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CHAPTER 3
The dynamics of visual responses in the primary
visual cortex
Robert Shapley�, Michael Hawken and Dajun Xing
Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA

Abstract: There is a transformation in behavior in the visual system of cats and primates, from neurons in
the Lateral Geniculate Nucleus (LGN) that are not tuned for orientation to orientation-tuned cells in
primary visual cortex (V1). The visual stimuli that excite V1 can be well controlled, and the thalamic inputs
to V1 from the LGN have been measured precisely. Much has been learned about basic principles of
cortical neurophysiology on account of the intense investigation of the transformation between LGN and
V1. Here we present a discussion of different models for visual cortex and orientation selectivity, and then
discuss our own experimental findings about the dynamics of orientation selectivity. We consider what
these theoretical analyses and experimental results imply about cerebral cortical function. The conclusion is
that there is a very important role for intracortical interactions, especially cortico-cortical inhibition, in
producing neurons in the visual cortex highly selective for orientation.

Keywords: V1 cortex; orientation selectivity; computational model; untuned suppression; tuned
suppression; dynamics
Introduction

Orientation tuning, as an emergent property in
visual cortex, must be an important clue to how
the cortex works and why it is built the way it is.
There is a transformation in behavior, from neu-
rons in the Lateral Geniculate Nucleus (LGN) that
are not tuned for orientation to orientation-tuned
cells in V1 cortex (for example, in cat area 17,
Hubel and Wiesel, 1962; in monkey V1, Hubel and
Wiesel, 1968; Schiller et al., 1976; De Valois et al.,
1982). We have learned about basic principles of
cortical neurophysiology from the intense investi-
gation and constructive disagreements about the
mechanisms of the orientation transformation
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between LGN and V1 as discussed below. Here
we will present our own findings about the dy-
namics of orientation selectivity, and contrast our
results and conclusions with others. Our results
suggest that intracortical interactions, especially
cortico-cortical inhibition, play an important role
in producing highly selective neurons in the cortex.
Theories of orientation selectivity

The rationale of our experiments came from con-
sidering different models or theories for visual
cortical function, so it makes sense to begin with
theory. There are two poles of thought about theo-
retical solutions for the problem of orientation
selectivity: feedforward filtering on the one hand,
and attractor states where networks develop
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‘‘bumps of activity’’ in the orientation domain as a
response to weakly oriented input on the other
(Ben-Yishai et al., 1995). Our own view based on
our experimental work, and also on recent theo-
retical work (Troyer et al., 1998; Chance et al.,
1999; McLaughlin et al., 2000; Tao et al., 2004;
Marino et al., 2005) is that the major cause of
orientation selectivity in V1 is recurrent network
filtering. We believe that feedforward excitation
induces an orientation preference in V1 neurons
but that cortico-cortical inhibitory interactions
within the V1 network are needed to make V1
neurons highly selective for orientation.
Feedforward model of orientation selectivity

The first model offered chronologically, and first
discussed here, is the feedforward model that is
descended from the pioneering work of Hubel and
Wiesel (1962). The HW model has the great virtue
of being explicit and calculable. It involves the
addition of signals from LGN cells that are aligned
in a row along the long axis of the receptive field of
the orientation-selective neuron, as in Fig. 1. Such
connectivity is likely the basis of orientation
preference (the preferred orientation) but whether
or not feedforward connectivity can account for
orientation selectivity (how much bigger the pre-
ferred response is than responses to nonpreferred
orientations) is a more difficult question. There is
some support for a feedforward neural architec-
ture based on studies that have determined the
Fig. 1. Classic feedforward model from LGN to simple cells in V1 c

Four LGN cells are drawn as converging onto a single V1 cell. The cir

diagram make the receptive field of the cortical cell elongated.
pattern of LGN input to V1 cells. In the ferret
visual cortex Chapman et al. (1991) inhibited cor-
tical activity with Muscimol, a GABA agonist, and
observed the spatial pattern of LGN inputs to a
small zone of V1. Reid and Alonso (1995) did dual
recordings in LGN and cat V1 and mapped the
overlapping receptive fields of cortical cells and
their LGN inputs. The experiment on cooling of
cat V1 to block cortical activity by Ferster et al.
(1996) is somewhat analogous to the Chapman
et al. (1991) study with the technical improvement
of intracellular recording of synaptic current in V1
cells; it was interpreted to mean that there is sub-
stantial orientation tuning of the collective thala-
mic input to a cortical neuron, consistent with the
HW feedforward model. In spite of all this
evidence, there is general agreement that the HW
model predicts rather weak orientation selectivity,
and therefore does not account for the visual
properties of those V1 cells that are highly selective
(Sompolinsky and Shapley, 1997; Troyer et al.,
1998; McLaughlin et al., 2000).

The reason for the shortfall of orientation
selectivity in the HW model has been discussed
before. LGN cells have a low spontaneous rate but
are quite responsive to visual stimuli. An LGN
cell’s firing rate during visual stimulation by an
optimal grating pattern has a sharp peak at one
temporal phase and dips to zero spikes/s at the
opposite temporal phase. Such nonlinear behavior
depends on stimulus contrast; at very low stimulus
contrast the LGN cells’ minimum firing rate may
not go down as low as zero spikes/s. But at most
ortex. Adapted with permission from Hubel and Wiesel (1962).

cular LGN receptive fields aligned in a row on the left side of the
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stimulus contrasts used in experiments on cortex
(that is contrast 40.1) the LGN cells’ firing rate
will hit zero on the downswing. This clipping of
the spike rate at zero spikes/s makes the LGN cells
act like nonlinear excitatory subunits as inputs to
their cortical targets (Palmer and Davis, 1981;
Tolhurst and Dean, 1990; Shapley, 1994). Since the
HW model simply adds up the LGN sources, its
summation of the clipped LGN inputs results in a
nonzero response at 901 from the optimal orien-
tation. Computational simulations of feedforward
models with estimates of LGN convergent input
derived from the work of Reid and Alonso (1995)
support this analysis (Sompolinsky and Shapley,
1997; McLaughlin et al., 2000). An example is
given in Fig. 2, which shows a computation of the
summed excitatory synaptic input from an HW
model onto a cortical cell (cf. Sompolinsky and
Shapley, 1997). Such a model produces a substan-
tial LGN input to a cortical cell at 901 from the
preferred orientation, as seen in the figure. How-
ever, highly selective V1 cells respond little or not
at all at 901 from peak orientation. Therefore,
feedforward convergence can be only a part of the
story of cortical orientation selectivity.
Fig. 2. Orientation tuning curve of the synaptic current evoked

by the LGN input to a cortical cell, relative to spontaneous

levels of LGN input calculated from a feedforward model

(Sompolinsky and Shapley, 1997). In this model, the LGN

afferents formed an ON–OFF–ON receptive field. Each subre-

gion had an aspect ratio of 2. A total of 24 OFF-center cells

comprised the OFF subfield, while 12 ON cells comprised each

ON subregion, in the model. The pattern of wiring was based

on the experimental results of Reid and Alonso (1995).
It might be supposed that one could rescue the
feedforward model by setting the spike threshold
just high enough that the off-peak LGN input
would be sub-threshold (Carandini and Ferster,
2000). However, this strategy will only work for
one contrast. One can infer this from Fig. 2. If one
adds a threshold that makes the 10% contrast
curve highly selective, the 50% contrast curve will
have a very broadly tuned response. This has been
pointed out often before (cf. Ben-Yishai et al.,
1995; Sompolinsky and Shapley, 1997; Troyer
et al., 1998). To understand cortical orientation
selectivity we must answer the theoretical question:
how does V1 reduce large feedforward responses
at orientations far from the preferred orientation,
like those illustrated in Fig. 2? The important
experimental issue therefore is, what is the global
shape of the orientation tuning curve? This focuses
attention on global measures of orientation selec-
tivity like circular variance (Ringach et al., 2002)
or 1 minus circular variance, sometimes called the
orientation selectivity index (Dragoi et al., 2000).
Kang et al. (2004) showed that global measures
like circular variance or orientation selectivity
index are equivalent to informational measures of
discriminability of widely separated orientations,
an important function for visual perception.
Models with cortical inhibition and excitation

There is a well-known addition to the HW model
that would increase the orientation selectivity
greatly. One can obtain increased orientation se-
lectivity by adding inhibition that is more broadly
tuned for orientation than excitation. The inhibi-
tion can be either spatial-phase-specific, so-called
push–pull inhibition (Palmer and Davis, 1981;
Ferster, 1988, 1992; Tolhurst and Dean, 1990;
Troyer et al., 1998), or some other kind of cross-
orientation inhibition (Bonds, 1989; Ben-Yishai
et al., 1995; Somers et al., 1995; McLaughlin et al.,
2000). What matters for explaining orientation
selectivity is not the phase specificity of the inhi-
bition but the breadth of tuning. Thalamo-cortical
synapses are thought to be purely excitatory
(Freund et al., 1989; Callaway, 1998), so the in-
hibition must come through cortical interneurons
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rather than directly from the thalamic afferents.
Experiments about intracortical inhibition in V1
have given mixed results. Initially, Sillito’s (1975)
and Sillito et al. (1980) experiments with bicucul-
line, a GABA antagonist, suggested that intracor-
tical inhibition is necessary for orientation tuning.
However, the interpretation of these results is
moot because of possible ceiling effects. Subse-
quent experiments of Nelson et al. (1994) blocking
inhibition intracellularly were interpreted to mean
that inhibition onto a single neuron is not neces-
sary for that neuron to be orientation tuned. There
is some question about this interpretation because
in the Nelson experiments the blocked cells were
hyperpolarized, mimicking the effect of sustained
inhibition. Somewhat later, an important role for
intracortical inhibition was indicated by pharma-
cological experiments (Allison et al., 1995; Sato
et al., 1996; Crook et al., 1998).

There are several models that explain cortical
orientation selectivity in terms of broadly tuned
inhibition and more narrowly tuned excitation.
One such theory of orientation tuning in cat cortex
(Troyer et al., 1998) explains orientation selectivity
in V1 in terms of ‘‘push–pull,’’ that is spatial-
phase-specific, inhibition (Palmer and Davis, 1981;
Ferster, 1988, 1992; Tolhurst and Dean, 1990).
However, the phase specificity is not the main rea-
son the Troyer et al. model generates orientation
selectivity. The mechanism for sharpening of ori-
entation tuning in the Troyer et al. (1998) model is
cortico-cortical inhibition that is broadly tuned for
orientation. In the Troyer et al. model there is
broadly tuned LGN convergent excitation as in
the HW model, and then more broadly tuned in-
hibition that cancels out the wide angle responses
but that leaves the tuning curve around the peak
orientation relatively unchanged. In having
broadly tuned inhibition and more narrowly
tuned excitation, this particular model resembles
many other cortico-cortical interaction models
for orientation selectivity (Somers et al., 1995;
Ben-Yishai et al., 1995; McLaughlin et al., 2000).

More recently, our colleagues David McLaughlin
and Michael Shelley and their colleagues
(McLaughlin et al., 2000; Wielaard et al., 2001;
Shelley et al., 2002) designed a realistic network
model for macaque V1. They constructed a
large-scale model (16,000 neurons) of four hyper-
columns in layer 4ca of macaque V1 incorporating
known facts about the physiology and anatomy.
This model accounts for many visual properties of
V1 neurons, among them orientation selectivity.
One innovation in this model is its realism: the
spatial strength of connections between neurons is
taken to be the spatial density of synaptic connec-
tions revealed by anatomical investigations of cor-
tex (e.g., Lund, 1988; Callaway, 1998). This model
causes significant sharpening of orientation selec-
tivity of V1 neurons compared to their feedfor-
ward LGN input. The mechanism of sharpening of
orientation tuning is, as in the Troyer et al. (1998)
model, broadly tuned inhibition. The big differ-
ence between this model and that of Troyer et al.
(1998) is that in the McLaughlin et al. model the
inhibitory conductance input to a cell is phase-
insensitive (and not push–pull). This is a
consequence of the realistic simulation of cortical
anatomy: because inhibition onto a model cell is a
sum from many inhibitory neurons and each cor-
tical inhibitory cell has a fixed phase preference
that is different from that of other inhibitory neu-
rons. This view of the nonselective nature of local
cortico-cortical inhibitory interactions is supported
by the measured phase insensitivity of synaptic in-
hibitory conductance in V1 neurons (Borg-Graham
et al., 1998; Anderson et al., 2000, discussed in
Wielaard et al., 2001). Another distinguishing fea-
ture of the large-scale model of McLaughlin et al.
(2000) is that it provides a mechanism for diversity
in orientation selectivity that has been observed
(Ringach et al., 2002).

Others have suggested that cortico-cortical ex-
citatory interactions play a crucial role in orienta-
tion selectivity. Somers et al. (1995) presented an
elaborate computational model for orientation
tuning that includes both recurrent cortical exci-
tation and inhibition as crucial elements. Douglas
et al. (1995) argued for the importance of recurrent
excitation in cortical circuits, reinforcing the
message of Douglas and Martin (1991) on the
‘‘canonical microcircuit’’ of V1 cortex. A third
paper in this genre was Ben-Yishai et al. (1995).
Ben-Yishai et al. offered an analytical model from
which they make several qualitative and quantita-
tive predictions. One of their theoretical results is
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that if recurrent feedback is strong enough, one
will observe a ‘‘marginal phase’’ state in which V1
behaves like a set of attractors for orientation. The
attractor states in recurrent excitatory models are
discussed not only in Ben-Yishai et al. (1995), but
also in Tsodyks et al. (1999). The concept is that
the tuning of very weakly orientation-tuned feed-
forward signals can be massively sharpened by
strong recurrent excitatory feedback. In such a
network, the neurons will respond to any visual
signal by relaxing into a state of activity governed
by the pattern of cortico-cortical feedback. A simi-
lar idea was proposed in Adorjan et al. (1999). Our
motivation was to try to decide between
the different cortical models by performing and
analyzing experiments on cortical orientation
dynamics.
Fig. 3. Reverse correlation in the orientation domain. The in-

put image sequence runs for 15–30min. Grating patterns of

orientations drawn randomly from a set of equally spaced

orientations in the interval [01, 1801] (usually in 101 angle steps)

are presented for 20ms each (2 frames at 100Hz frame rate).

Each orientation is presented at eight spatial phases; response is

phase averaged. For each time offset, the probability distribu-

tion for orientation is calculated by incrementing the orienta-

tion bin corresponding to the orientation that precedes each of

the N spikes, and then dividing the bin counts by N. N is usually

of the order of 5000 spikes. This is done for each time offset t to
create an ‘‘orientation selectivity movie.’’ In these experiments

an additional pattern is added — a blank stimulus at the mean

luminance of the grating patterns. This allows us to create a

baseline with which the responses at different angles can be

compared. Adapted with permission from Shapley et al. (2003).
Cortical orientation dynamics

In an attempt to provide data to test models of
orientation selectivity, we used a reverse correla-
tion method developed originally by Dario Ring-
ach. The idea was to measure the time evolution of
orientation selectivity extracellularly in single V1
neurons, with a technique that drove most cortical
neurons above threshold. The technique is illus-
trated in Fig. 3. The input image sequence is a
stimulus ‘‘movie’’ that runs for 15–30min. Grating
patterns of orientations drawn randomly from a
set of equally spaced orientations around the clock
(usually in 100 steps) are presented for a fixed time
(17ms ¼ 1 frame at a 60Hz refresh rate in the
early experiments reported in Ringach et al., 1997,
and 20ms ¼ 2 frames at 100Hz refresh rate in the
more recent experiments reported in Ringach
et al., 2003; Xing et al., 2005). Each orientation
is presented at eight spatial phases and the
response is phase averaged. For each fixed time
interval between a spike and a preceding stimulus,
the probability distribution for orientation is cal-
culated by incrementing the orientation bin corre-
sponding to the orientation that precedes each of
the N spikes, and then dividing the bin counts by
N. N is usually of the order of 5000 spikes. This is
done for each value of time interval between spike
and stimulus to create a sequence of orientation
tuning curves, one for each time interval — an
‘‘orientation selectivity movie.’’

In more recent experiments on orientation
dynamics (Ringach et al., 2003; Xing et al., 2005),
we used a refined technique that allowed us to
uncover the mechanisms of orientation selectivity.
As shown in Fig. 3, an additional pattern is added
to the sequence — a blank stimulus at the mean
luminance of the grating patterns. This allows us
for the first time to measure untuned excitation
and inhibition because, with this new technique,
one can estimate whether the effect of one of the
oriented patterns is greater or less than that of the
blank pattern. If the probability of producing a
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spike by a pattern of orientation y is greater than
that of a blank, we view as evidence that a pattern
of orientation y produces net excitation, while if
the probability of producing a spike by a pattern
of orientation y is less than that of a blank, we take
this as an indication of inhibition. Specifically, we
take R(y, t) ¼ log[p(y, t)/p(Blank, t)]. If the prob-
ability that angle y evokes a spike is greater than
that of a blank screen, then the sign of R is +.
If the probability that angle y evokes a spike is less
than that of a blank screen, then the sign of R is �.
If all angles evoke a response above the response
to a blank, then R(y) will have a positive value
for all y. A visual neuron equally well excited by
stimuli of all orientation angles would produce a
constant, positive R(y).

The shape of the orientation tuning curve
R(y, t) changes with time, t, and this dynamic
behavior has a number of important properties
that are revealed in Fig. 4 for a representative V1
neuron. The black curve is a graph of R(y, t) at the
time offset tpeak when the orientation modulation
depth, that is the difference between Rmax and
Rmin, reaches its maximum value. The red and blue
Fig. 4. Dynamics of orientation tuning in a representative V1

neuron. The black curve is a graph of R(y, t) at the time offset

tpeak when the orientation modulation depth reaches its maxi-

mum value. The red and blue curves are graphs of R(y, t) at the
two times before and after tpeak at which orientation modula-

tion is half maximal: the red curve is at tdev, the earlier of the

two times, and the blue curve is for tdec, the later time. Adapted

with permission from Shapley et al. (2003).
curves are graphs of R(y, t) at the two times
bracketing tpeak at which the orientation modula-
tion depth is half the maximum value; the red
curve is at the development time tdev, the earlier of
the two times when the modulation depth first rises
from zero to half maximum, and the blue curve is
at the declining time tdec when the response has
declined back down to half maximum from maxi-
mum. One striking feature of these curves is that
the dynamic tuning curve at the earlier time,
R(y, tdev), has a large positive pedestal of response,
a sign of untuned or very broadly tuned excitation
early in the response. This is just what one might
predict from the analysis of feedforward models
(see Fig. 2), if indeed the earliest response meas-
urable were predominantly feedforward excitation.
But then, as the response evolves in time, the
maximum value of R(y, t) at the preferred orien-
tation grows only a little, while the responses at
nonpreferred orientations decline substantially.
Thus, Fig. 4 demonstrates that the maximum ori-
entation modulation depth occurs at a time when
inhibition has suppressed nonpreferred responses.
Because such inhibition suppresses all responses
far from the preferred orientation, we infer that
this is untuned inhibition. It is also reasonable
to infer that tuned excitation near the preferred
orientation counteracts the untuned inhibition to
maintain the peak value of R(y, t).

While bandwidth often has been the focus of
interest in previous research, it is rather the global
shape of the tuning curve at all orientations that
differentiates between different theoretical mecha-
nisms. One simple way to study the global shape
of the tuning curve is to compare the response
at the preferred orientation with the response at
orthogonal-to-preferred. Therefore, we studied
R(ypref, t) and R(yortho, t) in a population of V1
neurons because these features of the dynamical
tuning curves are related to the overall shape of the
tuning curve and lead to insight about the role
of inhibition in the time evolution of orientation
selectivity. The average behaviors of R(ypref, t),
R(yortho, t) averaged over a population of 101
neurons are depicted in Fig. 5. An important
feature is the positive sign of R(ypref, t) and
R(yortho, t) early in the response, indicating that,
on average, V1 cells tended to respond to all
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orientations early in the response. This is a feature
that is consistent with the idea that at early times
feedforward input as in Fig. 2 controls the
response. Another important feature of the data
Fig. 6. The time course of measured excitation compared with the

dependence of tuned excitation is plotted in the left hand panel, redraw

nonzero response at orthogonal-to-preferred. The dashed curve is for r

stimulus of 2–4� the diameter of an optimal stimulus. The right pan

Fig. 5. Time course of the population-averaged (101 cells) re-

sponse to preferred orientation (Rpref, red curve), to orthogonal

orientation (Rorth, green curve) and to the orientation where the

response was minimum (Rmin, blue curve) in responses to stim-

uli of large size. Black dash-dot curve (aRpref) is the rescaled

Rpref. The time course of each cell’s responses was shifted so

that its half-max rise time of Rpref is at 41ms. Adapted with

permission from Xing et al. (2005).
is that the time course of R(yortho, t) was different
from R(ypref, t). Note especially in the time courses
in Fig. 5 the downward turn of R(yortho, t) just
before R(ypref, t) reached its peak value. Eventu-
ally R(yortho, t) declined to negative values mean-
ing that later in the response orientations far from
the preferred orientation were suppressive not
excitatory. If the entire response were dominated
by feedforward input, one would expect that pre-
ferred and orthogonal responses would have the
same time course simply scaled by the relative
sensitivity. Therefore, the results in Fig. 5 quali-
tatively rule out an explanation of the time
evolution of orientation selectivity in terms of
feedforward inputs alone.

The results about the population averages in
Fig. 5 support the hypothesis that there is untuned
suppression generated in the cortex that is rapid,
but still somewhat delayed with respect to the early
excitatory input. The untuned suppression con-
tributes to the amount of orientation selectivity at
the time when the neuron is most selective. These
results could be explained with a theory in which
feedforward excitation drives the early weakly
selective response. Evidence in favor of weakly
selective excitation was obtained by Xing et al.
(2005) when they analyzed the orientation dynam-
ics into a sum of excitation and untuned and
tuned suppression. The orientation tuning of the
excitatory term is shown in Fig. 6 where it is com-
pared to the predicted broad tuning curve for
prediction of feedforward LGN input current. The orientation

n from Xing et al. (2005). Note especially the broad tuning with

esponses to stimulus of optimal size; the solid curve is for a large

el reproduces the theoretical prediction of Fig. 2.
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feedforward input, from Fig. 2. Sharpening of this
broadly tuned input occurs when, with a very short
delay, relatively rapid intracortical inhibition
reduces the response at all orientations, acting like
an untuned suppression. Data from intracellular
recording in V1 indicate that a wide variety of
patterns of cortico-cortical inhibition may influence
orientation selectivity (Monier et al., 2003).
Discussion: inhibition and selectivity

The data in Figs. 4 and 5 from the orientation
dynamics experiments demonstrate that early ex-
citation in V1 is very broadly tuned for orienta-
tion, just as predicted for models of feedforward
convergence like the HW model (see Fig. 2). In-
deed in simulations of the dynamics experiments
with a large-scale network model of V1, McLaugh-
lin et al. demonstrated that feedforward excitation
generates dynamical orientation tuning curves
with very high circular variance, meaning poor se-
lectivity, at all time offsets between stimulus and
spike (see McLaughlin et al., 2000, Fig. 2). There-
fore, to us, an important question about orienta-
tion selectivity in V1 is, as we have stated it above,
how does the cortex suppress the feedforward ex-
citation far from the preferred orientation? Our
experimental results show that untuned inhibition
in the cortex answers the question for those V1
neurons that are highly selective for orientation.
The inhibitory signals must be fairly rapid, though
not quite as fast in arrival at the V1 neuron as the
earliest excitatory signals. Also, inhibition appears
to persist longer than excitation, as illustrated in
Fig. 5. A more comprehensive and detailed anal-
ysis of the dynamics of orientation selectivity, and
in particular of untuned suppression, can be found
in Xing et al. (2005).

Additional compelling evidence for the impor-
tant role of inhibition in orientation selectivity has
come from experiments on intracellular recording
from neurons in cat V1 (Borg-Graham et al., 1998;
Monier et al., 2003). Furthermore, the very elegant
pharmacological experiments in macaque V1 cor-
tex by Sato et al. (1996) established that when
cortical inhibition was weakened by pharmacolog-
ical competitive inhibitors, neuronal orientation
selectivity was reduced because the response to
off-peak orientations grew stronger relative to the
peak response (cf. especially Fig. 8 in Sato et al.,
1996). This is further support for the idea that the
feedforward excitatory input is very broadly
tuned in orientation, and that cortical inhibition
suppresses the responses far from the preferred
orientation. As presented earlier, the importance
of broadly tuned cortical inhibition has been
suggested also in computational models of the
cortex (Troyer et al., 1998; McLaughlin et al.,
2000; Wielaard et al., 2001).
Untuned suppression and cortical inhibition

To judge whether or not cortico-cortical inhibition
is the source of untuned suppression requires more
detailed considerations. When we stimulated a cell
with a stimulus of optimal size (0.451 radius on
average in our data), we most likely activated a
compact region of V1 (Van Essen et al., 1984;
Tootell et al., 1988). This region in V1 cortex
corresponds to the cell’s local neighborhood
(Angelucci et al., 2002). That we see a strong un-
tuned suppression even with a stimulus of optimal
size suggests that the untuned suppression mainly
comes from the center mechanism and the local
circuitry within a cortical hypercolumn. This is
consistent with the recent anatomical findings
(Angelucci et al., 2002; Marino et al., 2005) that
a V1 cell gets most of its inhibitory synaptic input
from a local area in the cortex of approximate
diameter of 100–250 mm. Untuned suppression
exists in all layers as well as in simple and com-
plex cell groups (Xing et al., 2005). This suggests
that untuned suppression is a general mechanism
in primary visual cortex (Ringach et al., 2002;
Shapley et al., 2003; Xing et al., 2005). Broadly
tuned cortico-cortical inhibition that arises locally
in the cortical circuitry is the likely source of the
untuned suppression we have measured (Troyer
et al., 1998; McLaughlin et al., 2000; Tao et al.,
2004). There are other candidate mechanisms for
untuned suppression in V1, for instance synaptic
depression at the thalamo-cortical synapses, as
proposed by Carandini et al. (2002). The fact that
untuned suppression is stronger in layer 4B and
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layer 5 than in the main thalamo-recipient layers
(layer 4C and layer 6) suggests that the untuned
suppression is mainly from cortico-cortical effects
instead of from thalamic-cortical effects (Xing
et al., 2005). Furthermore, the untuned suppres-
sion we measured had short persistence (Xing
et al., 2005), while rapid synaptic depression has
200–600ms recovery time (Abbott et al., 1997).
So the time course of untuned suppression is
unlike what has been assumed for synaptic
depression (e.g., Carandini et al., 2002). A likely
possibility is that fast cortical inhibition is the
source of the untuned suppression.
Cortico-cortical excitation and selectivity

There is a possibility that tuned cortico-cortical
excitation may contribute also to enhancement of
orientation selectivity by boosting the response
only around the preferred orientation. The possi-
bility that cortico-cortical excitation could en-
hance orientation selectivity was suggested
previously in theories of V1 (Ben-Yishai et al.,
1995; Somers et al., 1995). However, we did not
observe a substantial sharpening of the excitatory
input during the time evolution of orientation
selectivity (Xing et al., 2005). Therefore, the ori-
entation dynamics data suggest that the role of
tuned cortical excitation is less than that of
untuned inhibition in generating selectivity in V1.
Comparison with other studies

In the Introduction we reviewed previous experi-
ments that were taken to support a completely
different point of view, namely that the pattern of
feedforward thalamic input is enough to determine
orientation selectivity. Our results as a whole are
not consistent with this viewpoint. There are in the
literature two studies with dynamical stimuli that
have been interpreted as supporting the feedfor-
ward theory. Gillespie et al. (2001), recording
intracellularly in cat V1, reported that the band-
width of orientation tuning curves did not change
with time in their dynamic experiments. As stated
above, we think that examining bandwidth misses
the point that the crucial question in orientation
selectivity is how the orthogonal response is
suppressed by the cortex. Interestingly, Gillespie
et al. (2001, Figs. 2h, and 3b, f, j) do report
a change in the intracellular baseline with time
that reinforces our observations on the dynamic
growth of inhibition. Therefore, our interpretation
of the results of Gillespie et al. (2001) is that they
support the concept that inhibition plays an im-
portant role in enhancing orientation selectivity,
by untuned inhibition.

In a study that purports to assign a dominant
role to feedforward connections in orientation,
Mazer et al. (2002) recorded extracellularly in V1
of awake macaques, and used a reverse correlation
technique very similar to the one we introduced in
1997 (Ringach et al., 1997). However, unlike the
results we have presented here, Mazer et al.’s re-
sults were interpreted to indicate that the orienta-
tion tuning curves measured dynamically did not
change shape with time. Because they did not have
a baseline stimulus, as we did with the blank stim-
uli in the stimulus sequence, Mazer et al. (2002)
could not measure the presence of untuned sup-
pression, or broadly tuned excitation either. There-
fore, their conclusions about the time course of
orientation dynamics were not well supported by
the data they had available.
Diversity

The diversity of orientation selectivity is interest-
ing. Others have also reported data that indicate
wide diversity of orientation tuning in cat V1
(Dragoi et al., 2000) and in ferret V1 (Chapman
and Stryker, 1993) when the orientation tuning
curves were analyzed with global measures of
selectivity like those we have employed. There is a
need for understanding what are the functional
consequences for visual perception of the wide
diversity of orientation tuning that is observed.
This question was considered by Kang et al. (2004)
in a paper that applied a new technique for meas-
uring information transmission by populations of
neurons. Kang et al. concluded that diversity of
orientation selectivity could make the cortical
population better at discriminations of different
orientation differences. It is also plausible that the
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visual cortex is not only designed for tasks like
orientation discrimination, and that diversity of
orientation selectivity may be a result of special-
izations of neurons in other stimulus dimensions
besides orientation.
Orientation selectivity and cortical circuits

Our view of V1 is that it is a nonlinear dynamical
system and one of its tasks is to find local stimulus
features in the neural image of the visual scene
relayed to V1 from the eye through the LGN.
Different sources of excitation drive the activity in
V1 cells: local thalamo-cortical projections, local-
circuit cortico-cortical excitation, long-distance
horizontal V1 axons, and also feedback. Different
sources of intracortical inhibition contribute to the
selectivity of V1 neurons: local-circuit inhibition,
inhibition mediated by signals from long-distance
intrinsic V1 horizontal connections (Gilbert and
Wiesel, 1983; Rockland and Lund, 1983; Crook
et al., 1998; Roerig and Chen, 2002), and feedback
from extra-striate cortex (Angelucci et al., 2002)
that drives inhibitory interneurons in the local
circuit. While feedforward excitation must play a
role in giving V1 cells preferences for particular
orientations, intracortical inhibition makes
some V1 cells highly selective for their preferred
orientation over all others.
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