10iz
11z+10i . If z = a+ bi, then

|z|9 =
∣∣∣∣11− 10iz11z + 10i

∣∣∣∣ =
√
112 + 220b+ 102(a2 + b2)√
112(a2 + b2) + 220b+ 102

.

Let f(a, b) and g(a, b) denote the numerator and denominator of the right-hand side.
If |z| > 1, then a2 + b2 > 1, so g(a, b) > f(a, b), making |z9| < 1, a contradiction. If
|z| < 1, then a2 + b2 < 1, so g(a, b) < f(a, b), making |z9| > 1, again a contradiction.
Hence |z| = 1. �

Solution 3. Rouché’s Theorem [Ah, p. 153] states that if f and g are analytic
functions on an open set containing a closed disc, and if |g(z) − f(z)| < |f(z)|
everywhere on the boundary of the disc, then f and g have the same number of
zeros inside the disc. Let f(z) = 10iz − 11 and g(z) = 11z10 + 10iz9 + 10iz − 11, and
consider the discs |z| ≤ α with α ∈ (0, 1). Then

|g(z)− f(z)| = |11z10 + 10iz9| = |z|9|11z + 10i| < |10iz − 11| = |f(z)|
if |z| < 1, by the same calculation as in Solution 2. But f has its only zero at 11/(10i),
outside |z| = 1, so g has no zeros with |z| < α for any α ∈ (0, 1), and hence no zeros
with |z| < 1. Finally, g(−1/z) = −z−10g(z), so the nonvanishing of g for |z| < 1
implies the nonvanishing of g for |z| > 1. Therefore, if g(z) = 0, then |z| = 1. �

A4. (54, 22, 16, 4, 0, 0, 0, 0, 4, 2, 53, 44)
If α is an irrational number, 0 < α < 1, is there a finite game with an

honest coin such that the probability of one player winning the game is
α? (An honest coin is one for which the probability of heads and the
probability of tails are both 1/2. A game is finite if with probability 1 it
must end in a finite number of moves.)

Answer. Yes, such a game exists.

Solution. Let dn be 0 or 1, depending on whether the nth toss yields heads or
tails. Let X =

∑∞
n=1 dn/2

n. Then the distribution of X is uniform on [0, 1], since
for any rational number c/2m (i.e., any dyadic rational) in [0, 1], the probability that
X ∈ [0, c/2m] is exactly c/2m.
Say that player 1 wins the game after N tosses, if it is guaranteed at that time that

the eventual value of X will be less than α; this means that
N∑

n=1

dn
2n

+
∞∑

n=N+1

1
2n

< α.

Similarly, say that player 2 wins after N tosses, if it is guaranteed then that X will
be greater than α.
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The game will terminate if X �= α, which happens with probability 1; in fact it will
terminate at the N th toss or earlier if |X − α| > 1/2N . The probability that player 1
wins is the probability that X ∈ [0, α), which is α. �
Remark. The solution shows that the answer is yes for all real α ∈ [0, 1]: there is

no need to assume that α is irrational.
Remark. Essentially the same idea appears in [New, Problem 8]:

Devise an experiment which uses only tosses of a fair coin, but which has
success probability 1/3. Do the same for any success probability p, 0 ≤ p ≤ 1.

Related question. Show that if α ∈ [0, 1] is not a dyadic rational (i.e., not a rational
number with denominator equal to a power of 2), the expected number of tosses in
the game in the solution equals 2.
Related question. For α ∈ [0, 1], let f(α) be the minimum over all games satisfying

the conditions of the problem (such that player 1 wins with probability α) of the
expected number of tosses in the game. (For some games, the expected number
may be infinite; ignore those.) Prove that if α ∈ [0, 1] is a rational number whose
denominator in lowest terms is 2m for some m ≥ 0, then f(α) = 2 − 1/2m−1. Prove
that if α is any other real number in [0, 1], then f(α) = 2. (This is essentially [New,
Problem 103].)

A5. (6, 1, 3, 0, 0, 0, 0, 1, 0, 2, 49, 137)
Let m be a positive integer and let G be a regular (2m+ 1)-gon inscribed

in the unit circle. Show that there is a positive constant A, independent
of m, with the following property. For any point p inside G there are two
distinct vertices v1 and v2 of G such that∣∣ |p− v1| − |p− v2|

∣∣ < 1
m
− A

m3
.

Here |s− t| denotes the distance between the points s and t.

Solution 1. The greatest distance between two vertices of G is w = 2 cos
(

π
4m+2

)
,

since these vertices with the center form an isosceles triangle with equal sides of length
1, with vertex angle 2πm/(2m + 1) and base angles π/(4m + 2). (See Figure 10.)
Hence for any vertices v1 and v2 of G, the triangle inequality gives ||p − v1| − |p −
v2|| ≤ |v1 − v2| ≤ w. Thus the 2m + 1 distances from p to the vertices lie in an
interval of length at most w. Let the distances be d1 ≤ d2 ≤ · · · ≤ d2m+1. Then∑2m

i=1(di+1 − di) = d2m+1 − d1 ≤ w, so di+1 − di ≤ w/(2m) for some i. It remains to
show that there exists A > 0 independent of m such that w/(2m) < 1/m−A/m3. In
fact, the Taylor expansion of cosx gives

w

2m
=

1
m

(
1− π2

2(4m+ 2)2
+ o(m−2)

)
=

1
m
− π2

32m3
+ o(m−3)

as m → ∞, so any positive A < π2/32 will work for all but finitely many m. We
can shrink A to make w/(2m) < 1/m − A/m3 for those finitely many m too, since
w/(2m) < 1/m for all m. �
Solution 2. We will prove an asymptotically stronger result, namely that for

a regular n-gon G inscribed in a unit circle and for any p in the closed unit disc,
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1

1

( )2
4 2

cos
�

m+

FIGURE 10.

there exist vertices v1, v2 of G such that ||p − v1| − |p − v2|| < π2/n2. Center the
polygon at (0, 0) and rotate to assume that p = (−r, 0) with 0 ≤ r ≤ 1. Let the two
vertices of G closest to (1, 0) be vi = (cos θi, sin θi) for i = 1, 2 where θ1 ≤ 0 ≤ θ2 and
θ2 = θ1 + 2π/n. Then

||p− v1| − |p− v2|| = |fr(θ1)− fr(θ2)|,

where

fr(θ) = |(−r, 0)− (cos θ, sin θ)| =
√

r2 + 2r cos θ + 1.

Reflecting if necessary, we may assume fr(θ1) ≥ fr(θ2). A short calculation (for
example using differentiation) shows that fr(θ) is decreasing on [0, π] and increasing
on [−π, 0]. Thus for fixed r, fr(θ1)−fr(θ2) is maximized when θ1 = 0 and θ2 = 2π/n.
Next we claim that fr(0)− fr(2π/n) is increasing with r, hence maximized at r = 1:
this is because if v′2 is the point on line segment pv1 with |p − v2| = |p − v′2|, then
as r increases, angle v2pv

′
2 of the isosceles triangle shrinks, making angle v2v

′
2p grow,

putting v′2 farther from v1, and fr(0)− fr(2π/n) = |v′2 − v1|. See Figure 11. Hence

||p− v1| − |p− v2|| ≤ f1(0)− f1

(
2π
n

)
= 2− 2 cos

(π
n

)
<

π2

n2
,

since f1(θ) = 2 cos(θ/2) for −π ≤ θ ≤ π, and since the inequality cosx > 1− x2/2 for
x ∈ (0, π/3] follows from the Taylor series of cosx.
In order to solve the problem posed, we must deal with the case n = 3, i.e., m = 1,

since the bound

||p− v1| − |p− v2|| ≤ 2− 2 cos
(π
3

)
= 1

is not quite good enough in that case. The proof shows, however, that equality holds
for the chosen v1 and v2 only when p is on the circle and diametrically opposite v1,
and in this case p is equidistant from the other two vertices. Hence the minimum of
||p−v1|−|p−v2|| over all choices of v1 and v2 is always less than 1, and by compactness
there exists A > 0 such that it is less than 1−A for all p in the disc, as desired. �
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v2

v′2 v1p

fr(2π/n)

FIGURE 11.
Geometric interpretation of fr(0)− fr(2π/n).

Remark. The π2/n2 improvement was first discovered by L. Crone and
R. Holzsager, [Mon4, Solution to 10269]. (We guess that their solution was similar
to ours.)

Stronger result. By considering the three vertices farthest from p instead of just
v1 and v2, one can improve this to (2/3)π2/n2. Moreover, (2/3)π2 cannot be replaced
by any smaller constant, even if one insists that n be odd and that p be in G.
First let us prove the improvement. As in Solution 2, assume that p = (−r, 0). The

vertex of G closest to (1, 0) is qθ = (cos θ, sin θ) for some θ ∈ [−π/n, π/n]. Reflecting
if necessary, we may assume θ ∈ [0, π/n]. Then fr(θ− 2π/n), fr(θ), and fr(θ+2π/n)
are among the distances from p to the vertices of G. We use a lemma that states that
for fixed θ′, θ′′ ∈ [−π, π], the function |fr(θ′) − fr(θ′′)| of r ∈ [0, 1] is increasing (or
zero if |θ′| = |θ′′|): to prove this, we may assume that 0 ≤ θ′ < θ′′ ≤ π and observe
that for fixed r ∈ (0, 1), the derivative

dfr(θ′)
dr

=
r + cos θ′√

(r + cos θ′)2 + sin2 θ′
,

equals the cosine of the angle q0pqθ′ , whose measure increases with θ′, so

dfr(θ′)
dr

− dfr(θ′′)
dr

> 0.
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If 0 ≤ θ ≤ π/(3n), then∣∣∣∣fr (θ − 2π
n

)
− fr

(
θ +

2π
n

)∣∣∣∣ ≤ ∣∣∣∣f1

(
θ − 2π

n

)
− f1

(
θ +

2π
n

)∣∣∣∣ (by the lemma)

=
∣∣∣∣2 cos(θ

2
− π

n

)
− 2 cos

(
θ

2
+

π

n

)∣∣∣∣
=
∣∣∣∣4 sin(θ

2

)
sin
(π
n

)∣∣∣∣
<
2π2

3n2
,

since 0 < sinx < x for 0 < x < π/2. If instead π/(3n) ≤ θ ≤ π/n, then∣∣∣∣fr (θ)− fr

(
θ − 2π

n

)∣∣∣∣ ≤ ∣∣∣∣f1 (θ)− f1

(
θ − 2π

n

)∣∣∣∣ (by the lemma)

=
∣∣∣∣4 sin( π

2n
− θ

2

)
sin
( π

2n

)∣∣∣∣
<
2π2

3n2
.

Thus there is always a pair of vertices of G whose distances to p differ by less than
(2/3)π2/n2.
Now let us show that the constant (2/3)π2 cannot be replaced by anything smaller,

even if p is required to be inside G. Without loss of generality, we may assume that the
regular n-gon G is inscribed in the circle x2+y2 = 1 and has one vertex at (cos θ, sin θ)
where θ = π/(3n). Take p = (−r, 0) where r = cos(π/n). Then r is the radius of the
circle inscribed in G, but since θ and −π do not differ by an odd multiple of π/n, the
point p lies strictly inside G.
Finally we show that for this choice of p, if v1 and v2 are distinct vertices of G, then

||p− v1| − |p− v2|| ≥ 2π2

3n2
−O

(
1
n4

)
.

Since fr(θ′) is a decreasing function of |θ′|, the distances from p to the vertices, in
decreasing order, are

fr(θ), fr(θ − 2π/n), fr(θ + 2π/n), fr(θ − 4π/n), fr(θ + 4π/n), . . . .

Since p is within 1 − cos(π/n) ≤ π2/(2n2) of (−1, 0), this sequence is approximated
by

f1(θ), f1(θ − 2π/n), f1(θ + 2π/n), f1(θ − 4π/n), f1(θ + 4π/n), . . . ,

with an error of at most π2/(2n2) for each term. The latter sequence is

2 cos
( π

6n

)
, 2 cos

(
5π
6n

)
, 2 cos

(
7π
6n

)
, 2 cos

(
11π
6n

)
, 2 cos

(
13π
6n

)
, . . . .

Hence the consecutive differences in the original sequence are within π2/n2 of the
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differences for the approximating sequence, which are of the form

2 cos
(
(6k − 5)π

6n

)
− 2 cos

(
(6k − 1)π

6n

)
= 4 sin

(
(6k − 3)π

6n

)
sin
(
2π
6n

)
= 4 sin

(
(6k − 3)π

6n

)(
2π
6n

)
−O

(
1
n3

)
or of the form

2 cos
(
(6k − 1)π

6n

)
− 2 cos

(
(6k + 1)π

6n

)
= 4 sin

(
6kπ
6n

)
sin
( π

6n

)
= 4 sin

(
kπ

n

)( π

6n

)
−O

(
1
n3

)
,

where 1 ≤ k ≤ n/2+O(1). If k ≥ 3, then bounding the sines from below by their values
at k = 3 and then applying sinx = x−O(x3) as x→ 0 shows that these differences in
the approximating sequence exceed 2π2

3n2 + π2

n2 so the corresponding differences in the
original sequence exceed 2π2

3n2 . For k < 3 (the first four differences), we forgo use of the
approximating sequence and instead observe that for r = cos(π/n) and fixed integer
j, Taylor series calculations give

fr

(
jπ

3n

)
= 2− (18 + j2)π2

36n2
+O

(
1
n4

)
,

which implies that the first four differences in the original sequence (between the terms
corresponding to j = 1, 5, 7, 11, 13) are at least

2π2

3n2
−O

(
1
n4

)
.

Literature note. For an introduction to Taylor series, see [Spv, Ch. 23].

A6. (3, 1, 0, 0, 0, 0, 0, 1, 0, 4, 49, 141)
Let α = 1 + a1x + a2x

2 + · · · be a formal power series with coefficients in
the field of two elements. Let

an =


1 if every block of zeros in the binary expansion of n

has an even number of zeros in the block,

0 otherwise.

(For example, a36 = 1 because 36 = 1001002, and a20 = 0 because 20 = 101002.)
Prove that α3 + xα+ 1 = 0.

Solution. It suffices to prove that α4 + xα2 + α = 0, since the ring of formal
power series over any field is an integral domain (a commutative ring with no nonzero
zerodivisors), and α �= 0. Since a2

i = ai for all i, and since cross terms drop out when
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we square in characteristic 2, we have

α2 =
∞∑
n=0

anx
2n

α4 =
∞∑
n=0

anx
4n, and

xα2 =
∞∑
n=0

anx
2n+1.

Let bn be the coefficient of xn in α4+ xα2+α. If n is odd, then the binary expansion
of n is obtained from that of (n − 1)/2 by appending a 1, an = a(n−1)/2, and
bn = a(n−1)/2 + an = 0. If n is divisible by 2 but not 4, then bn = an = 0, since
n ends with a block of one zero. If n is divisible by 4, then the binary expansion of
n is obtained from that of n/4 by appending two zeros, which does not change the
evenness of the block lengths, so an/4 = an, and bn = an/4 + an = 0. Thus bn = 0 for
all n ≥ 0, as desired. �
Remark. The fact that the coefficients of the algebraic power series α have a

simple description is a special case of a much more general result of Christol. Let
Fq[[x]] denote the ring of formal power series over the finite field Fq with q elements.
Christol gives an automata-theoretic condition on a series β ∈ Fq[[x]] that holds if and
only if β satisfies an algebraic equation with coefficients in Fq[x]: see [C] and [CKMR].
For another application of Christol’s result, and a problem similar to this one, see the
remark following 1992A5. See Problem 1990A5 for a problem related to automata.

B1. (144, 10, 0, 0, 0, 0, 0, 0, 0, 0, 42, 3)
A dart, thrown at random, hits a square target. Assuming that any

two parts of the target of equal area are equally likely to be hit, find the
probability that the point hit is nearer to the center than to any edge.
Express your answer in the form (a

√
b + c)/d, where a, b, c, d are positive

integers.

Answer. The probability is (4
√
2− 5)/3

FIGURE 12.
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Solution. We may assume that the dartboard has corners at (±1,±1). A
point (x, y) in the square is closer to the center than to the top edge if and only if√

x2 + y2 ≤ 1−y, which is equivalent to x2+y2 ≤ (1−y)2, and to y ≤ (1−x2)/2. This
describes a region below a parabola. The region consisting of points in the board closer
to the center than to any edge is the intersection of the four symmetrical parabolic
regions inside the board: it is union of eight symmetric copies of the region A bounded
by x ≥ 0, y ≥ x, y ≤ (1− x2)/2. (See Figure 12.) A short calculation shows that the
bounding curves y = x and y = (1−x2)/2 intersect at (x, y) = (

√
2−1,√2−1). Thus

the desired probability is

8Area(A)
Area(board)

= 2Area(A) = 2
∫ √

2−1

0

(
1− x2

2
− x

)
dx =

4
√
2− 5
3

. �

Related question. If a billiard table had the same shape as the region of points of
the square closer to the center than to any edge, and a ball at the center were pushed
in some direction not towards the corners, what would its path be?

B2. (49, 44, 17, 10, 0, 0, 0, 0, 3, 4, 41, 31)
Let S be a nonempty set with an associative operation that is left and

right cancellative (xy = xz implies y = z, and yx = zx implies y = z).
Assume that for every a in S the set { an : n = 1, 2, 3, . . . } is finite. Must S

be a group?

Answer. Yes, S must be a group.

Solution. Choose a ∈ S. The finiteness hypothesis implies that some term in
the sequence a, a2, a3, . . . is repeated infinitely often, so we have am = an for some
integers m,n ≥ 1 with m − n ≥ 2. Let e = am−n. For any x ∈ S, anex = amx, and
cancelling an = am shows that ex = x. Similarly xe = x, so e is an identity. Now
aam−n−1 = am−n = e and am−n−1a = am−n = e, so am−n−1 is an inverse of a. Since
S is associative and has an identity, and since any a ∈ S has an inverse, S is a group. �

B3. (36, 4, 18, 48, 4, 10, 3, 1, 4, 1, 9, 61)
Let f be a function on [0,∞), differentiable and satisfying

f ′(x) = −3f(x) + 6f(2x)

for x > 0. Assume that |f(x)| ≤ e−
√
x for x ≥ 0 (so that f(x) tends rapidly to

0 as x increases). For n a nonnegative integer, define

µn =
∫ ∞

0

xnf(x) dx

(sometimes called the nth moment of f).

a. Express µn in terms of µ0.

b. Prove that the sequence {µn3n/n!} always converges, and that the limit
is 0 only if µ0 = 0.

Answer to part a. For each n ≥ 0, µn = n!
3n (
∏n

m=1(1− 2−m))−1
µ0.
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Solution. a. As x→∞, f(x) tends to 0 faster than any negative power of x, so
the integral defining µn converges. Multiply the functional equation by xn for some
n ≥ 1 and integrate from 0 to some finite B > 0:∫ B

0

xnf ′(x) dx = −3
∫ B

0

xnf(x) dx+ 6
∫ B

0

xnf(2x) dx.

Using integration by parts [Spv, Ch. 18, Theorem 1] on the left, and the substitution
u = 2x on the last term converts this into

xnf(x)
∣∣∣B
0
− n

∫ B

0

f(x)xn−1 dx = −3
∫ B

0

xnf(x) dx+
6

2n+1

∫ B/2

0

unf(u) du.

Taking limits as B →∞ yields

−nµn−1 = −3µn +
6

2n+1
µn,

so
µn =

n

3
(1− 2−n)−1µn−1

for all n ≥ 1. By induction, we obtain

µn =
n!
3n

(
n∏

m=1

(1− 2−m)

)−1

µ0.

b. Since
∑∞

m=1 2
−m converges,

∏∞
m=1(1− 2−m) converges to some nonzero limit L,

and

µn
3n

n!
=

(
n∏

m=1

(1− 2−m)

)−1

µ0 → L−1µ0

as n→∞. This limit L−1µ0 is finite, and equals zero if and only if µ0 = 0. �
Remark. We show that nonzero functions f(x) satisfying the conditions of the

problem do exist. Given that f(x) tends to zero rapidly as x→∞, one expects f(2x)
to be negligible compared to f(x) for large x, and hence one can guess that f(x) can
be approximated by a solution to y′ = −3y, for example e−3x. But then the error in
the differential equation f ′(x) = −3f(x) + 6f(2x) is of order e−6x as x→∞, leading
one to guess that e−3x + a1e

−6x will be a better approximation, and so on, finally
leading one to guess

f(x) = e−3x + a1e
−6x + a2e

−12x + a3e
−24x + · · · , (1)

where the coefficients ai are to be solved for. Let a0 = 1. If we differentiate (1) term
by term, temporarily disregarding convergence issues, then for k ≥ 1, the coefficient
of e−3·2kx in the expression f ′(x) + 3f(x)− 6f(2x) is −3 · 2kak + 3ak − 6ak−1. If this
is to be zero, then ak = −2

2k−1
ak−1.

All this so far has been motivation. Now we define the sequence a0, a1, . . . by
a0 = 1 and ak = −2

2k−1
ak−1 for k ≥ 1, so

ak =
(−2)n

(2− 1)(22 − 1) · · · (2k − 1) ,



Solutions: The Fiftieth Competition (1989) 111

and define f(x) by (1). The series
∑∞

k=0 |ak| converges by the Ratio Test [Spv,
Ch. 22, Theorem 3], so (1) converges to a continuous function on [0,∞). Moreover,
|ake−3·2kx| ≤ |ak| for all complex x with Re(x) > 0, so by the Weierstrass M -test and
Weierstrass’s Theorem [Ah, pp. 37, 176], (1) converges to a holomorphic function in
this region. In particular, f(x) is differentiable on (0,∞), and can be differentiated
term by term, so f ′(x) = −3f(x) + 6f(2x) holds.
Finally, we will show that if ε > 0 is sufficiently small, then εf(x), which still satisfies

the differential equation, now also satisfies |εf(x)| ≤ e−
√
x. Since

f(x) = O(e−3x + e−6x + e−12x + · · · ) = O(e−3x) = o(e−
√
x)

as x → ∞, we have |f(x)| ≤ e−
√
x for all x greater than some x0. Let M =

supx∈[0,x0]
|f(x)|
e−

√
x . If ε ∈ (0, 1) is chosen so that εM ≤ 1, then |εf(x)| ≤ e−

√
x both for

x ∈ [0, x0] and for x ∈ (x0,∞), as desired.
B4. (52, 7, 0, 0, 0, 0, 0, 0, 0, 1, 62, 77)
Can a countably infinite set have an uncountable collection of nonempty

subsets such that the intersection of any two of them is finite?

Answer. Yes.

Solution 1. The set Q of rational numbers is countably infinite. For each real
number α, choose a sequence of distinct rational numbers tending to α, and let Sα

be the set of terms. If α, β are distinct real numbers, then Sα ∩ Sβ is finite, since
otherwise a sequence obtained by listing its elements would converge to both α and β.
In particular, Sα �= Sβ . Thus {Sα : α ∈ R } is an uncountable collection of nonempty
subsets of Q with the desired property. �
Remark. A minor variant on this solution would be to take the (countable) set of

real numbers with terminating decimal expansions, and for each of the (uncountably
many) irrational numbers a, let Sa be the set of decimal approximations to a obtained
by truncating the decimal expansion at some point.

Solution 2. Let A denote the countably infinite set of finite strings of 0’s and 1’s.
For each infinite string a = a1a2a3 . . . of 0’s and 1’s, let Sa = { a1a2 . . . an : n ≥ 1 }
denote the set of finite initial substrings. There are uncountably many a, and if
a = a1a2 . . . and b = b1b2 . . . are distinct infinite strings, say with am �= bm, then all
strings in Sa ∩ Sb have length less than m, so Sa ∩ Sb is finite. �
Solution 3. The set Z2 of lattice points in the plane is countably infinite. For

each real α, let Sα denote the set of points in Z2 whose distance to the line y = αx is
at most 1. If α, β are distinct real numbers, then Sα ∩ Sβ is a set of lattice points in
a bounded region, so it is finite. �
Solution 4. Let A be a disjoint union of a countably infinite number of countably

infinite sets, so A is countably infinite. Call a collection of subsets C of A good if it
consists of an infinite number of countably infinite subsets of A, and S ∩T is finite for
any distinct S, T ∈ C. By construction of A, there exists a good collection (of disjoint
subsets). Order the good collections by inclusion. For any chain of good collections,
the union is also a good collection. Hence by Zorn’s Lemma, there exists a maximal
good collection Cmax.
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Suppose Cmax were countable, say Cmax = {S1, S2, . . . }. Because Sn is infinite while
Si ∩ Sn is finite for i �= n, there exists bn ∈ Sn −

⋃n−1
i=1 Si for each n ≥ 1. For

m < n, bm ∈ Sm but bn �∈ Sm, so bm �= bn, and the set B = {b1, b2, . . . } is countably
infinite. Moreover, bN �∈ Sn for N > n, so B ∩ Sn is finite. Hence {B,S1, S2, . . . } is a
good collection, contradicting the maximality of Cmax. Thus Cmax is uncountable, as
desired. �
Remark. This question appears as [New, Problem 49], where the countably infinite

set is taken to be Z.
Remark (Zorn’s Lemma). A chain in a partially ordered set (S,≤) is a subset

in which every two elements are comparable. Zorn’s Lemma states that if S is a
nonempty partially ordered set such that every chain in S has an upper bound in
S, then S contains a maximal element, i.e., an element m such that the only element
s ∈ S satisfying s ≥ m ism itself. Zorn’s Lemma is equivalent to the Axiom of Choice,
which states that the product of a family of nonempty sets indexed by a nonempty
set is nonempty. It is also equivalent to the Well Ordering Principle, which states
that every set admits a well ordering. (A well ordering of a set S is a total ordering
such that every nonempty subset A ⊆ S has a least element.) See pages 151 and 196
of [En].

Related question. Show that the following similar question, a restatement of [Hal,
Problem 11C], has a negative answer:

Can a countably infinite set have an uncountable collection of nonempty
subsets such that the intersection of any two of them has at most 1989
elements?

B5. (17, 17, 1, 1, 0, 0, 0, 1, 17, 29, 37, 79)
Label the vertices of a trapezoid T (quadrilateral with two parallel sides)

inscribed in the unit circle as A, B, C, D so that AB is parallel to CD

and A, B, C, D are in counterclockwise order. Let s1, s2, and d denote
the lengths of the line segments AB, CD, and OE, where E is the point
of intersection of the diagonals of T , and O is the center of the circle.
Determine the least upper bound of (s1 − s2)/d over all such T for which
d �= 0, and describe all cases, if any, in which it is attained.

Answer. The least upper bound of (s1 − s2)/d equals 2. We have (s1 − s2)/d = 2
if and only if the diagonals BD and AC are perpendicular and s1 > s2.

Solution 1. (See Figure 13.) We may assume that AB and CD are horizontal,
with AB below CD. Then by symmetry, E = (0, e) for some e, and d = |e|. The
diagonal AC has the equation y = mx + e for some slope m > 0. Substituting
y = mx+ e into x2 + y2 = 1 results in the quadratic polynomial

q(x) = x2 + (mx+ e)2 − 1 = (m2 + 1)x2 + (2me)x+ (e2 − 1)
whose zeros are the x-coordinates of A and C, which also equal −s1/2 and s2/2,
respectively. Hence s1 − s2 is −2 times the sum of the zeros of q(x), so

s1 − s2 = −2
( −2me

m2 + 1

)
. (1)
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If d �= 0, then
s1 − s2

d
= 2
(

2m
m2 + 1

)
sgn(e).

Now (m− 1)2 ≥ 0 with equality if and only if m = 1, so m2 + 1 ≥ 2m > 0. Thus

s1 − s2

d
≤ 2,

with equality if and only if m = 1 and e > 0, i.e., if the diagonals BD and AC are
perpendicular and s1 > s2. (The latter is equivalent to e > 0 by (1).) �

Solution 2. (See Figure 13.) Again assume that AB and CD are horizontal. The
x-coordinates of B and D are s1/2 and −s2/2, so their midpoint M has x-coordinate
(s1 − s2)/4. Since line OM is the perpendicular bisector of BD, ∠OME is a right
angle, andM lies on the circle with diameter OE. For fixed d = OE, the x-coordinate
(s1 − s2)/4 is maximized when M is at the rightmost point of this circle: then
(s1 − s2)/4 = d/2 and (s1 − s2)/d = 2. This happens if and only if BD has slope −1
and s1 > s2, or equivalently if and only if the diagonals BD and AC are perpendicular
and s1 > s2. �

D C

A B

O

M
E

d

s1

s2

FIGURE 13.

Literature note. For further discussion of this problem, including more solutions,
see [Lar2, pp. 33–38].

B6. (0, 1, 1, 1, 0, 0, 0, 2, 0, 11, 35, 148)
Let (x1, x2, . . . , xn) be a point chosen at random from the n-dimensional

region defined by 0 < x1 < x2 < · · · < xn < 1. Let f be a continuous function
on [0, 1] with f(1) = 0. Set x0 = 0 and xn+1 = 1. Show that the expected
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value of the Riemann sum
n∑

i=0

(xi+1 − xi)f(xi+1)

is
∫ 1

0
f(t)P (t) dt, where P is a polynomial of degree n, independent of f , with

0 ≤ P (t) ≤ 1 for 0 ≤ t ≤ 1.

Answer. We will show that the result holds with P (t) = 1− (1− t)n.

Solution 1. We may drop the i = n term in the Riemann sum, since f(xn+1) =
f(1) = 0. The volume of the region 0 < x1 < · · · < xn < 1 in Rn is∫ 1

0

∫ xn

0

· · ·
∫ x2

0

dx1 dx2 · · · dxn = 1/n!.

Therefore the expected value of the Riemann sum is E =
(∑n−1

i=0 Mi

)
/(1/n!), where

Mi =
∫ 1

0

∫ xn

0

· · ·
∫ x2

0

(xi+1 − xi)f(xi+1) dx1 · · · dxn

=
∫ 1

0

∫ xn

0

· · ·
∫ xi+1

0

(xi+1 − xi)
xi−1
i

(i− 1)!f(xi+1) dxi dxi+1 · · · dxn

=
∫ 1

0

∫ xn

0

· · ·
∫ xi+2

0

(
xi+1

xii+1

i!
− xi+1

i+1

(i+ 1) · (i− 1)!

)
f(xi+1) dxi+1 · · · dxn

=
∫ 1

0

∫ xn

0

· · ·
∫ xi+2

0

xi+1
i+1

(i+ 1)!
f(xi+1) dxi+1 · · · dxn(

since
1
i
− 1

i+ 1
=

1
i(i+ 1)

)
=
∫ 1

0

∫ 1

xi+1

∫ xn

xi+1

∫ xi+3

xi+1

xi+1
i+1

(i+ 1)!
f(xi+1) dxi+2 · · · dxn dxi+1

=
∫ 1

0

(1− xi+1)n−(i+1)

(n− (i+ 1))!
xi+1
i+1

(i+ 1)!
f(xi+1) dxi+1

=
1
n!

∫ 1

0

(
n

i+ 1

)
(1− xi+1)n−(i+1)xi+1

i+1f(xi+1) dxi+1.

Therefore

E =
∫ 1

0

(
n−1∑
i=0

(
n

i+ 1

)
(1− xi+1)n−(i+1)xi+1

i+1

)
f(xi+1) dxi+1

=
∫ 1

0

 n∑
j=1

(
n

j

)
(1− t)n−jtj

 f(t) dt (we set j = i+ 1 and t = xi+1)

=
∫ 1

0

(1− (1− t)n)f(t) dt,

since the sum is the binomial expansion of ((1− t) + t)n except that the j = 0 term,
which is (1 − t)n, is missing. Hence E =

∫ 1

0
f(t)P (t) dt where P (t) = 1 − (1 − t)n.

Clearly 0 ≤ P (t) ≤ 1 for 0 ≤ t ≤ 1. �
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Solution 2. Fix n ≥ 0 and let (y1, . . . , yn) be chosen uniformly from [0, 1]n. Fix
t ∈ [0, 1], and let En(t) denote the expected value of

Rn = t−max ({0} ∪ ({y1, . . . , yn} ∩ [0, t])) .
Let (x1, . . . , xn) be the permutation of (y1, . . . , yn) such that x1 ≤ · · · ≤ xn. The
distribution of (x1, . . . , xn) equals the distribution in the problem. Define

S =
n−1∑
i=0

(yi+1 − zi+1)f(yi+1)

where zi+1 is the largest yj less than yi+1, or 0 if no such yj exists. The terms in S

are a permutation of those in the original Riemann sum (ignoring the final term in the
Riemann sum, which is zero), so the expected values of the Riemann sum and of S are
equal. Each term in S has expected value

∫ 1

0
En−1(t)f(t) dt, since the expected value

of yi+1 − zi+1 conditioned on the event yi+1 = t for some t ∈ [0, 1] is the definition
of En−1(t) using (yj)j �=i+1 ∈ [0, 1]n−1. Therefore the expected value of the Riemann
sum is n

∫ 1

0
En−1(t)f(t) dt.

It remains to determine En(t) for n ≥ 0. Let yn+1 be chosen uniformly in [0, 1],
independently of the y1, . . . , yn in the definition of En(t). Then En(t) equals the
probability that yn+1 is in [0, t] and is closer to t than any other yj , since this
probability conditioned on a choice of y1, . . . , yn equals Rn. On the other hand, this
probability equals (1 − (1 − t)n+1)/(n + 1), since the probability that at least one of
y1, . . . , yn+1 lies in [0, t] equals 1− (1− t)n+1, and conditioned on this, the probability
that the yj in [0, t] closest to t is yn+1 is 1/(n + 1), since all possible indices for this
closest yj are equally likely. Thus En(t) = (1− (1− t)n+1)/(n+ 1), and we may take
P (t) = nEn−1(t) = 1− (1− t)n. �
Literature note. For more on Riemann sums, see [Spv, Ch. 13, Appendix 1].
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The Fifty-First William Lowell Putnam Mathematical Competition
December 1, 1990

A1. (150, 9, 1, 0, 0, 0, 0, 0, 1, 1, 6, 33)
Let

T0 = 2, T1 = 3, T2 = 6,

and for n ≥ 3,

Tn = (n+ 4)Tn−1 − 4nTn−2 + (4n− 8)Tn−3.

The first few terms are

2, 3, 6, 14, 40, 152, 784, 5168, 40576, 363392.

Find, with proof, a formula for Tn of the form Tn = An + Bn, where (An)
and (Bn) are well-known sequences.

Answer. We have Tn = n! + 2n.

Motivation. The hardest part of this problem is guessing the formula. There are
not many “well-known sequences” to guess. Observe that the terms are becoming
divisible by high powers of 2 (but not any other prime), and the ratio of the last two
terms given is roughly 8, and the ratio of the previous two is roughly 7.

Solution. The formula Tn = n! + 2n can be verified by induction.
Alternatively, set tn = n! + 2n. Clearly t0 = 2 = T0, t1 = 3 = T1 and t2 = 6 = T2.

Also,
tn − ntn−1 = 2n − n2n−1.

Now 2n and n2n−1 are both solutions of the linear recursion

fn − 4fn−1 + 4fn−2 = 0; (1)

this follows from direct substitution. Since tn − ntn−1 is a linear combination of
solutions to (1), it must also be a solution. Hence

(tn − ntn−1)− 4(tn−1 − (n− 1)tn−2) + 4(tn−2 − (n− 2)tn−3) = 0,

or equivalently,
tn = (n+ 4)tn−1 − 4ntn−2 + (4n− 8)tn−3.

Thus tn = Tn, because they are identical for n = 0, 1, 2 and satisfy the same third-order
recursion (1) for n ≥ 3. �
Remark. Let

{
t
(1)
n

}
n≥1

,
{
t
(2)
n

}
n≥1

, . . . ,
{
t
(m)
n

}
n≥1

be sequences, each of one of

the following forms:

(i) {αn}n≥1 for some α ∈ C,

(ii) {P (n)}n≥1 for some polynomial P ∈ C[n],

(iii) {(an+ b)!}n≥1 for some integers a, b ≥ 0.

Let Q ∈ C[x1, . . . , xm] be a polynomial, and define un = Q
(
t
(1)
n , . . . , t

(m)
n

)
for n ≥ 1.

Then one can show that the sequences {un}n≥1, {un+1}n≥1, {un+2}n≥1, . . . , thought
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of as functions of n, lie in a finitely generated C[n]-submodule of the C[n]-module of all
sequences of complex numbers. Therefore {un} satisfies a nontrivial linear recursion
with polynomial coefficients. The reader may enjoy finding this recursion explicitly
for sequences such as (n!)2 + 3n or 2nn! + Fn where Fn is the nth Fibonacci number,
defined at the end of 1988A5. Problem 1984B1 [PutnamII, p. 44] is a variation on
this theme:

Let n be a positive integer, and define

f(n) = 1! + 2! + · · ·+ n!.

Find polynomials P (x) and Q(x) such that

f(n+ 2) = P (n)f(n + 1) +Q(n)f(n),

for all n ≥ 1.

A2. (63, 25, 16, 4, 0, 0, 0, 4, 5, 6, 21, 57)
Is
√
2 the limit of a sequence of numbers of the form 3

√
n − 3

√
m, (n,m =

0, 1, 2, . . . )?

Answer. Yes. In fact, every real number r is a limit of numbers of the form 3
√
n− 3
√
m.

Solution 1. By the binomial expansion,

3
√
n+ 1− 3

√
n = n1/3

(
1 +

1
n

)1/3

− n1/3 = n1/3

(
1 +O

(
1
n

))
− n1/3 = O(n−2/3)

so 3
√
n+ 1− 3

√
n→ 0 as n→∞. (Alternatively, one could use

3
√
n+ 1− 3

√
n =

1
3
√
(n+ 1)2 + 3

√
n(n+ 1) + 3

√
n2

= O(n−2/3)

or
3
√
n+ 1− 3

√
n =

1
3

∫ n+1

n

x−2/3 dx = O(n−2/3),

or the Mean Value Theorem applied to the difference quotient
3√n+1− 3√n
(n+1)−n .)

If m > r3, then the numbers

0 = 3
√
m− 3

√
m < 3

√
m+ 1− 3

√
m < · · · < 3

√
m+ 7m− 3

√
m = 3

√
m

partition the interval [0, 3
√
m], containing r, in such a way that the largest subinterval

is of size O(m−2/3). By taking m sufficiently large, one can find a difference among
these that is arbitrarily close to r. �
Remark. We show more generally, that for any sequence {an} with an → +∞ and

an+1 − an → 0, the set S = { an − am : m,n ≥ 0 } is dense in R. Given r ≥ 0 and
ε > 0, fix m such that |aM+1 − aM | < ε for all M ≥ m. If n is the smallest integer
≥ m with an ≥ am + r, then an < am + r+ ε, so an − am is within ε of r. This shows
that S is dense in [0,∞), and by symmetry S is dense also in (−∞, 0].

Remark. Let f(x) be a function such that f(x)→ +∞ and f ′(x)→ 0 as x→ +∞.
The Mean Value Theorem shows that the hypotheses of the previous remark are
satisfied by the sequence an = f(n).
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Solution 2. Fix r ∈ R and ε > 0. Then for sufficiently large positive integers n,

(n+ r)3 − (n+ r − ε)3 = 3n2ε+O(n) > 1,

so (n+ r − ε)3 ≤ �(n+ r)3� ≤ (n+ r)3, and 3
√�(n+ r)3� is within ε of n+ r. Hence

lim
n→∞

(
3
√
�(n+ r)3� − 3

√
n
)
= r. �

Solution 3. As in Solution 1, 3
√
n+ 1 − 3

√
n → 0 as n → ∞, so the set

S = { 3
√
n− 3

√
m} contains arbitrarily small positive numbers. Also S is closed under

multiplication by positive integers k since k( 3
√
n − 3

√
m) = 3

√
k3n − 3

√
k3m. Any set

with the preceding two properties is dense in [0,∞), because any finite open interval
(a, b) in [0,∞) contains a multiple of any element of S ∩ (0, b− a). By symmetry S is
dense in (−∞, 0] too. �
Solution 4. Let bn = (n 3

√
5 mod 1) ∈ [0, 1]. As in the remark following 1988B3,

{bn} is dense in [0, 1]. Thus given ε > 0, we can find n such that n 3
√
5− r is within ε

of some integer m ≥ 0. Then 3
√
5n3 − 3

√
m3 = n 3

√
5−m is within ε of r. �

A3. (4, 4, 4, 0, 0, 0, 0, 0, 22, 36, 76, 55)
Prove that any convex pentagon whose vertices (no three of which are

collinear) have integer coordinates must have area ≥ 5/2.

Solution. A lattice polygon is a plane polygon whose vertices are lattice points,
i.e., points with integer coordinates. The area of any convex lattice polygon has area
equal to half an integer: this follows from Pick’s Theorem mentioned in the second
remark below; alternatively, by subdivision one can reduce to the case of a triangle,
in which case the statement follows from the first remark below.
Consider a convex lattice pentagon ABCDE of minimal area. Since the area is

always half an integer, the minimum exists. If the interior of side AB contains a lattice
point F , then AFCDE is a convex lattice pentagon with smaller area, contradicting
the choice of ABCDE. (As is standard, vertices are listed in order around each
polygon.) Applying this argument to each side, we may assume that all boundary
lattice points are vertices.
Separate the vertices into four classes according to the parity of their coordinates.

By the Pigeonhole Principle, one class must contain at least two vertices. The midpoint
M between two such vertices has integer coordinates. By the previous paragraph, these
two vertices cannot form a side of the polygon. Also, the pentagon is convex, so M

is in the interior of the pentagon. Connecting M to the vertices divides the polygon
into 5 triangles, each of area at least 1/2, so the whole polygon has area at least 5/2. �
Remark. The bound 5/2 cannot be improved: the polygon with vertices (0, 0),

(1, 0), (2, 1), (1, 2), (0, 1) is convex and has area 5/2 (see Figure 14).

Remark. The area of a plane triangle with vertices (x1, y1), (x2, y2), (x3, y3) equals

1
2

∣∣∣∣∣∣det
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
In particular, if xi, yi ∈ Z, the area is half an integer.
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x

y

FIGURE 14.
A convex pentagon with area 5/2 whose vertices have integer coordinates.

For a formula for the volume of an n-dimensional simplex in Rn, see Solution 5 to
1993B5.

Remark (Pick’s Theorem). Given a lattice polygon, let i be the number of
internal lattice points and let b be the number of boundary lattice points. Pick’s
Theorem [Lar1, p. 68] states that the area of the polygon equals i+ b/2− 1.
In the previous solution, we could have used Pick’s Theorem in two places: in the

first paragraph to prove that a lattice polygon has half-integer area (even if it is not
convex), and as a substitute for the last sentence, using i ≥ 1 and b = 5.

Related question. Problem 1981A6 [PutnamII, p. 37] is similar:

Suppose that each of the vertices of
�

ABC is a lattice point in the (x, y)-plane
and that there is exactly one lattice point P in the interior of the triangle.
The line AP is extended to meet BC at E. Determine the largest possible
value for the ratio of the lengths of segments |AP |/|PE|.

Here is a solution to 1981A6 using Pick’s Theorem. (See [PutnamII, p. 118] for a
non-Pick solution.)
We may reduce to the case where BC has no lattice points on it other than B, C,

and possibly E, by replacing the base BC with the shortest segment along it with
lattice endpoints and containing E in its interior.
Case 1: E is a lattice point. Then the reflection of E across P is also a lattice point,

so it must coincide with A, and |AP |/|PE| = 1.
Case 2: E is not a lattice point. Without loss of generality (by applying an affine

transformation preserving the lattice), we may assume B = (0, 0) and C = (1, 0). If
A = (x, y), y > 0, then x �= 0, 1, and by Pick’s Theorem,

y = 2 +#{boundary lattice points} − 2
= d+ e+ 1

where d = gcd(x, y), e = gcd(1 − x, y). Since d and e are relatively prime, de divides
y, so de ≤ d+ e+ 1, or equivalently (d− 1)(e− 1) ≤ 2. We have several subcases:
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• If d = 1, then y = 2 + e is divisible by e, so e = 1 or 2. If e = 1, then y = 2, and
the ratio |AP |/|PE| is 2. If e = 2, then y = 3, and the ratio is 3.

• If e = 1, then essentially the same argument gives a ratio of 2 or 3.

• The case d = e = 2 is not allowed, since d and e are coprime.

• If d = 3 and e = 2, then y = 6, giving a ratio of 5.

• If d = 2 and e = 3, then the ratio is also 5.

Hence the maximum is 5. This argument can be refined to show that equality is
achieved only for one triangle (up to automorphisms of the plane preserving lattice
points).

Remark. The group of linear transformations of the plane preserving the lattice
points and fixing the origin is the group GL2(Z) defined in the introduction. It is
important in number theory and related fields.

Remark. Fix integers d ≥ 2 and k ≥ 1. It follows easily from [He] that up to the
action of GLd(Z) and translation by lattice points, there are only finitely many convex
lattice polytopes in Rn having exactly k interior lattice points. For d = 2 and k = 1,
we get 16 polygons; see [PRV] for a figure showing all of them. Five of these 16 are
triangles, and checking each case gives another proof that |AP |/|PE| ≤ 5, and that
equality is possible for only one of the five triangles.

A4. (44, 7, 6, 6, 0, 0, 0, 0, 32, 15, 30, 61)
Consider a paper punch that can be centered at any point of the plane

and that, when operated, removes from the plane precisely those points
whose distance from the center is irrational. How many punches are needed
to remove every point?

Answer. Three punches are needed.

Solution. Punches at two points P and Q are not enough to remove all points,
because if r is any rational number exceeding PQ/2, the circles of radius r centered
at P and Q intersect in at least one point R, and R is not removed by either punch.
We next show that three carefully chosen punches suffice.

Proof 1: Existential. Punch twice, at distinct centers. Since each punch leaves
countably many circles, and any two distinct circles intersect in at most two points,
the two punches leave behind a countable set. Consider all circles with rational radii
centered at points of this set. Their intersections with a fixed line L form a countable
set S. A point of L− S is at an irrational distance from all unpunched points; apply
the third punch there. �
Remark. The fact that the plane is not a countable union of circles can also be

deduced from measure theory: a circle (without its interior) in the plane has measure
zero, and a countable union of measure zero sets still has measure zero, but the entire
plane has infinite measure. See [Ru] for more on measure theory.

Proof 2: Constructive. Choose α ∈ R such that α2 is irrational, for example α = 3
√
2.

Use punches centered at A = (−α, 0), B = (0, 0), and C = (α, 0). If P = (x, y) is any
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point,

AP 2 + CP 2 − 2BP 2 = (x+ α)2 + y2 + (x− α)2 + y2 − 2(x2 + y2) = 2α2

is irrational, so AP , BP , CP cannot all be rational. Hence all P get removed. �
Remark. The motivation for taking AP 2 + CP 2 − 2BP 2 is that it is the linear

combination which eliminates the terms involving x or y.

Remark. Both proofs easily generalize to prove the same result where the punch
removes only those points whose distance from the center is transcendental. Recall
that a real or complex number α is said to be algebraic if α is a zero of a nonzero
polynomial with rational coefficients, and α is said to be transcendental otherwise. In
Proof 1, observe that the set of real algebraic numbers is countable. In Proof 2, simply
take α transcendental.

Remark. Essentially the same question appeared as [New, Problem 28].

Related question. There are many interesting questions concerning distances
between points in a subset of the plane. For example, for any set of n points, in
the plane, Erdős [Er], [Hon2, Ch. 12] proved that

• the number of different distances produced must be at least √n− 3/4− 1/2,
• the smallest distance produced cannot occur more often than 3n− 6 times,
• the greatest distance produced cannot occur more often than n times,

• no distance produced can occur more than 2−1/2n3/2 + n/4 times.

Also, Problem 5 on the 1987 International Mathematical Olympiad [IMO87] asks

Let n be an integer greater than or equal to 3. Prove that there is a set of n
points in the plane such that the distance between any two points is irrational
and each set of three points determines a nondegenerate triangle with rational
area.

A5. (29, 5, 0, 0, 0, 0, 0, 0, 1, 0, 58, 108)
If A and B are square matrices of the same size such that ABAB = 0,

does it follow that BABA = 0?

Answer. No.

Solution 1. Direct multiplication shows that the 3× 3 matrices

A =

0 0 1
0 0 0
0 1 0

 , B =

0 0 1
1 0 0
0 0 0

 (1)

give a counterexample. �
Solution 2. A more enlightening way to construct a counterexample is to use

a transition diagram, as in the following example. Let e1, e2, e3, e4 be a basis of a
four-dimensional vector space. Represent the matrices as in Figure 15. For example,
the arrow from e4 to e3 labelled B indicates that Be4 = e3; the arrow from e1 to 0
indicates that Ae1 = 0. Then it can be quickly checked that ABAB annihilates the
four basis vectors, but BABAe4 = e1. (Be careful with the order of multiplication
when checking!) �
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✧✦
�✥

e2

A B A

✧✦
�✥

0
B

BA

✧✦
�✥

e4 ✧✦
�✥

✧✦
�✥

B
e1

AA
e3

B

FIGURE 15.
Schematic representation of counterexample in Solution 2 to 1990A5. Alternatively, a
transition diagram for a finite automaton.

Remark. The counterexample of Solution 1 also can be obtained from a transition
diagram.

Remark. There are no 1× 1 or 2× 2 counterexamples. The 1× 1 case is clear. For
the 2× 2 case, observe that ABAB = 0 implies B(ABAB)A = 0, and hence BA is
nilpotent. But if a 2× 2 matrix M is nilpotent, its characteristic polynomial is x2, so
M2 = 0 by the Cayley-Hamilton Theorem [Ap2, Theorem 7.8]. Thus BABA = 0.

Remark. For any n ≥ 3, there exist n × n counterexamples: enlarge the matrices
in (1) by adding rows and columns of zeros.

Stronger result. Here we present a conceptual construction of a counterexample,
requiring essentially no calculations. Define a word to be a finite sequence of A’s and
B’s. (The empty sequence ∅ is also a word.) Let S be a finite set of words containing
BABA and its “right subsequences” ABA, BA, A, ∅, but not containing any word
having ABAB as a subsequence. Consider a vector space with basis corresponding
to these words (i.e., eBABA, eABA, e∅, etc.). Let A be the linear transformation
mapping ew to eAw if Aw ∈ S and to 0 otherwise. Define a linear transformation
B similarly. Then ABAB = 0 but BABA �= 0. (This gives a very general way of
dealing with any problem of this type.)

Remark. To help us find a counterexample, we imposed the restriction that each of
A and B maps each standard basis vector ei to some ej or to 0. With this restriction,
the problem can be restated in terms of automata theory:

Does there exist a finite automaton with a set of states Σ = {0, e1, e2, . . . , en}
in which all states are initial states and all but 0 are final states, and a set
of two productions {A,B} each mapping 0 to 0, such that the language it
accepts contains ABAB but not BABA?

See Chapter 3 of [Sa] for terminology. The language accepted by such a finite
automaton is defined as the set of words in A and B that correspond to a sequence of
productions leading from some initial state to some final state. Technically, since our
finite automaton does not have a unique initial state, it is called nondeterministic,
even though each production maps any given state to a unique state. (Many
authors [HoU, p. 20] do not allow multiple initial states, even in nondeterministic
finite automata; we could circumvent this by introducing a new artificial initial state,
with a new nondeterministic production mapping it to the desired initial states.) One
theorem of automata theory [Sa, Theorem 3.3] is that any language accepted by a
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nondeterministic finite automaton is also the language accepted by some deterministic
finite automaton.
Many lexical scanners, such as the UNIX utility grep [Hu], are based on the theory

of finite automata. See the remark in 1989A6 for the appearance of automata theory
in a very different context.

A6. (6, 6, 54, 0, 0, 0, 0, 4, 0, 45, 85)
If X is a finite set, let |X| denote the number of elements in X. Call an

ordered pair (S, T ) of subsets of {1, 2, . . . , n} admissible if s > |T | for each
s ∈ S, and t > |S| for each t ∈ T . How many admissible ordered pairs of
subsets of {1, 2, . . . , 10} are there? Prove your answer.

Answer. The number of admissible ordered pairs of subsets of {1, 2, . . . , 10} equals
the 22nd Fibonacci number F22 = 17711.

Solution 1. Let Am,n be the set of admissible pairs (S, T ) with S ⊆ {1, 2, . . . ,m}
and T ⊆ {1, 2, . . . , n}, and let am,n = |Am,n|. Suppose m ≥ n ≥ 1. Then
Am−1,n ⊆ Am,n. We now show that the maps

Am,n −Am−1,n ↔ Am−1,n−1

(S, T ) !→ (S − {m}, { t− 1 : t ∈ T })
(U ∪ {m}, { v + 1 : v ∈ V })← � (U, V )

are well-defined inverse bijections.
If (S, T ) ∈ Am,n−Am−1,n, thenm ∈ S. Let S′ = S−{m} and T− = { t−1 : t ∈ T }.

Then |S| ≥ 1, and t > |S| ≥ 1 for all t ∈ T , so T− ⊆ {1, 2, . . . , n − 1}. Since (S, T )
is admissible, each element of S′ is greater than |T | = |T−|. Also, each element of
T is greater than |S|, so each element of T− is greater than |S| − 1 = |S′|. Hence
(S′, T−) ∈ Am−1,n−1.
If (U, V ) ∈ Am−1,n−1, let U ′ = U ∪ {m} ⊆ {1, 2, . . . ,m} and V + = { v + 1 : v ∈

V } ⊆ {1, 2, . . . , n}. Since (U, V ) is admissible, each element of U is greater than |V |,
but m ≥ n > |V | also, so each element of U ′ is greater than |V |. Moreover, each
element of V is greater than |U |, so each element of V + is greater than |U |+1 = |U ′|.
Hence (U ′, V +) ∈ Am,n −Am−1,n.
Composing the two maps just defined in either order gives the identity, so both

are bijections. Hence am,n = am−1,n + am−1,n−1 for m ≥ n ≥ 1. In particular,
an,n = an,n−1 + an−1,n−1 (because ai,j = aj,i), and an,n−1 = an−1,n−1 + an−1,n−2, so
each term of

a0,0, a1,0, a1,1, a2,1, a2,2, a3,2, a3,3, . . .

is the sum of the two preceding terms. Starting from a0,0 = 1 and a1,0 = 2, we find
that the 21st term in the sequence

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,

610, 987, 1597, 2584, 4181, 6765, 10946, 17711, . . .

is a10,10 = 17711. (The sequence is the Fibonacci sequence defined at the end of
1988A5, but starting with F2 = 1.) �
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Solution 2 (Jeremy Rouse). Let am,n be as in Solution 1. If S is an i-element
subset of {j + 1, j + 2, . . . ,m} and T is a j-element subset of {i + 1, i + 2, . . . , n},
then (S, T ) is an admissible pair; conversely, each admissible pair (S, T ) with S ⊆
{1, 2, . . . ,m}, T ⊆ {1, 2, . . . , n}, |S| = i, and |T | = j arises in this way. Hence
am,n =

∑
i,j

(
m−j
i

)(
n−i
j

)
, where the sum ranges over pairs of nonnegative integers

(i, j) satisfying i+ j ≤ min{m,n} (so that the binomial coefficients are nonzero). Let
Fn be the nth Fibonacci number. We will give a bijective proof that∑

i,j

(
n− j

i

)(
n− i

j

)
= F2n+2 (1)

for all n ≥ 0.
For m ≥ 1, let Rm mean “1×m rectangle,” and let Nm denote the number of ways

to tile an Rm with 1×1 squares and 1×2 dominos (rectangles). We now prove (1) by
showing that both sides equal N2n+1. A tiling of an Rm ends either with a square or
a domino, so Nm = Nm−1+Nm−2 for m ≥ 3. Together with N1 = 1 and N2 = 2, this
proves Nm = Fm+1 by induction. In particular N2n+1 equals F2n+2, the right-hand
side of (1).
On the other hand, if we start with a pair of tilings, one a tiling of an Rn+i−j by

n − i − j squares and i dominos, and the other a tiling of an Rn+j−i by n − i − j

squares and j dominos, we may form a tiling of an R2n+1 by appending the two, with
a square inserted in between. Conversely, any tiling of an R2n+1 arises from such
a pair: every tiling of an R2n+1 contains an odd number of squares, so there is a
“median” square, and the pieces to the left and right of this square constitute a pair
of tilings. The number of such pairs for fixed i and j equals

(
n−j
i

)(
n−i
j

)
, so N2n+1

equals
∑

i,j

(
n−j
i

)(
n−i
j

)
, the left-hand side of (1).

This proves (1). The desired value a10,10 = F22 is then found by calculating
F0, F1, . . . , F22 successively, using Fn+2 = Fn+1 + Fn. �

B1. (114, 2, 52, 0, 0, 0, 0, 11, 5, 3, 10, 4)
Find all real-valued continuously differentiable functions f on the real

line such that for all x

(f(x))2 =
∫ x

0

(
(f(t))2 + (f ′(t))2

)
dt+ 1990.

Answer. There are two such functions, namely f(x) =
√
1990ex, and f(x) =

−√1990ex.
Solution. For a given f , the functions on the left- and right-hand sides are equal

if and only if their values at 0 are equal, i.e., f(0)2 = 1990, and their derivatives are
equal for all x, i.e.,

2f(x)f ′(x) = (f(x))2 + (f ′(x))2 for all x.

The latter condition is equivalent to each of the following: (f(x) − f ′(x))2 = 0,
f ′(x) = f(x), f(x) = Cex for some constant C. Combining this condition with
f(0)2 = 1990 yields C = ±√1990, so the desired functions are f(x) = ±√1990ex. �
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B2. (23, 5, 4, 9, 0, 0, 3, 0, 0, 32, 125)
Prove that for |x| < 1, |z| > 1,

1 +
∞∑
j=1

(1 + xj)
(1− z)(1− zx)(1− zx2) · · · (1− zxj−1)
(z − x)(z − x2)(z − x3) · · · (z − xj)

= 0.

Solution. Let S0 = 1, and for n ≥ 1, let

Sn = 1 +
n∑

j=1

(1 + xj)
(1− z)(1− zx)(1− zx2) · · · (1− zxj−1)
(z − x)(z − x2)(z − x3) · · · (z − xj)

.

Since S1 = (1 − zx)/(z − x) and S2 = (1 − zx)(1 − zx2)/(z − x)(z − x2), we suspect
that

Sn =
(1− zx)(1− zx2) · · · (1− zxn)

(z − x)(z − x2)(z − x3) · · · (z − xn)
,

which is easily proved by induction.
It remains to prove that limn→∞ Sn = 0. If Sn = 0 for some n, then SN = 0 for all

N ≥ n, so limn→∞ Sn = 0. Otherwise

Sn+1

Sn
=
1− zxn+1

z − xn+1
→ 1

z

as n→∞, since xn+1 → 0. By the Ratio Test, limn→∞ Sn = 0. �

B3. (97, 7, 4, 2, 0, 0, 0, 0, 12, 2, 54, 23)
Let S be a set of 2×2 integer matrices whose entries aij (1) are all squares

of integers, and, (2) satisfy aij ≤ 200. Show that if S has more than 50387
(= 154 − 152 − 15 + 2) elements, then it has two elements that commute.

Solution. Let U be the set of 2× 2 matrices satisfying (1) and (2). Let D be the

set of diagonal matrices in U , and let J be the set of multiples of
(
1 1
1 1

)
in U . The

numbers less than or equal to 200 that are squares of integers are the 15 numbers 02,
12, . . . , 142, so |U | = 154, |D| = 152, and |J | = 15. Now

(i) any two matrices from D commute,

(ii) any two matrices from J commute, and

(iii)
(
1 1
0 1

)
and

(
1 4
0 1

)
commute.

Suppose that no two elements of S commute. Write

S =
(
S ∩ (D ∪ J)

) ∪ (S ∩ (D ∪ J)c
)
.

(Here Xc denotes the complement of X.) By (i) and (ii), S can contain at most one
element of D and at most one element of J , so |S ∩ (D ∪ J)| ≤ 2. By (iii),

|S ∩ (D ∪ J)c| < |U ∩ (D ∪ J)c|
= |U | − |D| − |J |+ |D ∩ J |
= 154 − 152 − 15 + 1.

Hence |S| ≤ 2 + (154 − 152 − 15) = 50387. �
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Remark. The number 50387 is far from the best possible. Liu and Schwenk have
shown, using an inclusion-exclusion argument, that the maximum number of elements
in U in which no two elements commute is 32390 [LS]. Because the bound given in
the problem is so far from being optimal, there are many possible solutions.

B4. (9, 5, 2, 1, 0, 0, 0, 0, 3, 2, 63, 116)
Let G be a finite group of order n generated by a and b. Prove or disprove:

there is a sequence

g1, g2, g3, . . . , g2n

such that

(1) every element of G occurs exactly twice, and

(2) gi+1 equals gia or gib, for i = 1, 2, . . . , 2n. (Interpret g2n+1 as g1.)

Solution. We use graph theory terminology; see the remark below. Construct
a directed multigraph D whose vertices are the elements of G, and whose arcs are
indexed by G × {a, b}, such that the arc corresponding to the pair (g, x) goes from
vertex g to vertex gx. (See Figure 16 for an example, with G equal to the symmetric
group S3, a equal to the transposition (12), and b equal to the 3-cycle (123).) At
the vertex g, there are two arcs going out (to ga and to gb), and two arcs coming in
(from ga−1 and from gb−1). Also, D is weakly connected, since a and b generate G.
Hence, by the first theorem in the remark below, D has an Eulerian circuit. Take g1,
g2, . . . , gm to be the the startpoints of the arcs in this circuit, in order. Each element
of G occurs exactly twice in this sequence, since each vertex of D has outdegree 2; in
particular m = 2n. Also, for 1 ≤ i ≤ 2n, the element gi+1 equals either gia or gib,
because the two outgoing arcs from gi end at gia and gib. �
Remark (Eulerian paths and circuits). A directed multigraph D consists of a set V

(whose elements are called vertices), and a set E (whose elements are called arcs or
sometimes edges or directed edges), with a map E → V × V (thought of as sending
an arc to the pair consisting of its startpoint and the endpoint). Typically one draws
each element of V as a point, and each arc of E as an arc from the startpoint to the
endpoint, with an arrow to indicate the direction. What makes it a multigraph is that
for some vertices v, w ∈ V , there may be more than one arc from v to w. Also, there
may be loops: arcs from a vertex to itself. Call D finite if V and E are both finite
sets.
The outdegree of a vertex v is the number of arcs in E having v as startpoint.

Similarly the indegree of v is the number of arcs in E having v as endpoint. If v, w ∈ V

then a path from v to w in D is a finite sequence of arcs in E, not necessarily distinct,
such that the startpoint of the first arc is v, the endpoint of each arc (other than the
last) is the startpoint of the next arc, and the endpoint of the last arc is w. Such a
path is called a circuit or cycle if v = w. An Eulerian path in D is a path in which
each arc in E occurs exactly once. An Eulerian circuit is a circuit in which each arc
in E occurs exactly once. We say that D is strongly connected if for every two distinct
vertices v, w ∈ V , there is a path from v to w in D. On the other hand, D is weakly
connected if for every two distinct vertices v, w ∈ V , there is a path from v to w in
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(12)

(13)(23)

(231) (123)

(1)

a a

bb
b b

b

b
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aa

a

FIGURE 16.
Cayley graph of the group S3 with generators a = (12) and b = (123)

the corresponding undirected graph, that is, a path consisting of arcs some of which
may be the reverses of the arcs in E.
Then one can prove the following two theorems.

• A finite directed multigraph with at least one arc has an Eulerian circuit if and only
if it is weakly connected and the indegree and outdegree are equal at each vertex.

• A finite directed multigraph with at least one arc has an Eulerian path but not an
Eulerian circuit if and only if it is weakly connected and the indegree and outdegree
are equal at each vertex, except at one vertex at which indegree is 1 larger than
outdegree, and one other vertex at which outdegree is 1 larger than indegree.

See Chapter 7 of [Ros2], especially §7.4 and §7.5.
Remark. The directed multigraph constructed in the solution is called the Cayley

digraph or Cayley diagram associated to G and its set of generators {a, b}. See [Fr,
pp. 87–91].

B5. (16, 11, 15, 12, 0, 0, 0, 11, 5, 5, 48, 78)
Is there an infinite sequence a0, a1, a2, . . . of nonzero real numbers such

that for n = 1, 2, 3, . . . the polynomial

pn(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

has exactly n distinct real roots?

Answer. Yes, such an infinite sequence exists.

Solution 1. Take a0 = 1, a1 = −1, and for n ≥ 1 construct an+1 inductively as
follows. Suppose pn(x) has n distinct real zeros: x1 < x2 < · · · < xn. Choose α0, . . . ,
αn so that

α0 < x1 < α1 < · · · < xn < αn.
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Then the signs of pn(α0), pn(α1), . . . , pn(αn) alternate. Define an+1 = −ε sgn(pn(αn)),
where ε is positive and small enough that

sgn
(
pn+1(αi)

)
= sgn

(
pn(αi)

)
for all i. Let

pn+1(x) = pn(x) + an+1x
n+1.

By the Intermediate Value Theorem, pn+1 has a zero between αi and αi+1 for
0 ≤ i ≤ n− 1, and a zero greater than αn since

sgn
(
pn+1(αn)

) �= lim
x→∞ sgn

(
pn+1(x)

)
.

Because pn+1(x) is of degree n + 1, it cannot have more than these n + 1 zeros, so
pn+1(x) has n+ 1 distinct real zeros, as desired. �
Solution 2. For n ≥ 0, let an = (−1)n10−n2

. For 0 ≤ k ≤ n,

(−1)k10−k2
pn(102k) =

n∑
i=0

(−1)i−k10−(i−k)2

=
n−k∑
j=−k

(−1)j10−j2

> 1− 2
∞∑
j=1

10−j2

> 0,

so pn(1), pn(102), pn(104), . . . , pn(102n) alternate in sign. By the Intermediate Value
Theorem, it follows that pn(x) has at least n distinct real zeros. Since pn(x) has degree
n, there cannot be more than n zeros. �
Remark. Solution 2 is motivated by the theory of Newton polygons for polynomials

with coefficients in the field Qp of p-adic numbers. Let | · |p denote the p-adic absolute
value on Qp. If {ai}i≥0 is a sequence of nonzero p-adic numbers such that the lower
convex hull of { (i,− ln |ai|p) : 0 ≤ i ≤ n } consists of n segments with different slopes,
then

∑n
i=0 aix

i has n distinct zeros in Qp; in particular this holds for ai = pi
2
. The

analogous statement over R, with | · |p replaced by the standard absolute value, is not
true in general, but it is true if the differences between the slopes are sufficiently large
relative to n. For an introduction to p-adic numbers and Newton polygons, see [Kob].

B6. (5, 0, 0, 0, 0, 0, 0, 0, 38, 6, 29, 123)
Let S be a nonempty closed bounded convex set in the plane. Let K be a

line and t a positive number. Let L1 and L2 be support lines for S parallel
to K, and let L be the line parallel to K and midway between L1 and L2.
Let BS(K, t) be the band of points whose distance from L is at most (t/2)w,
where w is the distance between L1 and L2. What is the smallest t such
that

S ∩
⋂
K

BS(K, t) �= ∅

for all S? (K runs over all lines in the plane.)
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Support line L1

Support line L2

tw

w

KS
B K,tS( )

L

Answer. The smallest t is 1/3.

Motivation. To approach this problem, it is natural to experiment with simple
shapes. The triangle suggests that the answer should be t = 1/3, and that for any
t ≥ 1/3, the intersection

S ∩
⋂
K

BS(K, t)

should contain the centroid, and is hence nonempty.

Solution 1. We first show that the intersection can be empty for t < 1/3. Suppose
that S is a triangle. Dissect the triangle into 9 congruent subtriangles, as shown in
Figure 17. If K is parallel to one of the sides of the triangle, S ∩BS(K, t) is contained
in the three subtriangles in the “middle strip” (and does not meet the boundary of
the strip). Hence if t < 1/3, and K1, K2, K3 are parallel to the three sides of the
triangle,

S ∩
3⋂

i=1

BS(Ki, t)

is empty. This is illustrated in Figure 18. (Also, if t = 1/3, then this intersection
consists of just the centroid. This motivates the rest of the solution.)

1/3

1/6

1/3

L2

L1

L

FIGURE 17.
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CB

A

B BC,tS( )

B AB,tS( )B CA,tS( )

FIGURE 18.
S ∩⋂K BS(K, t) may be empty for t < 1/3.

Recall that the centroid of a measurable region S in R2 is the unique point P such
that

∫
Q∈S

−→
PQdA = 0. Equivalently, the coordinates of the centroid (x, y) are given

by x =
∫
S
xdA/

∫
S
1 dA, and y =

∫
S
y dA/

∫
S
1 dA. If S is convex, then the centroid

lies within S.
We now show that the intersection of the problem is nonempty for t ≥ 1/3 for any

S, by showing that each strip BS(K, t) contains the centroid of S. By symmetry, it
suffices to show that the centroid of S is at most 2/3 of the distance from L1 to L2.
Think of L1 as the upper support line. (See Figure 19.) Let Pi be a point of contact
of Li with S, for i = 1, 2. For a variable point Q to the left of P2 on L2 (possibly
Q = P2), let A be the intersection of S with the open half-plane to the left of←→QR1, and
let B be the part of (possibly degenerate) 4QP1P2 lying outside S. As Q moves to a
nearby point Q′, Area(A) and Area(B) each change by at most Area(4QQ′P1), which
can be made arbitrarily small by choosing Q′ close to Q; hence Area(A) and Area(B)
vary continuously as functions of Q. The difference δ(Q) = Area(A)−Area(B) is also
a continuous function of Q. At Q = P2, Area(A) ≥ 0 and Area(B) = 0, so δ(P2) ≥ 0.
But as Q tends to infinity along L1, Area(A) is bounded by Area(S) and Area(B)
grows without bound, so δ(Q) < 0 for some Q. By the Intermediate Value Theorem,
there is some position of Q for which δ(Q) = 0, i.e., for which Area(A) = Area(B).
Fix such a Q.

A A�

Q

P1

P2

L1

L2

�

�

FIGURE 19.
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We claim that if A ∈ A and B ∈ B, then B lies below A. To show this, let A′

be the intersection of P1P2 with the horizontal line through A. Since S is convex,
A′ ∈ P1P2 ⊆ S and 4AA′P1 ⊆ S. Then B �∈ 4AA′P1 by the definition of B. But
4AA′P1 contains all points of 4QP1P2 lying above or at the same level as A, so B

must lie below A.
Let S̃ denote the region obtained from S by removing A and adding B, and

performing the corresponding operations to the right of P1P2. By the previous
paragraph, the centroid of S̃ lies at least as low as the centroid of S. But S̃ is a
triangle, with base on L2 and opposite vertex at P1, so the centroid of S̃ lies exactly
2/3 of the way from L1 to L2. Hence the centroid of S lies at most 2/3 of the way
from L1 to L2.
Thus the minimal t for which the intersection is nonempty is 1/3. �

Solution 2. As in the first paragraph of Solution 1, t ≥ 1/3. We now show that
t = 1/3 works, by proving that the centroid of S is in BS(K, t) for all K. Without loss
of generality, we may rotate, rescale, and translate to assume that L2 is the x-axis and
L1 is the line y = 3. Let P be a point where S meets L2. Let A be the area of S. It
suffices to show that the centroid (x, y) satisfies y ≤ 2, since then y ≥ 1 by symmetry.
Partially cover S with nonoverlapping inscribed triangles each having one vertex

at P , as in Figure 20, and let εA be the area of the part of S not covered. Each
triangle has vertex y-coordinates 0, y1, y2 where 0 ≤ y1, y2 ≤ 3, so the centroid of the
triangle has y-coordinate at most 2. Let y� denote the y-coordinate of the centroid
of the triangle-tiled portion of S, let yε denote the y-coordinate of the centroid of the
remainder, and let yS denote the y-coordinate of the centroid of S. Then y� ≤ 2,
yε ≤ 3, and

AyS = εAyε + (A− εA)y�
yS = εyε + (1− ε)y�
≤ 3ε+ 2(1− ε)

≤ 2 + ε.

But ε can be made arbitrarily small by choosing the triangles appropriately, so yS ≤ 2,
as desired. �
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FIGURE 20.
Partially covering S by triangles.
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Remark. We sketch a justification of the last sentence. Using the convexity of
S, one can prove that there exist continuous functions f(x) ≤ g(x) defined on an
interval [a, b] such that S is the region between the graphs of f and g on [a, b]. The
approximations to A =

∫ b
a
g(x) dx − ∫ b

a
f(x) dx given by the Trapezoid Rule can be

made arbitrarily close to A by taking sufficiently fine subdivisions of [a, b]. We may
assume that the x-coordinate of P is one of the sample points; then the approximation
is represented by the area of an inscribed polygon with one vertex at P . Cut the
polygon into triangles by connecting P to the other vertices with line segments.

Remark. A more analytic approach to proving that the centroid is in the central
1/3 of the strip is the following. Choose coordinates so that L1 and L2 are the lines
y = 1 and y = 0 respectively. Let f(t) be the length of the intersection of S and the
line y = t. Convexity of S implies that f(t) is a nonnegative concave-down continuous
function on [0, 1], and the desired result would follow from∫ 1

0

tf(t) dt ≥ 1
3

∫ 1

0

f(t) dt. (1)

(Geometrically, this states that the centroid is at least 1/3 of the way from L2 to L1.
Along with the corresponding statement with the roles of L1 and L2 reversed, this
shows that the centroid is in BS(K, 1/3).)
For any function f with continuous second derivative, integration by parts twice

yields ∫ 1

0

(
t− 1

3

)
f(t) dt =

(
t2

2
− t

3

)
f(t)
∣∣∣∣1
0

−
∫ 1

0

(
t2

2
− t

3

)
f ′(t) dt (2)

=
f(1)
6
−
(
t3

6
− t2

6

)
f ′(t)

∣∣∣∣1
0

+
∫ 1

0

(
t3

6
− t2

6

)
f ′′(t) dt

=
f(1)
6

+
∫ 1

0

(
t3

6
− t2

6

)
f ′′(t) dt.

If in addition f(1) ≥ 0 and f is concave-down, then this implies (1) since the final
integrand is everywhere nonnegative.
To prove ∫ 1

0

(
t− 1

3

)
f(t) dt ≥ f(1)

6
(3)

for all concave-down continuous functions, including those that are not twice differen-
tiable, it remains to prove that any concave-down continuous function f on [0, 1] is a
uniform limit of concave-down functions with continuous second derivatives. Adjusting
f by a linear function, we may assume f(0) = f(1) = 0. By continuity of f at 0 and
1, the function f(t) is the uniform limit of the concave-down continuous functions
min{f(t), ct, c(1 − t)} on [0, 1] as c → +∞. Hence we may replace f by such an
approximation to assume that f(t) ≤ min{ct, c(1 − t)} for some c > 0. We can then
extend f to a concave-down continuous function on R by setting f(t) = ct for t < 0
and f(t) = c(1−t) for t > 1. We now show that it is the uniform limit of concave-down
smooth functions. Define a sequence of smooth nonnegative functions δn supported
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on [−1/n, 1/n] with ∫∞
−∞ δn(t) dt = 1, and define the convolution

fn(t) =
∫ ∞

−∞
f(u)δn(t− u) du.

Then f is the uniform limit of fn on [0, 1], and fn is smooth. Finally, fn is also concave-
down, because the convolution can be viewed as a weighted average of translates of
f .
Remark (Eric Wepsic). Alternatively, one can prove (3) for all concave-down

continuous functions by discretizing (2). For n ≥ 1, define

An =
n∑

i=1

(
i

n
− 1
3

)
f

(
i

n

)
1
n
, and

Bn =
f(1)
6

+
n∑

i=1

g

(
i

n

)(
f((i+ 1)/n)− 2f(i/n) + f((i− 1)/n)

1/n2

)
1
n
,

where g(t) = t3/6− t2/6. (These are supposed to be approximations to the two ends
of (2). The ratio

f((i+ 1)/n)− 2f(i/n) + f((i− 1)/n)
1/n2

is an approximation of f ′′(i/n) in the same spirit as the formula in Proof 4 of the
lemma in 1992A4.)
It is not quite true that An = Bn, but we can bound the difference. First collect

terms in Bn with the same value of f , and use g(0) = g(1) = 0, to obtain

Bn =
n∑

i=1

bin f(i/n)

with

bin =


n
(
g
(

1
n

)− g
(

0
n

)
+ 0
)
, if i = 0

n
(
g
(
i+1
n

)− 2g ( in)+ g
(
i−1
n

))
, if 1 ≤ i ≤ n− 1

1
6 + n

(
0− g

(
n
n

)
+ g
(
n−1
n

))
, if i = n.

Since g is infinitely differentiable, Taylor’s Theorem [Spv, Ch. 19, Theorem 4] centered
at x shows

g

(
x+

1
n

)
− 2g(x) + g

(
x− 1

n

)
=

g′′(x)
n2

+O

(
1
n3

)
and

g

(
x± 1

n

)
− g(x) = ±g′(x)

n
+O

(
1
n2

)
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as n→∞, where the constants implied by the O’s are uniform for x ∈ [0, 1]. Thus

bin =


g′(0) +O

(
1
n

)
, if i = 0

g′′(i/n)
n +O

(
1
n2

)
, if 1 ≤ i ≤ n− 1

1
6 − g′(1) +O

(
1
n

)
, if 1 ≤ i ≤ n− 1

=


O
(

1
n

)
, if i = 0(

i
n − 1

3

)
1
n +O

(
1
n2

)
, if 1 ≤ i ≤ n− 1

O
(

1
n

)
, if 1 ≤ i ≤ n− 1.

where again the implied constants are uniform. Except for the O’s, these are the same
as the coefficients of f(i/n) in An. Thus, if M = sup{ |f(t)| : t ∈ [0, 1] }, then

An −Bn = O(1/n)M +

(
n−1∑
i=1

O(1/n2)M

)
+O(1/n)M = O(1/n).

In particular, limn→∞(An−Bn) = 0. If f is concave-down, then for all i, f((i+1)/n)−
2f(i/n)+f((i−1)/n) ≤ 0 and g(i/n) ≤ 0, so the definition of Bn implies Bn ≥ f(1)/6
for all n. If f is continuous, then An is the nth Riemann sum for

∫ 1

0
(t−1/3)f(t) dt, so

limn→∞ An =
∫ 1

0
(t − 1/3)f(t) dt. Combining the three previous sentences yields (3),

whenever f is concave-down and continuous.

Remark. A similar result is that for every compact convex set S in the plane, there
exists at least one point P ∈ S such that every chord AB of S containing P satisfies

1/2 ≤ AP

BP
≤ 2.

This result can be generalized to an arbitrary number of dimensions [Berg, Corol-
lary 11.7.6].
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The Fifty-Second William Lowell Putnam Mathematical Competition
December 7, 1991

A1. (189, 0, 3, 0, 0, 0, 0, 0, 0, 1, 20, 0)
A 2 × 3 rectangle has vertices at (0, 0), (2, 0), (0, 3), and (2, 3). It rotates

90◦ clockwise about the point (2, 0). It then rotates 90◦ clockwise about
the point (5, 0), then 90◦ clockwise about the point (7, 0), and finally, 90◦

clockwise about the point (10, 0). (The side originally on the x-axis is now
back on the x-axis.) Find the area of the region above the x-axis and below
the curve traced out by the point whose initial position is (1, 1).

Answer. The area of the region is 7π/2 + 6.

Solution.

(2, 0) (5, 0) (7, 0) (10, 0)

(1,1)
(3,1)

(6, 2)

(9, 1) (11, 1)

FIGURE 21.

The point (1, 1) rotates around (2, 0) to (3, 1), then around (5, 0) to (6, 2), then
around (7, 0) to (9, 1), then around (10, 0) to (11, 1). (See Figure 21.) The area
of concern consists of four 1 × 1 right triangles of area 1/2, four 1 × 2 triangles of
area 1, two quarter circles of area (π/4)(

√
2)2 = π/2, and two quarter circles of area

(π/4)(
√
5)2 = 5π/4, for a total area of 7π/2 + 6. �

A2. (150, 17, 2, 1, 0, 0, 0, 0, 3, 5, 15, 20)
Let A and B be different n×n matrices with real entries. If A3 = B3 and

A2B = B2A, can A2 +B2 be invertible?

Answer. No.

Solution. We have

(A2 +B2)(A−B) = A3 −B3 −A2B+B2A = 0,

and A−B �= 0, so A2 +B2 is not invertible. �

A3. (42, 35, 29, 0, 0, 0, 0, 0, 6, 5, 63, 33)
Find all real polynomials p(x) of degree n ≥ 2 for which there exist real

numbers r1 < r2 < · · · < rn such that

(i) p(ri) = 0, i = 1, 2, . . . , n, and

(ii) p′
(
ri+ri+1

2

)
= 0 i = 1, 2, . . . , n− 1,

where p′(x) denotes the derivative of p(x).
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Answer. The real polynomials with the required property are exactly those that are
of degree 2 with 2 distinct real zeros.

Solution.
All degree 2 polynomials with 2 distinct real zeros work. If p(x) = ax2 + bx+ c has

two real zeros r1 < r2 (i.e., b2 − 4ac > 0), then

p(x) = a(x− r1)(x− r2);

comparing coefficients of x, we get −b/a = r1 + r2, from which

p′(x) = 2a(x− (r1 + r2)/2).

Geometrically, this is clearer: y = p(x) is a parabola, symmetric about some vertical
axis x = d, and p′(d) = 0. The zeros x = r1, x = r2 must also be symmetric about
the axis, so d = (r1 + r2)/2.
No polynomial of higher degree works. Suppose r1 < · · · < rn are all real and n > 2,

so
p(x) = a(x− r1)(x− r2) · · · (x− rn).

Let r = (rn−1 + rn)/2.
From here, we can follow two (similar) approaches.
Approach 1 uses the following exercise: If p(x) is a degree n polynomial with zeros

r1, . . . , rn, then

p′(x) = p(x)
(

1
x− r1

+ · · ·+ 1
x− rn

)
(1)

for x /∈ {r1, . . . , rn}. (This can be shown using the product rule for derivatives, or
more directly by computing d

dx ln p(x) in two ways. This useful equation also comes
up in 1992A2.) Since p(r) �= 0,

p′(r)
p(r)

=
1

r − r1
+ · · ·+ 1

r − rn−2
+

1
r − rn−1

+
1

r − rn

=
1

r − r1
+ · · ·+ 1

r − rn−2
(since r − rn = −(r − rn−1))

> 0,

so p′(r) �= 0.
Approach 2 is the following: let q(x) = (x− r1) · · · (x− rn−2) so

p(x) = (x− r1)(x− r2) · q(x),
and apply the product rule to obtain

p′(x) = a · 2(x− r)q(x) + a(x− rn−1)(x− rn)q′(x).

Rolle’s Theorem (see remark below) implies that all the zeros of q′(x) lie between r1
and rn−2. Hence (rn−1 + rn)/2 is not a zero of q′(x), so p(x) does not satisfy the
hypotheses of the problem. �
Remark. Rolle’s Theorem is the following:
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Rolle’s Theorem. Let [a, b] be a closed interval in R. Let f(t) be a function that
is continuous on [a, b] and differentiable on (a, b), and suppose that f(a) = f(b). Then
there exists c ∈ (a, b) such that f ′(c) = 0.

In particular, if f(t) ∈ R[t] is a polynomial of degree n with n distinct real zeros,
then the real zeros of f ′(t) are contained in the interval spanned by the zeros of f(t).
The previous sentence has a generalization to complex polynomials, known as Lucas’
Theorem, or sometimes as the Gauss-Lucas Theorem:

Lucas’ Theorem. If p(z) ∈ C[z] is a polynomial of degree at least 1, then the zeros
of p′(z) are contained in the convex hull of the set of zeros of p(z).

See [Mar] for this and many related results, as well as the following open question:

Let p(z) ∈ C[z] be a polynomial whose complex zeros all lie in the disc
|z| ≤ 1, and let z1 be any one of the zeros. Must p′(z) have a zero in the
disc |z − z1| ≤ 1?

B. Sendov conjectured in 1962 that the answer is yes, but in the literature it is
sometimes called the “Ilyeff Conjecture,” because of a misattribution. The statement
has been proved for deg p ≤ 8 [BX].
Related question. Let n > 2, and let p(x) ∈ R[x] be a polynomial of degree n

with n distinct real zeros r1 < · · · < rn. Rolle’s Theorem implies that p′(x) has n− 1
distinct real zeros, interlaced between the zeros of p(x). Prove that the largest real
zero of p′(x) is closer to rn than to rn−1, and that the smallest real zero of p′(x) is
closer to r1 than to r2.
See [An] for related ideas.

A4. (86, 33, 43, 0, 0, 0, 0, 0, 12, 3, 21, 15)
Does there exist an infinite sequence of closed discs D1, D2, D3, . . . in the

plane, with centers c1, c2, c3, . . . , respectively, such that

(i) the ci have no limit point in the finite plane,

(ii) the sum of the areas of the Di is finite, and

(iii) every line in the plane intersects at least one of the Di?

Answer. Yes, such a sequence of closed discs exists.

Solution. Let ai = 1/i for i ≥ 1 (or choose any other sequence of positive numbers
ai satisfying

∑∞
i=1 ai =∞ and

∑∞
i=1 a

2
i <∞). For n ≥ 1, let An = a1+ a2+ · · ·+ an.

Let U be the union of the discs of radius an centered at (An, 0), (−An, 0), (0, An),
(0,−An), for all n ≥ 1. Then U covers the two coordinate axes, and has finite total
area. Every line in the plane meets at least one axis, and hence meets U . Finally,
the centers have no limit point, since every circle C centered at the origin encloses at
most finitely many centers: if C has radius R, we can choose n such that An > R,
and then less than 4n centers lie inside C. �
Motivation. The essential idea is as follows. This construction covers a one-

dimensional set (the union of the two axes). Any line must meet this set, and it is pos-
sible to cover it with an infinite number of circles of finite area. Then a little care must
be taken to make sure the centers do not have a limit point. Another one-dimensional
set that would work is the union of the circles of integer radius centered at the origin.
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Related question. Gabriel’s Horn is the surface of revolution G obtained by
revolving the graph of y = 1/x, x ≥ 1 around the x-axis. Prove that G encloses a
finite volume but has infinite surface area. (This leads to the following fun “paradox”:
one cannot paint the inside of the horn because it has infinite surface area, yet one
can paint it by filling it with a finite amount of paint and then emptying it!)

A5. (23, 4, 5, 0, 0, 0, 0, 0, 3, 6, 82, 90)
Find the maximum value of∫ y

0

√
x4 + (y − y2)2 dx

for 0 ≤ y ≤ 1.

Answer. The maximum value of the integral is 1/3.

Motivation. To find the maximum of I(y), one naturally looks at I ′(y); if it is
never 0, then the maximum must occur at an endpoint of the interval in question.

Solution 1. For 0 ≤ y ≤ 1 let I(y) =
∫ y
0

√
x4 + (y − y2)2dx.

Note that I(1) =
∫ 1

0
x2dx = 1/3. We will prove I ′(y) > 0 for 0 < y < 1. Since I(y)

is continuous on [0, 1], this will prove that 1/3 is the maximum.
By the remark following this solution,

I ′(y) =
√

y4 + (y − y2)2 + (y − y2)(1− 2y)
∫ y

0

1√
x4 + (y − y2)2

dx,

so we must check that√
2y2 − 2y + 1 > (1− y)(2y − 1)

∫ y

0

1√
x4 + (y − y2)2

dx. (1)

If y < 1/2, (1) holds because the right side is negative. If y ≥ 1/2, (1) would follow
from √

2y2 − 2y + 1 > (1− y)(2y − 1)
∫ y

0

1√
(y − y2)2

dx

= (1− y)(2y − 1)y/(y − y2)

= 2y − 1,
which is equivalent to 2y > 2y2, hence true, since 0 < y < 1. �
Remark. We discuss how to differentiate certain integrals depending on a

parameter. Fix M > 0, and define the triangle

T = { (x, y) ∈ R2 : 0 < y < M, 0 ≤ x ≤ y }.
Suppose that f(x, y) is a continuous function on T such that the partial derivative fy
(alternative notation for ∂f/∂y) exists on the interior of T and extends to a continuous
function on T . For 0 < y < M , let I(y) =

∫ y
0
f(x, y) dx. We wish to compute I ′(y)

for 0 < y < M .
We will express I ′(y) in terms of partial derivatives of the auxiliary function J(t, u) =∫ t

0
f(x, u) dx defined for (t, u) ∈ T . By the Fundamental Theorem of Calculus,

Jt(t, u) = f(t, u) on T . (If t = 0 or t = u, we consider Jt as only a one-sided derivative.)
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Since fy extends to a continuous function on T , we may differentiate under the integral
sign to obtain Ju(t, u) =

∫ t
0
fy(x, u) dx on T . Then by the Multivariable Chain Rule

[Ru, p. 214],

I ′(y) =
dJ(y, y)

dy

= Jt(y, y)
∂y

∂y
+ Ju(y, y)

∂y

∂y

= f(y, y) +
∫ y

0

fy(x, y) dx.

The same method can be used to differentiate integrals of the form

I(y) =
∫ h(y)

g(y)

f(x, y) dx.

Solution 2. If u, v ≥ 0, then
√
u2 + v2 ≤ √u2 + 2uv + v2 = u+ v. Taking u = x2

and v = y − y2 we obtain∫ y

0

√
x4 + (y − y2)2 dx ≤

∫ y

0

(
x2 +

(
y − y2

))
dx

= y2 − 2
3
y3

≤ 1
3
,

with equality everywhere if y = 1: the last inequality uses the positivity of
d
dy

(
y2 − 2

3y
3
)
= 2y(1− y) on (0, 1). Thus the maximum value is 1/3. �

A6. (8, 21, 8, 1, 0, 0, 0, 0, 6, 7, 40, 122)
Let A(n) denote the number of sums of positive integers a1 + a2 + · · ·+ ar

which add up to n with a1 > a2 + a3, a2 > a3 + a4, . . . , ar−2 > ar−1 + ar,
ar−1 > ar. Let B(n) denote the number of b1 + b2 + · · ·+ bs which add up to
n, with

(i) b1 ≥ b2 ≥ · · · ≥ bs,

(ii) each bi is in the sequence 1, 2, 4, . . . , gj , . . . defined by g1 = 1, g2 = 2, and
gj = gj−1 + gj−2 + 1, and

(iii) if b1 = gk then every element in {1, 2, 4, . . . , gk} appears at least once as
a bi.

Prove that A(n) = B(n) for each n ≥ 1.
(For example, A(7) = 5 because the relevant sums are 7, 6+ 1, 5+ 2, 4+ 3,

4 + 2 + 1, and B(7) = 5 because the relevant sums are 4 + 2 + 1, 2 + 2 + 2 + 1,
2 + 2 + 1 + 1 + 1, 2 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1.)

Solution 1. First, given a sum counted by A(n), we construct a “tableau” of
Fibonacci numbers. Start with two rows, the lower row with ar ones and the upper
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with ar−1 ones, as shown below.

ar−1 : 1 1 1 1 1 1 1
ar : 1 1 1 1 1

The top row is longer than the bottom row since ar−1 > ar.
Since ar−2 > ar−1 + ar, we may add a new row on top, such that each new entry

directly above two entries is the sum of those two, each entry above a single entry is
equal to that entry, and the rest are enough ones (at least one) to make the sum of
the new row equal ar−2.

ar−2 : 2 2 2 2 2 1 1 1 1 1
ar−1 : 1 1 1 1 1 1 1

ar : 1 1 1 1 1

Next, ar−3 > ar−2 + ar−1, so we can add another row on top, such that each entry
above at least two entries is the sum of the two below it, each entry above one entry
is equal to that entry, and the rest are enough ones (at least one) to make the row
sum ar−3, as shown below.

ar−3 : 3 3 3 3 3 2 2 1 1 1 1
ar−2 : 2 2 2 2 2 1 1 1 1 1
ar−1 : 1 1 1 1 1 1 1

ar : 1 1 1 1 1

Continue this construction to make a tableau of r rows, in which the total of all
entries is n. Let s be the number of columns, and let bi denote the sum of the ith
column. Then bi = F1 + F2 + · · ·+ Fj , where j is the length of the ith column. The
sequence g′j = F1 + F2 + · · ·+ Fj satisfies g′1 = 1 = g1, g′2 = 2 = g2 and for j ≥ 3,

g′j−1 + g′j−2 + 1 = F1 + F2 + · · ·+ Fj−1

+ F1 + · · ·+ Fj−2 + 1

= F2 + F3 + · · ·+ Fj + F1 (since F1 = F2 = 1)

= g′j ,

so g′j = gj for all j. Thus the bi satisfy condition (i) in the definition of B(n). The
sum of the bi equals the sum of all entries of the tableau, namely n. Each row is at
least one longer than the next row, so each column is either equal in length or one
longer than the next column. Thus the bi satisfy conditions (ii) and (iii) as well.
Conversely, given a sum b1 + · · · + bs counted by B(n), construct a (top and left

justified) tableau in which the entries of the ith column from the top down are Fk,
Fk−1, . . . , F1, where k is the positive integer such that bi = gk; then let ai denote the
sum of the ith row.
It is straightforward to check that these constructions define inverse bijections

between the partitions counted by A(n) and those counted by B(n). Thus A(n) =
B(n) for all n. �

Solution 2. Let A(n, r) denote the number of sums counted by A(n) with exactly
r terms. Let B(n, r) denote the number of sums counted by B(n) in which b1 = gr.
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Fix r ≥ 1. Form the r × r matrix

M = (mij) =



1 −1 −1 0 · · · 0
0 1 −1 −1 · · · 0
0 0 1 −1 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1


with

mij =


1 if j − i = 0,

−1 if j − i = 1 or j − i = 2,

0 otherwise.

Let a and c denote column vectors (a1, a2, . . . , ar) and (c1, c2, . . . , cr), respectively.
Since M is an integer matrix with determinant 1, the relation Ma = c is a bijection
between the set of a in Zr and the set of c in Zr. Under this bijection, the inequalities
a1 > a2 + a3, . . . , ar−2 > ar−1 + ar, ar−1 > ar, ar > 0 correspond to c1 > 0, . . . ,
cr−2 > 0, cr−1 > 0, cr > 0. Also, applying the identity(

g1 g2 · · · gr
)
M =

(
1 1 · · · 1

)
to a shows that the condition

∑
ai = n corresponds to

∑
gici = n. Thus A(n, r),

which counts the number of a ∈ Zr satisfying the inequalities and sum condition,
equals the number of c ∈ Zr satisfying ci > 0 for all i and

∑
gici = n. Such a c may

be matched with the sequence b1, b2, . . . , bs consisting of cr copies of gr, . . . , and c1
copies of g1; the b-sequences arising in this way are exactly the sequences summing to
n that satisfy conditions (i)–(iii) of the problem and b1 = gr. Hence the number of
such c equals B(n, r).
Thus A(n, r) = B(n, r). Summing over r yields A(n) = B(n). �
Related question. The most famous result along these lines is the following theorem

of Euler [NZM, Theorem 10.2]:
Let O(n) be the number of (nonincreasing) partitions of a positive integer n into

odd parts, and let D(n) be the number of (nonincreasing) partitions of n into different
parts. Then O(n) = D(n) for all n.

B1. (192, 6, 2, 0, 6, 0, 0, 0, 0, 5, 0, 2)
For each integer n ≥ 0, let S(n) = n−m2, where m is the greatest integer

with m2 ≤ n. Define a sequence (ak)∞k=0 by a0 = A and ak+1 = ak + S(ak) for
k ≥ 0. For what positive integers A is this sequence eventually constant?

Answer. This sequence is eventually constant if and only if A is a perfect square.

Solution. If ak is a perfect square, then ak+1 = ak, and the sequence is constant
thereafter.
Conversely, if ak is not a perfect square, then suppose r2 < ak < (r + 1)2. Then

S(ak) = ak − r2 is in the interval [1, 2r], so ak+1 = r2 + 2S(ak) is greater than r2 but
less than (r+2)2, and not equal to (r+1)2 by parity. Thus ak+1 is also not a perfect
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square, and is greater than ak. Hence if A is not a perfect square, then no ak is a
perfect square, and the sequence diverges to infinity. �

B2. (93, 30, 8, 0, 0, 0, 0, 0, 7, 1, 57, 17)
Suppose f and g are nonconstant, differentiable, real-valued functions on

R. Furthermore, suppose that for each pair of real numbers x and y,

f(x+ y) = f(x)f(y)− g(x)g(y),

g(x+ y) = f(x)g(y) + g(x)f(y).

If f ′(0) = 0, prove that (f(x))2 + (g(x))2 = 1 for all x.

Motivation. We can use calculus to reach the intermediate goal of proving that
the H(x) = f(x)2 + g(x)2 is constant. In other words, we try to prove H ′(x) = 0 by
differentiating the given functional equations. This motivates the first solution.
Alternatively, the hypotheses and conclusion in the problem are recognizable as

identities satisfied by f(x) = cosx and g(x) = sinx. If f(x) were cosx and g(x) were
sinx, then h(x) = f(x) + ig(x) would satisfy h(x+ y) = h(x)h(y). This suggests the
approach of the second solution.

Solution 1. Differentiate both sides with respect to y to obtain

f ′(x+ y) = f(x)f ′(y)− g(x)g′(y),

g′(x+ y) = f(x)g′(y) + g(x)f ′(y).

Setting y = 0 yields

f ′(x) = −g′(0)g(x) and g′(x) = g′(0)f(x).

Thus
2f(x)f ′(x) + 2g(x)g′(x) = 0,

and therefore
f(x)2 + g(x)2 = C

for some constant C. Since f and g are nonconstant, C �= 0. The identity

f(x+ y)2 + g(x+ y)2 =
(
f(x)2 + g(x)2

) (
f(y)2 + g(y)2

)
,

implies C = C2. But C �= 0, so C = 1. �

Solution 2. Define h : R → C by h(x) = f(x) + ig(x). Then h is differentiable,
and h′(0) = bi for some b ∈ R. The two given functional equations imply h(x+ y) =
h(x)h(y). Differentiating with respect to y and substituting y = 0 yields h′(x) =
h(x)h′(0) = bi · h(x), so h(x) = Cebix for some C ∈ C. From h(0 + 0) = h(0)h(0) we
obtain C = C2. If C = 0, then h would be identically zero, and f and g would be
constant, contradiction. Thus C = 1. Finally, for any x ∈ R,

f(x)2 + g(x)2 = |h(x)|2 = |ebix|2 = 1. �

Remark. It follows that f(x) = cos(bx) and g(x) = sin(bx) for some nonzero b ∈ R.
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Remark. Solution 1 is very close to what one gets if one writes out Solution 2 in
terms of real and imaginary parts.

Remark. Suppose we change the problem by dropping the assumption that f

and g are differentiable, and assume only that f and g are continuous, and that
f ′(0) exists and is zero. Then we could still conclude f(x)2 + g(x)2 = 1 by following
Solution 2, because it is true that any continuous function h : R → C satisfying
h(x + y) = h(x)h(y) is either identically zero, or of the form h(x) = ebx for some
b ∈ C. This is a consequence of the following lemma, sometimes attributed to Cauchy.

Lemma. Suppose f : R → R is a continuous function such that

f(x+ y) = f(x) + f(y). (1)

Then f(x) = cx for some c ∈ R.

Proof. By substituting x = y = 0 into (1), we find f(0) = 0. Let c = f(1). It is not
hard to show that f(x) = cx for rational x (by using (1) repeatedly). Since f(x)− cx

is a continuous function that vanishes on a dense set (the rationals), it must be 0. �

Reinterpretation. Solution 2 can be understood in a more sophisticated context.
If h is not identically zero, h : R → C∗ is a continuous homomorphism between real
Lie groups, so by [War, Theorem 3.38], it is a homomorphism of Lie groups. (In
other words, it is automatically analytic.) Since homomorphisms of Lie groups are
determined by their induced Lie algebra homomorphisms [War, Theorem 3.16], h must
be identically zero, or of the form h(x) = ebx for some b ∈ C.

B3. (38, 11, 4, 0, 0, 0, 0, 0, 0, 5, 7, 49, 99)
Does there exist a real number L such that, if m and n are integers

greater than L, then an m × n rectangle may be expressed as a union of
4 × 6 and 5 × 7 rectangles, any two of which intersect at most along their
boundaries?

Answer. Yes, such a real number L exists.
The solution will use a generalization of the following well-known result:

Theorem 1. If a and b are positive integers, then there exists a number g such that
every multiple of gcd(a, b) greater than g may be written in the form ra+ sb, where r

and s are nonnegative integers.

This is sometimes called the “Postage Stamp Theorem” because if gcd(a, b) = 1,
then every amount of postage greater than g cents can be paid for with a-cent and
b-cent stamps. In this case, g may be taken to be ab−a− b, but no smaller: ab−a− b

is not of the form ra+ sb with r, s ≥ 0. For further discussion, see [NZM, Section 5.1];
the theorem appears as Problem 16.
Proof. Suppose first that gcd(a, b) = 1. Then 0, a, 2a, . . . , (b − 1)a is a complete

set of residues modulo b. Thus, for any integer k greater than (b−1)a−1, k− qb = ja

for some q ≥ 0, j = 0, 1, 2, . . . , b− 1, hence the claim for this special case.
For general a and b, write a = da0 and b = db0, where d = gcd(a, b) and

gcd(a0, b0) = 1. We showed that all sufficiently positive integers are expressible as
ra0 + sb0. Multiplying by d, we find that all sufficiently positive multiples of d are
expressible as ra+ sb. �
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Solution. We begin by forming 20 × 6 and 20 × 7 rectangles. From Theorem 1,
we may form 20× n rectangles for n sufficiently large. We may also form 35× 5 and
35×7 rectangles, hence 35×n rectangles for n sufficiently large. We may further form
42× 4 and 42× 5 rectangles, hence 42× n rectangles for n sufficiently large.
Since gcd(20, 35) = 5, there exists a multiple m0 of 5, relatively prime to 42

and independent of n, for which we may form an m0 × n rectangle. Finally, since
gcd(m0, 42) = 1, we may use m0 × n and 42× n rectangles to form m× n rectangles
for all m and n sufficiently large. �
Related question. By using the explicit value of g in the discussion after the

statement of the Theorem 1, this approach shows that one can construct an m × n

rectangle if m ≥ 41 · 54 = 2214 and n ≥ 30. Hence one can take L = 2213 in the
original problem. Dave Savitt has shown that the conditions m ≥ 65 and n ≥ 80
suffice. Hence one can take L = 79. How much better can one do? We do not know
the smallest possible L.

Related question. Problem 1971A5 [PutnamII, p. 15] is related. See also [Hon2,
Ch. 13]:

A game of solitaire is played as follows. After each play, according to the
outcome, the player receives either a or b points (a and b are positive integers
with a greater than b), and his score accumulates from play to play. It has
been noticed that there are thirty-five non-attainable scores and that one of
these is 58. Find a and b.

Remark. Let a1, . . . , an be positive integers with greatest common divisor 1.
The problem of determining the greatest integer g = g(a1, . . . , an) not expressible
as
∑n

i=1 riai with ri nonnegative integers is called the Frobenius Problem, because
according to A. Brauer [Br], Frobenius mentioned it in his lectures. There is an exten-
sive literature on the problem, dating back at least to the nineteenth century [Shar].
For each fixed n the problem can be solved in polynomial time, but the problem as a
whole is NP-hard [Ka]. For the solution in some special cases, see [Sel]. The Frobenius
Problem is relevant to the running time analysis of the sorting algorithm Shellsort [P1].
The reader may enjoy proving that g exists (say by induction on n).

Related question. Another generalization of Theorem 1 is Problem 3 from the
1983 International Mathematical Olympiad [IMO79–85, p. 6] In the language of the
preceding remark, it asks for a proof that g(bc, ca, ab) = 2abc− ab− bc− ca, where a,
b, and c be positive integers, no two of which have a common divisor greater than 1.

Remark. Suppose that we insist that the length 4 side of each 4× 6 rectangle be
parallel to the length m side of the big m × n rectangle, and suppose we similarly
restrict the orientation of the 5 × 7 rectangles. Then the answer to the problem
becomes NO!
Let us explain why. Label the 1× 1 squares in the m× n rectangle in the obvious

way with (i, j) where i, j are integers satisfying 0 ≤ i ≤ m−1 and 0 ≤ j ≤ n−1. Write
the monomial xiyj in the square (i, j). Then the sum of the monomials inside an a× b

rectangle equals xiyj(1+x+· · ·+xa−1)(1+y+· · ·+yb−1) for some nonnegative integers
i, j. If them×n rectangle is a disjoint union of 4×6 and 5×7 rectangles (disjoint except
at boundaries), then the polynomial f(x, y) = (1+x+ · · ·+xm−1)(1+ y+ · · ·+ yn−1)
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is in the ideal of C[x, y] generated by (1 + x + · · · + x4−1)(1 + y + · · · + y6−1) and
(1 + x+ · · ·+ x5−1)(1 + y + · · ·+ y7−1). In particular,

f(x, y) =
(xm − 1)(yn − 1)
(x− 1)(y − 1)

must vanish at (e2πi/4, e2πi/7). But if 4 does not divide m and 7 does not divide
n, then f(e2πi/4, e2πi/7) is nonzero and hence it is impossible to dissect the m × n

rectangle in the specified way.
This argument is related to a beautiful proof [Wag, Proof 1] of the following

remarkable fact.

Theorem 2. If a rectangle is tiled by rectangles each of which has at least one
integer side, then the tiled rectangle has at least one integer side.

Remark. Theorem 1 also comes up in other advanced contexts. For example, it
corresponds to the fact that two measures of the “nonsmoothness” of the complex
singularity given by yp = xq in C2 are the same [ACGH, p. 60].

B4. (21, 1, 7, 0, 0, 0, 0, 0, 23, 1, 37, 123)
Suppose p is an odd prime. Prove that

p∑
j=0

(
p

j

)(
p+ j

j

)
≡ 2p + 1 (mod p2).

Solution 1. The sum
∑p

j=0

(
p
j

)(
p+j
j

)
is the coefficient of xp in

p∑
j=0

(
p

j

)
(1 + x)p+j =

 p∑
j=0

(
p

j

)
(1 + x)j

 (1 + x)p

=
(
(1 + x) + 1

)p(1 + x)p

= (2 + x)p(1 + x)p,

so this coefficient equals
p∑

k=0

(
p

k

)(
p

p− k

)
2k.

But p divides
(
p
k

)
for k �= 0. Thus,

p∑
j=0

(
p

j

)(
p+ j

p

)
≡
(
p

0

)(
p

p

)
20 +

(
p

p

)(
p

0

)
2p

≡ 1 + 2p (mod p2). �

Remark. If at each step of Solution 1, one writes the coefficient of xp explicitly,
one obtains a solution that does not use generating functions, but instead uses
Vandermonde’s identity (mentioned in 1987B2) at the first equality sign.
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Solution 2. Modulo p, the sets {1, 2, . . . , p− 1} and {1−1, 2−1, . . . , (p− 1)−1} are
the same (where the inverses are modulo p). Thus(

2p
p

)
=

p+ 1
1

· p+ 2
2

· · · p+ (p− 1)
p− 1 · 2p

p

≡ (1−1p+ 1)(2−1p+ 1) · · · ((p− 1)−1p+ 1) · 2
≡ 2(1p+ 1)(2p+ 1) · · · ((p− 1)p+ 1)

≡ 2

((
p−1∑
k=1

k

)
p+ 1

)
≡ 2 (mod p2).

Although 1−1, . . . , (p− 1)−1 are only defined modulo p, they appear in the equations
above multiplied by p, so the terms make sense modulo p2.

p∑
j=0

(
p

j

)(
p+ j

j

)
= 1 +

p−1∑
j=1

(
p

j

)
p+ 1
1

p+ 2
2

· · · p+ j

j
+
(
2p
p

)

≡ 1 +
p−1∑
j=1

(
p

j

)
(1−1p+ 1)(2−1p+ 1) · · · (j−1p+ 1) + 2

≡ 1 +
p−1∑
j=1

(
p

j

)
+ 2 (since p | (pj) for 1 ≤ j ≤ p− 1)

≡
p∑

j=0

(
p

j

)
+ 1

≡ 2p + 1 (mod p2). �

Remark. Here is another way to prove
(
2p
p

) ≡ 2 (mod p2) for odd primes p. We
have (

2p
p

)
= 2

(p+ 1)(p+ 2) · · · (p+ p− 1)
1 · 2 · · · (p− 1) (1)

and

(x+ 1)(x+ 2) · · · (x+ p− 1) =
(p−1)/2∏
j=1

(x+ j)(x+ p− j)

=
(p−1)/2∏
j=1

(x2 + px+ j(p− j))

= (p− 1)! + λpx+ x2f(x),

for some λ ∈ Z and f(x) ∈ Z[x]. Substituting x = p yields

(p+ 1)(p+ 2) · · · (p+ p− 1) ≡ (p− 1)! (mod p2),

which we substitute into (1). Since (p−1)! is prime to p, we deduce
(
2p
p

) ≡ 2 (mod p2).
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Remark. In fact, if p > 3, then
(
2p
p

) ≡ 2 (mod p3); this is Wolstenholme’s
Theorem. Another version of this theorem is that if p is a prime greater than 3,
then the numerator of 1 + 1

2 + · · · + 1
p−1 is divisible by p2. (See [Bak1, p. 26] or the

remarks following 1997B3.) It is not hard to derive one version from the other; see
below.

Remark. Wolstenholme’s Theorem can be generalized. For example, for p ≥ 5,(
2p
p

)
≡
(
2
1

)
(mod p3)(

2p2

p2

)
≡
(
2p
p

)
(mod p6),(

2p3

p3

)
≡
(
2p2

p2

)
(mod p9),

and so on. Like Wolstenholme’s Theorem, these assertions can be recast in terms of
a sum of reciprocals. Namely, write(

2pn

pn

)
=

pn∏
i=1

(
pn + i

i

)
and divide up the terms into those with i divisible by p and those with i not divisible
by p. This gives (

2pn

pn

)
=

pn−1∏
j=1

pn + pj

pj

pn−1∏
j=1

p−1∏
i=1

pn + pj + i

pj + i

 .

The term in the first parentheses is precisely
(
2pn−1

pn−1

)
. Therefore(

2pn

pn

)(
2pn−1

pn−1

) = pn−1∏
j=1

p−1∏
i=1

(
1 +

pn

pj + i

)

≡ 1 + pn
pn−1∑
j=1

p−1∑
i=1

1
pj + i

+ p2n
∑

pj+i �=pj′+i′

1
(pj + i)(pj′ + i′)

(mod p3n).

The last sum is divisible by pn. Thus the assertions follow from the congruence

pn−1∑
j=1

p−1∑
i=1

1
pj + i

≡ 0 (mod p2n),

which is discussed in remarks following 1997B3.

Remark. Congruences between binomial coefficients can be proved using analytic
properties of Morita’s p-adic gamma function Γp(x). See [Robe, p. 380] for such a
proof of the following theorem of Kazandzidis, which generalizes the congruences of
the previous remark: for all primes p ≥ 5 we have(

pn

pk

)
≡
(
n

k

)
(mod pm),
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where pm is the largest power of p dividing p3nk(n − k)
(
n
k

)
. The same congruence

holds for p = 3, but with p3 replaced by 32. (In other words, one loses a factor of 3.)

B5. (38, 4, 3, 0, 3, 0, 1, 0, 9, 3, 50, 102)
Let p be an odd prime and let Zp denote (the field of) integers modulo

p.
How many elements are in the set

{x2 : x ∈ Zp } ∩ { y2 + 1 : y ∈ Zp }?

Warning. In current mathematics, especially in number theory, the notation Zp is
usually reserved for the ring of p-adic integers. If one intends the additive group of
integers modulo p, it is safer to write Z/pZ or its abbreviation Z/p, or Fp if, as in this
problem, one wishes to consider the set as a field. More generally, for any prime power
q = pm with p prime and m ≥ 1, there is a unique finite field with q elements up to
isomorphism [Se1, Theorem 1], and it is denoted Fq, or GF(q) in older literature.

Answer. The number of elements in the intersection is �p/4� = �(p+3)/4�. In other
words, the answer is

p+ 3
4

if p ≡ 1 (mod 4), and
p+ 1
4

if p ≡ 3 (mod 4).

Solution 1. Let S be the set of solutions to x2 = y2 + 1 over Fp. The linear

change of coordinates (u, v) = (x + y, x − y) is invertible since det
(
1 1
1 −1

)
= −2 is

nonzero in Fp. Hence |S| equals the number of solutions to uv = 1 over Fp. There is
one possible v for each nonzero u, and no v for u = 0, so |S| = p− 1.
The problem asks for the size of the image of the map φ : S → Fp taking (x, y) to

x2. If z = x2 for some (x, y) ∈ S, then φ−1(z) = {(±x,±y)}, which has size 4, except
in the cases z = 1 (in which case x = ±1 and y = 0, making φ−1(z) of size 2) and
z = 0 (in which case x = 0 and y2 = −1, again making φ−1(z) of size 2); the latter
exception occurs if and only if −1 is a square in Fp. Hence |S| = 4|φ(S)| − 2 − 2c,
where c is 1 or 0 according as −1 is a square in Fp or not. Thus the answer to the
problem is

|φ(S)| = (p− 1) + 2 + 2c
4

=
p+ 1 + 2c

4
.

This should be an integer, so c = 1 if p ≡ 1 (mod 4) and c = 0 if p ≡ 3 (mod 4). In
either case, |φ(S)| = �p/4� as claimed. �
Remark. Alternatively, one can count the solutions to x2 = y2 + 1 over Fp by

explicit parametrization:

x =
r + r−1

2
, y =

r − r−1

2

for r ∈ F∗
p. (Given a solution (x, y), take r = x + y, so that r−1 = x − y.) This

parametrization shows that the conic x2 = y2+1 is birationally equivalent to the line
over Fp; this is not surprising in light of the remark after Solution 2 to 1987B3.
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Solution 2. We use the Legendre symbol, defined by

(
a

p

)
=


1, if a ≡ k2 (mod p) for some k �≡ 0 (mod p)

0, if a ≡ 0 (mod p)

−1, otherwise.

The number of nonzero squares in Fp equals the number of nonsquares, so

p−1∑
a=0

(
a− k

p

)
= 0 (1)

for any k ∈ Z.
In this solution only, if P is a statement, let [P ] be 1 if P is true, and 0 if P is false.

Let F2
p denote the set of squares in Fp, including 0. The problem asks us to compute

N =
p−1∑
a=0

[a ∈ F2
p] · [a− 1 ∈ F2

p].

Substituting the identity

[a ∈ F2
p] =

1
2

(
1 +
(
a

p

)
+ [a = 0]

)
we obtain

N =
1
4

(
1 +
(−1

p

)
+ 1 +

(
1
p

)
+

p−1∑
a=0

(
1 +
(
a

p

))(
1 +
(
a− 1
p

)))

=
1
2

[(−1
p

)
= 1
]
+
1
2
+
1
4

p−1∑
a=0

(
1 +
(
a

p

)
+
(
a− 1
p

)
+
(
a

p

)(
a− 1
p

))

=
1
2

[(−1
p

)
= 1
]
+
1
2
+

p

4
+
1
4

p−1∑
a=0

(
a

p

)(
a− 1
p

)
,

by (1) twice. For k ∈ Z, let S(k) =
∑p−1

a=0

(
a
p

)(
a−k
p

)
. We want S(1). For k not

divisible by p, the substitution a = kb, with b running over the residue classes modulo
p, shows that

S(k) =
p−1∑
b=0

(
k

p

)(
b

p

)(
k

p

)(
b− 1
p

)

=
p−1∑
b=0

(
b

p

)(
b− 1
p

)
(since

(
k
p

)2

= 1)

= S(1).

Also,
p−1∑
k=0

S(k) =
p−1∑
a=0

(
a

p

) p−1∑
k=0

(
a− k

p

)
= 0,
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since each inner sum is zero by (1). Thus

S(1) = − S(0)
p− 1 = −

p− 1
p− 1 = −1.

Hence
N =

1
2

[(−1
p

)
= 1
]
+

p+ 1
4

.

But N is an integer. Thus if p ≡ 1 (mod 4), then
(

−1
p

)
= 1 and N = (p + 3)/4; if

p ≡ 3 (mod 4), then
(

−1
p

)
= −1 and N = (p+ 1)/4. �

Remark. In each solution, we proved:

Corollary. The number −1 is a square modulo an odd prime p if and only if p ≡ 1
(mod 4).

From this and unique factorization in the ring of Gaussian integers

Z[i] = { a+ bi : a, b ∈ Z },
one can prove:

Theorem. Every prime p ≡ 1 (mod 4) is a sum of two squares.

Hint: There is some x such that x2 ≡ −1 (mod p), i.e., there is some integer k such
that kp = (x− i)(x+ i); consider prime factorizations of both sides, and note that p

is not a factor of x± i.
A remarkable one-sentence proof of the theorem, due to D. Zagier [Z], is the

following:
The involution on the finite set S = { (x, y, z) ∈ Z≥0 : x2 + 4yz = p } defined by

(x, y, z) !→


(x+ 2z, z, y − x− z) if x < y − z

(2y − x, y, x− y + z) if y − z < x < 2y
(x− 2y, x− y + z, y) if x > 2y

has exactly one fixed point (1, 1, (p − 1)/4), so #S is odd and the involution defined
by (x, y, z) !→ (x, z, y) also has a fixed point.
Using the corollary and theorem above, one can prove the well-known theorem that

a positive integer can be expressed as a sum of two squares if and only if every prime
congruent to 3 modulo 4 appears with even power in the factorization of n. One can
even count the number of ways to express a positive integer as a sum of two squares
[IR, pp. 278–280].
Remark (Gauss and Jacobi sums). In Solution 1 we counted the number of solutions

to x2 = y2 + 1 in Fp. Much more generally, given a1, . . . , ar ∈ F∗
p, @1, . . . , @r ≥ 1, and

b ∈ F∗
p one can express the number of solutions over Fp to

a1x
!1
1 + a2x

!2
2 + · · ·+ arx

!r
r = b (2)

in terms of Jacobi sums, which we will define here. First, a multiplicative character
on Fp is a homomorphism χ : F∗

p → C∗, extended to a function on Fp by defining
χ(0) = 0. If χ1, . . . , χ! are multiplicative characters, the Jacobi sum is defined by

J(χ1, . . . , χ!) =
∑

t1+···+t	=1

χ1(t1)χ2(t2) · · · χ!(t!),
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where the sum is taken over all @-tuples (t1, . . . , t!) with the ti in Fp summing
to 1. Jacobi sums are related to Gauss sums, which are sums of the form ga(χ) =∑p−1

t=0 χ(t)ζat where χ is a multiplicative character on Fp, ζ = e2πi/p, and a ∈ Z. See
Chapters 6 and 8 of [IR] for more details. See also [Lan2, Chapter IV,§3] for more
general Gauss sums, over Z/nZ for n not necessarily prime, and over finite fields not
necessarily of prime order. Theorem 5 in Chapter 8 of [IR] gives the formula for the
number of solutions to (2) in terms of Jacobi sums.

Remark (the Weil Conjectures). The formula just mentioned led Weil [Weil2] to
formulate his famous conjectures (now proven) about the number of points on varieties
over finite fields. He proved the conjectures himself in the case of curves [Weil1]. Their
proof for arbitrary algebraic varieties uses ideas of Grothendieck and Deligne, among
others. For a survey, see [Har, Appendix C]. See Proof 3 of the stronger result following
1998B6 for one application of the conjectures.

B6. (2, 0, 0, 0, 1, 0, 1, 2, 0, 4, 30, 173)
Let a and b be positive numbers. Find the largest number c, in terms of

a and b, such that

axb1−x ≤ a
sinhux
sinhu

+ b
sinhu(1− x)

sinhu

for all u with 0 < |u| ≤ c and for all x, 0 < x < 1. (Note: sinhu = (eu−e−u)/2.)

Answer. The largest c for which the inequality holds for 0 < |u| ≤ c is c = | ln(a/b)|.
Motivation. The key idea here is to strip away the inessential details. First, since

the inequality is even in u, we may assume u > 0. Also, we may assume a ≥ b without
loss of generality. A second step is to realize that the substitution v = eu will remove
the exponentials, leaving

axb1−x ≤ a
vx − v−x

v − v−1
+ b

v1−x − v−(1−x)

v − v−1
.

Multiplying by v − v−1 (which is positive) yields

axb1−xv − axb1−xv−1 ≤ avx − av−x + bv1−x − bv−1+x.

Since this equation is homogeneous in {a, b}, we can divide by b and set r = a/b,
yielding

rxv − rxv−1 ≤ rvx − rv−x + v1−x − v−1+x.

At this point, some inspiration is necessary. Notice that the terms involving x are
of the form r±x or v±x. This suggests the substitution v = r±1; since v, r ≥ 1 we
substitute v = r. Then after this substitution, the inequality becomes 0 ≥ 0, i.e.,
equality holds for all x! This strongly suggests that c = ln r, and that a good strategy
would be to check that the inequality only “gets better” as |u| decreases from c, and
“gets worse” as |u| increases from c.
This intuition then leads directly to the following argument.

Solution 1. We will show that c = | ln(a/b)| by proving that the inequality is
satisfied if and only if 0 < |u| ≤ | ln(a/b)|. The right-hand side is an even function of
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u; hence it suffices to consider u > 0. Replacing x by 1− x and interchanging a and
b preserves the inequality, so we may assume a ≥ b.
We will show that for each x ∈ (0, 1), the function

F (u) = a
sinhux
sinhu

+ b
sinhu(1− x)

sinhu
− axb1−x

of u is decreasing for u > 0. For this, it suffices to show that for each α ∈ (0, 1), the
function

f(u) =
sinhαu
sinhu

is decreasing for u > 0, since F (u) is a constant plus a sum of positive multiples of
two such functions f . Differentiating with respect to u yields

f ′(u) =
α cosh(αu) sinhu− sinh(αu) coshu

sinh2 u
,

which for u > 0 is negative if and only if the value of the function

g(u) = α tanhu− tanh(αu)

is negative. The negativity of g(u) for u > 0 follows from g(0) = 0 and the negativity
of

g′(u) =
α

cosh2 u
− α

cosh2 αu
,

which in turn follows since cosh is increasing on R+. Thus F (u) is decreasing for
u > 0.
If a > b then F (u) is zero at u = ln(a/b). If a = b then limu→0+ F (u) = 0 by

L’Hôpital’s Rule [Spv, Ch. 11, Theorem 9]. Since F (u) is decreasing for u > 0, in both
cases we have F (u) ≥ 0 for 0 < u ≤ ln(a/b) and F (u) < 0 for u > ln(a/b), as desired. �

Solution 2. As before, we may assume u > 0 and a ≥ b. Taking ln of each side
and rearranging, we find that the inequality is equivalent to

x(ln(a sinhu)) + (1− x)(ln(b sinhu)) ≤ ln(a sinhux+ b sinhu(1− x)),

which, if we define

f(x) = a sinhux+ b sinhu(1− x),

can be written as

x ln f(1) + (1− x) ln f(0) ≤ ln f(x).

This will hold if u is such that ln f(x) is concave for x ∈ (0, 1), and will fail if ln f(x)
is strictly convex on (0, 1).
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We compute

d

dx
ln f =

f ′

f

d2

dx2
ln f =

ff ′′ − (f ′)2

f2

f ′ = au coshux− bu coshu(1− x)

f ′′ = au2 sinhux+ bu2 sinhu(1− x)

ff ′′ − (f ′)2 = (a2 + b2)u2(sinh2 ux− cosh2 ux)

+ 2abu2
(
sinhux sinhu(1− x) + coshux coshu(1− x)

)
= (a2 + b2)u2(−1) + 2abu2 cosh

(
ux+ u(1− x)

)
= u2(−a2 − b2 + 2ab cosh u)

so d2

dx2 ln f has constant sign for x ∈ (0, 1), and the following are equivalent:
d2

dx2
ln f ≤ 0 for x ∈ (0, 1)

−a2 − b2 + 2ab coshu ≤ 0

−a2 − b2 + abeu + abe−u ≤ 0

−(a− eub)(a− e−ub) ≤ 0

−(a− eub) ≤ 0 (since u > 0 and a ≥ b > 0)

u ≤ ln(a/b). �

Remark. Taking the limit as u→ 0 in the inequality of the problem yields

ax+ b(1− x) ≥ axb1−x,

a weighted version of the AM-GM Inequality mentioned at the end of 1985A2.
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The Fifty-Third William Lowell Putnam Mathematical Competition
December 5, 1992

A1. (31, 82, 42, 10, 0, 0, 0, 7, 23, 6, 2, 0)
Prove that f(n) = 1−n is the only integer-valued function defined on the

integers that satisfies the following conditions:

(i) f(f(n)) = n, for all integers n;

(ii) f(f(n+ 2) + 2) = n for all integers n;

(iii) f(0) = 1.

Solution. If f(n) = 1−n, then f(f(n)) = f(1−n) = 1− (1−n) = n, so (i) holds.
Similarly, f(f(n + 2) + 2) = f((−n − 1) + 2) = f(1 − n) = n, so (ii) holds. Clearly
(iii) holds, and so f(n) = 1− n satisfies the conditions.
Conversely, suppose f satisfies the three given conditions. By (i), f(0) = 1 and

f(1) = 0. From condition (ii), f(f(f(n + 2) + 2)) = f(n), and applying (i) yields
f(n + 2) + 2 = f(n), or equivalently f(n + 2) = f(n) − 2. Easy inductions in both
directions yields f(n) = 1− n. �

A2. (157, 1, 0, 0, 0, 0, 0, 0, 2, 14, 14, 15)
Define C(α) to be the coefficient of x1992 in the power series expansion

about x = 0 of (1 + x)α. Evaluate∫ 1

0

C(−y − 1)
(

1
y + 1

+
1

y + 2
+

1
y + 3

+ · · ·+ 1
y + 1992

)
dy.

Answer. The value of the integral is 1992.

Solution. From the binomial theorem, we see that

C(α) = α(α− 1) · · · α− 1991
1992!

,

so C(−y − 1) = (y + 1) · · · (y + 1992)/1992!. Therefore

C(−y − 1)
(

1
y + 1

+ · · ·+ 1
y + 1992

)
=

d

dy

(
(y + 1) · · · (y + 1992)

1992!

)
.

(The same formula for the derivative of a factored polynomial came up in 1991A3.)
Hence the integral in question is∫ 1

0

d

dy

(
(y + 1) · · · (y + 1992)

1992!

)
dy =

(y + 1) · · · (y + 1992)
1992!

∣∣∣∣1
0

=
1993!− 1992!

1992!
= 1992. �

A3. (55, 20, 7, 0, 0, 0, 0, 0, 16, 7, 45, 53)
For a given positive integer m, find all triples (n, x, y) of positive integers,

with n relatively prime to m, which satisfy (x2 + y2)m = (xy)n.

Answer. There are no solutions if m is odd. If m is even, the only solution is
(n, x, y) = (m+ 1, 2m/2, 2m/2).
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Solution. Note that x2 + y2 > xy, so n > m. Let d = gcd(x, y), so x = ad

and y = bd where gcd(a, b) = 1. Then (a2 + b2)m = d2(n−m)(ab)n. If p is a prime
factor of a, then p divides the right side of this equation, but not the left. Hence
a = 1, and similarly b = 1. Thus 2m = d2(n−m). Now m must be even, so say
m = 2k, from which 2k = dn−2k, so n − 2k divides k. Since gcd(m,n) = 1, we have
n − 2k = gcd(n − 2k, k) = gcd(n, k) = 1, so n = 2k + 1. Thus d = x = y = 2k, and
the solutions are as claimed. �

A4. (17, 6, 7, 0, 0, 0, 2, 0, 73, 18, 47, 33)
Let f be an infinitely differentiable real-valued function defined on the

real numbers. If

f

(
1
n

)
=

n2

n2 + 1
, n = 1, 2, 3, . . . ,

compute the values of the derivatives f (k)(0), k = 1, 2, 3, . . . .

Answer. We have

f (k)(0) =

{
(−1)k/2k! if k is even;

0 if k is odd.

Solution. Let g(x) = 1/(1 + x2) and h(x) = f(x) − g(x). The value of g(k)(0) is
k! times the coefficient of xk in the Taylor series 1/(1 + x2) =

∑∞
m=0(−1)mx2m, and

the value of h(k)(0) is zero by the lemma below (which arguably is the main content
of this problem). Thus

f (k)(0) = g(k)(0) + h(k)(0) =

{
(−1)k/2k! if k is even;

0 if k is odd.
�

Lemma. Suppose h is an infinitely differentiable real-valued function defined on
the real numbers such that h(1/n) = 0 for n = 1, 2, 3, . . . . Then h(k)(0) = 0 for all
nonnegative integers k.

This lemma can be proved in many ways (and is a special case of a more general
result stating that if h : R → R is infinitely differentiable, if k ≥ 0, and if a ∈ R,
then h(k)(a) is determined by the values of h on any sequence of distinct real numbers
tending to a).
Proof 1 (Rolle’s Theorem). Since h(x) = 0 for a sequence of values of x strictly

decreasing to 0, h(0) = 0. By Rolle’s Theorem, h′(x) has zeros between the zeros of
h(x); hence h′(x) = 0 for a sequence strictly decreasing to 0, so h′(0) = 0. Repeating
this argument inductively, with h(n)(x) playing the role of h(x), proves the lemma.�

Proof 2 (Taylor’s Formula). We prove that h(n)(0) = 0 by induction. The n = 0
case follows as in the previous proof, by continuity. Now assume that n > 0, and
h(k)(0) = 0 is known for k < n. Recall Taylor’s Formula (Lagrange’s form, see
e.g. [Ap1, Section 7.7]) which states that for any x > 0 and integer n > 0, there exists
θn ∈ [0, x] such that

h(x) = h(0) + h′(0)x+ · · ·+ h(n−1)(0)xn−1/(n− 1)! + h(n)(θn)xn/n!.
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By our inductive hypothesis,

h(0) = · · · = h(n−1)(0) = 0.

Hence by taking x = 1, 1/2, 1/3, . . . , we get h(n)(θm) = 0, where 0 ≤ θm ≤ 1/m. But
limm→∞ θm = 0, so by continuity h(n)(0) = 0. �

Proof 3 (J. P. Grossman). By continuity, h(0) = 0. Let k be the smallest
nonnegative integer such that h(k)(0) �= 0. We assume h(k)(0) > 0; the same argument
applies if h(k)(0) < 0. Then there exists ε such that h(k)(x) > 0 on (0, ε]. Repeated
integration shows that h(x) > 0 on (0, ε], a contradiction. �

Proof 4 sketch (explicit computation). By definition,

h′(0) = lim
ε→0

f(ε)− f(0)
ε

.

More generally, if h is infinitely differentiable in a neighborhood of 0, then

h(k)(0) = lim
ε→0

∑k
j=0

(
k
j

)
(−1)k−jh(jε)

εk
. (1)

(This can be proved by applying L’Hôpital’s Rule k times to the expression on the
right.) Then choose ε = 1/n where n runs over the multiples of lcm(1, . . . , k), to
obtain h(k)(x) = 0. �

Remark. The formula (1) holds under the weaker assumption that h(k)(0) exists.
To prove this, apply L’Hôpital’s Rule k − 1 times, and then write the resulting
expression as a combination of limits of the form

lim
ε→0

h(k−1)(jε)− h(k−1)(0)
jε

,

each of which equals h(k)(0), by definition.

Remark. Note that h(x) need not be the zero function! An infinitely differentiable
function need not be represented by its Taylor series at a point, i.e., it need not be
analytic. For example, consider

h(x) =

{
e−1/x2

sin(π/x) for x �= 0,
0 for x = 0.

It is infinitely differentiable for all x, and all of its derivatives are 0 at x = 0. (It
satisfies the hypotheses of the lemma!)

A5. (1, 9, 1, 0, 0, 0, 0, 0, 5, 3, 72, 112)
For each positive integer n, let

an =
{
0 if the number of 1’s in the binary representation of n is even,
1 if the number of 1’s in the binary representation of n is odd.

Show that there do not exist positive integers k and m such that

ak+j = ak+m+j = ak+2m+j ,

for 0 ≤ j ≤ m− 1.
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Solution 1. The sequence begins

0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, . . . .

The problem is to show that there are not “three identical blocks in a row”.
The definition of an implies that a2n = an = 1− a2n+1.
Suppose that there exist k, m as in the problem; we may assume that m is minimal

for such examples.
Suppose first thatm is odd. We’ll suppose ak = ak+m = ak+2m = 0; the case ak = 1

can be treated similarly. Since either k or k+m is even, ak+1 = ak+m+1 = ak+2m+1 =
1. Again, since either k+1 or k+m+1 is even, ak+2 = ak+m+2 = ak+m+2 = 0. By this
means, we see that the terms ak, ak+1, . . . , ak+m−1 alternate between 0 and 1. Then
since m− 1 is even, ak+m−1 = ak+2m−1 = ak+3m−1 = 0. But, since either k +m− 1
or k + 2m− 1 is even, that would imply that ak+m = ak+2m = 1, a contradiction.
Thus m must be even. Extracting the terms with even indices in

ak+j = ak+m+j = ak+2m+j , for 0 ≤ j ≤ m− 1,
and using the fact that ar = ar/2 for even r, we get

a�k/2�+i = a�k/2�+(m/2)+i = a�k/2�+m+i, for 0 ≤ i ≤ m/2− 1.
(The even numbers ≥ k are 2�k/2�, 2�k/2�+2, . . . .) This contradicts the minimality
of m.
Hence there are no such k and m. �

Solution 2 (J.P. Grossman).

Lemma. Let c(i, j) be the number of carries when i is added to j in binary. Then
ai+j ≡ ai + aj + c(i, j) (mod 2).

Proof. Perform the addition column by column as taught in grade school, writing
a “1” above the next column every time there is a carry. Then modulo 2, the total
number of 1’s appearing “above the line” is ai + aj + c(i, j), and the total number
of 1’s in the sum is ai+j . But in each column the digit of the sum is congruent
modulo 2 to the sum of the 1’s that appear above it. Summing over all columns yields
ai+j ≡ ai + aj + c(i, j) (mod 2). �

We are asked to show that there is no block of 2m consecutive integers such that
ak = ak+m for all k in the block. Suppose such a block exists.
If 2n ≤ m < 2n+1, then m has n+ 1 bits (binary digits), and since 2m ≥ 2n+1, any

2m consecutive integers will exhibit every possible pattern of n+1 low bits. Let κ be
the integer in this block with the n+1 low bits zero. Then c(κ,m) = 0, so the lemma
gives aκ+m ≡ aκ + am (mod 2). Since aκ+m = aκ, we obtain am = 0. Running this
argument in reverse, we have ak+m ≡ ak + am (mod 2) and c(k,m) ≡ 0 (mod 2) for
all k in the block.
In particular, c(k,m) = 0 for the k with the n+1 low bits equal to 0 except for one

1, so m cannot contain the pattern 01. Thus the binary expansion of m has the form
1 · · · 10 · · · 0; that is, m = 2n+1 − 2s for some s ≥ 0.
Suppose we can find k1 and k2 in the block such that �k1/2n+1� = �k2/2n+1�,

k1 ≡ 2s (mod 2n+1), and k2 ≡ 2s+1 (mod 2n+1). Then c(k1,m) = c(k2,m) + 1,
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contradicting the fact that c(k,m) is even for each k in the block. Thus no such pair
(k1, k2) exists.
On the other hand, since 2m ≥ 2n+1, there does exist k in the block such that

k ≡ 2s (mod 2n+1). The smallest element of the block must be at least k− 2n+1 + 1,
or else we could take k1 = k− 2n+1 and k2 = k1+2s. The largest element must be at
most k + 2s − 1, or else we could take k1 = k and k2 = k1 + 2s. Thus the block has
length at most

2n+1 + 2s − 1 < 2n+1 + 2s+2 − 2s+1 − 1 ≤ 2n+2 − 2s+1 − 1 = 2m− 1,
which is a contradiction.

Related question. Show that if two adjacent blocks are identical, then the length
of each is a power of 2. Show that any power of 2 is achievable.

Remark. This sequence is sometimes called the Thue-Morse sequence; see [AS] for
examples of its ubiquity in mathematics, including its use by Machgielis Euwe (chess
world champion 1935–37) to show that infinite games of chess may occur despite the
so-called “German rule” which states that a draw occurs if the same sequence of moves
occurs three times in succession.

Related question. Another fact discussed in [AS] is the following (see there for
further references). The result of Christol mentioned in the remark following 1989A6
implies that the generating function F (x) =

∑∞
n=0 anx

n considered as a power series
with coefficients in F2, is algebraic over the field F2(x) of rational functions with
coefficients in F2. We leave it to the reader to verify that

(x+ 1)3F (x)2 + (x+ 1)2F (x) + x = 0.

On the other hand, if the coefficients of F (x) are considered to be rational, then
one can show that F (x) is transcendental over Q(x), and even that F (1/2) is a
transcendental number.

Related questions. The Thue-Morse sequence has a self-similarity property: if one
replaces each “0” with “0, 1”, and each “1” with “1,0”, one recovers the original
sequence. The “extraction of terms with even indices” in Solution 1 is just reversing
this self-similarity.
Here are a few more problems and results relating to “arithmetic self-similarity”.
(a) Show that the sequence s(0), s(1), s(2), . . . , defined by s(3m) = 0, s(3m+1) =

s(m), s(3m+2) = 1, also has the property that there are not “three identical blocks in
a row”. This problem is given in [Hal, p. 156], along with a discussion of its motivation
in chess.
(b) 1993A6.
(c) Problem 3 on the 1988 International Mathematical Olympiad [IMO88, p. 37] is:

A function f is defined on the positive integers by

f(1) = 1, f(3) = 3, f(2n) = f(n),

f(4n+ 1) = 2f(2n+ 1)− f(n), f(4n+ 3) = 3f(2n+ 1)− 2f(n),
for all positive integers n. Determine the number of positive integers n, less
than or equal to 1988, for which f(n) = n.
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(d) Also, [YY, p. 12] has a series of similar problems. For example, this Putnam
problem answers the question Yaglom and Yaglom pose in Problem 124(b). The
subsequent problem is harder:

Show that there exist arbitrarily long sequences consisting of the digits 0, 1,
2, 3, such that no digit or sequence of digits occurs twice in succession. Show
that there are solutions in which the digit 0 does not occur; thus three digits
is the minimum we need to construct sequences of the desired type.

For a link to a discrete version of dynamical systems, [YY] suggests [MH].

A6. (9, 3, 4, 0, 0, 0, 0, 0, 0, 10, 32, 22, 123)
Four points are chosen at random on the surface of a sphere. What is

the probability that the center of the sphere lies inside the tetrahedron
whose vertices are at the four points? (It is understood that each point is
independently chosen relative to a uniform distribution on the sphere.)

Answer. The probability is 1/8.

Solution 1. Set up a coordinate system so that the sphere is centered at the
origin of R3. Identify points with vectors in R3.
Let P1, P2, P3, P4 be the four random points on the sphere. We may suppose that

the choice of each Pi is made in two steps: first a random point Qi is chosen, then a
random sign εi ∈ {−1, 1} is chosen and we set Pi = εiQi.
The probability that Q3 is in the linear subspace spanned by Q1 and Q2 is zero.

Similar statements hold for any three of the Qi, so we may assume that every three of
the Qi are linearly independent. The probability that Q4 is in the plane through Q1,
Q2, Q3 is zero, so we may assume that Q1Q2Q3Q4 is a nondegenerate tetrahedron
TQ. We may also assume that for any choices of the εi, the tetrahedron TP with the
Pi as vertices is nondegenerate.
The linear map LQ : R4 → R3 sending (w1, w2, w3, w4) to

∑
wiQi is surjective, so

kerLQ is 1-dimensional, generated by some (w1, w2, w3, w4). Since every three Qi are
linearly independent, every wi is nonzero.
We claim that 0 lies in the interior of TQ if and only if all the wi have the same sign.

If 0 lies in the interior of TQ, then 0 is a convex combination of the vertices in which
each occurs with nonzero coefficient; i.e., 0 =

∑4
i=1 riQi for some r1, r2, r3, r4 > 0

with sum 1. Then (w1, w2, w3, w4) is a multiple of (r1, r2, r3, r4), so the wi have the
same sign. Conversely if the wi have the same sign, then w1 + w2 + w3 + w4 �= 0
and 0 =

∑4
i=1 riQi where (r1, r2, r3, r4) = 1

w1+w2+w3+w4
(w1, w2, w3, w4) is such that

r1, r2, r3, r4 > 0 sum to 1, so 0 lies in the interior of TQ.
FixQ1, Q2, Q3, Q4 and (w1, w2, w3, w4). Then (ε1w1, ε2w2, ε3w3, ε4w4) is a generator

of kerLP , where LP is defined using the Pi instead of the Qi. The numbers ε1w1,
ε2w2, ε3w3, ε4w4 have the same sign (all plus or all minus) for exactly 2 of the 24 = 16
choices of (ε1, ε2, ε3, ε4). Thus, conditioned on a choice of the Qi, the probability
that TP contains the origin in its interior is 2/16 = 1/8. This is the same for any
(Q1, . . . , Q4), so the overall probability that 0 lies inside TP also is 1/8. �
Remark. As noted in [HoS], the same argument proves the following generalization.
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Let Rn be endowed with a probability measure µ that is symmetric with respect to
the map x !→ −x, and such that, when n + 1 points are chosen independently with
respect to µ, with probability one their convex hull is a simplex. Then the probability
that the origin is contained in the simplex generated by n+ 1 such random points is
1/2n.
The original problem is the case n = 3 with µ equal to the uniform distribution.

The case n = 2 with the uniform distribution appears, along with a strategy for
approaching it, in [Hon1, Essay 1].

Remark. The article [HoS] mentions also the following result of J. G. Wendel [Wen],
which generalizes the original result in a different direction: if N points are chosen at
random from the surface of the unit sphere in Rn, the probability that there exists a
hemisphere containing all N points equals

2−N+1
n−1∑
k=0

(
N − 1

k

)
.

Remark. Here is a bizarre related fact: if five points are chosen at random from a
ball in R3, the probability that one of them is contained in the tetrahedron generated
by the other four is 9/143 [So].

We end with a variant of the solution to the original problem.

Solution 2. Pick the first three points first; call them A, B, C. Consider the
spherical triangle T defined by those points. The center of the sphere lies in the convex
hull of A, B, C, and another point P if and only if it lies in the convex hull of T and
P . This happens if and only if P is antipodal to some point of T . So the desired
probability is the expected fraction of the sphere’s surface area which is covered by T .
Denote the antipode to a point P by P ′. We consider the eight spherical triangles

ABC, A′BC, A′B′C, ABC ′, AB′C ′, A′B′C ′. Denote these by T0, T1, . . . , T7; we
regard Ti as a function of the random variables A, B, C. There is an automorphism
of our probability space defined by (A,B,C) !→ (A′, B,C), so T0 and T1 have the
same distribution. By choosing similar automorphisms, T0 and Ti have the same
distribution for all i. In particular, the expected fraction of the sphere covered by Ti
is independent of i. On the other hand, the triangles T0, . . . , T7 cover the sphere (with
overlap of measure zero), since they are the eight regions formed by the three great
circles obtained by extending the sides of spherical triangle ABC, so the probability
we seek is 1/8. �

B1. (145, 15, 4, 0, 0, 0, 0, 0, 6, 14, 11, 8)
Let S be a set of n distinct real numbers. Let AS be the set of numbers

that occur as averages of two distinct elements of S. For a given n ≥ 2,
what is the smallest possible number of elements in AS?

Answer. The smallest possible number of elements of AS is 2n− 3.
Solution. Let x1 < x2 < · · · < xn represent the elements of S. Then
x1 + x2

2
<

x1 + x3

2
< · · · < x1 + xn

2
<

x2 + xn
2

<
x3 + xn

2
< · · · < xn−1 + xn

2



Solutions: The Fifty-Third Competition (1992) 161

represent 2n− 3 distinct elements of AS , so AS has at least 2n− 3 distinct elements.
On the other hand, if we take S = {1, 2, . . . , n}, the elements of AS are 3

2 ,
4
2 ,

5
2 ,

. . . , 2n−1
2 . There are only 2n− 3 such numbers; thus there is a set AS with at most

2n− 3 distinct elements. �
Related question. This is a generalization of Problem 2 of the 1991 Asian-Pacific

Mathematical Olympiad [APMO],

Suppose there are 997 points given on a plane. If every two points are joined
by a line segment with its midpoint coloured in red, show that there are at
least 1991 red points on the plane. Can you find a special case with exactly
1991 red points?

B2. (159, 10, 7, 0, 0, 0, 0, 0, 1, 4, 13, 9)
For nonnegative integers n and k, define Q(n, k) to be the coefficient of

xk in the expansion of (1 + x+ x2 + x3)n. Prove that

Q(n, k) =
k∑

j=0

(
n

j

)(
n

k − 2j
)
,

where
(
a
b

)
is the standard binomial coefficient. (Reminder: For integers a

and b with a ≥ 0,
(
a
b

)
= a!

b! (a−b)! for 0 ≤ b ≤ a, with
(
a
b

)
= 0 otherwise.)

Solution. Write (1 + x + x2 + x3)n as (1 + x2)n(1 + x)n. The coefficient of xk

gets contributions from the x2j term in the first factor (with coefficient
(
n
j

)
) times the

xk−2j term in the second factor (with coefficient
(

n
k−2j

)
). �

Remark. This solution can also be stated in the language of generating functions:∑
k≥0

Q(n, k)xk = (1 + x+ x2 + x3)n

= (1 + x2)n(1 + x)n

=
∑
j≥0

(
n

j

)
x2j
∑
i≥0

(
n

i

)
xi

=
∑
j≥0

∑
i≥0

x2j+i

(
n

j

)(
n

i

)

=
∑
k≥0

xk
∑
j≥0

(
n

j

)(
n

k − 2j
)
.

B3. (23, 11, 10, 0, 0, 0, 0, 0, 27, 24, 71, 37)
For any pair (x, y) of real numbers, a sequence (an(x, y))n≥0 is defined as

follows:

a0(x, y) = x,

an+1(x, y) =
(an(x, y))2 + y2

2
, for n ≥ 0.

Find the area of the region { (x, y)|(an(x, y))n≥0 converges }.
Answer. The area is 4 + π.
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Solution. The region of convergence is shown in Figure 22; it is a (closed) square
{ (x, y) : −1 ≤ x, y ≤ 1 } of side 2 with (closed) semicircles of radius 1 centered at
(±1, 0) described on two opposite sides.

(–1, 1) (1, 1)

(–1, –1) (1, –1)

FIGURE 22.
The region of convergence.

Note that (x, y), (−x, y), (x,−y), and (−x,−y) produce the same sequence after the
first step, so will restrict attention to the first quadrant (x, y ≥ 0), and use symmetry
to deal with the other three.
Fix y; we will determine for which x (x, y) is in the region. Let f(w) = (w2+y2)/2,

so an(x, y) = fn(x). If the limit exists and is L, then f(L) = L, so L = 1±
√
1− y2

(call these values L+ and L−). It will be useful to observe that

f(w)− L = (w − L)(w + L)/2. (1)

In particular, if y > 1, the limit cannot exist; we now assume y ≤ 1.
If w > L+, then f(w) > w (from (1) for L = L+, and w + L+ > 2). Hence if

x > 1 +
√
1− y2, the sequence x, f(x), f(f(x)), . . . , cannot converge.

If x = L+, then x, f(x), f(f(x)), . . . is the constant sequence (L+), and hence
converges.
If 0 ≤ w < L+, then

(i) f(w) satisfies the same inequality, i.e., 0 ≤ f(w) < L+ (the left inequality is
immediate, and the right follows from (1) for L = L+),

(ii) |f(w)− L−| < |w − L−| (from (1) for L− and w + L− < L+ + L− = 2) , and

(iii) w − L− and f(w)− L− have the same sign (from (1) for L = L−).

Then (i)–(iii) imply that if 0 ≤ x < L+, then

x, f(x), f(f(x)), . . .

converges to L−. �
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Remark. Problem 1996A6 involves a similar dynamical system.

Related question. For another problem involving a dynamical system, observe what
happens when you repeatedly hit the cosine button on a calculator, and explain this
phenomenon. In essence, this is Problem 1952/7 [PutnamI, p. 37]:

Given any real number N0, if Nj+1 = cosNj , prove that limj→∞ Nj exists
and is independent of N0.

Literature note. For introductory reading on dynamical systems, see [De] or [Mi].

B4. (35, 11, 13, 0, 0, 0, 0, 0, 12, 5, 48, 79)
Let p(x) be a nonzero polynomial of degree less than 1992 having no

nonconstant factor in common with x3 − x. Let

d1992

dx1992

(
p(x)

x3 − x

)
=

f(x)
g(x)

for polynomials f(x) and g(x). Find the smallest possible degree of f(x).

Answer. The smallest possible degree of f(x) is 3984.

Solution. By the Division Algorithm, we can write p(x) = (x3 − x)q(x) + r(x),
where q(x) and r(x) are polynomials, the degree of r(x) is at most 2, and the degree
of q(x) is less than 1989. Then

d1992

dx1992

(
p(x)

x3 − x

)
=

d1992

dx1992

(
r(x)

x3 − x

)
.

Write r(x)/(x3 − x) in the form

A

x− 1 +
B

x
+

C

x+ 1
.

Because p(x) and x3−x have no common factor, neither do r(x) and x3−x, and thus
A, B, and C are nonzero. Thus

d1992

dx1992

(
r(x)

x3 − x

)
= 1992!

(
A

(x− 1)1993 +
B

x1993
+

C

(x+ 1)1993

)

= 1992!
(
Ax1993(x+ 1)1993 +B(x− 1)1993(x+ 1)1993 + C(x− 1)1993x1993

(x3 − x)1993

)
.

Since A, B, C are nonzero, the numerator and denominator have no common factor.
Expanding the numerator yields

(A+B + C)x3986 + 1993(A− C)x3985 + 1993(996A−B + 996C)x3984 + · · · .
From A = C = 1, B = −2 we see that the degree can be as low as 3984. A lower
degree would imply A+B +C = 0, A−C = 0, 996A−B + 996C = 0, implying that
A = B = C = 0, a contradiction.
Expressing d1992

dx1992

(
p(x)
x3−x

)
in other than lowest terms can only increase the degree of

the numerator. (Nowhere in the problem does it say that f(x)/g(x) is to be in lowest
terms.) �
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Remark (Noam Elkies). Although the proposer of this problem presumably had
polynomials with real or complex coefficients in mind, the same solution works for
polynomials over a field of characteristic greater than 1992. When the characteristic
is less than 1992, one can show that d1992

dx1992

(
p(x)
x3−x

)
is always zero, so the problem does

not make much sense.

B5. (62, 4, 4, 0, 0, 0, 0, 3, 6, 2, 49, 73)
Let Dn denote the value of the (n− 1)× (n− 1) determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3 1 1 1 · · · 1
1 4 1 1 · · · 1
1 1 5 1 · · · 1
1 1 1 6 · · · 1
...

...
...

...
. . .

...
1 1 1 1 · · · n+ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Is the set {Dn/n!}n≥2 bounded?

Answer. No. Each of the solutions below shows that

Dn = n!
(
1 +

1
2
+ · · ·+ 1

n

)
.

Thus the sequence {Dn/n!}n≥2 is the nth partial sum of the harmonic series, which
is unbounded as n→∞.
Solution 1. Subtract the first row from each of the other rows, to get

Dn = det



3 1 1 1 · · · 1
−2 3 0 0 · · · 0
−2 0 4 0 · · · 0
−2 0 0 5 · · · 0
...

...
...

...
. . .

...
−2 0 0 0 · · · n


. (1)

Then for 2 ≤ i ≤ n − 1, add 2/(i + 1) times the ith column to the first column to
obtain

Dn = det



3 + 2
3 +

2
4 + · · ·+ 2

n 1 1 1 · · · 1
0 3 0 0 · · · 0
0 0 4 0 · · · 0
0 0 0 5 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · n


.

The resulting matrix is upper triangular, so the determinant is the product of the
diagonal elements, which is

n!
(
1 +

1
2
+ · · ·+ 1

n

)
. �
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Solution 2 (J.P. Grossman). We derive a recursion for Dn+1. Expand (1)
along the last row to get Dn = nDn−1 + (n− 1)!. Divide by n! to obtain

Dn

n!
=

Dn−1

(n− 1)! +
1
n
,

from which the result follows. �

Solution 3. Define

Dn+1(a1, . . . , an) = det



1 + a1 1 1 1 · · · 1
1 1 + a2 1 1 · · · 1
1 1 1 + a3 1 · · · 1
1 1 1 1 + a4 · · · 1
...

...
...

...
. . .

...
1 1 1 1 · · · 1 + an


.

The problem asks for Dn(2, 3, . . . , n). We will prove the identity

Dn+1(a1, . . . , an) =
n∏

i=1

ai +
n∑

i=1

n∏
j=1
j �=i

aj . (2)

This formula follows immediately from the recursion

Dn+1(a1, . . . , an) = anDn(a1, . . . , an−1) + an−1Dn(a1, . . . , an−2, 0).

To prove this recursion, subtract the (n− 1)st column from the nth column, and then
expand along the nth column.
If all the ai are nonzero, we can write the polynomial Dn(a1, . . . , an−1) in the form

Dn(a1, . . . , an−1) = a1a2 · · · an−1

(
1 +

1
a1

+
1
a2

+ · · ·+ 1
an−1

)
.

This problem is the special case ai = i+ 1. �
Remark. This formula can also be used for a generalization of Problem 1993B5;

see page 188.

Solution 4. The following result is Problem 7 of Part VII of [PS], and appeared
as Problem 1978A2 [PutnamII, p. 31].
Let a, b, p1, p2, . . . , pn be real numbers with a �= b. Define

f(x) = (p1 − x)(p2 − x)(p3 − x) · · · (pn − x).

Then

det



p1 a a a · · · a a

b p2 a a · · · a a

b b p3 a · · · a a

b b b p4 · · · a a
...

...
...

...
. . .

...
...

b b b b · · · pn−1 a

b b b b · · · b pn


=

bf(a)− af(b)
b− a

. (3)
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The left side of (3) is a polynomial in b, and hence continuous in b. Letting a = 1,
b→ 1, and using L’Hôpital’s Rule, we find

det



p1 1 1 1 · · · 1 1
1 p2 1 1 · · · 1 1
1 1 p3 1 · · · 1 1
1 1 1 p4 · · · 1 1
...

...
...

...
. . .

...
...

1 1 1 1 · · · pn−1 1
1 1 1 1 · · · 1 pn


= f(1)− f ′(1).

Letting pi = ai + 1, we recover (2), using for example equation (1) on page 136. �
Remark. There are many other approaches that proceed by applying row and

column operations to find a recursion for Dn. Here we sketch one more.
Subtract the next-to-last column from the last column, and then subtract the next-

to-last row from the last row, and expand along the last row to obtain

Dn+1 = (2n+ 1)Dn − n2Dn−1.

If we set rn = Dn/n!, this becomes rn+1 − rn = n
n+1 (rn − rn−1). One proves

rn+1 − rn = 1/(n+ 1) by induction, and finally

rn = 1 +
1
2
+
1
3
+ · · ·+ 1

n
.

B6. (0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 39, 155)
Let M be a set of real n× n matrices such that

(i) I ∈M, where I is the n× n identity matrix;

(ii) if A ∈M and B ∈M, then either AB ∈M or −AB ∈M, but not both;

(iii) if A ∈M and B ∈M, then either AB = BA or AB = −BA;

(iv) if A ∈M and A �= I, there is at least one B ∈M such that AB = −BA.

Prove that M contains at most n2 matrices.

Solution 1 (Noam Elkies). Suppose A, B are in M. By (iii), AB = εBA,
where ε = ±1, for any B inM. Then

AAB = AεBA = ε2BAA = BAA,

so A2 commutes with any B inM; of course the same is true of −A2. On the other
hand, by (ii), A2 or −A2 is inM. Let C be the one that is inM.
If C is not I, then by (iv) we can find a B in M such that CB = −BC. But we

know CB = BC for any B inM. Thus CB = 0, which is impossible by (ii).
We conclude that C = I. In other words, for any A inM, A2 = ±I.
Now supposeM has more than n2 matrices. The space of real n× n matrices has

dimension n2, so we can find a nontrivial linear relation
∑

D∈M xDD = 0. Pick such a
relation with the smallest possible number of nonzero xD. We will construct a smaller
relation, obtaining a contradiction and finishing the proof.
Pick an A with xA nonzero, and multiply by it on the right:

∑
D∈M xDDA = 0.

In light of (ii) the matrices DA run over M modulo sign; so we have a new relation
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∑
E∈M yEE = 0. The point of this transformation is that now the coefficient yI of I

is ±xA, which is nonzero.
Pick any D other than I such that yD is nonzero. By (iv), we can pick B inM such

that DB = −BD. Multiply
∑

E∈M yEE = 0 by B on both the left and the right, and
add: ∑

E∈M
yE(BE + EB) = 0.

Now by (iii) we have BE + EB = (1 + εBE)BE, where εBE = ±1. In particular,
εBI = 1 (clear) and εBD = −1 (by construction of B). So we get∑

E∈M
yE(1 + εBE)BE = 0,

where at least one term does not disappear and at least one term does disappear. As
before, the matrices BE run over M modulo sign. So we have a relation with fewer
terms, as desired. �
Remark. This proof did not need (i) in an essential way. The only modification to

the proof needed to avoid using (i), is that instead of arranging for yI to be nonzero,
we might have y−I nonzero instead.
In fact, if M is nonempty, (i) follows from (ii), (iii), and (iv), as we now show.

Choose A ∈ M. Then ±A2 ∈ M, so ±I ∈ M by the first half of Solution 1. But
−I ∈M contradicts (iv).

Remark. The result holds not only for real matrices, but also for matrices with
entries in any field k: if the characteristic of k is not 2, the proof proceeds as before;
if the characteristic is 2, then (ii) implies thatM is empty.

Remark. An argument similar to that in the latter half of the solution proves
the following result of field theory (“independence of characters”): if L is a finite
extension of a field K, then the automorphisms of L over K are linearly independent
in the K-vector space of K-linear maps L→ L [Ar, Theorem 12].

Solution 2. We prove the result more generally for complex matrices, by induction
on n.
If n = 1, then the elements of M commute so (iv) cannot be satisfied unless

M = {I}. Suppose that n > 1 and that the result holds for sets of complex matrices
of smaller dimension.
We may assume |M| > 1, so by (iv), there exist C,D ∈ M with CD = −DC. Fix

such C, D. As in Solution 1, C2 = ±I, so the eigenvalues of C are ±λ where λ = 1
or i. Furthermore, Cn = Vλ ⊕ V−λ, where Vλ, V−λ are the eigenspaces corresponding
to λ and −λ (i.e., the nullspaces of (C − λI), (C + λI)) respectively. (Here we follow
the convention that the matrices are acting on Cn by right-multiplication.) Observe
that if X ∈M then

CX = XC =⇒ (C ± λI)X = X(C ± λI) =⇒ V±λX = V±λ;

CX = −XC =⇒ (C ± λI)X = (−1)X(C ∓ λI) =⇒ V±λX = V∓λ.

In particular, since VλD = V−λ, dim(Vλ) = dim(V−λ) = n/2.
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Let N = {X ∈ M : CX = XC,DX = XD }. If Y ∈ M then exactly one of Y ,
Y C, Y D, Y CD is in N . It follows that |N | = |M|/4.
For X ∈ N , let φ(X) be the (n/2) × (n/2) matrix representing, with respect to

a basis of Vλ, the linear transformation given by v !→ vX for v ∈ Vλ. Then φ is
injective. To see this, assume φ(X) = φ(Y ), so vX = vY for v ∈ Vλ; but if v ∈ V−λ

then vD ∈ Vλ, so vXD = vDX = vDY = vY D, which again implies vX = vY ; since
X and Y induce the same transformations of both Vλ and V−λ, it follows that X = Y .
It suffices finally to show that φ(N ), a set of (n/2)×(n/2) complex matrices, satisfies

(i), (ii), (iii), (iv), for then, by induction, |φ(N )| ≤ (n/2)2, whence |M| = 4|N | =
4|φ(N )| ≤ n2.
Conditions (i), (ii), (iii) for φ(N ) are inherited from those of M. To show (iv),

let φ(A) ∈ φ(N ), with φ(A) not the (n/2) × (n/2) identity matrix. Then A �= I

(since φ is injective) and AB = −BA for some B ∈ M. Let B′ be the element of
{B,BC,BD,BCD} belong to N . Since AB′ = −B′A, φ(A)φ(B′) = −φ(B′)φ(A). �

Solution 3. Again we prove the result more generally for complex matrices. We
will use the following facts about the set S of irreducible complex representations of
a finite group G up to equivalence:

1. The number of conjugacy classes of G is |S|. [Se2, Theorem 7]

2. The number of one-dimensional representations in S is |G/G′|, where G′ is the
commutator subgroup of G. (This is a consequence of the previous fact applied
to G/G′, since all one-dimensional representations must be trivial on G′.)

3. The sum of the squares of the dimensions of the representations in S equals
|G|. [Se2, Corollary 2]

As in Solution 1, we have A2 = ±I for any A ∈ M. Thus any finite subset
{A1, . . . , Ak} ⊆ M generates a finite group G0, whose elements are of the form

±Ai1Ai2 · · ·Aim

where i1 < i2 < · · · < im. If A �= ±I is in the center of G0, then A or −A belongs to
M, so by (iv) some B inM does not commute with A. Let G1 be the group generated
by A1, . . . , Ak, B. If there were some A′ in G0 such that A′B is central in G1, then

A′BA = AA′B = A′AB = −A′BA,

giving a contradiction. Hence G1 has a strictly smaller center than G0. By repeating
this enlargement process, we can find a finite set A1, . . . , Ak′ of elements of M
(k′ > k) generating a finite group G with center Z = {±I}. Note that |G| ≥ 2k.
If X ∈ G−Z, then X has precisely two conjugates, namely itself and −X. Thus G

has 1+ |G|/2 conjugacy classes, and therefore G has 1+ |G|/2 inequivalent irreducible
representations over C. The number of inequivalent representations of dimension 1
is |G/G′|. Since G′ = {±I} = Z, this number is |G|/2. The remaining irreducible
representation η has dimension

√|G|/2, since the sum of the squares of the dimensions
of the irreducible representations equals |G|. Then η must occur in the representation
G ↪→ GLn(C), since Z is in the kernel of all the 1-dimensional representations. Hence
n ≥√|G|/2, or equivalently 2n2 ≥ |G|.
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Thus k ≤ |G|/2 ≤ n2. Since all finite subsets ofM have cardinality at most n2, we
have |M| ≤ n2. �

Remark. If we knew in advance that M were finite, the proof would be cleaner:
we could let G be the group {±A : A ∈M}.
Group theory interlude. Here we collect some facts from group theory that will be

used in the next remark to classify all possibleM. First recall some definitions, from
pages 4, 8, and 183 of [Gor]. Let Z denote the center of a group G. If p is a prime,
then G is called a p-group if G is finite of order a power of p. An elementary abelian
p-group is a finite abelian group killed by p, hence isomorphic to (Z/pZ)k for some
integer k ≥ 0. A special p-group is a p-group G such that either G is elementary
abelian, or {1} � G′ = Z � G with Z and G/Z elementary abelian. Finally an
extraspecial p-group is a nonabelian special p-group G with |Z| = p.
There is a relatively simple classification of extraspecial p-groups [Gor, p. 204]. We

reproduce the classification for p = 2 here. First one has the dihedral group D of order
8 and the quaternion group Q of order 8. Identify the center of each of these with
{±1}. For integers a, b ≥ 0 not both zero, we let Ga,b denote the quotient of Da ×Qb

by H ⊂ {±1}a+b, where H is the kernel of the multiplication map {±1}a+b → {±1}.
(This quotient is called a central product.) A group G is an extraspecial 2-group if
and only if G ∼= Ga,b for some a, b as above. Moreover, Ga,b

∼= Ga′,b′ if and only
if a + b = a′ + b′ and b ≡ b′ (mod 2). For convenience, we also define G0,0 = Z/2,
although it is not extraspecial. Then |Ga,b| = 22a+2b+1 for all a, b ≥ 0.
The argument of Solution 3 shows that over C, Ga,b has 22a+2b representations of

dimension 1 that are trivial on the center, and one other irreducible representation η,
of dimension 2a+b. We can construct η explicitly as follows. Let H = R+Ri+Rj+Rk

denote Hamilton’s ring of quaternions, in which i2 = j2 = k2 = −1, ij = −ji = k,
jk = −kj = i, and ki = −ik = j. The 2-dimensional representations ηD and ηQ of D
and Q are obtained by complexifying the real representation D → GL2(R) given by
symmetries of the square and the inclusion Q = {±1,±i,±j,±k} → H∗, respectively,
noting that H⊗R C ∼= M2(C). The tensor product of these irreducible representations
gives an irreducible representation of Da×Qb whose kernel is exactly H; this induces
η. The corresponding simple factor of the group algebra CGa,b is the complexification
of a simple factor of RGa,b isomorphic to M2(R)⊗a⊗R H⊗b. The latter is isomorphic to
M2a+b(R) or M2a+b−1(H) according as b is even or odd, since the Brauer group Br(R)
is of order 2, generated by the class of H. (For the definition of the Brauer group, see
Section 4.7 of [J].) Hence η is the complexification of a representation η′ over R if and
only if b is even, i.e., if and only if Ga,b

∼= Gα,0 for some α ≥ 0. If b is odd, we instead
let η′ be the unique faithful R-irreducible representation; it is of dimension 2 dim η,
and is obtained by identifying the Cn for η with R2n.

Remark. We are now ready to classify all possibleM. The argument of Solution 3
shows that ifM satisfies (i), (ii), (iii), (iv), then G = {±A : A ∈M} is a finite group
such that

(1) the center Z has order 2 and contains the commutator subgroup G′; and

(2) there is a faithful representation ρ : G→ GLn(R) identifying Z with {±I}.
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Conversely, given a group G with ρ : G→ GLn(R) satisfying (1) and (2), any setM
of coset representatives for {±I} in ρ(G) with I ∈M satisfies (i), (ii), (iii), (iv).
Suppose that G and ρ satisfy (1) and (2). The argument at the beginning of

Solution 1 shows that every element of G/Z has order dividing 2; hence inversion on
G/Z is a homomorphism, and G/Z is an elementary abelian 2-group. Thus G is an
extraspecial 2-group or G ∼= Z/2Z. (In particular |M| = |G|/2 is always a power of
4.) Since ρ is nontrivial on Z, η′ must occur in ρ. Conversely, if G = Ga,b for some
a, b ≥ 0, and ρ : Ga,b → Mn(R) is a real representation containing η′, then G and ρ

satisfy (1) and (2), and hence we obtain all possibilities for M by choosing a set of
coset representatives for {±I} in ρ(G) with I ∈M, for such G and ρ.

Remark. We can also determine all situations in the original problem in which
equality holds, i.e., in which M is a set of n2 matrices in Mn(R) satisfying (i), (ii),
(iii), (iv). In this case, G ∼= Ga,b for some a ≥ 0 and b ∈ {0, 1}, |G| = 2n2 = 22a+2b+1,
and ρ is n-dimensional. Then dim η = 2a+b = n, and dim η′ equals n or 2n according
as b = 0 or b = 1. But ρ contains η′, so ρ ∼= η′ and b = 0. It follows that equality
is possible if and only if n = 2a for some a ≥ 0, and in that case M is uniquely
determined up to a change of signs of its elements not equal to I and up to an overall
conjugation.
Similarly, if we relax the conditions of the problem to allowM to contain complex

matrices, then the equality cases arise from n = 2a, G ∼= Ga,0 or G ∼= Ga−1,1 (the
latter being possible only if a ≥ 1), and ρ ∼= η.
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A1. (185, 2, 0, 0, 0, 0, 0, 0, 1, 0, 14, 5)
The horizontal line y = c intersects the curve y = 2x − 3x3 in the first

quadrant as in the figure.† Find c so that the areas of the two shaded
regions are equal.

Answer. The area of the two regions are equal when c = 4/9.

x

y

y = c

y = x – x2 3
3

( )b, c

FIGURE 23.

Solution. Let (b, c) denote the rightmost intersection point. (See Figure 23.) We
wish to find c such that ∫ b

0

(
(2x− 3x3)− c

)
dx = 0.

This leads to b2−(3/4)b4−bc = 0. After substituting c = 2b−3b3 and solving, we find
a unique positive solution, namely b = 2/3. Thus c = 4/9. To validate the solution,
we check that (2/3, 4/9) is rightmost among the intersection points of y = 4/9 and
y = 2x− 3x3: the zeros of 2x− 3x3− 4/9 = (2/3− x)(3x2 +2x− 2/3) other than 2/3
are (−1±√3)/3, which are less than 2/3. �

A2. (146, 21, 6, 0, 0, 0, 0, 0, 8, 1, 17, 8)
Let (xn)n≥0 be a sequence of nonzero real numbers such that

x2
n − xn−1xn+1 = 1 for n = 1, 2, 3, . . . .

Prove there exists a real number a such that xn+1 = axn−xn−1 for all n ≥ 1.

Solution 1. Since the terms are nonzero, we can define an = (xn+1 + xn−1)/xn
for n ≥ 1. It suffices to show a1 = a2 = · · · . But x2

n+1−xnxn+2 = 1 = x2
n−xn−1xn+1,

† The figure is omitted here, since it is almost identical to Figure 23 used in the solution.
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so

xn+1(xn+1 + xn−1) = xn(xn+2 + xn)
xn+1 + xn−1

xn
=

xn+2 + xn
xn+1

an = an+1

since xn, xn+1 �= 0. The result follows by induction. �

Solution 2. Given x0, x1, x2, let a = (x0 + x2)/x1. From x2
1 − x0x2 = 1, we get

x2
1 − ax1x0 + x2

0 = 1.
Now

x2
2 − x1(ax2 − x1) = (ax1 − x0)2 − x1(a(ax1 − x0)− x1)

= x2
1 − ax1x0 + x2

0 = 1,

so x3 = ax2 − x1.
By essentially the same algebra (and a simple induction), xn+1 = axn − xn−1 for

all n ≥ 1. �

Solution 3. Let a = (x0 + x2)/x1. Consider a sequence defined by yn+1 − ayn +
yn−1 = 0 where yi = xi for i = 0, 1, 2; we wish to show that yi = xi for all nonnegative
integers i.
If a �= ±2, then by the theory of linear recursive sequences (discussed after the

solution to 1988A5), the general solution is

yn = Arn +Bsn,

where A and B are constants, and r and s are the roots of the characteristic equation
t2 − at + 1 = 0. Then rs = 1, and (r − s)2 = a2 − 4 by the quadratic formula or by
the identity (r − s)2 = (r + s)2 − 4rs. Now

y2
n − yn+1yn−1 = (Arn +Bsn)2 − (Arn−1 +Bsn−1)(Arn+1 +Bsn+1)

= −AB(rs)n−1(r − s)2

= −AB(a2 − 4),

which is independent of n. Thus y2
n − yn+1yn−1 = y2

1 − y2y0 = 1 for all n, so yn = xn
by induction on n.
If a = ±2, then the general solution is

yn = (A+Bn)(±1)n.

Then

y2
n − yn+1yn−1 = B2,

which is independent of n. Hence as before, y2
n − yn+1yn−1 = y2

1 − y2y0 = 1 for all n,
so yn = xn for all n as well. �
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Solution 4. For all n,

det
(
xn−1 + xn+1 xn + xn+2

xn xn+1

)
= det

(
xn−1 xn
xn xn+1

)
+ det

(
xn+1 xn+2

xn xn+1

)
= −1 + 1 = 0.

Thus (xn−1 + xn+1, xn + xn+2) = an(xn, xn+1) for some scalar an. Hence
xn+1 + xn−1

xn
=

xn+2 + xn
xn+1

for all n ≥ 1, since xn, xn+1 �= 0, so we are done by induction. �
Remark. In a similar manner, one can prove that if (xn)n≥0 is a sequence of

nonzero real numbers such that

det


xn xn+1 · · · xn+k

xn+1 xn+2 · · · xn+k+1

...
...

. . .
...

xn+k xn+k+1 · · · xn+2k

 = crn

for n = 1, 2, 3, . . . , then there exist real numbers a1, . . . , ak such that

xn+k+1 = a1xn+k + a2xn+k−1 + · · ·+ akxn+1 + (−1)krxn.

Related question. The Fibonacci numbers have a similar structure: Fn+1 − Fn −
Fn−1 = 0, and F 2

n − Fn−1Fn+1 = (−1)n+1. How do the solutions generalize to this
case? Can they be generalized even further?

A3. (2, 11, 24, 0, 0, 0, 0, 0, 27, 8, 54, 81)
Let Pn be the set of subsets of {1, 2, . . . , n}. Let c(n,m) be the number of

functions f : Pn → {1, 2, . . . ,m} such that f(A ∩ B) = min{f(A), f(B)}. Prove
that

c(n,m) =
m∑
j=1

jn.

Solution 1. Let S = {1, 2, . . . , n} and Si = S − {i}. First we show that
f !→ (f(S), f(S1), f(S2), . . . , f(Sn)) defines a bijection between the set of allowable
functions f and the set of (n+1)-tuples (j, a1, a2, . . . , an) of elements of {1, 2, . . . ,m}
such that j ≥ ai for i = 1, 2, . . . , n. This map is well defined, since for any allowable
f , we have f(Si) = f(Si ∩ S) = min{f(Si), f(S)} ≤ f(S). The inverse map takes the
tuple (j, a1, a2, . . . , an) to the function f such that f(S) = j and f(T ) = mini �∈T ai
for T � S. This function satisfies f(A ∩ B) = min{f(A), f(B)}, and these two
constructions are inverse to each other.
Now we count the (n + 1)-tuples. For fixed j, the possibilities for each ai are

1, 2, . . . , j, so there are jn possibilities for (a1, a2, . . . , an). Summing over j, which can
be anywhere from 1 to m, yields c(n,m) =

∑m
j=1 j

n. �

Solution 2. We will use induction on m. The base case, m = 1, states that
c(n, 1) = 1 for all n, which is obvious.
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Suppose m ≥ 2. Given f : Pn → {1, 2, . . . ,m} not identically 1 such that
f(A ∩ B) = min{f(A), f(B)}, let Sf be the intersection of all A ∈ Pn such that
f(A) ≥ 2. The property implies that f(Sf ) ≥ 2, and that if T ⊇ Sf then f(T ) ≥ 2.
Hence the sets T for which f(T ) ≥ 2 are exactly those that contain Sf .
Given S ∈ Pn, how many f ’s have Sf = S? To give such an f is the same as

specifying a function

g : {T ∈ Pn : T ⊇ S } → {2, 3, . . . ,m}
satisfying g(A ∩ B) = min{g(A), g(B)}. There is an intersection-preserving bijection
from {T ∈ Pn : T ⊇ S } to the set of subsets of {1, 2, . . . , n} − S (the bijection maps
T to T −S), and an order-preserving bijection from {2, 3, . . . ,m} to {1, 2, . . . ,m− 1},
so the number of such functions g equals c(n−#S,m− 1).
Thus, remembering to count the identically 1 function, we have

c(n,m) = 1 +
∑
S

c(n−#S,m− 1)

= 1 +
n∑

k=0

(
n

k

)
c(n− k,m− 1)

= 1 +
n∑

k=0

(
n

k

)m−1∑
j=1

jn−k (inductive hypothesis)

= 1 +
m−1∑
j=1

n∑
k=0

(
n

k

)
jn−k

= 1 +
m−1∑
j=1

(1 + j)n

=
m∑
j=1

jn,

completing the inductive step. �

A4. (3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 44, 158)
Let x1, x2, . . . , x19 be positive integers each of which is less than or equal

to 93. Let y1, y2, . . . , y93 be positive integers each of which is less than or
equal to 19. Prove that there exists a (nonempty) sum of some xi’s equal
to a sum of some yj’s.

Solution 1. We move a pebble among positions numbered −18, −17, . . . , 0, 1,
2, . . . , 93, until it revisits a location. The pebble starts at position 0. Thereafter, if
the pebble is at position t, we move it as follows. If t ≤ 0, choose some unused xi,
move the pebble to t+ xi, and then discard that xi. If t > 0, choose some unused yj ,
move the pebble to t − yj , and then discard that yj . Since xi ≤ 93 and yj ≤ 19, the
pebble’s position stays between −18 and 93.
In order to continue this process until a location is revisited, we must show that

there is always an unused xi or yj as needed. If t ≤ 0 and a revisit has not yet
occurred, then one xi has been used after visiting each nonpositive position except the
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current one, so the total number of xi’s used so far is at most 19 − 1 = 18, and at
least one xi remains. Similarly, if t > 0 and a revisit has not yet occurred, then one
yj has been used after visiting each positive position except the current one, so the
total number of yj ’s used so far is at most 93− 1 = 92, and at least one yj remains.
Since there are only finitely many xi’s and yj ’s to be used, the algorithm must

eventually terminate with a revisit. The steps between the two visits of the same
position constitute a sum of some xi’s equal to a sum of some yj ’s. �
Our next solution is similar to Solution 1, but we dispense with the algorithmic

interpretation.

Solution 2. For the sake of generality, replace 19 and 93 in the problem statement
by m and n respectively. Define Xk =

∑k
i=1 xi and Y! =

∑!
j=1 yj . Without loss of

generality, assume Xm ≥ Yn. For 1 ≤ @ ≤ n, define f(@) by

Xf(!) ≤ Y! < Xf(!)+1,

so 0 ≤ f(@) ≤ m. Let g(@) = Y!−Xf(!). If g(@) = 0 for some @, we are done. Otherwise,

g(@) = Y! −Xf(!) < xf(!)+1 ≤ n,

so 0 < g(@) ≤ n − 1 whenever 1 ≤ @ ≤ n. Hence by the Pigeonhole Principle, there
exist @0 < @1 such that g(@0) = g(@1). Then

f(!1)∑
i=f(!0)+1

xi = Xf(!1) −Xf(!0) = Y!1 − Y!0 =
!1∑

j=!0+1

yj . �

Solution 3 (based on an idea of Noam Elkies). With the same notation as
in the previous solution, without loss of generality Xm ≥ Yn. If equality holds, we are
done, so assume Xm > Yn. By the Pigeonhole Principle, two of the (m + 1)(n + 1)
sums Xi + Yj (0 ≤ i ≤ m, 0 ≤ j ≤ n) are congruent modulo Xm, say

Xi1 + Yj1 ≡ Xi2 + Yj2 (mod Xm).

But the difference

(Xi1 −Xi2) + (Yj1 − Yj2) (1)

lies strictly between −2Xm and +2Xm, so it equals 0 or ±Xm. Clearly i1 �= i2;
without loss of generality i1 > i2, so (1) equals 0 or Xm. If j1 < j2, then (1) must be
0, so Xi1 −Xi2 = Yj2 − Yj1 are two equal subsums. If j1 > j2, then (1) must be Xm,
and Yj1 − Yj2 = Xm − (Xj1 −Xj2) are two equal subsums. �

A5. (3, 3, 0, 0, 0, 0, 0, 0, 1, 16, 37, 147)
Show that∫ −10

−100

(
x2 − x

x3 − 3x+ 1

)2

dx+
∫ 1

11

1
101

(
x2 − x

x3 − 3x+ 1

)2

dx+
∫ 11

10

101
100

(
x2 − x

x3 − 3x+ 1

)2

dx

is a rational number.
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Solution 1. The polynomial x3 − 3x + 1 changes sign in each of the intervals
[−2,−1], [1/3, 1/2], [3/2, 2], so it has no zeros outside these intervals. Hence in the
problem, the integrand is continuous on the three ranges of integration.
By the substitutions x = 1/(1− t) and x = 1− 1/t, the integrals over [1/101, 1/11]

and [101/100, 11/10] are respectively converted into integrals over [−100,−10]. The
integrand

Q(x) =
(

x2 − x

x3 − 3x+ 1

)2

,

is invariant under each of the substitutions x → 1/(1 − x) and x → 1 − 1/x. Hence
the sum of the three given integrals is expressible as∫ −10

−100

(
x2 − x

x3 − 3x+ 1

)2(
1 +

1
x2

+
1

(1− x)2

)
dx. (1)

But
1

Q(x)
=
(
x+ 1− 1

x
− 1

x− 1
)2

,

so the last integral is of the form
∫
u−2du. Hence its value is

− x2 − x

x3 − 3x+ 1

∣∣∣∣−10

−100

,

which is rational. �

Solution 2. Set

f(t) =
∫ t

−100

(
x2 − x

x3 − 3x+ 1

)2

dx+
∫ 1/(1−t)

1
101

(
x2 − x

x3 − 3x+ 1

)2

dx

+
∫ 1−1/t

101
100

(
x2 − x

x3 − 3x+ 1

)2

dx

for −100 ≤ t ≤ −10. We want f(−10). By the Fundamental Theorem of Calculus,

f ′(t) = Q(t) +Q

(
1

1− t

)
1

(1− t)2
+Q

(
1− 1

t

)
1
t2

.

We find that Q(1/(1−x)) = Q(1−1/x) = Q(x) (in fact x !→ 1/(1−x) and x !→ 1−1/x
are inverses of each other), so

f(−10) =
∫ −10

−100

(
x2 − x

x3 − 3x+ 1

)2(
1 +

1
x2

+
1

(1− x)2

)
dx.

The integrand equals
x4 − 2x3 + 3x2 − 2x+ 1

(x3 − 3x+ 1)2
.

We guess that this is the derivative of a quotient

Ax2 +Bx+ C

x3 − 3x+ 1
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and solve for the undetermined coefficients, obtaining A = −1, B = 1, C = 0. Thus

f(−10) = −x2 + x

x3 − 3x+ 1

∣∣∣∣−10

−100

,

which is rational. �
Remark. Both solutions reached the formula (1) in the middle, so we could

construct two more solutions by matching the first half of Solution 1 with the second
half of Solution 2, or vice versa.

Remark. The actual value of the sum of the three integrals is
11131110
107634259

.

Related question. Let k be a positive integer, and suppose f(x) ∈ Q[x] has degree
at most 3k − 2. Then∫ −10

−100

f(x)
(x3 − 3x+ 1)k

dx+
∫ 1

11

1
101

f(x)
(x3 − 3x+ 1)k

dx+
∫ 11

10

101
100

f(x)
(x3 − 3x+ 1)k

dx (1)

is rational.

Proof. We will use the theory of differentials on the projective line P1. Let
τ(x) = 1 − 1/x. Then τ , as an automorphism of P1, permutes the three zeros of
p(x) = x3 − 3x + 1 cyclically, since a calculation shows p(1 − 1/x) = −x−3p(x). In
particular, τ3 is the identity, since an automorphism of P1 is determined its action on
three distinct points, or by direct calculation.
Let ω be the differential f(x)

(x3−3x+1)k dx on P1. Because deg f ≤ 3k − 2, the
substitution x = 1/t, dx = −t−2 dt shows that ω has no pole at ∞, so ω is regular on
all of P1 except possibly at the zeros of x3 − 3x+ 1.
The substitutions used in Solution 1 transform (1) into

∫ −10

−100
η where η = ω+τ∗ω+

(τ2)∗ω. Then η is regular outside the zeros of x3− 3x+1. Since τ∗η = η, the residues
of η at the three zeros are equal, but the sum of the residues of any differential is
zero, so all the residues are zero. Hence η = dg for some rational function g on P1

having poles at most at the zeros of x3 − 3x + 1. Adding a constant to g, we may
assume g(0) = 0. We want to show that g has rational coefficients. Write g in lowest
terms, with monic denominator. Any automorphism σ of C over Q applied to the
coefficients of g results in another rational function g1 with dg1 = η and g1(0) = 0.
Then d(g− g1) = 0, so g− g1 is constant, and evaluating at 0 shows that g = g1. This
holds for all σ, so g ∈ Q(x). Finally, (1) equals

∫ −10

−100
dg = g(−10) − g(−100), which

is rational. �

Remark. We prove that if instead f(x) ∈ Q[x] has degree exactly 3k − 1,
then (1) is irrational. Such f(x) can be expressed as a nonzero rational multiple
of f1(x) = (3x2 − 3)(x3 − 3x + 1)k−1 plus a polynomial in Q[x] of degree at most
3k − 2, so it suffices to consider f(x) = f1(x). Then (1) becomes

ln p(x)
∣∣−10

−100
+ ln p(x)

∣∣1/11
1/101

+ ln p(x)
∣∣11/10
101/100

= ln
(

34719358188367000
49251795138277608547

)
,

which is irrational, since the only rational number q > 0 with ln q ∈ Q is q = 1.

Remark. One can strengthen “irrational” to “transcendental” in the previous
remark, since Lindemann proved in 1882 that all nonzero numbers that are logarithms
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of algebraic numbers are transcendental [FN, Corollary 2.2]. (Recall that a complex
number is algebraic if it is the zero of some nonzero polynomial with rational
coefficients, and transcendental otherwise.)

Remark. We can explain why for the polynomial p(x) = x3 − 3x + 1 there was a
fractional linear transformation with rational coefficients permuting its zeros cyclically.
An automorphism of P1 is uniquely determined by its action on any three distinct

points, so given any cubic polynomial p(x) ∈ Q[x] with distinct zeros, there is a unique
fractional linear transformation τ ∈ L(x) permuting the zeros, where L is the splitting
field of p(x). If σ ∈ Gal(L/Q), then σ acts on τ , and the action of στ on the three zeros
is obtained by conjugating the action of τ by the permutation of the zeros given by σ.
In particular, στ = τ for all σ ∈ Gal(L/Q) if and only if the Gal(L/Q) is contained in
the cyclic subgroup of order 3 of the permutations of the three zeros. Hence τ ∈ Q(x)
if and only if the discriminant of p(x) is a square. In the problem, the discriminant of
p(x) = x3 − 3x+ 1 is 81.

Remark. This action of the group of order three on the projective line appeared
in Problem 1971B2 [PutnamII, p. 15]:

Let F (x) be a real valued function defined for all real x except for x = 0 and
x = 1 and satisfying the functional equation F (x) + F ((x − 1)/x) = 1 + x.
Find all functions F (x) satisfying these conditions.

A6. (0, 1, 0, 0, 0, 0, 1, 3, 3, 11, 36, 152)
The infinite sequence of 2’s and 3’s

2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, . . .

has the property that, if one forms a second sequence that records the
number of 3’s between successive 2’s, the result is identical to the given
sequence. Show that there exists a real number r such that, for any n, the
nth term of the sequence is 2 if and only if n = 1+�rm� for some nonnegative
integer m. (Note: �x� denotes the largest integer less than or equal to x.)

Motivation. Assuming the result, we derive the value of r. Fix a large integer m.
The result implies that the mth 2 in the sequence occurs at the nth term, where
n ≈ rm. Interleaved among these m 2’s are n − m 3’s. By the self-generation
property of the sequence, these 2’s and 3’s describe an initial segment with n 2’s
separated by blocks containing a total of 2m + 3(n − m) 3’s. But the length of
this segment should also approximate r times the number of 2’s in the segment, so
n+2m+3(n−m) ≈ rn. Substituting n ≈ rm, dividing by m, and taking the limit as
m→∞ yields r+2+3(r−1) = r · r, so r2−4r+1 = 0. Clearly r ≥ 1, so r = 2+

√
3.

Note that 3 < r < 4.

Solution. Let r = 2 +
√
3. The sequence is uniquely determined by the

self-generation property and its first few terms. Therefore it suffices to show that
the sequence a0, a1, a2, . . . has the self-generation property when we define an = 2 if
n = �rm� for some m, and an = 3 otherwise. (Note that the first term is a0.)
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The self-generation property for (an) is equivalent to

�r(n+ 1)� − �rn� =
{
3 if n = �rm� for some m,
4 otherwise.

Since �r(n+ 1)� − �rn� is always 3 or 4, we seek to prove:
n is of the form �rm� ⇐⇒ �r(n+ 1)� − �rn� = 3.

This is a consequence of the following series of equivalences, in which we use the
identity

�z/r� = �4z − rz� = 4z − �rz� (1)

for integer z:

n is of the form �rm�.
⇐⇒ There is an m for which n+ 1 > rm > n.

⇐⇒ There is an m for which (n+ 1)/r > m > n/r.

⇐⇒ �(n+ 1)/r� − �n/r� = 1.

⇐⇒ 4(n+ 1)− �(n+ 1)r� − 4n+ �nr� = 1 (by (1) with z = n and z = n+ 1).

⇐⇒ �(n+ 1)r� − �nr� = 3. �

Remark. A similar argument shows that an = 3 if and only if n has the
form �sm� where s = (1 +

√
3)/2 and m is a positive integer. Hence the positive

integers are disjointly partitioned into the two sequences (�rm�)m>0 and (�sm�)m>0.
Two sequences forming a partition of the positive integers are called complementary
sequences. These are discussed in [Hon1, Essay 12].
Complementary sequences of the form (�rm�) and (�sm�) are called Beatty se-

quences. A short argument shows that if (�rm�) and (�sm�) are complementary, then
r and s are irrational and 1/r + 1/s = 1. Conversely, Problem 1959A6 [PutnamI,
p. 57] asks:

Prove that, if x and y are positive irrationals such that 1/x + 1/y = 1, then
the sequences �x�, �2x�, . . . , �nx�, . . . and �y�, �2y�, . . . , �ny�, . . . together
include every positive integer exactly once.

This result is known as Beatty’s Theorem. For further discussion, see [PutnamI,
p. 514]. For another Beatty-related problem, see Problem 1995B6.

Related question. How far can you generalize this? For example, the infinite
sequence of 1’s and 2’s starting 1, 2, 1, 2, 2, 1, . . . (where the leading term is considered
the 0th term) has the property that, if one forms a second sequence that records the
number of 2’s between successive 1’s, the result is identical to the identical to the given
sequence. Then the nth term of the sequence is 1 if and only if n = �mτ2�, where
τ = (1 +

√
5)/2 is the golden mean.

Related questions. This problem is reminiscent of Problem 3 on the 1978 Interna-
tional Mathematical Olympiad [IMO79–85, p. 1]:

The set of all positive integers is the union of two disjoint subsets

{f(1), f(2), . . . , f(n), . . . }, {g(1), g(2), . . . , g(n), . . . },
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where

f(1) < f(2) < · · · < f(n) < · · · ,

g(1) < g(2) < · · · < g(n) < · · · ,

and g(n) = f(f(n)) + 1 for all n ≥ 1. Determine f(240).

The two subsets again turn out to form a Beatty sequence.
Another related result, due to E. Dijkstra [Hon3, p. 13], is the following.

Suppose f(n), n = 0, 1, . . . is a nondecreasing sequence of nonnegative integers
which is unbounded above. Let the “converse function” g(n) (n ≥ 0) be the
number of values m for which f(m) ≤ n. Then the converse function of g is f ,
and the sequences F (n) = f(n) + n and G(n) = g(n) + n are complementary.

Yet another problem, related to the previous two, is the following [New, Problem 47]:

Suppose we “sieve” the integers as follows: take a1 = 1 and then delete
a1 + 1 = 2. The smallest untouched integer is 3, which we call a2, and then
we delete a2 + 2 = 5. The next untouched integer is 4 = a3, and we delete
a3 + 3 = 7, etc. The sequence a1, a2, . . . is then

1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, . . . .

Find a formula for an.

The sieve just described arises in the analysis of Wythoff’s game with two heaps [Wy],
[BCG, pp. 62, 76], [Hon1].

B1. (83, 29, 9, 0, 0, 0, 0, 0, 6, 10, 38, 32)
Find the smallest positive integer n such that for every integer m, with

0 < m < 1993, there exists an integer k for which

m

1993
<

k

n
<

m+ 1
1994

.

Answer. The smallest positive integer n satisfying the condition is n = 3987.

Lemma 1. Suppose a, b, c, and d are positive numbers, and a
b < c

d . Then

a

b
<

a+ c

b+ d
<

c

d
.

This lemma is sometimes called the mediant property or the règle des nombres
moyens [Nel, pp. 60–61]. It appears without proof in the Triparty en la Science
des Nombres, which was written by the French physician Nicholas Chuquet in 1484
(although his work went unpublished until 1880). It is not hard to verify this inequality
directly, but there is an even easier way of remembering it: If a sports team wins a

of b games in the first half of a season, and c of d games in the second half, then its
overall record ((a+ c)/(b+ d)) is between its records in its two halves (a/b and c/d).
Alternatively, Figure 24 gives a “proof without words.” For three more proofs without
words of this result, see [Nel, pp. 60–61].
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( )c, d ( + )a c, b + d

( )a, b

FIGURE 24.
A proof without words of Lemma 1.

Solution 1. By Lemma 1,

m

1993
<
2m+ 1
3987

<
m+ 1
1994

.

We will show that 3987 is best possible. If

1992
1993

<
k

n
<
1993
1994

(1)

then
1

1993
>

n− k

n
>

1
1994

,

so
1993 <

n

n− k
< 1994.

Clearly n− k �= 1, so n− k ≥ 2. Thus n > 1993(n− k) ≥ 3986, and n ≥ 3987. �

Solution 2. Subtracting everything in the desired inequality from 1, and using
the change of variables M = 1993−m, K = n− k, the problem becomes: determine
the smallest positive integer n such that for every integer M with 1993 > M > 0,
there exists an integer K for which

M

1993
>

K

n
>

M

1994
, or equivalently, 1993K < nM < 1994K.

For M = 1, K cannot be 1 and hence is at least 2, so n > 1993 · 2 = 3986. Thus
n ≥ 3987. On the other hand n = 3987 works, since then for each M , K = 2M
satisfies the inequalities. �

Solution 3 (Naoki Sato).

Lemma 2. Let a, b, c, d, p, and q be positive integers such that a/b < p/q < c/d,
and bc− ad = 1. Then p ≥ a+ c and q ≥ b+ d.

Proof. Since bp − aq > 0, bp − aq ≥ 1. Also, cq − dp > 0, so cq − dp ≥ 1. Hence
d(bp−aq)+ b(cq−dp) ≥ b+d, which simplifies to (bc−ad)q ≥ b+d. But bc−ad = 1,
so q ≥ b+ d. The proof of p ≥ a+ c is similar. �

Now
1992
1993

<
k

n
<
1993
1994

for some k, and 1993·1993−1992·1994 = 1, so n ≥ 1993+1994 = 3987. And n = 3987
works, by Lemma 1. �
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Remark. Looking at (1) was key. What clues suggest that it would be helpful to
look at large m?

Remark. This problem and Lemma 2 especially are related to the beautiful topic
of Farey series; see [Hon1, Essay 5].

B2. (89, 0, 1, 0, 0, 0, 0, 0, 7, 3, 42, 65)
Consider the following game played with a deck of 2n cards numbered

from 1 to 2n. The deck is randomly shuffled and n cards are dealt to each of
two players, A and B. Beginning with A, the players take turns discarding
one of their remaining cards and announcing its number. The game ends as
soon as the sum of the numbers on the discarded cards is divisible by 2n+1.
The last person to discard wins the game. Assuming optimal strategy by
both A and B, what is the probability that A wins?

Answer. The probability that A wins is 0, i.e., B can always win.

Solution. Player B can always win, because B can always guarantee that A will
not win on the next move: B holds one more card than A, and each of A’s cards
causes at most one of B’s cards to be a fatal play. Hence B has at least one safe play.
Player B wins on the last move if not earlier, since the sum of the numbers on all the
cards is n(2n+ 1). �
Remark. David Savitt gives the following ‘alternate solution’: “I maintain that A,

playing optimally, will decline to participate!”

B3. (111, 16, 13, 0, 0, 0, 0, 0, 4, 20, 10, 33)
Two real numbers x and y are chosen at random in the interval (0, 1)

with respect to the uniform distribution. What is the probability that the
closest integer to x/y is even? Express the answer in the form r+sπ, where
r and s are rational numbers.

Answer. The limit is (5− π)/4. That is, r = 5/4 and s = −1/4.

Solution. The probability that x/y is exactly half an odd integer is 0, so we may
safely ignore this possibility.
The closest integer to x

y is even if and only if 0 < x
y < 1

2 or 4n−1
2 < x

y < 4n+1
2 for

some integer n ≥ 1. The former occurs inside the triangle with vertices (0, 0), (0, 1),
(1
2 , 1), whose area is

1
4 . The latter occurs inside the triangle (0, 0), (1,

2
4n−1), (1,

2
4n+1 ),

whose area is 1
4n−1 − 1

4n+1 . These regions are shown in Figure 25.
Hence the total area is

1
4
+
1
3
− 1
5
+
1
7
+ · · · .

Comparing this with Leibniz’s formula

π

4
= 1− 1

3
+
1
5
− 1
7
+ · · ·

shows that the total area is (5− π)/4. �
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…

(1/2, 1)

(1, 2/3)

(1, 2/5)

(1, 2/7)

(1, 2/9)

FIGURE 25.

Remark. Leibniz’s formula can be derived as follows:

π

4
= arctan 1

=
∫ 1

0

dx

1 + x2

=
∫ 1

0

(
(1− x2) + (x4 − x6) + (x8 − x10) + · · · ) dx

=
∫ 1

0

(1− x2) dx+
∫ 1

0

(x4 − x6) dx+
∫ 1

0

(x8 − x10) dx+ · · ·

=
(
1− 1

3

)
+
(
1
5
− 1
7

)
+
(
1
9
− 1
11

)
+ · · · .

The interchange of integral and summation in the penultimate step is justified by the
Monotone Convergence Theorem [Ru, p. 319], since each integrand x4k − x4k+2 is
nonnegative on [0, 1].

Remark. This gives an interesting connection between π and number theory (and
gives an “experimental” way to estimate π). Here are more links. In fact, 6/π2 is both
the probability that a pair of positive integers are relatively prime, and the probability
that a positive integer is squarefree (where these probabilities are appropriately defined
as limits). More generally, for any k ≥ 2, the probability that a set of k positive
integers has greatest common divisor 1, and the probability that a positive integer is
kth-power-free, is 1/ζ(k), where

ζ(k) =
1
1k

+
1
2k

+
1
3k

+ · · ·

is the Riemann zeta function. (See [NZM, Theorem 8.25] for a proof in the case n = 2;
the general case is similar.) It can be shown that ζ(2n) is a rational multiple of π2n
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for all positive integers n, and in fact

ζ(2n) =
22n−1Bn

(2n)!
π2n

where Bn is the nth Bernoulli number [HW, Section 17.2]. (See 1996B2 for another
appearance of Bernoulli numbers.) The special case ζ(2) = π2/6 can be computed
using Fourier analysis [Fo, Exercise 8.17 or 8.21], trigonometry [NZM, Appendix A.3],
or multivariable change of variables [Sim, p. 748].

B4. (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 61, 144)
The function K(x, y) is positive and continuous for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

and the functions f(x) and g(x) are positive and continuous for 0 ≤ x ≤ 1.
Suppose that for all x, 0 ≤ x ≤ 1,∫ 1

0

f(y)K(x, y) dy = g(x) and
∫ 1

0

g(y)K(x, y) dy = f(x).

Show that f(x) = g(x) for 0 ≤ x ≤ 1.

Solution. For convenience of notation, define the linear operator T by

(Th)(x) =
∫ 1

0

h(y)K(x, y) dy

for any continuous function h on [0, 1]. Then Tf = g and Tg = f .
By the Extreme Value Theorem [Ap1, Section 3.16], the continuous function

f(x)/g(x) attains a minimum value on [0, 1], say r. Thus f(x) − rg(x) ≥ 0 on [0, 1],
with equality somewhere. Suppose that f − rg is not identically zero on [0, 1]. Then
by continuity f − rg is positive on some interval, so T (f − rg) is positive on [0, 1],
and so is T 2(f − rg). But by linearity, T 2(f − rg) = T (g − rf) = f − rg, which
is zero somewhere. This contradiction shows that f − rg = 0. Thus Tg = rg, and
g = T 2g = r2g, so r2 = 1. Also r ≥ 0, so r = 1. Hence f = g. �
Remark. This result also follows from a continuous analogue of the Perron-

Frobenius Theorem, that every square matrix with positive entries has a unique
positive eigenvector. Namely, if F (x, y) is a continuous function from [0, 1] × [0, 1]
to R+, then there exists a continuous function f(x) from [0, 1] to R+ such that
cf(x) =

∫
0,1

F (x, y)f(y) dy for some c > 0, and f is unique up to a scalar multiple. The
article of Birkhoff [Bi] cited in the remarks following 1997A6 proves this continuous
analogue as well as the original theorem.
To apply this result to the given problem, note that T 2 has eigenvectors f and g

which are both positive of eigenvalue 1. The result implies then that f and g are
scalar multiples of each other, so f is an eigenvector of T of eigenvalue ±1. Clearly
the plus sign is correct, so f = Tf = g.

Stronger result. For further discussion along these lines, see [Hol], where a short
proof of the following generalization is given.

Let X be a normed linear space, and let C be a strict cone in X. Let T be a
linear operator on X mapping C − {0} into the interior of C. If x ∈ C and
T kx = x for some integer k ≥ 1, then Tx = x.
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B5. (6, 1, 0, 0, 0, 0, 0, 0, 1, 7, 65, 127)
Show there do not exist four points in the Euclidean plane such that the

pairwise distances between the points are all odd integers.

All of the following solutions involve finding a contradiction modulo some power
of 2. The first solution is long, but uses little more than coordinate geometry.

Solution 1. For real numbers x and y, and for a positive integer n, let “x ≡ y

(mod n)” mean that x− y is an integer divisible by n. Choose a coordinate system in
which the four points are (0, 0), (a, 0), (r, s), (x, y). Here a is an odd integer, and we
may assume a > 0. The square of an odd integer is congruent to 1 modulo 8, so if all
the pairwise distances are odd integers, we have

r2 + s2 ≡ 1 (mod 8)

(r − a)2 + s2 ≡ 1 (mod 8)

x2 + y2 ≡ 1 (mod 8)

(x− a)2 + y2 ≡ 1 (mod 8)

(x− r)2 + (y − s)2 ≡ 1 (mod 8).

Subtracting the first two yields 2ar ≡ a2 (mod 8). Thus r is a rational number whose
denominator is a multiple of 2 and a divisor of 2a. The same is true of x. Therefore
we can multiply all coordinates by the odd integer a, to reduce to the case where the
denominators of r and x are both 2. Then the congruence 2ar ≡ a2 (mod 8) between
integers implies r ≡ a/2 (mod 4). If r = a/2 + 4b, then

r2 = a2/4 + 4ab+ 16b2 ≡ a2/4 (mod 4),

so the first congruence implies

s2 ≡ 1− r2 ≡ 1− a2/4 (mod 4).

Similarly x ≡ a/2 (mod 4) and y2 ≡ 1− a2/4 (mod 4). Also

x− r ≡ a/2− a/2 ≡ 0 (mod 4),

so (x− r)2 ∈ 16Z, and the last of the five congruences yields
(y − s)2 ≡ 1− (x− r)2 ≡ 1 (mod 8).

We will derive a contradiction from the congruences s2 ≡ y2 ≡ 1 − a2/4 (mod 4)
and (y − s)2 ≡ 1 (mod 8) obtained above. First,

(y + s)2 ≡ 2y2 + 2s2 − (y − s)2

≡ 2(1− a2/4) + 2(1− a2/4)− 1
≡ 3− a2

≡ 2 (mod 4).

Multiplying this integer congruence by (y − s)2 ≡ 1 (mod 8) yields (y2 − s2)2 ≡ 2
(mod 4). But y2 and s2 are rational by the beginning of this paragraph, so y2 − s2 is
a rational number with square congruent to 2 modulo 4. This is impossible. �
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Solution 2.

Lemma. If r = cosα, s = cosβ, and t = cos(α+β), then 1−r2−s2−t2+2rst = 0.

Proof. We have

cos(α+ β) = cosα cosβ − sinα sinβ,
(cos(α+ β)− cosα cosβ)2 = sin2 α sin2 β,

(t− rs)2 = (1− r2)(1− s2),

from which the result follows. �

Suppose that O, A, B, C are four points in the plane such that a = OA, b = OB,
c = OC, x = BC, y = CA, z = AB are all odd integers. Using the Law of Cosines,
let

r = cos∠AOB =
a2 + b2 − z2

2ab

s = cos∠BOC =
b2 + c2 − x2

2bc

t = cos∠AOC =
c2 + a2 − y2

2ca
.

But ∠AOB+∠BOC = ∠AOC as directed angles, so the lemma implies 1− r2− s2−
t2 + 2rst = 0. Substituting the values of r, s, t, and multiplying by 4a2b2c2 yields

4a2b2c2 − c2(a2 + b2 − z2)2 − a2(b2 + c2 − x2)2 − b2(c2 + a2 − y2)2

+(a2 + b2 − z2)(b2 + c2 − x2)(c2 + a2 − y2) = 0.

The square of an odd integer is 1 modulo 4, so we obtain

4− 1− 1− 1 + 1 ≡ 0 (mod 4),

a contradiction. �

Solution 3 (Manjul Bhargava). Suppose -v1, -v2, -v3 are vectors in 3-space. Then
the volume V of the parallelepiped spanned by the vectors is given by |-v1 · (-v2×-v3)| =
|detM |, where M = (-v1-v2-v3) is the 3× 3 matrix with entries given by the vectors -v1,
-v2, -v3. Since detM = detMT ,

V 2 = M ·MT = det

-v1 · -v1 -v1 · -v2 -v1 · -v3

-v2 · -v1 -v2 · -v2 -v2 · -v3

-v3 · -v1 -v3 · -v2 -v3 · -v3

 . (1)

The volume of the tetrahedron spanned by the vectors is V/6. If the edges of the
tetrahedron are a = |-v1|, b = |-v2|, c = |-v3|, x = |-v2 − -v3|, y = |-v3 − -v1|, z = |-v1 − -v2|,
then by the Law of Cosines, written as

2-vi · -vj = |-vi|2 + |-vj |2 − |-vi − -vj |2, (2)

8V 2 = det

 2a2 a2 + b2 − z2 a2 + c2 − y2

a2 + b2 − z2 2b2 b2 + c2 − x2

a2 + c2 − y2 b2 + c2 − x2 2c2

 .



Solutions: The Fifty-Fourth Competition (1993) 187

Suppose now that there were 4 points as described in the problem. Locate one point
at the origin, and let -v1, -v2, -v3 be the vectors from the origin to the other three; they
are coplanar, so V = 0. Since squares of odd integers are congruent to 1 modulo 8,

8V 2 ≡ det

2 1 1
1 2 1
1 1 2

 ≡ 4 (mod 8),

which gives a contradiction. �

Remark. Suppose -v1, -v2, . . . , -vn are vectors in Rm. Then the n-dimensional
volume V of the parallelepiped spanned by the vectors is given by

V 2 = det

-v1 · -v1 · · · -v1 · -vn
...

. . .
...

-vn · -v1 · · · -vn · -vn

 . (3)

(Note that m need not equal n.) This generalizes (1).

Solution 4. Suppose as before there were 4 such points; define -v1, -v2, -v3 as in
the previous solution. Then -vi ·-vi ≡ 1 (mod 8), and from (2), 2-vi ·-vj ≡ 1 (mod 8) for
i �= j as well.
No three of the points can be collinear. Hence -v3 = x-v1 + y-v2 for some scalars x

and y. Then

2-v1 · -v3 = 2x-v1 · -v1 + 2y-v1 · -v2

2-v2 · -v3 = 2x-v2 · -v1 + 2y-v2 · -v2 (4)

2-v3 · -v3 = 2x-v3 · -v1 + 2y-v3 · -v2.

Since -v1 is not a scalar multiple of -v2,

det
(
-v1 · -v1 -v1 · -v2

-v2 · -v1 -v2 · -v2

)
> 0

(by the two-dimensional version of (3)) so the first two equations in (4) have a unique
rational solution for x, y, say x = X/D, y = Y/D, where X, Y , and D are integers.
We may assume gcd(X,Y,D) = 1. Then multiplying (4) through by D we have

D ≡ 2X + Y (mod 8)

D ≡ X + 2Y (mod 8)

2D ≡ X + Y (mod 8).

Adding the first two congruences and subtracting the third gives 2X+2Y ≡ 0 (mod 8),
so, by the third congruence, D is even. But then the first two congruences force X

and Y to be even, giving a contradiction. �



188 The William Lowell Putnam Mathematical Competition

Solution 5. If P0, . . . , Pn are the vertices of a simplex in Rn, and dij = (PiPj)2,
then its volume V satisfies

V 2 =
(−1)n+1

2n(n!)2
det


0 1 1 · · · 1
1 d00 d01 · · · d0n

1 d10 d11 · · · d1n

...
...

...
. . .

...
1 dn0 dn1 · · · dnn

 .

This is proved on page 98 of [Bl], where this determinant is called a Cayley-Menger
determinant. In particular, the formula for n = 3 (which goes back to Euler) implies
that the edge lengths a, b, c, x, y, z (labelled as in Solution 2) of a degenerate
tetrahedron satisfy

det


0 1 1 1 1
1 0 z2 y2 a2

1 z2 0 x2 b2

1 y2 x2 0 c2

1 a2 b2 c2 0

 = 0.

If a, b, c, x, y, z are odd integers, we get a contradiction modulo 8. �
Remark. See 1988B5 for another example of showing a matrix is invertible by

reducing modulo some number.

Remark. Either Solution 3 or 5, along with a formula from Solution 3 of 1992B5,
can be used to prove the following generalization:

Suppose n is an integer not divisible by 8. Show that there do not exist n points
in Rn−2 such that the pairwise distances between the points are all odd integers.

On the other hand, we do not know whether or not there exist 8 points in R6 such
that the pairwise distances between the points are all odd integers.

B6. (2, 0, 0, 0, 0, 0, 0, 0, 1, 2, 59, 143)
Let S be a set of three, not necessarily distinct, positive integers. Show

that one can transform S into a set containing 0 by a finite number of
applications of the following rule: Select two of the three integers, say x

and y, where x ≤ y and replace them with 2x and y − x.

The following three solutions seem related only by the central role played by powers
of 2.

Solution 1 (attributed to Garth Payne). It suffices to show that (a, b, c) with
0 < a ≤ b ≤ c can be transformed into (b′, a′, c′), where a′ is the remainder when b

is divided by a. (Hence any set with no zeros can be transformed into a set with a
smaller element.)
Let b = qa + r with r < a; let q = q0 + 2q1 + 4q2 + · · · + 2kqk be the binary

representation of q (so qi = 0 or 1, and qk = 1). Define g0(d, e, f) = (2d, e, f − d) and
g1(d, e, f) = (2d, e− d, f). Then

gqk
(· · · (gq1(gq0(a, b, c))) · · · ) = (b′, r, c′)

describes a sequence of legal moves. �
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Solution 2. Let a, b, c be the elements of S. We prove the result by strong
induction on a + b + c, a quantity that is preserved by applications of the rule. For
the sake of obtaining a contradiction, assume that S cannot be transformed to a triple
containing 0.
First we reduce to the case that exactly one of a, b, c is odd. If two are odd, apply

the rule with those two, and then none are odd. If none are odd, divide all numbers
by 2 and apply the inductive hypothesis. If three are odd, apply the rule once, and
exactly one is odd. Once exactly one is odd, this will remain so.
Without loss of generality, a is odd and b and c are even. Let 2n be the highest

power of 2 dividing b + c. We will describe a series of moves leaving us with a′, b′,
c′, with a′ odd and 2n+1 dividing b′ + c′. Repeating such a series of moves results in
a triple a′′, b′′, c′′ with b′′ + c′′ divisible by 2m where 2m > a + b + c. Then since
b′′, c′′ > 0, we have b′′ + c′′ ≥ 2m > a+ b+ c = a′′ + b′′ + c′′, contradicting a′′ > 0.
We first apply a series of moves so that b and c are divisible by different powers of 2,

and the one divisible by the smaller power of 2 (b, say) is also smaller. If b and c have
the same number of factors of 2, then applying the rule to those two will yield both
divisible by a higher power of 2, or one will have fewer factors of 2 than the other.
Since b + c is constant here, after a finite number of applications of the rule, b and c

will not have the same number of factors of 2. Also, possibly after some additional
moves (on b and c), the one of b and c divisible by the smaller power of 2 is also
smaller.
Now if a > b, then apply the rule to (a, b); a remains odd, b is doubled, and b+ c is

divisible by a higher power of 2 as desired.
On the other hand, if a < b, apply the rule first to (a, b), and then to (b − a, c).

(Note that c > b > b − a.) The result is the triple (2a, 2b − 2a, c − b + a). Now the
odd number is c− b+ a, and the sum of the even numbers is 2b, which has one more
factor of 2 than b+ c. �

Solution 3 (Dylan Thurston). As in Solution 2, we assume there is some triple
a, b, c that cannot be transformed to a triple containing 0, and that exactly one of
a, b, c is odd. We give a recipe showing that if two of the triples are divisible by 2n,
then we can reach a state where two are divisible by 2n+1; since the sum of the triple
is constant, this eventually gives a contradiction.
The result is trivial if both of the multiples of 2n are already divisible by 2n+1, or if

neither are (just apply the rule once to that pair). So assume one is a multiple of 2n+1,
and the other is not, so the triple is (after renaming) (a, b, c) ≡ (0, 2n, x) (mod 2n+1)
(where x is odd).
We can assume a > c. (Otherwise, apply the rule to (a, c) repeatedly until this is so.)

Then apply the rule to (a, c), giving the triple (a′, b′, c′) ≡ (−x, 2n, 2x) (mod 2n+1).
If a′ < b′, then apply the rule to (a′, b′), giving (−2x, 2n + x, 2x) (mod 2n+1).

Repeated applications of the rule to (2x,−2x) eventually produce (0, 0) (mod 2n+1)
(regardless of which is bigger at each stage).
If on the other hand a′ > b′, apply the rule to (a′, b′) giving (2n − x, 0, 2x)

(mod 2n+1). Apply the rule repeatedly to the 0 and 2n − x terms until the 0 is
bigger, and then apply it once more to get (−2x, 2n+x, 2x) (mod 2n+1). Again apply
the rule repeatedly to (2x,−2x) to eventually produce (0, 0) (mod 2n+1). �
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Related question. Problem 3 on the 1986 International Mathematical Olympiad
[IMO86] is similar, although the solution is quite different:

To each vertex of a regular pentagon an integer is assigned in such a way
that the sum of all five numbers is positive. If three consecutive vertices
are assigned the numbers x, y, z respectively and y < 0 then the following
operation is allowed: the numbers x, y, z are replaced by x + y, −y, z + y

respectively. Such an operation is performed repeatedly as long as at least one
of the five numbers is negative. Determine whether this procedure necessarily
comes to an end after a finite number of steps.
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The Fifty-Fifth William Lowell Putnam Mathematical Competition
December 3, 1994

A1. (59, 59, 54, 21, 0, 0, 0, 0, 8, 0, 3, 2)
Suppose that a sequence a1, a2, a3, . . . satisfies 0 < an ≤ a2n + a2n+1 for all

n ≥ 1. Prove that the series
∑∞

n=1 an diverges.

Solution. For m ≥ 1, let bm =
∑2m−1

i=2m−1 ai. Summing an ≤ a2n + a2n+1 from
n = 2m−1 to n = 2m − 1 yields bm ≤ bm+1 for all m ≥ 1. For any t ≥ 1,

2t−1∑
n=1

an =
t∑

m=1

bm ≥ tb1 = ta1,

which is unbounded as t→∞ since a1 > 0, so
∑∞

n=1 an diverges.
Alternatively, assuming the series converges to a finite value L, we obtain the

contradiction

L = b1 + (b2 + b3 + · · · )
≥ b1 + (b1 + b2 + · · · )
= b1 + L. �

Related question. An interesting variant is the following [New, Problem 87]:

(An)n∈Z+ is a sequence of positive numbers satisfying An < An+1 + An2 for
all n ∈ Z+. Prove that

∑∞
n=1 An diverges.

A2. (169, 3, 2, 0, 0, 0, 0, 0, 1, 3, 22, 6)
Let A be the area of the region in the first quadrant bounded by the line

y = 1
2x, the x-axis, and the ellipse 1

9x
2+ y2 = 1. Find the positive number m

such that A is equal to the area of the region in the first quadrant bounded
by the line y = mx, the y-axis, and the ellipse 1

9x
2 + y2 = 1.

Answer. To make the areas equal, m must be 2/9.

Solution 1. The linear transformation given by x1 = x/3, y1 = y transforms the
region R bounded by y = x/2, the x-axis, and the ellipse x2/9+y2 = 1 into the region
R′ bounded by y1 = 3x1/2, the x1-axis, and the circle x2

1 + y2
1 = 1; it also transforms

y = x/2

x

y

y = 3x1/2

y1

x1

FIGURE 26.
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the region S bounded by y = mx, the y-axis, and x2/9 + y2 = 1 into the region S′′

bounded by y1 = 3mx1, the y1-axis, and the circle. Since all areas are multiplied by
the same (nonzero) factor under the linear transformation, R and S have the same
area if and only if R′ and S′ have the same area. However, we can see by symmetry
about the line y1 = x1 that this happens if and only if 3m = 2/3, that is, m = 2/9. �

Solution 2 (Noam Elkies). Apply the linear transformation (x, y)→ (3y, x/3).
This preserves area, and the ellipse x2/9 + y2 = 1. It switches the x and y axes, and
takes y = x/2 to the desired line, x/3 = (3y/2), i.e. y = (2/9)x. Thus m = 2/9. �
Remark. There are, of course, less enlightened solutions. Setting up the integrals

for the two areas yields the equation∫ 3/
√

13

0

(√
9− 9y2 − 2y

)
dy =

∫ 3/
√

1+9m2

0

(√
1− x2/9−mx

)
dx.

At this point, one might guess that a substitution y = cx will transform one integral
into the other, if c and m satisfy

3√
13

= c
3√

1 + 9m2
, 3c = 1, 2c2 = m,

and in fact, c = 1/3 and m = 2/9 work. If this shortcut is overlooked, then as a last
resort one could use trigonometric substitution to evaluate both sides: this yields

3
2
Arcsin

(
3√
13

)
=
3
2
Arcsin

(
1√

1 + 9m2

)
.

Solving yields m = 2/9.

A3. (0, 10, 67, 0, 0, 0, 0, 0, 30, 31, 40, 28)
Show that if the points of an isosceles right triangle of side length 1 are

each colored with one of four colors, then there must be two points of the
same color which are at least a distance 2−√2 apart.

Motivation. The standard approach to such a problem would be to find five points
in the triangle, no two closer than 2 − √2; then two of them would have the same
color. Unfortunately, such a set of five points does not exist, so a subtler argument is
required.

Solution. Suppose that it is possible to color the points of the triangle with four
colors so that any two points at least 2 −√2 apart receive different colors. Suppose
the vertices of the triangle are A = (0, 0), B = (1, 0), C = (0, 1). Define also the
points D = (

√
2−1, 0) and E = (0,

√
2−1) on the two sides, and F = (2−√2,√2−1)

and G = (
√
2− 1, 2−√2) on the diagonal; see Figure 27. Note that

BD = BF = CE = CG = DE = DG = EF = 2−
√
2.

The color of B must be different from the colors of the other named points. The same
holds for C. Thus the vertices of the pentagram AGDEF must each be painted one
of the two remaining colors. Then two adjacent vertices of the pentagram must have
the same color. But they are separated by at least 2−√2, so this is a contradiction. �
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A B

C

D

E F

G

FIGURE 27.

Remark. The 2 − √2 in the problem is best possible. If we give triangles ADE,
BDF , CEG, and quadrilateral DEGF each their own color, coloring common edges
arbitrarily, then no two points at distance strictly greater than 2−√2 receive the same
color.

Related questions. There are many problems of this sort. Other typical examples
are Problems 1954M2 and 1960M2 [PutnamI, pp. 41, 58]:

Consider any five points P1, P2, P3, P4, P5 in the interior of a square S of
side-length 1. Denote by dij the distance between the points Pi and Pj . Prove
that at least one of the distances dij is less than

√
2/2. Can

√
2/2 be replaced

by a smaller number in this statement?

Show that if three points are inside a closed square of unit side, then some
pair of them are within

√
6−√2 units apart.

Problem 1988A4 also is similar.

A4. (12, 17, 20, 0, 0, 0, 0, 0, 15, 3, 43, 96)
Let A and B be 2 × 2 matrices with integer entries such that A, A + B,

A+ 2B, A+ 3B, and A+ 4B are all invertible matrices whose inverses have
integer entries. Show that A + 5B is invertible and that its inverse has
integer entries.

Solution. A square matrix M with integer entries has an inverse with integer
entries if and only if detM = ±1: if N is such an inverse, (detM)(detN) =
det(MN) = 1 so detM = ±1; conversely, if detM = ±1, then ±M ′ is an inverse
with integer entries, where M ′ is the classical adjoint of M . Let f(x) = det(A+ xB).
Then f(x) is a polynomial of degree at most 2, such that f(x) = ±1 for x = 0, 1, 2,
3, and 4. Thus by the Pigeonhole Principle f takes one of these values three or more
times. But the only polynomials of degree at most 2 that take the same value three
times are constant polynomials. In particular, det(A + 5B) = ±1, so A + 5B has an
inverse with integer entries. �
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A5. (20, 13, 4, 0, 0, 0, 0, 0, 6, 2, 57, 104)
Let (rn)n≥0 be a sequence of positive real numbers such that limn→∞ rn = 0.

Let S be the set of numbers representable as a sum

ri1 + ri2 + · · ·+ ri1994 ,

with i1 < i2 < · · · < i1994. Show that every nonempty interval (a, b) contains
a nonempty subinterval (c, d) that does not intersect S.

Solution 1. We may permute the ri to assume r0 ≥ r1 ≥ · · · . This does not
change S or the convergence to 0. If b ≤ 0, the result is clear, so we assume b > 0.
Since rn → 0, only finitely many rn exceed b/2. Thus we may choose a positive

number a1 so that a < a1 < b and rn /∈ [a1, b) for all n. Then for an element of
S ∩ (a1, b), there are only a finite number of possibilities for i1 (since 0 < a1/1994 ≤
ri1 < a1); let I1 be the set of such i1.
Choose a2 so that a1 < a2 < b and ri1 + rn /∈ [a2, b) for all i1 ∈ I1 and

n ≥ 0. Then for each i1, there are only a finite number of possibilities for i2 (since
0 < (a2 − ri1)/1993 ≤ ri2 < a2 − ri1); let I2 be the set of ordered pairs (i1, i2) of
possibilities.
Similarly, inductively choose am so that am−1 < am < b and ri1 + · · ·+ rim−1 + rn /∈

[am, b) for all (i1, . . . , im−1) ∈ Im−1 and n ≥ 0. The set Im of ordered m-tuples
(i1, . . . , im) of possibilities is finite.
Then (c, d) = (a1994, b) does not intersect S. �
Remark. A cleaner variation is to show that if A is a nowhere dense subset of

R, and (rn)n≥0 converges to 0, then A+ {rn} is also nowhere dense (where A+ {rn}
denotes the set of numbers of the form a+ rn, where a ∈ A). Then the result follows
by induction.

Solution 2. It suffices to show that any sequence in S contains a monotonically
nonincreasing subsequence. For then, letting (tn)n≥0 be any strictly increasing
sequence within (a, b), some (in fact, all but a finite number) of the intersections
S ∩ (tn, tn+1) would have to be empty. Otherwise, one could form a strictly increasing
sequence (sn)n≥0 by taking Sn ∈ S ∩ (tn, tn+1).
Let (sn)n≥0 be a sequence in S. For n = 0, 1, 2, . . . , write

sn = rf(n,1) + rf(n,2) + · · ·+ rf(n,1994) with f(n, 1) < f(n, 2) < · · · < f(n, 1994).

The sequence (rf(n,1))n≥0 has a monotonically nonincreasing subsequence (since
(rn)n≥0 is a positive sequence converging to 0). Thus we may replace (sn)n≥0 by a
subsequence for which (rf(n,1))n≥0 is monotonically nonincreasing. In a similar fash-
ion, we pass to subsequences so that, successively, each of (rf(n,2))n≥0, (rf(n,3))n≥0,
. . . , (rf(n,1994))n≥0 may be assumed to be monotonically nonincreasing. The resulting
(sn)n≥0 is monotonically nonincreasing. �
Remark. A totally ordered set T is well-ordered if and only if every nonempty

subset has a least element. This condition is equivalent to the condition that every
sequence in T contain a nondecreasing subsequence. Hence −S is well-ordered under
the ordering induced from the reals. Solution 2 can be interpreted as proving that
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a finite sum of well-ordered subsets of the reals is well-ordered. See the remark on
Zorn’s Lemma in 1989B4 for more on well orderings.

Solution 3. Let C be the set { rn : n ≥ 0 } ∪ {0}. Then C is closed and bounded,
so C is compact. Hence C1994 is compact, and its image S′ under the “sum the
coordinates” map R1994 → R is compact. Clearly S ⊂ S′.
Let (a, b) be a nonempty open interval. Since S′ is countable, (a, b)−S′ is nonempty;

it is open since S′ is closed. Hence (a, b)− S′ includes a nonempty open interval. �
Remark. The proofs above generalize to give the same conclusion for any

convergent sequence (rn)n≥0.

A6. (5, 8, 10, 0, 0, 0, 0, 0, 7, 4, 34, 138)
Let f1, f2, . . . , f10 be bijections of the set of integers such that for each

integer n, there is some composition fi1 ◦ fi2 ◦ · · · ◦ fim of these functions
(allowing repetitions) which maps 0 to n. Consider the set of 1024 functions

F = {fe1
1 ◦ fe2

2 ◦ · · · ◦ fe10
10 },

ei = 0 or 1 for 1 ≤ i ≤ 10. (f0
i is the identity function and f1

i = fi.) Show
that if A is any nonempty finite set of integers, then at most 512 of the
functions in F map A to itself.

Solution. We say that a bijection of the integers to itself preserves a subset A if
it restricts to a bijection of A.
Let G be the group of permutations of Z generated by the fi. Then G has elements

mapping any integer m to 0, and elements mapping 0 to any integer n, so G acts
transitively on Z. Hence no nonempty proper subset A can be preserved by all the fi.
It remains to prove the following lemma.

Lemma. Let f1, . . . , fn be bijections Z → Z, and let A be a subset of Z. Suppose
that some fi does not preserve A. Then at most 2n−1 elements of

Fn = { fe1
1 ◦ fe2

2 ◦ · · · ◦ fen
n : ei = 0 or 1 }

preserve A.

Proof 1 of Lemma (inductive). The lemma is true for n = 1, so assume it it is true
for all n < k (for some k > 1), and false for n = k. Then by the Pigeonhole Principle,
there are e1, . . . , ek−1 ∈ {0, 1} such that both

fe1
1 ◦ fe2

2 ◦ · · · ◦ fek−1
k−1 and fe1

1 ◦ fe2
2 ◦ · · · ◦ fek−1

k−1 ◦ fk
fix A. Hence fk preserves A as well. By the inductive hypothesis, at most 2k−2 ele-
ments of Fk−1 fix A; thus at most 2k−1 elements of Fk fix A, giving a contradiction. �

Proof 2 of Lemma (noninductive). Let k be the largest integer such that fk does
not map A to itself, and suppose that more than 2n−1 of the functions Fn map A to
itself. By the Pigeonhole Principle, there are

e1, . . . , ek−1, ek+1, . . . , en ∈ {0, 1}
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such that both

fe1
1 ◦ · · · ◦ fek−1

k−1 ◦ fek+1
k+1 ◦ · · · ◦ fen

n and fe1
1 ◦ · · · ◦ fek−1

k−1 ◦ fk ◦ fek+1
k+1 ◦ · · · ◦ fen

n

both fix A. Hence both F1 = fe1
1 ◦ · · · ◦ fek−1

k−1 and F1 = fe1
1 ◦ · · · ◦ fek−1

k−1 ◦ fk both map
A to itself. But then F−1

1 ◦ F2 = fk also maps A to itself, giving a contradiction. �
Remark. The solution shows that the problem statement remains true even if the

condition that A be a nonempty finite subset of Z is relaxed to the condition that A

be a nonempty proper subset of Z.

B1. (45, 26, 57, 0, 0, 0, 0, 0, 42, 28, 6, 2)
Find all positive integers that are within 250 of exactly 15 perfect

squares.

Answer. An integer N is within 250 of exactly 15 perfect squares if and only if
either 315 ≤ N ≤ 325 or 332 ≤ N ≤ 350.

Solution. The squares within 250 of a positive integer N form a set of consecutive
squares. If N is such that there are 15 such squares, then they are m2, (m+1)2, . . . ,
(m+14)2 for some m ≥ 0. If m = 0, then 142 ≤ N +250 < 152, contradicting N > 0.
Now, given N,m > 0, the following two conditions are necessary and sufficient for

m2, (m+ 1)2, . . . , (m+ 14)2 to be the squares within 250 of N :

(m+ 14)2 ≤ N + 250 ≤ (m+ 15)2 − 1,
m2 ≥ N − 250 ≥ (m− 1)2 + 1.

Subtraction shows that these imply

28m+ 196 ≤ 500 ≤ 32m+ 222,

which implies m = 9 or 10.
If m = 9, the two conditions 232 ≤ N + 250 ≤ 242 − 1, 92 ≥ N − 250 ≥ 82 + 1 are

equivalent to 315 ≤ N ≤ 325. If m = 10, the two conditions 242 ≤ N +250 ≤ 252− 1,
102 ≥ N − 250 ≥ 92 + 1 are equivalent to 332 ≤ N ≤ 350. �

B2. (28, 8, 49, 0, 0, 0, 0, 0, 56, 10, 39, 16)
For which real numbers c is there a straight line that intersects the curve

y = x4 + 9x3 + cx2 + 9x+ 4

in four distinct points?

Answer. There exists such a line if and only if c < 243/8.

Remark. Since all vertical lines meet the curve in one point, we need only consider
lines of the form y = mx+ b.

Solution 1 (geometric). The constant and linear terms of

P (x) = x4 + 9x3 + cx2 + 9x+ 4

are irrelevant to the problem; y = P (x) meets the line y = mx + b in four points if
and only if y = P (x) + 9x+ 4 meets the line y = (m+ 9)x+ (b+ 4) in four points.
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Also, y = P (x) meets the line y = mx+ b in four points if and only if y = P (x−α)
meets the line y = m(x − α) + b in four points, so we may replace the given quartic
with P (x− 9/4) = x4 + (c− 243/8)x2 + · · · (where we ignore the linear and constant
terms).
The problem is then to determine the values of c for which there is a straight line

that intersects y = x4 + (c − 243/8)x2 in four distinct points. The result is now
apparent from the shapes of the curves y = x4 + ax2. For example, when a < 0, this
“W-shaped” curve has a relative maximum at x = 0, so the horizontal lines y = −ε for
small positive ε intersect the curve in four points, while for a ≥ 0, the curve is always
concave upward, so no line can intersect it in more than two points; see Figure 28. �

a < 0 a ≥ 0

FIGURE 28.
Graphs of y = x4 + ax2 for a < 0 and a ≥ 0.

Solution 2 (algebraic). We wish to know if we can choose m and b so that

q(x) = x4 + 9x3 + cx2 + 9x+ 4− (mx+ b)

has four distinct real solutions α1, α2, α3, α4. If we can find four distinct real numbers
such that

α1 + α2 + α3 + α4 = −9 (1)

α1α2 + α1α3 + α1α4 + α2α3 + α2α4 + α3α4 = c, (2)

then we can choose m and b appropriately so that q(x) has these four zeros (by the
expansion of

∏4
i=1(x− αi)).

Then from

0 <
∑
i<j

(αi − αj)2 = 3(α1 + α2 + α3 + α4)2 − 8c (3)

we get c < 243/8. Conversely, we must show that if c < 243/8, then we can find
distinct real α1, α2, α3, α4 satisfying (1) and (2). This is indeed possible; try
(α1, α2, α3, α4) = (9/4 − µ, 9/4 + µ, 9/4 − ν, 9/4 + ν) where µ and ν are distinct
positive numbers. Then (1) is automatically satisfied, and we can choose µ and ν so
that the right side of (3), which is 8(µ2 + ν2), is any desired positive number. �
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Remark. The previous two solutions highlight two ways of constructing a line for
given c. Other possible tools to do this include Rolle’s Theorem, the Mean Value
Theorem [Spv, Ch. 11, Theorem 4], Descartes’ Rule of Signs, and more. Also, another
quick way to see that c < 243/8 is necessary is to consider the discriminant of the
quadratic P ′′(x).

Related question. A related problem is 1977A1 [PutnamII, p. 29]:

Consider all lines which meet the graph of

y = 2x4 + 7x3 + 3x− 5
in four distinct points, say (xi, yi), i = 1, 2, 3, 4. Show that

x1 + x2 + x3 + x4

4
is independent of the line and find its value.

B3. (27, 10, 8, 5, 0, 0, 0, 2, 45, 49, 15, 45)
Find the set of all real numbers k with the following property: For any

positive, differentiable function f that satisfies f ′(x) > f(x) for all x, there
is some number N such that f(x) > ekx for all x > N .

Answer. The desired set is (−∞, 1).

Solution. Let h(x) = ln f(x)−x. Then the problem becomes that of determining
for which k the following holds: if a real-valued function h(x) satisfies h′(x) > 0 for
all x, then there exists a number N such that h(x) > (k − 1)x for all x > N .
The function −e−x is always negative, but has positive derivative, so no number

k ≥ 1 is in the set. (This corresponds to the function f(x) = ex−e−x

.) On the other
hand any k < 1 is in the set: choose N such that (k − 1)N < h(0); then for x > N ,
h(x) > h(0) > (k − 1)N > (k − 1)x. �

B4. (15, 1, 4, 0, 0, 0, 0, 0, 5, 22, 71, 88)
For n ≥ 1, let dn be the greatest common divisor of the entries of An − I,

where

A =
(
3 2
4 3

)
and I =

(
1 0
0 1

)
.

Show that limn→∞ dn =∞.

Solution 1. Experimentation suggests and induction on n proves that there exist
integers an, bn > 0 such that

An =
(

an bn
2bn an

)
.

Since detAn = 1, we have a2
n − 1 = 2b2n. Thus an − 1 divides 2b2n. By definition,

dn = gcd(an− 1, bn), so 2d2
n = gcd(2(an− 1)2, 2b2n) ≥ an− 1. From An+1 = A ·An we

have an+1 > 3an, so limn→∞ an =∞. Hence limn→∞ dn =∞. �

Solution 2 (Robin Chapman). The set of matrices of the form
(

a b

2b a

)
with

a, b ∈ Z is closed under left multiplication by
(
1 1
2 1

)
. It follows by induction on n
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that
(
1 1
2 1

)n

=
(

a b

2b a

)
for some a, b ∈ Z depending on n. Taking determinants

shows a2 − 2b2 = (−1)n. But
(
1 1
2 1

)2

=
(
3 2
4 3

)
, so

(
3 2
4 3

)n

−
(
1 0
0 1

)
=
(

a b

2b a

)2

−
(
1 0
0 1

)
=
(
a2 + 2b2 − 1 2ab

4ab a2 + 2b2 − 1
)

.

If n is odd then a2 − 2b2 = −1, so a2 + 2b2 − 1 = 2a2 and all entries are divisible by
a. If n is even a2 − 2b2 = 1, so a2 + 2b2 − 1 = 4b2 and all entries are divisible by b.
Both a and b increase as n→ ∞ (by the same argument as in Solution 1), so we are
done. �

Solution 3. Define the sequence r0, r1, r2, . . . by r0 = 0, r1 = 1, and
rk = 6rk−1 − rk−2 for k > 1. Then rn > 5rn−1 for n ≥ 1, so limn→∞ rn = ∞.
We first show by induction on k that

An − I = rk+1(An−k −Ak)− rk(An−k−1 −Ak+1) for k ≥ 0. (1)

This is clear for k = 0 and, for the inductive step, using A2 − 6A + I = 0 (the
characteristic equation), we have

rk+1(An−k −Ak)− rk(An−k−1 −Ak+1)

= rk+1

(
(6An−k−1 −An−k−2)− (6Ak+1 −Ak+2)

)− rk(An−k−1 −Ak+1)

= (6rk+1 − rk)(An−k−1 −Ak+1)− rk+1(An−k−2 −Ak+2)

= rk+2(An−k−1 −Ak+1)− rk+1(An−k−2 −Ak+2).

Applying (1) with k = �n/2�, we obtain

An − I =
{

rn/2(An/2+1 −An/2−1) if n is even,(
r(n+1)/2 + r(n−1)/2

)
(A(n+1)/2 −A(n−1)/2) if n is odd.

In either case, the entries of An − I have a common factor that goes to ∞ since
limn→∞ rn =∞. �

Solution 4. The entries of An are each of the form α1λ
n
1 + α2λ

n
2 , where

λ1 = 3 + 2
√
2 and λ2 = 3 − 2

√
2 are the eigenvalues of A. This follows from

diagonalization (as suggested by our hint), or from the theory of linear recursive
relations and the Cayley-Hamilton Theorem: the latter yields A2 − 6A + I = 0,
so An+2 − 6An+1 + An = 0 for all n, and each entry of An satisfies the recursion
xn+2 − 6xn+1 + xn = 0. Using the entries for n = 1, 2, we derive

An =

λn
1 +λn

2
2

λn
1 −λn

2

2
√

2

λn
1 −λn

2√
2

λn
1 +λn

2
2

 .
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Since λi = µ2
i where µ1 = 1 +

√
2 and µ2 = 1−√2, we see

dn = gcd
(
λn1 + λn2

2
− 1, λ

n
1 − λn2
2
√
2

)
= gcd

(
(µn

1 − µn
2 )2

2
,
(µn

1 − µn
2 )(µn

1 + µn
2 )

2
√
2

)
=
(
(µn

1 − µn
2 )

2
√
2

)
gcd
(
(µn

1 − µn
2 )√

2
,
(µn

1 + µn
2 )

2

)
since (µn

1−µn
2 )/
√
2 and (µn

1+µn
2 )/2 are (rational) integers. Since |µ1| > 1 and |µ2| < 1,

we conclude limn→∞(µn
1 − µn

2 ) =∞. Hence limn→∞ dn =∞. �

Solution 5. The characteristic polynomial of A is x2 − 6x+ 1, so A has distinct

eigenvalues λ, λ−1, where λ = 3+2
√
2. Hence A = CDC−1 where D =

(
λ 0
0 λ−1

)
and

C is an invertible matrix with entries in Q(
√
2). Choose an integer k ≥ 1 such that

the entries of kC and kC−1 are in Z[
√
2]. Then k2(An − I) = (kC)(Dn − I)(kC−1)

and Dn − I = (λn − 1)
(
1 0
0 λ−n

)
so λn − 1 divides k2dn in Z[

√
2]. Taking norms,

we find that the (rational) integer (λn − 1)(λ−n − 1) divides k4d2
n. But |λ| > 1, so

|(λn − 1)(λ−n − 1)| → ∞ as n→∞. Hence limn→∞ dn =∞. �
Remark. Each solution generalizes to establish the same result for integral matrices

A =
(
a b

c d

)
of determinant 1 and | trace(A)| > 1 (the latter to guarantee rn → ∞

where rn = trace(A)rn−1 − rn−2).

B5. (11, 4, 4, 0, 0, 0, 0, 0, 32, 10, 15, 130)
For any real number α, define the function fα(x) = �αx�. Let n be a

positive integer. Show that there exists an α such that for 1 ≤ k ≤ n,‡

fk
α(n

2) = n2 − k = fαk(n2).

Solution 1. We will show that α satisfies the conditions of the problem if and
only if

1− 1
n2
≤ α <

(
n2 − n+ 1

n2

)1/n

,

and then show that this interval is nonempty.
We have fk

α(n2) = n2 − k for k = 1, . . . , n if and only if �α(n2 − k + 1)� = n2 − k

for k = 1, . . . , n, which holds if and only if

n2 − k

n2 − k + 1
≤ α < 1 for k = 1, . . . , n.

Since
n2 − k

n2 − k + 1
= 1− 1

n2 − k + 1

‡ Here fk
α(n

2) = fα(· · · (fα(n2)) · · · ), where fα is applied k times to n2.
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decreases with k, these hold if and only if 1− 1
n2 ≤ α < 1. We assume this from now

on.
Next we consider the conditions fαk(n2) = n2 − k for k = 1, . . . , n. Since fk

α(n
2) is

an integer less than αkn2, we have fk
α(n2) ≤ fαk(n2). We have already arranged that

fk
α(n2) = n2 − k, so fαk(n2) = n2 − k if and only if αkn2 < n2 − k + 1. Moreover, if
the latter holds for k = n, then it holds for k = 1, . . . , n by reverse induction, since
multiplying αkn2 < n2 − k + 1 by

α−1 ≤ n2

n2 − 1 = 1 +
1

n2 − 1 ≤ 1 +
1

n2 − k + 1
≤ n2 − (k − 1) + 1

n2 − k + 1
yields the inductive step. Hence all the conditions hold if and only if

1− 1
n2
≤ α <

(
n2 − n+ 1

n2

)1/n

.

It remains to show that this interval is nonempty, or equivalently, that(
1− 1

n2

)n

< 1− 1
n
+

1
n2

. (1)

First we will prove

(1− x)n ≤ 1− nx+
(
n

2

)
x2 for 0 ≤ x ≤ 1. (2)

The two sides are equal at x = 0, so it suffices to show that their derivatives satisfy

−n(1− x)n−1 ≤ −n+ n(n− 1)x for 0 ≤ x ≤ 1.

Again the two sides are equal at x = 0, so, differentiating again, it suffices to show

n(n− 1)(1− x)n−2 ≤ n(n− 1) for 0 ≤ x ≤ 1.

This is obvious. Taking x = 1/n2 in (2) yields(
1− 1

n2

)n

≤ 1− 1
n
+

n(n− 1)/2
n4

< 1− 1
n
+

1
n2

. �

Remark. Inequality (2) is a special case of the fact that for real a > b > 0 and
integers 0 < k < n, the partial binomial expansion

an −
(
n

1

)
an−1b+ · · ·+ (−1)k

(
n

k

)
an−kbk (3)

is greater than or less than (a − b)n, according to whether k is even or odd. It can
be proved by the same argument used to prove (2). This is sometimes called the
Inclusion-Exclusion Inequality, because if a, b are sizes of sets A 
 B 
 ∅, then (3)
is the overestimate or underestimate for #(A − B)n obtained by terminating the
inclusion-exclusion argument prematurely.

Solution 2 (Dave Rusin). Let α = e−1/n2
. The same method used to prove (2)

shows that

1− r + r2/2 > e−r > 1− r. (4)
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Substituting r = k/n2 (0 < k ≤ n) and simplifying, we find

n2 − k +
1
2

(
k

n

)2

> αkn2 > n2 − k.

The right side is an integer, and the left side is at most 1/2 more, so �αkn2� = n2−k.
Since α > 1 − 1/n2 (again by (4)), fk

α(n2) = n2 − k for 1 ≤ k ≤ n by the same
argument as in the previous solution. �

B6. (14, 11, 1, 0, 0, 0, 0, 0, 16, 10, 50, 104)
For any integer a, set

na = 101a− 100 · 2a.
Show that for 0 ≤ a, b, c, d ≤ 99, na + nb ≡ nc + nd (mod 10100) implies
{a, b} = {c, d}.

The following lemma states that 2 is a primitive root modulo the prime 101.

Lemma. 2a ≡ 1 (mod 101) if and only if a is divisible by 100.

Proof. We need to show that the order m of the image of 2 in the group (Z/101Z)∗

is 100. Since the group has order 100, m divides 100. If m were a proper divisor of
100, then m would divide either 100/2 = 50 or 100/5 = 20, so either 250 or 220 would
be 1 modulo 101. But we compute

210 = 1024 ≡ 14 (mod 101)

220 ≡ 142 ≡ −6 (mod 101)

240 ≡ (−6)2 ≡ 36 (mod 101)

250 ≡ 36 · 14 ≡ −1 (mod 101).

�
Corollary 1. If a and b are nonnegative integers such that 2a ≡ 2b (mod 101),

then a ≡ b (mod 100).

Proof. Without loss of generality, assume a ≥ b. If 101 divides 2a−2b = 2b(2a−b−1),
then 2a−b ≡ 1 (mod 101), so a− b ≡ 0 (mod 100) by the lemma. �

Solution. By the Chinese Remainder Theorem, na + nb ≡ nc + nd (mod 10100)
is equivalent to

a+ b ≡ c+ d (mod 100) (1)

and

2a + 2b ≡ 2c + 2d (mod 101). (2)

By Fermat’s Little Theorem, (1) implies 2a+b ≡ 2c+d (mod 101), or equivalently

2a2b ≡ 2c2d (mod 101) (3)

Solve for 2b in (2) and substitute into (3) to obtain

2a(2c + 2d − 2a) ≡ 2c2d (mod 101),
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or equivalently
0 ≡ (2a − 2c)(2a − 2d) (mod 101).

(That such a factorization exists could have been guessed from the desired conclusion
that a = c or a = d.) Hence 2a ≡ 2c (mod 101) or 2a ≡ 2d (mod 101). By the
corollary above, a is congruent to c or d modulo 100. Then by (1), b is congruent to
the other. But 0 ≤ a, b, c, d ≤ 99, so these congruences are equalities. �
Remark. A more conceptual way to get from (2) and (3) to the conclusion that 2a,

2b are congruent to 2c, 2d in some order, modulo 101, is to observe that (x−2a)(x−2b)
and (x−2c)(x−2d) are equal as elements of the polynomial ring F101[x] over the finite
field F101. Then take the multiset of zeros of each.
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A1. (115, 64, 20, 0, 0, 0, 0, 0, 1, 0, 2, 2)
Let S be a set of real numbers which is closed under multiplication (that

is, if a and b are in S, then so is ab). Let T and U be disjoint subsets of
S whose union is S. Given that the product of any three (not necessarily
distinct) elements of T is in T and that the product of any three elements
of U is in U , show that at least one of the two subsets T,U is closed under
multiplication.

Solution. Suppose on the contrary that there exist t1, t2 ∈ T with t1t2 ∈ U and
u1, u2 ∈ U with u1u2 ∈ T . Then (t1t2)u1u2 ∈ U while t1t2(u1u2) ∈ T , contradiction.�
Remark. It is possible for T to be closed and U not to be: for example, let T and

U be the sets of integers congruent to 1 and 3, respectively, modulo 4.

A2. (26, 10, 14, 0, 0, 0, 0, 0, 14, 3, 56, 81)
For what pairs (a, b) of positive real numbers does the improper integral∫ ∞

b

(√√
x+ a−√x−

√√
x−√x− b

)
dx

converge?

Answer. The integral converges if and only if a = b.

Solution. Using
√
1 + t = 1 + t/2 +O(t2) repeatedly, we obtain√√

x+ a−√x = x1/4

√√
1 +

a

x
− 1

= x1/4

√
a

2x
+O(x−2)

=
√

a

2
x−1/4

(
1 +O(x−1)

)
√√

x−√x− b = x1/4

√
1−
√
1− b

x

= x1/4

√
b

2x
+O(x−2)

=

√
b

2
x−1/4

(
1 +O(x−1)

)
.

Thus the original integrand is
(√

a/2 −√b/2
)
x−1/4 + O(x−5/4). Since

∫∞
b

x−5/4 dx

converges, the original integral converges if and only if
∫∞
b

(√
a/2 −√b/2

)
x−1/4 dx

converges. But
∫∞
b

x−1/4 dx diverges, so the original integral converges if and only if
a = b. �
Remark. See 1988A3 for a similar argument.
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Remark. In the case a = b, one can show the integral converges by a “telescoping”
argument. Write∫ d

c

(√√
x+ a−√x−

√√
x−√x− a

)
dx

=
∫ d

c

√√
x+ a−√x dx−

∫ d−a

c−a

√√
x+ a−√x dx

=
∫ d

d−a

√√
x+ a−√x dx−

∫ c−a

c

√√
x+ a−√xdx.

As d→∞ for fixed c, the second term is constant, while the first term tends to 0. (It
is an integral over an interval of fixed length, and the integrand tends to 0 uniformly.)

A3. (95, 44, 39, 0, 0, 0, 0, 0, 12, 5, 3, 6)
The number d1d2 . . . d9 has nine (not necessarily distinct) decimal digits.

The number e1e2 . . . e9 is such that each of the nine 9-digit numbers formed
by replacing just one of the digits di in d1d2 . . . d9 by the corresponding digit
ei (1 ≤ i ≤ 9) is divisible by 7. The number f1f2 . . . f9 is related to e1e2 . . . e9

is the same way: that is, each of the nine numbers formed by replacing one
of the ei by the corresponding fi is divisible by 7. Show that, for each i,
di − fi is divisible by 7. [For example, if d1d2 . . . d9 = 199501996, then e6 may
be 2 or 9, since 199502996 and 199509996 are multiples of 7.]

Solution. Let D and E be the numbers d1 . . . d9 and e1 . . . e9, respectively. We
are given that

(ei − di)109−i +D ≡ 0 (mod 7)

(fi − ei)109−i + E ≡ 0 (mod 7)

for i = 1, . . . , 9. Sum the first relation over i = 1, . . . , 9 to get E − D + 9D ≡ 0
(mod 7), or equivalently E +D ≡ 0 (mod 7). Now add the first and second relations
for any particular value of i to get (fi − di)109−i +E +D ≡ 0 (mod 7). Since E +D

is divisible by 7, and 10 is coprime to 7, we conclude di − fi ≡ 0 (mod 7). �

A4. (39, 3, 13, 0, 0, 0, 0, 0, 19, 1, 83, 40)
Suppose we have a necklace of n beads. Each bead is labelled with an

integer and the sum of all these labels is n− 1. Prove that we can cut the
necklace to form a string whose consecutive labels x1, x2, . . . , xn satisfy

k∑
i=1

xi ≤ k − 1 for k = 1, 2, . . . , n.

Solution 1. Number the beads 1, 2, . . . starting from some arbitrary position,
and let zi be the label of bead i, with the convention that zn+i = zi. Let Sj =
z1 + · · · + zj − j(n − 1)/n, so Sn+j = Sj . Then the sum of the labels on beads
m+ 1,m+ 2, . . . ,m+ k is Sm+k − Sm + k(n− 1)/n.
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This suggests choosing m such that Sm is maximal, and cutting between m and
m+ 1. Indeed, if we do so, then

Sm+k − Sm +
k(n− 1)

n
≤ k − k

n
,

but the left side is an integer, so we can replace the right side by k − 1. �
Remark. In fact, this argument shows that the location of the cut is unique,

assuming that the orientation of the necklace is fixed. Namely, for any other choice
of m, we would have Sm+k − Sm + k(n−1)

n ≥ k(n−1)
n for some k, but the left side is

an integer, so we may replace the right side by k. (This implies in particular that the
maximal Sm is unique up to replacing m by m+ in, but this was already evident: the
Sj have distinct fractional parts, so no two are equal.)
For a more visual reinterpretation, plot the points (i, z1 + · · · + zi) for i ≥ 1. The

set of these points is mapped into itself by translation by (n, n − 1), and the upper
support line of slope (n− 1)/n of this set passes through (m, z1 + · · ·+ zm), where m

is as chosen above.

Solution 2. Replace each label x with 1 − x, to obtain a necklace Nn with sum
of labels 1. It suffices to prove that we can cut Nn so that the consecutive labels
y1, . . . , yn satisfy

∑k
i=1 yi ≥ 1 for k = 1, . . . , n. We prove this by induction on n, the

case n = 1 being trivial. Suppose n > 1; then some bead b in Nn has a positive label,
since otherwise the sum of labels would not be positive. Form the new necklace Nn−1

by merging b with its successor, replacing the two labels by their sum. The induction
hypothesis provides a cut point in Nn−1 such that the partial sums are positive; the
corresponding cut point for Nn has the same property. �
Literature note. In the reformulation used in Solution 2, this problem appears

in [GKP, Section 7.5], but it is much older: see [Tak] and the references listed
there for some generalizations and applications. It is closely related to that of the
“ballot problem”: if m votes are cast for A and n votes are cast for B in some order,
find the number of orderings of the m + n votes in which A is never behind during
the tally. When m = n, the solution to the ballot problem involves the Catalan
numbers [St, Corollary 6.2.3]; see [St, Ex. 6.19 a.-nnn.] for more occurrences of the
Catalan numbers.

A5. (1, 1, 2, 1, 0, 0, 0, 6, 18, 14, 43, 118)
Let x1, x2, . . . , xn be differentiable (real-valued) functions of a single vari-

able t which satisfy

dx1

dt
= a11x1 + a12x2 + · · ·+ a1nxn

dx2

dt
= a21x1 + a22x2 + · · ·+ a2nxn

...
dxn
dt

= an1x1 + an2x2 + · · ·+ annxn
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for some constants aij > 0. Suppose that for all i, xi(t) → 0 as t → ∞. Are
the functions x1, x2, . . . , xn necessarily linearly dependent?

Answer. Yes, the functions must be linearly dependent.

Solution. If (v1, . . . , vn) is a (complex) eigenvector of the matrix (aij) with
(complex) eigenvalue λ, then the function y = v1x1+· · ·+vnxn satisfies the differential
equation

dy

dt
=
∑
i,j

viai,jxj =
∑
j

λvjxj = λy.

Therefore y = ceλt for some c ∈ C.
Now the trace of the matrix (aij) is a11 + · · · + ann, which is positive. Since the

trace is the sum of the eigenvalues of the matrix, there must be at least one eigenvalue
λ = α+ iβ with positive real part. Setting y = v1x1 + · · ·+ vnxn, we have that

y = ceλt = ceαteiβt.

We are given that |xi| → 0 as t → ∞ for i = 1, . . . , n, which implies that |y| → 0 as
well. On the other hand, for α > 0, eαteiβt does not tend to 0 as t→∞. Therefore we
must have c = 0, and hence v1x1+ · · ·+vnxn = 0. Since the xi are linearly dependent
over C, they are also linearly dependent over R, as desired. �
Remark. We did not require the eigenvalue λ to be real. It turns out, however, that

a matrix with nonnegative entries always has an eigenvector with nonnegative entries,
and its corresponding eigenvalue is then also nonnegative. Moreover, if the matrix has
all positive entries, it has exactly one positive real eigenvector: this assertion is the
Perron-Frobenius Theorem, which is important in the theory of Markov processes and
random walks. See the remarks following 1997A6 for further discussion.

Literature note. See Chapter 7 of [BD] for a treatment of systems of linear
differential equations with constant coefficients, such as the one occurring here.

A6. (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 61, 141)
Suppose that each of n people writes down the numbers 1, 2, 3 in random

order in one column of a 3 × n matrix, with all orders equally likely and
with the orders for different columns independent of each other. Let the
row sums a, b, c of the resulting matrix be rearranged (if necessary) so that
a ≤ b ≤ c. Show that for some n ≥ 1995, it is at least four times as likely
that both b = a+ 1 and c = a+ 2 as that a = b = c.

Solution 1. For integers x, y, z with x + y + z = 0 and n a positive integer, let
f(x, y, z, n) be the number of 3× n matrices whose columns are permutations of 1, 2,
3, and whose row sums p, q, r (in that order) satisfy p− q = x, q − r = y, r − p = z.
Then we have the recursion

f(x, y, z, n+ 1) = f(x+ 1, y − 1, z, n) + f(x+ 1, y, z − 1, n) + f(x− 1, y + 1, z, n)

+ f(x, y + 1, z − 1, n) + f(x− 1, y, z + 1, n) + f(x, y − 1, z + 1, n).

When x = y = z = 0, the right-hand side counts the number of possible 3 × n

matrices satisfying both b = a + 1 and c = a + 2. Thus the problem requires us to
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show that 4f(0, 0, 0, n) ≤ f(0, 0, 0, n + 1) for some n ≥ 1995. Suppose this were not
the case; then we would have f(0, 0, 0, n) = O(4n) as n → ∞. On the other hand,
f(0, 0, 0, 6m) is at least the number of 3 × 6m matrices such that each permutation
of 1, 2, 3 appears in exactly m columns. The latter number equals the multinomial
coefficient

(
6m

m,m,m,m,m,m

)
, so we would have

(
6m

m,m,m,m,m,m

)
= O(46m). This rate of

growth contradicts the fact that

lim
m→∞

(
6(m+1)

m+1,m+1,m+1,m+1,m+1,m+1

)(
6m

m,m,m,m,m,m

)
= lim

m→∞
(6m+ 6)(6m+ 5)(6m+ 4)(6m+ 3)(6m+ 2)(6m+ 1)

(m+ 1)(m+ 1)(m+ 1)(m+ 1)(m+ 1)(m+ 1)

= 66. �

Remark. Instead of estimating the ratio of consecutive multinomial coefficients,
we could obtain a direct contradiction from Stirling’s approximation (see the remarks
following 1996B2), which implies that(

6m
m,m,m,m,m,m

)
∼ (2πm)−5/266m+1/2

as m→∞.

Solution 2. In fact, we can prove 4f(x, y, z, n) ≤ f(x, y, z, n + 1) for all n ≥ 3
and all x, y, and z. Using the recursion in Solution 1, we can deduce this from the
claim for n = 3. The verification for n = 3 can be made from the following table,
which shows the results of computing f(x, y, z, n) for small values of x, y, z, n from
the recursion. (We list only those (x, y, z) with x ≥ 0 ≥ z ≥ y and f(x, y, z, 3) �= 0,
since these suffice by symmetry.)

(x, y, z) f(x, y, z, 0) f(x, y, z, 1) f(x, y, z, 2) f(x, y, z, 3) f(x, y, z, 4)

(0, 0, 0) 1 0 6 12 60
(1,−1, 0) 0 1 2 15 60
(2,−2, 0) 0 0 1 6 34
(2,−1,−1) 0 0 2 6 48
(3,−3, 0) 0 0 0 1 12
(3,−2,−1) 0 0 0 3 16

�
Reinterpretation. Consider a random walk on the triples of integers (x, y, z) with

x+y+z = 0, where a move increases one integer by 1 and decreases another one by 1.
(More geometrically, one can think of the triples as the points of a triangular lattice,
where a move leaves a lattice point and goes to an adjacent one.) Then f(x, y, z, n)/6n

is the probability of ending up at (x, y, z) after n steps, and for fixed x, y, z, one can
show that the ratio between these probabilities for successive n tends to 1. Greg
Lawler points out that this is a special case of the Local Central Limit Theorem for
two-dimensional walks. For more on random walks on lattice points of Euclidean
space, see [Spt].
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A related fact is that the random walk is recurrent: the expected number of returns
to the origin is infinite, or equivalently,

∑∞
n=1 f(x, y, z, n)/6

n diverges. This is not
true of the corresponding random walk on a lattice of three (or more) dimensions.

B1. (124, 26, 7, 0, 0, 0, 0, 0, 4, 10, 11, 22)
For a partition π of {1, 2, 3, 4, 5, 6, 7, 8, 9}, let π(x) be the number of elements

in the part containing x. Prove that for any two partitions π and π′, there
are two distinct numbers x and y in {1, 2, 3, 4, 5, 6, 7, 8, 9} such that π(x) = π(y)
and π′(x) = π′(y). [A partition of a set S is a collection of disjoint subsets
(parts) whose union is S.]

Solution. For a given π, no more than three different values of π(x) are possible.
(Four would require one part each of size at least 1,2,3,4, which is already too many
elements.) If no such x, y exist, each pair (π(x), π′(x)) occurs for at most one x, and
since there are at most 3× 3 possible pairs, each must occur exactly once. Moreover,
there must be three different values of π(x), each occurring 3 times. However, any
given value of π(x) occurs kπ(x) times, where k is the number of distinct parts of
that size. Thus π(x) can occur 3 times only if π(x) equals 1 or 3, but we have three
distinct values occurring 3 times, contradiction. �
Remark. Noam Elkies points out that the only n for which all pairs of partitions

of {1, . . . , n} satisfy the statement of the problem are n = 2, 5, 9.

B2. (2, 54, 26, 0, 0, 0, 0, 0, 3, 13, 51, 55)
An ellipse, whose semi-axes have lengths a and b, rolls without slipping

on the curve y = c sin
(
x
a

)
. How are a, b, c related, given that the ellipse

completes one revolution when it traverses one period of the curve?

Answer. The given condition forces b2 = a2 + c2.

Solution 1. The assumption of rolling without slipping means that any point,
the length of the curve already traversed equals the perimeter of the arc of the ellipse
that has already touched the curve. For the ellipse to complete one revolution in one
period of the sine curve, the perimeter of the ellipse must then equal the length of a
period of the sine curve. Stating this in terms of integrals, we have∫ 2π

0

√
(−a sin θ)2 + (b cos θ)2 dθ =

∫ 2πa

0

√
1 + (c/a cosx/a)2 dx.

Let θ = x/a in the second integral and write 1 as sin2 θ + cos2 θ; the result is∫ 2π

0

√
a2 sin2 θ + b2 cos2 θ dθ =

∫ 2π

0

√
a2 sin2 θ + (a2 + c2) cos2 θ dθ.

Since the left side is increasing as a function of b, we have equality if and only if
b2 = a2 + c2. �
Solution 2. As in Solution 1, it suffices to find the relation between a, b, c that

makes the length of one period of the sine curve equal to the perimeter of the ellipse.
We will show that b2 = a2 + c2. By scaling a, b, c, we may assume a = 1.
In the strip 0 ≤ θ ≤ 2π in the (θ, z)-plane, graph one period S of the curve

z = c sin θ. Curl the strip and glue its left and right edges to form the cylinder
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x2+ y2 = 1 in (x, y, z)-space so that a point (θ, z) on the strip maps to (cos θ, sin θ, z)
on the cylinder. Then S is mapped to the curve E described parametrically by
(x, y, z) = (cos θ, sin θ, c sin θ) for 0 ≤ θ ≤ 2π, and S and E have the same length.
The parameterization is of the form (cos θ)-v + (sin θ)-w where -v = (1, 0, 0) and
-w = (0, 1, c) are orthogonal vectors, so E is an ellipse with semi-axes of lengths
|-v| = 1 and |-w| = √1 + c2. (Alternatively, this can be seen geometrically, since E is
the intersection of the plane z = cy with the cylinder.) Thus when b2 = 1 + c2, the
length of S equals the perimeter of the ellipse with semi-axes of lengths 1 and b.
On the other hand, the length of S is an increasing function of |c|. (If this is not

clear geometrically, consider the arc length formula from calculus.) Hence for fixed b,
the only values of c for which the length of S equals the perimeter of the ellipse with
semi-axes of lengths 1 and b are those for which b2 = 1 + c2. �

Remark. Noam Elkies points out that it is not obvious that the condition
b2 = a2 + c2 is sufficient for the rolling to be physically possible: it is conceivable
that the ellipse could be too fat to touch the bottom of the sine curve. We show that
the rolling is in fact physically possible if b2 = a2 + c2, for an appropriately chosen
starting point, by showing that the radius of curvature of the ellipse at any point is
always less than that of the sine curve at the corresponding point.
The radius of curvature of the curve y = c sin(x/a) at (x, y) is

(1 + (y′)2)3/2

|y′′| =
(a2 + c2 cos2(x/a))3/2

ac| sin(x/a)| ,

while the radius of curvature of the ellipse x = a cos θ, y = b sin θ at a given θ is

((x′)2 + (y′)2)3/2

|x′y′′ − y′x′′| =
(a2 sin2 θ + b2 cos2 θ)3/2

ab
.

(See [Ap2, pp. 538–539] for the basic properties of the radius of curvature.) If we
start with the points θ = 0 of the ellipse and x = 0 of the sine curve in contact, the
parameters will be related by the equation θ = x/a. Since ac| sin(x/a)| ≤ ac < ab,
the radius of curvature of the sine curve will always be larger than that of the ellipse
at the corresponding point, so the rolling will be physically possible.

Remark. The result of the previous calculation can also be explained by the
geometry of Solution 2. Since we obtain the ellipse by rolling up one period of the
sine curve, it suffices to prove the following geometrically believable claim: Rolling
up a curve does not increase the radius of curvature at any point. Here “rolling up a
curve” means taking the image of a smooth curve in the (θ, z)-plane under the map
(θ, z) !→ (cos θ, sin θ, z).
To prove the claim, parameterize the smooth curve by (θ(t), z(t)) so that the speed

for all t is 1. The radius of curvature is 1/|-a|, where -a is the acceleration [Ap2, p. 538].
Hence it remains to show that the magnitude of the acceleration is not decreased by
rolling up.
Let -a(t) and -A(t) be the accelerations of the original and rolled-up curves, respec-

tively. For the original curve, the velocity is (θ′, z′) and the acceleration is -a = (θ′′, z′′),
so the magnitude of the acceleration is |-a| =√(θ′′)2 + (z′′)2.
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For the image curve, the velocity is (−θ′sin θ, θ′cos θ, z′). The speed is
√
(θ′)2 + (z′)2

= 1. (We expect this, since “rolling up” is an isometric embedding: it does not involve
stretching the paper.) The acceleration is

-A = (−θ′′ sin θ − (θ′)2 cos θ, θ′′ cos θ − (θ′)2 sin θ, z′′),
so

| -A|2 = (θ′′)2 + (z′′)2 + (θ′)4 = |-a|2 + (θ′)4 ≥ |-a|2,
as desired. Equality holds precisely when the original curve is moving only in the
z-direction (i.e., when the curve has a vertical tangent vector); this never happens for
the sine curve.

B3. (54, 15, 11, 0, 0, 0, 0, 0, 33, 15, 49, 27)
To each positive integer with n2 decimal digits, we associate the determi-

nant of the matrix obtained by writing the digits in order across the rows.

For example, for n = 2, to the integer 8617 we associate det
(
8 6
1 7

)
= 50.

Find, as a function of n, the sum of all the determinants associated with
n2-digit integers. (Leading digits are assumed to be nonzero; for example,
for n = 2, there are 9000 determinants.)

Answer. The sum is 45 for n = 1, 20250 for n = 2, and 0 for n ≥ 3.

Solution. The set of matrices in question can be constructed as follows: choose
the first row from one set of possibilities, choose the second row from a second set,
and so on. By the multilinearity of the determinant, the answer is the determinant of
the matrix whose kth row is the sum of the possibilities for that row.
For n = 1, this sum matrix is the 1 × 1 matrix with entry 45, so the answer

is 45 in this case. For n = 2, the sum matrix is
(
450 405
450 450

)
, whose determinant

is 20250. (More explicitly, the first row is the sum of the 90 vectors
(
a b

)
with

a ∈ {1, . . . , 9} and b ∈ {0, . . . , 9}; the second row is the sum of the 100 vectors
(
a b

)
with a ∈ {0, 1, . . . , 9} and b ∈ {0, . . . , 9}.) For n ≥ 3, all but the first row of the sum
matrix are equal, so its determinant is 0. �
Remark. Alternatively, for n ≥ 3, any matrix either has its last two columns equal,

or cancels with the matrix obtained by switching these two columns. For n = 2, this
argument eliminates all matrices from consideration except those with a 0 in the top
right, and these can be treated directly.

B4. (9, 18, 62, 4, 0, 0, 0, 2, 21, 33, 10, 45)
Evaluate

8

√
2207− 1

2207− 1
2207−···

.

Express your answer in the form a+b
√
c

d , where a, b, c, d are integers.

Answer. The expression equals (3 +
√
5)/2.
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Solution. The infinite continued fraction is defined as the limit L of the sequence
defined by x0 = 2207 and xn+1 = 2207− 1/xn; the limit exists because the sequence
is decreasing (by a short induction). Also, L must satisfy L = 2207− 1/L. Moreover,
xi > 1 for all i by induction, so L ≥ 1. Let r = L1/8, so r8 + 1

r8 = 2207. Then(
r4 +

1
r4

)2

= 2207 + 2 = 472, so r4 +
1
r4

= 47;(
r2 +

1
r2

)2

= 49, so r2 +
1
r2

= 7; and(
r +

1
r

)2

= 9, so r +
1
r
= 3.

Thus r2 − 3r + 1 = 0, so r = 3±√
5

2 . But r = L1/8 ≥ 1, so r = 3+
√

5
2 . �

Remark. This question deals with the asymptotic behavior of the dynamical system
given by x0 = 2207, xn+1 = 2207− 1/xn. See 1992B3 for another dynamical system.
Stronger result. Let Ln denote the nth Lucas number: that is, L0 = 2, L1 = 1,

and Ln+2 = Ln+1 + Ln for n ≥ 0. Then it can be shown [Wo] that for any n > 0,

n

√
L2n − 1

L2n − 1
L2n−···

=
3 +

√
5

2
.

B5. (72, 11, 13, 0, 0, 0, 0, 0, 9, 6, 42, 51)
A game starts with four heaps of beans, containing 3, 4, 5, and 6 beans.

The two players move alternately. A move consists of taking either

(a) one bean from a heap, provided at least two beans are left behind in
that heap, or

(b) a complete heap of two or three beans.

The player who takes the last heap wins. To win the game, do you want
to move first or second? Give a winning strategy.

Answer. The first player has a winning strategy, described below.

Solution. The first player wins by removing one bean from the pile of 3, leaving
heaps of size 2, 4, 5, 6. Regarding heaps of size 2 and heaps of odd size as “odd”,
and heaps of even size other than 2 as “even”, the total parity is now even. As long
as neither player removes a single bean from a heap of size 3, the parity will change
after each move. Thus the first player can always ensure that after his move, the total
parity is even and there are no piles of size 3. (If the second player removes a heap of
size 2, the first player can move in another odd heap; the resulting heap will be even
and so cannot have size 3. If the second player moves in a heap of size greater than
3, the first player can move in the same heap, removing it entirely if it was reduced
to size 3 by the second player.) �
Remark. Because 3, 4, 5, 6 are not so large, it is also possible to describe a winning

strategy with a state diagram, where a state consists of an unordered tuple of heap
sizes, together with a label (1st or 2d) saying which player is to move next. The
diagram would need to show, for each state labelled 1st, an arrow indicating a valid
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move to a state labelled 2nd, and for each state labelled 2nd, arrows to all states that
can be reached in one move. If all paths eventually lead to the state in which there
are no heaps left and the second player is to move, then the first player has a winning
strategy. Figure 29 shows a state diagram for a smaller instance of the problem: it
gives a winning strategy for the first player in the game with heaps of size 3, 3, and 5.

(3, 3, 5 : 1st)

��
(3, 3, 4 : 2nd)

�������������

�� ��������������

(3, 4 : 1st)

��

(2, 3, 4 : 1st)

��

(3, 3, 3 : 1st)

��
(2, 2, 4 : 2nd)

���������������
(3, 3 : 2nd)

��

��

(2, 4 : 1st)

��

(2, 2, 3 : 1st)

��������������
(2, 3 : 1st)

��
(4 : 2nd)

��

(2, 2 : 2nd)

��
(3 : 1st)

�������������
(2 : 1st)

��������������

(∅ : 2nd)

FIGURE 29.
An example of a state diagram.

Remark. In the language of game theory, this game is normal (the last player to
move wins) and impartial (the options in any given position are the same for both
players). The classic example of such a game is Nim: the game starts with some piles
of sticks, and each player in turn can remove any number of sticks from a single pile.
It has long been known that one can determine who wins in a given Nim position by
adding the sizes of the piles in base 2 without carries: the position is a second player
win if the sum is zero. The point is that every position with nonzero sum has a move
to a zero position, but every zero position has moves only to nonzero positions. So
from a nonzero position, the first player can arrange to move only to zero positions;
when the game ends, it must do so after a move by the first player.
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The main result of Sprague-Grundy theory [BCG, Volume 1, Ch. 3, p. 58] is that
every normal impartial game works the same way! Explicitly, to each position one
assigns a “nim-value” which is the smallest nonnegative integer not assigned to any
position reachable from the given position in one move. In particular, the final position
has value 0, and a position is a second player win if and only if it has value 0. The
result then is that the value of a disjunction of two positions (in which a player may
move in one position or the other) is obtained by adding the values of the positions
in base 2 without carries.
In the original problem, piles of size 0, 2, 3, 4, 5, 6 have values 0, 1, 2, 0, 1, 0, so

the initial position has value 2⊕ 0 ⊕ 1 ⊕ 0 = 3, and the winning first move creates a
position of value 1⊕ 0⊕ 1⊕ 0 = 0, as expected.

B6. (3, 2, 0, 0, 0, 0, 0, 0, 2, 3, 61, 133)
For a positive real number α, define

S(α) = { �nα� : n = 1, 2, 3, . . . }.
Prove that {1, 2, 3, . . . } cannot be expressed as the disjoint union of three
sets S(α), S(β) and S(γ).

Solution 1. Suppose on the contrary that S(α), S(β), S(γ) form a partition of
the positive integers. Then 1 belongs to one of these sets, say S(α), and so nα < 2 for
some n ≥ 1. In particular α < 2; moreover, α > 1 or else S(α) contains every positive
integer, contradicting our hypothesis.
Let m ≥ 2 be the integer satisfying 1+1/m ≤ α < 1+1/(m−1). Then �nα� = n for

n = 1, . . . ,m− 1, but �mα� = m+ 1, so m is the smallest integer in the complement
S(β)∪S(γ) of S(α). Moreover, any two consecutive elements of this complement differ
by m or m+ 1.
Without loss of generality, suppose m ∈ S(β), so �β� = m. Let n be an element of

S(γ); by the previous paragraph, the nearest elements of S(β) on either side of n each
differ from n by at least m, so they differ from each other by at least 2m. This is a
contradiction, because consecutive elements of S(β) differ by at most m+1 < 2m. �
Related question. A similar argument arises in Problem 3 from the 1999 USA

Mathematical Olympiad [USAMO]:

Let p > 2 be a prime and let a, b, c, d be integers not divisible by p, such that

{ra/p}+ {rb/p}+ {rc/p}+ {rd/p} = 2

for any integer r not divisible by p. Prove that at least two of the numbers
a+ b, a+ c, a+ d, b+ c, b+ d, c+ d are divisible by p. (Note: {x} = x− �x�
denotes the fractional part of x.)

Solution 2 (attributed to John H. Lindsey II). Let a = 1/α, b = 1/β, c = 1/γ.
For n ≥ 1, let f(n, x) = #(S(x)∩ {1, 2, . . . , n}). Since S(α) �= {1, 2, . . . }, α > 1. Now
�kα� ≤ n is equivalent to kα < n+1 and to k < (n+1)a, so f(n, α) = �(n+1)a�− 1.
Hence if {1, 2, 3, . . . } is the disjoint union of S(α), S(β) and S(γ), then

n = f(n, α) + f(n, β) + f(n, γ) = �(n+ 1)a�+ �(n+ 1)b�+ �(n+ 1)c� − 3. (1)
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Dividing by n + 1 and taking the limit as n → ∞ shows 1 = a + b + c. Multiplying
this by n+ 1 and subtracting the result from (1) yields

2 = g(n, a) + g(n, b) + g(n, c), (2)

where g(n, x) = �(n+ 1)x� − (n+ 1)x.
We will contradict (2) by proving that for any x > 0, the average value of g(i, x)

for 1 ≤ i ≤ n tends to a limit less than or equal to 1/2 as n → ∞. If x is rational,
say m/d in lowest terms, then any block of d consecutive integers contains exactly
one solution z to mz ≡ j (mod d) for each integer j, so the values of g(i, x) for i in
this block are 0/d, 1/d, 2/d, . . . , (d− 1)/d in some order; hence the average value of
g(i, x) for 1 ≤ i ≤ n tends to

1
d

(
0
d
+
1
d
+ · · ·+ d− 1

d

)
=

d− 1
2d

<
1
2
.

If instead x is irrational, then the average value of g(i, x) for 1 ≤ i ≤ n tends to 1/2
by the equidistribution result mentioned in 1988B3. �
Stronger result. Solution 2 generalizes to show that if k > 2 and α1, α2, . . . , αk

are real numbers, then {1, 2, . . . } cannot be the disjoint union of S(α1), S(α2), . . . ,
S(αk). This fact also follows from the following paragraph.

Stronger result. The sets S(α), S(β), S(γ) cannot be disjoint. Proof (John
Rickard): Let N be an integer larger than max{α, β, γ} and consider the N3 + 1
triples vn = ({n/α}, {n/β}, {n/γ}) ∈ R3 for n = 0, . . . , N3, where {x} = x − �x�
denotes the fractional part of x. If we divide the unit cube 0 ≤ x, y, z ≤ 1 in R3 into
N3 subcubes of side length 1/N , then by the Pigeonhole Principle, two of the vn, say
vi and vj , lie in the same subcube. Let k = |i− j|. Then k/α is within 1/N of some
integer m, and �mα� equals k − 1 or k, depending on whether k/α > m or not. In
other words, S(α) contains k or k − 1. Similarly, S(β) and S(γ) each contain k − 1
or k. We conclude that one of k − 1 or k lies in at least two of S(α), S(β), S(γ), so
these sets are not disjoint.

Warning. Not all authors use the notation {x} for the fractional part of x. In fact,
the same notation is used in Problem 1997B1 to denote the distance from x to the
nearest integer. And sometimes it denotes the set whose only element is x!

Stronger result. If S(α) and S(β) are disjoint, then there exist positive integers
m and n such that m/α + n/β = 1. This can be deduced from the following fact: if
x1, . . . , xk are real numbers, then the closure of the set of points ({nx1}, . . . , {nxk}) in
the closed k-dimensional unit cube is the set of points (y1, . . . , yk) in the cube with the
property that for every sequence of integers n1, . . . , nk such that n1x1+· · ·+nkxk ∈ Z,
we have n1y1 + · · ·+ nkyk ∈ Z. (Hint: reduce to the special case where this set is the
entire cube.)
The k = 1 case of this fact is the denseness result proved in the remark in 1988B3.

One can also generalize the equidistribution result given there: if 1, x1, . . . , xk are
linearly independent over Q, the k-tuples ({nx1}, . . . , {nxk}) are equidistributed in
the k-dimensional unit cube. (That is, for any subcube of volume µ, the number of
n ≤ N such that the k-tuple ({nx1}, . . . , {nxk}) lies in the subcube is asymptotic
to µN as N → ∞.) This can be deduced from a multidimensional version of
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Weyl’s Equidistribution Theorem, which can be proved in the same way as the one-
dimensional case in [Kör, Theorem 3.1′].

Reinterpretation. The multidimensional version of Weyl’s Equidistribution The-
orem can be deduced from the following fact: every continuous function on the n-
dimensional unit cube can be uniformly approximated by finite linear combinations
of characters. (A character is a continuous group homomorphism from Rn/Zk to C∗;
each such homomorphism is

(x1, . . . , xk) !→ exp(2πi(a1x1 + · · ·+ akxk))

for some a1, . . . , ak ∈ Z.) The approximation assertion follows from basic properties of
Fourier series, which are ubiquitous in physics and engineering as well as mathematics.
See [Kör, Theorem 3.1′] for the proof in the k = 1 case, and [DMc, Section 1.10] for
the general case.

Related question. Problem 1979A5 [PutnamII, p. 33] is related:

Denote by [x] the greatest integer less than or equal to x and by S(x) the
sequence [x], [2x], [3x], . . . . Prove that there are distinct real solutions α and
β of the equation x3− 10x2+29x− 25 = 0 such that infinitely many positive
integers appear both in S(α) and S(β).

Remark. If α and β are irrational and 1/α+1/β = 1, then S(α) and S(β) partition
the positive integers (Beatty’s Theorem). See 1993A6 for another instance of this fact,
and the solution to that problem for further discussion.
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The Fifty-Seventh William Lowell Putnam Mathematical Competition
December 7, 1996

A1. (87, 26, 47, 0, 0, 0, 0, 0, 6, 9, 31, 0)
Find the least number A such that for any two squares of combined area

1, a rectangle of area A exists such that the two squares can be packed in
the rectangle (without the interiors of the squares overlapping). You may
assume that the sides of the squares will be parallel to the sides of the
rectangle.

Answer. The least such A is (1 +
√
2)/2.

Solution 1. If x and y are the sides of two squares with combined area 1, then
x2+ y2 = 1. Suppose without loss of generality that x ≥ y. Then the shorter side of a
rectangle containing both squares without overlap must be at least x, and the longer
side must be at least x+ y. Hence the desired value of A is the maximum of x(x+ y)
subject to the constraints x2 + y2 = 1 and x ≥ y > 0.
To find this maximum, we make the trigonometric substitution x = cos θ, y = sin θ

with θ ∈ (0, π/4]. Then

cos2 θ + sin θ cos θ =
1
2
(1 + cos 2θ + sin 2θ)

=
1
2
+
√
2
2
cos(2θ − π/4)

≤ 1 +
√
2

2
,

with equality for θ = π/8. Hence the least A is (1 +
√
2)/2. �

Solution 2. As in Solution 1, we find the maximum value of x(x+ y) on the arc
defined by the constraints x2 + y2 = 1 and x ≥ y > 0. By the theory of Lagrange
multipliers [Ap2, Ch. 9.14], the maximum on the closure of the arc occurs either at
an endpoint, or at a point on the arc where the gradient of x(x + y) is a multiple of
the gradient of x2 + y2 − 1, i.e., where there exists λ such that (2x+ y, x) = λ(x, y).
If such a λ exists, we may substitute x = λy into 2x + y = λx to obtain (λ2 −

2λ − 1)y = 0. If y = 0, then x = λy = 0, contradicting x2 + y2 = 1. Therefore
λ2 − 2λ− 1 = 0 and λ = 1±√2. Only the plus sign gives λ > 0, and for this choice,
there is a unique pair (x, y) with x = λy > y > 0 and x2 + y2 = 1. For this pair, we
have 1 = x2 + y2 = (λ2 + 1)y2 = (2λ+ 2)y2, so

x(x+ y) = (λ2 + λ)y2

=
λ2 + λ

2λ+ 2

=
λ

2

=
1 +

√
2

2
.

At the endpoints (1, 0) and (
√
2/2,

√
2/2) of the closure of the arc, we have x(x+y) = 1,

so the maximum is (1 +
√
2)/2. �
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A2. (6, 11, 27, 0, 0, 0, 0, 0, 65, 23, 46, 28)
Let C1 and C2 be circles whose centers are 10 units apart, and whose radii

are 1 and 3. Find, with proof, the locus of all points M for which there
exists points X on C1 and Y on C2 such that M is the midpoint of the line
segment XY .

Answer. Let O1 and O2 be the centers of C1 and C2, respectively. (We are assuming
C1 has radius 1 and C2 has radius 3.) Then the desired locus is an annulus centered
at the midpoint O of O1O2, with inner radius 1 and outer radius 2.

Solution. If X lies on C1, Y lies on C2, and M is the midpoint of XY , then

−−→
OM =

1
2

(−−→
OX +−→OY

)
=
1
2

(−−→
OO1 +

−−→
O1X +−−→OO2 +

−−→
O2Y

)
=
1
2

(−−→
O1X +−−→O2Y

)
.

By the triangle inequality, the length of −−→O1X + −−→O2Y lies between 3 − 1 and 3 + 1.
Conversely, every vector of length @ between 3−1 and 3+1 can be expressed as the sum
of a vector of length 1 and a vector of length 3, by building a (possibly degenerate)
triangle of side lengths @, 1, 3 having the given vector as one side. Thus the set of
possible M is precisely the closed annulus centered at O with inner radius 1 and outer
radius 2. �
Related question. Given C1, C2, and a point M in the annulus, construct points

X on C1 and Y on C2 using compass and straightedge such that M is their midpoint.

A3. (63, 18, 6, 0, 0, 0, 0, 0, 0, 0, 47, 72)
Suppose that each of 20 students has made a choice of anywhere from 0

to 6 courses from a total of 6 courses offered. Prove or disprove: there are
5 students and 2 courses such that all 5 have chosen both courses or all 5
have chosen neither course.

Answer. There need not exist 5 such students and 2 such courses.

Solution. The number of ways to choose 3 of the 6 courses is
(
6
3

)
= 20. Suppose

each student chooses a different set of 3 courses. Then given any pair of courses, four
students have chosen both and four students have chosen neither course. Thus there
do not exist 5 students who have chosen both courses, nor do there exist 5 students
who have chosen neither course. �
Remark. It can be shown that in any example contravening the assertion of the

problem, each student must choose 3 courses. To see this, note that for each pair of
courses, there are at most 4 + 4 = 8 students who choose both or neither. Thus there
are at most 8

(
6
2

)
= 120 pairs (s, {c, d}), where s is a student and {c, d} is a set of two

distinct courses, such that s either chooses both courses or chooses neither course.
On the other hand, if a student chooses k courses, then there are

(
k
2

)
+
(
6−k
2

)
pairs

of courses such that the student chose both or chose neither. This sum is minimized
for k = 3, where it equals 6. Thus there are at least 6 × 20 = 120 pairs (s, {c, d});
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if any students choose more or fewer than 3 courses, we get strict inequality and a
contradiction.

Remark. A consequence of the previous observation is that the example given
above is unique if we assume no two students choose the same set of courses. On the
other hand, there exist other counterexamples to the assertion of the problem in which
more than one student selects the same set of courses. Here is an elegant construction
attributed to Robin Chapman. Take an icosahedron, and label its vertices with the
names of the 6 courses so that two vertices have the same label if and only if they
are antipodal. For each of the 20 faces of the icosahedron, have one student select the
three courses labelling the vertices of the face; then antipodal faces give rise to the
same set of courses. Concretely, if the courses are A,B,C,D,E, F , the sets could be

ABC, ACD, ADE, AEF , AFB, BCE, CDF , DEB, EFC, FBD.

Literature note. The study of problems such as this one, asking for combinatorial
structures not containing certain substructures, is known as Ramsey theory. See [Gr1]
for an introduction.

A4. (3, 7, 7, 0, 0, 0, 0, 0, 7, 19, 67, 96)
Let S be a set of ordered triples (a, b, c) of distinct elements of a finite set

A. Suppose that

(1) (a, b, c) ∈ S if and only if (b, c, a) ∈ S;

(2) (a, b, c) ∈ S if and only if (c, b, a) /∈ S [for a, b, c distinct];

(3) (a, b, c) and (c, d, a) are both in S if and only if (b, c, d) and (d, a, b) are
both in S.

Prove that there exists a one-to-one function g from A to R such that
g(a) < g(b) < g(c) implies (a, b, c) ∈ S.

Solution. We may assume that A is nonempty. Pick some x in A. Let us define a
binary relation on A as follows: we define b < c if and only if b = x �= c or (x, b, c) ∈ S.
For x, b, c distinct, we have

(x, b, c) ∈ S ⇐⇒ (c, x, b) ∈ S ⇐⇒ (b, x, c) �∈ S ⇐⇒ (x, c, b) �∈ S

by (1),(2),(1), respectively. Thus b < c if and only if c �< b. We also have b �< x for
any b �= x, since (x, b, x) �∈ S.
We now show that if b < c and c < d, then b < d. These conditions imply c, d �= x;

if b = x, we are done, so assume b �= x. Then (x, b, c) and (x, c, d) are in S; by (1),
(c, d, x) is also in S, and then (3) implies (d, x, b) ∈ S. By (1) again, (x, b, d) ∈ S, and
so b < d.
Thus < is a total ordering of A, and so we can find the desired function g. For

example, let g(a) be the number of y ∈ A such that y < a. �
Remark. The construction of the total ordering did not use the finiteness of A.

The finiteness was only used to construct the order-preserving injection of A into R.
In fact, such an injection also exists if A is countable: list the elements of A in an
arbitrary fashion (without regard to the total ordering), and choose their images in R
one at a time, making sure that the total ordering is preserved.
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A5. (4, 4, 2, 0, 0, 0, 0, 0, 0, 13, 40, 143)
If p is a prime number greater than 3 and k = �2p/3�, prove that the sum(

p

1

)
+
(
p

2

)
+ · · ·+

(
p

k

)
of binomial coefficients is divisible by p2.

Solution. For 1 ≤ n ≤ p− 1, p divides (pn) and
1
p

(
p

n

)
=
1
n
· p− 1

1
· p− 2

2
· · · p− n+ 1

n− 1 ≡ (−1)n−1

n
(mod p),

where the congruence x ≡ y (mod p) means that x − y is a rational number whose
numerator, in reduced form, is divisible by p. Therefore

k∑
n=1

1
p

(
p

n

)
≡

k∑
n=1

(−1)n−1

n

=
k∑

n=1

1
n
− 2

�k/2∑
n=1

1
2n

≡
k∑

n=1

1
n
+

p−1∑
n=p−�k/2

1
n

(mod p).

Any prime p > 3 is of one of the forms 6r+1 or 6s+5. In the former case, k = 4r and
p−�k/2� = 4r+1 = k+1. In the latter case, k = 4s+3 and p−�k/2� = 4s+4 = k+1.
In either case, we conclude that

k∑
n=1

1
p

(
p

n

)
≡

p−1∑
n=1

1
n
≡

�p/2∑
n=1

1
n
+

�p/2∑
n=1

1
p− n

≡ 0 (mod p),

which completes the proof. �
Related question. Compare with Problem 1 of the 1979 International Mathematical

Olympiad [IMO79–85, p. 2]:

Let m and n be positive integers such that

m

n
= 1− 1

2
+
1
3
− · · · − 1

1318
+

1
1319

.

Prove that m is divisible by 1979.

A6. (4, 4, 11, 0, 0, 0, 0, 0, 18, 13, 46, 110)
Let c ≥ 0 be a constant. Give a complete description, with proof, of the

set of all continuous functions f : R → R such that f(x) = f(x2 + c) for all
x ∈ R.

Answer. If 0 ≤ c ≤ 1/4 then f is constant. If c > 1/4, then f is uniquely determined
(as described below) by its restriction g to [0, c], which may be any continuous function
on [0, c] with g(0) = g(c).

Solution. The functional equation implies f(x) = f(x2 + c) = f((−x)2 + c) =
f(−x). Conversely, if f satisfies the functional equation for x ≥ 0 and also satisfies
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f(x) = f(−x), then it satisfies the functional equation for all x. So we will consider
only x ≥ 0 hereafter.

Case 1: 0 ≤ c ≤ 1/4. In this case, the zeros a, b of x2 − x + c are real and satisfy
0 ≤ a ≤ b. We will show that f(x) = f(a) for all x ≥ 0. First suppose 0 ≤ x < a.
Define x0 = x and xn+1 = x2

n + c for n ≥ 0. Then we have xn < xn+1 < a for all n,
by induction: if xn < a, then on one hand xn+1 − xn = x2

n − xn + c > 0, and on the
other hand xn+1 = x2

n + c < a2 + c = a. We conclude that xn converges to a limit
L not exceeding a, which must satisfy L2 + c = L. Since the only real roots of this
equation are a and b, we have L = a. Now since f(xn) = f(x) for all n and xn → a,
we have f(x) = f(a) by continuity.
If a < x < b, we argue similarly. Define xn as above; then we have a < xn+1 < xn

for all n, by induction: if xn < b, then on one hand xn+1− xn = x2
n− xn+ c < 0, and

on the other hand xn+1 = x2
n + c > a2 + c = a. So again f(x) = f(a) for a < x < b.

By continuity, f(b) = f(a).
Finally, suppose x > b. Now define x0 = x and xn+1 =

√
xn − c for n ≥ 0. Then

we have b < xn+1 < xn for all n, by induction: on one hand, x2
n+1 + c = xn < x2

n + c,
and on the other hand xn+1 >

√
b− c = b. Thus xn converges to a limit L not less

than b, and L =
√
L− c, so L = b. So analogously, f(x) = f(b) = f(a).

We conclude that f(x) = f(a) is constant.

Case 2: c > 1/4. In this case, x2+ c > x for all x. Let g be any continuous function
on [0, c] with g(0) = g(c). Then g extends to a continuous function f by setting
f(x) = g(x) for x < c, f(x) = g(

√
x− c) for c ≤ x < c2 + c, f(x) = g(

√√
x− c− c)

for c2 + c ≤ x < (c2 + c)2 + c, and so on. Conversely, any f satisfying the functional
equation is determined by its values on [0, c] and satisfies f(0) = f(c), and so arises
in this fashion. �
Stronger result. More generally, let p be a polynomial not equal to x or to c − x

for any c ∈ R. One can imitate the above solution to classify continuous functions
f : R → R such that f(x) = f(p(x)) for all x ∈ R. The classification hinges on
whether p has any fixed points.

Case 1: p(x) has a fixed point. In this case, we show that f must be constant.
We first reduce to the case where p has positive leading coefficient. If this is not the
case and p has odd degree, we work instead with p(p(x)); if p has even degree, then
g(x) = f(−x) satisfies g(x) = g(−p(−x)), so we work instead with −p(−x).
Let r be the largest fixed point of p; then p(x) − x does not change sign for x > r,

and it tends to +∞ as x→ +∞, so it is positive for all x > r. In particular, p maps
[r,∞) onto itself. For any x > r, define the sequence {xn} by setting x0 = x and
xn+1 is the smallest element of [r,∞) such that p(xn+1) = xn. The sequence {xn} is
decreasing, so it converges to a limit L ≥ r, and L = limxn = lim p(xn+1) = p(L).
Thus L = p(L), which can only occur if L = r. Since f(xn) = f(x0) for all n and
xn → r, we have f(x0) = f(r). Consequently, f is constant on [r,∞).
Suppose, in order to obtain a contradiction, that f is not constant on all of R. Let

T = inf{ t ∈ R : f is constant on [t,∞)}.
Then f is constant on [T,∞). It is also constant on [p(T ),∞), so p(T ) ≥ T . It is
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also constant on p−1([T,∞)); if p(T ) > T , this set also includes T − ε for small ε,
contradiction. Thus p(T ) = T .
Since p has finitely many fixed points, either p(T − ε) > T − ε for small ε, or

p(T − ε) < T − ε for small ε. In the former case, the sequence with x0 = T − ε and
xn+1 = p(xn) converges to T , so f(x0) = f(T ). In the latter case, the sequence with
x0 = T − ε and xn+1 the largest element of (xn, T ) with q(xn+1) = xn converges to
T , so g(x0) = T . In either case, g is constant on a larger interval than [T,∞), a
contradiction.

Case 2: p has no fixed point. In this case, p must have even degree, so as in Case
1, we may assume p has positive leading coefficient, which implies that p(x) > x for
all x ∈ R. There exists a0 ∈ R such that p is strictly increasing on [a0,∞), since any
a0 larger than all zeros of p has this property. For n ≥ 0, set an+1 = p(an), so {an}
is an increasing sequence. It cannot have a limit, since that limit would have to be a
fixed point of p, so an →∞ as n→∞.
We claim f is determined by its values on [a0, a1]. Indeed, these values determine

f on [a1, a2], on [a2, a3], and so on, and the union of these intervals is [a0,∞).
Furthermore, for any x ∈ R, if we set x0 = x and xn+1 = p(xn), then the sequence
{xn} is increasing and unbounded, so some xn lies in [a0,∞), and f(xn) = f(x) is
determined by the values of f on [a0, a1].
Conversely, let g(x) be any continuous function on [a0, a1] with g(a0) = g(a1); we

claim there exists a continuous f : R → R with f(x) = f(p(x)) whose restriction to
[a0, a1] is g. For x ∈ R, again set x0 = x and xn+1 = p(xn). If n is large enough, there
exists t ∈ [a0, a1) such that xn = pk(t) for some integer k, and this t is independent
of n. Hence we may set f(x) = f(t).
It remains to show that f is continuous. We can define a continuous inverse p−1 of

p mapping [a1,∞) to [a0,∞), and f is given on [a0, a1] by f(x) = g(x), on [a1, a2] by
f(x) = g(p−1(x)), on [a2, a3] by f(x) = g(p−2(x)), and so on. Thus f is continuous
on each of the intervals [an, an+1], and hence on their union [a0,∞). For x arbitrary,
we can find a neighborhood of x and an integer k such that pk maps the neighborhood
into [a0,∞), and writing f(t) = f(pk(t)) for t in the neighborhood, we see that f is
also continuous there.
We conclude that the continuous functions f satisfying f(x) = f(p(x)) correspond

uniquely to the continuous functions g on [a0, a1] such that g(a0) = g(a1). Otherwise
put, the quotient of R by the map p is isomorphic to the interval [a0, a1] with the
endpoints identified.

Remark. The ideas in this problem come from the theory of dynamical systems.
For a problem involving a related dynamical system, see 1992B3.

B1. (113, 72, 17, 0, 0, 0, 0, 0, 3, 1, 0, 0)
Define a selfish set to be a set which has its own cardinality (number

of elements) as an element. Find, with proof, the number of subsets of
{1, 2, . . . , n} which are minimal selfish sets, that is, selfish sets none of
whose proper subsets is selfish.

Answer. The number of subsets is Fn, the nth Fibonacci number. (See the definition
at the end of 1988A5.)
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Solution 1. Let fn denote the number of minimal selfish subsets of {1, . . . , n}.
We have f1 = 1 and f2 = 2. For n > 2, the number of minimal selfish subsets of
{1, . . . , n} not containing n is equal to fn−1. On the other hand, for any minimal
selfish set containing n, by removing n from the set and subtracting 1 from each
remaining element, we obtain a minimal selfish subset of {1, . . . , n − 2}. (Note that
1 could not have been an element of the set because {1} is itself selfish.) Conversely,
any minimal selfish subset of {1, . . . , n − 2} gives rise to a minimal selfish subset of
{1, . . . , n} containing n by the inverse procedure. Hence the number of minimal selfish
subsets of {1, . . . , n} containing n is fn−2. Thus we obtain

fn = fn−1 + fn−2,

which together with the initial values f1 = f2 = 1 implies that fn = Fn. �

Solution 2. A set is minimal selfish if and only if its smallest member is equal
to its cardinality. (If a selfish set contains a member smaller than its cardinality, it
contains a subset of that cardinality which is also selfish.) Thus we can compute the
number Sn of minimal selfish subsets of {1, . . . , n} by summing, over each cardinality
k, the number of subsets of {k + 1, . . . , n} of size k − 1 (since each of these, plus {k},
is minimal selfish, and vice versa). In other words, Sn =

∑
k

(
n−k
k−1

)
. We directly verify

that S1 = S2 = 1, and that

Sn−1 + Sn =
∑
k

(
n− k

k − 1
)
+
∑
k

(
n− 1− k

k − 1
)

=
∑
k

(
n− k

k − 1
)
+
∑
k

(
n− k

k − 2
)

=
∑
k

(
n+ 1− k

k − 1
)

= Sn+1.

Thus by induction, Sn = Fn for all n. �
Remark. The identity Fn =

∑
k

(
n−k
k−1

)
can be interpreted as the fun fact

that certain diagonal sums in Pascal’s triangle yield the Fibonacci numbers. (See
Figure 30.) It is common for a combinatorial enumeration problem to admit both a
bijective and a recursive proof; see 1996B5 for another example.

1

1 1

1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1

1
1
2
3
5
8

FIGURE 30.
Fibonacci in Pascal.
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B2. (85, 13, 6, 0, 0, 0, 0, 0, 15, 7, 28, 52)
Show that for every positive integer n,(

2n− 1
e

) 2n−1
2

< 1 · 3 · 5 · · · (2n− 1) <
(
2n+ 1

e

) 2n+1
2

.

Solution 1. By estimating the area under the graph of lnx using upper and lower
rectangles of width 2 (see Figure 31), we obtain∫ 2n−1

1

lnxdx < 2(ln(3) + · · ·+ ln(2n− 1)) <
∫ 2n+1

3

lnxdx.

Since
∫
lnxdx = x ln x − x + C, exponentiating and taking square roots yields the

middle two inequalities in(
2n− 1

e

) 2n−1
2

< (2n− 1) 2n−1
2 e−n+1

≤ 1 · 3 · · · (2n− 1)

≤ (2n+ 1)
2n+1

2
e−n+1

33/2
<

(
2n+ 1

e

) 2n+1
2

,

and the inequalities at the ends follow from 1 < e < 3. �

1 3 5 2 – 1n 2 + 1n7 …

y

x

FIGURE 31.
Estimating

∫
ln x dx.

Solution 2. We use induction on n. The n = 1 case follows from 1 < e < 3. For
the inductive step, we need to prove(

2n+1
e

) 2n+1
2(

2n−1
e

) 2n−1
2

< 2n+ 1 <

(
2n+3
e

) 2n+3
2(

2n+1
e

) 2n+1
2

,

which is equivalent to (
2n+ 1
2n− 1

) 2n−1
2

< e <

(
2n+ 3
2n+ 1

) 2n+3
2

.
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The left side is equal to (1 + u)1/u for u = 2/(2n − 1), and the right side is equal to
(1 + u)1/u+1 for u = 2/(2n+ 1), so it suffices to prove the inequalities

(1 + u)1/u < e < (1 + u)1/u+1 for u > 0.

Apply ln and rearrange to rewrite this as
u

1 + u
< ln(1 + u) < u,

which follows by integrating
1

(1 + t)2
<

1
1 + t

< 1

from t = 0 to t = u. �
Related question. Use the method of Solution 1 to prove that

e(n/e)n < n! < en(n/e)n.

(This is a weak version of Stirling’s approximation. The standard form of Stirling’s
approximation is stated in the following remark.)

Remark. Better estimates for n! can be obtained using the Euler-Maclaurin
summation formula [At, Section 5.4]: For any fixed k > 0,

b∑
j=a

f(j) =
∫ b

a

f(t) dt+
f(a) + f(b)

2
+

k∑
i=1

B2i

(2i)!

(
f (2i−1)(b)− f (2i−1)(a)

)
+Rk(a, b),

where the Bernoulli numbers B2i are given by the power series

x

ex − 1 = −x/2 +
∞∑
i=1

B2i

(2i)!
x2i,

(see [HW, Section 17.2]) and the error term Rk(a, b) is given by

Rk(a, b) =
−1

(2k + 2)!

∫ b

a

B2k+2(t− �t�)f (2k+2)(t) dt.

(See 1993B3 for another appearance of Bernoulli numbers.) Specifically, this formula
can be used to obtain Stirling’s approximation to n! [Ap2, Theorem 15.19],

n! ∼
√
2πn

(n
e

)n
,

where the tilde indicates that the ratio of the two sides tends to 1 as n → ∞. See
Solution 1 to 1995A6 for an application of Stirling’s approximation.
The Euler-Maclaurin formula has additional applications in numerical analysis, as

well as in combinatorics; see the remark following 1996B3 for an example.

B3. (20, 19, 8, 0, 0, 0, 0, 0, 14, 36, 56, 53)
Given that {x1, x2, . . . , xn} = {1, 2, . . . , n}, find, with proof, the largest

possible value, as a function of n (with n ≥ 2), of

x1x2 + x2x3 + · · ·+ xn−1xn + xnx1.
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Answer. The maximum is (2n3 + 3n2 − 11n + 18)/6, and the unique arrangement
(up to rotation and reflection) achieving the maximum is

. . . , n− 4, n− 2, n, n− 1, n− 3, . . . .

Solution 1. Since there are finitely many arrangements, at least one is optimal.
In an optimal arrangement, if a, b, c, d occur around the circle in that order, with a

adjacent to b, c adjacent to d and a > d, then b > c. Otherwise, reversing the segment
from b to c would increase the sum by (a− d)(c− b).
This implies first that in an optimal arrangement, n is adjacent to n − 1, or else

we could reverse the segment from n− 1 to either neighbor of n. Likewise, n must be
adjacent to n− 2, or else we could reverse the segment from n− 2 to the neighbor of
n other than n− 1.
Now n−1 is adjacent to n but not to n−2; we must have that n−1 is also adjacent

to n−3, or else we could reverse the segment from n−3 to the neighbor of n−1 other
than n. Likewise n− 2 must be adjacent to n− 4, and so on.
In this arrangement, the value of the function is

n(n− 1) + n(n− 2) + (n− 1)(n− 3) + · · ·+ 4 · 2 + 3 · 1 + 2 · 1.
Using the fact that

∑n
k=1 k

2 = n(n+ 1)(2n+ 1)/6, we can rewrite the sum as

n(n− 1) + 2 +
n−2∑
k=1

k(k + 2) = n2 − n+ 2 +
n−2∑
k=1

(k + 1)2 − 1

= n2 − n+ 2 +
(n− 1)n(2n− 1)

6
− 1− (n− 2)

=
2n3 + 3n2 − 11n+ 18

6
. �

Solution 2. We prove that the given arrangement is optimal by induction on
n. Suppose that the analogous arrangement of n − 1 numbers is optimal. Given
any arrangement of n − 1 numbers, inserting n between a and b changes the sum
by na + nb − ab = n2 − (n − a)(n − b) ≤ n2 − 2. Thus the maximum sum for n

numbers is at most n2−2 plus the maximum sum for n−1 numbers, and this value is
achieved by inserting n between n− 1 and n− 2 in the optimal arrangement of n− 1
numbers. Thus the result is the optimal arrangement of n numbers; since the only
possible arrangement for n = 3 has value 6 + 3 + 2 = 11, the value for n numbers is

11 + (42 − 2) + · · ·+ (n2 − 2) = 11 +
n(n+ 1)(2n+ 1)

6
− 2(n− 3)− (12 + 22 + 32)

=
2n3 + 3n2 − 11n+ 18

6
. �

Related question. Can you determine the arrangement that minimizes the function?
Hint: the minimum value is (n3+3n2+5n−6)/6 for n even and (n3+3n2+5n−3)/6
for n odd.

Remark. The fact that
∑n

k=1 k
2 = n(n + 1)(2n + 1)/6, used above, can be

generalized as follows: for any polynomial P (x) of degree m, there exists a polynomial
Q(x) of degree m + 1 such that

∑n
k=1 P (k) = Q(n) for all positive integers n. This
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follows from the Euler-Maclaurin summation formula (see the remark in 1996B2),
which can also be used to compute Q from P .

B4. (40, 4, 7, 0, 0, 0, 0, 0, 17, 4, 48, 86)
For any square matrix A, we can define sinA by the usual power series:

sinA =
∞∑
n=0

(−1)n
(2n+ 1)!

A2n+1.

Prove or disprove: there exists a 2× 2 matrix A with real entries such that

sinA =
(
1 1996
0 1

)
.

Answer. There does not exist such a matrix A.

Solution 1. Over the complex numbers, if A has distinct eigenvalues, it is
diagonalizable. Since sinA is a convergent power series in A, eigenvectors of A are
also eigenvectors of sinA, so A having distinct eigenvalues would imply that sinA

is diagonalizable. Since
(
1 1996
0 1

)
is not diagonalizable, it can be sinA only for a

matrix A with equal eigenvalues. This matrix can be conjugated into the form
(
x y

0 x

)
for some x and y. Using the power series for sin, we compute

sin
(
x y

0 x

)
=

∞∑
k=0

(−1)k
(2k + 1)!

(
x y

0 x

)2k+1

=
∞∑
k=0

(−1)kx2k+1

(2k + 1)!

(
1 y/x

0 1

)2k+1

=
∞∑
k=0

(−1)kx2k+1

(2k + 1)!

(
1 (2k + 1)y/x
0 1

)

=

∑∞
k=0

(−1)kx2k+1

(2k+1)! y
∑∞

k=0
(−1)kx2k

(2k)!

0
∑∞

k=0
(−1)kx2k+1

(2k+1)!


=
(
sinx y cosx
0 sinx

)
.

Thus if sinx = 1, then cosx = 0 and sin
(
x y

0 x

)
is the identity matrix. In other

words, sinA cannot equal a matrix whose eigenvalues are 1 but which is not the
identity matrix. �

Remark. The computation of sin
(
x y

0 x

)
can be simplified by taking A =

(
x 0
0 x

)
and B =

(
0 y

0 0

)
in the identity

sin(A+B) = sinA cosB + cosA sinB,

which holds when A and B commute.
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Solution 2. Put cosA =
∑∞

n=0(−1)nA2n/n!. The identity sin2 x + cos2 x = 1
implies the identity( ∞∑

n=0

(−1)n
(2n+ 1)!

x2n+1

)2

+

( ∞∑
n=0

(−1)n
(2n)!

x2n

)2

= 1

of formal power series. The series converge absolutely if we substitute x = A, so
sin2 A+ cos2 A equals the identity matrix I. But

I −
(
1 1996
0 1

)2

=
(
0 3992
0 0

)
cannot be the square of a matrix; such a matrix would have to be nilpotent, and
the kth power of a k × k nilpotent matrix is always zero, by the Cayley-Hamilton
Theorem. �
Stronger result. We will show that the image of sin :M2(R)→M2(R) is the set of

matrices B ∈M2(R) such that at least one of the following holds:

(1) B is conjugate to
(
λ 0
0 λ′

)
with λ, λ′ ∈ [−1, 1];

(2) B is conjugate to
(
λ 1
0 λ

)
with λ ∈ (−1, 1);

(3a) B = λI for some λ ∈ R; or

(3b) B has nonreal eigenvalues.

Recall that if A,B ∈Mn(R) are conjugate over C, then they are also conjugate over
R. The entire function sin : C → C is surjective, since it equals the composition of
the surjection eiz : C → C∗ followed by the surjection z−z−1

2i : C∗ → C.
Every A ∈M2(R) is conjugate over C to a matrix of one of the following types:

(1′)
(
r 0
0 r′

)
with r, r′ ∈ R;

(2′)
(
x 1
0 x

)
with x ∈ R; or

(3′)
(
z 0
0 z̄

)
with z ∈ C.

By definition, sin(CAC−1) = C(sinA)C−1 for any invertible C, so B ∈ M2(R) is in
the image of sin : M2(R)→ M2(R) if and only if it is conjugate over C to the sine of
a matrix of one of types (1′), (2′), (3′).
If A is of type (1′), then sinA is of type (1), and conversely all type (1) matrices

are conjugate to a matrix arising in this way. If A is of type (2′), then sinA =(
sinx cosx
0 sinx

)
is of type (1) or (2), according as cosx = 0 or not, and conversely, any

matrix of type (2) is conjugate to
(
sinx cosx
0 sinx

)
for some x ∈ (−π/2, π/2). If A is

of type (3′), then sinA =
(
sin z 0
0 sin z

)
, which is of type (3a) if sin z ∈ R, and of

type (3b) otherwise. Conversely, if B = λI if of type (3a), then B = sin(zI) where
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z ∈ C satisfies sin z = λ. And if B is of type (3b) with eigenvalues λ, λ̄, choose z ∈ C
with sin z = λ, so that B is conjugate to sinA where A ∈M2(R) is of type (3b) with
eigenvalues z and z̄.

B5. (34, 4, 7, 0, 0, 0, 0, 0, 3, 2, 58, 98)
Given a finite string S of symbols X and O, we write ∆(S) for the number

of X’s in S minus the number of O’s. For example, ∆(XOOXOOX) = −1.
We call a string S balanced if every substring T of (consecutive symbols of)
S has −2 ≤ ∆(T ) ≤ 2. Thus, XOOXOOX is not balanced, since it contains
the substring OOXOO. Find, with proof, the number of balanced strings
of length n.

Answer. The number of balanced strings of length n is 3 · 2n/2 − 2 if n is even, and
2(n+1)/2 − 2 if n is odd.

Solution 1. We give an explicit counting argument. Consider a 1×n checkerboard,
in which we write an n-letter string, one letter per square. If the string is balanced, we
can cover each pair of adjacent squares containing the same letter with a 1×2 domino,
and these will not overlap (because no three in a row can be the same). Moreover,
any domino is separated from the next by an even number of squares, since they must
cover opposite letters, and the sequence must alternate in between.
Conversely, any arrangement of dominoes where adjacent dominoes are separated

by an even number of squares corresponds to a unique balanced string, once we choose
whether the string starts with X or O. In other words, the number of balanced strings
is twice the number of acceptable domino arrangements.
We count these arrangements by numbering the squares 0, 1, . . . , n − 1 and distin-

guishing whether the dominoes start on even or odd numbers. Once this is decided,
one simply chooses whether or not to put a domino in each eligible position. Thus
we have 2�n/2 arrangements in the first case and 2�(n−1)/2 in the second, but the
case of no dominoes has been counted twice. Hence the number of balanced strings is
2
(
2�n/2 + 2�(n−1)/2 − 1), which equals the answer given above. �

Solution 2. Let bn denote the number of balanced strings of length n. We
establish the recursion bn+2 = 2bn + 2 for n ≥ 1. This recursion and the initial
conditions b1 = 2, b2 = 4 yield the desired result by induction.
Let xn, yn, zn denote the number of balanced strings of length n ending with XX,

the number that end in XO and whose last doubled letter is X, and the number that
end in XO and whose last doubled letter is O, respectively. (To keep things consistent,
we count a purely alternating string as if its last doubled letter were both X and O.)
The counts remain the same ifX andO are interchanged. Thus bn = 2xn+2yn+2zn−2
for n ≥ 1 (we subtract 2 to avoid double-counting the purely alternating strings).
If a balanced string of length n+2 ends in XX, the remainder must end in OO, or

end in XO and have last doubled letter O. Thus xn+2 = xn+ zn. If a balanced string
of length n + 2 ends in XO and has last doubled letter X, the remainder (the first
n symbols) must end in XO and have last doubled letter X, or end in OX and have
last doubled letter O; conversely, appending XX to the end of such a balanced string
results in a balanced string of length n + 2. Thus yn+2 = 2yn. Finally, if a balanced
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string of length n+ 2 ends in XO and has last doubled letter O, the remainder must
end in OO, or end in XO and have last doubled letter O. Thus zn+2 = xn + zn as
well. Putting this together,

bn+2 = 2xn+2 + 2yn+2 + 2zn+2 − 2
= 2(xn + zn) + 2(2yn) + 2(xn + zn)− 2
= 2(bn + 2)− 2,

the desired recursion. �

B6. (0, 1, 9, 0, 0, 0, 0, 0, 2, 0, 23, 171)
Let (a1, b1), (a2, b2), . . . , (an, bn) be the vertices of a convex polygon which

contains the origin in its interior. Prove that there exist positive real
numbers x and y such that

(a1, b1)xa1yb1 + (a2, b2)xa2yb2 + · · ·+ (an, bn)xanybn = (0, 0).

Solution 1. Let f(-v) =
∑

i e
(ai,bi)·:v. If ∇f(x0, y0) = -0, then (ex0 , ey0) is a

solution of the original vector equation. Hence it suffices to show that f achieves a
global minimum somewhere.
For 0 ≤ θ ≤ 2π, define

g(θ) = max
i
{(ai, bi) · (cos θ, sin θ)}.

Then g(θ) is always positive, because the origin lies in the interior of the convex hull
of the points (ai, bi). Let c > 0 be the minimum value of g(θ) on the interval [0, 2π];
then

f(-v) ≥ max
i
{e(ai,bi)·:v} ≥ ec|:v|

for all -v. In particular, f is greater than ecr outside of a circle of radius r. Choose
r > 0 such that ecr > f((0, 0)). Then the infimum of f on the entire plane equals
its infimum within the disc of radius r centered at the origin. Since the closed disc is
compact, the infimum of f there is the value of f at some point, which is the desired
global minimum. �

Solution 2. We retain the notation of the first solution. To prove that ∇f

vanishes somewhere, it suffices to exhibit a simple closed contour over which ∇f has
a nonzero winding number. In fact, any sufficiently large counterclockwise circle has
this property. As in the first solution, there exists c such that maxi{(ai, bi) ·-v} ≥ c|-v|,
so

-v · ∇f(-v) =
n∑

i=1

e(ai,bi)·:v((ai, bi) · -v)

≥ c|-v|ec|:v| + (n− 1) inf
x

xex

= c|-v|ec|:v| − (n− 1)/e,
since xex is minimized over x ∈ R at x = −1.
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Thus if -v runs over a large enough circle, we will have -v · ∇f(-v) > 0 everywhere on
the circle, implying that the vector field ∇f(-v) has the same winding number as -v on
the circle, namely 1. (In particular, the number of solutions -v to ∇f(-v) = 0, counted
with multiplicity, is odd.) �
Remark. The notion of winding number also occurs in complex analysis, for

instance in the proof of Rouché’s Theorem, which is stated in Solution 3 to 1989A3.

Remark. More generally, the following useful fact is true [Fu, p. 83]:

Let u1, . . . , ur be points in Rn, not contained in any affine hyperplane, and
let K be their convex hull. Let ε1, . . . , εr be any positive real numbers, and
define H : Rn → Rn by

H(x) =
1

f(x)

r∑
k=1

εke
(uk,x)uk,

where f(x) = ε1e
(u1,x) + · · · + εre

(ur,x), and (·, ·) is the usual inner product
on Rn. Then H defines a real analytic isomorphism of Rn onto the interior of
K.

(We are grateful to Bernd Sturmfels for pointing this out.) In algebraic geometry, this
can be used to show that “the moment map is surjective” for toric varieties.
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The Fifty-Eighth William Lowell Putnam Mathematical Competition
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A1. (138, 3, 8, 0, 0, 0, 0, 0, 1, 2, 21, 32)
A rectangle, HOMF , has sides HO = 11 and OM = 5. A triangle ABC has

H as the intersection of the altitudes, O the center of the circumscribed
circle, M the midpoint of BC, and F the foot of the altitude from A. What
is the length of BC?

11F

H O

5

M

Answer. The length of BC is 28.

Solution 1 (Dave Rusin). (See Figure 32.) Introduce coordinates for which

O = (0, 0), H = (−11, 0), F = (−11,−5), and M = (0,−5).

Since B and C are both equidistant from M and O, the perpendicular bisector of BC

is the y-axis. Since BC contains F , we have B = (−x,−5) and C = (x,−5) for some
x. Also, A = (−11, y) for some y.
The altitude through B passes through H, so its slope is 5/(x − 11). It is

perpendicular to the line AC, whose slope is −(y + 5)/(x + 11), so these two slopes
have product −1. That is, 5(y + 5) = (x− 11)(x+ 11).

◗
◗

◗
◗

◗
◗

◗
◗

◗
◗

◗
◗

◗
◗

◗
◗

◗
◗

◗
◗

◗
◗�

�
�
�
�
�
�
�
�
�
�
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�
�

CMF

A

H O

B

FIGURE 32.
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On the other hand, A and B are also equidistant from O, so y2 + 112 = x2 + 52.
Comparing this equality with the previous one, we find y2− 5y− 50 = 0, so y = 10 or
y = −5. The latter is impossible, so y = 10 and x = 14, yielding BC = 2x = 28. �
Solution 2. The centroid G of the triangle is collinear with H and O (Euler line),

and G lies two-thirds of the way from A to M . Therefore H is two-thirds of the way
from A to F , so AF = 3OM = 15. Triangles BFH and AFC are similar, since they
are right triangles and

∠HBF = ∠HBC = π/2− ∠C = ∠CAF.

Hence BF/FH = AF/FC, and BF ·FC = FH ·AF = 75. Now BC2 = (BF+FC)2 =
(FC −BF )2 + 4BF · FC, but

FC −BF = (FM +MC)− (BM − FM) = 2FM = 2HO = 22,

so
BC =

√
222 + 4 · 75 = √784 = 28. �

Remark. For more on the Euler line and related topics, see [CG, Section 1.7].

Solution 3. Introduce a coordinate system with origin at O, and for a point
X, let -X denote the vector from O to X. Then -H = -A + -B + -C (see remark
below) and -M = ( -B + -C)/2 = ( -H − -A)/2; we now compute AH = 2OM = 10,
OC = OA =

√
AH2 +OH2 =

√
221, and

BC = 2MC = 2
√
OC2 −OM2 = 2

√
221− 25 = 28. �

Remark. The vector equality -H = -A + -B + -C holds for any triangle with
circumcenter O at the origin, and can be proved either using the properties of the
Euler line mentioned in the second solution, or directly as follows. Let -H ′ = -A+ -B+ -C;
then

( -H ′ − -A) · ( -B − -C) = ( -B + -C) · ( -B − -C) = -B · -B − -C · -C = OB2 −OC2 = 0.

Thus H ′A is perpendicular to BC, i.e., H ′ lies on the altitude through A. Similarly,
H ′ lies on the other two altitudes, so H ′ = H.

A2. (42, 42, 44, 0, 0, 0, 0, 0, 18, 7, 19, 33)
Players 1, 2, 3, . . . , n are seated around a table, and each has a single penny.

Player 1 passes a penny to Player 2, who then passes two pennies to Player
3. Player 3 then passes one penny to Player 4, who passes two pennies to
Player 5, and so on, players alternately passing one penny or two to the
next player who still has some pennies. A player who runs out of pennies
drops out of the game and leaves the table. Find an infinite set of numbers
n for which some player ends up with all n pennies.

Solution. We show that the game terminates with one player holding all of the
pennies if and only if n = 2m + 1 or n = 2m + 2 for some m; this assertion is clear
for n = 1 and n = 2, so we assume n ≥ 3. We begin by determining the state of the
game after each player has moved once. The first player passes one penny and drops
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out, and the second player passes two pennies and drops out. Then the third player
passes one penny and keeps two, the fourth player passes two pennies and drops out,
the fifth player passes one penny and keeps two, and so on. The net result is that
�n−1

2 � players remain, each of whom has two pennies except for the player to move
next, who has 3 or 4 pennies.
Trying some small examples suggests the following induction argument. Suppose

that for some k ≥ 2, the game reaches a point where:

• Except for the player to move, each player has k pennies;
• The player to move has at least k pennies, and it is his turn to pass one penny.

We will show by induction that the game terminates if and only if the number of
players remaining is a power of 2. If the number of players is odd, then two complete
rounds leaves the situation unchanged (here we need k ≥ 2), so the game terminates
only if there is one player left to begin with. If the number of players is even, then
after k complete rounds, the player who made the first move and every second player
thereafter will have gained k pennies, and the other players will all have lost their k

pennies. Thus we are in a situation of the same form with half as many players, and
by induction the latter terminates with one player if and only if the number of players
is a power of 2.
Returning to the original game, we see that if the player to move is to pass one

penny, we are in the desired situation. If the player to move is to pass two pennies,
after that move we end up in the desired situation. Thus the game terminates if and
only if �n−1

2 � is a power of 2, that is, if and only if n = 2m+1 or n = 2m+2 for some
m. �

A3. (5, 28, 4, 0, 0, 0, 0, 0, 3, 36, 29, 100)
Evaluate∫ ∞

0

(
x− x3

2
+

x5

2 · 4 −
x7

2 · 4 · 6 + · · ·
)(

1 +
x2

22
+

x4

22 · 42
+

x6

22 · 42 · 62
+ · · ·

)
dx.

Answer. The value of the integral is
√
e.

Solution 1. The series on the left is the Taylor series of xe−x2/2. Since the terms
of the second sum are nonnegative, we may interchange the sum and integral by the
Monotone Convergence Theorem [Ru, p. 319], so the expression becomes

∞∑
n=0

∫ ∞

0

xe−x2/2 x2n

22n(n!)2
dx.

To evaluate these integrals, first note that∫ ∞

0

xe−x2/2 dx = −e−x2/2
∣∣∣∞
0
= 1.

By integration by parts,∫ ∞

0

x2n
(
xe−x2/2

)
dx = −x2ne−x2/2

∣∣∣∞
0
+
∫ ∞

0

2nx2n−1e−x2/2 dx
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since both integrals converge absolutely, and (for n ≥ 1) the first expression evaluates
to 0 at both endpoints. Thus by induction,∫ ∞

0

x2n+1e−x2/2dx = 2× 4× · · · × 2n.

Consequently, the desired integral is
∞∑
n=0

1
2nn!

=
√
e. �

Remark. One can also first make the substitution u = x2/2, in which case the
integral becomes

∞∑
n=0

1
2n(n!)2

∫ ∞

0

une−u du.

The reader may recognize
∫∞
0

une−u du as the integral defining the gamma function
Γ(n+ 1) = n!.

Solution 2. Let J0(x) denote the function

J0(x) =
∞∑
n=0

(−1)n x2n

22n(n!)2
;

the series converges absolutely for all x ∈ C, by the Ratio Test. Applying the operator
x d
dx twice to J0(x) yields −x2J0(x), so J0(x) satisfies the differential equation

x2y′′ + xy′ + x2y = 0. (1)

To justify certain calculations in the rest of the proof, we need some bounds on J0

and its derivatives. For any t ∈ C and β > 0, we have J0(tx)/eβx
2 → 0 as x → +∞:

this holds because for any ε > 0, all but finitely many terms in the expansion of J0(tx)
are bounded in absolute by ε times the corresponding term in eβx

2
; those finitely many

terms also are negligible compared to eβx
2
as x→∞. A similar argument shows that

J ′
0(tx)/e

βx2 → 0 and J ′′
0 (tx)/e

βx2 → 0 as x → +∞, uniformly for t in any bounded
subset of C.
For t ∈ C, define

F (t) =
∫ ∞

0

xe−x2/2J0(tx) dx. (2)

The previous paragraph shows that the integral converges and justifies the claim that
integration by parts yields∫ ∞

0

e−x2/2J ′
0(tx) dx = t−1(F (t)− 1) (3)

for t �= 0. The rest of this paragraph justifies the claim that differentiating (3) with
respect to t yields∫ ∞

0

xe−x2/2J ′′
0 (tx) dx = −t−2(F (t)− 1) + t−1F ′(t). (4)
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The nontrivial statement here is that if g(x, t) is the integrand e−x2/2J ′
0(tx) on the

left of (3), then
d

dt

∫ ∞

0

g(x, t) dx =
∫ ∞

0

∂g

∂t
dx.

By definition of the derivative, the left side at t = t0 equals

lim
t→t0

∫∞
0

g(x, t) dx − ∫∞
0

g(x, t0) dx
t− t0

= lim
t→t0

∫ ∞

0

g(x, t)− g(x, t0)
t− t0

dx, (5)

so to obtain the right side, what we need is to interchange the limit and the integral on
the right of (5). The interchange is justified by the Dominated Convergence Theorem
[Ru, p. 321], provided that there exists G(x) with

∫∞
0

G(x) dx <∞ such that∣∣∣∣g(x, t)− g(x, t0)
t− t0

∣∣∣∣ ≤ G(x)

for all t in a punctured neighborhood of t0 and for all x ≥ 0. For fixed x, the difference
quotient g(x,t)−g(x,t0)

t−t0
is the average value of ∂g/∂t over the interval [t0, t], so we need

only prove ∂g/∂t ≤ G(x). The limits in the previous paragraph show

∂g

∂t
= x2e−x2/2J ′′

0 (tx) ≤ C(t)e−x2/4,

where C(t) is uniformly bounded in a neighborhood of t0. Hence we may take
G(x) = Ce−x2

/4 for some C > 0 depending on t0 to complete the justification.
By (1), (2), (3), and (4),

−t−2(F (t)− 1) + t−1F ′(t) = −t−1

∫ ∞

0

e−x2/2J ′
0(tx) dx−

∫ ∞

0

xe−x2/2J0(tx) dx

= −t−2(F (t)− 1)− F (t).

Therefore F ′(t) = −tF (t). Separating variables and integrating, we get F (t) =
Ce−t2/2. Here

C = F (0) =
∫ ∞

0

xe−x2/2J0(0) dx =
∫ ∞

0

xe−x2/2 dx = 1,

so F (t) = e−t2/2. The integral of the problem is∫ ∞

0

xe−x2/2

(
1 +

x2

22
+

x4

22 · 42
+ · · ·

)
dx = F (i) =

√
e. �

Remark. The above solution can be reinterpreted in terms of the Laplace transform,
which takes f(x) to (Lf)(s) =

∫∞
0

e−sxf(x) dx. See Chapter 6 of [BD] for further
applications of this technique.

Remark. The function J0(x) is an example of a Bessel function. See [O, Section 2.9]
for the definitions and properties of these commonly occurring functions.

Remark. The trick of differentiating an integral with respect to an auxiliary
parameter was a favorite of 1939 Putnam Fellow (and Nobel Laureate in physics)
Richard Feynman, according to [Fe, p. 72]. A systematic treatment of the method can
be found in [AZ].
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A4. (100, 21, 1, 0, 0, 0, 0, 0, 3, 8, 24, 48)
Let G be a group with identity e and φ : G→ G a function such that

φ(g1)φ(g2)φ(g3) = φ(h1)φ(h2)φ(h3)

whenever g1g2g3 = e = h1h2h3. Prove that there exists an element a ∈ G

such that ψ(x) = aφ(x) is a homomorphism (that is, ψ(xy) = ψ(x)ψ(y) for all
x, y ∈ G).

Solution. Homomorphisms map e to e, so we take a = φ(e)−1 and define
ψ(x) = aφ(x) in order to have ψ(e) = e. The hypothesis on φ implies

φ(g)φ(e)φ(g−1) = φ(e)φ(g)φ(g−1),

and cancelling φ(g−1) shows that φ(g) commutes with φ(e) for all g. The hypothesis
also implies

φ(x)φ(y)φ(y−1x−1) = φ(e)φ(xy)φ(y−1x−1).

Since φ(e) commutes with anything in the image of φ, φ(e)−1 does too, so we deduce

φ(e)−1φ(x)φ(e)−1φ(y) = φ(e)−1φ(xy)

or equivalently ψ(xy) = ψ(x)ψ(y), as desired. �
Remark. It is not necessarily true that φ(e) commutes with all elements of the

group. For example, φ could be a constant map whose image is an element not in the
center.

A5. (22, 10, 15, 0, 0, 0, 0, 0, 24, 11, 37, 86)
Let Nn denote the number of ordered n-tuples of positive integers

(a1, a2, . . . , an) such that 1/a1 + 1/a2 + · · · + 1/an = 1. Determine whether
N10 is even or odd.

Answer. The number N10 is odd.

Solution 1. Since we are only looking for the parity of the number of solutions, we
may discard solutions in pairs. For example, any solution with a1 �= a2 may be paired
with the solution obtained from this one by interchanging a1 and a2. The solutions
left unpaired are those with a1 = a2, so the parity of N10 equals the parity of the
number of solutions with a1 = a2.
Similarly, we may restrict attention to solutions with a3 = a4, a5 = a6, a7 = a8,

a9 = a10. Such solutions must satisfy the equation

2/a1 + 2/a3 + 2/a5 + 2/a7 + 2/a9 = 1.

As above, we may restrict attention to solutions with a1 = a3 and a5 = a7, so we
get 4/a1 + 4/a5 + 2/a9 = 1. We may restrict once more to solutions with a1 = a5,
which satisfy 8/a1+2/a9 = 1. This is equivalent to (a1−8)(a9−2) = 16, which has 5
solutions, corresponding to the factorizations of 16 as 2i × 24−i for i = 0, . . . , 4. Thus
N10 is odd. �
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Solution 2. Suppose we start with a solution in which the smallest ai occurs p1

times, the next smallest occurs p2 times, and so on. Then the number of ordered 10-
tuples which are rearrangements of this solution is given by the multinomial coefficient(

10
p1, p2, . . .

)
=

10!
p1! p2! · · · .

The exponent of 2 in the prime factorization of this number is given by Kummer’s
Theorem.

Kummer’s Theorem. The exponent of the prime p in the factorization of the
multinomial coefficient

(
a1+···+an

a1,...,an

)
equals the number of carries that occur when

a1, . . . , an are added in base p.

Proof. The exponent of p in the prime factorization of n! can be written as
∞∑
i=1

⌊
n

pi

⌋
.

(This sum counts each multiple of p up to n once, each multiple of p2 a second time,
and so on.) Hence the exponent of p in

(
a1+···+an

a1,...,an

)
is

∞∑
i=1

(⌊
a1 + · · ·+ an

pi

⌋
−
⌊
a1

pi

⌋
− · · · −

⌊
an
pi

⌋)
,

and the summand is precisely the number of carries into the pi column when a1, . . . , an
are added in base p. �

In particular,
(

10
p1,p2,...

)
is even unless p1 = 10 or {p1, p2} = {2, 8}. Up to

rearrangement, there is one solution of the former shape, namely (10, . . . , 10), and
four of the latter shape. Hence N10 is odd. �
Reinterpretation. The symmetric group S10 on ten symbols acts on the set of

ordered tuples. The number of elements in the orbit of a given tuple is 10!/|G|, where
|G| is the order of the stabilizer G of the tuple. This orbit size is odd if and only
if G contains a 2-Sylow subgroup. All 2-Sylow subgroups are conjugate, and one
2-Sylow subgroup contains the product of a disjoint 8-cycle and 2-cycle, so all 2-Sylow
subgroups must contain such a product. But G is a product of symmetric groups, so G

contains a 2-Sylow subgroup if and only ifG contains a subgroup isomorphic to S8×S2.
As seen above there are five solutions stabilized by S8 × S2, up to rearrangement.

A6. (0, 1, 1, 0, 0, 0, 0, 0, 8, 8, 35, 152)
For a positive integer n and any real number c, define xk recursively by

x0 = 0, x1 = 1, and for k ≥ 0,

xk+2 =
cxk+1 − (n− k)xk

k + 1
.

Fix n and then take c to be the largest value for which xn+1 = 0. Find xk
in terms of n and k, 1 ≤ k ≤ n.

Answer. For 1 ≤ k ≤ n, we have xk =
(
n−1
k−1

)
.
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Solution 1. Introduce the generating function

p(t) =
∑
k≥0

xk+1t
k.

The condition xn+1 = 0 forces xm = 0 for all m ≥ n + 1, so p(t) is a polynomial of
degree at most n− 1.
Now p′(t) =

∑
k≥0(k + 1)xk+2t

k, so the recursion implies that p(t) satisfies the
differential equation

p′(t) = cp(t)− (n− 1)tp(t) + t2p′(t). (1)

Since p(0) = x1 = 1, p(t) is not identically zero. Rearranging (1), we get

(ln p(t))′ =
p′(t)
p(t)

=
c− (n− 1)t
1− t2

=
A

1 + t
+

B

1− t
(2)

for some A and B depending on c and n. This implies that the only linear factors
of the polynomial p(t) over C are 1 − t and 1 + t. (See the discussion of logarithmic
differentiation in 1991A3.) Moreover, p(0) = 1, so

p(t) = (1 + t)r(1− t)s

for some integers r, s ≥ 0. Then (2) implies A = r, B = −s, and c − (n − 1)t =
r(1 − t) − s(1 + t) as polynomials in t, so r = n − 1 − s and c = r − s = n − 1 − 2s.
Since s ≥ 0, c ≤ n− 1.
On the other hand, if we take c = n − 1, then reversing our steps shows that

the sequence xk defined by
∑

k≥0 xk+1t
k = p(t) = (1 + t)n−1 satisfies the original

recursion. Therefore the theoretical maximum c = n− 1 is attained, and in that case
xk =

(
n−1
k−1

)
. �

Solution 2. For fixed n, induction on k shows that xk is a polynomial in c of
degree exactly k − 1, so there are at most n values of c making xn+1 = 0. We will
prove by induction on n that the possible values of c are

−(n− 1), −(n− 3), . . . , n− 5, n− 3, n− 1
and that if c = n− 1 the sequence is xk =

(
n−1
k−1

)
for k ≥ 1.

If n = 1, then the recursion gives x2 = c. Thus the only possible value of c is 0. In
this case, the recursion says xk+2 =

(
k−1
k+1

)
xk for k ≥ 0. Starting from x0 = 0 and

x1 = 1, this implies xk = 0 for all k ≥ 2. In other words, xk =
(

0
k−1

)
for all k ≥ 1, as

claimed.
Now suppose that n ≥ 1, and that the claim has been verified for n. Suppose that

c is one of

−(n− 1), −(n− 3), . . . , n− 5, n− 3, n− 1
and that {yk} satisfies the hypotheses of the problem for n and c. Thus yn+1 = 0 and

(k + 1)yk+2 + (n− k)yk = cyk+1 for k ≥ 0. (3)
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The recursion holds for k = −1 as well, if we define y−1 = 0. Let xk = yk + yk−1 for
k ≥ 0. Then for k ≥ 0,

(k + 1)xk+2 + (n+ 1− k)xk = (k + 1)(yk+2 + yk+1) + (n+ 1− k)(yk + yk−1)

= ((k + 1)yk+2 + (n− k)yk)

+ (kyk+1 + (n− k + 1)yk−1) + yk + yk+1

= cyk+1 + cyk + yk + yk+1 (by the y recursion (3))

= (c+ 1)(yk+1 + yk)

= (c+ 1)xk+1,

so {xk} satisfies the recursion for n+1 and c+1. Taking k = n in the y recursion (3)
shows that yn+1 = 0 implies yn+2 = 0, so xn+2 = yn+2 + yn+1 = 0. Thus {xk} is a
solution sequence for n+ 1 and c+ 1. Hence adding 1 to each value of c for n gives a
possible value of c for n+ 1, so the inductive hypothesis implies that

−(n− 2), −(n− 4), . . . , n− 4, n− 2, n
are possible values of c for n+1. If {xk} is the sequence for c = n, then {(−1)k−1xk}
is a solution sequence for c = −n, so

−n, −(n− 2), −(n− 4), . . . , n− 4, n− 2, n
are n + 1 possible values of c for n + 1. By the first sentence of this solution, there
cannot be any others.
Finally, the inductive hypothesis implies that yk =

(
n−1
k−1

)
, k ≥ 0, is a solution for n

and c = n− 1 (we interpret (n−1
−1

)
as 0), so

xk = yk + yk−1 =
(
n− 1
k − 1

)
+
(
n− 1
k − 2

)
=
(

n

k − 1
)

for k ≥ 1,

gives the solution for n+ 1 and c = n. This completes the inductive step. �
Remark. Both of the previous solutions can be used to show that the sequences

for which xn+1 = 0 are the sequences of coefficients of t(1 + t)j(1− t)n−1−j for some
j ∈ {0, 1, . . . , n− 1}.

Solution 3 (Byron Walden). Rewrite the recursion as

(k + 1)xk+2 − (k − 1)xk = cxk+1 − (n− 1)xk.

If m ≥ 0, then summing from k = 0 to m yields

(m+ 1)xm+2 +mxm+1 = cxm+1 + (c− (n− 1))(x1 + x2 + · · ·+ xm),

since x0 = 0. Thus, for m ≥ 0,

xm+2 =
c−m

m+ 1
xm+1 +

c− (n− 1)
m+ 1

(x1 + x2 + · · ·+ xm). (4)

If c > n − 1, then applying (4) for m = 0, 1, . . . , n− 1 in turn shows that x2, x3,
. . . , xn+1 are all positive, since at each step, all terms on the right-hand side of (4)
are positive. Hence the assumption xn+1 = 0 forces c ≤ n− 1.
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Suppose we take c = n− 1. Then (4) becomes xm+2 = n−m−1
m+1 xm+1 for m ≥ 0. In

particular, if xm+1 =
(
n−1
m

)
, then

xm+2 =
n−m− 1

m+ 1
(n− 1)!

m! (n−m− 1)! =
(n− 1)!

(m+ 1)! (n−m− 2)! =
(
n− 1
m+ 1

)
.

Hence by induction, starting from x1 =
(
n−1

0

)
, we can prove that xk =

(
n−1
k−1

)
for all

k ≥ 1. In particular, xn+1 =
(
n−1
n

)
= 0. Thus n − 1 is a possible value for c, and by

the previous paragraph it is the largest possible value. �

Solution 4 (Greg Kuperberg). The condition xn+1 = 0 states that (x1, . . . , xn)
is an eigenvector of the n× n matrix

Aij =


i if j = i+ 1

n− j if j = i− 1
0 otherwise,

with eigenvalue c. In particular, A has nonnegative entries. By the Perron-Frobenius
Theorem (see remark below), A has an eigenvector with positive entries, unique up
to a positive scalar multiple, and the corresponding eigenvalue has multiplicity one
and has absolute value greater than or equal to that of any other eigenvalue. Using(
n−1
k+1

)
= n−k−1

k+1

(
n−1
k

)
and

(
n−1
k−1

)
= k

n−k

(
n−1
k

)
(which follow from the definition of

binomial coefficients in terms of factorials), one shows that the vector with xk =
(
n−1
k−1

)
is an eigenvector with eigenvalue n− 1, and it has positive entries, so c = n− 1 is the
desired maximum. �
Remark (the Perron-Frobenius Theorem). In its simplest form, this theorem states

that any matrix with positive entries has a unique eigenvector with positive entries,
and that the corresponding eigenvalue has multiplicity one and has absolute value
strictly greater than that of any other eigenvalue. In the study of random walks, the
theorem implies that any random walk on finitely many states, in which there is a
positive transition probability from any state to any other state, has a unique steady
state. One proof of the existence of the eigenvector, due to G. Birkhoff [Bi], is that a
matrix with positive entries acts on the set of lines passing through the first orthant
as a contraction mapping under the Hilbert metric:

d((v1, . . . , vn), (w1, . . . , wn)) = ln
(
max

i
{vi/wi}/min

i
{vi/wi}

)
.

In many applications to random walks, a more refined version of the Perron-
Frobenius Theorem is needed. Namely, let A be a matrix with nonnegative entries,
and assume that for some k > 0, Ak has strictly positive entries. The refined theorem
states that A then has a unique eigenvector with positive entries, whose eigenvalue
has multiplicity one and has absolute value strictly greater than that of any other
eigenvalue. This assertion can be deduced from the simpler form of the theorem as
follows. If v is a positive eigenvector of A, then it is also a positive eigenvector of
Ak, to which we may apply the simpler form; thus the positive eigenvector of A, if
it exists, is unique. To show existence, let w be a positive eigenvector of Ak with
eigenvalue λ > 0; then w + λ−1Aw + · · · + λ−k+1Ak−1w is a positive eigenvector of
A with eigenvalue λ. Finally, if λ is the eigenvalue of the positive eigenvector of A,
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and ρ is any other eigenvalue, then |λk| > |ρk| by the simpler form of the theorem, so
|λ| > |ρ|.
There is also a formulation of the theorem that applies directly to matrices like

the one occurring in Solution 4, in which An may not have positive entries for any
n. Let A be a matrix with nonnegative entries. Let G be the directed graph with
vertices {1, . . . , n} and with an edge from i to j if and only if Aij > 0. Call A

irreducible if G is strongly connected (see 1990B4 for the definition). In this case, A
has a unique eigenvector with positive entries, whose eigenvalue has multiplicity one
and has absolute value greater than or equal to that of any other eigenvalue. This
can be deduced by applying the version in the previous paragraph to A+ εI for each
ε > 0.
In fact, the matrix in Solution 4 shows that “greater than or equal to” cannot be

replaced by “strictly greater than” in this final version: the matrix A there has 1− n

as an eigenvalue in addition to the eigenvalue n− 1 of the positive eigenvector.
Related question. The following is an example of a problem that can be solved

by an appropriate application of the Perron-Frobenius Theorem. (We are grateful to
Mira Bernstein for passing it on to us.) It can also be solved by other means.

The Seven Dwarfs are sitting around the breakfast table; Snow White has just
poured them some milk. Before they drink, they perform a little ritual. First,
Dwarf #1 distributes all the milk in his mug equally among his brothers’ mugs
(leaving none for himself). Then Dwarf #2 does the same, then Dwarf #3,
#4, etc., finishing with Dwarf # 7. At the end of the process, the amount of
milk in each dwarf’s mug is the same as at the beginning! If the total amount
of milk is 42 ounces, how much milk did each of them originally have?

See 1995A5 for another application of the Perron-Frobenius Theorem, and see
1993B4 for an application of a continuous analogue of the theorem. For more
on matrices with nonnegative entries, including the Perron-Frobenius Theorem and
related results, see [HJ, Chapter 8].

B1. (171, 6, 8, 0, 0, 0, 0, 0, 1, 8, 10, 1)
Let {x} denote the distance between the real number x and the nearest

integer. For each positive integer n, evaluate

Sn =
6n−1∑
m=1

min
({m

6n

}
,
{m

3n

})
.

(Here min(a, b) denotes the minimum of a and b.)

Answer. We have Sn = n.

Solution 1. It is trivial to check that m
6n = {m

6n} ≤ {m
3n} for 1 ≤ m ≤ 2n, that

1− m
3n = {m

3n} ≤ {m
6n} for 2n ≤ m ≤ 3n, that m

3n −1 = {m
3n} ≤ { m

6n} for 3n ≤ m ≤ 4n,
and that 2 − m

6n = {m
6n} ≤ {m

3n} for 4n ≤ m ≤ 6n. (See Figure 33 for a graph.)
Therefore

Sn =
2n−1∑
m=1

m

6n
+

3n−1∑
m=2n

(
1− m

3n

)
+

4n−1∑
m=3n

(m

3n
− 1
)
+

6n−1∑
m=4n

(
2− m

6n

)
.
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m
2n 3n 4n 6n

FIGURE 33.
Graph of y = min

({
m
6n

}
,
{

m
3n

})
.

Each of the four sums is an arithmetic progression, which can be evaluated as the
number of terms times the average of the first and last terms. This yields

Sn = (2n− 1)
(
2n
12n

)
+ n

(
n+ 1
6n

)
+ n

(
n− 1
6n

)
+ 2n

(
2n+ 1
12n

)
= n. �

Remark. Solution 1 can be simplified by exploiting symmetry: since {1−x} = {x}
and {2− x} = {x}, the mth term in the series Sn equals the (6n−m)th term.

Solution 2. The series Sn is the approximation given by the Trapezoid Rule to
the area A under the graph of the function

f(x) = min
({ x

6n

}
,
{ x

3n

})
for 0 ≤ x ≤ 6n, using the sampling points 0, 1, . . . , 6n. But f(x) is piecewise linear and
the break points x = 2n, 3n, 4n are also sample points, so Sn = A. The area A consists
of the triangle with vertices (0, 0), (3n, 0), (2n, 1/3), and the congruent triangle with
vertices (6n, 0), (3n, 0), (4n, 1/3). Thus A = n/2 + n/2 = n, and Sn = n. �

B2. (28, 1, 1, 0, 0, 0, 0, 0, 1, 3, 38, 133)
Let f be a twice-differentiable real-valued function satisfying

f(x) + f ′′(x) = −xg(x)f ′(x),

where g(x) ≥ 0 for all real x. Prove that |f(x)| is bounded.
Solution. Multiplying both sides of the given differential equation by 2f ′(x), we

have

2f(x)f ′(x) + 2f ′(x)f ′′(x) = −2xg(x)f ′(x)2.

The left side of the equation is the derivative of f(x)2+ f ′(x)2, whereas the right side
is nonnegative for x < 0 and nonpositive for x > 0. Thus f(x)2 + f ′(x)2 increases to
its maximum value at x = 0 and decreases thereafter. In particular, it is bounded, so
f(x) and f ′(x) are bounded. �
Reinterpretation. This problem has a physical interpretation: f(x) is the amplitude

of an oscillator with time-dependent damping xg(x). Since the damping is negative
for x < 0 and positive for x > 0, the oscillator gains energy before time 0 and loses
energy thereafter.
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B3. (1, 4, 7, 0, 0, 0, 0, 0, 22, 20, 89, 62)
For each positive integer n, write the sum

∑n
m=1

1
m in the form pn

qn
, where

pn and qn are relatively prime positive integers. Determine all n such that
5 does not divide qn.

Answer. The only such n are the 19 integers in the ranges 1–4, 20–24, 100–104, and
120–124; i.e., the set of such n is

{1, 2, 3, 4, 20, 21, 22, 23, 24, 100, 101, 102, 103, 104, 120, 121, 122, 123, 124}.

Solution. To simplify the discussion, we introduce some terminology. For s a
positive integer, we say the rational number a/b, in lowest terms, is s-integral if b is
coprime to s, and divisible by s if a is divisible by s.
Let Hn =

∑n
m=1 m

−1. (By convention, the empty sum H0 is 0.) Let Sn be the sum
of m−1 over those m ∈ {1, . . . , n} not divisible by 5. Then

Hn = Sn +
1
5
H�n/5. (1)

By design, Sn is always 5-integral, so Hn is 5-integral if and only if H�n/5 is divisible
by 5.
In particular, if Hn is 5-integral, then H�n/5 must have been 5-integral. Thus the

nonnegative integers n such that Hn is 5-integral are precisely the integers in the set
S after carrying out the following algorithm.

(a) Start with the set S = {0} and the integer n = 0.

(b) If Hn is divisible by 5, add 5n, 5n+ 1, 5n+ 2, 5n+ 3, 5n+ 4 to S.
(c) If n is the largest element of S, stop; otherwise, increase n to the smallest element

of S greater than the current n, and go to (b).

To carry out the algorithm, we first take n = 0 and add 1, 2, 3, 4 to S. Now
H1 = 1,H2 = 3/2,H3 = 11/6 are not divisible by 5, but H4 = 25/12 is. Thus we add
20, 21, 22, 23, 24 to S and keep going.
We next must determine which of H20, . . . ,H24 are divisible by 5. From (1), we

have H20+i = S20+i + 1
5H4 for i = 0, . . . , 4. Before proceeding further, we verify that

1
5k + 1

+
1

5k + 2
+ · · ·+ 1

5k + j
(2)

is not divisible by 5 if j = 1, 2, 3 but is divisible by 25 if j = 4. For j = 1, 2, 3, the
sum (2) differs from Hj by a rational number divisible by 5 (since this already holds
termwise), and Hj is not divisible by 5. For j = 4, we combine terms to rewrite (2) as

(10k + 5)(50k2 + 50k + 10)
(5k + 1)(5k + 2)(5k + 3)(5k + 4)

;

in this expression, the numerator is divisible by 25 while the denominator is coprime
to 5.
Summing (2) for k = 0, 1, 2, 3 and j = 4, we find that S20 is divisible by 25. Adding

to this (2) for k = 4 and appropriate j, we find that S21, S22, and S23 are not divisible
by 5, but S24 is. Thus we add 100, 101, 102, 103, 104, 120, 121, 122, 123, 124 to S.
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To complete the proof, we must check that Hn is not divisible by 5 for any of the ten
integers n just added to S. Suppose n = 100+ j with j = 0, . . . , 4. Applying (1) twice
gives Hn = S100+j + 1

5S20 + 1
25H4. We know 1

5S20 is divisible by 5, and H4 = 25/12,
so it suffices to show that S100+j + 1/12 is not divisible by 5. For j = 0, . . . , 4,

S100+j +
1
12

= S100 +
(
Hj +

1
12

)
+

j∑
i=1

(
1

100 + i
− 1

i

)
.

Here S100 is a sum of expressions of the form (2), hence divisible by 5, and 1
100+i− 1

i =−100
i(100+i) is divisible by 5, but one can check (for j = 0, . . . , 4 individually) thatHj+1/12
is not divisible by 5. Thus S100+j is not divisible by 5, and neither is H100+j . By a
similar argument, if n = 120 + j with j = 0, . . . , 4, then Hn is not divisible by 5.
Thus the algorithm terminates, and the list of integers n such that Hn is 5-integral

is as given in the answer above. �
Reinterpretation. Arguments of this sort are often more easily expressed in terms of

the p-adic valuation on the rational numbers, for p a prime. Given r ∈ Q nonzero, let
vp(r) be the largest integer m (positive, negative or zero) such that p−mr is p-integral.
Then the problem is to determine when v5(Hn) ≥ 0, and the first step is to note that
this is equivalent to v5(H�n/5) ≥ 1. The rest of the solution amounts to computing
some low order terms in the base 5 expansions of 1/m for some small m.

Remark. The fact that (2) is divisible by 25 for j = 4 is a special case of the fact
that for a prime p > 3 and an integer x,

1
px+ 1

+
1

px+ 2
+ · · ·+ 1

px+ (p− 1) ≡ 0 (mod p2).

The case x = 0 is known as Wolstenholme’s Theorem, which arises in a different
context in 1991B4. To prove the general case, first combine opposite terms in the sum
to rewrite it as

(2px+ p)
(p−1)/2∑

i=1

1
(px+ i)(px+ (p− i))

.

Hence it suffices to show that
(p−1)/2∑

i=1

1
(px+ i)(px+ (p− i))

≡ 0 (mod p).

This sum is congruent to −S where S =
∑(p−1)/2

i=1 i−2. If a2 is a perfect square not
congruent to 0 or 1 modulo p (e.g. a2 = 4), then the terms of a2S are congruent
modulo p to a permutation of the terms of S, and we may solve a2S ≡ S (mod p) to
obtain S ≡ 0 (mod p), as desired.
By a similar argument, one can prove that for a prime p > 3, positive integer n,

and integer x,

p−1∑
i=1

pn−1−1∑
j=0

1
pnx+ pj + i

≡ 0 (mod p2n).

See the remarks following 1991B4 for an application of this generalization.
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B4. (23, 6, 7, 0, 0, 0, 0, 0, 5, 4, 35, 125)
Let am,n denote the coefficient of xn in the expansion of (1 + x + x2)m.

Prove that for all integers k ≥ 0,

0 ≤
� 2k

3 ∑
i=0

(−1)iak−i,i ≤ 1.

Solution 1. Let sk =
∑

i(−1)iak−i,i be the given sum. (Note that ak−i,i is
nonzero precisely for i = 0, . . . , �2k

3 �.) Since

am+1,n = am,n + am,n−1 + am,n−2,

we have

sk − sk+1 + sk+2 =
∑
i

(−1)i(ak−i,i + ak−i,i+1 + ak−i,i+2)

=
∑
i

(−1)iak−i+1,i+2 = sk+3.

After computing s0 = 1, s1 = 1, s2 = 0, we may prove by induction that s4j = s4j+1 =
1 and s4j+2 = s4j+3 = 0 for all j ≥ 0. �
Reinterpretation. The characteristic polynomial of the linear recursion sk+3 −

sk+2 + sk+1 − sk is x3 − x2 + x − 1, which divides x4 − 1. Thus the sequence also
satisfies sk+4−sk = 0, which explains the periodicity. See the remark following 1988A5
for more on linear recursive sequences.

Solution 2. We use a generating function. Define sk as in Solution 1. Then
∞∑
k=0

skx
k =

∑
i,k

(−1)iak−i,ix
k

=
∑
i,j

xjaj,i(−x)i (change of variable: k = i+ j)

=
∑
j

xj(1− x+ x2)j (since
∑
i

aj,iz
i = (1 + z + z2)j)

=
1

1− x+ x2 − x3
(geometric series)

=
1 + x

1− x4

= (1 + x) + (x4 + x5) + (x8 + x9) + · · · ,

so 0 ≤ sk ≤ 1 for all k ≥ 0. �
Remark. If one does not notice that

1
1− x+ x2 − x3

=
1 + x

1− x4
,

one can instead use partial fractions to recover its coefficients.
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B5. (9, 4, 3, 0, 0, 0, 0, 0, 17, 24, 44, 104)
Prove that for n ≥ 2,

22···
2
}
n ≡ 22···

2
}
n−1

(mod n).

Solution. Define a sequence by x0 = 1 and xm = 2xm−1 for m > 0. We are asked
to prove xn ≡ xn−1 (mod n) for all n ≥ 2. We will use strong induction on n to prove
the stronger result xn−1 ≡ xn ≡ xn+1 ≡ · · · (mod n) for n ≥ 1. The n = 1 case is
obvious.
Now suppose n ≥ 2. Write n = 2ab, where b is odd. It suffices to show that xn−1 ≡

xn ≡ · · · modulo 2a and modulo b. For the former, we only need xn−1 ≥ a, which
holds, since xn−1 ≥ n by induction on n. For the latter, note that xm ≡ xm+1 ≡ · · ·
(mod b) as long as xm−1 ≡ xm ≡ · · · (mod φ(b)), where φ(n) is the Euler φ-function.
By the inductive hypothesis, the latter holds for m = φ(b); but m = φ(b) ≤ n− 1, so
xn−1 ≡ xn ≡ · · · (mod b), as desired. �
Remark. This solution also yields a solution to Problem 3 on the 1991 USA

Mathematical Olympiad [USAMO]:

Show that, for any fixed integer n ≥ 1, the sequence

2, 22, 222
, 2222

, . . . (mod n)

is eventually constant.

See 1985A4 for a similar problem and for the properties of φ(n).

Remark. For n ≥ 1, let f(n) be the smallest integer k ≥ 0 such that xk ≡ xk+1 ≡
xk+2 ≡ · · · (mod n). The above solution shows that f(n) ≤ n − 1, but the actual
value of f(n) is much smaller.
We now prove f(n) ≤ �log2 n� by strong induction on n. The base case n = 1

is trivial. If n = 2a for some a ≥ 1, then 2a divides xa, xa+1, . . . (since xa−1 ≥ a

was proved in the solution above), so f(n) ≤ a. If n = 2ab for some a ≥ 1 and odd
b > 1, then f(n) ≤ max{f(2a), f(b)}, so we apply the inductive hypothesis at 2a and
b. Finally, if n > 1 is odd, write φ(n) = 2cd with d odd, and observe that

f(n) ≤ 1 + f(φ(n)) (as in the solution above)

≤ 1 + max{f(2c), f(d)}
≤ 1 + max{c, �log2 d�} (by the inductive hypothesis)

≤ �log2 n�,
since c ≤ log2 φ(n) < log2 n and d ≤ φ(n)/2 < n/2. This completes the inductive
step.
When n is a power of 3, the bound just proved is best possible up to a constant

factor: we now show that f(3m) = m + 1 for m ≥ 1 by induction on m. First,
xk+1 ≡ (−1)xk = 1 (mod 3), if and only if k ≥ 1, so f(3) = 2. Now suppose
m > 1. Since the image of 2 generates the cyclic group (Z/3mZ)∗ (i.e., 2 is a primitive
root of 3m [NZM, Theorem 2.40]), we have xk ≡ xk+1 ≡ · · · (mod 3m) if and only
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if xk−1 ≡ xk ≡ · · · (mod 2 · 3m−1), but all the xk except x0 are even, so this is
equivalent to xk−1 ≡ xk ≡ · · · (mod 3m−1) if k ≥ 2. Hence f(3m) = f(3m−1) + 1, so
f(3m) = m+ 1 by induction.
It is not true in general that f(n) is bounded below by a constant multiple of lnn,

because there are some values of n, such as large powers of 2, for which f(n) is much,
much less than lnn. We can at least say that f(n)→∞ as n→∞, though: we have
xf(n)+1 ≥ xf(n)+1 − xf(n) ≥ n, since n divides xf(n)+1 − xf(n).

B6. (5, 4, 5, 0, 0, 0, 0, 0, 3, 0, 51, 137)
The dissection of the 3–4–5 triangle shown below has diameter 5/2.

❙
❙

❙
❙

❙
❙

❙
❙

❙

�
�
�
�
�

5

4

3

Find the least diameter of a dissection of this triangle into four parts. (The
diameter of a dissection is the least upper bound of the distances between
pairs of points belonging to the same part.)

Answer. The minimum diameter is 25/13.

Solution. (See Figure 34.) Place the triangle on the cartesian plane so that its
vertices are A = (4, 0), B = (0, 0), C = (0, 3). The five points A, B, C, D = (27/13, 0),
E = (20/13, 24/13) lie at distance at least 25/13 apart from each other (note that
AD = DE = EC = 25/13). By the Pigeonhole Principle, any dissection of the
triangle into four parts has a part containing at least two of these points, and hence
has diameter at least 25/13.
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FIGURE 34.
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On the other hand, we now construct a dissection into four parts in which each part
has diameter 25/13. Let H = (32/13, 15/13), so that AH = 25/13. Next, construct a
point I inside quadrilateral BDEC so that BI,CI,DI,EI,HI have length less than
25/13. For example, we may take I = (7/13, 15/13) such that DECI and ADIH are
parallelograms. Take F = (1, 0) on AB so that EF = 25/13, and take G = (0, 14/13)
on BC so that CG = 25/13.
Our parts are the triangle ADH, the pentagon DHEIF , the quadrilateral CEIG,

and the quadrilateral BFIG. Verifying that each has diameter 25/13 entails checking
that the distance between any two vertices of a polygon is at most 25/13. For starters,

AD = AH = CE = CG = CI = DE = DI = EF = HI = 25/13.

Next, we see without any calculations that

BF,BG < FG FI, FD < DI DH < FH GI < CI.

Finally, we compute the remaining distances:

BI2 =
274
169

, EG2 =
500
169

, EH2 =
225
169

,

EI2 =
260
169

, FG2 =
365
169

, FH2 =
586
169

. �

Remark. Once the “skeleton” is in place, some variations in the placements of the
points are possible.
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A1. (156, 23, 4, 0, 0, 0, 0, 0, 0, 0, 16, 0)
A right circular cone has base of radius 1 and height 3. A cube is

inscribed in the cone so that one face of the cube is contained in the
base of the cone. What is the side-length of the cube?

Answer. The side length of the cube is (9
√
2− 6)/7.

Solution. Consider a plane cross-section through a vertex of the cube and the
axis of the cone as shown in Figure 35.

�
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�
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�
�

�❙
❙

❙
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❙
❙

❙
❙

❙
❙

❙

A

F
D E

CGB

FIGURE 35.

Let s be the side length of the cube. Segment DE is a diagonal of the top of
the cube, so its length is s

√
2. From the similar triangles ADE ∼ ABC, we have

DE
BC = AF

AG , or equivalently
s
√

2
2 = 3−s

3 . Solving for s, we get s = (9
√
2− 6)/7. �

A2. (103, 35, 26, 0, 0, 0, 0, 0, 9, 8, 12, 6)
Let s be any arc of the unit circle lying entirely in the first quadrant. Let

A be the area of the region lying below s and above the x-axis and let B be
the area of the region lying to the right of the y-axis and to the left of s.
Prove that A+B depends only on the arc length, and not on the position,
of s.

Solution 1. Let O be the center of the circle, K and H the endpoints of the
arc (with K above H), C and F the projections of K onto the x-axis and y-axis,
respectively, D and E the projections of K onto the x-axis and y-axis, respectively,
and G the intersection of KC and HE, as in Figure 36.
Denote by [XY Z] the area of the region with vertices X, Y , Z. In this notation,

A+B = [EFGK] + [CDHG] + 2[GHK]

= 2([OGK] + [OGH] + [GHK])

= 2[OHK] = θ,

where θ is the length of the arc s. �
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F K

G
HE

O C D

FIGURE 36.

Solution 2. We obtain A and B by integrating −y dx and xdy, respectively,
counterclockwise along the arc. Thus A+B is the integral of xdy− y dx over the arc.
If we parameterize the arc by arc length, that is, by setting x = cos θ and y = sin θ,
the integrand becomes cos2 θ+sin2 θ = 1. Thus the integral is precisely the arc length,
and so does not depend on the position of the arc. �
Remark. For a straightforward but less elegant solution, one can also compute

the integrals separately. Alternatively, for a fixed arc length, one can express the sum
of areas as a function F (θ) of the argument θ at one endpoint of s, and show that
F ′(θ) = 0.

A3. (82, 34, 2, 0, 0, 0, 0, 0, 5, 0, 39, 37)
Let f be a real function on the real line with continuous third derivative.

Prove that there exists a point a such that

f(a) · f ′(a) · f ′′(a) · f ′′′(a) ≥ 0.

Solution. If at least one of f(a), f ′(a), f ′′(a), or f ′′′(a) vanishes at some point a,
then we are done. Otherwise by the Intermediate Value Theorem, each of f(x), f ′(x),
f ′′(x), and f ′′′(x) is either strictly positive or strictly negative on the real line, and we
only need to show that their product is positive for a single value of x. By replacing
f(x) by −f(x) if necessary, we may assume f ′′(x) > 0; by replacing f(x) by f(−x) if
necessary, we may assume f ′′′(x) > 0. Notice that these substitutions do not change
the sign of f(x)f ′(x)f ′′(x)f ′′′(x).
Now f ′′′(x) > 0 implies that f ′′(x) is increasing. Thus for a > 0,

f ′(a) = f ′(0) +
∫ a

0

f ′′(t) dt ≥ f ′(0) + af ′′(0).

In particular, f ′(a) > 0 for large a. Similarly, since f ′′(x) > 0, f(a) is positive for
large a. Therefore f(x)f ′(x)f ′′(x)f ′′′(x) > 0 for sufficiently large x. �
Reinterpretation. More succinctly, f cannot both be positive and strictly concave-

down everywhere, nor negative and strictly concave-up everywhere. So f(x)f ′′(x)
must be positive for some range of x, as must be f ′(x)f ′′′(x) by the same reasoning
applied to f ′ instead of f .
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A4. (39, 27, 52, 0, 0, 0, 0, 0, 49, 7, 14, 11)
Let A1 = 0 and A2 = 1. For n > 2, the number An is defined by

concatenating the decimal expansions of An−1 and An−2 from left to right.
For example A3 = A2A1 = 10, A4 = A3A2 = 101, A5 = A4A3 = 10110, and so
forth. Determine all n such that 11 divides An.

Answer. The number 11 divides An if and only if n ≡ 1 (mod 6).

Solution. The number of digits in the decimal expansion of An is the nth
Fibonacci number Fn. It follows that the sequence {An} modulo 11 satisfies a
recursion:

An = 10Fn−2An−1 +An−2

≡ (−1)Fn−2An−1 +An−2 (mod 11).

By induction, Fn is even if and only if 3 divides n; hence (−1)Fn−2 is periodic with
period 3.
Computing An modulo 11 for small n using the recursion, we find

A1, . . . , A8 ≡ 0, 1,−1, 2, 1, 1, 0, 1 (mod 11).

By induction, we deduce that An+6 ≡ An (mod 11) for all n, and so An is divisible
by 11 if and only if n ≡ 1 (mod 6). �
Remark. See 1988A5 for more on linear recursions and Fibonacci numbers.

A5. (85, 24, 15, 0, 0, 0, 0, 0, 5, 2, 8, 60)
Let F be a finite collection of open discs in R2 whose union contains a

set E ⊆ R2. Show that there is a pairwise disjoint subcollection D1, . . . , Dn

in F such that

E ⊆
n⋃

j=1

3Dj .

Here, if D is the disc of radius r and center P , then 3D is the disc of radius
3r and center P .

Solution. Define the sequence Di by the following greedy algorithm: let D1 be
the disc of largest radius (breaking ties arbitrarily), let D2 be the disc of largest radius
not meeting D1, let D3 be the disc of largest radius not meeting D1 or D2, and so
on, up to some final disc Dn (since F is finite). To see that E ⊆ ∪nj=13Dj , consider
a point P in E; if P lies in one of the Di, we are done. Otherwise, P lies in a disc
D ∈ F , say of radius r, which meets one of the Di having radius s ≥ r. (This is the
only reason a disc can be skipped in our algorithm.) Choose Q in D ∩Di. If O and
Oi are the centers of D and Di, respectively, then by the triangle inequality

POi ≤ PO +OQ+QOi < r + r + s ≤ 3s.

Thus P ∈ 3Di. �
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A6. (12, 1, 3, 0, 0, 0, 0, 0, 3, 9, 92, 79)
Let A,B,C denote distinct points with integer coordinates in R2. Prove

that if

(|AB|+ |BC|)2 < 8 · [ABC] + 1

then A,B,C are three vertices of a square. Here |XY | is the length of
segment XY and [ABC] is the area of triangle ABC.

Solution 1. Given that A,B,C have integer coordinates, it follows that
|AB|2, |BC|2, |CA|2 are integers, and that 2[ABC] is an integer (see the first remark
in 1990A3). These quantities are related via the AM-GM Inequality (see the end of
1985A2) in the form |AB|2 + |BC|2 ≥ 2|AB||BC|, and the area formula

2[ABC] = |AB||BC| sin∠ABC ≤ |AB||BC|.
The quantity |AB|2 + |BC|2 + 4[ABC] is thus an integer which, by the above

inequalities and the given condition, “sandwiches” 8[ABC] as follows:

|AB|2 + |BC|2 + 4[ABC] ≤ (|AB|+ |BC|)2
< 8[ABC] + 1

≤ |AB|2 + |BC|2 + 4[ABC] + 1,

We may thus conclude that |AB|2+ |BC|2+4[ABC] = 8[ABC], since these quantities
are integers and their difference is at least 0 but less than 1. In particular, we have
equality both in AM-GM and the area formula, so AB = BC and ∠ABC is a right
angle, as desired. �

Solution 2. Set up a new coordinate system with the same unit length as the
original system, but with B = (0, 0) and A = (s, 0) for some s > 0. We may assume
that C is in the upper half plane in these coordinates, and put C = (x, y+ s). Let C ′

be the image of A under 90◦ counterclockwise rotation around B, so C ′ = (0, s). The
given inequality is equivalent to all of the following:(

s+
√

x2 + (y + s)2
)2

< 4s(y + s) + 1

s2 + x2 + (y + s)2 + 2s
√

x2 + (y + s)2 < 4s(y + s) + 1

2s
(√

x2 + (y + s)2 − (y + s)
)
< 1− x2 − y2.

The left-hand side in the last inequality is nonnegative, so x2 + y2 < 1. But
x2 + y2 = |CC ′|2, and C,C ′ have integer coordinates in the old coordinate system, so
C = C ′. Thus A,B,C are three consecutive vertices of a square. �

B1. (112, 30, 30, 0, 0, 0, 0, 0, 3, 3, 12, 9)
Find the minimum value of

(x+ 1/x)6 − (x6 + 1/x6)− 2
(x+ 1/x)3 + (x3 + 1/x3)

for x > 0.

Answer. The minimum value is 6.
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Solution. If we put a = (x + 1/x)3 and b = x3 + 1/x3, the given expression can
be rewritten as

a2 − b2

a+ b
= a− b = 3(x+ 1/x).

The minimum of x + 1/x for x > 0 is 2 by the AM-GM inequality (see the end of
1985A2), by calculus, or by the identity x + 1/x = (

√
x −√1/x)2 + 2. Thus the

minimum value of the original expression is 6, attained when x = 1. �

B2. (82, 10, 9, 0, 0, 0, 0, 0, 3, 11, 38, 46)
Given a point (a, b) with 0 < b < a, determine the minimum perimeter of

a triangle with one vertex at (a, b), one on the x-axis, and one on the line
y = x. You may assume that a triangle of minimum perimeter exists.

Answer. The minimum perimeter of such a triangle is
√
2a2 + 2b2.

Solution. Consider a triangle as described by the problem. Label its vertices
A,B,C so that A = (a, b), B lies on the x-axis, and C lies on the line y = x; see
Figure 37. Further let D = (a,−b) be the reflection of A in the x-axis, and let
E = (b, a) be the reflection of A in the line y = x. Then AB = DB and AC = CE,
so the perimeter of ABC is

DB +BC + CE ≥ DE =
√
(a− b)2 + (a+ b)2 =

√
2a2 + 2b2.

This lower bound can be achieved: set B (resp., C) to be the intersection between the
segment DE and the x-axis (resp., the line x = y). Thus the minimum perimeter is
in fact

√
2a2 + 2b2. �

Remark. The reflection trick comes up in various geometric problems where the
sum of certain distances is to be minimized. For many applications of this principle,
see [CG, Sections 4.4–4.6] and [Pó, Section IX].

A

B

C

D

E

FIGURE 37.
The reflection trick: AB +BC + CA = DB +BC + CD ≥ DE.
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Remark. Our proof did not use the assumption that a triangle of minimum
perimeter exists. This assumption might be slightly useful in a “brute force” approach
using calculus to find the minimum of a two-variable function. Such an approach is
painful to execute, however.

B3. (44, 4, 3, 0, 0, 0, 0, 0, 7, 2, 62, 77)
Let H be the unit hemisphere { (x, y, z) : x2 + y2 + z2 = 1, z ≥ 0 }, C the

unit circle { (x, y, 0) : x2 + y2 = 1 }, and P the regular pentagon inscribed in
C. Determine the surface area of that portion of H lying over the planar
region inside P , and write your answer in the form A sinα + B cosβ, where
A,B, α, β are real numbers.

Answer. The surface area is 5π cos π
5 − 3π. In particular, we may take

A = −3π, α = π/2, B = 5π, and β = π/5.

Solution. The surface area of the spherical cap

{ (x, y, z) : x2 + y2 + z2 = 1, z ≥ z0 }
can be computed in spherical coordinates as∫ cos−1 z0

φ=0

∫ 2π

θ=0

sinφdθ dφ = 2π(1− z0).

The desired surface area is the area of a hemisphere minus the surface areas of five
identical halves of spherical caps; these caps, up to isometry, correspond to z0 being
the distance from the center of the pentagon to any of its sides, i.e., z0 = cos π

5 . Since
the area of a hemisphere is 2π (take z0 = 0 above), the desired area is

2π − 5
2

(
2π
(
1− cos π

5

))
= 5π cos

π

5
− 3π. �

Remark. The surface area of a spherical cap can also be computed by noting that
the cap is the surface of revolution obtained by rotating part of the graph of y = f(x)
around the x-axis, where f(x) =

√
1− x2. This gives∫ 1

x=z0

2πy
√

dx2 + dy2 =
∫ 1

z0

2πf(x)
√
1 + f ′(x)2 dx

=
∫ 1

z0

2π
√
1− x2

√
1 +

x2

1− x2
dx

=
∫ 1

z0

2π
√
1− x2

√
1

1− x2
dx

= 2π(1− z0).

Notice an amazing consequence of the formula: the area of a slice of a unit sphere
depends only on the width of the slice, and not on its position on the sphere! This
was known already to Archimedes, and forms the basis of the Lambert equal-area
cylindrical projection and the Gall-Peters equal-area projection used in some maps.
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This fact can be used to give a beautiful solution to the following problem [She]:

Consider a disk of diameter d drawn on a plane and a number of very long
white paper strips of different widths. Show that the disk can be covered by
the strips if and only if the sum of the widths is at least d.

B4. (42, 9, 22, 0, 0, 0, 0, 0, 21, 28, 24, 53)
Find necessary and sufficient conditions on positive integers m and n so

that
mn−1∑
i=0

(−1)�i/m+�i/n = 0.

Answer. We have S(m,n) = 0 if and only if m
gcd(m,n) and

n
gcd(m,n) are not both odd.

Solution. For convenience, define fm,n(i) = � i
m�+ � in�, so that the given sum is

S(m,n) =
∑mn−1

i=0 (−1)fm,n(i). If m and n are both odd, then S(m,n) is the sum of
an odd number of ±1’s, and thus cannot be zero. If m and n are of opposite parity,

fm,n(i) + fm,n(mn− 1− i) =
⌊

i

m

⌋
+
⌊
i

n

⌋
+
⌊
mn− 1− i

m

⌋
+
⌊
mn− 1− i

n

⌋
= (n− 1) + (m− 1),

since � ca� + �b − c+1
a � = b − 1 for all integers a, b, c with a > 0. Thus the terms of

S(m,n) cancel in pairs and so the sum is zero.
Now suppose that m = dk and n = dl for some d. For i = 0, . . . , d − 1, we have

�dj+i
dk � = � jk � and �dj+i

dl � = � jl �, so fm,n(dj + i) = fk,l(j). Hence

S(dk, dl) = d
dkl−1∑
j=0

(−1)fk,l(j)

= d

kl−1∑
j=0

(−1)fk,l(j) + (−1)fk,l(j+kl) + · · ·+ (−1)fk,l(j+(d−1)kl)

= d

kl−1∑
j=0

(−1)fk,l(j)
d−1∑
i=0

(−1)i(k+l)

(since fk,l(j + ikl) = i(k + l) + fk,l(j))

= dS(k, l)
d−1∑
i=0

(−1)i(k+l).

Thus we have S(dk, dl) = d2S(k, l) if k + l is even; this equality also holds if k + l

is odd, since then S(k, l) = 0. Thus S(dk, dl) vanishes if and only if S(k, l) vanishes.
Piecing together the various cases gives the desired result. �
Remark. There are many equivalent ways to state the answer. Here are some other

possibilities, mostly from student papers:

• The highest powers of 2 dividing m and n are different.

• There exist integers a, b, k ≥ 0 such that m = 2ka, n = 2kb, and a and b have
opposite parity.
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• lcm(m,n) is an even integer times m, or an even integer times n, but not both.

• Exactly one of m
gcd(m,n) and

n
gcd(m,n) is even.

• m+n
gcd(m,n) is odd.

• mn
gcd(m,n)2 is even.

• lcm(m,n)
gcd(m,n) is even.

• When expressed in lowest terms, m/n has even numerator or even denominator.

• The 2-adic valuation of m/n is nonzero. (See the remark following 1997B3 for a
definition of the p-adic valuation for any prime p.)

Remark. If S(m,n) is nonzero, it equals gcd(m,n)2. To show this, we use the
equation S(dk, dl) = S(k, l) from the above solution to reduce to the case where m,n

are coprime and odd. In this case,

fm,n(i) ≡ m�i/m�+ n�i/n� ≡ i−m�i/m�+ i− n�i/n� (mod 2).

Now i −m�i/m� is the remainder upon dividing i by m. By the Chinese Remainder
Theorem, the pairs (i − m�i/m�, i − n�i/n�) run through all pairs (j, k) of integers
with 0 ≤ j ≤ m− 1, 0 ≤ k ≤ n− 1 exactly once. Hence

S(m,n) =
m−1∑
j=0

(−1)j
n−1∑
k=0

(−1)k = 1.

B5. (55, 2, 29, 0, 0, 0, 0, 0, 8, 0, 29, 76)
Let N be the positive integer with 1998 decimal digits, all of them 1;

that is,

N = 1111 · · · 11.
Find the thousandth digit after the decimal point of

√
N .

Answer. The 1000th digit is 1.

Solution 1. Write N = (101998 − 1)/9. Then
√
N =

10999

3

√
1− 10−1998 =

10999

3
(1− 1

2
10−1998 + r),

where r can be bounded using Taylor’s Formula with remainder: see Solution 2 to
1992A4. Recall that Taylor’s Formula says that f(x) = f(0) + xf ′(0) + x2

2 f ′′(c) for
some c between 0 and x. For f(x) =

√
1 + x, f ′′(x) = − 1

4 (1 + x)−3/2; therefore for
x = −10−1998, |r| < 10−3996/8.
The digits after the decimal point of 10999/3 are given by .3333 . . . , while the digits

after the decimal point of 1
610

−999 are given by .00000 . . . 1666666 . . . . Thus the first
1000 digits of

√
N after the decimal point are given by .33333 . . . 3331; in particular,

the thousandth digit is 1. �

Solution 2 (Hoeteck Wee). The 1000th digit after the decimal point of
√
N is

the unit digit of

101000
√
N = 10001000

√
101998 − 1

3
=
√
103998 − 102000

3
.
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Now
(101999 − 7)2 < 103998 − 102000 < (101999 − 4)2,

so
101999 − 7

3
< 101000

√
N <

101999 − 4
3

.

Hence
33 . . . 31 < 101000

√
N < 33 . . . 32,

and the answer is 1. �
Related question. What are the next thousand digits? (Hint: extend Solution 1.)

B6. (25, 8, 8, 0, 0, 0, 0, 0, 4, 5, 31, 118)
Prove that, for any integers a, b, c, there exists a positive integer n such

that
√
n3 + an2 + bn+ c is not an integer.

Solution 1. Recall that all perfect squares are congruent to 0 or 1 modulo 4.
Suppose P (n) = n3 + an2 + bn+ c is a square for n = 1, 2, 3, 4. Since P (2) and P (4)
are perfect squares of the same parity, their difference 56+12a+2b must be a multiple
of 4; that is, b must be even. On the other hand, since P (1) and P (3) are also perfect
squares of the same parity, their difference 26 + 8a+ 2b must be a multiple of 4; that
is, b must be odd. This is a contradiction. �

Solution 2. If 4b − a2 = 0 and c = 0, then n3 + an2 + bn + c = n (n+ a/2)2,
which is not a perfect square if n is not a perfect square and n �= −a/2.
So suppose that 4b− a2 and c are not both zero. Take n = 4m2. Then

n3 + an2 + bn+ c = (8m3 + am)2 + (4b− a2)m2 + c.

If 4b−a2 > 0, or 4b−a2 = 0 and c > 0, then form sufficiently large, (4b−a2)m2+c > 0,
and

|(4b− a2)m2 + c| < 2(8m3 + am)− 1,
so n3+an2+ bn+ c lies between (8m3+am)2 and (8m3+am+1)2 and is hence not a
perfect square. Similarly, if 4b−a2 < 0, or 4b−a2 = 0 and c < 0, then n3+an2+bn+c

lies between (8m3 + am− 1)2 and (8m3 + am)2 for sufficiently large m. �

Solution 3. We will use the theory of height functions on elliptic curves (see
Chapter 8 of [Sil] for this theory). Suppose first that P (n) = n3 + an2 + bn+ c is not
squarefree as a polynomial in Q[n]. Then by Gauss’s Lemma (see the remark below),
P (n) factors as (n − d)2(n − e) for some d, e ∈ Z. Choose a positive integer n �= d

such that n− e is not a square. Then P (n) is not a square.
Now suppose instead that P (n) is squarefree. Then y2 = P (x) is an elliptic curve

E over Q. Let N(B) be the number of rational numbers x = u/v in lowest terms with
|u|, |v| ≤ B such that P (x) is the square of a rational number. The theory of height
functions implies that N(B) = O((lnB)r/2) as B →∞, where r is the rank of E(Q).
In particular, if B is a sufficiently large integer, then N(B) < B, so not all integers 1,
2, . . . , B can be x-values making P (x) a square. �
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Remark (Gauss’s Lemma). Define the content c(f) of a polynomial f ∈ Z[x] as
the greatest common divisor of its coefficients. “Gauss’s Lemma” refers to any of the
three following statements:

1. For any f, g ∈ Z[x], we have c(fg) = c(f)c(g).

2. If a monic polynomial f with integer coefficients factors into monic polynoimals
with rational coefficients, say f = gh with g, h ∈ Q[x], then g and h have integer
coefficients [NZM, Theorem 9.7].

3. If a polynomial f ∈ Z[x] factors nontrivially into polynomials with rational
coefficients, then it also factors nontrivially into (possibly different) polynomials
with integer coefficients [Lar1, Problem 4.2.16].

The first statement immediately implies the other two. All three statements can be
generalized to the case where Z is replaced by an arbitrary unique factorization domain
(UFD). For the generalization of the first statement, see [Lan1, p. 181].

Stronger result. For any polynomial P with integer coefficients that is not the
square of a polynomial with integer coefficients, there are arbitrarily large n such that
P (n) is not a perfect square. We present three proofs, using quite different techniques.

Proof 1 (Paul Cohen). Suppose that P (n) is the square of a nonnegative integer for
all n ≥ n0. Express f(n) =

√
P (n) as an infinite Puiseux series (see the first remark

after this solution)
f(n) = c0n

k/2 + c1n
k/2−1 + · · ·

with c0 > 0, convergent for n sufficiently large. Define the difference operator ∆ taking
the function g to the new function (∆g)(n) = g(n+1)− g(n). For i ≥ 1, the function
(∆if)(n) is represented by the series c(i)0 nk/2−i+ · · · for some coefficients c(i)j , and this
series converges for n sufficiently large. In particular, if i > k/2, then |(∆if)(n)| < 1
for sufficiently large n, but (∆if)(n) is also an integer, so it is zero. By the lemma
in the Lagrange interpolation remark below, f(n) agrees with a polynomial F (n) for
sufficiently large integers n. Then P (n)− F (n)2 is a polynomial with infinitely many
zeros, so P (n) = F (n)2 as polynomials. Since F (n) is an integer for sufficiently large
integers n, Lagrange interpolation (described in the second remark below) implies
that F has rational coefficients. Finally, Gauss’s Lemma (given in the remark after
Solution 3) implies that P , being the square of a polynomial with rational coefficients,
is also the square of a polynomial with integer coefficients. �
Remark (Puiseux series). A Puiseux series in the variable x over a field k is a series

of the form
∑∞

j=M ajx
j/r for some M ∈ Z (possibly negative), some integer r ≥ 1,

and some elements aj ∈ k. In other words, it is a Laurent series in the parameter x1/r

for some integer r ≥ 1. (In Proof 1 above, we expressed
√

f(n) as a Puiseux series in
x = n−1.) The set of all Puiseux series over k forms a field.
If k is an algebraically closed field of characteristic zero, such as C, then the field of

Puiseux series is an algebraic closure of the field k((x)) of Laurent series; in particular,
under these hypotheses, if f ∈ k(x)[t] is a one-variable polynomial with coefficients in
the field of rational functions k(x), then the zeros of f can be expressed as Puiseux
series. Such zeros are called algebraic functions; for instance 3

√
7 + x2 is an algebraic

function. The fact that algebraic functions can be expanded in Puiseux series was
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observed by Newton; hence the term Newton-Puiseux series is also sometimes used.
The statements in this paragraph are false when k is an algebraically closed field of
characteristic p > 0, but see [Ke] for an analogue.

Remark (Lagrange interpolation). Suppose one is given n + 1 pairs of numbers
(ai, bi) such that a1, . . . , an+1 are distinct. The theorem of Lagrange interpolation
states that there exists a unique polynomial f(x) of degree less than or equal to n

such that f(ai) = bi for 1 ≤ i ≤ n+ 1. Uniqueness follows from the observation that
the difference of two such polynomials f is a polynomial of degree at most n, having
at least n + 1 zeros (the ai): such a difference must be identically zero. Existence
follows from the explicit formula

f(x) =
n+1∑
i=1

(x− a1) · · · ̂(x− ai) · · · (x− an+1)

(ai − a1) · · · ̂(ai − ai) · · · (ai − an+1)
bi,

where ·̂ indicates that the corresponding term is omitted from the product. (It is easy
to check that this f(x) is a polynomial of degree less than or equal to n such that
f(ai) = bi for all i.) As an immediate consequence, if ai, bi ∈ Q, then f(x) has rational
coefficients.
One application of Lagrange interpolation is the lemma below, used in Proof 1

above. For further applications, see [Lar1, Section 4.3].

Lemma. If n0 ∈ Z, and g(n) is a function defined on integers n ≥ n0 such that
(∆kg)(n) = 0 for all n ≥ n0, then there is a polynomial G(x) of degree at most k − 1
such that g(n) = G(n) for all n ≥ n0.

Proof of Lemma. First, if h(x) is a polynomial of degree m ≥ 1, then (∆h)(x) is a
polynomial of degree m− 1. It follows that (∆kh)(n) = 0 for all k > m.
Use Lagrange interpolation to find the polynomial G(x) of degree at most k − 1

such that G(n) = g(n) for n = n0, n0 +1, . . . , n0 + k− 1. Let H(n) = G(n)− g(n) for
integers n ≥ n0. Then (∆kG)(n) = 0 by the previous paragraph, and (∆kg)(n) = 0
for integers n ≥ n0 is given, so (∆kH)(n) = 0 for integers n ≥ n0.
It remains to prove that if H is a function such that (∆kH)(n) = 0 for integers

n ≥ n0 and H(n0) = H(n0 + 1) = · · · = H(n0 + k − 1) = 0, then H(n) = 0 for all
n ≥ n0. We use induction on k. The case k = 0 is trivial, since ∆0H is just H. For
k ≥ 1, applying the inductive hypothesis to ∆H, which satisfies the assumptions with
k − 1 instead of k, shows that (∆H)(n) = 0 for integers n ≥ n0. But H(n0) = 0 too,
so induction on n proves H(n) = 0 for all integers n ≥ n0. �

Proof 2. We may reduce to the case that P has no repeated factors by dividing by
squares of factors, so that the discriminant D of P is nonzero. We construct a prime
p not dividing D and an integer n such that p divides P (n). Pick an integer m such
that P (m) �= 0, and for each prime pi dividing D, let ei be the exponent to which
pi divides P (m). As n varies over integers congruent to m modulo

∏
pei+1
i , P (n)

assumes arbitrarily large values (since P is nonconstant), and none of these values is
divisible by pei+1

i , since P (m) is not. Thus there exist arbitrarily large integers n for
which P (n) is divisible by a prime p not dividing D.
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If p2 does not divide P (n), then P (n) is not a square. Otherwise,

P (n+ p) ≡ P (n) + pP ′(n) ≡ pP ′(n) (mod p2),

and p does not divide P ′(n) since p does not divide the discriminant of P . Thus
P (n+ p) is divisible by p but not p2, so P (n+ p) is not a square. �

Remark. The end of the argument is related to Hensel’s Lemma; a similar idea
arises in 1986B3.

Proof 3. We show that for any sufficiently large prime p, there exist arbitrarily
large integers n such that P (n) is not a square modulo p. Again we reduce to the case
where P is squarefree and nonconstant, say of degree d. Then the discriminant ∆ of
P is a nonzero integer; let p be any odd prime not dividing ∆. Suppose that P (n)
is a square modulo p for all sufficiently large n. Then for each x in the field Fp of p
elements, the equation y2 = P (x) has two solutions y, unless x is a zero of P modulo
p in which case there is only one solution y. The number of zeros of P modulo p is
at most d, so y2 = P (x) has at least 2p− d solutions (x, y) ∈ Fp × Fp. On the other
hand, the Weil Conjectures (see the end of 1991B5) for the curve y2 = P (x) imply
that the number of solutions is at most p + c

√
p, where the constant c depends only

on d. This yields a contradiction for sufficiently large p. �

Remark. A fourth proof of the stronger result can be given using the Thue-Siegel
Theorem [HiS, Theorem D.8.3], which asserts that if P is a polynomial of degree at
least 3 with no repeated factors, then P (n) is a perfect square for only finitely many
integers n. For an effective bound on the size of such n, see Section 4.3 of [Bak2].
(The Thue-Siegel Theorem can fail if P has degree 2. For example, 2n2+1 is a square
for infinitely many integers n. See Solution 2 to 2000A2.)

Related question. A similar problem is 1971A6 [PutnamII, p. 15]:

Let c be a real number such that nc is an integer for every positive integer n.
Show that c is a nonnegative integer.
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The Sixtieth William Lowell Putnam Mathematical Competition
December 4, 1999

A1. (124, 17, 34, 0, 0, 0, 0, 0, 10, 4, 11, 5)
Find polynomials f(x), g(x), and h(x), if they exist, such that, for all x,

|f(x)| − |g(x)|+ h(x) =


−1 if x < −1
3x+ 2 if −1 ≤ x ≤ 0

−2x+ 2 if x > 0.

Answer. Take

f(x) =
3x+ 3
2

, g(x) =
5x
2

, and h(x) = −x+
1
2
.

Solution. Let

F (x) =


−1 if x < −1
3x+ 2 if −1 ≤ x ≤ 0

−2x+ 2 if x > 0.

The function G(x) = max{−1, 3x+ 2} agrees with F (x) for x ≤ 0, but

F (x)−G(x) = −5x for x > 0.

Thus

F (x) = max{−1, 3x+ 2} −max{0, 5x}
= (3x+ 1 + | − 3x− 3|)/2− (5x+ |5x|)/2

(by the identity max{r, s} = (r + s+ |r − s|)/2)
= |(3x+ 3)/2| − |5x/2| − x+

1
2
,

so we may take

f(x) = (3x+ 3)/2, g(x) = 5x/2, h(x) = −x+ 1/2. �

Remark. Alternatively, based on Figure 38, one may guess that f, g, h are linear,
and that f changes sign at −1 and g changes sign at 0. We may assume that f and g

have positive leading coefficients. Then one has the linear equations

−1 = −f(x) + g(x) + h(x)

3x+ 2 = f(x) + g(x) + h(x)

−2x+ 2 = f(x)− g(x) + h(x)

from which one solves for f, g, h as given above.
In fact, both guesses can be justified, and we can prove that the solution is unique

up to the signs of f and g. Of the four polynomials ±f ± g + h, three must be equal
to −1, 3x + 2, −2x + 2 in some order. But of any three of these functions, two sum
to 2h, and the difference between some two is 2f or 2g. Thus f, g, h are each linear.
As for the sign changes, assume that the graphs of f and g have positive slope. The
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y

x

y = –1

y = x–2 + 2

y = x3 + 2

FIGURE 38.
Graph of F (x) (in bold)

slope of the graph of |f(x)| − |g(x)|+h(x) jumps up at the zero of f and jumps down
at the zero of g, so these points must be x = −1 and x = 0, respectively.

A2. (61, 16, 28, 0, 0, 0, 0, 0, 2, 4, 52, 42)
Let p(x) be a polynomial that is nonnegative for all real x. Prove that

for some k, there are polynomials f1(x), . . . , fk(x) such that

p(x) =
k∑

j=1

(fj(x))2.

Solution 1. If p(x) is identically zero, we are done. Otherwise factor p(x)
into linear and quadratic factors over the real numbers. Each linear factor must
occur with even multiplicity, or else p(x) would have a sign change at the zero
of the linear factor. Thus p(x) can be factored into squares of linear factors and
irreducible quadratic factors. The latter can be written as sums of squares (namely,
x2 + ax + b = (x + a/2)2 + (b − a2/4)), so p(x) is the product of polynomials which
can be written as sums of squares, so is itself a sum of squares. �

Solution 2. We proceed by induction on the degree of p, with base case where p

has degree 0. As noted in Solution 1, real zeros of p occur with even multiplicity, so
we may divide off the linear factors having such zeros to reduce to the case where p

has no real zeros (and is nonconstant, or else we are already done). Then p(x) > 0 for
all real x, and since p(x)→ +∞ as x→ ±∞, p attains a minimum value c > 0. Now
p(x)−c has real zeros, so as above, we deduce that p(x)−c is a sum of squares. Adding
one more square, namely (

√
c)2, to p(x)− c expresses p(x) as a sum of squares. �

Stronger result. In fact, only two polynomials are needed. This can be deduced
from Solution 1, provided that one knows the identity (1) in Solution 3 to 2000A2,
which says that a sum of two squares times a sum of two squares can be expressed as
a sum of two squares.
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Here is another proof that k = 2 suffices. Factor p(x) = q(x)r(x), where q has
all real zeros and r has all nonreal zeros and r is monic. Each zero of q has even
multiplicity, since otherwise p would have a sign change at that zero. Also q has
positive leading coefficient, since p must. Thus q(x) has a square root s(x) with real
coefficients. Now write r(x) =

∏k
j=1(x− aj)(x − aj) (possible because r has zeros in

complex conjugate pairs). Write
∏k

j=1(x−aj) = t(x)+ iu(x) with t and u having real
coefficients. Then for x real,

p(x) = q(x)r(x)

= s(x)2 (t(x) + iu(x)) (t(x) + iu(x))

= (s(x)t(x))2 + (s(x)u(x))2.

Literature note. This problem appeared as [Lar1, Problem 4.2.21], and is credited
there to [MathS].

Remark. A polynomial in more than one variable with real coefficients taking
nonnegative values need not be a sum of squares. (The reader may check that
1 − x2y2(1 − x2 − y2) is a counterexample.) Hilbert’s Seventeenth Problem asked
whether such a polynomial can always be written as the sum of squares of rational
functions; this was answered affirmatively by E. Artin and O. Schreier. See [J,
Section 11.4] for a proof and for generalizations.

A3. (103, 10, 2, 0, 0, 0, 0, 0, 1, 18, 27, 44)
Consider the power series expansion

1
1− 2x− x2

=
∞∑
n=0

anx
n.

Prove that, for each integer n ≥ 0, there is an integer m such that

a2
n + a2

n+1 = am.

Solution 1. Note that

1
1− 2x− x2

=
1

2
√
2

(
1 +

√
2

1− (1 +√2)x −
1−√2

1− (1−√2)x

)
and

1
1− (1±√2)x =

∞∑
n=0

(1±
√
2)nxn,

so

an =
1

2
√
2

(
(1 +

√
2)n+1 − (1−

√
2)n+1

)
.

A simple computation now shows that a2
n + a2

n+1 = a2n+2. �
Solution 2. As in Solution 1, we see that an = Cαn +Dβn for some constants

C,D,α, β with αβ = −1 (since α, β are the zeros of x2 − 2x− 1). Thus
a2
n = Eα2n + F (−1)n +Gβ2n
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for some constants E,F,G, and

a2
n + a2

n+1 = Hα2n + Iβ2n

for some constants H, I. But a2n+2 has the same form, so a2
n+a2

n+1 and a2n+2 satisfy
the same second-order linear recursion. (See the remarks in 1988A5 for more on linear
recursions.) Hence we can prove a2

n + a2
n+1 = a2n+2 for all n ≥ 0 by checking it for

n = 0 and n = 1, which is easy. �
Remark. From the recursion an+1 = 2an + an−1, one can also find the recursion

satisfied by a2n+2, then directly prove that a2
n + a2

n+1 satisfies the same recursion.

Solution 3 (Richard Stanley). Let A be the matrix
(
0 1
1 2

)
. By induction,

the recursion an+1 = 2an + an−1 implies

An+2 =
(

an an+1

an+1 an+2

)
.

The desired result follows from equating the top left entries in the matrix equality
An+2An+2 = A2n+4. �
Related question. This sequence, translated by one, also appeared in the following

proposal by Bulgaria for the 1988 International Mathematical Olympiad [IMO88,
p. 62].

An integer sequence is defined by an = 2an−1+ an−2 (n > 1), a0 = 0, a1 = 1.
Prove that 2k divides an if and only if 2k divides n.

A4. (33, 27, 3, 0, 0, 0, 0, 0, 3, 2, 14, 123)
Sum the series

∞∑
m=1

∞∑
n=1

m2n

3m(n3m +m3n)
.

Answer. The series converges to 9/32.

Solution. Denote the series by S, and let an = 3n/n. Note that

S =
∞∑

m=1

∞∑
n=1

1
am(am + an)

=
∞∑

m=1

∞∑
n=1

1
an(am + an)

,

where the second equality follows by interchanging m and n. Thus

2S =
∑
m

∑
n

(
1

am(am + an)
+

1
an(am + an)

)

=
∑
m

∑
n

1
aman

=

( ∞∑
n=1

n

3n

)2

.

Finally, if

A =
∞∑
n=1

n

3n
, (1)
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then

3A =
∞∑
n=1

n

3n−1
=

∞∑
n=0

n+ 1
3n

, (2)

so subtracting (1) from (2) gives

2A = 1 +
∞∑
n=1

1
3n

=
3
2
.

Hence

A =
3
4
, (3)

so S = 9/32. �
Remark. Equation (3) also follows by differentiating both sides of

∞∑
n=0

xn

3n
=

3
3− x

,

and then evaluating at x = 1. Either method can be generalized to evaluate arbitrary
sums of the form

∑∞
n=0 P (n)α

n where P (n) is a polynomial, and |α| < 1.

Remark. The rearrangement of terms in various parts of the solution is justified,
since all terms are nonnegative.

A5. (5, 1, 4, 0, 0, 0, 0, 0, 3, 10, 63, 119)
Prove that there is a constant C such that, if p(x) is a polynomial of

degree 1999, then

|p(0)| ≤ C

∫ 1

−1

|p(x)| dx.

Solution 1. Let P denote the set of polynomials of degree at most 1999. Identify
P with R2000 by identifying

∑1999
i=0 aix

i with (a0, a1, . . . , a1999). Let S be the set of
polynomials

∑1999
i=0 aix

i such that max{|ai|} = 1. Then S is a closed and bounded
subset of P ≈ R2000, so S is compact. The function P × R → R mapping (p, x) to
|p(x)| is the absolute value of a polynomial in all 2001 coordinates, so it is continuous.
Therefore the function g : P → R defined by g(p) =

∫ 1

−1
|p(x)| dx is continuous, as

is its restriction to S. Similarly the function f : S → R defined by f(p) = |p(0)| is
continuous. Since g(p) �= 0 for p ∈ S, the quotient f/g : S → R is continuous. By
the Extreme Value Theorem, there exists a constant C such that f(p)/g(p) ≤ C for
all p ∈ S. An arbitrary p ∈ P can be written as cq for some c ∈ R and q ∈ S; then
f(p) = |c|f(q) ≤ |c|Cg(q) = Cg(p), as desired. �
Remark. The same method proves the standard result that any two norms on a

finite-dimensional vector space are equivalent [Hof, p. 249]. In fact, another way to
solve the problem would be to apply this result to the two norms

sup
x∈[−1,1]

|p(x)| and
∫ 1

−1

|p(x)| dx

on P .
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Solution 2 (Reid Barton). We exhibit an explicit constant C, by showing that
|p(x)| must be large compared to |p(0)| on some subinterval of [−1, 1] whose length is
bounded below. Assume p(0) = 1 without loss of generality.
Then p(x) =

∏1999
i=1 (1− x/ri), where r1, . . . , r1999 are the complex zeros of p, listed

with multiplicity. Fix ε < 1/3998, and draw closed discs of radius ε centered at the
ri in the complex plane. These discs intersect (−1/2, 1/2) in at most 1999 intervals
of total length at most 3998ε, so their complement consists of at most 2000 intervals
of total length at least 1− 3998ε. By the Pigeonhole Principle, one of these intervals,
say (c, d), has length at least δ = (1− 3998ε)/2000 > 0. For x ∈ (c, d), if |ri| ≤ 1 then
|1 − x/ri| ≥ |x − ri| > ε, whereas if |r1| ≥ 1 then |1 − x/ri| ≥ 1 − |x/ri| ≥ 1/2 > ε.
Hence ∫ 1

−1

|p(x)| dx ≥
∫ d

c

1999∏
i=1

|1− x/ri| dx ≥ δε1999,

so

|p(0)| ≤ C

∫ 1

−1

|p(x)| dx

with C = 1/(δε1999). Taking ε = 1/4000 yields the explicit value C = 2199920002001. �
Related question. Can you improve the constant in Solution 2? (We do not know

what the smallest possible C is.)

A6. (31, 11, 9, 0, 0, 0, 0, 0, 1, 5, 28, 120)
The sequence (an)n≥1 is defined by a1 = 1, a2 = 2, a3 = 24, and, for n ≥ 4,

an =
6a2

n−1an−3 − 8an−1a
2
n−2

an−2an−3
.

Show that, for all n, an is an integer multiple of n.

Solution. Rearranging the given equation yields the much more tractable equation
an

an−1
= 6

an−1

an−2
− 8 an−2

an−3
.

Let bn = an/an−1. With the initial conditions b2 = 2, b3 = 12, one obtains bn =
2n−1(2n−1 − 1), by induction or by the theory of linear recursive sequences: see the
remark in 1988A5. Thus

an = a1b2b3 . . . bn = 2n(n−1)/2
n−1∏
i=1

(2i − 1). (1)

If n = 1, then n divides an. Otherwise factor n as 2km, with m odd. Then
k ≤ n− 1 ≤ n(n− 1)/2, and there exists i ≤ n− 1 such that m divides 2i− 1, namely
i = φ(m). (Here φ denotes the Euler φ-function: see 1985A4.) Hence n divides an for
all n ≥ 1. �
Remark. Alternatively, the result for n ≥ 3 can be proved from the following two

facts:

(a) The right side of the formula (1) for an equals 2n−1#GLn−1(F2). (See page xi for
the definition of GLn−1(F2).)

(b) If n ≥ 3, GLn−1(F2) contains an element of exact order n.
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These suffice because of Lagrange’s Theorem, which states that the order of an element
of a finite group G divides the order of G.
Let us prove (a). Matrices in GLn−1(F2) can be constructed one row at a time: the

first row may be any nonzero vector, and then each successive row may be any vector
not in the span of the previous rows, which by construction are independent. Hence
the number of possibilities for the jth row, given the previous ones, is 2n−1 − 2j−1.
Thus

#GLn−1(F2) =
n−1∏
j=1

(2n−1 − 2j−1) = 2(n−1)(n−2)/2
n−1∏
j=1

(2n−j − 1).

Setting i = n− j and comparing with (1) proves (a).
It remains to prove (b). Let V = { (x1, . . . , xn) ∈ (F2)n :

∑
xi = 0 }. Since

dimF2 V = n − 1, the group of automorphisms of the vector space V is isomor-
phic to GLn−1(F2). Let T : V → V be the automorphism (x1, x2, . . . , xn) !→
(xn, x1, . . . , xn−1). Then Tn is the identity. If m < n and n ≥ 3, then there exists
v = (v1, . . . , vn) ∈ V with v1 = 1 and vm+1 = 0: make just one other vi equal to 1,
to make the sum zero. Then Tmv �= v, so Tm is not the identity. Hence T has exact
order n.
(The matrix of T with respect to the basis

ε1 = (1, 1, 0, 0, . . . , 0), ε2 = (0, 1, 1, 0, . . . , 0), . . . , εn−1 = (0, 0, . . . , 0, 1, 1)

of V is 

0 0 0 · · · 0 1
1 0 0 · · · 0 1
0 1 0 · · · 0 1
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · 1 1


∈ GLn−1(F2).

This also equals the companion matrix of the polynomial

f(x) = xn−1 + xn−2 + · · ·+ x+ 1.)

B1. (126, 17, 17, 0, 0, 0, 0, 0, 6, 0, 23, 16)
Right triangle ABC has right angle at C and ∠BAC = θ; the point D is

chosen on AB so that |AC| = |AD| = 1; the point E is chosen on BC so
that ∠CDE = θ. The perpendicular to BC at E meets AB at F . Evaluate
limθ→0 |EF |. [Here |PQ| denotes the length of the line segment PQ.]†

Answer. The limit of |EF | as θ → 0 is 1/3.

Solution. (See Figure 39.) The triangles BEF and BCA are similar. Since
AC = 1, we have EF = BE/BC. Also, since 4ACD is isosceles, ∠ACD =
∠ADC = π/2 − θ/2. We then compute ∠BCD = π/2 − ∠DCA = θ/2 and
∠BDE = π − ∠CDE − ∠CDA = π/2− θ/2.

† The figure is omitted here, since it is contained in Figure 39 used in the solution.



Solutions: The Sixtieth Competition (1999) 269
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FIGURE 39.

The reflection E′ of E across AB lies on CD, so by the Law of Sines,

BE

BC
=

BE′

BC
=
sin∠BCD

sin∠CE′B
.

Since
∠CBD =

π

2
− ∠BAC =

π

2
− θ

and
∠CE′B = ∠DEB =

π

2
− ∠CBD − ∠BDE =

3θ
2
,

we obtain

EF =
BE

BC
=

sin(θ/2)
sin(3θ/2)

.

By L’Hôpital’s Rule,

lim
θ→0

sin(θ/2)
sin(3θ/2)

= lim
θ→0

cos(θ/2)
3 cos(3θ/2)

=
1
3
. �

Remark. One can avoid using the reflection by writing

BE

BC
=

BE

BD
· BD

BC

and using the Law of Sines in triangles BDE and BCD.

B2. (38, 27, 9, 0, 0, 0, 0, 0, 9, 0, 74, 48)
Let P (x) be a polynomial of degree n such that P (x) = Q(x)P ′′(x), where

Q(x) is a quadratic polynomial and P ′′(x) is the second derivative of P (x).
Show that if P (x) has at least two distinct roots then it must have n distinct
roots. [The roots may be either real or complex.]
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Solution. Suppose that P does not have n distinct zeros; then it has a zero
of multiplicity k ≥ 2, which we may assume without loss of generality is x = 0.
Differentiating P term by term shows that the highest power of x dividing P ′′(x) is
xk−2. But P (x) = Q(x)P ′′(x), so x2 divides Q(x). Since Q is quadratic, Q(x) = Cx2

for some constant C. Comparing the leading coefficients of P (x) and Q(x)P ′′(x) yields
C = 1

n(n−1) .
Write P (x) =

∑n
j=0 ajx

j ; equating coefficients in P (x) = Cx2P ′′(x) implies that
aj = Cj(j − 1)aj for all j. Hence aj = 0 for j ≤ n− 1, and P (x) = anx

n, which has
all identical zeros. �
Remark. If Q has distinct zeros, then after replacing x by ax+b for suitable a, b ∈ C

we may assume that Q = c(1 − x2) for some c ∈ C. Then P ′′(x) is a scalar multiple
of Rn−2(x), where Rn(x) is the unique monic polynomial of degree n satisfying the
differential equation

d2

dx2
[(1− x2)Rn(x)] = −(n+ 1)(n+ 2)Rn(x).

(This equation implies a recursion which uniquely determines the coefficients of Rn.)
Integration by parts yields∫ 1

−1

(1− x2)Rm(x)Rn(x) dx =
1

(n+ 1)(n+ 2)

∫ 1

−1

[(1− x2)Rm(x)]′[(1− x2)Rn(x)]′ dx;

interchanging m and n and comparing, we find∫ 1

−1

(1− x2)Rm(x)Rn(x) dx = 0

for m �= n. That is, the Rm(x) form a family of orthogonal polynomials with respect
to the measure (1 − x2) dx. (In other terminology, the Rm are eigenvectors of the
operator f !→ d2

dx2 [(1−x2)f ]. This operator is self-adjoint with respect to the measure
(1− x2) dx, so the eigenvectors are orthogonal with respect to that measure, because
eigenspaces corresponding to different eigenvalues are orthogonal.)
The solution above implies that Rn has distinct zeros. A result from the theory

of orthogonal polynomials implies that the zeros of Rn are real numbers in [−1, 1].
This can also be deduced by applying Lucas’ Theorem (1991A3) twice. Namely, if the
convex hull of the zeros of the polynomial P (x) = (1− x2)Rn(x) has a vertex z other
than ±1, then Lucas’ Theorem implies that z lies outside of the convex hull of the
zeros of P ′ (because z is not a multiple zero of P ) and then implies that z lies outside
of the convex hull of the zeros of P ′′(x) = Rn(x), a contradiction.
Noam Elkies points out that according to [GR], Rn(x) is a scalar multiple of the

nth Gegenbauer polynomial with parameter λ = 3/2, also called the nth ultraspherical
polynomial. Also, if we put Pn(x) = (1 − x2)Rn(x), then P ′

n(x) is (a scalar multiple)
of the (n+ 1)st Legendre polynomial.

Related question. Problem 6 from the final round of the 1978 Swedish Mathematical
Olympiad [SMO] is related:
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The polynomials

P (x) = cxn + an−1x
n−1 + · · ·+ a1x+ a0

Q(x) = cxm + bm−1x
m−1 + · · ·+ b1x+ b0

with c �= 0 satisfy the identity

P (x)2 = (x2 − 1)Q(x)2 + 1.

Show that P ′(x) = nQ(x).

B3. (44, 2, 2, 0, 0, 0, 0, 0, 13, 14, 56, 74)
Let A = { (x, y) : 0 ≤ x, y < 1 }. For (x, y) ∈ A, let

S(x, y) =
∑

1
2≤m

n ≤2

xmyn,

where the sum ranges over all pairs (m,n) of positive integers satisfying the
indicated inequalities. Evaluate

lim
(x,y)→(1,1)

(x,y)∈A
(1− xy2)(1− x2y)S(x, y).

Answer. The limit is equal to 3.

Solution 1. For (x, y) ∈ A,∑
m,n>0

xmyn =
xy

(1− x)(1− y)
.

Subtracting S from this gives two sums, one of which is∑
m≥2n+1

xmyn =
∑
n

yn
x2n+1

1− x
=

x3y

(1− x)(1− x2y)

and the other of which analogously sums to

xy3

(1− y)(1− xy2)
.

Therefore

S(x, y) =
xy

(1− x)(1− y)
− x3y

(1− x)(1− x2y)
− xy3

(1− y)(1− xy2)

=
xy(1 + x+ y + xy − x2y2)

(1− x2y)(1− xy2)

and the desired limit is lim(x,y)→(1,1) xy(1 + x+ y + xy − x2y2) = 3. �

Solution 2. A pair (m,n) of positive integers satisfies 1/2 ≤ m/n ≤ 2 if
and only if (m,n) = a(1, 2) + b(2, 1) for some nonnegative rational numbers a, b.
The pairs (a, b) with 0 ≤ a, b < 1 which yield integral values of m and n are
(0, 0), (1/3, 1/3), (2/3, 2/3), whose corresponding pairs are (0, 0), (1, 1), (2, 2). Thus
every pair (m,n) with 1/2 ≤ m/n ≤ 2 can be written as one of these three pairs plus
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FIGURE 40.
Points of the form a(1, 2) + b(1, 2), where a and b are nonnegative integers; two translates of
this semigroup are also indicated.

an integral linear combination of (1, 2) and (2, 1). (See Figure 40 for those points of
the form a(1, 2) + b(1, 2) where a and b are nonnegative integers.) In particular,

S(x, y) + 1 = (1 + xy + x2y2)
∞∑
a=0

xay2a
∞∑
b=0

x2byb

=
1 + xy + x2y2

(1− xy2)(1− x2y)

and the desired limit is 3. �
Stronger result. Let p/q and r/s be positive rational numbers with p/q < r/s, and

define T (x, y) =
∑

(m,n) x
myn, the sum taken over all pairs (m,n) of positive integers

with p/q ≤ m/n ≤ r/s. Then

lim
(x,y)→(1,1)

(x,y)∈A
(1− xpyq)(1− xrys)T (x, y) = qr − ps.

This can be proved by either of the above methods.

B4. (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 31, 173)
Let f be a real function with a continuous third derivative such that f(x),

f ′(x), f ′′(x), f ′′′(x) are positive for all x. Suppose that f ′′′(x) ≤ f(x) for all
x. Show that f ′(x) < 2f(x) for all x.

Remark. The total score of the top 205 writers in 1999 on this problem was 2.
The same is true of the next problem, 1999B5. By this measure, these two are the
hardest Putnam problems in the years covered in this volume. Nevertheless, we feel
that there are other problems in this volume that are at least as difficult as these two.
At the other extreme, the problems having the highest average score of the top 200 or
so participants were 1988A1 and then 1988B1.

Solution 1. For simplicity, we will only show f ′(0) < 2f(0). Applying this result
to f(x+ c) shows that f ′(c) < 2f(c) for all c.
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Since f ′ is positive, f is an increasing function. Thus for x ≤ 0, f ′′′(x) ≤ f(x) ≤
f(0). Integrating f ′′′(x) ≤ f(0) from x to 0 gives f ′′(x) ≥ f ′′(0)+f(0)x for x ≤ 0, and
integrating again gives the second inequality in 0 < f ′(x) ≤ f ′(0)+f ′′(0)x+f(0)x2/2.
Thus the polynomial f ′(0) + f ′′(0)x + f(0)x2/2 has no negative zeros. Since its
coefficients are positive, it also has no nonnegative zeros. Therefore its discriminant
f ′′(0)2 − 2f(0)f ′(0) must be negative.
In a similar vein, since f ′′′ is positive, f ′′ is increasing. Thus for x ≤ 0, f ′′(x) ≤

f ′′(0), so f ′(x) ≥ f ′(0) + f ′′(0)x, and 0 < f(x) ≤ f(0) + f ′(0)x + f ′′(0)x2/2. Again,
the discriminant of the quadratic must be negative: f ′(0)2 − 2f(0)f ′′(0) < 0.
Combining the conclusions of the last two paragraphs, we obtain

f ′(0)4 < 4f(0)2f ′′(0)2 < 8f(0)3f ′(0),

which implies f ′(0) < 2f(0). �

Solution 2. We prove that f ′(x) < (9/2)1/3f(x) < 1.651f(x). Since f(x) is
bounded below (by 0) and increasing, it has an infimum m, and limx→−∞ f(x) = m.
Then f ′(x) tends to 0 as x → −∞ since it is positive and its integral from −∞ to 0
converges. Similarly f ′′(x) and f ′′′(x) tend to 0 as x→ −∞.
By Taylor’s Formula with remainder (or integration by parts), for any function g,

g(x)− g(x− s) =
∫ s

0

g′(x− t) dt,

g(x)− g(x− s) = sg′(x− s) +
∫ s

0

tg′′(x− t) dt, (2)

g(x)− g(x− s) = sg′(x− s) +
1
2
s2g′′(x− s) +

∫ s

0

1
2
t2g′′′(x− t) dt, (3)

as long as the specified derivatives exist and are continuous. For g = f , as s → +∞
for fixed x, the left side of (2) is bounded above, the term sf ′(x − s) is nonnegative
and the integrand tf ′′(x − t) is everywhere nonnegative; consequently, the integrand
tends to 0 as t→∞. Thus in (2) with g = f ′, letting s tend to ∞ yields

f ′(x) =
∫ ∞

0

tf ′′′(x− t) dt.

We cannot a priori take limits in any of the equations with g = f , but from (3) we
have

f(x)−
∫ s

0

1
2
t2f ′′′(x− t) dt = f(x− s) + sf ′(x− s) +

1
2
s2f ′′(x− s) ≥ 0

for all s, so

f(x) ≥
∫ ∞

0

1
2
t2f ′′′(x− t) dt.

Thus for c ≥ 0, we have

cf(x)− f ′(x) ≥
∫ ∞

0

(
1
2
ct2 − t

)
f ′′′(x− t) dt.
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The integrand is positive precisely when t > 2/c. Moreover, f ′′′(x− t) ≤ f(x− t) by
hypothesis and f(x− t) ≤ f(x) for t ≥ 0, since f ′ is positive. We conclude

cf(x)− f ′(x) >
∫ 2/c

0

(
1
2
ct2 − t

)
f(x) dt = − 2

3c2
f(x),

or equivalently

f ′(x) < f(x)
(
c+

2
3
c−2

)
.

The minimum value of the expression in parentheses is (9/2)1/3, achieved when
c = (4/3)1/3: this can be proved by calculus or by the n = 3 case of the AM-GM
Inequality applied to c/2, c/2, and 2

3c
−2. (The AM-GM Inequality is given at the end

of 1985A2.) �

Solution 3. We prove that f ′(x) < 21/6f(x) < 1.123f(x). As in the
previous solution, f (i)(x) → 0 as x → −∞ for i = 1, 2, 3. For similar reasons,
limx→−∞ f(x)f ′(x) = 0.
First notice that

2f(x)f ′′(x) + 2f ′(x)2 − 2f ′′(x)f ′′′(x) > 0

because the first term plus the third term is nonnegative and the second term is
positive. Consequently,

2f(x)f ′(x)− f ′′(x)2 > 0

since this expression has positive derivative and tends to 0 as x→ −∞.
Combining this with f ′′′(x) ≤ f(x) yields

2f(x)2f ′(x)− f ′′(x)2f ′′′(x) > 0,

from which we obtain

2f(x)3 − f ′′(x)3 > 2m3 ≥ 0

by similar reasoning, where m = limx→−∞ f(x). This inequality implies

21/3f(x)f ′(x)− f ′(x)f ′′(x) > 0,

and integrating yields

21/3f(x)2 − f ′(x)2 > 21/3m2 ≥ 0,

which implies the desired result. �
Remark. Let C be the infimum of the set of γ > 0 such that the conditions of

the problem imply f ′(x) ≤ γf(x) for all x. Solution 3 shows that C ≤ 21/6, and the
example f(x) = ex shows that C ≥ 1. One might guess from this that C = 1, but we
now give an example to show C > 1. (We do not know the exact value of C.)
We first construct an example where f ′′′ has a discontinuity at 0, then show that

f ′′′ can be modified slightly while retaining the property that f ′(x) > f(x) at some
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point. Our strategy is to consider

H3(x) =

{
ex, if x ≤ 0

ex − cg(x), if x > 0,

where g(x) is a solution of the differential equation g′′′ = g, to set Hj(x) =∫ x
−∞ Hj+1(t) dt for j = 2, 1, 0, then to take f(x) = H0(x). For x > 0, we have

H3(x) = ex − cg′′′(x)

H2(x) = ex − cg′′(x) + cg′′(0)

H1(x) = ex − cg′(x) + c[g′(0) + g′′(0)x]

H0(x) = ex − cg(x) + c

[
g(0) + g′(0)x+

1
2
g′′(0)x2

]
.

All solutions of g′′′ = g are O(ex) as x→∞, so for c sufficiently small, H3(x) > 0 for
all x > 0. Hence Hi(x) > 0 for x > 0, i = 2, 1, 0 as well. Now

H0(x)−H3(x) = c

(
g(0) + g′(0)x+

1
2
g′′(0)x2

)
.

We make the right-hand side positive by taking g to be the solution to g′′′ = g whose
Taylor polynomial of degree 2 equals (x − d)2 for some d > 0, For sufficiently small
c, the function f(x) = H0(x) now satisfies the conditions of the problem, except for
continuity of the third derivative.
Also,

f ′(d)− f(d) = H1(d)−H0(d) = c[g(d)− g′(d)].

If there exists d > 0 such that the corresponding g satisfies g(d) > g′(d), we have
f ′(d) > f(d) as desired. A numerical computation shows that this occurs for d = 8.
To modify this example so that f ′′′ is continuous, choose δ > 0 and define h3 to

be the function that is equal to H3 outside (0, δ) and is linear between 0 and δ: see
Figure 41. Define hi(x) =

∫ x
−∞ hi+1(t) dt for i = 2, 1, 0 and take f(x) = h0(x). Since

y

x

y = e
x

y = e – cg x
x

( )

FIGURE 41.
The graph of y = h3(x).
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h3(x) ≥ H3(x) everywhere (for δ sufficiently small), we also have f (i)(x) = hi(x) ≥
Hi(x) > 0 for i = 2, 1, 0. For x > δ, we have f(x) ≥ H0(x) ≥ H3(x) = f ′′′(x); for
0 < x < δ, we have f(x) ≥ f(0) = 1 ≥ h3(x) = f ′′′(x), provided that δ is small enough
that H3(δ) < 1. Thus we have f ′′′(x) ≤ f(x) for all x.

B5. (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 43, 161)
For an integer n ≥ 3, let θ = 2π/n. Evaluate the determinant of the n× n

matrix I +A, where I is the n× n identity matrix and A = (ajk) has entries
ajk = cos(jθ + kθ) for all j, k.

Remark. The total score of the top 205 writers in 1999 on this problem was 2. See
the comment at the beginning of 1999B4.

Answer. The determinant of I +A is 1− n2/4.

Solution 1. We compute the determinant of I +A by computing its eigenvalues.
The eigenvalues of I +A are obtained by adding 1 to each of the eigenvalues of A, so
it suffices to compute the latter.
We claim that the eigenvalues of A are n/2,−n/2, 0, . . . , 0, where 0 occurs with

multiplicity n − 2. To prove this claim, define vectors v(m), 0 ≤ m ≤ n − 1,
componentwise by (v(m))k = eikmθ (where θ = 2π/n). If we form a matrix from the
v(m), its determinant is a Vandermonde product and hence is nonzero. (See 1986A6
for a short explanation of the Vandermonde determinant.) Thus the v(m) form a basis
for Cn. Since cos z = (eiz + e−iz)/2 for any z,

(Av(m))j =
n∑

k=1

cos(jθ + kθ)eikmθ

=
eijθ

2

n∑
k=1

eik(m+1)θ +
e−ijθ

2

n∑
k=1

eik(m−1)θ.

Since
∑n

k=1 e
ik!θ = 0 for integer @ unless n | @, we conclude that Av(m) = 0 for m = 0

and for 2 ≤ m ≤ n − 1. In addition, we find that (Av(1))j = n
2 e

−ijθ = n
2 (v

(n−1))j
and (Av(n−1))j = n

2 e
ijθ = n

2 (v
(1))j , so A(v(1) ± v(n−1)) = ±n

2 (v
(1) ± v(n−1)). Thus

{v(0), v(2), v(3), . . . , v(n−2), v(1)+v(n−1), v(1)−v(n−1)} is a basis for Cn of eigenvectors
of A with the claimed eigenvalues.
Finally, the determinant of I +A is the product of (1 + λ) over all eigenvalues λ of

A, namely,

det(I +A) = (1 + n/2)(1− n/2) = 1− n2/4. �

Motivation. An n× n matrix A with the property that Ajk depends only on j − k

(mod n) is called a circulant matrix. Such a matrix always has v(0), . . . , v(n−1) as
eigenvectors. In this problem, A is not circulant but A2 is. See Solution 3 to 1988B5
for more on circulant matrices.

Solution 2. As in Solution 1, to compute det(I + A), it suffices to compute the
eigenvalues of A. Let C be the vector with components (cos θ, cos 2θ, . . . , cosnθ), and
let D be the vector with components (sin θ, sin 2θ, . . . , sinnθ). If we identify C and D
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with the corresponding n× 1 matrices, then the addition formula
cos(j + k)θ = cos jθ cos kθ − sin jθ sin kθ

implies the matrix identity A = CCT −DDT . Since CCT and DDT are matrices of
rank 1, A has rank at most 2. In fact, the image of A (as a linear transformation on
column vectors) is spanned by C and D. Thus the zero eigenspace of A has dimension
at least n− 2, and the remaining eigenspaces lie in the span of C and D.
Now

n =
n∑

j=1

(
cos2 jθ + sin2 jθ

)
= C · C +D ·D

and

0 =
n∑

j=1

(
e2πijn

)2
=

n∑
j=1

(
cos2 jθ − sin2 jθ + 2i cos jθ sin jθ

)
= C · C −D ·D + 2iC ·D.

Therefore, C · C = D ·D = n/2 and C ·D = 0. We now compute

AC =
(
CCT −DDT

)
C = C(C · C)−D(D · C) = (n/2)C

AD =
(
CCT −DDT

)
D = C(C ·D)−D(D ·D) = −(n/2)D

and conclude that the two remaining eigenvalues of A are n/2 and −n/2. �

B6. (3, 5, 5, 0, 0, 0, 0, 0, 3, 0, 80, 109)
Let S be a finite set of integers, each greater than 1. Suppose that for

each integer n there is some s ∈ S such that gcd(s, n) = 1 or gcd(s, n) = s.
Show that there exist s, t ∈ S such that gcd(s, t) is prime.

Solution. Let n be the smallest positive integer such that gcd(s, n) > 1 for all s
in n; note that n has no repeated prime factors. By the condition on S, there exists
s ∈ S which divides n.
On the other hand, if p is a prime divisor of s, then by the minimality of n, n/p is

relatively prime to some element t of S. Since n cannot be relatively prime to t, t is
divisible by p, but not by any other prime divisor of s (any such prime divides n/p).
Thus gcd(s, t) = p, as desired. �
Remark. The problem fails if S is allowed to be infinite. For example, let p1, p2, . . .

be distinct primes and let S = {p1p2, p3p4, p5p6, . . . }.
Remark. One can rephrase the problem in combinatorial terms, by replacing each

integer n with the sequence (n2, n3, n5, . . . ), where np is the exponent of p in the
factorization of n.
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A1. (61, 9, 5, 0, 0, 0, 0, 0, 14, 54, 41, 11)
Let A be a positive real number. What are the possible values of

∑∞
j=0 x

2
j ,

given that x0, x1, . . . are positive numbers for which
∑∞

j=0 xj = A?

Answer. The possible values comprise the interval (0, A2).

Solution 1. Since all terms in the series are positive, we may rearrange terms to
deduce

0 <
∑

x2
i <

∑
x2
i +
∑
i<j

2xixj =
(∑

xi

)2

= A2.

Thus it remains to show that each number in (0, A2) is a possible value of
∑

x2
i .

We use geometric series. Given 0 < r < 1, there is a geometric series
∑

xi with
common ratio r and sum A: it has x0/(1−r) = A so x0 = (1−r)A and xj = rj(1−r)A.
Then ∞∑

j=0

x2
j =

x2
0

1− r2
=
1− r

1 + r
A2.

To make this equal a given number B ∈ (0, A2), take r = (A2 −B)/(A2 +B). �

Solution 2. As in Solution 1, we prove 0 <
∑

x2
i < A2, and it remains to show

that each number in (0, A2) is a possible value of
∑

x2
i . There exists a series of positive

numbers
∑

xi with sum A. Then x0/2, x0/2, x1/2, x1/2, x2/2, . . . also sums to A

but its squares sum to half the previous sum of squares. Iterating shows that the sum
of squares can be arbitrarily small.
Given any series

∑
xi of positive terms with sum A, form a weighted average of it

with the series A+0+0+ · · · ; in other words, choose t ∈ (0, 1) and define a new series
of positive terms

∑
yi by setting y0 = tx0 + (1 − t)A and yi = txi for i ≥ 1. Then∑

yi = A, and ∑
y2
i = t2

∑
x2
i + 2t(1− t)x0A+ (1− t)2A2.

As t runs from 0 to 1, the Intermediate Value Theorem shows that this quadratic
polynomial in t takes on all values strictly between

∑
x2
i and A2. Since

∑
x2
i can be

made arbitarily small, any number in (0, A2) can occur as
∑

y2
i . �

A2. (150, 1, 0, 0, 0, 0, 0, 0, 1, 0, 23, 20)
Prove that there exist infinitely many integers n such that n, n+ 1, n+ 2

are each the sum of two squares of integers. [Example: 0 = 02+02, 1 = 02+12,
and 2 = 12 + 12.]

In all of the following solutions, we take n = x2 − 1. Then n + 1 = x2 + 02,
n+ 2 = x2 + 12 and it suffices to exhibit infinitely many x so that x2 − 1 is the sum
of two squares.

Solution 1. Let a be an even integer such that a2+1 is not prime. (For example,
choose a = 10k+2 for some integer k ≥ 1, so that a2+1 = 100k2+40k+5 is divisible
by 5.) Then we can write a2+1 as a difference of squares x2− b2, by factoring a2+1
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as rs with r ≥ s > 1, and setting x = (r + s)/2, b = (r − s)/2. (These are integers
because r and s must both be odd.) It follows that x2 − 1 is the sum of two squares
a2 + b2, as desired. �
Solution 2. The equation u2 − 2v2 = 1 is an example of Pell’s equation [NZM,

Section 7.8], so it has infinitely many solutions, and we can take x = u. �
Remark. The positive integer solutions to u2−2v2 = 1 are the pairs (u, v) satisfying

u+ v
√
2 = (1+

√
2)2n for some n ≥ 1. Incidentally, the positive possibilities for v are

the same as the odd terms in the sequence (an)n≥0 of Problem 1999A3.

Solution 3. Take x = 2a2 + 1; then x2 − 1 = (2a)2 + (2a2)2. �
Solution 4 (Abhinav Kumar). If x2 − 1 is the sum of two squares, then so is

x4 − 1, using
x4 − 1 = (x2 − 1)(x2 + 1)

and the identity

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2 (1)

(obtained by computing the norm of (a+ bi)(c+di) in two ways). Hence by induction
on n, if x2 − 1 is the sum of two squares (for instance, if x = 3) then so is (x2n

)2 − 1
for all nonnegative integers n. �
Related question. Let S = { a2+ b2 : a, b ∈ Z }. Show that S does not contain four

consecutive integers. But show that S does contain a (nonconstant) 4-term arithmetic
progression.

Related question. Does S contain an arithmetic progression of length k for every
integer k ≥ 1? This is currently an unsolved problem! A positive answer would follow
from either of the following conjectures:

• Dickson’s Conjecture. Given linear polynomials a1n+ b1, . . . , akn+ bk in n, with
ai, bi ∈ Z and ai > 0 for all i, such that no prime p divides (a1n+b1) · · · (akn+bk)
for all n ∈ Z, there exist infinitely many integers n ≥ 1 such that the values
a1n+b1, . . . , akn+bk are simultaneously prime. (The hypothesis that p not divide
(a1n+ b1) · · · (akn+ bk) is automatic if p > k and p � gcd(a1, b1) · · · gcd(ak, bk), so
checking it for all p is a finite computation.)
The special case a1 = · · · = ak = 1 of Dickson’s Conjecture is the qualitative

form of the Hardy-Littlewood Prime k-tuple Conjecture, which itself is a gener-
alization of the Twin Prime Conjecture, which is the statement that there exist
infinitely many n ≥ 1 such that n and n+ 2 are both prime. On the other hand,
Dickson’s Conjecture is a special case of “Hypothesis H” of Schinzel and Sierpiński,
in which the linear polynomials are replaced by distinct irreducible polynomials
f1(n), . . . , fk(n) with positive leading coefficients. Moreover, for each of these
conjectures, there is a heuristic that predicts that the number of n less than or
equal to x satisfying the conclusion is (c+ o(1))x/(ln x)k as x→∞, where c is a
constant given by an explicit formula in terms of the k polynomials. (See 1988A3
for the definition of o(1).) The quantitative form of Hypothesis H is known as the
Bateman-Horn Conjecture. For more on all of these conjectures, see Chapter 6
of [Ri], especially pages 372, 391, and 409.
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• A conjecture of P. Erdős. If T is a set of positive integers such that
∑

n∈T 1/n
diverges, then T contains arbitrarily long finite arithmetic progressions. Erdős,
who frequently offered cash rewards for the solution to problems, offered his
highest-valued reward of $3000 for a proof or disproof of this statement. See [Gr1,
p. 24] or [Guy, p. 16].

Let us explain why either of the two conjectures above would imply that our set
S contains arithmetic progressions of arbitrary length. We will use the theorem
mentioned in 1991B5, that any prime congruent to 1 modulo 4 is in S.
Fix k ≥ 4, and let @i(n) = 4n + 1 + i(k!) for i = 1, 2, . . . , k. Let P (n) =

@1(n)@2(n) . . . @k(n). If p is prime and p ≤ k, then p does not divide P (0). If p is
prime and p > k, then for each i, the set {n ∈ Z : p | @i(n) } is a residue class
modulo p, so there remains at least one residue class modulo p consisting of n such
that p � P (n). Hence Dickson’s Conjecture predicts that there are infinitely many n

such that @1(n), . . . , @k(n) are simultaneously prime. Each of these k primes would
be congruent to 1 modulo 4, and hence would be in S.
Now we show that the conjecture of Erdős implies that S contains arithmetic

progressions of arbitrary length, and even better, that the subset T of primes congruent
to 1 mod 4 contains such progressions. It suffices to prove that

∑
p∈T 1/p diverges,

or equivalently that lims→1+
∑

p∈T 1/p
s = ∞. The proof of Dirichlet’s Theorem on

primes in arithmetic progressions gives a precise form of this, namely:

lim
s→1+

∑
p∈T

1
ps

/(ln 1
s− 1

)
=
1
2
.

Since lims→1+ ln 1
s−1 =∞, this implies lims→1+

∑
p∈T 1/p

s =∞.
More generally, one says that a subset P of the set of prime numbers has Dirichlet

density α if

lim
s→1+

∑
p∈P

1
ps

/(ln 1
s− 1

)
= α.

Dirichlet’s Theorem states that if a and m are relatively prime positive integers,
then the Dirichlet density of the set of primes congruent to a modulo m equals
1/φ(m), where φ(m) is the Euler φ-function defined in 1985A4. See Theorem 2 in
Chapter VI, §4 of [Se1] for details.

A3. (64, 20, 20, 0, 0, 0, 0, 0, 23, 9, 27, 32)
The octagon P1P2P3P4P5P6P7P8 is inscribed in a circle, with the vertices

around the circumference in the given order. Given that the polygon
P1P3P5P7 is a square of area 5 and the polygon P2P4P6P8 is a rectangle of
area 4, find the maximum possible area of the octagon.

Answer. The maximum possible area is 3
√
5.

Solution. (See Figure 42.) We deduce from the area of P1P3P5P7 that the radius
of the circle is

√
5/2. If s > t are the sides of the rectangle P2P4P6P8, then s2+t2 = 10

and st = 4, so (s+ t)2 = 18 and (s− t)2 = 2. Therefore s+ t = 3
√
2 and s− t =

√
2,



Solutions: The Sixty-First Competition (2000) 281

P1

P2

P3

P4

P5

P6

P7

FIGURE 42.

yielding s = 2
√
2 and t =

√
2. Without loss of generality, assume that P2P4 = 2

√
2

and P4P6 =
√
2.

For notational ease, let [Q1Q2 · · ·Qn] denote the area of the polygon Q1Q2 · · ·Qn.
By symmetry, the area of the octagon can be expressed as

[P2P4P6P8] + 2[P2P3P4] + 2[P4P5P6].

Note that [P2P3P4] is
√
2 times the distance from P3 to P2P4, which is maximized when

P3 lies on the midpoint of arc P2P4; similarly, [P4P5P6] is
√
2/2 times the distance

from P5 to P4P6, which is maximized when P5 lies on the midpoint of arc P4P6. Thus
the area of the octagon is maximized when P3 is the midpoint of arc P2P4 and P5

is the midpoint of arc P4P6 (in which case P1P3P5P7 is indeed a square). In this
case, the distance from P3 to P2P4 equals the radius of the circle minus half of P4P6,
so [P2P3P4] =

√
5 − 1. Similarly [P4P5P6] =

√
5/2 − 1, so the area of the octagon

is 3
√
5. �

A4. (10, 2, 2, 0, 0, 0, 0, 0, 6, 2, 43, 130)
Show that the improper integral

lim
B→∞

∫ B

0

sin(x) sin(x2) dx

converges.

Solution 1. We may shift the lower limit to 1 without affecting convergence.
That done, we use integration by parts:∫ B

1

sinx sin x2 dx =
∫ B

1

sinx
2x

sinx2(2xdx)

= − sinx
2x

cosx2

∣∣∣∣B
1

+
∫ B

1

(
cosx
2x

− sinx
2x2

)
cosx2 dx.
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Now sinx
2x cosx2 tends to 0 as x → ∞, and the integral of sinx

2x2 cosx2 converges
absolutely as B →∞ by comparison to 1/x2. It remains to consider∫ B

1

cosx
2x

cosx2 dx =
∫ B

1

cosx
4x2

cosx2(2xdx)

=
cosx
4x2

sinx2
∣∣∣B
0
−
∫ B

1

−2 cosx− x sin x

4x3
sinx2 dx.

Now cosB
4B2 sinB2 → 0 as B →∞, and the final integral converges absolutely as B →∞

by comparison to the integral of 1/x2. �

Solution 2. The addition formula for cosine implies that

sinx sin x2 =
1
2
(
cos(x2 − x)− cos(x2 + x)

)
.

The substitution x = y + 1 transforms x2 − x into y2 + y, so it suffices to show that∫∞
0
cos(x2 + x) dx converges. Now substitute u = x2 + x; then x = −1/2 +√u+ 1/4

and ∫ ∞

0

cos(x2 + x) dx =
∫ ∞

0

cosu
2
√

u+ 1/4
du. (1)

The latter integrand is bounded, so we may replace the lower limit of integration with
π/2 without affecting convergence. Moreover, the integrand tends to zero as u→∞,
so the error introduced by replacing the upper limit of integration in∫ B

π/2

cosu
2
√

u+ 1/4
du

by the nearest odd integer multiple of π/2 tends to zero as B → ∞. Therefore (1)
converges if and only if

∑∞
n=1 an converges, where

an =
∫ (n+ 1

2 )π

(n− 1
2 )π

cosu
2
√

u+ 1/4
du = (−1)n

∫ π/2

−π/2

cos t
2
√

t+ nπ + 1/4
dt.

The integrand in the last expression decreases to 0 uniformly as n → ∞. Therefore
an alternate in sign, tend to 0 as n→∞ and satisfy |an| ≥ |an+1|. By the alternating
series test,

∑∞
n=1 an converges, so the original integral converges. �

Remark. One can also combine the first two solutions, by rewriting in terms of
cos(x2 + x) and then integrating by parts.

Solution 3. The integrand is the imaginary part of (sinx)eix
2
, and sinx =

eix−e−ix

2i , so it suffices to show that∫ ∞

0

eix
2+ix dx and

∫ ∞

0

eix
2−ix dx

converge. The functions eix
2±ix are entire, so for any real B > 0, Cauchy’s

Theorem [Ah, p. 141] applied to the counterclockwise triangular path with vertices at
0, B, and B +Bi in the complex plane (Figure 43) yields∫ B

0

eix
2±ix dx =

∫ B

0

ei(t+ti)2±i(t+ti)(1 + i) dt−
∫ B

0

ei(B+ui)2±i(B+ui)i du. (2)
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0 B

z = t

z = B + ti

z = t + i(1 )

B + Bi

FIGURE 43.

Since
|ei(t+ti)2±i(t+ti)| = e−2t2∓t ≤ e−t2

for t ≥ 1, and
|ei(B+ui)2±i(B+ui)| = e−2Bu∓u ≤ e−u

once B ≥ 1, the two integrals on the right of (2) have finite limits as B → ∞, as
desired. �
Remark. By extending the previous analysis, we can evaluate

I(t) =
∫ ∞

0

(sin tx)eix
2
dx

for t ∈ R in terms of generalized hypergeometric functions, and hence we can evaluate
the integral of the problem, which is Im(I(1)). (A definition of the generalized
hypergeometric functions is given below; for more on these functions, see [O, p. 168].)
Since

∫∞
0

e−2Bu+u du → 0 as B → ∞, the Cauchy’s Theorem argument implies that
the path of integration in ∫ ∞

0

(sinx)eix
2
dx

can be changed to the diagonal ray x = eiπ/4y with y ranging from 0 to ∞, without
changing its value. More generally, this argument shows that for any t ∈ R,

I(t) =
∫ ∞

0

sin(eiπ/4ty)e−y2
eiπ/4 dy.

The substitution z = y2 transforms this into

1
2

∫ ∞

0

eiπ/4z−1/2 sin(eiπ/4t
√
z)e−z dz.

We now expand in a power series in t and integrate term-by-term: this is justified
by the Dominated Convergence Theorem [Ru, p. 321], since the series of integrals of
absolute values of the terms,

∞∑
n=0

∫ ∞

0

z−1/2 |t
√
z|2n+1

(2n+ 1)!
e−z dz =

∞∑
n=0

n! |t|2n+1

(2n+ 1)!
,
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converges for any real t, by the Ratio Test. (We used the identity∫ ∞

0

zne−z dz = Γ(n+ 1) = n!.)

Thus

I(t) =
1
2

∞∑
n=0

ei(2n+2)π/4(−1)nt2n+1

(2n+ 1)!

∫ ∞

0

zne−z dz =
1
2

∞∑
n=0

(−1)nin+1n! t2n+1

(2n+ 1)!

Im(I(t)) =
t

2

∞∑
m=0

(−1)m(2m)! t4m
(4m+ 1)!

.

Pairing the factor j in (2m)! with the factor 2j of (4m+ 1)!, and dividing numerator
and denominator by 2m factors of 4, which we distribute among the odd factors of
(4m+ 1)! in the denominator, we obtain

Im(I(t)) =
(

t

2

)
1F2

(
1;
3
4
,
5
4
;− t4

64

)
,

where the generalized hypergeometric function is defined by

pFq (a1, . . . , ap; b1, . . . , bq; z) =
∞∑

m=0

(a1)m · · · (ap)m
(b1)m · · · (bq)m · z

m

m!
,

using the Pochhammer symbol

(a)n = a(a+ 1) · · · (a+ n− 1) = Γ(a+ n)
Γ(a)

.

(One can similarly evaluate Re(I(t)).) In particular, the integral in the original
problem converges to

Im(I(1)) =
(
1
2

)
1F2

(
1;
3
4
,
5
4
;− 1

64

)
.

Remark. One can also show that∫ ∞

0

sin(bx) sin
(
ax2
)
dx =

√
π

2a
(
cos
(
b2/4a

)
C
(
b2/4a

)
+ sin

(
b2/4a

)
S
(
b2/4a

))
where the two Fresnel integrals are

C(x) =
1√
2π

∫ x

0

cos t
dt√
t

and

S(x) =
1√
2π

∫ x

0

sin t
dt√
t
.

Similarly,∫ ∞

0

sin(bx) cos
(
ax2
)
dx =

√
π

2a
(
sin
(
b2/4a

)
C
(
b2/4a

)− cos (b2/4a)S (b2/4a)) .
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If sin(bx) is replaced by cos(bx) in the above two integrals, then they can be evaluated
in terms of elementary functions:∫ ∞

0

cos(bx) sin(ax2) dx =
1
2

√
π

2a
(
cos(b2/4a)− sin(b2/4a))

∫ ∞

0

cos(bx) cos(ax2) dx =
1
2

√
π

2a
(
cos(b2/4a) + sin(b2/4a)

)
.

All of these integrals are originally due to Cauchy [Tal].

Remark. Oscillatory integrals like the one in this problem occur frequently in
analysis and mathematical physics. They can be bounded or evaluated by the methods
given here in some cases, and often can be estimated by a technique known as the
stationary phase approximation [CKP, Section 6.4]. This method was first used by
Stokes, to obtain an asymptotic representation for the function

f(x) =
∫ ∞

0

cos
(
x(ω3 − ω)

)
dω

valid for large positive real values of x.

A5. (30, 11, 4, 0, 0, 0, 0, 0, 2, 0, 19, 129)
Three distinct points with integer coordinates lie in the plane on a circle

of radius r > 0. Show that two of these points are separated by a distance
of at least r1/3.

Solution 1. We will prove a stronger result, with r1/3 replaced by (4r)1/3. Let A,
B, C be the three points. Examining small triangles with integer coordinates shows
that either 4ABC has sides 1, 1,

√
2, or else some side has length at least 2 and hence

r ≥ 1. In the first case, r =
√
2/2, so (4r)1/3 =

√
2 and we are done. So assume r ≥ 1.

If the minor arcs AB, BC, CA cover the circle, then one has measure at least 2π/3,
and the length of the corresponding chord is at least

2r sin(π/3) = r
√
3 > (4r)1/3,

where the last equality follows from r ≥ 1. Thus we may assume, without loss of
generality, that C lies in the interior of minor arc AB.
Since A, B, C have integer coordinates, the area K of 4ABC is half an integer (see

the first remark in 1990A3). Thus K ≥ 1/2. Let 2θ be the measure of minor arc AB.
Then the base AB of 4ABC is 2r sin θ, and the height is at most r − r cos θ, with
equality if and only if C is the midpoint of arc AB (see Figure 44). Thus

1
2
≤ K

≤ 1
2
(2r sin θ)(r − r cos θ)

=
r2 sin θ(1− cos2 θ)

1 + cos θ

=
r2 sin3 θ

1 + cos θ
≤ r2 sin3 θ (since 0 < θ ≤ π/2),
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FIGURE 44.
The point C on arc AB maximizing the height of �ABC in Solution 1 to 2000A5.

so sin θ ≥ 1/(2r2)1/3 and

AB = 2r sin θ ≥ 2r/(2r2)1/3 = (4r)1/3. �

Related question. Examine Solution 1 to prove that if the longest side of 4ABC

has length equal to (4r)1/3, it is an isosceles right triangle with sides 1, 1,
√
2. (We

will prove a stronger result soon.)

Solution 2. We will prove the result with r1/3 replaced by (2r)1/3, using:

Lemma. If a, b, c are the lengths of sides of a triangle with area K and circumradius
r, then K = abc/(4r).

Proof. Let A, B, C be the vertices opposite the sides of length a, b, c, respectively.
If we view BC as base, the height is b sinC, so K = 1

2ab sinC. Now use the Extended
Law of Sines,

sinA
a

=
sinB
b

=
sinC
c

=
1
2r

,

to replace sinC by c/(2r). �

Let a, b, c be the distances between the points. By the lemma, the area of the
triangle with the three points as vertices is abc/(4r). On the other hand, the area is
half an integer (see the first remark in 1990A3). Thus abc/(4r) ≥ 1/2, and

max{a, b, c} ≥ (abc)1/3 ≥ (2r)1/3. �

Stronger result. In the notation of Solution 2, we prove that if r is sufficiently
large, then max{a, b, c} ≥ 2r1/3.
If K ≥ 1, then the lower bound (4r)1/3 of Solution 1 is improved to 2r1/3, and we

are done. Therefore assume K = 1/2. Without loss of generality, assume a ≤ b ≤ c.
Suppose that c < 2r1/3. Then c3 < 8r = 8(abc/4K) = 4abc, so 4ab > c2. If a ≤ 1

2r
1/3,

then abc < 1
2r

1/3(2r1/3)(2r1/3) = 2r, contradicting abc/(4r) = 1/2 (the lemma of
Solution 2). Thus 1

2r
1/3 < a ≤ b ≤ c < 2r1/3.

Viewing AB as base of 4ABC, the height h equals 1/c, since K = 1/2. Let a′

and b′ be the lengths of the projections of the sides of lengths a and b onto AB (see
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FIGURE 45.
Defining a′ and b′, and constructing the parallelogram ACBD.

Figure 45). Since AB is the longest side of 4ABC, point C lies directly above the
segment AB, so a′ + b′ = c. By the Pythagorean Theorem,

a′ =
√

a2 − h2 =

√
a2

(
1− 1

a2c2

)

= a

(
1−O

(
1

a2c2

))
= a−O

(
1

ac2

)
= a−O

(
1
c3

)
,

and similarly b′ = b−O(1/c3).
If we form a parallelogram ACBD as in Figure 45, then D also has integer

coordinates, so

1 ≤ CD2 = (a′ − b′)2 + (2h)2 = (a′ − b′)2 +O(1/c2),

by the Pythagorean Theorem.
Now

4ab = 4
(
a′ +O(1/c3)

)(
b′ +O(1/c3)

)
= 4a′b′ +O(max{a′, b′}/c3)
= 4a′b′ +O(1/c2)

= (a′ + b′)2 − (a′ − b′)2 +O(1/c2)

≤ c2 − (1−O(1/c2)
)
+O(1/c2)

= c2 − 1 +O(1/c2).

If r is sufficiently large, then c ≥ (4r)1/3 is also large, so this contradicts 4ab > c2.

Stronger result. With a little more work, we can prove that max{a, b, c} ≥ 2r1/3

except when a, b, c are 1, 1,
√
2 or 1,

√
2,
√
5 (in some order). We continue with

the notation and results introduced in the previous proof. Let d = a′ − b′, so
d2 +4h2 = CD2 ≥ 1. Thus 1− 4h2 ≤ d2 ≤ c2. Also a′ = (c+ d)/2 and b′ = (c− d)/2.
Recall that in a counterexample, K = 1/2 and 4ab > c2. Thus

c4 < (4ab)2 = 16(a′2 + h2)(b′2 + h2) =
(
(c+ d)2 + 4h2

)(
(c− d)2 + 4h2

)
.
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For fixed c, the right-hand side is a monic quadratic in d2 so its maximum value for
d2 ∈ [1 − 4h2, c2] is attained at an endpoint. In other words, the inequality remains
true either when d2 is replaced by 1−4h2 or when d2 is replaced by c2. At d2 = 1−4h2,
the inequality becomes

c4 < (c2 + 2cd+ 1)(c2 − 2cd+ 1) = (c4 + 2c2 + 1)− 4c2(1− 4h2),

which, since h = 1/c, is equivalent to c2 < 17/2. At d2 = c2, the inequality becomes

c4 < (4c2 + 4h2)(4h2) = 16(1 + c−4),

which implies c4 < 17. Thus in either case, c2 < 17/2. But c2 is a sum of integer
squares, so c2 ∈ {1, 2, 4, 5, 8}. The only lattice triangles of area 1/2 with such a value
of c2 are those with side lengths 1, 1,

√
2 and 1,

√
2,
√
5.

Remark. The result just proved is nearly best possible. We now construct examples
with r →∞ such that max{a, b, c} = 2r1/3 +O(r−1/3).
Let n be a large positive integer, and take the circle passing through (0, 0),

(n, 1), (2n + 1, 2). Then the three sides of the triangle are
√
n2 + 1,

√
(n+ 1)2 + 1,√

(2n+ 1)2 + 4, and K = 1/2, so the lemma of Solution 2 implies

r =
1
2

√
(n2 + 1)(n2 + 2n+ 2)(4n2 + 4n+ 5).

Thus

2r1/3 = 2
(
(n2 + 1)(n2 + 2n+ 2)(n2 + n+ 5/4)

)1/6
= 2n

(
(1 + n−2)(1 + 2n−1 + 2n−2)(1 + n−1 + (5/4)n−2)

)1/6
= 2n+ 1 +

5
6
n−1 +O(n−2),

and similarly

max{a, b, c} =
√
(2n+ 1)2 + 4 = 2n+ 1 + n−1 +O(n−2),

so
max{a, b, c} = 2r1/3 +

1
6
n−1 +O(n−2) = 2r1/3 +

1
6
r−1/3 +O(r−2/3).

A6. (1, 2, 2, 0, 0, 0, 0, 0, 3, 19, 57, 111)
Let f(x) be a polynomial with integer coefficients. Define a sequence

a0, a1, . . . of integers such that a0 = 0 and an+1 = f(an) for all n ≥ 0. Prove
that if there exists a positive integer m for which am = 0 then either a1 = 0
or a2 = 0.

Solution 1. Recall that if f(x) is a polynomial with integer coefficients, thenm−n

divides f(m)−f(n) for any integers m and n. In particular, if we put bn = an+1−an,
then bn divides bn+1 for all n. On the other hand, we are given that a0 = am = 0,
which implies that a1 = am+1 and so b0 = bn. If b0 = 0, then a0 = a1 = · · · = am and
we are done. Otherwise, |b0| = |b1| = |b2| = · · · , so bn = ±b0 for all n.
Now b0+ · · ·+ bm−1 = am− a0 = 0, so half of the integers b0, . . . , bm−1 are positive

and half are negative. In particular, there exists an integer 0 < k < m such that
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bk−1 = −bk, which is to say, ak−1 = ak+1. From this it follows that an = an+2 for all
n ≥ k − 1; in particular, for n = m, we have

0 = am = am+2 = f
(
f(am)

)
= f
(
f(a0)

)
= a2. �

Solution 2. Choose m ≥ 1 minimal such that am = 0. If ai = aj for some
0 ≤ i < j ≤ m − 1, then m − j applications of f lead to am−(j−i) = am = 0,
contradicting the minimality of m. Hence, for arbitrary i and j, we have ai = aj if
and only if i− j is divisible by m.
If m = 1, we are done. Otherwise let ai > aj be the maximum and minimum

terms of a0, . . . , am−1. Then ai − aj divides f(ai) − f(aj) = ai+1 − aj+1, which is
nonzero since (i + 1) − (j + 1) = i − j is not divisible by m. On the other hand,
|ai+1−aj+1| ≤ ai−aj because ai and aj are the maximum and minimum of all terms
in the sequence. Therefore equality must occur, which implies that ai+1 and aj+1

equal ai and aj in some order. If ai+1 = ai, then m = 1; otherwise ai+1 = aj implies
ai+2 = aj+1, which with aj+1 = ai yields ai+2 = ai, so m divides 2. Hence m is 1 or
2. �
Remark. A special case of this problem (the fact that a3 = 0 implies a1 = 0 or

a2 = 0) was Problem 1 on the 1974 USA Mathematical Olympiad; the solution given
in [USAMO7286] is similar to Solution 1 above.

Literature note. By a shift of variable, it follows that for f(x) ∈ Z[x], if a ∈ Z is
such that a, f(a), f(f(a)), . . . is periodic, then the minimal period is at most 2. See
Chapter XII of [Na] for many other results of this type.
If one replaces Z everywhere with Q, then the period can be arbitrarily long: given

distinct a1, . . . , an ∈ Q, Lagrange interpolation (see 1998B6) lets one construct a
polynomial f(x) ∈ Q[x] such that f(ai) = ai+1 for 1 ≤ i ≤ n− 1 and f(an) = a1. On
the other hand, there might be a bound on the period in terms of the degree of the
polynomial f(x) ∈ Q[x]. Whether such a bound exists is unknown even in the case
of quadratic polynomials. For quadratic polynomials, Lagrange interpolation shows
that periods 1, 2, and 3 are possible; it is also true (but much harder to prove) that
periods 4 and 5 are not possible. See [Mort], [MS], [FPS], and [P2] for more details.

B1. (126, 14, 4, 0, 0, 0, 0, 0, 8, 14, 14, 15)
Let aj , bj , cj be integers for 1 ≤ j ≤ N . Assume, for each j, at least one of

aj , bj , cj is odd. Show that there exist integers r, s, t such that raj + sbj + tcj
is odd for at least 4N/7 values of j, 1 ≤ j ≤ N .

Solution. Consider the seven triples (r, s, t) with r, s, t ∈ {0, 1} not all zero. If
aj , bj , cj are not all even, then four of the sums raj + bsj + tcj with r, s, t ∈ {0, 1} are
even and four are odd. (For example, if aj is odd, then flipping r changes the sum
between even and odd, so half of the sums must be even and half odd.) Of course the
sum with r = s = t = 0 is even, so at least four of the seven triples with r, s, t not all
zero yield an odd sum. In other words, at least 4N of the quadruples (r, s, t, j) yield
odd sums. By the Pigeonhole Principle, there is a triple (r, s, t) for which at least
4N/7 of the sums are odd. �
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Reinterpretation. If (r, s, t) is chosen randomly from the seven triples with
(r, s, t) ∈ {0, 1} not all zero, then for each j, the probability that raj + sbj + tcj
is odd is 4/7, so the expected number of j for which this sum is odd equals 4N/7. For
some particular choice of (r, s, t), the number of such j must be greater than or equal
to the expectation.

B2. (114, 7, 2, 0, 0, 0, 0, 0, 2, 6, 35, 29)
Prove that the expression

gcd(m,n)
n

(
n

m

)
is an integer for all pairs of integers n ≥ m ≥ 1.

Solution 1. Let a = m
gcd(m,n) and b = n

gcd(m,n) . Then

a

b

(
n

m

)
=

m

n

(
n

m

)
=
(
n− 1
m− 1

)
is an integer, so b | a(nm). But gcd(a, b) = 1, so b | (nm). Hence

gcd(m,n)
n

(
n

m

)
=
1
b

(
n

m

)
is an integer. �

Solution 2. Since gcd(m,n) is an integer linear combination ofm and n, it follows
that

gcd(m,n)
n

(
n

m

)
is an integer linear combination of the integers

m

n

(
n

m

)
=
(
n− 1
m− 1

)
and

n

n

(
n

m

)
=
(
n

m

)
and hence is itself an integer. �

Solution 3. To show that a nonzero rational number is an integer, it suffices to
check that the exponent of each prime in its factorization is nonnegative. So let p be
a prime, and suppose that the highest powers of p dividing n and m are pa and pb,
respectively. If a ≤ b, then p has a nonnegative exponent in both gcd(m,n)/n and in(
n
m

)
. If a > b, it suffices to show that

(
n
m

)
is divisible by pa−b, but this follows from

Kummer’s Theorem, described in Solution 2 to 1997A5. �

B3. (5, 3, 3, 1, 0, 0, 0, 16, 9, 26, 3, 129)
Let f(t) =

∑N
j=1 aj sin(2πjt), where each aj is real and aN is not equal to 0.

Let Nk denote the number of zeros† (including multiplicities) of dkf
dtk

. Prove
that

N0 ≤ N1 ≤ N2 ≤ · · · and lim
k→∞

Nk = 2N.

† The proposers intended for Nk to count only the zeros in the interval [0, 1).
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Solution. We first show Nk ≤ 2N for all k ≥ 0. Write f (k)(t) for dfk

dtk
. If we use

the identity sinx = (eix − e−ix)/(2i) and set z = e2πit, then

f (k)(t) =
1
2i

N∑
j=1

(2πij)kaj(zj − z−j)

is rewritten as z−N times a polynomial of degree 2N in z. Hence as a function of
z, it has at most 2N zeros. Therefore fk(t) has at most 2N zeros in [0, 1); that is,
Nk ≤ 2N . In particular, f (k) has at most finitely many zeros in [0, 1).
To prove Nk ≤ Nk+1, we use Rolle’s Theorem, and the fact that at every zero of

f , f ′ has a zero of multiplicity one less. If 0 ≤ t1 < t2 < · · · < tr < 1 are the zeros
of f (k) in [0, 1), occurring with respective multiplicities m1, . . . ,mr, then f (k+1) has
at least one zero in each of the open intervals (t1, t2), (t2, t3), . . . , (tr−1, tr), (tr, t1+1);
we may translate the part [1, t1 + 1) of the last interval to [0, t1), on which f (k+1)

takes the same values. This gives r zeros of f (k+1). Adding to these the multiplicities
m1 − 1, . . . ,mr − 1 at t1, . . . , tr, we find that f (k+1) has at least m1 + · · ·+mr = Nk

zeros. Thus Nk+1 ≥ Nk.
To establish that Nk → 2N , it suffices to prove N4k ≥ 2N for sufficiently large k.

This we do by making precise the assertion that

f (4k)(t) =
N∑
j=1

(2πj)4kaj sin(2πjt)

is dominated by the term with j = N at each point t = tm = (2m + 1)/(4N) for
m = 0, 1, . . . , 2N − 1. At t = tm, the j = N term is

(2πN)4kaN sin(2πNtm) = (−1)m(2πN)4kaN .

The absolute value of the sum of the other terms at t = tm, divided by the j = N

term, is bounded by

|a1|
(
1
N

)4k

+ · · ·+ |aN−1|
(
N − 1
N

)4k

,

which tends to 0 as k →∞; in particular, this ratio is less than 1 for sufficiently large
k. Then f (4k)(tm) has the same sign as (−1)m(2πN)4kaN . In particular, the sequence

f (4k)(t0), f (4k)(t1), . . . , f (4k)(t2N−1)

alternates in sign, when k is sufficiently large. Between these points (again including
a final “wraparound” interval) we find 2N sign changes of f (4k). By the Intermediate
Value Theorem , this implies N4k ≥ 2N for large k, and we are done. �
Remark. A similar argument was used in Solution 1 to 1989A3.

Remark. A more analytic proof that Nk → 2N involves the observation
that (2πN)−4kf (4k)(x) and its derivative converge uniformly to aN sin(2πNt) and
2πNaN cos(2πNt), respectively, on [0, 1]. That implies that for large k, we can divide
[0, 1] into intervals on which f (4k)(x) does not change sign, and intervals on which
f (4k+1)(x) does not change sign while f (4k)(x) has a sign change.
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B4. (14, 5, 1, 0, 0, 0, 0, 0, 3, 6, 106, 60)
Let f(x) be a continuous function such that f(2x2 − 1) = 2xf(x) for all x.

Show that f(x) = 0 for −1 ≤ x ≤ 1.

Solution 1. Since x = −1/2 and x = 1 satisfy 2x2 − 1 = x, the given equation
implies f(−1/2) = −f(−1/2) and f(1) = 2f(1), so f(−1/2) and f(1) both equal 0.
The former equation can be rewritten

f
(
cos(2π/3 + 2πn)

)
= 0

for any n ∈ Z. Taking x = cos θ in the functional equation shows that if f(cos 2θ) = 0
and cos θ �= 0, then f(cos θ) = 0 as well. Therefore

f
(
cos
(
2−k(2π/3 + 2πn)

))
= 0

for all k, n ∈ Z with k ≥ 0. The numbers 2−k(2π/3+2πn) are dense in R, so continuity
of f(cosx) yields f(cos r) = 0 for all r ∈ R. Thus f is zero on [−1, 1]. �
Remark. We started with f(−1/2) = 0 instead of f(1) = 0 to avoid complications

arising from the condition cos θ �= 0 in the iteration.

Solution 2. For t real and not a multiple of π, write g(t) = f(cos t)
sin t . Then

g(t+ 2π) = g(t); furthermore, the given equation implies that for t not a multiple of
π/2,

g(2t) =
f(2 cos2 t− 1)
2 sin t cos t

=
2(cos t)f(cos t)
2 sin t cos t

= g(t).

In particular, for any integers n and k, we have

g
(
1 + nπ/2k−1

)
= g
(
2k + 2nπ

)
= g
(
2k
)
= g(1).

Since f is continuous, g is continuous where it is defined; but the set { 1 + nπ/2k−1 :
n, k ∈ Z } is dense in the reals (because π is irrational), and so g must be constant on
its domain. Since g(−t) = −g(t) for any t not a multiple of π, this constant must be
zero. Hence f(x) = 0 for x ∈ (−1, 1). Finally, setting x = 0 and x = 1 in the given
equation yields f(−1) = f(1) = 0 (which can also be deduced by continuity). �
Remark. A variation of the above solution starts by noting that for x = −1/2, we

have f(−1/2) = −f(−1/2) = 0, that is, f(cos(2π/3)) = 0. As above, we deduce that
f(cos θ) = 0 for θ = (2π/3 + 2n)/2k. These θ are dense in the interval [0, 2π].

Remark. We describe all functions f that satisfy the conditions of the problem: in
particular, we see that they need not be constant outside [−1, 1]. As shown above, f
must be zero on [−1, 1]. From the functional equation,

2xf(x) = f(2x2 − 1) = 2(−x)f(−x),

so f(x) = −f(−x); so it suffices to classify continuous functions f on [1,∞) with
f(1) = 0 that satisfy the functional equation.
Given such a function, the function g(t) = f(cosh t)

sinh t on (0,∞) is continuous and
satisfies g(2t) = g(t), so the function h(u) = g(eu) is continuous on R and periodic with
period ln 2. Conversely, given h : R → R continuous of period ln 2, set g(t) = h(ln t) for
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t > 0; then f(x) = g(cosh−1 x)
√
x2 − 1 for x > 1 and f(1) = 0 define an f satisfying

the conditions of the problem. (Continuity of f at 1 follows because h is bounded.)

B5. (29, 16, 14, 0, 0, 0, 0, 0, 13, 1, 11, 111)
Let S0 be a finite set of positive integers. We define finite sets S1, S2, . . .

of positive integers as follows: the integer a is in Sn+1 if and only if exactly
one of a− 1 or a is in Sn. Show that there exist infinitely many integers N

for which SN = S0 ∪ {N + a : a ∈ S0 }.

Solution. We claim that all integers N of the form 2k, with k a positive integer
and N > maxS0, satisfy the desired condition.
It follows from the definition of Sn that∑

j∈Sn

xj ≡ (1 + x)
∑

j∈Sn−1

xj (mod 2).

(When we write that two polynomials
∑

aix
i and

∑
bix

i in Z[x] are congruent modulo
2, we mean that ai ≡ bi (mod 2) for all i ≥ 0, or equivalently, that the two polynomials
are equal when considered in F2[x]. Thus for instance, x2 �≡ x (mod 2) as polynomials,
even though m2 ≡ m (mod 2) holds for any particular integer m.) By induction on
n, ∑

j∈Sn

xj ≡ (1 + x)n
∑
j∈S0

xj (mod 2).

From the identity (x+y)2 ≡ x2+y2 (mod 2) and induction on n, we have (x+y)2
k ≡

x2k

+y2k

(mod 2). (This also follows from Kummer’s Theorem, described in Solution 2
to 1997A5.) Hence if N = 2k for some k ≥ 1, then∑

j∈Sn

xj ≡ (1 + xN )
∑
j∈S0

xj .

If moreover N > maxS0, then SN = S0 ∪ {N + a : a ∈ S0 }, as desired. �
Remark. This solution can also be written in terms of binomial coefficients, without

reference to polynomials with mod 2 coefficients.

Remark. See 1989A5 for another problem involving generating functions modulo 2.

Related question. Problem 6 of the 1993 International Mathematical Olympiad
[IMO93] is related:

There are n lamps L0, . . . , Ln−1 in a circle (n > 1), where we denote
Ln+k = Lk. (A lamp at all times is either on or off.) Perform steps s0,
s1, . . . as follows: at step si, if Li−1 is lit, switch Li from on to off or vice
versa; otherwise do nothing. Initially, all lamps are on. Show that:

(a) There is a positive integer M(n) such that after M(n) steps all the lamps
are on again;

(b) If n = 2k, we can take M(n) = n2 − 1;
(c) If n = 2k + 1, we can take M(n) = n2 − n+ 1.
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B6. (8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 41, 145)
Let B be a set of more than 2n+1/n distinct points with coordinates of

the form (±1,±1, . . . ,±1) in n-dimensional space with n ≥ 3. Show that
there are three distinct points in B which are the vertices of an equilateral
triangle.

Solution. Let S be the set of points with all coordinates equal to ±1. For each
P ∈ B, let SP be the set of points in S which differ from P in exactly one coordinate.
Since there are more than 2n+1/n points in B, and each SP has n elements, the
cardinalities of the sets SP sum to more than 2n+1, which is to say, more than twice
the number of points in S. By the Pigeonhole Principle, there must be a point of S
in at least three of the sets, say in SP , SQ, SR. But then any two of P,Q,R differ in
exactly two coordinates, so PQR is an equilateral triangle of side length 2

√
2, by the

Pythagorean Theorem. �
Remark. Noam Elkies points out that when n = 2k, there exist sets of 2n+1/n =

2n−k+1 points having no subset of three points, each pair of which differ in two
coordinates. For example, for i = 1, . . . , k − 1, let Ti be the set of numbers in
{0, 1, . . . , n− 1} that, when expanded in base 2 as ∑ aj2j , have ai = 1. Then take B

to be the set of points (e1, . . . , en) ∈ S with∏
j∈T1

ej =
∏
j∈T2

ej = · · · =
∏

j∈Tk−1

ej = 1.

Now |B| = 2n−k+1, since we can choose ej for all j except 2, 22, . . . , 2k−1, and then
the condition

∏
j∈Ti

ej = 1 determines eti in terms of the ej already chosen. To see
that there cannot be three points in B, any pair of which differ in two coordinates,
suppose that such points exist; then there exist coordinates l,m, n at each of which
two of the three points are the same and the third is different. At least two of l,m, n

must have the same parity; suppose l and m have the same parity. Then there exists
i ∈ {1, . . . , k−1} such that Ti contains one of l and m but not the other. Hence at the
two points that only differ in coordinates l and m, the values of

∏
j∈Ti

ei are different.
This contradicts the definition of B, which says that both values should equal 1.

Remark. The construction of patterns such as in the previous remark is known as
design theory. This topic is the subject of [BJL].



Results

Individual Results

The following is a list of the highest-ranking individual contestants (Putnam Fellows),
in alphabetical order within each year. The list also mentions the winners of the
Elizabeth Lowell Putnam Prize, which was first awarded in 1992. Educational and
employment history up to 2001 is given, when known to the authors. If degrees are in
subjects other than math, the subject is given when known. We use the following
abbreviations: cs (computer science), I (Instructor), L (Lecturer), AP (Assistant
Professor), AsP (Associate Professor), CCR (Center for Communications Research).

Forty-sixth Competition — 1985

Martin V. Hildebrand, Williams College
B.A. (’86), Ph.D. (Harvard, ’90), AP (SUNY Albany)

Everett W. Howe, California Institute of Technology
B.S. (’86), Ph.D. (Berkeley, ’93), AP (Michigan), researcher at CCR (La Jolla)

Douglas S. Jungreis, Harvard University
A.B. (’87), Ph.D. (Berkeley, ’92), researcher at CCR (La Jolla)

Bjorn M. Poonen, Harvard University
A.B. (math, physics, ’89), Ph.D. (Berkeley, ’94), I (Princeton), AsP (Berkeley)

Keith A. Ramsay, University of Chicago
B.A. (’86), Ph.D. (Harvard, ’91), computer programmer at Maptek

Forty-seventh Competition — 1986

David J. Grabiner, Princeton University
A.B. (’90), Ph.D. (Harvard, ’95), Visiting AP (Arizona State)

Waldemar P. Horwat, Massachusetts Institute of Technology
B.S. (math, elec. eng., ’88), M.S. (cs, MIT, ’88), Ph.D. (cs, MIT, ’94), Netscape

Douglas S. Jungreis, Harvard University
(see 1985 results)

David J. Moews, Harvard University
A.B. (’89), Ph.D. (Berkeley, ’93), researcher at CCR (La Jolla)

Bjorn M. Poonen, Harvard University
(see 1985 results)

David I. Zuckerman, Harvard University
A.B. (’87), Ph.D. (cs, Berkeley, ’91), AsP (UT Austin)
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Forty-eighth Competition — 1987

David J. Grabiner, Princeton University
(see 1986 results)

David J. Moews, Harvard University
(see 1986 results)

Bjorn M. Poonen, Harvard University
(see 1985 results)

Michael Reid, Harvard University
A.B. (’88), Ph.D. (Brown, ’00), Visiting AP (U. Mass.)

Constantin S. Teleman, Harvard University
A.B./A.M. (’91), Ph.D. (Harvard, ’94), AP (Stanford), AP (UT Austin),
L (Cambridge)

John S. Tillinghast, University of California, Davis
B.A. (’89), M.A. (Harvard, ’92), Ph.D. (Stanford, ’97), Director of Technical
Business Development, Pathmetrics (bioinformatics)

Forty-ninth Competition — 1988

David Grabiner, Princeton University
(see 1986 results)

Jeremy A. Kahn, Harvard University
A.B. (’91), Ph.D. (Berkeley, ’95)

David J. Moews, Harvard University
(see 1986 results)

Bjorn M. Poonen, Harvard University
(see 1985 results)

Ravi D. Vakil, University of Toronto
B.Sc. (’92), Ph.D. (Harvard, ’97), I (Princeton), I (MIT), AP (Stanford)

Fiftieth Competition — 1989

Christo Athanasiadis, Massachusetts Institute of Technology
B.Sc. (’92), Ph.D. (MIT, ’96), KTH Stockholm, compulsory military service

William P. Cross, California Institute of Technology
B.A. (’90), M.Sc. (Chicago), Ph.D. (Michigan, Industrial and
Operations Engineering, ’95), actuary

Andrew H. Kresch, Yale University
B.S. (’93), M.S. (Yale, ’93), Ph.D. (Chicago, ’98), L (Penn)

Colin M. Springer, University of Waterloo
Ravi D. Vakil, University of Toronto
(see 1988 results)

Sihao Wu, Yale University

Fifty-first Competition — 1990

Jordan S. Ellenberg, Harvard University
A.B. (’93), M.A. (“The Writing Seminars”, Johns Hopkins, ’94), Ph.D.
(Harvard, ’98), I (Princeton), AP (Princeton)
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Jordan Lampe, University of California, Berkeley
B.A. (’91), computer programmer

Raymond M. Sidney, Harvard University
A.B. (’91), Ph.D. (MIT, ’95), software engineer at Google

Ravi D. Vakil, University of Toronto
(see 1988 results)

Eric K. Wepsic, Harvard University
A.B. (’92), A.M. (Harvard, ’94), Managing Director, Proprietary Trading,
D.E. Shaw & Co.

Fifty-second Competition — 1991

Xi Chen, University of Missouri, Rolla
B.A (’92), Ph.D. (Harvard, ’97), AP (UC Santa Barbara)

Joshua B. Fischman, Princeton University
A.B. (’94), J.D. (Yale, ’99), quantitative analyst at KBC Financial Products

Samuel A. Kutin, Harvard University
A.B. (’93), M.A. (Chicago, ’94), Ph.D. (Chicago, expected)

Ravi D. Vakil, University of Toronto
(see 1988 results)

Eric K. Wepsic, Harvard University
(see 1990 results)

Fifty-third Competition — 1992

Jordan S. Ellenberg, Harvard University
(see 1990 results)

Samuel A. Kutin, Harvard University
(see 1991 results)

Adam M. Logan, Princeton University
A.B. (’95), Ph.D. (Harvard, ’99), AP (Berkeley)

Şerban M. Nacu, Harvard University
A.B. (’96), D.E. Shaw & Co., Ph.D. (statistics, Berkeley, expected)

Jeffrey M. VanderKam, Duke University
B.S. (math, physics, ’94), Ph.D. (’98), researcher at CCR (Princeton)

Elizabeth Lowell Putnam Prize: Dana Pascovici, Dartmouth College
B.A. (’95), Ph.D. (MIT, ’00), I (Purdue), Enterprise Speech Recognition

Fifty-fourth Competition — 1993

Craig B. Gentry, Duke University
B.S. (’95), J.D. (Harvard, ’98), intellectual property lawyer, cryptography researcher
at NTT DoCoMo Communications Labs

J.P. Grossman, University of Toronto
B.Sc. (’96), M.Sc. (comp. graphics, MIT, ’98), Ph.D. (comp. eng., MIT, expected)

Wei-Hwa Huang, California Institute of Technology
B.S. (’98), Armillaire Technologies

Kiran S. Kedlaya, Harvard University
A.B. (math and physics, ’96), M.A. (Princeton, ’97), Ph.D. (MIT, ’00),
AP (Berkeley)
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Adam M. Logan, Princeton University
(see 1992 results)

Lenhard L. Ng, Harvard University
A.B. (math and physics, ’96), Ph.D. (MIT, ’01)

Fifty-fifth Competition — 1994

Jeremy L. Bem, Cornell University
B.A. (’98), Ph.D. (Berkeley, expected)

J.P. Grossman, University of Toronto
(see 1993 results)

Kiran S. Kedlaya, Harvard University
(see 1993 results)

William R. Mann, Princeton University
A.B. (’95), C.P.G.S. (Cambridge, ’96), A.M. (Harvard, ’97), Ph.D. (Harvard, ’01)

Lenhard L. Ng, Harvard University
(see 1993 results)

Elizabeth Lowell Putnam Prize: Ruth A. Britto-Pacumio, Massachusetts Institute of
Technology
B.S. (’96), Ph.D. (Harvard, physics, expected)

Fifty-sixth Competition — 1995

Yevgeniy Dodis, New York University
B.A. (math, cs ’96), Ph.D. (cs, ’00), Visitor (IBM T.J. Watson Research Center),
AP (cs, NYU)

J.P. Grossman, University of Toronto
(see 1993 results)

Kiran S. Kedlaya, Harvard University
(see 1993 results)

Sergey V. Levin, Harvard University
A.B. (’96), quantitative trader for Credit Suisse First Boston

Lenhard L. Ng, Harvard University
(see 1993 results)

Elizabeth Lowell Putnam Prize: Ioana Dumitriu, New York University
B.A. (’99), Ph.D. (MIT, expected)

Fifty-seventh Competition — 1996

Jeremy L. Bem, Cornell University
(see 1994 results)

Ioana Dumitriu, New York University
(see 1995 results)

Robert D. Kleinberg, Cornell University
B.A. (’97), Akamai Technologies

Dragos N. Oprea, Harvard University
A.B. (’00), Ph.D. (MIT, expected)

Daniel K. Schepler, Washington University, St. Louis
B.A. (’98), Ph.D. (Berkeley, expected)
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Stephen S. Wang, Harvard University
A.B. (’98), A.M. (Harvard, ’98), programmer, Ph.D. (Chicago, expected)

Elizabeth Lowell Putnam Prize: Ioana Dumitriu, New York University
(see 1995 results)

Fifty-eighth Competition — 1997

Patrick K. Corn, Harvard University
A.B. (’98), Ph.D. (Berkeley, expected)

Michael L. Develin, Harvard University
A.B. (’00), Ph.D. (Berkeley, expected)

Samuel Grushevsky, Harvard University
A.B. (math and physics, ’98), Ph.D. (Harvard, expected)

Ciprian Manolescu, Harvard University
A.B. (’01), Ph.D. (Harvard, expected)

Ovidiu Savin, University of Pittsburgh
B.A., Ph.D. (U.T. Austin, expected)

Daniel K. Schepler, Washington University, St. Louis
(see 1996 results)

Elizabeth Lowell Putnam Prize: Ioana Dumitriu, New York University
(see 1995 results)

Fifty-ninth Competition — 1998

Nathan G. Curtis, Duke University
B.A. (music, math minor, ’02 expected)

Michael L. Develin, Harvard University
(see 1997 results)

Kevin D. Lacker, Duke University
B.A. (math, cs, ’02 expected)

Ciprian Manolescu, Harvard University
(see 1997 results)

Ari M. Turner, Princeton University
A.B. (’00), Ph.D. (physics, Harvard, expected)

Sixtieth Competition — 1999

Sabin Cautis, University of Waterloo
B.Math. (’01), Ph.D. (Harvard, expected)

Derek I.E. Kisman, University of Waterloo
B.Math. (’00), M.Sc. (Toronto, ’01)

Abhinav Kumar, Massachusetts Institute of Technology
S.B. (math, physics, cs, ’02 expected)

Davesh Maulik, Harvard University
A.B. (’01), Marshall Scholar (Cambridge)

Christopher C. Mihelich, Harvard University
A.B. (’02, expected)

Colin A. Percival, Simon Fraser University
B.Sc. (’00)
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Elizabeth Lowell Putnam Prize: Wai Ling Yee, University of Waterloo
B.Math. (math, cs, ’00), Ph.D. (MIT, expected)

Sixty-first Competition — 2000

Gabriel D. Carroll, University of California, Berkeley
A.B. (Harvard, ’05, expected)

Abhinav Kumar, Massachusetts Institute of Technology
(see 1999 results)

Ciprian Manolescu, Harvard University
(see 1997 results)

Pavlo Pylyavskyy, Massachusetts Institute of Technology
B.A. (’03, expected)

Alexander B. Schwartz, Harvard University
A.B. (’04, expected)
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Team Results

The following is a list of the top teams, in order of rank. Schools choose teams in
advance of the competition. School ranks are obtained by summing the individual
ranks of the team members.

Forty-sixth Competition — 1985

Harvard University
(Glenn D. Ellison, Douglas S. Jungreis, Michael Reid)

Princeton University
(Michael A. Abramson, Douglas R. Davidson, James C. Yeh)

University of California, Berkeley
(Michael J. McGrath, David P. Moulton, Jonathan E. Shapiro)

Rice University
(Charles R. Ferenbaugh, Thomas M. Hyer, Thomas M. Zavist)

University of Waterloo
(David W. Ash, Yong Yao Du, Kenneth W. Shirriff)

Forty-seventh Competition — 1986

Harvard University
(Douglas S. Jungreis, Bjorn M. Poonen, David I. Zuckerman)

Washington University, St. Louis
(Daniel N. Ropp, Dougin A. Walker, Japheth L.M. Wood)

University of California, Berkeley
(Michael J. McGrath, David P. Moulton, Christopher S. Welty)

Yale University
(Thomas O. Andrews, Kamal F. Khuri-Makdisi, David R. Steinsaltz)

Massachusetts Institute of Technology
(David Blackston, James P. Ferry, Waldemar P. Horwat)

Forty-eighth Competition — 1987

Harvard University
(David J. Moews, Bjorn M. Poonen, Michael Reid)

Princeton University
(Daniel J. Bernstein, David J. Grabiner, Matthew D. Mullin)

Carnegie Mellon University
(Petros I. Hadjicostas, Joseph G. Keane, Karl M. Westerberg)

University of California, Berkeley
(David P. Moulton, Jonathan E. Shapiro, Christopher S. Welty)

Massachusetts Institute of Technology
(David T. Blackston, James P. Ferry, Waldemar P. Horwat)

Forty-ninth Competition — 1988

Harvard University
(David J. Moews, Bjorn M. Poonen, Constantin S. Teleman)

Princeton University
(Daniel J. Bernstein, David J. Grabiner, Matthew D. Mullin)
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Rice University
(Hubert L. Bray, Thomas M. Hyer, John W. McIntosh)

University of Waterloo
(Frank M. D’Ippolito, Colin M. Springer, Minh-Tue Vo)

California Institute of Technology
(William P. Cross, Robert G. Southworth, Glenn P. Tesler)

Fiftieth Competition — 1989

Harvard University
(Jeremy A. Kahn, Raymond M. Sidney, Eric K. Wepsic)

Princeton University
(David J. Grabiner, Matthew D. Mullin, Rahul V. Pandharipande)

University of Waterloo
(Grayden Hazenberg, Stephen M. Smith, Colin M. Springer)

Yale University
(Bruce E. Kaskel, Andrew H. Kresch, Sihao Wu)

Rice University
(Hubert L. Bray, John W. McIntosh, David S. Metzler)

Fifty-first Competition — 1990

Harvard University
(Jordan S. Ellenberg, Raymond M. Sidney, Eric K. Wepsic)

Duke University
(Jeanne A. Nielsen, Will A. Schneeberger, Jeffrey M. VanderKam)

University of Waterloo
(Dorian Birsan, Daniel R.L. Brown, Colin M. Springer)

Yale University
(Zuwei Thomas Feng, Andrew H. Kresch, Zhaoliang Zhu)

Washington University, St. Louis
(William Chen, Adam M. Costello, Jordan A. Samuels)

Fifty-second Competition — 1991

Harvard University
(Jordan S. Ellenberg, Samuel A. Kutin, Eric K. Wepsic)

University of Waterloo
(Daniel R.L. Brown, Ian A. Goldberg, Colin M. Springer)

Harvey Mudd College
(Timothy P. Kokesh, Jon H. Leonard, Guy D. Moore)

Stanford University
(Gregory G. Martin, Garrett R. Vargas, András Vasy)

Yale University
(Zuwei Thomas Feng, Evan M. Gilbert, Andrew H. Kresch)

Fifty-third Competition — 1992

Harvard University
(Jordan S. Ellenberg, Samuel A. Kutin, Royce Y. Peng)
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University of Toronto
(J.P. Grossman, Jeff T. Higham, Hugh R. Thomas)

University of Waterloo
(Dorian Birsan, Daniel R.L. Brown, Ian A. Goldberg)

Princeton University
(Joshua B. Fischman, Adam M. Logan, Joel E. Rosenberg)

Cornell University
(Jon M. Kleinberg, Mark Krosky, Demetrio A. Muñoz)

Fifty-fourth Competition — 1993

Duke University
(Andrew O. Dittmer, Craig B. Gentry, Jeffrey M. VanderKam)

Harvard University
(Kiran S. Kedlaya, Şerban M. Nacu, Royce Y. Peng)

Miami University, Ohio
(John D. Davenport, Jason A. Howald, Matthew D. Wolf)

Massachusetts Institute of Technology
(Henry L. Cohn, Alexandru D. Ionescu, Andrew Przeworski)

University of Michigan, Ann Arbor
(Philip L. Beineke, Brian D. Ewald, Kannan Soundararajan)

Fifty-fifth Competition — 1994

Harvard University
(Kiran S. Kedlaya, Lenhard L. Ng, Dylan P. Thurston)

Cornell University
(Jeremy L. Bem, Robert D. Kleinberg, Mark Krosky)

Massachusetts Institute of Technology
(Henry L. Cohn, Adam W. Meyerson, Thomas A. Weston)

Princeton University
(William R. Mann, Joel E. Rosenberg, Michail Sunitsky)

University of Waterloo
(Ian A. Goldberg, Peter L. Milley, Kevin Purbhoo)

Fifty-sixth Competition — 1995

Harvard University
(Kiran S. Kedlaya, Lenhard L. Ng, Hong Zhou)

Cornell University
(Jeremy L. Bem, Robert D. Kleinberg, Mark Krosky)

Massachusetts Institute of Technology
(Ruth A. Britto-Pacumio, Sergey M. Ioffe, Thomas A. Weston)

University of Toronto
(Edward Goldstein, J.P. Grossman, Naoki Sato)

Princeton University
(Michael J. Goldberg, Alex Heneveld, Jacob A. Rasmussen)
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Fifty-seventh Competition — 1996

Duke University
(Andrew O. Dittmer, Robert R. Schneck, Noam M. Shazeer)

Princeton University
(Michael J. Goldberg, Craig R. Helfgott, Jacob A. Rasmussen)

Harvard University
(Chung-chieh Shan, Stephen S. Wang, Hong Zhou)

Washington University, St. Louis
(Mathew B. Crawford, Daniel K. Schepler, Jade P. Vinson)

California Institute of Technology
(Christopher C. Chang, Hui Jin, Hanhui Yuan)

Fifty-eighth Competition — 1997

Harvard University
(Samuel Grushevsky, Dragos N. Oprea, Stephen S. Wang)

Duke University
(Jonathan G. Curtis, Andrew O. Dittmer, Noam M. Shazeer)

Princeton University
(Craig R. Helfgott, Michael R. Korn, Alexandru-Anton A.M. Popa)

Massachusetts Institute of Technology
(Federico Ardila, Constantin Chiscanu, Amit Khetan)

Washington University, St. Louis
(Daniel B. Johnston, Daniel K. Schepler, Arun K. Sharma)

Fifty-ninth Competition — 1998

Harvard University
(Michael L. Develin, Ciprian Manolescu, Dragos N. Oprea)

Massachusetts Institute of Technology
(Amit Khetan, Eric H. Kuo, Edward D. Lee)

Princeton University
(Craig R. Helfgott, Michael R. Korn, Yuliy V. Sannikov)

California Institute of Technology
(Christopher C. Chang, Christopher M. Hirata, Hanhui Yuan)

University of Waterloo
(Sabin Cautis, Derek I.E. Kisman, Soroosh Yazdani)

Sixtieth Competition — 1999

University of Waterloo
(Sabin Cautis, Donny C. Cheung, Derek I.E. Kisman)

Harvard University
(Michael L. Develin, Ciprian Manolescu, Alexander H. Saltman)

Duke University
(Kevin D. Lacker, Carl A. Miller, Melanie E. Wood)

University of Michigan, Ann Arbor
(Chetan T. Balwe, Rishi Raj, Dapeng Zhu)

University of Chicago
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(Matthew T. Gealy, Christopher D. Malon, Sergey Vasseliev)

Sixty-first Competition — 2000

Duke University
(John J. Clyde, Jonathan G. Curtis, Kevin D. Lacker)

Massachusetts Institute of Technology
(Aram W. Harrow, Abhinav Kumar, Ivan Petrakiev)

Harvard University
(Lukasz Fidkowski, Davesh Maulik, Christopher C. Mihelich)

California Institute of Technology
(Kevin P. Costello, Christopher M. Hirata, Michael Shulman)

University of Toronto
(Jimmy Chui, Pavel T. Gyrya, Pompiliu Manuel Zamfir)





Putnam Trivia for the Nineties

Joseph A. Gallian†

University of Minnesota, Duluth, Duluth, MN 55812, jgallian@d.umn.edu

The annual Putnam competition has a long and glorious history of identifying
extraordinary mathematical talent. Indeed, three Putnam Fellows (top 5 finishers)
have won the Fields Medal and two have won a Nobel prize in Physics. In fact,
the 1954 Harvard Putnam team included a future Fields Medalist and a future Nobel
Laureate! And of course many Putnam Fellows have had distinguished careers starting
with the very first winner of the Putnam Fellowship to Harvard — Irving Kaplansky.
In the early days (1930s) only a few hundred students competed in the competition
whereas by the 1990s over 2000 per year took part. In a 1989 issue of the Monthly I
gave a list of trivia questions based on the first fifty years of the competition [G1]. In
this article I offer trivia questions based on the competitions of the 1990s. Answers
are given on page 321.

1. Among the five winners of the AMS-MAA-SIAM Morgan Prize for undergraduate
research in the 90s, how many have been Putnam Fellows?
A. 0 B. 1 C. 2 D. 3

2. Among the five people named honorable mention for the Morgan Prize in the 90s,
how many have been Putnam Fellows?
A. 0 B. 1 C. 2 D. 3

3. How many times during the 90s was an individual from a school that does not
grant a Ph.D. degree in mathematics a Putnam Fellow?
A. 0 B. 1 C. 2 D. more than 2

4. How many times during the 90s did a team from a school that does not grant a
Ph.D. degree in mathematics finish in the top 5?
A. 0 B. 1 C. 2 D. more than 2

† This article first appeared in the American Mathematical Monthly [G2].
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5. How many times during the 90s did a team from a U.S. state university finish in
the top 5?
A. 0 B. 1 C. 2 D. more than 2

6. How many times during the 90s was an individual from a U. S. state university a
Putnam Fellow?
A. 0 B. 1 C. 2 D. more than 2

7. How many times during the 90s did the University of Waterloo finish in the top
5?
A. 2 B. 4 C. 6 D. more than 6

8. How many times during the 90s has a Putnam Fellow been from a Canadian
school?
A. 4 B. 6 C. 8 D. more than 8

9. How many women were Putnam Fellows in the 90s?
A. 0 B. 1 C. 2 D. more than 2

10. Which schools have won the team competition in the 90s?
A. Harvard B. Princeton C. Duke D. University of Waterloo

11. Rank the following schools according to the greatest number of times they have
placed in the top 5 in the team competition in the 90s.
A. Duke B. MIT C. University of Waterloo D. Princeton

12. Rank the following schools according to the greatest number of Putnam Fellows
in the 90s.
A. Duke B. Cornell C. University of Waterloo D. Princeton

13. How many times during the 90s has the winning team had all three team members
finish in the top 5 that year?
A. 0 B. 1 C. 2 D. 3

14. How many times during the 90s has the winning team had no Putnam Fellows?
A. 0 B. 1 C. 2 D. 3

15. How many times during the 90s has the same person been a Putnam Fellow four
times?
A. 0 B. 1 C. 2 D. 3

16. How many times during the 90s has the same person been a Putnam Fellow three
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times?
A. 0 B. 1 C. 2 D. 3

17. What is the lowest ranking during the 90s by the Harvard team?
A. 2nd B. 3rd C. 4th D. 5th

18. What is the only school to have both its Putnam team and its football team finish
in the top 5 in the 90s?
A. Michigan B. Stanford C. Wisconsin D. Notre Dame

19. What is the only school to have both its Putnam team and its men’s basketball
team (in the NCAA tournament) finish first in the 90s?
A. North Carolina B. Michigan C. Duke D. UCLA

20. What is the only school to have its Putnam team finish in the top 5 and its men’s
hockey team finish first in the NCAA tournament in the 90s?
A. Michigan B. Harvard C. Cornell D. Wisconsin

21. How many years in the 90s was every Putnam Fellow from a different school?
A. 0 B. 1 C. 2 D. more than 2

22. What is the highest team finish with a woman team member in the 90s?
A. 1st B. 2nd C. 3rd D. not in top 5

23. How many schools had two or more Putnam Fellows in the same year in the 90s?
A. 0 B. 1 C. 3 D. more than 3

24. Which school(s) had two Putnam Fellows in the same year but did not finish in
the top 5 of the team competition?
A. Cornell B. Duke C. MIT D. Princeton

25. Who is the Fields Medalist whose son was on the winning team during the 90s?
A. William Thurston B. Vaughan Jones C. Ed Witten D. Charles
Fefferman

26. Rank the following schools according to the most second place finishes in the 90s.
A. Harvard B. Duke C. MIT D. Cornell

27. What was the monetary prize given to the winning team in 1990?
A. $1000 B. $2000 C. $5000 D. $10000

28. What was the monetary prize given to the winning team in 1999?
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A. $5000 B. $10000 C. $20000 D. $25000

29. How many times during the 90s did Harvard have three or more Putnam Fellows
in the same year?
A. 1 B. 3 C. 4 D. more than 4

30. How many times during the 90s has someone from Harvard been a Putnam Fellow?
A. 10 B. 15 C. 20 D. 25

Answers are given on page 321.



Some Thoughts on

Writing for the Putnam

Bruce Reznick†

University of Illinois at Urbana-Champaign

What is the Putnam?

This chapter describes the process of composing problems for the William Lowell
Putnam Mathematical Competition. Inevitably, this leads to the more general issue
of mathematical problem writing. I shall be anecdotal and probably idiosyncratic, and
do not purport that my opinions are definitive or comprehensive. The reader should
not look for “How to Pose It,” but rather sit back and enjoy the heart-warming tale
of a boy and his problems.
The following is a quotation from the official brochure (Putnam, 1992). The William

Lowell PutnamMathematical Competition “began in 1939 and is designed to stimulate
a healthful rivalry in mathematical studies in the colleges and universities of the United
States and Canada. It exists because Mr. William Lowell Putnam had a profound
conviction in the value of organized team competition in regular college studies.” The
Putnam, as it is universally called, is administered by the Mathematical Association
of America. It is offered annually (since 1962, on the first Saturday in December) to
students who have not yet received a college degree. In 1991, 2,375 students at 383
colleges and universities took the exam. (For more on a history of the Putnam, see
[PutnamI, PutnamII].) The problems and solutions for Competitions through 1984
are in [PutnamI, PutnamII]. The problems, solutions, and winners’ names are also
published in the American Mathematical Monthly, usually about a year after the exam.
The Putnam consists of two independent 3-hour sessions, each consisting of six

problems arranged roughly in order of increasing difficulty. The exam is administered
by proctors who cannot comment on its content. Contestants work alone and without
notes, books, calculators, or other external resources. They are ranked by their scores,
except that the top five are officially reported en bloc. Teams are preselected by their
coach, and team rankings are determined by the sum of the ranks (not the sum of the
scores).

† This chapter originally appeared in [Re4]. The author was supported in part by the National

Science Foundation.
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The examination will be constructed to test originality as well as technical
competence. It is expected that the contestant will be familiar with the
formal theories embodied in undergraduate mathematics. It is assumed that
such training, designed for mathematics and physical science majors, will
include somewhat more sophisticated mathematical concepts than is the case
in minimal courses.
Questions will be included that cut across the bounds of various disciplines and
self-contained questions which do not fit into any of the usual categories may
be included. It will be assumed that the contestant has acquired a familiarity
with the body of mathematical lore commonly discussed in mathematics clubs
or in courses with such titles as “Survey of the foundations of mathematics.”
It is also expected that self-contained questions involving elementary concepts
from group theory, set theory, graph theory, lattice theory, number theory, and
cardinal arithmetic will not be entirely foreign to the contestant’s experience.
(from official brochure)

Between 1969 and 1985, I participated in all but three Putnams. I competed four
times, the last two wearing the silks of the Caltech team, which placed first. As
a graduate student and faculty member, I coached or assisted at Stanford, Duke,
Berkeley, and Urbana. I was a grader in 1982 and a member of the Problems
Subcommittee for the 1983, 1984, and 1985 Competitions. (I had been living quietly
in Putnam retirement when Alan Schoenfeld invited me to this conference.†)

Who writes the Putnam?

The Problems Subcommittee of the MAA Putnam Committee consists of three
question writers, who serve staggered 3-year terms. The most senior member chairs the
Subcommittee. During my service, the Problems Subcommittee consisted of successive
blocks of three consecutive people from the following list: Doug Hensley, Mel Hochster,
myself, Richard Stanley, and Harold Stark. Outgoing members are invited to suggest
possible replacements, but these are not acted on immediately. This is an old-boy
network, but in practice one often suggests the names of strangers whose problems
one has admired. (It turned out that the 1985 group inadvertently consisted of three
Caltech alumni, and, as chair, I was relieved when the Harvard team won.)
The rest of the Putnam Committee consisted of three permanent members, two of

whom (Jerry Alexanderson and Leonard Klosinski) arranged the massive logistics of
the Competition and a liaison with the Problems Subcommittee (Abe Hillman, then
Loren Larson). They do an incredible amount of work, which is not germane to this
essay, but should not go unappreciated. They also provide a valuable final check to
the Subcommittee’s work.

† This article was originally written for the conference “Mathematical Thinking and Problem

Solving”, held in Berkeley on December 14–16, 1989.
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How was the 1985 Putnam Written?

The following is an overview of how the 1985 Putnam was written. In November
1984, I wrote a welcoming instructional letter to Richard and Harold, describing our
timetable and goals. In early December, each of us circulated about a dozen problems
to the other two. After a decent interval, we circulated solutions to our own problems
and comments about the others and added some more into the pot. A few more
rounds of correspondence ensued. In March, we met for a weekend with the rest
of the Committee to construct the Competition. After a small flurry of additional
correspondence, the material was handed over to the logistics team.
The greeting letter of the chair of the Problems Subcommittee is a quilt to which

each chair adds (or rips up) patches. The following excerpts, lightly rewritten for
style, are thus simultaneously traditional and fully my own responsibility.

It used to be said that a Broadway musical was a success if the audience left
the theater whistling the tunes. I want to see contestants leave the Putnam
whistling the problems. They should be vivid and striking enough to be shared
with roommates and teachers.
Security should be a major concern . . . the problems should be handwritten

or typed by ourselves, and our files should either be unmarked or kept home.
Putnam problems ought to be pretty enough that you want to tell your friends
about them. Do your best to resist this temptation.
Lemmas in research papers are fair game, but material from well-known

textbooks or problem collections are not. (If you submit a problem from
a known source, please include this information.) Seminar material is OK
unless undergraduates were present, and anything you have taught to an
undergraduate honors class ought to dry out for a few years before gaining
eligibility. In general, problems from other people are not reliably secure
unless your source can vouch for their originality.
As for the problems themselves, my feeling is that any problem solved by

only one or two contestants is a failure, no matter how beautiful it might
be. In the last couple of years, we have sought to turn A-1 and B-1 into
“hello, welcome to the exam” problems, and their relative tractability has
been appreciated. It is better to require one major insight than several minor
ones (partial credit is undesirable). It is better to write a streamlined problem
without many cases, so that we test perceptiveness, rather than stamina.
Proofs by contradiction are, in general, unsuitable, both because they are
ugly, and because they are harder to grade.
Although concern for the graders is not our primary consideration, we

should keep them in mind. There is no reason to exclude a problem such as
1983 B-2, merely because there are many different legitimate proofs. On the
other hand, we must be at pains to write unambiguous questions even at the
expense of simplicity in the phrasing. Answers in a particular numerical form
are often desirable so that students won’t puzzle over the phrase “simplest
terms”; this is one reason that the current year stands in for “n”. Answers
that turn out to be 0, 1, π,

√
2, etc., should be avoided to eliminate the lucky
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guess, and we should not present problems in which the solution is easy to
guess but hard to prove. (The reverse is preferable.) I confess to a predilection
for “garden variety” mathematical objects, such as powers of 2, binomial
coefficients, pentagons, sines, cosines, and so on. I dislike problems with an
elaborate notation, whose unraveling is a major portion of the solution.

What does the Putnam mean?

The previous three sections have given a theoretical description of how the Putnam
works, and what it is intended to accomplish. I turn now to the Putnam in reality.
There is some evidence that the Putnam achieves its intended goals. Many schools

run training sessions for contestants, in which interesting mathematics and useful
techniques of problem solving are presented. A successful individual performance on
the Putnam leads to fame and glory and an increased probability of a fellowship.
(However, the results are announced in March, very late for seniors applying to
graduate school.) There is also money; I was entertained for years by the William
Lowell Putnam Stereo System. More importantly, a contestant can properly be
satisfied in solving any Putnam problem, though this is tempered by the (larger
number of) problems one does not solve. Putnam problems have occasionally led
to research, and a problem may stick in a contestant’s mind for years. The ultimate
source of [Re2] was 1971 A-1.
The phrase “Putnam problem” has achieved a certain cachet among those math-

ematicians of the problem-solving temperament and is applied to suitably attractive
problems which never appeared on the exam. One motivation for my joining the
Problems Subcommittee was the aesthetic challenge of presenting to the mathematical
community a worthy set of problems. In fact, the opportunity to maintain this
“brand name of quality” was more enticing to me than the mere continuation of
an undergraduate competition. Of course, the primary audience for the Putnam must
always be the students, not one’s colleagues.
At the same time, the Putnam causes a few negative effects, mainly because of its

difficulty. Math contests are supposed to be hard, and the Putnam is the hardest
one of all. In 1972, I scored less than 50% and finished seventh. In most years, the
median Putnam paper has fewer than two largely correct solutions. For this reason,
the first problem in each session is designed to require an “insightlet”, though not a
totally trivial one. We on the Committee tried to keep in mind that median Putnam
contestants, willing to devote one of the last Saturdays before final exams to a math
test, are likely to receive an advanced degree in the sciences. It is counterproductive
on many levels to leave them feeling like total idiots.
Success on the Competition requires mathematical ability and problem-solving

experience, but these are not sufficient; a “Putnam” temperament is also necessary.
A contestant must be able to work quickly, independently, and without references and
be willing to consider problems out of context. I have been saddened by reports of
students who were discouraged in their academic careers by a poor performance on
the Putnam. Fortunately for the mathematical community, there are many excellent,
influential, and successful mathematicians who also did badly on the Putnam. As a
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result, the absence of Putnam kudos has a negligible effect on one’s career. (At the
same time, I confess to enjoying the squirmy defensiveness that the term “Putnam”
evokes in some otherwise arrogant colleagues of the “wrong” temperament. They
loudly deny an importance to the Competition that nobody else asserts.)
Among those who do very well on Putnam problems, there is little hard evidence

that doing extremely well is significant. The best papers usually average about twice
as many correct solutions as the thirtieth. My impression is that the likely future
mathematical outputs of the writers are comparable.
In sum, the Putnam plays a valuable, but ultimately inessential, role in undergrad-

uate mathematics. This is a test; this is only a test.

What makes a good Putnam problem?

Other considerations besides pure problem aesthetics afflict the Putnam writers. We
wish to have a balance of questions in various subject areas and solving styles. We need
an “easy” question for A-1 and B-1. As college math teachers, we are often astonished
at how poorly we know what it is that our own students do and do not understand.
This is magnified on the Putnam, in which contestants come from hundreds of different
programs. The Committee tries to be sensible. It’s unreasonable to have the trace of
a matrix in one of the easier problems, but we used it in 1985 B-6, on the grounds
that a contestant who had not heard of a trace would probably be unable to do the
problem anyway.
We want to test, if possible, abstract problem-solving ability, rather than classroom

knowledge; maturity “yes,” facts “no.” We try to avoid the traditional corpus of
problem-solving courses to minimize the reward in “studying” for the Putnam. This
leads to a tradeoff between familiarity and quality. We occasionally receive a complaint
that a problem is not new or has even appeared in material used to train Putnam
competitors at a particular school. This is unfortunate, but probably inevitable. It
would be easy to write an exam with twelve highly convoluted, certifiably original,
and thoroughly uninteresting problems.
Otherwise acceptable questions have been rejected on the grounds that they “sound”

familiar or “must have appeared somewhere,” even when no member of the Committee
can cite a reference. Here’s an example: A projectile is to be fired up a hill which
makes an angle α with the horizontal. At what angle should the projectile be launched
in order to maximize the distance it travels?
One April, the day after the Committee completed its deliberations, someone

discovered that our A-1 was a problem posed in the most recent Two-Year College
Mathematics Journal. Fortunately, we had bequeathed an easy problem to the
following year’s exam, and a few phone calls resolved the crisis. I do not know what
we would have done if this had happened in November.
What follows are some representative comments evoked by the first round of

proposed problems in the Subcommittee:

“Seems routine, too easy.”

“I found the computations too messy, and it was easy to head off in the wrong
direction.”
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“Can’t use, it’s been around for years.”

“Hard (or did I miss something). A good problem.”

“The trouble with this one is that an intuitive guess . . . is incorrect. OK, not
inspired.”

“I was stumped, but it’s a nice hard problem.”

“I couldn’t do this one either.”

Every Putnam I helped write contained at least one problem I could not do on first
sight. More comments follow:

“This looks very messy. I saw nothing that motivated me to take up pencil
and scribble.”

“I wasn’t lit up by waves of excitement.”

“We must use this one, I love it.”

“Yes, yes, yes.”

(The last block suggests the sensuality of a good problem to the discriminating
solver. For more on this subject, see [Re1].)

How are Putnam problems polished?

The Committee acts by consensus; I do not ever recall voting on a problem. Most
problems have one primary author, although the full group polishes the final version.
Often, though, this version is a special case of the original problem. We tried to have
at least one problem from calculus, geometry, and number theory on the exam. I was
always amazed at the ability of the Committee to find unfamiliar problems in such
fully excavated fields. It is hard to write serious algebra problems that are not basically
manipulative, rather than conceptual, because we can assume so little knowledge. In
analysis, any integrals must be innocent of measure theory.
We do not accept a problem until we have seen a solution written out in full;

sometimes we produce more than one solution. It is not unusual for contestants to
find new (and better) solutions. One problem (1983 B-2) evolved from the remarkable
fact, familiar to our silicon friends, that a nonnegative integer n has a unique binary
representation. Let f(n) denote the number of ways that n can be written in the
form

∑
ai2i, if the ai’s are allowed to take the values 0, 1, 2, or 3. It turns out that

f(n) = �n/2� + 1. (Here, and below, �x� represents the largest integer ≤ x.) This
problem has at least three different solutions:

1. by generating functions —
∑

f(n)xn = {(1− x)(1− x2)}−1,

2. by induction — use the recurrence f(2n) = f(2n+ 1) = f(n) + f(n− 1), or
3. by direct manipulation — writing ai = 2bi + ci, where bi and ci are 0 or 1, gives
a bijection onto sums n = 2k +m, where k =

∑
bi2i and m =

∑
ci2i.

I have explored this topic more extensively elsewhere [Re3].
Several times, there was true collaboration. Doug Hensley called me to say that he

wanted a problem in which an algorithm terminated because a certain nonnegative
integral parameter decremented by 1 after each iteration. This reminded me of a



Some Thoughts on Writing for the Putnam 317

situation I was playing with, in which n was replaced by n + �√n�; the relevant
parameter is (n − �√n�2) (mod �√n�), which decrements by 1, usually after two
iterations. It follows that one eventually reaches a perfect square (see 1983 B-4).
Another time, Mel Hochster had been playing with a problem using the tips of

the hands of an accurate clock (as we ultimately phrased it — we received complaints
from students who were only familiar with digital clocks!). This was a nice “trapdoor”
situation. A reasonably competent student could parametrize the positions of the tips,
and after a half-hour of calculation, solve the question. The intended insight was to
make a rotating set of coordinates in which the minute hand is fixed, so only the hour
hand is rotating. We would have a problem, if only we could find the right question.
It occurred to me to look at the distance between the tips when that distance was
changing most rapidly. Solving it the long way, I uninspiredly computed an answer
that shouted out, “You idiot, use the Pythagorean theorem!” In fact, the derivative of
the difference vector from one tip to the other has constant magnitude and is normal
to the hour vector, and the distance is changing most rapidly when the difference
vector and its derivative are parallel (see 1983 A-2).
The length of service as a Putnam writer seems optimal. In my first year, I was

bursting with problems I had saved for the exam and discovered that some were
unsuitable. In the second year, I tried to rework the leftovers and develop some
techniques for consciously writing other problems (these will be discussed below). (A
few Putnam rejects have appeared in the Monthly problem section, where the lack of
time constraints relieves concern over messy or evasive algebra.) By the third year,
I felt drained of inspiration; in fact, my impression all three years was that the chair
placed the fewest problems on the Putnam. Service on the Subcommittee was also
beginning to have an adverse effect on my research. Ordinarily, a mathematician tries
to nurture a neat idea in hopes that it will grow into a theorem or a paper. I found
that I was trying to prune my ideas so that they would fit on the exam. Bonsai
mathematics may be hazardous to your professional health!

Did Archimedes use δ’s and ε’s?

The story of one of my favorite problems (1984 B-6) serves as an object lesson in
theft. In the course of researching the history of the Stern sequence and Minkowski’s
?-function, I had run across a beautiful example of Georges de Rham. Let P0 be
a polygon with n sides, trisect each side, and snip off the corners, creating P1, a
polygon with 2n sides. Iterate. The boundary of the limiting figure, P∞, has many
interesting counterintuitive properties (see the last paragraph of the discussion of this
problem in [PutnamII]). For example, it is a smooth convex curve which is flat almost
everywhere. I was rather pleased with myself for having noticed a property of P∞
itself. Suppose one corner, snipped from Pi, has area A. Then each of the two new
adjacent corners snipped from Pi+1 has one-third the altitude and one-third the base
of the original corner, and so has area A/9. Further, if P0 is a triangle, then P1 is a
hexagon whose area is two-thirds the area of P0. This information can be combined
with the formula for the sum of a geometric series with r = 2/9 to show that the
area of P∞ is four-sevenths the area of P0. A sneaky new problem that requires only
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precalculus — Putnam heaven! I had mentioned this result in a seminar a few years
before, but no undergraduates attended, and I was confident of security.
The Tuesday before the competition, I attended a Pi Mu Epsilon lecture on

the approaches of Archimedes to calculus, given by Igor Kluvanik, an Australian
mathematician visiting Urbana. To my horror, I learned that Archimedes had stolen
my method in order to compute the area under a parabola! At least one colleague
noticed that I lost my color, and I told her that I could explain the circumstances in
about a week. Fortunately, our students did not do unusually well on that problem.
By the way, we stated this problem so that P0 was an equilateral triangle of side

1, and asked for the area in the form a
√
c, where a is rational, and c is integral. The

majority of solvers assumed, incorrectly, that P∞ had to be the circle inscribed in the
triangle and derived an answer involving π. (When I mentioned this problem at a
colloquium, a famous mathematical physicist in the audience audibly made the same
guess.) The reader might find it amusing to consider the following variation, in which
the resulting figure is not a circle, but is piecewise algebraic: Suppose that, rather
than a trisection, each side is split in ratio 1 : 2 : 1 before the corners are snipped off.
Describe P∞.

What makes a good Putnam problem?

The instructions sent to composers do not include a description of the characteristics of
a good Putnam problem. The aesthetic seems to be fairly universal among dedicated
problem solvers and can be applied more generally to describing good mathematical
problems. (Perhaps this reluctance to be specific also reflects the mathematician’s
cowboy taciturnity on such woolly subjects.)
I will hazard some definitions. A mathematical problem is simply a mathematical

situation in which some information is implied by other information. The principal
characteristics of a good problem are simplicity, surprise, and inevitability. By
inevitability, I mean two things: once you’ve solved the problem, you cannot look
at it without also seeing its solution; once you see the problem, you feel you must
solve it. (A tacit rite of passage for the mathematician is the first sleepless night
caused by an unsolved problem.)
As an undergraduate competitor, I told my housemates that doing well on the Put-

nam reflected one’s ability to do very quickly, other people’s tricky, solved problems.
I’ll stand by that today. Three of the most important preliminary questions a problem
solver must face are: (a) Is there a solution? (b) What do I need to know to find the
solution? and (c) What does the solution look like? These questions are all answered
in advance for the Putnam competitor. You know that there is a solution, which is
probably short and clever and does not require a great deal of knowledge. You know
that you will recognize the solution when you see it. Tables and computer data and
other references are irrelevant, and inaccessible in any case. You cannot collaborate,
or even describe the problem to someone else in hopes of understanding it in the
retelling. It is for these reasons that I am extremely unhappy when I hear that some
problem-solving courses use the Putnam as a final exam. Chocolate decadence cake à
la mode is a delicious dessert, but makes an unfilling main course.
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This discussion begs the larger question of the role of problems within mathematics.
Simplicity and surprise may be enjoyable, but they do not accurately characterize
much of the mathematician’s world, in which correct insights are often wrested after
much reflection from a rich contextual matrix and are as snappy as a tension headache.

Okay, so how do you sit down and create a Putnam problem?

Okay, so how do you sit down and create a Putnam problem? One way is to keep
your eyes open for anything in your own work that looks like a Putnam problem.
You can make a votive offering to Ineedalemma, the tutelary goddess of mathematical
inspiration.
You can also be somewhat more systematic. I was fortunate to have a father who

addressed very similar questions in his own work: comedy writing. He wrote a book
about writing jokes, from which I take the following quotation [ReS, p. 15].

Very few writers can pound out a huge batch of jokes week after week relying
solely on sheer inspiration. They need the help of some mechanical process.
When a writer “has to be funny by Tuesday” he’s not going to wait for hot
flashes of genius, especially if he doesn’t happen to be feeling too “geniusy.” . . .
Switching is the gag writer’s alchemy by which he takes the essence of old jokes
from old settings and dresses them up in new clothes so they appear fresh.

(Putnam punks such as myself are often inveterate punsters. Punning requires the
rapid formal combinatorial manipulation of strings of symbols, without much concern
for content. This skill is also very helpful on the Putnam. More serious connections
between humor and creativity are discussed in [Koe].)
The details of switching problems and switching jokes are substantially different,

but the principle is the same. The following is one practical illustration of problem
switching. I heard a seminar speaker refer to a beautiful result of Mills: There is a
positive number α with the property that pn = �α3n� is a prime for every n ≥ 1. The
construction is recursive, based on the observation that α must lie between (pn)3

−n

and (pn + 1)3
−n

, and there is always a prime between any two consecutive cubes. It
occurred to me that something similar might be wrought out of the simpler expression
�αn�. One of the most familiar properties of αn is that it is always even if α is an even
integer (and n ≥ 1) and always odd if α is odd. The most counterintuitive behavior for
�αn� would thus be for it to alternate between even and odd. If you start with �α� ≥ 3,
then Mills’s interval argument will work, and this is how 1983 A-5 came to life.
Although this problem was solved by fewer contestants than we had hoped, perhaps

some of them later realized that the alternation of even and odd is basically irrelevant
to the problem, and that any pattern of parities (mod 2) can be achieved using the
same proof, as well as any pattern (mod m). Later on, William Waterhouse found
an explicit algebraic integer with the property that �αn� alternates in parity and
submitted this version of A-5 to the Monthly Problems Section.† I refereed it, and we
received dozens of correct solutions; see [Mon1, Mon2].

† Editors’ note: one possible α is the positive root of the quadratic x2 − ax− b, where a is odd, b is

even, and b < a.
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Another way to create Putnam problems is via Fowler’s method. Gene Fowler once
explained that it’s very easy to write. All you have to do is sit at a typewriter and
stare at a sheet of blank paper until blood begins to appear on your forehead. I often
applied this technique at less exciting seminars and colloquia, when my neighbors
thought I was doodling. I’d take a combination of simple mathematical objects and
stare at them until I could see a Putnam problem. Sometimes it worked. For example,
1984 A-4 asks for the maximal possible area of a pentagon inscribed in a unit circle
with the property that two of its chords intersect at right angles.
Contrary to popular opinion, it’s unhelpful to read through old problem books very

much for inspiration, because subconscious plagiarism is a great danger, and our larger
audience is very alert. (It might be more useful to look through the back of books,
because switches based on solutions are less transparent.)
So how do you sit down and create a Putnam problem? Let’s apply Pólya’s rules

and generalize the question. How do you sit down and create? This is a very difficult
and personal question. (It might not even have an answer; our romantic culture tends
to identify the results of algorithmic thinking as mechanical, rather than creative.)
In the end, you can do everything you can, rely on the rest of the Committee for

inspiration, and visualize two thousand fresh minds on the first Saturday in December,
eager to be challenged.
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Answers to Putnam trivia questions appearing on pages 307–310:

1. A

2. C (Kiran Kedlaya and Lenny Ng)

3. A

4. C (Miami University and Harvey Mudd College)

5. C (Michigan 1993 and 1999)

6. C (Xi Chen from U. Missouri–Rolla and Jordan Lampe from Berkeley. Ovidiu
Savin was a Putnam Fellow from the state-related U. Pittsburgh)

7. C

8. C

9. B (Ioana Dumitriu)

10. A, C, D

11. C and D six times each; A and B five times each

12. D (5), A (4), B (3), C (2)

13. B (Harvard 1990)

14. B (Duke 1996)

15. A

16. D (Kiran Kedlaya, Lenny Ng, J.P. Grossman; they were Putnam Fellows in the
same three years.)

17. B (1996)

18. A

19. C

20. A

21. A

22. B (Duke 1990)

23. D (Harvard, Cornell, Duke and Waterloo)

24. A (1996), B (1998)

25. A (Dylan Thurston)

26. A, B and D each finished second twice; C once

27. C

28. D

29. C (1990, 1992, 1995 and 1997)

30. D
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règle des nombres moyens, 180
representation theory, 64, 99, 168, 169
residue theorem, 59
Riemann sum, 12, 114, 115, 134
Riemann zeta function, 183
ring, xi
ring of integers, xi
Rolle’s Theorem, 42, 50, 136, 137, 155,

198, 291
Rouché’s Theorem, 102, 231

set theory, 173
Siegel zero, 95
sine law, see Law of Sines
sketching, 9, 43, 88
spherical cap, 255
Sprague-Grundy theory, 214
stationary phase approximation, 285
Stirling’s approximation, 208, 225
Stokes’ Theorem, 37, 79
strongly connected, 126, 242
sum of two squares, 33, 150, 263, 278, 279
Sylow subgroup, 238
symmetry, 35, 37, 38, 42, 45, 71, 80, 88,

109, 112, 117, 118, 136, 160, 162, 169,
192, 208, 281

Taylor series, 38, 45, 48, 89, 103, 104, 107,
156, 204, 257, 275

Taylor’s Formula, 155, 257, 273
Taylor’s Theorem, 133
Thue-Morse sequence, 158
Thue-Siegel Theorem, 261
transcendental number, 121, 158
Trapezoid Rule, 132, 243
triangle inequality, 103, 218, 252
trigonometric substitution, 37, 46, 50, 85,

192, 217, 292
Turing machine, 95
Twin Prime Conjecture, 279

ultraspherical polynomials, 270
unique factorization domain, 59, 259
USA Mathematical Olympiad, 214, 247

Vandermonde determinant, 70, 98, 276
Vandermonde’s identity, 82, 83, 145
vectors, 46, 93, 159, 186, 187, 218, 230,

231, 233, 276
Venn diagram, 53

weakly connected, 126
Weierstrass M -test, 111
Weierstrass’s Theorem, 111
Weil Conjectures, vii, 151, 261
Well Ordering Principle, 112
well-ordered set, 112, 194, 195
Weyl’s Equidistribution Theorem, 96, 216
winding number, 230, 231
Wolstenholme’s Theorem, 147, 245
Wythoff’s game, 180

Zorn’s Lemma, 111, 112, 195



Kiran S. Kedlaya is from Silver Spring, MD. He received
an AB in mathematics and physics from Harvard (where he
was a Putnam Fellow three times), an MA in mathematics
from Princeton, and a PhD in mathematics from MIT, and
currently holds a National Science Foundation postdoctoral
fellowship at the University of California, Berkeley. Other
affiliations have included the Clay Mathematics Institute and
the Mathematical Sciences Research Institute. His research
interests are in number theory and algebraic geometry.

He has been extensively involved with mathematics com-
petitions and problem solving. He has taught at the Math Olympiad Summer
Program, served on the USA Mathematical Olympiad committee and on the executive
committee of the 2001 International Mathematical Olympiad (held in Washington,
DC), served as a collaborating editor for the American Mathematical Monthly prob-
lems section, maintained problem information on the World Wide Web for the
American Mathematics Competitions, and edited Olympiad compilations for the
Mathematical Association of America.

Bjorn Poonen is from Boston. He received the AB degree
summa cum laude in mathematics and physics from Harvard
University, and the PhD degree in mathematics from the
University of California at Berkeley, where he now holds the
title of associate professor of mathematics. Other affiliations
have included the Mathematical Sciences Research Institute,
Princeton University, the Isaac Newton Institute, and the
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