
Path Finding under Uncertainty through Probabilistic Inference

David Tolpin, Brooks Paige, Jan Willem van de Meent, Frank Wood
University of Oxford

{dtolpin,brooks,jwvdm,fwood}@robots.ox.ac.uk

Abstract

We introduce a new approach to solving path-finding prob-
lems under uncertainty by representing them as probabilis-
tic models and applying domain-independent inference al-
gorithms to the models. This approach separates problem
representation from the inference algorithm and provides a
framework for efficient learning of path-finding policies. We
evaluate the new approach on the Canadian Traveller Prob-
lem, which we formulate as a probabilistic model, and show
how probabilistic inference allows high performance stochas-
tic policies to be obtained for this problem.

Introduction
In planning under uncertainty the objective is to find the op-
timal policy — a policy that maximizes the expected re-
ward. In most interesting cases the optimal policy can-
not be found exactly, and approximation schemes are used
to discover the policy, either represented explicitly or as
an implicit property of the planning algorithm, through
reinforcement learning. Approximation schemes include
value/policy iteration, Q-learning, policy gradient meth-
ods (Sutton and Barto 1998), as well as methods based
on heuristic search (Bonet and Geffner 2001) and Monte
Carlo sampling such as MCTS (Kocsis and Szepesvári 2006;
Browne et al. 2012).

Domain-independent planning algorithms (Bonet and
Geffner 2001; Haslum, Bonet, and Geffner 2005; Helmert
2006) can be applied to different domains with little modi-
fication, however for many applications domain-dependant
techniques are still critical in order to obtain a high perfor-
mance policy, and put the burden of implementation on the
domain expert formulating the planning problem.

The framework of probabilistic inference (Pearl 1988)
proposes solutions to a wide range of Artificial Intelligence
problems by representing them as probabilistic models. Ef-
ficient domain-independent algorithms are available for sev-
eral classes of representations, in particular for graphical
models (Lauritzen 1996), where inference can be performed
either exactly and approximately. However, graphical mod-
els typically require that the full graph of the model to
be represented explicitly, and are not powerful enough for
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problems where the state space is exponential in the prob-
lem size, such as the generative models common in plan-
ning (Szörényi, Kedenburg, and Munos 2014).

Probabilistic programs (Goodman et al. 2008; Mans-
inghka, Selsam, and Perov 2014; Wood, van de Meent,
and Mansinghka 2014) can represent arbitrary probabilistic
models, efficient approximate inference algorithms have re-
cently emerged (Wingate, Stuhlmüller, and Goodman 2011;
Wood, van de Meent, and Mansinghka 2014; Paige et al.
2014). In addition to expressive power, probabilistic pro-
gramming separates modeling and inference, allowing the
problem to be specified in a simple language which does not
assume any particular inference technique.

In this paper, we show a connection between probabilis-
tic inference and path finding, which allows many path-
finding problems to be cast as inference problems using
probabilistic programs. Based on this connection, we pro-
vide a generic scheme for expressing a path-finding prob-
lem as a probabilistic program that infers the path-finding
policy. We illustrate this generic scheme by its application
to the Canadian Traveller Problem (Papadimitriou and Yan-
nakakis 1991; Bar-Noy and Schieber 1991; Nikolova and
Karger 2008). In the empirical evaluation, we show that
high performance stochastic policies can be obtained using
domain-independent inference techniques. In the conclud-
ing section, we discuss other possible areas of application of
probabilistic programming in planning, as well as possible
difficulties.

Preliminaries
Probabilistic Programming
Probabilistic programs are regular programs extended by
two constructs (Gordon et al. 2014):

• The ability to draw random values from probability distri-
butions.

• The ability to condition values computed in the programs
on probability distributions.

A probabilistic program implicitly defines a probability dis-
tribution over the program’s output. Formally, we define a
probabilistic program as a stateful deterministic computa-
tion P with the following properties:

• Initially, P expects no arguments.
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• On every call, P returns either a distribution F , a distri-
bution and a value (G, y), a value z, or ⊥.

• Upon returning F , P expects a value x drawn from F as
the argument to continue.

• Upon returning (G, y) or z, P is invoked again without
arguments.

• Upon returning ⊥, P terminates.

A program is run by calling P repeatedly until termina-
tion. Every run of the program implicitly produces a se-
quence of pairs (Fi, xi) of distributions and drawn from
them values of latent random variables. We call this se-
quence a trace and denote it by xxx. A trace induces a se-
quence of pairs (Gj , yj) of distributions and values of ob-
served random variables. We call this sequence an image
and denote it by yyy. We call a sequence of values zk an out-
put of the program and denote it by zzz. Program output is
deterministic given the trace.

By definition, the probability of a trace is proportional to
the product of the probability of all random choices xxx and
the likelihood of all observations yyy:

pP(x|yx|yx|y) ∝
|xxx|∏
i=1

pFi(xi)

|yyy|∏
j=1

pGj (yj) (1)

The objective of inference in probabilistic program P is to
discover the distribution of zzz.

Several implementations of general probabilistic pro-
gramming languages are available (Goodman et al. 2008;
Mansinghka, Selsam, and Perov 2014; Wood, van de Meent,
and Mansinghka 2014). Inference is usually performed us-
ing Monte Carlo sampling algorithms for probabilistic pro-
grams (Wingate, Stuhlmüller, and Goodman 2011; Wood,
van de Meent, and Mansinghka 2014; Paige et al. 2014).
While some algorithms are better suited for certain infer-
ence types, most can be used with any valid probabilistic
program.

Canadian Traveller Problem
Canadian Traveller Problem (CTP) was introduced in (Pa-
padimitriou and Yannakakis 1991) as a problem of finding
the shortest travel distance in a graph where some edges may
be blocked. There are several variants of CTP (Bar-Noy and
Schieber 1991; Nikolova and Karger 2008; Bnaya, Felner,
and Shimony 2009); here we consider the stochastic version.
In the stochastic CTP we are given

• Undirected weighted graph G = (V,E).

• The initial and the final location nodes s and t.

• Edge weights w : E → R.

• Traversability probabilities: po : E → (0, 1].

The actual state of each edge is fixed for every problem in-
stance but becomes known only upon reaching one of the
edge vertices. The goal is to find a policy that minimizes the
expected travel distance from s to t. The travel distance is
the sum of weights of all traversed edges during the travel,
where traversing in each direction is counted separately.

(F1, x1)

(G1, y1)

(F2, x2)
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1 (x1)
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(y1

) − log p
F
2 (x
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Figure 1: A path in the graph of a probabilistic program

CTP problem is PSPACE-hard (Fried et al. 2013), how-
ever a number of heuristic algorithms were proposed, in-
cluding high-quality policies based on Monte Carlo meth-
ods (Eyerich, Keller, and Helmert 2010). Policies are empir-
ically compared by averaging the distance travel over mul-
tiple instantiations of the actual states of the edges (open
or blocked) according to the traversal probabilities. Since
the travel distance is defined only for instance where a path
between s and t exists, instantiations in which t cannot be
reached from s are ignored.

A trivial travel policy is realized by traversing the problem
graph in a depth-first order until the final location is reached.
The expected travel distance of the policy is bounded from
above by the sum of weights of all edges in the graph by
noticing that every edge is traversed at most once in each
direction, and at most half of the edges are traversed on av-
erage.

Duality between Path Finding and
Probabilistic Inference

We shall now show a connection between path finding and
probabilistic inference. This connection was noticed ear-
lier (Shimony and Charniak 1991) and was used to search
for the maximum a-posteriori probability (MAP) assignment
in graphical models using a best-first search algorithm. Here
we further extend the analogy and establish a bilateral cor-
respondence between inferring the distribution defined by
a probabilistic model and learning the optimal policy in a
path-finding problem.

We proceed in two steps. First, following earlier work,
we establish a connection between a MAP assignment and
the shortest path. Then, based on this analogy, we explain
how discovering the optimal policy in a generative model
can be translated into inferring the output distribution of a
probabilistic program and vice versa.

Inference on probabilistic programs computes a represen-
tation of distribution (1). An equivalent form of (1) is ob-
tained by taking logarithm of both sides:

log pP(xxx) =

|xxx|∑
i=1

log pFi(xi) +

|yyy|∑
j=1

log pGj (yj) + C (2)

where C is a constant that does not depend on xxx. To find
the MAP assignment xxxMAP , one must maximize log p(xxx).
One can view xxx as a specification of a path in a graph where
each node corresponds to either (Fi, xi) or (Gj , yj), and the
costs of edges entering (Fi, xi) or (Gj , yj) is − log pFi(xi)
o − log pHj (yj), correspondingly (Figure 1). Then, finding



the MAP assignment is tantamount to finding the tracexxx that
produces the shortest path. (Shimony and Charniak 1991;
Sun, Druzdzel, and Yuan 2007) use this correspondence in
their MAP algorithms for graphical models.

We shall turn now to a more general case when the MAP
assignment of a part of the trace xxxθ is inferred. In a prob-
abilistic program, this is expressed by selecting xxxθ as the
program output, zzz ← xxxθ. The distribution of zzz is marginal-
ized over the rest of the trace xxx¬θ = xxx \ xxxθ, and finding the
MAP assignment for xxxθ corresponds to finding the mode of
the output distribution:

xxxθMAP = argmax pP(zzz)

∝ argmax

∫
xxx¬θ

|x
θxθxθ|∏

i=1

pF θi xxx
θ
i

|yyy|∏
j=1

pGj (yj)

 pP(xxx
¬θ)dxxx¬θ,

(3)

where the integrand in equation (3) depends on xxx¬θ. Just
like in the case of MAP assignment to all random vari-
ables, equation (3) corresponds to a path finding problem:
xxxθ can be viewed as a policy, and determining xxxθMAP cor-
responds to learning a policy which minimizes the expected
path length

Exxx¬θ

− |xxx
θ|∑

i=1

log pF θi (x
θ
i )−

|yyy|∑
j=1

log pGj (yj)

 (4)

While in principle policy learning algorithms could be used
for MAP estimation, a greater potential lies, in our opinion,
in casting planning problems as probabilistic programs and
learning the optimal policies by estimating the modes of the
programs’ distributions. We suggest to adopt the Bayesian
approach, according to which prior beliefs are imposed on
policy parameters, and the optimal policy is learned through
inferring posterior beliefs by conditioning the beliefs on ob-
servations. We explore this approach in the next section.

Stochastic Policy Learning through
Probabilistic Inference

We have shown that in order to infer the optimum policy,
a probabilistic program for policy learning should run the
agent on the distribution of problem instance and policies,
and compute probability of each execution such that the log-
arithm of the probability is equal to the negated travel cost.
The generic program shown in Algorithm 1 achieves this by

Algorithm 1 Policy learning through probabilistic infer-
ence.
Require: agent, Instances, Policies

1: instance← DRAW(Instances)
2: policy← DRAW(Policies)
3: cost← RUN(agent, instance, policy)
4: OBSERVE(1, Bernoulli(e−cost))
5: PRINT(policy)

randomly drawing problem instances and policies from their

distributions supplied as program arguments (lines 1 and 2)
and updating the log probability of the sample (line 4) by
calling OBSERVE. OBSERVE adds the log probability of its
first argument, the value, with respect to its second argu-
ment, the distribution. Consequently, the log probability of
the output policy

logpP(policy) =

log pPolicies(policy) + log e−cost(policy) + C

=−cost(policy) + log pPolicies(policy) + C (5)

When policies are drawn from their distribution uniformly,
log pPolicies(policy) is the same for any policy, and does not
affect the distribution of policies specified by the probabilis-
tic program:

log pP(policy) = −cost(policy) + C ′ (6)

In practice, this is achieved by using a uniform distribu-
tion on policy parameters, such as the uniform continuous
or discrete distribution for scalars, the categorical distribu-
tion with equal choice probabilities for discrete choices, or
the symmetric Dirichlet distribution with parameter 1 for
real vectors. Alternatively, if different policies have different
probabilities with respect to the distribution Policies from
which the policies are drawn, their log probabilities (taken
with the opposite sign) have the interpretation of the costs
of the corresponding policies and provide a means for spec-
ifying preferences of the model designer with respect to dif-
ferent policies. In either case, the optimal policy is approxi-
mated by estimating the mode of the program output.

When policies are drawn uniformly, the scale of the travel
cost does not affect the choice of optimal policy. However,
as follows from equation (6), the shape of the probability
density (or probability mass for discrete distributions) de-
pends on the cost scale — the higher the cost, the sharper the
shape. Thus, by altering the cost scale we can affect the per-
formance of the inference algorithm: on one hand, the mode
estimate of a sharper function can be computed with higher
accuracy, on the other hand, when pP(policy) changes too
fast with its argument in the high probability region, approx-
imate inference algorithms converge slowly. The right scale
depends on the probabilistic program, and finding the most
appropriate scale is a parameter optimization problem.

Note that the probabilistic program for policy learning is
independent of the inference algorithm which would be used
to obtain the results. The programmer does not need to make
any assumptions about the way the mode of the output distri-
bution is estimated, and even whether approximate or exact
inference (if appropriate) is performed.

Case Study: Canadian Traveller Problem
We evaluated the proposed policy learning scheme on the
Canadian Traveller Problem (Algorithm 2). The algorithm
draws CTP problem instances from a given graph with
traversability of each edge randomly selected according to
the probabilities p, and learns a stochastic policy based on
depth-first search — the policy is specified by a vector of
probabilities of selecting each of the adjacent edges in every



node. When the policy is realized, the selection probabilities
are conditioned such that only open unexplored edges are se-
lected, in accordance with the base depth-first search traver-
sal. Dirichlet(111deg(v)) is a uniform distribution, hence the

Algorithm 2 Learning stochastic policy for the Canadian
traveller problem
Require: CTP(G, s, t, w, p)

1: instance← DRAW(CTP(G,w, p))
2: for v ∈ V do
3: policy(v)← DRAW(Dirichlet(111deg(v)))
4: end for
5: repeat
6: (reached, distance)← STDFS(instance, policy)
7: until reached
8: OBSERVE(1, Bernoulli

(
e−distance

)
)

9: PRINT(policy)

log probability of a trace is equal to the path cost taken with
the opposite sign. STDFS (line 6) is a flavour of depth-first
search which enumerates node children in a random order
according to the policy for the current node. An optimal
policy is expected to assign a higher probability to edges
leading to shorter paths having lower probability to become
blocked.

To assess the quality of learned policies we generated sev-
eral CTP problem specifications by triangulating a randomly
drawn set of either 50 or 20 nodes from Poisson-distributed
points on a unit square. The average DFS travel cost in
fully traversable instances was 7.9 for 50 node instances,
and 5.7 for 20 node instances. The same traversal proba-
bility in the range [0.35, 1.0] is assigned to every edge of
the graph (the bond percolation threshold for Delaunay tri-
angulation is≈0.33 (Becker and Ziff 2009), hence instances
with p < 0.3 are disconnected with high probability). A 50
node instance is shown in Figure 2. The s and t nodes are
marked by the red circles, and edge weights are equal to the
Euclidean distances between the nodes.

Lightweight Metropolis-Hastings (Wingate, Stuhlmüller,
and Goodman 2011) was used for inference. We learned a
policy for each problem specification by running the infer-
ence algorithm for 10,000 iterations. Then, we evaluated
policies returned at different numbers of iterations on 1,000
randomly drawn instances to estimate the average travel
cost. The average computation time of learning and eval-
uation per instance was ≈80s on Intel Core i5 CPU.

The results are shown in Figure 3, where the solid lines
correspond to the average travel cost over the set of prob-
lems of the corresponding size, and dashed lines to 95%
confidence intervals. For both 50 and 20 node problems, the
policy mostly converged after ≈1000 iterations, achieving
50–80% improvement compared to the uniform stochastic
policy. While a further refinement of the policy is possible,
a different type of policy should be learned to obtain sig-
nificantly better results, for example, a deterministic policy
which takes online information into account. This, however,
would complicate the probabilistic program which we chose
to keep as simple as possible — the actual implementation

Figure 2: An instance of CTP with 50 nodes. Initial (1) and
final (25) locations are marked by red circles; edge weights
are Euclidean distances between edge vertices.
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Figure 3: Average travel cost vs. number of samples for
problems with 50 and 20 nodes and traversability proba-
bilities 0.85 and 0.5. The policies mostly converged after
≈1000 samples.

of the program is just above 100 lines of code, including the
implementation of DFS.

A learned policy for a 50 node problem is visualized in
Figure 4. Edge widths correspond to the confidence about
the policy for the edge. Edges with higher precision (lower
variance) of the policy are broader. Edge color is blue when
a traversal through the edge is much more probable in one
than in the other direction, and green when traversal in either
direction has the same probability, with shades of green and
blue reflecting how directed the edge is. As we would expect
in a converged policy, edges in the center of the graph are
thicker, that is, more explored, than at the periphery, where
changes in the policy are less likely to affect the average



Figure 4: Visualization of policy learned for blocking proba-
bility 0.5 on instance in Figure 2. Broader edges correspond
to more explored components of the policy.

travel cost. Bright blue (uni-directional) edges are mostly
radial relative to the direction from the initial position (node
1) to the goal (node 25), and many well-explored tangential
edges are green (bi-directional). This corresponds to an in-
tuition about the policy — traversals through radial edges
are mostly in the direction of the goal, and through the tan-
gential edges in either direction to find an alternative route
when the edge leading to the goal is blocked.

Discussion
We introduced a new approach to policy learning based on
casting a policy learning task as a probabilistic program. The
main contributions of the paper are:

• Discovery of bilateral correspondence between proba-
bilistic inference and policy learning for path finding.

• A new approach to policy learning based on the estab-
lished correspondence.

• A realization of the approach for the Canadian trav-
eller problem, where improved policies were consistently
learned by probabilistic program inference.

The proposed approach can be extended to many different
planning problems, both in well-known path-finding appli-
cations and in other domains involving policy learning un-
der uncertainty; Partially observable Markov Decision Pro-
cesses and generalized Multi-armed bandit settings are just
two examples. At the same time, the exposure of probabilis-
tic programming tools to different domains and new appli-
cations is challenging. These tools were initially developed
with certain applications in mind. Our limited experience
shows that the probabilistic programming paradigm scales
well to new applications and larger problems. However, as
more problems are approached using the probabilistic pro-
gramming methodology, apparent weaknesses and limita-

tions are uncovered, and a more powerful and flexible in-
ference algorithm will have to be developed.

The policy learning algorithm presented here follows the
offline learning scheme — the policy is selected before act-
ing, and then used unmodified until the goal is reached. Al-
though this is, indeed, the easiest way to cast policy learning
as probabilistic inference, online learning can also be imple-
mented so that when additional computation during acting
is justified by the time cost, the policy is updated based on
the information gathered online, as in some of state-of-the-
art algorithms for CTP (Eyerich, Keller, and Helmert 2010).
Moreover, the time cost of updating the policy incremen-
tally based on the new evidence is lower than of inferring a
new policy due to the any-time nature of Bayesian updating.
Online inference is a subject of ongoing research in proba-
bilistic programming.

By performing inference on a probabilistic program, we
obtain a representation of distribution of policies rather than
a single policy. We then use this distribution to select a pol-
icy. When the inference is performed approximately, which
is a common case, the expected quality of the selected pol-
icy improves with more computation. In the most basic set-
ting, a fixed threshold on the number of iterations of the
inference algorithm can be imposed. In general, however,
determining when to stop the inference and commit to a
particular policy, whether in offline or online setting, is a
rational metareasoning decision (Russell and Wefald 1991;
Hay et al. 2012). Making this decision in an informed and
systematic way is another topic for research.
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