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Abstract—Anomaly detection is an important challenge for
tasks such as fault diagnosis and intrusion detection in energy
constrained wireless sensor networks. A key problem is how
to minimise the communication overhead in the network while
performing in-network computation when detecting anomalies.
Our approach to this problem is based on a formulation that uses
distributed, one-class quarter-sphere support vector machines
to identify anomalous measurements in the data. We demon-
strate using sensor data from the Great Duck Island Project
that our distributed approach is energy efficient in terms of
communication overhead while achieving comparable accuracy
to a centralised scheme.

I. INTRODUCTION

Wireless sensor networks are formed using large numbers
of cheap, tiny and compact sensors which have inbuilt wire-
less radios for communication [1]. They have limited power,
bandwidth and memory. These inherent constraints on the
network make it more vulnerable to faults and malicious
attacks such as denial of service attacks, black hole attacks and
eavesdropping [2], [3]. Therefore, identifying misbehaviors or
anomalies in the network is important to provide reliable and
secure functioning of the network. An anomaly or outlier in
a set of data is defined as an observation that appears to be
inconsistent with the remainder of the data set [4].

Misbehaviors in the network can be identified by analysing
either sensor data measurements or traffic related attributes
in the network. Note that the underlying distribution of these
measurements may not be known a priori. A key challenge
is to identify anomalies with acceptable accuracy while min-
imising energy consumption in the wireless sensor network.

In sensor networks, the majority of the energy is consumed
in radio communication rather than in computation [5], [6].
For example, in Sensoria sensors and Berkeley motes, the ratio
between communication and computation energy consumption
ranges from 103 to 104 [7]. Hence, there are advantages
to increasing computational overheads in order to reduce
communication requirements in the network, and thus prolong
the lifetime of energy-limited wireless sensor networks. In
this paper, we propose an energy efficient non-parametric
distributed approach for anomaly detection in wireless sensor
networks, which performs in-network processing in order to
reduce the need for radio communication in the network.

Recent related work in anomaly or outlier detection in
sensor networks can be found in the literature. Palpanas et al.
[8] and Subramanium et al. [9] have proposed the use of kernel
density estimators for online distributed outlier detection in
streaming data in sensor networks. In this distributed approach,
a random sample of the data set within the window of
measurements are communicated between sensor nodes along
with the bandwidth parameter of the kernel function that is
used to model the data. Onat et al [10] have identified anoma-
lies using a rule based technique on a predefined statistical
model. Loo et al [11] have proposed a cluster based intrusion
detection scheme for anomaly detection. However they have
not considered co-operation between nodes.

One class support vector machines (SVMs) have been
proposed as a technique for outlier detection. Techniques have
been proposed based on hyperplanes [12] and hyperspheres
[13]. Navia-Vazquez et al. [14] and Flouri et al. [15] have
proposed distributed and incremental techniques for training
SVMs in sensor networks. However, a challenge for these
SVM formulations for this application is their computational
complexity.

In our previous work [16] for anomaly detection, a cluster-
based distributed approach was proposed, where the data
measurements are clustered and summary information for
each cluster is communicated between nodes for performing
distributed anomaly detection and classifying the data. In this
paper, we propose another communication efficient distributed
technique based on a one-class quarter sphere SVM.

The rest of the paper is organised as follows. We formally
introduce the problem in Section II. The quarter sphere support
vector machine formulation and our distributed approach are
explained in Section III. An empirical comparison of the cen-
tralised and distributed approaches is provided in Section IV.

II. PROBLEM STATEMENT

We consider the problem of anomaly detection in a wireless
sensor network where the sensor nodes are connected by
a routing tree such as Figure 1(a). The sensors are time
synchronised and deployed in a homogeneous environment,
where the measurements have the same unknown distribution.

1-4244-0353-7/07/$25.00 ©2007 IEEE 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 



Fig. 1. (a) Example of a multi-level hierarchical organisation of sensors. (b)
Geometry of the one-class quarter sphere support vector machine.

At every time interval ∆i, each sensor sj in a set of sensor
nodes S = {sj : j = 1...s} measures a data vector xj

i . Each
data vector is composed of attributes xj

ik, where xj
i = {xj

ik :
k = 1...d} and xj

i ∈ �d. After a window of n measurements,
each sensor sj has collected a set of measurements Xj = {xj

i :
i = 1...n}. Consider any parent node sp ∈ S in the network
having a set of children nodes Sc = {sc : c = 1...l, l ≤ (s−1)}
and Sc ⊂ S. Our aim is to identify outliers O ⊂ X at the
parent node sp in the combined set of measurements X =⋃

j=1..(l+1) Xj . This framework provides a flexible model for
detecting anomalies at any level of the routing hierarchy in
the network.

III. ANOMALY DETECTION

A naive approach for detecting anomalies in wireless sensor
networks is to use centralised detection. In this approach, all
the sensor measurements are communicated to the parent node
and then an anomaly detection algorithm is run at the parent
node to classify the data.

Figure 2(a) shows an example of a centralised approach for
a single-level hierarchical topology. Here, sensor nodes S2, S3
and S4 send their data measurements to their parent node S1.
Node S1 then combines its own data with the received data
and performs anomaly detection on the combined data.

This approach is highly inefficient in terms of commu-
nication overhead in the network. Therefore, it is desirable
to perform more in-network computation and communicate
only summary information between nodes. Our proposed
distributed approach performs detection on local data at each
node and communicates only summary information among the
sensor nodes for global classification of the data.

We now describe the anomaly detection algorithm and our
proposed distributed detection approach in more detail.

A. Anomaly Detection Algorithm

Tax and Duin [13] have proposed a one-class support
vector machine (SVM) formulation for outlier detection, which
is based on fitting a hypersphere to the data in a higher
dimensional space. It is observed in [17] that the “typical
distribution of features used in intrusion detection systems
(IDS) is one-sided on �+

0 ”. A geometric construction which
takes into account this one-sidedness of the data distribution
can be obtained by extending the hypersphere based one-class
SVM approach. Laskov et al. have extended such an approach

Fig. 2. Centralised and distributed detection. (a) Centralised approach:
Data from children nodes are accumulated at parent node S1, and then
anomaly detection is performed at S1 to identify outliers. (b) Distributed
approach: Children nodes S2, S3, S4 and parent node S1 perform local
anomaly detection. Children nodes transmit their local radii (R2, R3, R4)
to the parent node S1. Parent node S1 computes the global radius Rm using
the received and its own local radii. Then S1 transmits the global radius Rm

to the children nodes, which each perform global detection using Rm.

into a special type of SVM called a one-class quarter-sphere
SVM [17]. Here we provide the mathematical formulation of
the one-class quarter-sphere SVM.

In order to ease the notation burden, we drop the superscript
j that denotes the data measurements of a sensor node sj .
Consider a data vector xi in the input space from a set of data
vectors Xj = {xi : i = 1..n} mapped to a higher dimensional
space, called the feature space, by some non-linear mapping
function φ(xi). The mapped vector φ(xi) in the feature space
is called the image vector. The aim is to fit a hypersphere
with minimal radius R, having its center fixed at the origin
and encompassing a majority of the image vectors. This can
be formulated as an optimisation problem as follows:

min
R∈�,ξ∈�n

R2 +
1
νn

n∑

i=1

ξi

subject to: ‖φ(xi)‖2 ≤ R2 + ξi,

ξi ≥ 0. (1)

where {ξi : i = 1...n} are the slack variables that allow some
of the image vectors to lie outside the sphere. The parameter
ν ∈ (0, 1) is the regularisation parameter which controls the
fraction of image vectors that lie outside the sphere, i.e., the
fraction of image vectors that can be outliers or anomalies
[17]. The Lagrange function for this optimisation is:

L(R, ξi, αi, γi) = R2 +
1
νn

n∑

i=1

ξi −
n∑

i=1

γiξi

−
n∑

i=1

αi(R2 − ‖φ(xi)‖2 + ξi) (2)

where αi ≥ 0, γi ≥ 0,∀i are the Lagrange multipliers.
Equating the partial derivatives of L with respect to R and
ξi to zero yields:

∂L

∂R
= 0 ⇒

n∑

i=1

αi = 1 (3)

∂L

∂ξi
= 0 ⇒ γi =

1
νn

− αi (4)
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From (4) and using αi ≥ 0, γi ≥ 0, we can obtain
0 ≤ αi ≤ 1

νn . Substituting (3) and (4) in (2) results in:

L =
n∑

i=1

αi(φ(xi).φ(xi)) (5)

where (φ(xi).φ(xi)) = ‖φ(xi)‖2 is the inner product of the
image vector φ(xi). Using the kernel trick, the inner product
can be replaced by a kernel function k(xi, xi) analogous to
[18]. Hence, for the above primal problem (1), we can obtain
the dual problem as

min
α∈�n

−
n∑

i=1

αik(xi, xi)

subject to:
n∑

i=1

αi = 1,

0 ≤ αi ≤ 1
νn

, i = 1...n. (6)

This dual problem (6) is a linear optimisation problem, so
the {αi} can be obtained using widely available linear op-
timisation techniques [19]. Compared to some existing one-
class SVM formulations [13], [12], which require solving a
quadratic optimisation problem, this formulation with linear
optimisation is advantageous in terms of its computational
complexity [17].

From the solution of (6) for {αi}, the image vectors can be
classified as follows (refer to Figure 1(b)). The image vectors
with αi = 0 will fall inside the sphere. The image vectors
with αi > 0 are called the support vectors. Support vectors
with αi = 1

νn are termed as outliers, which fall outside the
sphere. Support vectors with 0 < αi < 1

νn will reside on the
surface of the sphere, and hence are called the border support
vectors. Moreover, the radius of the sphere R can be obtained
using R2 = k(xi, xi), for any border support vector xi.

Further, in (6) it can be observed that the solution is affected
only by the norms of the non-linear mapping of data vectors
using the kernel k(xi, xi). This creates a problem for the
application of this approach with distance based kernels, as
the norms of the kernels are now equal for all data vectors
[17]. In order to alleviate this problem, the image vectors in
the feature space are centered [20], [21] in that space using:

φ̃(xi) = φ(xi) − 1
n

n∑

i=1

φ(xi).

In other words, the mapped vectors are subtracted from the
mean in the feature space. The dot product K̃ = (φ̃(xi).φ̃(xj))
of the centered image vectors can be obtained in terms of
kernel K = k(xi, xj) = (φ(xi).φ(xj)) as follows [21], [17]:

K̃ = K − 1nK − K1n + 1nK1n (7)

where 1n is an n × n matrix with all values equal to 1/n.
Once the image vectors are centered, the norms of the kernels
are no longer equal. Hence the dual problem (6) can now be
solved.

B. Distributed Anomaly Detection

We have developed a distributed approach to anomaly
detection, which extends the quarter-sphere SVM scheme as
follows:

• Each sensor node sj runs the above anomaly detection
algorithm (Section III-A) on its local data and identifies
the local anomalies and the local radius Rj of the quarter-
sphere SVM. It keeps the local radius Rj and the norms
of the image vectors in memory. Norms of the image
vectors are provided by the diagonal elements of the
kernel matrix K̃, i.e., the squared norm of φ̃(xi) is given
by ∥∥∥φ̃(xi)

∥∥∥
2

= (φ̃(xi).φ̃(xi)) = k̃(xi, xi)

• Each sensor node sj sends its radius information Rj to
its parent node sp.

• The parent node sp collects the radius information from
its children and combines them with its own local radius.
It then computes the global radius Rm, which is used for
global anomaly detection.
In order to identify the best strategy for global radius
computation Rm that gives a comparable performance
with that of centralised detection, we considered four
strategies of global radius computations, namely, using
the mean, median, maximum or minimum of the combined
radii from the parent node and its children.

• Parent node sp sends the global radius Rm to its children.
• Children nodes compare the norms of their data vectors

with the global radius Rm and classify them as globally
anomalous or normal. A data vector xi is identified as
globally anomalous if its norm k̃(xi, xi) > R2

m.

Figure 2(b) provides an example of our scheme for dis-
tributed detection in a sensor network with a single-level
hierarchical topology. In this network, first, sensor nodes S1,
S2, S3, and S4 perform anomaly detection on their local data
and compute the radii information R1, R2, R3 and R4. The
local radii are shown using dotted curves in the figure. Also,
they keep in memory the norms of their local data. Second,
nodes S2, S3 and S4 transmit their radii R2, R3 and R4 to the
parent node S1. Third, parent node S1 computes the global
radius Rm, based on a chosen strategy, using the combined
radius information, which is formed from its own radius R1
and its children’s radius information R2, R3 and R4. Fourth,
parent S1 sends back the global radius Rm to the children
S2, S3 and S4. The children nodes classify their local data by
comparing the norms of their local data vectors with the global
radius Rm. The global radius is shown using a continuous
curve in the figure.

The global radius computation can be performed at any
parent node (or at any level) of the hierarchy. For example,
in Figure 1(a), the global radius computed at the parent node
S2 will consider the radii from its children S4 and S5 only.
Then, S4 and S5 will perform global detection using the global
radius sent by S2. In this case, the region considered for
distributed detection is the region covered by the nodes S2,
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S3 and S4. If the global radius is computed at the top most
parent node S1, then it will consider radius information from
children S2, S3, S4, S5, S6 and S7. Here, the region considered
for distributed detection will be that of all the nodes in the
topology. Therefore, this distributed detection methodology
and the hierarchical topology provides flexibility to the user
in selecting the coverage region for distributed computation.

Our distributed detection approach involves communication
of the radius information only twice between the parent and
the children nodes during a time window of measurements.
This is a significant reduction in communication overhead in
the network compared to the centralised approach, where the
whole set of data vectors is transmitted among the nodes.
Further, as the sensor network size scales, anomaly detection
using the centralised scheme becomes impractical as the
amount of data communicated and collected at the central
nodes become overwhelmingly large. However, our disributed
approach is scalable as it performs anomaly detection at the
local nodes and the number of data vectors involved is limited
to the time window of measurements.

Moreover, our distributed detection approach is not limited
to hierarchical topologies of the sensor nodes. It is applicable
to any network topology where a set of sensors have commu-
nication capabilities with their neighbours in the network. In
this case, any sensor node in a connected group of sensors
can be selected as a leader node for performing the global
radius computation. This also gives flexibility for the leader
node to select or ignore any participating neighbours for the
computation of the global radius. This provides robustness
against faulty nodes in the network, which are more prevalent
in energy constrained wireless sensor networks.

C. Complexity Analysis

The one-class quarter-sphere SVM algorithm (Section III-A)
involves solving of a linear optimisation problem. There are
several algorithms available for linear programming in the
literature [19]. The simplex algorithm is extremely efficient
in practice, although it has been shown to have worst case
exponential complexity in the number of variables [22]. Poly-
nomial time algorithms such as the interior point methods
incur O(n3) arithmetic operations and have a complexity of
O(

√
nL) iterations [19], where n is the number of variables

and L is the size of the optimisation problem, i.e., roughly the
number of bits required to represent the problem.

In our scheme, once the optimisation is performed, each
node has to keep only the norms of the data vectors and the
radius value in memory. Hence the memory complexity of the
algorithm for each sensor node is O(n), where n is the number
of data vectors in the time window of measurements.

On receipt of the radius information from the children, the
parent node sp computes the global radius using one of the
strategies (mean, median, maximum, minimum). This involves
a computational complexity of O(l), where l is the number of
children of the parent node sp.

Once the sensor nodes receive the global radius Rm from
their parent node, they compare the norms of their local data

vectors with the global radius. This involves a single pass
over the number of data vectors in that time window of
measurements, with computational complexity O(n).

IV. EVALUATION

In our evaluation, we consider a three-level hierarchical
organisation of wireless sensor nodes as shown in Figure 1(a).
Our aim is to compare the performance of the proposed
distributed approach with the centralised approach.

The data in our evaluation are a set of real sensor mea-
surements gathered from a deployment of wireless sensors in
the Great Duck Island project [23]. In 2003, a set of wireless
sensors were deployed in the Great Duck Island in Maine,
USA for monitoring the habitat of a sea bird called the Leach’s
Storm Petrel [24]. They recorded light, temperature, pressure
and humidity measurements at 5 minutes intervals.

We consider data measurements of seven sensor nodes,
namely the nodes 101,109,111,116,118,122 and 123. A 24
hour period of data recorded on 1st July 2003 was used in
our evaluation. We used three attributes: humidity, temperature
and pressure measurements for each data vector. The data
is cleaned manually by removing erroneous and spurious
measurements with the help of scatter plots. The cleaned data
is labeled as Normal for use in our evaluation. A hierarchical
topology was formed with node 101 as the top most parent
(gateway node), nodes 109 and 111 as intermediate parent
nodes and the others as leaf nodes.

A randomly generated set of anomalous data was introduced
into the tails of the distribution of each attribute for two of
the sensor nodes (nodes 118 and 123). The anomalous data
for each node comprised a set of 20 data vectors drawn from
a uniform distribution over the tails of the collected measure-
ments. Histogram plots for each attribute of the measurements
were used to find the distribution of the attributes and the tail
positions to place the anomalies. The introduced anomalous
data were labeled as Anomalies. The data measurements were
transformed to zero mean and unit variance and then nor-
malised to the range [0,1] uniformly, using a data conditioning
approach as in [16].

The distributed and centralised algorithms were imple-
mented in Matlab, while utilising some of the functions
from PRtools [25] and DDtools [26]. We have performed
two simulations, one for different global radius computation
strategies, and the other for various kernel functions.

A. Evaluation for Different Global Detection Strategies

We used the RBF kernel (radial basis function) as the
distance based kernel for this evaluation. The RBF kernel
function for data vectors xi and xj is given as krbf =
exp(−‖xi − xj‖2

/σ2), where σ is the width parameter of
the kernel function.

We have examined the effect of varying two parameters:
the regularisation parameter ν (listed as “Nu” in Figure 3)
ranging from 0.01 to 1 in intervals of 0.005, and the kernel
width parameter σ (“Sigma” in Figure 3) ranging from 0.01 to
3.0 in intervals of 0.02. The radius of the sphere R is computed
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Fig. 3. Centralised detection (Central) and distributed detection: (a), (b), (c), (d) Graphs for different strategies of global radius computation: maximum
(Max), minimum (Min), median (Median) and mean (Mean). RBF kernel is used. (e) Receiver operating characteristics curve (ROC curve) for different kernel
functions: RBF kernel (Rbf), polynomial kernel (Poly) and linear kernel (Linear).

either using any border support vector or using the mean of
the support vectors should such border support vectors not
exist. We considered each of the global radius computation
strategies separately in our simulations, i.e., maximum (Max),
minimum (Min), median (Median) and mean (Mean). In
each simulation, we recorded the false positives, which occur
when a normal measurement is identified as anomalous by
the detector, and the true positives, which occur when an
actual anomalous measurement is correctly identified by the
detector. The false positive rate (FPR) is computed as the
percentage ratio between the false positives and the actual
normal measurements, and the detection rate (DR) is computed
as the percentage ratio between the true positives and the actual
anomalous measurements. Here, we report the results for the
global radius computation and the centralised detection at the
top most parent node (S1) of the topology (Figure 1(a)).

Figures 3(a) and 3(b) show graphs of the false positive rate
and detection rate with varying σ values for the centralised
(Central) and distributed detection scenarios. For this simula-
tion the ν value is fixed at 0.10. All four strategies of the global
radius computation are shown (Max, Min, Median, Mean) for
the distributed detection scenario.

The results using the global radius computed using the Me-
dian and the Mean closely follow the results for the centralised
approach, while Max and Min show considerable deviations
from the centralised results. The global radius computed using
Max has the largest value. In this case, there is a greater
chance that most of the data vectors will fall inside the sphere,
thus giving the minimum false positive rate amongst all the

strategies. Similarly, the global radius computed using Min
will have the smallest radius. This causes most of the data
vectors to fall outside the sphere, resulting in higher false
positives. The Median is more robust to extreme radius values,
and hence gives better performance than the Mean, which is
more biased towards extreme radius values and thus results in
more false positives than when using the Median.

Further, Figure 3(b) shows the sensitivity of the detector
with the kernel width parameter σ. Better detection perfor-
mance is observed for the σ values between 0.2 and 0.6.
Hence, it is important to select the kernel parameter to attain
acceptable performance from the detector. In practice, these
values can be selected by training the system before deploy-
ment. In addition, this parameter setting can be refined by
updating the parameter based on values obtained in previous
time windows. This is a topic to be investigated in our future
research.

Figures 3(c) and 3(d) show graphs of the false positive
rate and detection rate with varying regularisation parameter
values ν for the centralised and distributed detection scenarios.
For this simulation the σ value is fixed at 0.25. Here also
similar trends are observed for Max, Min, Mean and Median
as explained above. In Figure 3(c), for the centralised case, the
false positive rate increases in proportion to ν. This is expected
as the parameter ν indicates exactly the fraction of the data
vectors that can be outliers [17]. In Figure 3(d), the sensitivity
of the detector with ν can be observed. Better performance is
observed for values beyond 0.08.

The communication overhead for distributed detection in
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the network is 12 times the cost of communicating one radius
value between a pair of sensor nodes. For the centralised case,
1429 data vectors (each with 3 attributes) are transmitted to
the gateway node. Therefore, there is a 357 fold reduction
in communication overhead achieved in the distributed case.
These significant savings are achieved while obtaining com-
parable accuracy with the centralised case for the distributed
detection.

B. Evaluation for Different Kernel Functions

In this evaluation, we used the Median strategy for the
global radius computation. We considered three kernel func-
tions in our evaluations: (1) A distance based RBF kernel
function krbf with the width parameter σ = 0.25; (2) A
polynomial kernel function kpoly = (xi.yj + 1)p, where p
is the degree of the polynomial and is set to 3; (3) A linear
kernel function klinear = (xi.yj).

We performed distributed detection for varying ν values
in the range from 0.01 to 1.0 in intervals of 0.005. Kernel
centering (7) is performed for all three kernel matrices. The
results are shown as a receiver operating characteristics (ROC)
curve in Figure 3(e).

The graph shows that the RBF kernel produces the best
results for the data while the linear and polynomial kernels
give the worse performance. These results are consistent with
the observations made by Tax et al. [13]. They observed
that the performance of the linear and polynomial kernels
is heavily influenced by the norms of the data vectors, i.e.,
larger norm values of data vectors dominate other values in
the data set. Therefore, larger radius values are produced for
the hypersphere in the system, resulting in lower detection
rates. Also, the better performance of the RBF kernel is due
to its independence from the norms of the data vectors, as it
only depends on the distance between them.

V. CONCLUSION

In this paper, we have proposed a distributed anomaly
detection approach with low communication overhead, based
on a one-class quarter sphere SVM, for wireless sensor net-
works. We evaluated our approach in a multi-level hierarchical
topology, using real data gathered from a sensor network
deployment in Great Duck Island. Our evaluation reveals that
the distributed scheme achieves significant energy savings
in terms of communication overhead in the network, while
achieving a comparable performance to that of the centralised
case. Our future research includes periodically adjusting the
parameters in the system based on statistics from previous time
windows, and evaluating detector performance in identifying
a variety of sensor network attack scenarios.
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