
Hexagonal Lattice Formation in Multi-Robot Systems

Paper 128

ABSTRACT
We present an algorithm that arranges a multi-robot system
into a regular hexagonal lattice. This configuration provides
continuous coverage with the fewest number of robots re-
quired. It also has a bounded stretch over a fully-connected
graph, producing an efficient multi-hop communications net-
work. Our algorithm uses artificial forces to move each robot
to local potential energy wells. A local error correction al-
gorithm detects and corrects most local lattice errors. Both
algorithms are fully distributed, requiring local network ge-
ometry information, but no global coordinates. We present
analysis of the potential energy wells that form the lattice, a
proof of the upper bound on the spanning ratio of a hexag-
onal packing, and the error detecting and correcting algo-
rithm. Simulation results demonstrate the effectiveness of
the approach for large populations of robots.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Distributed
Applications

General Terms
Algorithms

Keywords
distributed algorithms, multi-agent networks, full cov-
erage, surveillance, sensor networks, lattice formation,
collective intelligence, distributed problem solving

1. INTRODUCTION
Key applications of multi-robot systems, like map-

ping, exploration, search-and-rescue, and surveillance,
require robots to disperse over large geographical area
while maintaining a communications network. Some
of these applications require continuous coverage of
areas, efficient network connectivity, and the efficient
allocation of each robot. This work accomplishes this
task with a distributed algorithm that positions the robots
at the vertices of a hexagonal lattice. Figure 1 shows
the results of our algorithm run in simulation with 600
robots.

Figure 1: An example hexagonal lattice from a simu-
lation run of our algorithm.

The hexagonal configuration requires the fewest robots
per unit area of any regular tessellation pattern and
produces a connected communication network with a
bounded stretch. Figure 2 shows four alternatives for
coverage, a line of robots, and the three regular tes-
sellations: hexagonal, square, and triangular lattices.
All three regular tessellations produce a communica-
tion graph with a bounded stretch, which is the ratio
between the distance a message must travel through
the network between two robots and the Euclidean dis-
tance between these same two robots. A constant stretch
ensures that the distance a message has to travel de-
pends only on the euclidean distance. Therefore, we
can increase the number of robots without increasing
the distance the message has to travel. The line of robots
provides full coverage with the smallest number of robots,
but produces a communications network with a stretch
that is O(n), where n is the total number of robots in
the network. Of these, the hexagonal lattice config-
uration provides total coverage of an area, uses the
least number of robots, and produces a network with a
bounded stretch.

There are four contributions in this paper. We present
an algorithm that uses virtual forces between two species
of robots to produce a hexagonal cell, and we show

1

(a) Line
Graph

(b) Hexago-
nal Lattice

(c) Square Lat-
tice

(d) Triangular
Lattice

Figure 2: Four different communication network
topologies for full coverage, sorted by the density per
unit area. The line graph uses the smallest number
of robots, but has graph stretch of O(n). The trian-
gular and square lattice have bounded stretch, but
uses more robots than necessary. The hexagonal lat-
tice also has bounded graph stretch, but requires the
fewest number of robots for full coverage, only 2

3 of
the robots from a triangular lattice.

that these same forces will allow the hexagonal cell
to propagate into a hexagonal lattice. We show that
the potential energy field around the robots has a lo-
cal minimum that causes errors in the lattice, but the
error can be detected and corrected with a second dis-
tributed algorithm. We present a proof sketch of the
maximum stretch of the spanning graph induced by
the lattice, and empirical data that the average stretch
is actually much lower. Finally, we demonstrate the re-
sults of simulations with large populations of 400 robots.
All of the algorithms are fully distributed, scale to large
numbers of robots, and require only the local network
geometry - i.e. the positions of neighboring robots in
the communications network. The algorithms require
limited inter-robot communication, and are designed
to run on simple, low-cost mobile robot platforms.

1.1 Related Work
Our hexagonal lattice algorithm builds on the work

of Spears et al. Using artificial forces, they developed
formation control algorithms to construct triangular1

and square lattices [5,10–12]. We modified their frame-
work to make hexagonal cells stable, and we devel-
oped an algorithm to remove lattice imperfections.

Triangular lattices provide complete coverage but in-
cur a great deal of overlap in the communication ranges
of neighboring robots. As shown in Figure 2, a hexag-
onal lattice can be formed from a triangular lattice by
removing every third robot from each line. A virtual
robot could replace a robot in this position as suggested
by Mullen et al. [8], but we chose not to use this method
because it would require coordination among several
robots to determine the center of the hexagonal cells.

1There is an unfortunate habit in the literature of referring
to triangular lattices as hexagonal lattices. In this work, we
name a lattice by the polygon that forms it.

Our approach uses two species of robots, similar to the
“spin up/down” idea of Spears et. al. to produce a po-
tential energy field that has energy wells located at the
vertices of a hexagonal cell.

Unfortunately, the physicomimetric framework of-
ten leads to robots settling down in unfavorable local
minima. Martinson and Payton were able to avoid lo-
cal minima in square lattices by using the robot’s on-
board compass to draw several parallel lines and mak-
ing each robot attracted to the parallel lines [7]. Once
on the parallel line, they only move on the line. This
scheme avoids several local minima that may occur off
the lines parallel to the two orthogonal axis in a square
lattice. We could not employ this method in avoiding
local minima while creating the hexagonal lattice be-
cause the hexagonal lattice is not formed by orthogonal
lines, and, instead we developed another algorithm to
remove a robot from a local minimum.

Previous work by Tucker Balch and Maria Hybinette
shows the possibility of using potential fields to main-
tain a geometric formation while also avoiding obsta-
cles. The robots constructed “social potentials,” where
each robot influenced the potential energy in its vicin-
ity [2]. Desai et al. created an algorithm to maintain
relative positions and construct a formation [3]. Our
work differs from that of Balch and Hybinette and De-
sai et al. because they created a set of geometric for-
mations; however, we create a repeating hexagonal lat-
tice. Balch and Hybinette showed that by placing re-
pulsive forces near obstacles, the robots could success-
fully avoid them. In future work, we can have the
robots in the repeated pattern maneuver around ob-
stacles.

While we focus on constructing a repeated hexag-
onal lattice, our algorithm shares some similarities to
previous work in flocking. Blake Eikenberry et al. cre-
ated an algorithm that allows a swarm to construct a
formation. The robots detected nearby robots, constructed
trajectories, and positioned themselves in the proper
relative positions [1]. Our work differs from work done
by Eikenberry et al. because they had to prescribe the
relative positions for each robot. In our work, the robots
determine their relative positions using swarm intelli-
gence [6]. Hanada et al. constructed algorithms for
separating triangular lattices at an obstacle and then
reunifying them. However, our work is novel because
they did not create a self-organized hexagonal lattice.
Turgut et al. created algorithms for self-organizing the
heading and proximity of the robots. However, our al-
gorithm not only maintains a certain proximity, but it
also constructs a repeated hexagonal lattice formation.

2. PROBLEM STATEMENT
We assume that we have n randomly distributed robots

that can measure their local network geometry, the posi-

2

tions of their neighbors in each robot’s reference frame.
A robot is able to move freely in any direction in the
plane. We assume that each robot has a sensing radius
of R and a local communication radius of 1.5R. We
wish to implement this on low-cost systems with lim-
ited communications and processing, so care is taken
to implement solutions that are simple and scalable.
We seek to position the robots onto the vertices of a
hexagonal lattice with hexagons that have a side length
of R.

For communication, we assign log2(n) bits to pro-
vide unique IDs to each robot, 1 bit to identify the type
of robot, and 32 bits to communicate the error the robot
senses. The total number of bits required is log2(n)+33

3. GRAPH STRETCH IN HEX LATTICE
Let K be a complete graph where the nodes are ar-

ranged as the vertices of a hexagonal lattice. Let H be
the edges of the hexagonal lattice, andG be the vertices
of the hexagonal lattice. By definition, H is a spanning
tree of G. Define dh(A,B) as the shortest distance A
and B on H and d(A,B) as the shortest distance be-
tween A and B on K.

Define the stretch as dh(A,B)
d(A,B) . First, we use computa-

tional methods to produce a distribution of the stretch.
Then, we prove the stretch is no greater than 1.5.

3.1 The Distribution of Stretch
To compute the distribution of stretch, we constructed

a hexagonal lattice that is ten hexagons by ten hexagons
and calculated the distribution of the stretch shown in
Figure 3(c). The maximum ratio is 1.5, and this maxi-
mum corresponds to traveling between opposite sides
of a hexagonal cell. Furthermore, the histogram indi-
cates that the distribution of stretch resides mostly in
the range 1.2-1.4.

3.2 Analytical Solution for Stretch
We wish to show

dh(A,B)
d(A,B) ≤ 1.5.

Let (a, b) be the index of an arbitrary lattice point.
WLOG choose one point to be the origin (0, 0), restrict
a, b ≥ 0, and let side lengths equal one. Assign (a, b) as
shown in Figure 3(a).

Let d(a, b) denote the Euclidean norm of (a, b). Then

d(a, b) =
√
x(a, b)2 + y(a, b)2.

The y-position of point (a, b) is

y(a, b) = y(b) =
√
3
2 b.

The x-position depends on the parity of a+ b:

x(a, b) =

{
3
2a−

1
2 , if a+ b odd

3
2a, if a+ b even

}
.

Let dh(a, b) denote the shortest walk from (0, 0) to
(a, b) on the hexagonal lattice. Without altering walk
lengths, we reshape the hexagonal lattice into a ”brick”
lattice as shown in Figure 3(b);

The complete derivation of dh is outside the scope of
this discussion, so we present an outline:

If b > a, dh(a, b) ≥ a+b. A walk of length a+b exists,
so dh(a, b) = a+ b.

If b ≤ a, we have two sub-cases. If a+ b is odd, then
dh(a, b) ≥ 2a − 1. A walk of length 2a − 1 exists, so
dh(a, b) = 2a− 1. We similarly show for even a+ b that
dh = 2a.

In summary,

dh(a, b) =

 a+ b, if b > a
2a− 1, if b ≤ a, a+ b odd

2a, if b ≤ a, a+ b even

.

To finish the proof, we show dh
d ≤ 1.5 for each case.

The algebraic details are outside the scope of this dis-
cussion.

4. LATTICE FORMATION
To create a stable hexagonal cell, we divide the pop-

ulation into two types of robots, red and blue. Dis-
criminating between red and blue requires 1 bit, and
the robots can be divided into red and blue types by
assigning a 50% probability to being one of the colors.
Robots of the same color try to maintain a distance of√

3R between each other while robots of different col-
ors try to maintain a distance of R between each other.
Maintaining these prescribed distances will form the
stable hexagonal cell pictured in Figure 4. The nucleus
of a hexagonal cell is a triangle with one side of length√

3R, and two sides of length R. This requires two
robots of one color and one of the other. Assuming that
we begin with 50% red and 50% blue robots and that
three robots are interacting, the probability that two
are of the same type and one is of another type is 3

4 :
1−P (All Red)−P (All Blue) = 1− 2

(
1
2

)3
= 3

4 . Across
the entire population, this will generate a hexagonal
nucleus with high probability. Our simulation results
validate this assumption, the robots readily formed an
initial nucleus.

The physicomimetric framework models the force
between the robots as a proportionality constant, G,
times the product of the masses divided by the dis-
tance raised to a power, p. A viscosity term, c, allows
the robots to reach a stable state by having their veloc-
ity decay to zero. The framework also imposes a max-
imum force, Fmax, that the robots can impart on each
other to avoid a rapid increase in velocity.

We determined values for constants Fmax, G, p, and
c by searching the parameter space with a genetic al-
gorithm [4, 9]. We used a genetic algorithm to quickly
tune parameters to optimize global properties of the

3

(a) Indexing Hexagonal Lat-
tice Nodes

(b) Brick Lattice (c) Distribution of Stretch

Figure 3: a: The hexagonal lattice can be compressed into a ”brick” lattice without changing walk lengths.
The stretch is at most 1.5. b: The ”brick” lattice conserves the indexes and edges from the hexagonal lattice
c: We computed the ratio between the shortest path traveled and the Euclidean distance based on a large lattice.
This lattice has a size of ten hexagons positioned vertically and horizontally for a total of 420 vertices. The
largest ratio of 1.5 between the distance traveled along the lattice and the euclidean distance occurs in traveling
between opposite sides of the same lattice as shown in the. There is a spike in the histogram at a stretch of 1.15,
corresponding to the most common stretch between any two nodes.

3R

different color
interaction distance

same color
interaction distance

Figure 4: In the hexagonal cell pictured above, the
robots maintain the prescribed distances between
each other, making the cell stable.

lattice. We evolved parameters to minimize global lat-
tice error, which we define later in this paper. Spears
et al. tuned their parameters to reduce the number of
clusters and to reach a phase transition state, where the
robots in a cluster repel each other with more force
than the force from the surrounding robots pushing
them into a cluster.

4.1 Mass Interactions
To maintain a Euclidean distance R between robots

of different types and a distance
√

3R between robots
of the same type, we define two stable distances,

Rstable =

{
R, for robots of different types√
3R, for robots of the same type

}
.

By making the force attractive when the distance be-
tween the robots, d, is greater than Rstable, repulsive
when d is less than Rstable, and zero when d equals
Rstable, the robots will move to reach the desired dis-
tance between each other. To ensure that the interac-

tions remain local, the force goes to zero for d greater
than 1.5Rstable.

The magnitude of the force between two robots of
massm is determined from the equation for the virtual
force as defined in Spears et al. [10]:

F =

{
G
dp , for robots of different types
G

(d√
3
)p
, for robots of the same type

}
.

For our simulation, we used G = 627.2977 and p =
1.6185.

4.2 Stability
The virtual force approaches infinity as two robots

reach a distance where d is very close to zero. When
numerical methods are used to integrate an accelera-
tion, resulting from a force that goes to infinity, the
velocity can reach a very large value, causing insta-
bilities in the system. Thus, we placed a maximum
value on the magnitude of the virtual force, Fmax =
50.8168. The total composite virtual force is shown in
Figure 5(a).

Additionally, we desire for the robots to lose some
energy and eventually settle down into their stable po-
sitions. This goal is achieved by introducing a viscosity
coefficient, c = 0.2594, that decreases the magnitude of
the velocity.

Changes in the communication radius will not affect
the algorithm’s stability. The robot’s communication
radius can fluctuate betweenRstable and 1.5Rstable, and
the robot will still be able to detect the energy well at
Rstable and settle onto a vertex of the honeycomb lat-
tice.

4.3 Lattice Propagation

4

(a) Force Function

red robot blue robot energy well

(b) Potential Energy Contours

red robot
blue robot

bad energy well

red energy well

blue energy well

(c) Energy Wells Diagrams

Figure 5: a) shows the force that two robots impart on each other. b) shows the potential energy wells for
incoming red robots. Using symmetry arguments, we can add three more energy wells for blue robots, which
are drawn in c).

We also require that a hexagonal cell, once formed,
will give rise to more hexagonal cells and eventually
a hexagonal lattice. The potential energy diagram in
Figure 5(b) indicates that there are four stable posi-
tions for an incoming red robot in the vicinity of an
already assembled hexagonal cell. By symmetry, we
can add three energy wells for blue robots, pictured in
Figure 5(c). Figure 5(c) also shows that we can assem-
ble significant portions of six adjacent hexagonal cells
surrounding the one that has already formed. Thus, a
single hexagonal cell acts as a nucleus for the creation
of a hexagonal lattice. However, our potential energy
field creates a problematic stable position in the center
of the hexagonal cell, which causes an interstitial error,
and causes the hexagonal lattice to become a triangu-
lar lattice. This energy well exists for all choice of con-
stants because all forces in this location sum to zero. In
order to create a hexagonal lattice, we must design a
distributed algorithm to remove a robot caught in this
undesirable location.

5. ERROR DETECTION AND CORRECTION
To remove the robot from the interstitial position at

the center of a hexagonal cell, we developed a distributed
algorithm that allows each robot to measure its local er-
ror and determine if it at the center of a hexagonal cell.

If the robot is at the center of the hexagonal cell, it is
moved to the exterior of the convex hull surrounding
all the robots. The measurement and communication
of error requires 32 bits.

6. DEFINING ERROR
Figure 6(a) show a perfect hexagonal lattice. In this

ideal configuration, the angle between any two neigh-
bors, θij , is a multiple of 2π

3 . We define local lattice error,
Eij , for a neighbor pair i, j as the smallest difference
between θij and a multiple of 2π

3 : Eij = min(mod(θij ,
2π
3),

2π
3 −mod(θij ,

2π
3)). To calculate the total error of robot,

we sum the error over all neighbor pairs i, j: Etot =∑
Eij . The average error of a robot is defined as the

total error divided by the number of neighbor pairs:
Eavg = Etot

∆C2
, where ∆ is the number of neighbors.

6.1 Error Configurations
We simplify this discussion by assuming that most

of the robots are at the center of their energy wells,
forming a hexagonal lattice. We break the discussion
into several cases to illustrate how the error metric de-
tects interstitial lattice defects.

Case 0: Figure 6(a) shows that a robot with all its
neighbors positioned on the vertices of a hexagonal lat-
tice will measure θij between neighbors i, j that are

5

(a) Perfect Hexago-
nal Lattice (Case 0)

(b) Example Error
Reading (Case 0)

(c) Case 1 (d) Case 2 (e) Case 3 (f) Case 4

Figure 6: Assuming that the only stable positions are on the vertices of or in the center of a hexagonal cell, the
cases above show the possible neighborhoods a robot could find itself in.

multiples of 2π
3 . This produces a total error Etot =∑

Eij = 0.
Case 1: Figure 6(c) shows a robot with three neigh-

bors on the hexagonal lattice and one neighbor in an
interstitial position. This will produce an error of π3 be-
tween the brown neighbor and each of the other neigh-
bors, and an error of zero between all other robots.
Since there are three θij that include the brown robot,
the total error will be Etot = 3

(
π
3

)
= π. Since there are

a total of 4C2 = 6 angles between all neighbor pairs,
the average error for this robot will be Eavg = π

6
Case 2:Figure 6(d) shows a green robot with three

neighbors on a hexagonal lattice and two neighbors in
an interstitial position. The green robot will read an
error of π

3 between brown and black neighbors, an er-
ror of zero between two black neighbors, and an error
of zero between two brown neighbors. Since the robot
will measure 6 θij between brown and black neighbors,
1 θij between two black neighbors, and 3 θij between
two brown neighbors, the robot will read a total error
of Etot = 6π3 + 3(0) + 1(0) = 2π. Since there are a total
of 10 angle readings, this total error corresponds to an
average error of Eavg = π

5 .
Case 3:The green robot in case 3 is surrounded by

three brown neighbors that are on a hexagonal lattice
and three black neighbors in interstitial positions as
pictured in Figure 6(e). The green robot measures an
error of π

3 between brown and black neighbors, mea-
sures an error of 0 between two brown neighbors, and
measures an error of 0 between two black neighbors.
There are a total of 9 θij with brown and black neigh-
bors, 3 θij between two brown neighbors, and 3 θij be-
tween two black neighbors. Thus, the total error mea-
sured by the robot isEtot = 9π3 +3(0)+3(0) = 3π. Since
there are a total of 15 ij neighbor pairs, this total error
reading corresponds to an average error of Eavg = π

5
Case 4:The black robot in case 4 positions itself in

the interstitial position, and it will measure an error of
π
3 between brown and green neighbors, zero error be-
tween two brown neighbors, and zero error between
two green neighbors. Since there are a total of 9 θij be-

tween brown and green neighbors, 3 θij between two
green neighbors, and 3 θij between two brown neigh-
bors, the robot will read a total error of Etot = 9π3 +
3(0) + 3(0) = 3π. Since there are a total of 15 angles,
this total error reading corresponds to an average error
of Eavg = π

5

6.2 The Error Correction Algorithm
Figure 7 shows a configuration in which there is are

many interstitial errors. This is effectively creating a
triangular lattice within the hexagonal lattice. With
this many errors, there is some boundary between the
two lattice types. In such a configuration, our error cor-
rection algorithm can start with any interstitial robot
that is inside a hexagonal cell that is adjacent to three
or more correct hexagonal cells. Removal of this robot
would extend the hexagonal lattice. We call this robot
a correction start point, and have circled such a robot in
black in Figure 7.

Figure 7 shows that all robots at the boundary of tri-
angular and hexagonal cells have either case 1 or case
2 neighbors; furthermore, a correction start point has
two case 1 neighbors that make an angle of π3 with each
other; we can discriminate a case 1 robot from a case 2
robot by using the criterion Eavg ≤ π

6 . Thus, if a robot
reads an angle of π

3 between two neighbors with an
average error less than π

6 , it determines itself to be at
a correction start point. Having determined itself to
be correction start point, it moves to the exterior of the
lattice. This process continues indefinitely, removing
many of the interstitial errors in the network.

7. SIMULATION RESULTS
Figure 8 shows the position of the robots after run-

ning the entire algorithm for 2000 time steps. The hexag-
onal cells are fairly easy to pick out in both cases. To
evaluate the global performance, we define lattice er-

ror as: Elat =
n∑
i=1

Eavg,i

n , where n is the number of

robots and Eavg,i is the Eavg corresponding to the ith

robot. Figure 9(b) shows that for a simulation run with

6

Figure 7: The robot circled in black is at a convex
point of the hexagonal lattice and measures an angle
of π3 between two case 1 neighbors, which are colored
green. Upon removal of the robot circled in black, the
robots circled in pink are at convex points.

the error correction algorithm, the lattice error decreases
up until the 500th time step; whereas, the lattice error
for a simulation run without the error correction algo-
rithm ceases to decrease very early in the simulation.
Figure 9(c) shows that the error with error correction
algorithm is always less than error without the algo-
rithm. Figure 9(a) shows that the error correction al-
gorithm has almost no effect on the average speed, in-
dicating that the error correction algorithm does not
cause instabilities in the system.

Figure 9(a) shows that the loss of messages does not
cause the average speed to go up, indicating the sys-
tem remains stable. Figure 9(b) shows that increas-
ing the loss of messages decreases the error of the sys-
tem run without the error correction algorithm. The
decrease in error can be attributed to the loss of sta-
bility at the center of the hexagonal cells when one of
the robots on the vertices fails to impart a force. How-
ever, increasing the loss of messages increases the error
of the system run with the error correction algorithm.
The increased error can be attributed to an inability to
communicate error and fix the lattice.

8. CONCLUSIONS AND FUTURE WORK
Because our algorithm is fully distributed, multiple

nuclei start hexagonal lattices simultaneously, ultimately
creating crystalline grain boundaries in the final struc-
ture. This is unavoidable in our current design, but fu-
ture implementations could take advantage of symmetry-
breaking techniques to break ties at grain boundaries,
and have one lattice “rearrange” neighboring grains to
produce a single-crystal lattice. Because our current
implementation requires communication with neigh-
bors at a range of

√
3R, we cannot form hexagonal cells

at the maximum extent of the communication range.
We think that it is possible to build a hexagonal lattice
using a communication range ofR using virtual forces,
but it will require a more complicated distributed al-

Figure 8: The top diagram shows the position of the
robots when the simulation is run without error cor-
rection, and the bottom diagram shows the result
when the simulation is run with error correction.

7

(a) Average Speed Decay (b) Error Decay (c) Error Distribution after 2000 Time
Steps(p=0)

Figure 9: In the plot above, we observe decaying speed and error when messages are dropped p percentage of
the time. These diagrams show that as time evolves, the simulation with the error correction algorithm decays
to a smaller error while also maintaining stability as evidenced by the decreasing average speed. They, also,
show that a higher probability of message loss decreases lattice error when the error correction algorithm is not
applied. However, with the error correction algorithm, a higher probability of message loss increases lattice
error.

gorithm to form hexagonal cells, an approach we will
explore in future work. Our current algorithm is sim-
ple, requires only local network geometry, and is effec-
tive. We have calculated fundamental graph properties
of the hexagonal lattice. The simulation results show
rapid convergence and stable configurations. Our com-
bination of artificial forces and distributed algorithms
produces a high-quality hexagonal lattice efficiently.

9. REFERENCES

[1] O. Yakimenko B. Eikenberry and M. Romano. A
vision based navigation among multiple flocking
robots: Modeling and simulation. AIAA Modeling
and Simulation Technologies Conference and Exhibit,
2006.

[2] T. Balch and M. Hybinette. Social potentials for
scalable multi-robot formations. In Robotics and
Automation, 2000. Proceedings. ICRA ’00. IEEE
International Conference on, 2000.

[3] J. Desai, J. Ostrowski, and V. Kumar. Modeling
and control of formations of nonholonomic
mobile robots. IEEE Transactions on Robotics and
Automation, 17(6):905–908, December 2001.

[4] David E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1st edition, 1989.

[5] D. Gordon-Spears and W. Spears. Analysis of a
phase transition in a physics-based multiagent
system. Lecture Notes in Computer Science, page
193?207, 2003.

[6] Y. Hanada, Geunho Lee, and Nak Young Chong.
Adaptive flocking of a swarm of robots based on
local interactions. In Swarm Intelligence

Symposium, 2007. SIS 2007. IEEE, pages 340 –347,
april 2007.

[7] Eric Martinson and David Payton. Lattice
formation in mobile autonomous sensor arrays.
In Erol Sahin and William M. Spears, editors,
Swarm Robotics, volume 3342 of Lecture Notes in
Computer Science, pages 98–111. Springer Berlin /
Heidelberg, 2005. 10.1007.

[8] Sarah Barman Paolo Remagnino Robert
J. Mullen, Dorothy Monekosso. Reactive
coordination and adaptive lattice formation in
mobile robotic surveillance swarms. Distributed
Autonomous Robotic, 2010.

[9] Stuart Russell and Peter Norvig. Artificial
Intelligence: A Modern Approach. Prentice Hall,
second edition, 2003.

[10] W. M. Spears, D. F. Spears, J. C. Hamann, and
R. Heil. Distributed, Physics-Based control of
swarms of vehicles. Autonomous Robots,
17(2):137–162, 2004.

[11] W. M. Spears, D. F. Spears, R. Heil, W. Kerr, and
S. Hettiarachchi. An overview of
physicomimetics. Lecture Notes in Computer
Science-State of the Art Series, 3342, 2005.

[12] W.M. Spears, W.M. Spears, R. Heil, R. Heil, D.F.
Spears, and D. Zarzhitsky. Physicomimetics for
mobile robot formations. In Autonomous Agents
and Multiagent Systems, 2004. AAMAS 2004.
Proceedings of the Third International Joint
Conference on, pages 1528–1529, 2004.

8

