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ABSTRACT 
 
 

As organizations develop more complex systems, increased emphasis is being 

placed on Systems Engineering (SE) to ensure that cost, schedule, and performance 

targets are met.  Correspondingly, the failure to adequately plan and fund the systems 

engineering effort appears to have contributed to a number of cost overruns and schedule 

slips, especially in the development of complex aerospace systems.  This has resulted in a 

recent increased emphasis on revitalizing systems engineering in government and 

commercial organizations. 

This dissertation presents a parametric model that can help people reason about 

their decisions related to systems engineering.  COSYSMO, the Constructive Systems 

Engineering Cost Model, is an “open” model that contains eighteen parameters: four size 

drivers and fourteen effort multipliers.  It is built on a framework similar to its well-

known predecessor, COCOMO II, and integrates accepted systems engineering standards 

to define its scope. 

Funded by industry affiliates, the model focuses on large-scale systems for 

military applications that employ a disciplined approach to systems engineering.  Data 

was collected from six aerospace companies in the form of expert opinion and historical 

project data to define and calibrate the model.  In reduced form, the model yields a 

PRED(30) of 50% for programs within a defined productivity range.  In principle, the 

model should apply similarly to commercial systems engineering, but there is a lack of 

data to test this hypothesis. 
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The ultimate contributions of this dissertation can be found in at least two major 

areas: (a) in the theoretical and methodological domain of systems modeling in the quest 

of a more quantitative cost estimation framework, and (b) in advancing the state of 

practice in the assessment and tracking of systems engineering in the development of 

large aerospace systems. 



 

1 
 
 
 

1. Introduction 

1.1. Motivation for a Systems Engineering Cost Model 

It is clear that we have been living in the Systems Age for some time as 

evidenced by the role of technologically enabled systems in our every day lives.  

Most of our every day functions are dependent on, or enabled by, large scale man 

made systems that provide useful technological capabilities.  The advent of these 

systems has created the need for systems thinking and ultimately systems 

engineering. 

The function of systems engineering – coupled with the other traditional 

disciplines such as electrical engineering, mechanical engineering, or civil 

engineering – enables the creation and implementation of systems of unprecedented 

size and complexity.  However, these disciplines differ in the way they create value.  

Traditional engineering disciplines are value-neutral; the laws of physics control the 

outcome of electronics, mechanics, and structures.  Tangible products serve as 

evidence of the contribution that is easily quantifiable.  Systems engineering has a 

different paradigm in that its intellectual output is often intangible and more difficult 

to quantify.  Common work artifacts such as requirements, architecting, design, 

verification, and validation are not readily noticed.  For this reason, systems 

engineering is better suited for value-based approach artifacts where value 

considerations are integrated with systems engineering principles and practices.  The 

link between systems engineering artifacts to cost and schedule is recognized but 



 

2 
 
 
 

currently not well understood.  This leads to the principal research question 

addressed in this dissertation: 

How much systems engineering effort, in terms of person months, should be 

allocated for the successful conceptualization, development, and testing of 

large-scale systems? 

The model presented in this dissertation, COSYSMO, helps address this issue using 

a value-based approach. 

1.1.1. Fundamentals of Systems Engineering 

Systems engineering is concerned with creating and executing an 

interdisciplinary process to ensure that the customer and stakeholder needs are 

satisfied in a high quality, trustworthy, cost efficient and schedule compliant manner 

throughout a system's entire life cycle.  Part of the complexity in understanding the 

cost involved with systems engineering is due to the diversity of definitions used by 

different systems engineers and the unique ways in which systems engineering is 

used in practice.  The premier systems engineering society, INCOSE, has long 

debated the definition of systems engineering and only recently converged on the 

following: 

Systems Engineering is an interdisciplinary approach and means to enable 
the realization of successful systems. It focuses on defining customer needs 
and required functionality early in the development cycle, documenting 
requirements, then proceeding with design synthesis and system validation 
while considering the complete problem. 

 
 Experts have provided their own definitions of systems engineering as shown 

in Table 1. 
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Table 1 Collection of Definitions of Systems Engineering 

Source Definition 
Simon Ramo 
(Jackson 2002) 

A branch of engineering that concentrates on the design and 
application of the whole as distinct from the parts…looking 
at a problem in its entirety, taking into account all the facets 
and all the variables and relating the social to the technical 
aspects. 

George Friedman 
(Jackson 2002) 

That engineering discipline governing the design, 
evaluation, and management of a complex set of interacting 
components to achieve a given purpose [function]. 

Andrew Sage 
(Sage 1992) 

Systems engineering involves the application of a general set 
of guidelines and methods useful for assisting clients in the 
resolution of issues and problems [system definition] which 
are often large scale and scope. Three fundamental steps 
may be distinguished: (a) problem or issue formulation 
[requirements], (b) problem or issue analysis [synthesis] 
and (c) interpretation of analysis results [verification]. 

Ben Blanchard and 
Wolter Fabrycky,  
(Blanchard and 
Fabrycky 1998) 

The application of efforts necessary to (1) transform an 
operational need into a description of system performance 
[requirements] (2) integrate technical parameters and 
assure compatibility of all physical, functional and program 
interfaces in a manner that optimizes [or balances] the total 
system definition and design [synthesis] and (3) integrate 
performance, producibility, reliability, maintainability, 
manability [human operability], supportability and other 
specialties into the total engineering effort. 

 
Each of these definitions are appropriate for different situations.  Each of 

them contains a different perspective that is representative of the application of the 

principles of systems engineering.  These definitions also highlight the broad 

applicability of systems engineering across domains.  Defining systems engineering 

is the first step in understanding it.  Managing it, however, requires a deeper 

understanding of the cost and tradeoffs associated with it. 

A constituency of practitioners familiar with the benefits provided by the 

Constructive Cost Model (COCOMO) in the realm of software engineering proposed 
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the development of a similar model to focus on systems engineering (Boehm, Egyed 

et al. 1998).  No formal approach to estimating systems engineering existed at the 

time, partially because of the immaturity of systems engineering as a formal 

discipline and the lack of mature metrics.  The beginnings of systems engineering 

can be traced back to the Bell Telephone Laboratories in the 1940s (Auyang 2004).  

However, it was not until almost thirty years later that the first U.S. military standard 

was published (MIL-STD-499A 1969).  The first professional systems engineering 

society, INCOSE, was not organized until the early 1990s and the first commercial 

U.S. systems engineering standards, ANSI/EIA 632 and IEEE 1220, followed shortly 

thereafter.  Even with the different approaches of defining systems engineering, the 

capability to estimate it is desperately needed by organizations.  Several heuristics 

are available but they do not provide the necessary level of detail that is required to 

understand the most influential factors and their sensitivity to cost. 

Fueled by industry support and the US Air Force’s systems engineering 

revitalization initiative (Humel 2003), interest in COSYSMO has grown.  Defense 

contractors as well as the federal government are in need of a model that will help 

them better control and prevent future shortfalls in the $18 billion federal space 

acquisition process (GAO 2003).  COSYSMO is also positioned to make immediate 

impact on the way organizations – and other engineering disciplines – view systems 

engineering. 

Based on the previous support for COCOMO II, COSYSMO is positioned to 

leverage off the existing body of knowledge developed by the software community.  

The synergy between software engineering and systems engineering is intuitive 
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because of the strong linkages in their products and processes.  Researchers 

identified strong relationships between the two disciplines (Boehm, 1994), 

opportunities for harmonization (Faisandier & Lake, 2004), and lessons learned 

(Honour, 2004).  There have also been strong movements towards convergence 

between software and systems as reflected in two influential standards: ISO 15504 

Information technology - Process assessment and the CMMI1.  Organizations are 

going as far as changing their names to reflect their commitment and interest in this 

convergence.  Some examples include the Software Productivity Consortium 

becoming the Systems & Software Consortium and the Software Technology 

Conference becoming the Software & Systems Technology Conference.  Despite the 

strong coupling between software and systems they remain very different activities 

in terms of maturity, intellectual advancement, and influences regarding cost. 

1.1.2. Comparison Between COCOMO II and COSYSMO 

On the surface, COCOMO II and COSYSMO appear to be similar.  However, 

there are fundamental differences between them that should be highlighted.  These 

are obvious when the main assumptions of the model are considered: 

• Sizing.  COCOMO II uses software size metrics while COSYSMO uses 

metrics at a level of the system that incorporates both hardware and software. 

• Life cycle.  COCOMO II, based on a software tradition, focuses exclusively 

on software development life cycle phases defined by MBASE2 (Boehm and 

                                                 
1 Capability Maturity Model Integration 
2 Model Based System Architecting and Software Engineering 
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Port 1999) while COSYSMO follows the system life cycle provided by 

ISO/IEC 15288. 

• Cost Drivers.  Each model includes drivers that model different phenomena.  

The overlap between the two models is minimal since very few of the 

COCOMO II parameters are applicable to systems engineering.  One 

appreciable overlap is the software-related systems engineering effort 

estimated by both models.  This overlap is covered in section 4.2 

A more fundamental difference between the two models is that COCOMO II 

benefits from existing software engineering metrics.  COSYSMO does not benefit 

from such a deep body of knowledge.  As the first model to focus on issues outside 

of the software domain, it faces numerous challenges. 

 

Table 2 Differences between COCOMO II and COSYSMO 

 COCOMO II COSYSMO 
Estimates Software development Systems engineering 
Estimates size via Thousands of Software 

Lines of Code (KSLOC), 
Function Points, or 
Application Points 

Requirements, Interfaces, 
Algorithms, and 
Operational Scenarios 

Life cycle phases MBASE/RUP Phases: 
(1) Inception, (2) 
elaboration, (3) 
construction, and (4) 
transition 

ISO/IEC 15288 Phases: 
(1) Conceptualize, (2) 
Develop, (3) Operation, 
Test, and Evaluation, (4) 
Transition to Operation, 
(5) Operate Maintain or 
Enhance, and (6) Replace 
or dismantle. 

Form of the 
model 

1 size factor, 5 scale 
factors, and 18 effort 
multipliers 

4 size factors, 1 scale 
factor,    14 effort 
multiplier 

Represents 
diseconomy of 
scale through 

Five scale factors One exponential system 
factor 
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COCOMO II was a natural starting point which provided a useful and mature 

framework.  The scope of this dissertation is to identify the relevant parameters in 

systems engineering while building from the lessons learned in software cost 

estimation.  As much synergy as exists, software engineering and systems 

engineering must be treated as independent activities.  This involves measuring them 

independently and identifying metrics that best capture the size and cost factors for 

each. 

1.1.3. COSYSMO Objectives 

COSYSMO is a model that can help people reason about the cost 

implications of systems engineering.  User objectives include the ability to make the 

following: 

• Investment decisions.  A return-on-investment analysis involving a systems 

engineering effort needs an estimate of the systems engineering cost or a life 

cycle effort expenditure profile. 

• Budget planning.  Managers need tools to help them allocate project 

resources. 

• Tradeoffs.  Decisions often need to be made between cost, schedule, and 

performance. 

• Risk management.  Unavoidable uncertainties exist for many of the factors 

that influence systems engineering. 
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• Strategy planning.  Setting mixed investment strategies to improve an 

organization’s systems engineering capability via reuse, tools, process 

maturity, or other initiatives. 

• Process improvement measurement.  Investment in training and initiatives 

often need to be measured.  Quantitative management of these programs can 

help monitor progress. 

To enable these user objectives the model has been developed to provide 

certain features to allow for decision support capabilities.  Among these is to provide 

a model that is: 

• Accurate.  Where estimates are close to the actual costs expended on the 

project.  See section 5.2.1. 

• Tailorable.  To enable ways for individual organizations to adjust the model 

so that it reflects their business practices.  See section 5.2.4. 

• Simple.  Understandable counting rules for the drivers and rating scales.  See 

section 3.2. 

• Well-defined.  Scope of included and excluded activities is clear.  See 

sections 3.2 and 3.3. 

• Constructive.  To a point that users can tell why the model gives the result it 

does and helps them understand the systems engineering job to be done. 

• Parsimonious.  To avoid use of highly redundant factors or factors which 

make no appreciable contribution to the results.  See section 5.2.2. 

• Pragmatic.  Where inputs to the model correspond to the information 

available early on in the project life cycle. 
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This research puts these objectives into context with the exploration of what 

systems engineering means in practice.  Industry standards are representative of 

collective experiences that help shape the field as well as the scope of COSYSMO. 

1.2. Systems Engineering and Industry Standards 

The synergy between software engineering and systems engineering is 

evident by the integration of the methods and processes developed by one discipline 

into the culture of the other.  Researchers from software engineering (Boehm 1994) 

and systems engineering (Rechtin 1998) have extensively promoted the integration 

of both disciplines but have faced roadblocks that result from the fundamental 

difference between the two disciplines (Pandikow and Törne 2001). 

The development of systems engineering standards has helped the 

crystallization of the discipline as well as the development of COSYSMO.  Table 3 

includes a list of the standards most influential to this effort. 

Table 3 Notable Systems Engineering Standards 

Standard (year) Title 
MIL-STD-499A (1969) Engineering Management 
MIL-STD-490-A (1985) Specification Practices 
ANSI/EIA-632 (1999) Processes for Engineering a System 
CMMI (2002) Capability Maturity Model Integration 
ANSI/EIA-731.1 (2002) Systems Engineering Capability Model 
ISO/IEC 15288 (2002) Systems Engineering – System Life Cycle Processes

 
The first U.S. military standard focused on systems engineering provided the 

first definition of the scope of engineering management (MIL-STD-499A 1969).  It 

was followed by another standard that provided guidance on the process of writing 

system specifications for military systems (MIL-STD-490A 1985).  These standards 

were influential in defining the scope of systems engineering in their time.  Years 
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later the standard ANSI/EIA 632 Processes for Engineering a System (ANSI/EIA 

1999) provided a typical systems engineering WBS3.  This list of activities was 

selected as the baseline for defining systems engineering in COSYSMO.  The 

standard contains five fundamental processes and 13 high level process categories 

that are representative of systems engineering organizations.  The process categories 

are further divided into 33 activities shown in Appendix A.  These activities help 

answer the what of systems engineering and helped characterize the first significant 

deviation from the software domain covered by COCOMO II.  The five fundamental 

processes are (1) Acquisition and Supply, (2) Technical Management, (3) System 

Design, (4) Product Realization, and (5) Technical Evaluation.  These processes are 

the basis of the systems engineering effort profile developed for COSYSMO.  The 

effort profile is provided in Appendix B. 

This standard provides a generic industry list which may not be applicable to 

every situation.  Other types of systems engineering WBS lists exist such as the one 

developed by Raytheon Space & Airborne Systems (Ernstoff and Vincenzini 1999).  

Lists such as this one provide, in much finer detail, the common activities that are 

likely to be performed by systems engineers in those organizations, but are generally 

not applicable outside of the companies or application domains in which they are 

created. 

Under the integrated software engineering and systems engineering paradigm, 

or Capability Maturity Model Integration® (CMMI 2002), software and systems are 

intertwined.  A project’s requirements, architecture, and process are collaboratively 

                                                 
3 Work Breakdown Structure 
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developed by integrated teams based on shared vision and negotiated stakeholder 

concurrence.  A close examination of CMMI process areas – particularly the staged 

representation – strongly suggests the need for the systems engineering function to 

estimate systems engineering effort and cost as early as CMMI Maturity Level 2.  

Estimates can be based upon a consistently provided organizational approach from 

past project performance measures related to size, effort and complexity.  While it 

might be possible to achieve high CMMI levels without a parametric model, an 

organization should consider the effectiveness and cost of achieving them using 

other methods that may not provide the same level of stakeholder confidence and 

predictability.  The more mature an organization, the more benefits in productivity 

they experience (ANSI/EIA 2002). 

After defining the possible systems engineering activities used in COSYSMO, 

a definition of the system life cycle phases is needed to help define the model 

boundaries.  Because the focus of COSYSMO is systems engineering, it employs 

some of the life cycle phases from ISO/IEC 15288 Systems Engineering – System 

Life Cycle Processes (ISO/IEC 2002).  These phases were slightly modified to reflect 

the influence of the aforementioned model, ANSI/EIA 632, and are shown in Figure 

1. 

 

Conceptualize Develop
Oper Test 
& Eval

Transition 
to 

Operation

Operate, 
Maintain, 
or 
Enhance

Replace 
or

Dismantle

 
Figure 1 COSYSMO System Life Cycle Phases 
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Life cycle models vary according to the nature, purpose, use and prevailing 

circumstances of the system.  Despite an infinite variety in system life cycle models, 

there is an essential set of characteristic life cycle phases that exists for use in the 

systems engineering domain.  For example, the Conceptualize stage focuses on 

identifying stakeholder needs, exploring different solution concepts, and proposing 

candidate solutions.  The Development stage involves refining the system 

requirements, creating a solution description, and building a system.  The 

Operational Test & Evaluation stage involves verifying/validating the system and 

performing the appropriate inspections before it is delivered to the user.  The 

Transition to Operation stage involves the transition to utilization of the system to 

satisfy the users’ needs.  These four life cycle phases are within the scope of 

COSYSMO.  The final two were included in the data collection effort but did not 

yield enough data to perform a calibration.  These phases are:  Operate, Maintain, or 

Enhance which involves the actual operation and maintenance of the system required 

to sustain system capability, and Replace or Dismantle which involves the retirement, 

storage, or disposal of the system.   

Each stage has a distinct purpose and contribution to the whole life cycle and 

represents the major life cycle periods associated with a system.  The stages also 

describe the major progress and achievement milestones of the system through its 

life cycle.  These life cycle stages help answer the when of systems engineering and 

COSYSMO.  Understanding when systems engineering is performed relative to the 

system life cycle helps define anchor points for the model. 
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System-of-Interest.  The ISO/IEC 15288 standard also provides a structure 

that helps define the system hierarchy.  Systems can be characterized by their 

architectural structure or levels of responsibility.  Each project has the responsibility 

for using levels of system composition beneath it and creating an aggregate system 

that meets the customer’s requirements.  Each particular subproject views its system 

as a system-of-interest within the grand scheme.  The subproject’s only task may be 

to deliver their system-of-interest to a higher level in the hierarchy.  The top level of 

the hierarchy is then responsible for integrating the subcomponents that are delivered 

and providing a functional system.  Essential services or functionalities are required 

from the systems that make up the system hierarchy.  These systems, called enabling 

systems, can be made by the organization itself or purchased from other 

organizations. 

The system-of-interest framework helps answer the where of systems 

engineering for use in COSYSMO.  In the case where systems engineering takes 

place at different levels of the hierarchy, organizations should focus on the portion of 

the system which they are responsible for testing.  Identifying system test 

responsibility helps crystallize the scope of the systems engineering estimate at a 

specific level of the system hierarchy. 

The diversity of systems engineering standards can be quite complex (Sheard 

1997), therefore only the applicable standards have been mentioned here.  With the 

need and general context for the model defined, the central proposition and 

hypotheses for this research are proposed. 
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1.3. Proposition and Hypotheses 

Clear definitions of the what, when, and where of systems engineering sets 

the stage for the statement of purpose for COSYSMO.  The central proposition at the 

core of this research is: 

There exists a subset of systems engineering projects for which it is possible 

to create a parametric model that will estimate systems engineering effort 

(a) for specific life cycle phases 

(b) at a certain level of system decomposition 

(c) with the same statistical criteria as the COCOMO suite of models at a 

comparable stage of maturity in time and effort 

This statement provides the underlying goal of the model by clarifying its 

solution space.  The selection of the subset of systems engineering projects attempts 

to provide a homogenous group of projects from which the model can be based.  For 

the COSYSMO data set, useful discriminators included: systems engineering 

productivity, systems engineering domain, and organization providing the data.  The 

term parametric implies that a given equation represents a mean function that is 

characteristic of Cost Estimating Relationships in systems engineering.  Specific life 

cycle phases are selected based on the data provided by industry participants.  

Counting rules are provided for a level of system decomposition to ensure uniform 

counting rules across organizations that use the model.  Similar statistical criteria are 

used to evaluate COSYSMO for comparison with other cost estimation models. 

The central proposition was validated through the use of the scientific method 

(Isaac and Michael 1997) and analysis of data (Cook and Weisberg 1999) with the 
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aim of developing a meaningful solution.  In terms of scientific inquiry, the model 

was validated through the following hypotheses: 

H#1: A combination of the four elements of functional size in COSYSMO 

contributes significantly to the accurate estimation of systems engineering 

effort. 

 The criteria used was a significance level less than or equal to 0.10 which 

translates to a 90% confidence level that these elements are significant. 

H#2: An ensemble of COSYSMO effort multipliers contribute significantly to 

the accurate estimation of systems engineering. 

The same significance level of 0.10 was used to test this hypothesis. 

H#3: The value of the COSYSMO exponent, E, which can represent 

economies/diseconomies of scale is greater than 1.0. 

 To test this hypothesis, different values for E were calculated and their effects 

were tested on model accuracy. 

 H#4: There exists a subset of systems engineering projects for which it is 

possible to create a parametric model that will estimate systems engineering effort at 

a PRED(30) accuracy of 50%. 

 Various approaches were used to fine tune the model and bring to a point 

where it was possible to test this hypothesis. 

Each hypothesis is designed to test key assumptions of the model.  These 

assumptions, as well as the structure of the model, are discussed in more detail in the 

next section.  In addition to the four quantitative hypotheses, a qualitative hypothesis 

was developed to test the impact of the model on organizations. 
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H#5: COSYSMO makes organizations think differently about Systems 

Engineering cost.  

 The hypothesis was validated through interviews with engineers from the 

participating companies that provided historical data and expert opinion in the 

Delphi survey. 
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2. Background and Related Work 

2.1. State of the Practice 

The origins of parametric cost estimating date back to World War II (NASA 

2002).  The war caused a demand for military aircraft in numbers and models that far 

exceeded anything the aircraft industry had manufactured before.  While there had 

been some rudimentary work to develop parametric techniques for predicting cost, 

there was no widespread use of any cost estimating technique beyond a bottoms-up 

buildup of labor-hours and materials.  A type of statistical estimating was suggested 

in 1936 by T. P. Wright in the Journal of Aeronautical Science.  Wright provided 

equations which could be used to predict the cost of airplanes over long production 

runs, a theory which came to be called the learning curve.  By the time the demand 

for airplanes had exploded in the early years of World War II, industrial engineers 

were using Wright's learning curve to predict the unit cost of airplanes.  Today, 

parametric cost models are used for estimating software development (Boehm, Abts 

et al. 2000), unmanned satellites (USCM 2002), and hardware development (PRICE-

H 2002). 

A parametric cost model is defined as: a group of cost estimating 

relationships used together to estimate entire cost proposals or significant portions 

thereof.  These models are often computerized and may include many interrelated 

Cost Estimation Relationships (CERs), both cost-to-cost and cost-to-non-cost.  The 

use of parametric models in engineering management serves as valuable tools for 

engineers and project managers to estimate engineering effort.  Developing these 
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estimates requires a strong understanding of the factors that affect, in this case, 

systems engineering effort. 

An important part of developing a model such as COSYSMO is recognizing 

previous work in related areas.  This process often provides a stronger case for the 

existence of the model and ensures that its capabilities and limitations are clearly 

defined.  This section provides an overview of an analysis done on eight existing cost 

models - three of which focus on software and five on hardware (Valerdi, Ernstoff et 

al. 2003).  These models include SE components and each employs its own unique 

approaches to sizing systems.  An overview of the genesis and assumptions of each 

model sheds light on their individual applicability.  While it has been shown that the 

appropriate level of SE effort leads to better control of project costs (Honour 2002), 

identifying the necessary level of SE effort is not yet a mature process.  Some 

projects use the traditional 15% of the prime mission product or prime mission 

equipment to estimate systems engineering, while other projects tend to use informal 

rules of thumb.  These simplified and inaccurate methods can lead to excessively 

high bids by allocating too many hours on SE or, even worse, may underestimate the 

amount of SE needed. 

One significant finding during the review was that SE costs were extremely 

sensitive to the sizing rules that formed the basis of these models.  These rules help 

estimators determine the functional size of systems and, by association, the size of 

the job.  Similar comparative analysis of cost models has been completed (Kemerer 

1987), which focused exclusively on models for software development.  Going one 
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step further, both software and hardware cost models are considered since they are 

both tightly coupled with SE. 

Cost models have been an essential part of DoD acquisition since the 1970s.  

Hardware models were the first to be developed and were followed by software 

models in the 1980s (Ferens 1999).  The corresponding owner/developer and domain 

of applicability for the models of interest is provided in Table 4. 

Table 4 Cost Models With Systems Engineering Components 

Model Name Owner/Developer Domain 
COCOMO II USC Software 
PRICE-H PRICE Systems, LLC Hardware 
PRICE-S PRICE Systems, LLC Software 
Raytheon SE Resource Forecasting Tool Raytheon Hardware 
SEER-H Galorath, Inc. Hardware 
SEER-SEM Galorath, Inc. Software 
SSCM The Aerospace Corporation Hardware 
USCM8 Los Angeles Air Force Base Hardware 

 
The eight aforementioned models were compared in five key areas relevant to 

systems engineering: 

1. Model inputs for software or hardware size 

2. Definition of systems engineering 

3. Model inputs for systems engineering 

4. Life Cycle stages used in the model 

5. Domain of applicability 

 These areas provided valuable information on the applicability of each model 

to systems engineering sizing.  The increasing frequency and number of programs 

that have run significantly over-budget and behind schedule (GAO-03-1073 2003) 

because SE problems were not adequately understood should, by itself, be reason 

enough for the acquisition community to press for improvement in forecasting SE 
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resource needs.  However, even if the history of SE problems is ignored, the future 

paints an even more demanding picture.  The undeniable trend is toward increasingly 

complex systems dependent on the coordination of interdisciplinary developments 

where effective system engineering is no longer just another technology, but the key 

to getting the pieces to fit together.  It is known that increasing front-end analysis 

reduces the probability of problems later on, but excessive front-end analysis may 

not pay the anticipated dividends.  The key is to accurately estimate early in a 

program the appropriate level of SE in order to ensure system success within cost 

and schedule budgets. 

Most widely used estimation tools, shown in Table 4, treat SE as a subset of a 

software or a hardware effort.  Since complex systems are not dominated by either 

hardware or software, SE ought not to be viewed as a subset of hardware or software. 

Rather, because many functions can be implemented using either hardware or 

software, SE is becoming the discipline for selecting, specifying and coordinating the 

various hardware and software designs.  Given that role, the correct path is to 

forecast SE resource needs based on the tasks that systems engineering must perform 

and not as an arbitrary percentage of another effort.  Hence, SE estimation tools must 

provide for aligning the definition of tasks that SE is expected to do on a given 

project with the program management's vision of economic and schedule cost, 

performance, and risk. 

Tools that forecast SE resources largely ignore factors that reflect the scope 

of the SE effort, as insufficient historical data exists from which statistically 

significant algorithms can be derived.  To derive cost-estimating relationships from 
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historical data using regression analysis, one must have considerably more data 

points than variables; such as a ratio of 5 to 1.  It is difficult to obtain actual data on 

systems engineering costs and on factors that impact those costs.  For example, a 

typical factor may be an aggressive schedule, which will increase the demand for SE 

resources.  The result is a tool set that inadequately characterizes the proposed 

program and therefore inaccurately forecasts SE resource needs.  Moreover, the tools 

listed in Table 4 use different life cycle stages, complicating things even further.  

The names of the different life cycle stages and a mapping to each other is provided 

in Figure 2.  The three software models have different life cycle stages than the five 

hardware models.  As a result, only models with similar life cycle phases are mapped 

to each other. 

 

 
Figure 2 Model Life Cycle Phases Compared 

 
As the parallels between hardware and software estimation models are drawn 

and the relationships between these and systems engineering are defined it is easy to 

identify the pressing need for a model that can estimate systems engineering as an 
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independent function.  The fundamental approach for developing a model that meets 

this demand relates back to the area of software cost estimation from which the 

theoretical underpinnings of COSYSMO are derived.  This area of research is 

described in the next section. 

2.2. COSYSMO Lineage 

In order to place COSYSMO in the right context it must be linked to the 

work that has preceded it.  A wealth of models and processes exist in the area of 

software engineering, from which this work is derived.  Particularly the Model-

Based System Architecting and Software Engineering (MBASE) framework (Boehm 

and Port 1999) developed for the purposes of tailoring a software project’s balance 

of discipline and flexibility via risk considerations.  As an elaboration of the spiral 

model (Boehm and Hansen 2001), MBASE provides a framework for projects to use 

various process, product, property, and success models.  Process models include the 

waterfall model, evolutionary development, incremental development, spiral 

development, rapid application development, and many others.  Product models 

include various ways of specifying operational concepts, requirements, architectures, 

designs, and code, along with their interrelationships.  Property models include 

models for cost, schedule, performance, reliability, security, portability, etc., and 

their tradeoffs.  Success models include organization and project goals, stakeholder 

win-win, business-case, or IKIWISI (I’ll know it when I see it).  COSYSMO is 

considered a property model because it focuses on the effort and cost associated with 

systems engineering and the tradeoffs between decisions that affect systems 

engineering.  Awareness of COSYSMO’s model category can help prevent clashes 
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between other models within or outside of the model category (Boehm and Port 

1999).  Equally important as COSYSMO’s lineage is its link to existing systems 

engineering estimation methods.  It provides valuable context of the state of the 

practice surrounding it while informing users of the available alternatives. 

2.3. Overview of Systems Engineering Estimation Methods 

A number of useful systems engineering estimation techniques are currently 

in use by practitioners.  They vary in both maturity and sophistication.  Subsequently, 

some are more easily adaptable to the changing environment and others take more 

time to develop.  The logic behind these approaches is fundamentally different, 

leaving only their results as measures of merit.  It is believed that a hybrid approach 

that borrows from each method is the best way to capture systems engineering 

phenomena that a single approach may miss.  Six estimation techniques are 

presented here in order of sophistication. 

Heuristics & rules of thumb.  Heuristic reasoning has been commonly used 

by engineers to arrive at quick answers to their questions.  Practicing engineers, 

through education, experience, and examples, accumulate a considerable body of 

contextual intuition.  These experiences evolve into instinct or common sense that 

are seldom recorded.  These can be considered insights, lessons learned, and rules of 

thumb, among other names, that are brought to bear on certain situations.  Ultimately, 

this knowledge is based on experience and often provides valuable results.  Systems 

engineering cost estimation heuristics and rules of thumb have been developed by 

researchers and practitioners (Boehm, Abts et al. 2000; Honour 2002; Rechtin 1991).  

One such rule of thumb, provided by Barry Horowitz, retired CEO of MITRE 
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Corporation, adopts the following logic for estimating systems engineering effort 

(Horowitz 2004): 

If it is a custom developed system (mostly) or an Off-the-Shelf (OTS) 

integration (mostly) 

Then the former gets 6-15% of the total budget for SE, the later gets 

15-25% of budget (where selection of OTS products as well as 

standards is considered SE).   

The following additional rules apply: 

If the system unprecedented 

Then raise the budget from minimum level to 50% more 

If the system faces an extreme requirement (safety, performance, etc) 

Then raise the budget by 25% of minimum 

If the system involves a large number of distinct technologies, and 

therefore a diversity of engineering disciplines and specialties 

Then raise the budget by 25% of minimum 

If the priority for the system is very high compared to other systems also 

competing for resources 

Then add 50% to the base 

Note that the % of SE is larger for OTS, but since the budgets for these 

projects are much lower, so are the numbers for SE. 

 
Expert opinion.  This is the most informal of the approaches because it 

simply involves querying the experts in a specific domain and taking their subjective 
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opinion as an input.  This approach is useful in the absence of empirical data and is 

very simple.  The obvious drawback is that an estimate is only as good as the 

expert’s opinion, which can vary greatly from person to person.  However, many 

years of experience is not a guarantee of future expertise due to new requirements, 

business processes, and added complexity.  Moreover, this technique relies on 

experts and even the most highly competent experts can be wrong.  A common 

technique for capturing expert opinion is the Delphi (Dalkey 1969) method which 

was improved and renamed Wideband Delphi (Boehm 1981).  This dissertation 

employs the Wideband Delphi method which is elaborated in section 5.1. 

Case studies and analogy.  Recognizing that companies do not constantly 

reinvent the wheel every time a new project comes along, there is an approach that 

capitalizes on the institutional memory of an organization to develop its estimates.  

Case studies represent an inductive process, whereby estimators and planners try to 

learn useful general lessons by extrapolation from specific examples.  They examine 

in detail elaborate studies describing the environmental conditions and constraints 

that were present during the development of previous projects, the technical and 

managerial decisions that were made, and the final successes or failures that resulted.  

They then determine the underlying links between cause and effect that can be 

applied in other contexts.  Ideally, they look for cases describing projects similar to 

the project for which they will be attempting to develop estimates and apply the rule 

of analogy that assumes previous performance is an indicator of future performance.  

The sources of case studies may be either internal or external to the estimator’s own 

organization.  Homegrown cases are likely to be more useful for the purposes of 
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estimation because they reflect the specific engineering and business practices likely 

to be applied to an organization’s projects in the future.  Well-documented cases 

studies from other organizations doing similar kinds of work can also prove very 

useful so long as their differences are identified. 

Top Down & Design To Cost.  This technique aims for an aggregate 

estimate for the cost of the project based upon the overall features of the system.  

Once a total cost is estimated, each subcomponent is assigned a percentage of that 

cost.  The main advantage of this approach is the ability to capture system level 

effort such as component integration and configuration management.  It can also be 

useful when a certain cost target must be reached regardless of the technical features.  

The top down approach can often miss the low level nuances that can emerge in 

large systems.  It also lacks detailed breakdown of the subcomponents that make up 

the system.  

Bottom Up & Activity Based.  Opposite the top-down approach, bottom-up 

begins with the lowest level cost component and rolls it up to the highest level for its 

estimate.  The main advantage is that the lower level estimates are typically provided 

by the people who will be responsible for doing the work.  This work is typically 

represented in the form of a Work Breakdown Structure (WBS), which makes this 

estimate easily justifiable because of its close relationship to the activities required 

by the project elements.  This can translate to a fairly accurate estimate at the lower 

level.  The disadvantages are that this process is labor intensive and is typically not 

uniform across entities.  In addition, every level folds in another layer of 

conservative management reserve which can result in an over estimate at the end. 
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Parametric cost estimation models.  This method is the most sophisticated 

and most difficult to develop.  Parametric models generate cost estimates based on 

mathematical relationships between independent variables (i.e., requirements) and 

dependent variables (i.e., effort).  The inputs characterize the nature of the work to 

be done, plus the environmental conditions under which the work will be performed 

and delivered.  The definition of the mathematical relationships between the 

independent and dependent variables is the heart of parametric modeling.  These 

relationships are commonly referred to Cost Estimating Relationships (CERs) and 

are usually based upon statistical analyses of large amounts of data.  Regression 

models are used to validate the CERs and operationalize them in linear or nonlinear 

equations.  The main advantage of using parametric models is that, once validated, 

they are fast and easy to use.  They do not require a lot of information and can 

provide fairly accurate estimates.  Parametric models can also be tailored to a 

specific organization’s CERs.  The major disadvantage of parametric models is that 

they are difficult and time consuming to develop and require a lot of clean, complete, 

and uncorrelated data to be properly validated. 

As a parametric model, COSYSMO contains its own CERs and is structured 

in a way to accommodate the current systems engineering standards and processes.  

Its structure is described in detail in the next section. 
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3. Model Definition 

3.1. COSYSMO Derivation 

Since its inception, COSYSMO has gone through three major iterations.  This 

section describes each of these spirals and the properties of the model at those points 

in time culminating with the final form of the model represented in Equation 6. 

3.1.1. Evolution 

Spiral #1: Strawman COSYSMO.  The first version of COSYSMO 

contained a list of 16 systems engineering cost drivers.  This representation of the 

model was referred to as the “strawman” version because it provided a skeleton for 

the model with limited content.  The factors identified were ranked by relative 

importance by a group of experts.  Half of the factors were labeled application 

factors and the other half were labeled team factors.  Each parameter was determined 

to have a high, medium, or low influence level on systems engineering cost.  The 

most influential application factor was requirements understanding and the most 

influential team factor was personnel experience.   

Function points and use cases were identified as possible measures of 

systems engineering functional size.  Factors for volatility and reuse were also 

identified as relevant.  At one point the initial list of parameters grew to as many as 

24 during one of the brain storming sessions.  For reasons related to model 

parsimony, the number of parameters in the model was eventually reduced from 24 

to 18. 
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Spiral #2: COSYSMO-IP.  The second major version of COSYSMO 

included refined definitions and a revised set of cost drivers.  Most importantly, it 

included measures for functional size that were independent of the software size 

measures used in COCOMO II.  This version had the letters “IP” attached to the end 

to reflect the emphasis on software “Information Processing” systems as the initial 

scope.  Rooted from interest from industry stakeholders, the focus at the time was to 

estimate systems engineering effort for software intensive systems.  Moreover, this 

version only covered the early phases of the life cycle: Conceptualize, Develop, and 

Operational Test & Evaluation.  Recognizing that the model had to evolve out of the 

software intensive arena and on to a broader category of systems, a model evolution 

plan was developed to characterize the different types of systems that could 

eventually be estimated with COSYSMO and their corresponding life cycle stages 

(Boehm, Reifer et al. 2003). 

 The important distinction between size drivers and cost drivers was also 

clarified.  At this stage, a general form for the model was proposed containing three 

different types of parameters: additive, multiplicative, and exponential. 
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Equation 1 

 
 

Where: 

 PM = Person Months 

 A = calibration factor 

Size = measure(s) of functional size of a system that has an additive effect on      

            systems engineering effort 

E = scale factor(s) having an exponential or nonlinear effect on systems   

       engineering effort 

EM = effort multipliers that influence systems engineering effort 

The general rationale for whether a factor is additive, exponential, or 

multiplicative comes from the following criteria (Boehm, Valerdi et al 2005): 

1. A factor is additive if it has a local effect on the included entity.  For example, 

adding another source instruction, function point entity, requirement, module, 

interface, operational scenario, or algorithm to a system has mostly local 

additive effects.  From the additive standpoint, the impact of adding a new 

item would be inversely proportional to its current size.  For example, adding 

1 requirement to a system with 10 requirements corresponds to a 10% 

increase in size while adding the same single requirement to a system with 

100 requirements corresponds to a 1% increase in size.   
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2. A factor is multiplicative if it has a global effect across the overall system.  

For example, adding another level of service requirement, development site, 

or incompatible customer has mostly global multiplicative effects.  Consider 

the effect of the factor on the effort associated with the product being 

developed.  If the size of the product is doubled and the proportional effect of 

that factor is also doubled, then it is a multiplicative factor.  For example, 

introducing a high security requirement to a system with 10 requirements 

would translate to a 40% increase in effort.  Similarly, a high security 

requirement for a system with 100 requirements would also increase by 40%.   

3. A factor that is exponential has both a global effect and an emergent effect 

for larger systems.  If the effect of the factor is more influential as a function 

of size because of the amount of rework due to architecture, risk resolution, 

team compatibility, or readiness for SoS integration, then it is treated as an 

exponential factor. 

These statements are pivotal to the hypotheses stated in section 1.3.  The next 

section describes the form of the model and how the hypotheses are tested. 

3.1.2. Model Form 

Spiral #3: COSYSMO.  Substantial insight was obtained from the 

development of the first two iterations of the model.  The current version, referred to 

simply as COSYSMO, has a broader scope representative of the extensive 

participation from industrial affiliates and INCOSE.  Limiting the boundaries and 

scope of the model has been one of the most challenging tasks to date, partially 
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because of the features desired by the large number of stakeholders involved in the 

model development process. 

The current operational form of the COSYSMO model is shown in Equation 

2.  As previously noted, the size drivers and cost drivers were determined via a 

Delphi exercise by a group of experts in the fields of systems engineering, software 

engineering, and cost estimation.  The definitions for each of the drivers, while not 

final, attempt to cover those activities that have the greatest impact on estimated 

systems engineering effort and duration. 
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Where:   

PMNS = effort in Person Months (Nominal Schedule) 

A = calibration constant derived from historical project data  

Size = determined by computing the weighted sum of the four size drivers  

E   = represents economy/diseconomy of scale; default is 1.0 

n = number of cost drivers (14) 

EMi = effort multiplier for the ith cost driver.  Nominal is 1.0.  Adjacent 

multipliers have constant ratios (geometric progression).  Within their 

respective rating scale, the calibrated sensitivity range of a multiplier is the 

ratio of highest to lowest value. 

Each parameter in the equation represents the Cost Estimating Relationships 

(CERs) that were defined by systems engineering experts.  The Size factor represents 

the additive part of the model while the EM factor represents the multiplicative part 

of the model.  Specific definitions for these parameters are provided in the following 

sections. 

A detailed derivation of the terms in Equation 2 and motivation for the model 

is provided here.  The dependent variable is the number of systems engineering 

person months of effort required under the assumption of a nominal schedule, or 

PMNS.  COSYSMO is designed to estimate the number of person months as a 

function of a system’s functional size with considerations of diseconomies of scale.  
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Namely, larger systems will require proportionally more systems engineering effort 

than smaller systems.  That is, larger systems require a larger number of systems 

engineering person months to complete.  The four metrics selected as reliable 

systems engineering size drivers are: Number of System Requirements, Number of 

Major Interfaces, Number of Critical Algorithms, and Number of Operational 

Scenarios.  The weighted sum of these drivers represents a system’s functional size 

from the systems engineering standpoint and is represented in the following CER: 

 

Equation 3 ∑ Φ+Φ+Φ=
k

ddnneeNS wwwPM  

 
Where:   

k = REQ, INTF, ALG, OPSC 

w  = weight 

e = easy 

n = nominal 

d = difficult 

Φ  = driver count 

Equation 3 is an operationalization of the four size drivers and includes 

twelve possible combinations of weights combined with size metrics.  Discrete 

weights for the size drivers, w , can take on the values of “easy”, “nominal”, and 

“difficult”; and quantities ,Φ , can take on any continuous integer value depending 

on the number of requirements, interfaces, algorithms, and operational scenarios in 

the system of interest.  All twelve possible combinations may not apply to all 
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systems.  This approach of using weighted sums of factors is similar to the software 

function approach used in other cost models (Albrecht and Gaffney 1983). 

The CER shown in Equation 3 is a representation of the relationship between 

functional size and systems engineering effort.  The effect of each size driver on the 

number of systems engineering person months is determined by its corresponding 

weight factor.  Figure 3 illustrates the relationship between the number of operational 

scenarios and functional size.  This size driver was selected as an example since it 

was shown to have the highest influence on systems engineering effort. 

 

 
Figure 3 Notional Relationships Between Operational Scenarios  

Versus Functional Size 

 

The five curves in Figure 3 are a notional representation of the effects of the 

weights of the easy, nominal, and difficult operational scenarios on functional size.  

In addition to functional size there are other people-related emergent properties of 

systems that arise as larger system-of-systems are created.  These properties are 

similar to the ones previously observed in software development (Banker et al 1994).  

Different systems engineering efforts may exhibit different levels of productivity 



 

36 
 
 
 

which must be represented in COSYSMO.  An exponential factor, E, is added to the 

CER and is represented in Equation 4: 

Equation 4  
E

k
ddnneeNS wwwPM ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ+Φ+Φ= ∑  

 
This factor relates to hypothesis #3.  In the case of small projects the 

exponent, E, could be equal to or less than 1.0.  This would represent an economy of 

scale which is generally very difficult to achieve in large people-intensive projects.  

Most large projects would exhibit diseconomies of scale and as such would employ a 

value greater than 1.0 for E.  Systems development activities may have different 

diseconomies of scale because of two main reasons: growth of interpersonal 

communications overhead and growth of large-system integration overhead.  The 

impact of interpersonal communications has been modeled by researchers in the area 

of human networks and is believed to be influential in systems engineering.  The 

COCOMO II model includes a diseconomy of scale factor which is approximately 

1.1.  Other theories suggest that human related diseconomies behave in ways 

proportional to 2^n, n^2, or n^2-n.  A notional example is shown in Figure 4 which 

includes the actual diseconomies of scale built into COCOMO II and COSYSMO.  

While the cost models are not as dramatic as theories suggest it must be noted that 

this parameter only covers human diseconomies.  Technical diseconomies are 

adequately by size and cost drivers. 
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Figure 4 Examples of Diseconomies of Scale 

 

Just as different systems may exhibit various economies of scale, different 

organizations may exhibit various relationships between systems engineering size 

and effort.  The CER in Equation 5 requires a calibration or adjustment factor that 

allows for the tuning of COSYSMO to accurately reflect an organization’s business 

line productivity.  This factor, A, is included in Equation 5.  

Equation 5 
E

k
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Finally, there is a group of fourteen effort multipliers that have been 

identified to be significant drivers of systems engineering effort.  These are used to 

adjust the nominal person month effort to reflect the system under development.  

Each driver is defined by a set of rating levels and corresponding multiplier factors.  

The nominal level always has an effort multiplier of 1.0, which has no effect on the 
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CER.  Off-nominal ratings change the overall estimated effort based on their user-

defined values.  Equation 6 includes these multiplicative factors, EM. 

Equation 6  ∏∑
=

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ+Φ+Φ⋅=

14
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 Equation 6 is the final COSYSMO CER that was used in the Delphi surveys 

and historical data collection.  Each parameter will be introduced together with its 

rating scale and counting rules. 

3.2. Systems Engineering Size Drivers 

The role of the Size drivers is to capture the functional size of the system 

from the systems engineering perspective.  They represent a quantifiable 

characteristic that can be arrived at by objective measures (i.e., physical size).  It can 

be shown that developing a satellite ground station represents a larger systems 

engineering effort than developing a toaster and in order to differentiate the two, four 

properties were developed to help quantify the difference.  In software cost 

estimation, some common measures of size include Software Lines of Code (SLOC), 

Function Points (FP), or Application Points (AP).  These sizing approaches contain 

adjustment factors that give the model the flexibility to estimate software 

development for different languages running on different platforms.  However, when 

the system involves hardware, software, people, and processes, these measures 

become insufficient. 

Since the focus of this work is systems engineering effort, the size drivers 

need to apply to software, hardware, and systems containing both.  The set of size 
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drivers that affect systems engineering effort were defined to be: # of Requirements, 

# of Major Interfaces, # of Critical Algorithms, and # of Operational Scenarios.  

Originally, three additional size drivers were considered: # of Modes (merged with 

scenarios), # of Level of Service Requirements, and # of design levels (determined to 

be multiplicative cost drivers).  Of these four, # of Requirements has been the most 

controversial and volatile.  This is due in part to the different types of requirements 

(i.e., functional, operational, environmental) that are used to define systems and their 

functions, the different levels of requirements decomposition used by organizations, 

and the varying degree of quality of requirements definition (how well they are 

written). 

The size drivers are quantitative parameters that can be derived from project 

documentation.  Table 5 lists the typical sources that can provide information for 

each of the four size drivers in COSYSMO. 

Table 5 Size Drivers and Corresponding Data Items 

Driver Name Data Item 
# of System Requirements Counted from the system specification 
# of Major Interfaces Counted from interface control document(s) 
# of Critical Algorithms Counted from system spec or mode description docs 
# of Operational Scenarios Counted from test cases or use cases 

 
 Early in the system life cycle, these sources may not be available to 

organizations due to the evolutionary nature of systems.  In this case surrogate 

sources of data must be obtained or derived in order to capture leading indicators 

related to the four size drivers.  Some of these sources may be previous acquisition 

programs or simulations of future programs. 
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 Each size driver has both continuous and categorical variable attributes.  As a 

continuous variable it can represent a theoretical continuum such as “requirements” 

or interfaces”, which can range from small systems to very large systems of systems; 

with most cases falling within an expected range.  As a categorical variable it can be 

represented in terms of discrete categories such as “easy” or “difficult” that cannot 

be measured more precisely.  The categorical scales are presented next and the 

counting rules for determining the values of the continuous variables are provided in 

the following sections. 

Each of the drivers in Table 5 can be adjusted with three factors: volatility, 

complexity, and reuse.  System requirements are frequently volatile and, in a 

dynamic environment, are expected to increase as the project progresses.  This 

phenomenon, known as scope creep, is commonly quantified by expansion and 

stability patterns (Hammer et al 1998).  Although new requirements are created, 

deleted, and modified throughout the life cycle of the project, empirical studies 

suggest that there tends to be an average number of low level requirements that need 

to be written in order to satisfy the requirements at the previous i.e. high level.  

These studies show that the expansion of requirements shows an expected bell curve.  

Intuitively, it makes sense to implement stable requirements first and hold off on the 

implementation of the most volatile requirements until late in the development cycle 

(Firesmith 2004).  Any volatility beyond what is normally expected can greatly 

contribute to an increase in size. 

The second factor used to adjust the size drivers of COSYSMO model is the 

complexity level of the requirements.  A typical system may have hundreds, or 
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potentially thousands, of requirements that are decomposed further into requirements 

pertaining to the next subsystem. Naturally, not all requirements have the same level 

of complexity.  Some may be more complex than others based on how well they are 

specified, how easily they are traceable to their source, and how much they overlap 

with other requirements.  It has been determined that a simple sum of the total 

number of requirements is not a reliable indicator of functional size.  Instead, the 

sum of the requirements requires a complexity weight to reflect the corresponding 

complexity of each requirement.  Logically, the more complex a requirement the 

greater the weight that is assigned to it.  It is up to the individual organization to 

make an assessment of the complexity of the size drivers associated with their 

systems.  Guidance on how to accomplish this for each size driver is provided in the 

next sections. 

Reuse is the third important factor used to adjust the number of requirements.  

As reuse facilitates the usage of certain components in the system it tends to bring 

down the efforts involved in the system development.  The sum of requirements is 

adjusted downwards when there are a significant number of reused requirements.  

This is meant to capture an organization’s familiarity with the development, 

management, and testing of requirements.  However, reused requirements are not 

free from systems engineering effort.  There are three components of reuse each of 

which has a cost: redesign, reimplementation, and retest.  Redesign is necessary 

when the existing functionality may not be exactly suited to the new task. When this 

is so, the application to be reused will likely require some rework to support new 

functions, and it may require reverse engineering to understand its current operation. 
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Some design changes may be in order as well.  Changing design will also result in 

reimplementation changes. Even if redesign and reimplementation are not required, 

retesting is almost always needed to ensure legacy systems operate properly in their 

new environment.  In summary, reuse may adjust the influence of size drivers 

upwards or downwards depending on the system characteristics.  The three 

adjustment factors are summarized in Table 6. 

Table 6 Adjustment Factors for Size Drivers 

Adjustment Factor Influence on Size 
Volatility Increase 
Complexity Increase 
Reuse Increase or decrease 

 
Of the three adjustment factors, complexity was the most useful when 

characterizing each size driver.  Experts found it easier to assign complexity levels to 

size drivers based on their past experience with systems.  To facilitate the assignment 

of the complexity adjustment factors, a corresponding definition and rating scale was 

developed for each size driver.  The rating scale is divided into three sections: easy, 

nominal, and difficult; each corresponding to a complexity weight for each of the 

three levels.  Volatility and reuse were left as future add-ons to the model because 

they were more difficult to obtain expert opinion.   

3.2.1. Number of System Requirements 

The definition and three adjustment factors alone do not capture all the 

impact introduced by requirements.  Additional work is involved in decomposing 

requirements so that they may be counted at the appropriate system-of-interest.  As 

part of this dissertation, rules have been developed to help clarify the definition and 
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adjustment factors while providing consistent interpretations of the size drivers for 

use in cost estimation. 

Other data items, or sources, may be available on certain projects depending 

on the processes used in the organization.  For example, system requirements may be 

counted from the requirements verification matrix or a requirements management 

tool such as DOORS. 

Table 7 Number of System Requirements Definition 

 
 

Table 8 Number of System Requirements Rating Scale 
Easy Nominal Difficult 

- Simple to implement - Familiar - Complex to implement or 
engineer 

- Traceable to source - Can be traced to source with 
some effort 

- Hard to trace to source 

- Little requirements overlap - Some overlap - High degree of requirements 
overlap 

 
 A particular system may have some requirements that could be considered 

easy because they are straightforward and have been implemented successfully 

before, some requirements could be nominal because they are moderately complex 

and require some effort, and some requirements could be difficult because they are 

very complex and have a high degree of overlap with other requirements. 

The challenge with requirements is that they can be specified by either the 

customer or the contractor.  In addition, these organizations often specify system 

Number of System Requirements 
This driver represents the number of requirements for the system-of-interest at a specific level of 
design.  The quantity of requirements includes those related to the effort involved in system 
engineering the system interfaces, system specific algorithms, and operational scenarios.  
Requirements may be functional, performance, feature, or service-oriented in nature depending on 
the methodology used for specification.  They may also be defined by the customer or contractor.  
Each requirement may have effort associated with it such as verification and validation, functional 
decomposition, functional allocation, etc.  System requirements can typically be quantified by 
counting the number of applicable shalls/wills/shoulds/mays in the system or marketing specification.  
Note: some work is involved in decomposing requirements so that they may be counted at the 
appropriate system-of-interest. 
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requirements at different levels of decomposition and with different levels of 

sophistication.  Customers may provide high level requirements in the form of 

system capabilities, objectives, or measures of effectiveness; these are translated into 

requirements by the contractor and decomposed into different levels depending on 

the role of the system integrator.  The prime contractor could decompose the initial 

set of requirements and expand them to subcontractors below it as illustrated in 

Figure 5. 

Customer Contractor

Capabilities, Objectives, or 
Measures of Effectiveness 10 Requirements (prime)

100 Requirements (sub)

10:1 
expansion

1,000 Requirements (sub)

10:1 
expansion

 
 

Figure 5 Notional Example of Requirements Translation from Customer to 
Contractor  

 

For purposes of this example, the expansion ratio from one level of 

requirement decomposition to the other is assumed to be 10:1.  Different systems 

will exhibit different levels of requirements decomposition depending on the 

application domain, customer’s ability to write good system requirements, and the 

functional size of the system.  The requirements flow framework in Figure 5 

provides a starting point for the development of rules to count requirements.  These 

rules were designed to increase the reliability of requirements counting by different 
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organizations on different systems regardless of their application domain.  The five 

rules are as follows: 

1. Determine the system of interest.  For an airplane, the system of interest 

may be the avionics subsystem or the entire airplane depending on the 

perspective of the organization interested in estimating systems 

engineering.  This key decision needs to be made early on to determine the 

scope of the COSYSMO estimate and identify the requirements that are 

applicable for the chosen system. 

2. Decompose system objectives, capabilities, or measures of effectiveness 

into requirements that can be tested, verified, or designed.  The 

decomposition of requirements must be performed by the organization using 

COSYSMO.  The level of decomposition of interest for COSYSMO is the 

level in which the system will be designed and tested; which is equivalent to 

the TYPE A, System/Segment Specification (MIL-STD 490-A 1985). 

3. Provide a graphical or narrative representation of the system of interest 

and how it relates to the rest of the system.  This step focuses on the 

hierarchical relationship between the system elements.  This information can 

help describe the size of the system and its levels of design.  It serves as a 

sanity check for the previous two steps. 

4. Count the number of requirements in the system/marketing specification 

or the verification test matrix for the level of design in which systems 

engineering is taking place in the desired system of interest.  The focus of 

the counted requirements needs to be for systems engineering.  Lower level 
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requirements may not be applicable if they have no effect on systems 

engineering.  Requirements may be counted from the Requirements 

Verification Trace Matrix (RVTM) that is used for testing system 

requirements.  The same rules apply as before: all counted requirements must 

be at the same design or bid level and lower level requirements must be 

disregarded if they do not influence systems engineering effort. 

5. Determine the volatility, complexity, and reuse of requirements.  Once 

the quantity of requirements has been determined, the three adjustment 

factors can be applied.  Currently three complexity factors have been 

determined: easy, nominal, and difficult.  These weights for these factors 

were determined using expert opinion through the use of a Delphi survey 

(Valerdi et al 2003).  The volatility and reuse factors are optional and depend 

on the version of COSYSMO implementation being used. 

The objective of the five steps is to lead users down a consistent path of 

similar logic when determining the number of system requirements for the purposes 

of estimating systems engineering effort in COSYSMO.  It has been found that the 

level of decomposition described in step #2 may be the most volatile step as 

indicated by the data collected thus far.  To alleviate this, a framework of software 

use case decomposition was adopted (Cockburn 2001).  The basic premise behind 

the framework is that different levels exist for specific system functions.  Choosing 

the appropriate level can provide a focused basis for describing the customer and 

developer needs.  A metaphor is used to describe four levels: sky level, kite level, sea 

level, and underwater level.  The development of COSYSMO can be used to further 
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illustrate the sea level metaphor.  The summary level, or sky level, represents the 

highest level that describes either a strategic or system scope.   

For example, a sky level goal for COSYSMO is to “build a systems 

engineering cost model.”  The stakeholders of the model stated this as their basic 

need that in turn drives a collection of user level goals.  A kite level goal provides 

more detailed information as to “how” the sky level goal will be satisfied.  

Continuing the example, it includes the standards that will drive the definition of 

systems engineering and system life cycle phases.  The sea level goals represent a 

user level task that is the target level for counting requirements in COSYSMO.  It 

involves utilizing size and cost drivers, definitions, and counting rules that will 

enable the accurate estimation of systems engineering effort, also providing more 

information on how the higher goals at the kite level will be satisfied.  The sea level 

is also important because it describes the environment in which the model developers 

interact with the users and stakeholders.  A step below is the underwater level which 

is of more concern to the developer.  In this example, it involves the selection of 

implementation and analysis tools required to meet the user goals.  The examples are 

mapped to Cockburn’s hierarchy in Figure 6. 
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perform statistical 
analysis of 
historical data

The system shall estimate SE cost

adopt EIA 632 as 
the WBS and ISO 
15288 as the life 
cycle standard

adjust model’s 
productivity 
factors based on 
local calibration

utilize size and 
cost drivers, 
definitions, and 
counting rules

provide rules for 
data collection 
and local 
calibration

implement model 
in MS Excel

adopt ISO 15288 
to define system 
life cycle phases

 
Figure 6 Cockburn’s Hierarchy as Related to COSYSMO Use Case Levels 

(adapted from Cockburn 2001) 
 

Going down the hierarchy from sky to underwater provides information on 

“how” a particular requirement will be satisfied by the system while going up the 

hierarchy provides information on “why” a particular requirement exists. 

3.2.2. Number of System Interfaces 

System interfaces are also important drivers of systems engineering effort.  

The greatest leverage in system architecting is at the interfaces (Rechtin 1991) but 

this leverage comes at a price.  Both the quantity and complexity of interfaces 

require more systems engineering effort. 

Table 9 Number of System Interfaces Definition 

 
 
 
 

Number of System Interfaces 
This driver represents the number of shared physical and logical boundaries between system 
components or functions (internal interfaces) and those external to the system (external 
interfaces). These interfaces typically can be quantified by counting the number of external and 
internal system interfaces among ISO/IEC 15288-defined system elements. 
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Table 10 Number of System Interfaces Rating Scale 
Easy Nominal Difficult 

- Simple message - Moderate complexity - Complex protocol(s) 
- Uncoupled - Loosely coupled - Highly coupled 
- Strong consensus - Moderate consensus - Low consensus 
- Well behaved - Predictable behavior - Poorly behaved 

 
 Similar problems of decomposition exist for this driver because interfaces are 

defined at multiple levels of the system hierarchy.  The target level for counting 

interfaces involves the following rules: 

1. Focus on technical interfaces only.  Other parameters in the model address 

organizational interfaces. 

2. Identify the interfaces that involve systems engineering for your system 

of interest.  Counting interfaces at the integrated circuit level is often too low.  

Sometimes there may be multiple levels of interfaces connecting higher 

system elements, lower system elements, and elements at the same level of 

the system hierarchy. 

3. Determine the number of unique interface types.  If twenty interfaces exist 

but there are only two types of interfaces, then the relevant number to count 

is two. 

4. Focus on the logical aspects of the interface.  This provides a better 

indicator of the complexity of each interface from a systems engineering 

standpoint.  Counting the number of wires in an interface may not be a good 

indicator.  Instead, the protocol used or the timing requirement associated 

with the interface will be a better indicator. 

5. Determine complexity of each interface.  Bidirectional interfaces count as 

two interfaces because they require coordination on both ends. 
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3.2.3. Number of Algorithms 

 The number and complexity of algorithms is also a useful driver for 

determining systems engineering size and ultimately effort.  Both hardware and 

software algorithms increase systems engineering activities throughout all phases of 

the life cycle. 

Table 11 Number of System-Specific Algorithms Definition 

 
 

Table 12 Number of System-Specific Algorithms Rating Scale 
Easy Nominal Difficult 

- Algebraic - Straight forward calculus - Complex constrained 
optimization; pattern 
recognition 

- Straightforward structure - Nested structure with decision 
logic 

- Recursive in structure  
  with distributed control 

- Simple data - Relational data - Noisy, ill-conditioned data 
- Timing not an issue - Timing a constraint - Dynamic, with timing and 

uncertainty issues 
- Adaptation of library-based 
solution 

- Some modeling involved - Simulation and modeling 
involved 

 
 Since the influence of algorithms can vary by organization, the process of 

identifying an algorithm for COSYSMO can also be different.  Ultimately there are 

different sources from which the algorithms can be obtained.  For example, during 

the conceptual stage of a system, there is a limited amount of information available.  

Only functional block diagrams may be available which can serve as indicators of 

how many algorithms may exist in the system.  As the system design evolves and 

more uncertainties are resolved, there are more sources available to aid in the 

Number of System-Specific Algorithms 
This driver represents the number of newly defined or significantly altered functions that require 
unique mathematical algorithms to be derived in order to achieve the system performance 
requirements. As an example, this could include a complex aircraft tracking algorithm like a 
Kalman Filter being derived using existing experience as the basis for the all aspect search 
function. Another example could be a brand new discrimination algorithm being derived to identify 
friend or foe function in space-based applications. The number can be quantified by counting the 
number of unique algorithms needed to realize the requirements specified in the system specification 
or mode description document.
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estimation of algorithms.  Table 13 includes examples of the entities that are 

available at different stages of the system life cycle and their corresponding 

attributes that can be used to estimate the number of algorithms.  They are listed in 

typical order of availability; the first entities are typically available during the 

conceptual stages while the latter ones are available as the system design evolves. 

 

Table 13 Candidate Entities and Attributes for Algorithms 

Entities Attributes 
Historical database # of algorithms 
Functional block diagram # of functions that relate to algorithms 
Mode description document algorithms 
Risk analysis algorithm related risks 
System specification algorithms 
Subsystem description documents algorithms 
Configuration baseline technical notes 

 
 

 The attributes may provide more detailed information about the functions that 

the algorithms perform.  This can aid in determining the complexity of that algorithm, 

an important step in estimating size for COSYSMO. 

 Determining the quantity of algorithms in a system can also differ across 

organizations.  System algorithms are unique in the sense that they are highly related 

to the “# of Requirements” and “# of Interfaces” size drivers.  If not explicitly 

defined up front, the number of algorithms can be derived from a system-level 

requirement or deduced from the properties of an interface.  In terms of systems 

engineering effort, the existence of an algorithm introduces additional work related 

to simulation, implementation, test cases, documentation, and support.  These 

activities are illustrated in Figure 7. 
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Figure 7 Effort Decomposition Associated With an Algorithm 

  

 There exists an entire process in which the general types of algorithms 

needed are determined, math is developed to implement them, algorithm-related 

requirements are communicated to other designers (subsystems, hardware, software, 

etc.) for what data and data quality requirements, and algorithm trade-offs are 

performed.  These activities are within the scope of systems engineering and are 

covered in COSYSMO. 

 In some cases, a significant amount of effort associated with systems 

engineering as related to algorithms will involve reuse which can reduce the 

complexity of algorithms and in turn the effort associated with their implementation.  

Conversely, there may be situations where algorithms are unprecedented and loosely 

defined.  From an implementation standpoint, the number of design constraints – 

such as timing restrictions or processor limitations – may influence the complexity of 
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software algorithms when compared to hardware algorithms.  In either case, both 

types of algorithms should be counted and assigned a level of complexity for input 

into COSYSMO. 

 To demonstrate the process of identifying and counting an algorithm an 

example is provided from the field of signal compression.  For purposes of this 

example it is assumed that a system specification has been developed.  From this 

specification, the following system level requirement is obtained: All images 

captured by the sensor shall be compressed in compliance with MPEG-4 coding 

standard.  This requirement triggers several possible solutions that meet the required 

standard.  A developer may decide to implement the requirement with a well-known 

algorithm used for compressing visual images: MPEG-4 Visual Texture Coding 

(VTC).  As illustrated in Figure 7 this algorithm generates products associated with it 

which lead to increased systems engineering effort that is estimated by COSYSMO.  

Other effort generated by the implementation specification, such as software 

engineering, is not estimated by COSYSMO.  Models such as COCOMO II should 

be used to estimate the software development effort.  For purposes of COSYSMO, 

the MPEG-4 VTC algorithm counts as one distinct algorithm even if it is used 

multiple times in the same system.  Since this is a well known algorithm with 

predictable behavior it qualifies as an “easy” algorithm. 
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3.2.4. Number of Operational Scenarios 

The fourth and final size driver captures the operational scenarios of a system.  

The more operational scenarios – and the more complex these scenarios are – the 

more systems engineering effort will be required. 

Table 14 Number of Operational Scenarios Definition 

 
 

Table 15 Number of Operational Scenarios Rating Scale 
Easy Nominal Difficult 

- Well defined - Loosely defined - Ill defined 
- Loosely coupled - Moderately coupled - Tightly coupled or many 

dependencies/conflicting 
requirements 

- Timelines not an issue - Timelines a constraint - Tight timelines through 
scenario network 

- Few, simple off-nominal 
threads 

- Moderate number or complexity 
of off-nominal threads 

- Many or very complex off-
nominal threads 

 
 In a similar way requirements were defined at sea level, operational scenarios 

must also be identified at a level that is of interest to systems engineering.  An 

example of a typical target level for operational scenarios is shown in Figure 8. 

 
 

Number of Operational Scenarios 
This driver represents the number of operational scenarios that a system must satisfy. 
Such scenarios include both the nominal stimulus-response thread plus all of the off-
nominal threads resulting from bad or missing data, unavailable processes, network 
connections, or other exception-handling cases.  The number of scenarios can typically 
be quantified by counting the number of system test thread packages or unique end-to-
end tests used to validate the system functionality and performance or by counting the 
number of use cases, including off-nominal extensions, developed as part of the 
operational architecture.
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process error 
scenario #1 for 
sale transaction

The system shall process financial transactions

process sale 
transaction 
workflow

process deposit 
transaction 
workflow

provide sale 
scenario in 
English

allow for 
discounts and 
coupons to be 
used

… …

 
Figure 8 Operational Scenario Example 

(adapted from Cockburn 2001) 
 

 Hypothesis #1 proposes that the weighted sum of these drivers is a good 

predictor of size and as size increases the amount of systems engineering effort also 

increases.  Given that the calculation for size is a composite measure of the four size 

drivers it is evident that a system can be considered large a number of different ways.  

For example, a system with multiple independent interfaces and very few 

requirements can be similar in size to a system with few independent interfaces and 

many requirements. 

 The use of the words “multiple”, “very few”, “few”, and “many” add a 

dimension of complexity as the subjectivities in the attributes is quantified.  Great 

care must be taken to use consistent interpretations of these words on systems being 

estimated.  The cost drivers in the model, somewhat subjective in nature, attempt to 

capture the most important system and development environment characteristics that 

drive systems engineering cost. 
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3.3. Systems Engineering Cost Drivers 

The cost drivers in the model represent the multiplicative part of the model 

introduced in Section 3.1.  These drivers are also referred to as effort multipliers 

since they affect the entire systems engineering effort calculation in a multiplicative 

manner.  Assigning ratings for these drivers is not as straight forward as the size 

drivers mentioned previously.  The difference is that most of the cost drivers are 

qualitative in nature and require subjective assessment in order to be rated.  Table 16 

shows the data items or information needed in order to assess the cost drivers. 

Table 16 Cost Drivers and Corresponding Data Items 
Driver Name Data Item 

Requirements understanding Subjective assessment of the system requirements 
Architecture understanding Subjective assessment of the system architecture 
Level of service requirements Subjective difficulty of satisfying the key performance 

parameters 
Migration complexity Influence of legacy system (if applicable) 
Technology risk Maturity, readiness, and obsolescence of technology 
Documentation to match life cycle 
needs 

Breadth and depth of required documentation 

# and Diversity of 
installations/platforms 

Sites, installations, operating environment, and diverse 
platforms 

# of Recursive levels in the design Number of applicable levels of the Work Breakdown Structure 
Stakeholder team cohesion  Subjective assessment of all stakeholders 
Personnel/team capability  Subjective assessment of  the team’s intellectual capability 
Personnel experience/continuity  Subjective assessment of staff consistency 
Process capability  CMMI level or equivalent rating 
Multisite coordination  Location of stakeholders and coordination barriers 
Tool support Subjective assessment of SE tools 

 
In the COCOMO II model, an ensemble of similar drivers is used to modify 

the amount of effort to reflect product, platform, personnel, and project factors that 

have been shown to influence cost and schedule for software projects.  It has been 

determined that these themes were not appropriate for systems engineering.  New 
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themes have been developed that aggregate the unique phenomena observed in 

systems engineering.  These themes are:  

 Understanding.  Drivers that capture the level of comprehension and 

familiarity of the systems engineering team.  

 Complexity.  Drivers that capture the difficulty, risk, and program-related 

factors that can influence systems engineering effort. 

 Operations.  Drivers that capture the planning involved with the 

implementation from the systems engineering standpoint. 

 People.  Drivers that capture the capability of the systems engineering 

team. 

 Environment.  Drivers that capture the level of sophistication under which 

systems engineering is being performed. 

The criteria for assigning cost drivers to these themes included driver polarity 

and correlation.  Drivers that were associated with productivity savings such as 

“understanding” or “capability” drivers were grouped together while those associated 

with productivity penalties such as “complexity” were grouped together.  Moderately 

correlated parameters were also combined based on the results from the correlation 

matrix in Appendix F. 

Hypothesis #2 proposes that clusters of these drivers are accurate predictors 

of systems engineering effort.  Different permutations of these drivers were 

compared and the best set, shown in Figure 9, was selected based on the 

aforementioned criterion. 
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Figure 9 Cost Driver Clustering 

 
In addition to a description, each driver was assigned a rating scale that 

described different attributes that could be used to rate the degree of impact on 

systems engineering effort.  Rating levels included: Very Low, Low, Nominal, High, 

Very High, and Extra High.  The Nominal level represents zero impact on 

productivity and is therefore assigned a multiplier of 1.0.  Levels above and below 

nominal are assigned multipliers above or below 1.0 to reflect their impact on 

systems engineering effort.  The increase or decrease of multipliers along the rating 

scale will depend on the polarity of each driver.  For example, the requirements 

understanding is defined in such a way that Very Low understanding will have a 

productivity penalty on systems engineering.  As a result, it will have a multiplier of 

greater than 1.0, such as 1.87, to reflect an 87% productivity penalty.  The 

multipliers for the rating scaled are provided in section 5.1. 

 

3.3.1. Understanding Factors 

The first cost driver theme deals with the systems engineering team’s 

comprehension of and familiarity with the system of interest.  Higher ratings for 
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these drivers represent a productivity savings.  There are four understanding factors, 

the most influential being Requirements Understanding. 

Table 17 Requirements Understanding Definition 

 
 

Table 18 Requirements Understanding Rating Scale 
Very low Low Nominal High Very High 

Poor: emergent 
requirements or 
unprecedented 
system 

Minimal: many 
undefined areas 

Reasonable: some 
undefined areas  

Strong: few 
undefined areas 

Full understanding 
of requirements, 
familiar system 

 
Counting the number of requirements and rating their complexities is 

addressed by the size driver.  But the overall degree of understanding of these 

requirements – by all the stakeholders – has a multiplicative effect on the total 

amount of effort needed for systems engineering. 

Table 19 Architecture Understanding Definition 

 
 

Table 20 Architecture Understanding Rating Scale 
Very low Low Nominal High Very High 

Poor 
understanding 
of architecture 
and COTS, 
unprecedented 
system 

Minimal 
understanding of 
architecture and 
COTS, many 
unfamilar areas 

Reasonable 
understanding of 
architecture and 
COTS, some 
unfamiliar areas  

Strong 
understanding of 
architecture and 
COTS, few 
unfamiliar areas 

Full understanding 
of architecture, 
familiar system 
and COTS 

>6 level WBS 5-6 level WBS 3-4 level WBS 2 level WBS   
 
Understanding the architecture is also an important part of being able to 

design the system (Rechtin 1991).  The understanding of the system architecture is 

Architecture understanding  
This cost driver rates the relative difficulty of determining and managing the system architecture in terms of 
platforms, standards, components (COTS/GOTS/NDI/new), connectors (protocols), and constraints.  This 
includes tasks like systems analysis, tradeoff analysis, modeling, simulation, case studies, etc.  

Requirements understanding  
This cost driver rates the level of understanding of the system requirements by all stakeholders including 
systems, software, hardware, customers, team members, users, etc.  Primary sources of added systems 
engineering effort are unprecedented systems, unfamiliar domains, or systems whose requirements are 
emergent with use. 
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different than the understanding of requirements and therefore warrants its own 

driver.  Besides unprecedentedness and domain unfamiliarity, primary sources of 

added systems engineering effort are new technologies, complex COTS products and 

choices, and depth of the product hierarchy or Work Breakdown Structure (WBS). 

Table 21 Stakeholder Team Cohesion Definition 

 
 

Table 22 Stakeholder Team Cohesion Rating Scale 
 Very Low Low Nominal High Very High 
Culture Stakeholders 

with diverse 
expertise, task 
nature, 
language, 
culture, 
infrastructure 
Highly 
heterogeneous 
stakeholder 
communities 

Heterogeneous 
stakeholder 
community 
Some similarities 
in language and 
culture 

Shared project 
culture 

Strong team 
cohesion and 
project culture 
Multiple 
similarities in 
language and 
expertise 

Virtually 
homogeneous 
stakeholder 
communities 
Institutionaliz
ed project 
culture 

Compatibili
ty 

Highly 
conflicting 
organizational 
objectives 

Converging 
organizational 
objectives 

Compatible 
organizational 
objectives 

Clear roles & 
responsibilities 

Strong 
mutual 
advantage to 
collaboration 

Familiarity 
and trust 

Lack of trust Willing to 
collaborate, little 
experience 

Some familiarity 
and trust 

Extensive 
successful 
collaboration 

Very high 
level of 
familiarity 
and trust 

 
The mutual culture, compatibility, familiarity, and trust of the stakeholders 

involved in the development of the system are key project factors that have 

significant importance in the systems engineering domain.  The group’s ability to 

work together is a factor that has been highlighted as being important for software 

system development (Brooks 1995), and analyzed as a significant software cost 

driver in COCOMO II (Boehm et al 2000).   

Stakeholder team cohesion  
Represents a multi-attribute parameter which includes leadership, shared vision, diversity of 
stakeholders, approval cycles, group dynamics, Integrated Product Team framework, team 
dynamics, trust, and amount of change in responsibilities.  It further represents the heterogeneity 
in stakeholder community of the end users, customers, implementers, and development team. 
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Table 23 Personnel Experience/Continuity Definition 

 
 

Table 24 Personnel Experience/Continuity Rating Scale 
  Very low Low Nominal High Very High 
Experience Less than 2 

months 
1 year 
continuous 
experience, 
other technical 
experience in 
similar job 

3 years of 
continuous 
experience 

5 years of 
continuous 
experience 

10 years of 
continuous 
experience 

Annual 
Turnover 

48% 24% 12% 6% 3% 

 
The team experience rating measures the systems engineers’ experience 

relevant to the system of interest and its context.  It should be noted that often times 

many years of experience does not translate to competency in a certain area.  

Experience is rated as of the beginning of the project and is expected to increase as 

the project goes on, unless adversely affected by personnel turnover. 

3.3.2. Complexity Factors 

 Complexity factors account for variation in effort required to develop 

systems caused by the characteristics of the system under development.  A system 

that has multiple “ilities”, immature technology, a complex design, and excessive 

documentation will require more effort to complete.  There are four complexity 

factors, the most influential being Level of Service Requirements. 

Table 25 Level of Service Requirements Definitions 

 
 
 

Level of service requirements 
This cost driver rates the difficulty and criticality of satisfying the ensemble of level of service 
requirements, such as security, safety, response time, interoperability, maintainability, Key 
Performance Parameters (KPPs), the “ilities”, etc.

Personnel experience/continuity  
The applicability and consistency of the staff at the initial stage of the project with respect to the domain, 
customer, user, technology, tools, etc.  
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Table 26 Level of Service Requirements Rating Scale 
 Very low Low Nominal High Very High 

Difficulty Simple; single 
dominant KPP 

Low, some 
coupling among 
KPPs 

Moderately 
complex, 
coupled KPPs 

Difficult, 
coupled KPPs 

Very complex, 
tightly coupled 
KPPs 

Criticality Slight 
inconvenience 

Easily 
recoverable 
losses 

Some loss High financial 
loss 

Risk to human 
life 

 
The level of service requirements, “ilities”, or Key Performance Parameters, 

provide an indication of the complexity of the systems engineering effort required to 

meet all of the stakeholder requirements.  The “ilities” may include: reliability, 

usability, performance, affordability, maintainability, and so forth.  The “ilities” are 

imperatives of the external world as expressed at the boundaries with the internal 

world of the system (Rechtin 1991).  Reliability, usability, and performance are the 

imperative of the user, affordability that of the client, and maintainability that of the 

operator.  This driver has two different viewpoints, difficulty and criticality, that help 

represent the two dimensions associated with this driver.  Ratings for these 

viewpoints are often not the same.  In cases where systems may have a high degree 

of difficulty in meeting a response time requirement, there is an equally severe level 

of criticality associated with not meeting it. 

Table 27 Technology Risk Definition 

 
 

 

 

 

 

 

Technology Risk 
The maturity, readiness, and obsolescence of the technology being implemented.  Immature or 
obsolescent technology will require more Systems Engineering effort. 
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Table 28 Technology Risk Rating Scale 
 Very Low Low Nominal High Very High 

Lack of 
Maturity 

Technology 
proven and 
widely used 
throughout 
industry 

Proven through 
actual use and 
ready for 
widespread 
adoption 

Proven on pilot 
projects and 
ready to roll-
out for 
production jobs 

Ready for pilot 
use 

Still in the 
laboratory 

Lack of 
Readiness 

Mission proven 
(TRL 9) 

Concept 
qualified (TRL 
8) 

Concept has 
been 
demonstrated 
(TRL 7) 

Proof of 
concept 
validated (TRL 
5 & 6) 

Concept 
defined (TRL 3 
& 4) 

Obsolescence     - Technology is 
the state-of-the-
practice 
- Emerging 
technology 
could compete 
in future 

- Technology 
is stale 
- New and 
better 
technology is 
ready for pilot 
use 

- Technology 
is outdated and 
use should be 
avoided in new 
systems 
- Spare parts 
supply is 
scarce  

 
 

Another attribute of the project may be the risk being employed by adopting a 

certain technology.  Some work has been done to show the negative effects of 

technologies over a long time horizon (Valerdi and Kohl 2004) and frameworks have 

been developed to show how products with short life cycles can affect the overall 

project risk (Smith 2004).  The maturity of the technology or lack thereof, has a 

significant effect on the amount of systems engineering effort required on a project.  

In addition, too mature or obsolete technology can increase the necessary amount of 

systems engineering effort. 

Table 29 Number of Recursive Levels in the Design Definition 

 
 
 
 
 
 
 
 

# of recursive levels in the design 
The number of levels of design related to the system-of-interest (as defined by ISO/IEC 15288) 
and the amount of required SE effort for each level.
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Table 30 Number of Recursive Levels in the Design Rating Scale 
 Very Low Low Nominal High Very High 

Number 
of levels 

1 2 3-5 6-7 >7 

Required 
SE effort 

Focused on 
single 
product 

Some vertical 
and horizontal 
coordination 

More complex 
interdependencies 
coordination, and 
tradeoff analysis 

Very complex 
interdependencies 
coordination, and 
tradeoff analysis 

Extremely 
complex 
interdependencies 
coordination, and 
tradeoff analysis 

 
Larger and more complex systems require more systems engineering effort 

because of the growing number of complexities involved in horizontal and vertical 

requirements negotiation, tradeoff analyses, architecting, interface definition, 

scheduled coordination, risk management, and integration.  In principle, the systems 

engineering effort required for a particular system depends solely on the system-of-

interest included below it in the design hierarchy, as defined in ISO/IEC 15288.  

However, a 2-level system within a 4-level system of systems may have more 

coordination and integration concerns than a standalone 2-level system. 

Table 31 Documentation Match to Life Cycle Needs Definition 

 
 

Table 32 Documentation Match to Life Cycle Needs Rating Scale 
 Very low Low Nominal High Very High 

Formality General goals, 
stories 

Broad guidance, 
flexibility is 
allowed 

Risk-driven 
degree of 
formality 

Partially 
streamlined 
process, largely 
standards-driven 

Rigorous, 
follows strict 
standards 
and 
requirements 

Detail Minimal or no 
specified 
documentation 
and review 
requirements 
relative to life 
cycle needs 

Relaxed 
documentation 
and review 
requirements 
relative to life 
cycle needs 

Risk-driven 
degree of 
formality, 
amount of 
documentation 
and reviews in 
sync and 
consistent with 
life cycle needs 
of the system 

High amounts of 
documentation, 
more rigorous 
relative to life 
cycle needs, 
some revisions 
required 

Extensive 
documentati
on and 
review 
requirements 
relative to 
life cycle 
needs, 
multiple 
revisions 
required 

Documentation match to life cycle needs  
The formality and detail of documentation required to be formally delivered based on the life cycle 
needs of the system. 
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Some system products require large amounts of documentation.  The 

importance and enforcement of this requirement is often related to the type of system 

being developed and the nature of the system’s users, operators, and maintainers.  

Less documentation is needed when the users and operators are expert and stable, 

and the developers become the maintainers.  The importance of this factor, then, is 

based on the match or mismatch of documentation requirements to the life cycle 

needs of the system.  Attempting to save costs via very low or low documentation 

levels will generally incur extra costs during the maintenance portion of the life cycle.  

Poor or missing documentation can also cause additional problems in other stages of 

the life cycle.  This driver includes two dimensions, formality and detail, to represent 

the different aspects of documentation that need to be considered.  A nominal rating 

involves documentation consistent with life cycle needs.  Its degree of formality and 

detail are risk-driven; if it is low risk not to include something, it is not included. 

3.3.3. Operations Factors 

The operations factors refer to the hardware and software environments that a 

system will operate within.  Depending on the system of interest, the platform might 

be an aircraft carrier; an aircraft; an airborne missile; a navigation, guidance, and 

control system; or a level of the computer system’s software infrastructure.  The 

existence of legacy issues may also impact the amount of systems engineering effort 

required to incorporate the new system with existing technologies and cultures.   
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Table 33 Number and Diversity of Installations/Platforms Definition 

 
 
Table 34 Number and Diversity of Installations/Platforms Rating Scale 
 Nominal High Very High Extra High 

Sites/ 
installations 

Single installation 
site or configuration 

2-3 sites or diverse 
installation 
configurations 

4-5 sites or diverse 
installation 
configurations 

>6 sites or diverse 
installation 
configurations 

Operating 
environment 

Existing facility 
meets all known 
environmental 
operating 
requirements 

Moderate 
environmental 
constraints; 
controlled 
environment (i.e., 
A/C, electrical) 

Ruggedized mobile 
land-based 
requirements; some 
information security 
requirements.  
Coordination 
between 1 or 2 
regulatory or cross 
functional agencies 
required. 

Harsh environment 
(space, sea 
airborne) sensitive 
information security 
requirements. 
Coordination 
between 3 or more 
regulatory or cross 
functional agencies 
required. 

<3 types of 
platforms being 
installed and/or 
being phased 
out/replaced 

4-7 types of 
platforms  
being installed 
and/or being phased 
out/replaced 

8-10 types of 
platforms  
being installed 
and/or being phased 
out/replaced 

>10 types of 
platforms being 
installed and/or 
being phased 
out/replaced 

Homogeneous 
platforms 

Compatible 
platforms 

Heterogeneous, but 
compatible 
platforms 

Heterogeneous, 
incompatible 
platforms 

Platforms 

Typically 
networked using a 
single industry 
standard protocol 

Typically 
networked using a 
single industry 
standard protocol 
and multiple 
operating systems 

Typically 
networked using a 
mix of industry 
standard protocols 
and proprietary 
protocols; single 
operating systems 

Typically 
networked using a 
mix of industry 
standard protocols 
and proprietary 
protocols; multiple 
operating systems 

 
A particular system may have significant platform considerations if it has to 

address many installations or configurations, it is required to operate in 

unprecedented environments, or it has to accommodate many heterogeneous 

platforms.  These three viewpoints are represented in the driver rating scale. 

# and diversity of installations/platforms 
The number of different platforms that the system will be hosted and installed on.  The 
complexity in the operating environment (space, sea, land, fixed, mobile, portable, 
information assurance/security, constraints on size weight, and power).  For example, in 
a wireless network it could be the number of unique installation sites and the number of 
and types of fixed clients, mobile clients, and servers.  Number of platforms being 
implemented should be added to the number being phased out (dual count).



 

67 
 
 
 

Table 35 Migration Complexity Definition 

 
 

Table 36 Migration Complexity Rating Scale 
 Nominal High Very High Extra High 

Legacy 
contractor 

Self; legacy system 
is well documented.  
Original team 
largely available 

Self; original 
development team 
not available; most 
documentation 
available 

Different 
contractor; limited 
documentation 

Original contractor 
out of business; no 
documentation 
available 

Effect of 
legacy 

system on 
new system 

Everything is new; 
legacy system is 
completely replaced 
or non-existent 

Migration is 
restricted to 
integration only 

Migration is related 
to integration and 
development 

Migration is related 
to integration, 
development, 
architecture and 
design 

 
 The presence of a legacy system can introduce multiple aspects of effort that 

are related to the contractor of the original system, the number of sites or 

installations, the operating environment, the percent of legacy components that are 

being affected, and the cutover requirements that affect the new system.  If the 

project has no significant legacy system concerns, a Nominal rating is given. 

3.3.4. People Factors 

People factors have a strong influence in determining the amount of effort 

required to develop a system.  These factors are for rating the systems engineering 

team’s vs. individual’s capability and experience and for rating the project’s process 

capability.   

Table 37 Personnel/Team Capability Definition 

 
 

Table 38 Personnel/Team Capability Rating Scale 
Very Low Low Nominal High Very High 

15th percentile 35th percentile 55th percentile 75th percentile 90th percentile 

Personnel/team capability  
Composite intellectual capability of a team of Systems Engineers (compared to the national pool of 
SEs) to analyze complex problems and synthesize solutions. 

Migration complexity  
This cost driver rates the extent to which the legacy system affects the migration complexity, if any.  
Legacy system components, databases, workflows, environments, etc., may affect the new system 
implementation due to new technology introductions, planned upgrades, increased performance, 
business process reengineering, etc. 
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 The team capability driver combines the intellectual horsepower of the team 

members, how much of the workday horsepower is focused on the problems, and the 

extent to which the horsepower is pulling in compatible directions.  It is measured 

with respect to an assumed national or global distribution of team capabilities. 

Table 39 Process Capability Definition 

 
 

Table 40 Process Capability Rating Scale 
  Very Low Low Nominal High Very High Extra High 

A
ss

es
sm

en
t 

R
at

in
g 

Level 0 (if 
continuous 
model) 

Level 1 Level 2 Level 3 Level 4 Level 5 

Pr
oj

ec
t T

ea
m

 B
eh

av
io

ra
l C

ha
ra

ct
er

is
tic

s 

Ad Hoc 
approach to 
process 
performance 

Performed 
SE process, 
activities 
driven only 
by immediate 
contractual 
or customer 
requirements, 
SE focus 
limited 

Managed SE 
process, 
activities 
driven by 
customer and 
stakeholder 
needs in a 
suitable 
manner, SE 
focus is 
requirements 
through 
design, 
project-
centric 
approach – 
not driven by 
organizational 
processes 

Defined SE 
process, 
activities 
driven by 
benefit to 
project, SE 
focus is 
through 
operation, 
process 
approach 
driven by 
organizational 
processes 
tailored for 
the project 

Quantitatively 
Managed SE 
process, 
activities 
driven by SE 
benefit, SE 
focus on all 
phases of the 
life cycle 

Optimizing  
SE process, 
continuous 
improvement, 
activities 
driven by 
system 
engineering 
and 
organizational 
benefit, SE 
focus is 
product life 
cycle & 
strategic 
applications 

SE
M

P 
So

ph
is

tic
at

io
n 

Management 
judgment is 
used 

SEMP is used 
in an ad-hoc 
manner only 
on portions of 
the project that 
require it 

Project uses a 
SEMP with 
some 
customization 

Highly 
customized 
SEMP exists 
and is used 
throughout the 
organization  

The SEMP is 
thorough and 
consistently 
used; 
organizational 
rewards are in 
place for those 
that improve it 

Organization 
develop best 
practices for 
SEMP; all 
aspects of the 
project are 
included in the 
SEMP; 
organizational 
rewards exist 
for those that 
improve it 

 

Process capability  
The consistency and effectiveness of the project team at performing SE processes.  This may be based on 
assessment ratings from a published process model (e.g., CMMI, EIA-731, SE-CMM, ISO/IEC15504).  It 
can alternatively be based on project team behavioral characteristics, if no assessment has been 
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 The procedure for determining a project’s systems engineering process 

capability is organized around the Software Engineering Institute’s Capability 

Maturity Model Integration® (CMMI).  The time period for rating process capability 

is the time the project starts, and should be a reflection of the project only – not of 

the total organization’s maturity level.  There are two methods of rating process 

capability.  The first captures the CMMI® continuous model (CMMI 2002; Shrum 

2000) and the systems engineering maturity model EIA 731 (ANSI/EIA 2002).  The 

second combines the degrees of mastery of each process area as done for the 

software CMM in COCOMO II (Clark 1997; Boehm et al 2000).  Only the first 

method is employed here.  The project team behavioral characteristics are somewhat 

analogous to the CMMI levels and can be used by organizations that do not use 

CMMI ratings.  The final viewpoint captures levels of sophistication of the Systems 

Engineering Management Plan.  The higher the sophistication of this document, the 

higher the systems engineering effort savings because the level of planning 

associated with a SEMP is indicative of well-managed systems engineering 

processes. 

3.3.5. Environment Factors 

 The environment factors capture the sophistication of the systems 

engineering environment in a project.  Coordination and support are the two drivers 

that make up this theme. 

Table 41 Multisite Coordination Definition 

 
 
 

Multisite coordination  
Location of stakeholders, team members, resources, corporate collaboration barriers. 
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Table 42 Multisite Coordination Rating Scale 
 Very Low Low Nominal High Very High Extra High 

C
ol

lo
ca

tio
n 

International, 
severe time 
zone impact 

Multi-city 
and multi-
national, 
considerable 
time zone 
impact 

Multi-city 
or multi-
company, 
some time 
zone effects 

Same city or 
metro area 

Same building 
or complex, 
some co-
located 
stakeholders or 
onsite 
representation 

Fully co-
located 
stakeholders 

C
om

m
un

ic
at

i
on

s 

Some phone, 
mail 

Individual 
phone, FAX 

Narrowband 
e-mail 

Wideband 
electronic 
communication 

Wideband 
electronic 
communication, 
occasional 
video 
conference 

Interactive 
multimedia 

C
or

po
ra

te
 c

ol
la

bo
ra

tio
n 

ba
rr

ie
rs

 

Severe 
export and 
security 
restrictions 

Mild export 
and security 
restrictions 

Some 
contractual 
& 
Intellectual 
property 
constraints 

Some 
collaborative 
tools & 
processes in 
place to 
facilitate or 
overcome, 
mitigate 
barriers 

Widely used 
and accepted 
collaborative 
tools & 
processes in 
place to 
facilitate or 
overcome, 
mitigate 
barriers 

Virtual team 
environment 
fully 
supported by 
interactive, 
collaborative 
tools 
environment 

 
Given the increasing frequency of multisite developments, and indications 

that these developments require a significant amount of coordination, it is important 

to account for their impact on systems engineering.  Determining the rating for this 

driver involves assessing three factors: collocation, communications, and corporate 

collaboration barriers. 

Table 43 Tool Support Definition 

 
 
 

Table 44 Tool Support Rating Scale 
Very low Low Nominal High Very High 

No SE tools Simple SE tools, 
little integration 

Basic SE tools 
moderately 
integrated 
throughout the 
systems 
engineering 
process 

Strong, mature SE 
tools, moderately 
integrated with 
other disciplines 

Strong, mature 
proactive use of 
SE tools 
integrated with 
process, model-
based SE and 
management 
systems 

 

Tool support  
Coverage, integration, and maturity of the tools in the Systems Engineering environment.  
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Systems engineering includes the use of tools that perform simulation, 

modeling, optimization, data analysis, requirements traceability, design 

representation, configuration management, document extraction, etc.  The role of 

tools and integrated support environments have been shown to be influential in 

software system development (Baik 2000).  Similarly, the use of extensive, well-

integrated, mature tool support can improve systems engineering productivity.  The 

effort to tailor such tools to a given project is included in COSYSMO estimates, but 

the effort to develop major new project-specific tools is not.  This effort can be 

adequately covered in COCOMO II or other software cost estimation models. 

Equally important to the model size and cost drivers is the process that was 

used to arrive at the definitions and rating scales.  The next section provides insight 

on the methodology used to develop the current form of COSYSMO and some 

limitations that are associated with the model. 
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4. Methodology 

4.1. Research Design & Data Collection 

The previous sections outlined the need for COSYSMO and outlined the 

details of the individual drivers that affect systems engineering.  The next steps in 

developing a useful model involve (1) the identification of the appropriate research 

designs and approaches; and (2) the correct application of these methods to the 

research question. 

Historically, research in the behavioral sciences goes back to the emergence 

of psychology as a scientific discipline in the 1800’s.  As psychology matured, it 

evolved into a collection of methodologies which included scientific inquiry, 

measurement, and data analysis (Freud 1924).  Branches of psychology emerged and 

provided different analytical techniques which incorporated statistical models and 

experimental techniques (Berne 1964).  Other behavior-oriented fields such as 

sociology have contributed much in the sense of formal research methods and 

research design (Babbie 2004).  The field of education has provided frameworks for 

categorizing different types of research designs, methods, and strategies (Isaac and 

Michael 1997).  In this light, the research approach adopted for this work is a 

combination of field research and quasi-experimental research.  The nature of the 

research question – how to estimate systems engineering – played the major role in 

determining the selection of these approaches. 

Research Design.  The purpose of field research design is to study the 

background, current status, and environmental interactions of a given social unit.  
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The social units of interest are organizations that develop large-scale technology 

enabled systems and the systems engineers that work on them.  The expert data that 

has been collected through the Delphi survey attempts to capture project phenomena 

to help understand the role of systems engineering in an organization.  The strengths 

of this method are that it provides: 

• an in-depth investigation of systems engineering organizations 

• useful anecdotes or examples to illustrate more generalized statistical 

findings 

• observations of real world phenomena and opportunities to incorporate 

them into theory 

The purpose of quasi-experimental research design is to approximate the 

conditions of the true experiment in a setting that does not allow control or 

manipulation of all relevant variables.  The multiple factors that affect the conditions 

can compromise the validity of the design.  Since the desired social unit – the 

systems engineering organization – is influenced by multiple outside forces such as 

corporate culture, customer pressures, financial priorities, employment challenges, 

and technical obstacles, it is nearly impossible to control all of the conditions.  

However, this method is useful because it allows for: 

• investigation of cause-and-effect relationships 

• variance of different type of projects operating under different conditions 

• opportunity to test specific hypotheses 

Combining the strengths of field research and quasi-experimental research 

provides significant benefits because they use different perspectives in the data 
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collection process.  Having the right frame of mind while defining the hypotheses 

and then testing them is also extremely important.  During the development of 

COSYSMO, two different research approaches were adopted: interpretivist and 

positivist.  These two techniques provide fundamentally different approaches at 

gathering data and validating it, but using them at different stages of the research 

process can enable a more complete study (Klein and Myers 1999). 

Research Approach.  The interpretivist approach focuses on the complexity 

of human sense making as the situation emerges.  It enables researchers to learn as 

much as possible about the phenomena being studied and arrive at qualitative 

conclusions as to the most important factors.  The interpretivist approach was used 

when developing the size and cost driver definitions with USC corporate affiliates.  

Through a series of interviews, surveys, and working group meetings the 

identification and definition of the most significant size and cost drivers was 

accomplished.  The three criteria for the interpretivist approach are: 

• Credibility – establishing a match between the constructed realities of 

systems engineering and the respondents or stakeholders 

• Transferability – presenting sufficiently detailed systems engineering cost 

drivers as to enable judgment that these findings can be transferred to 

other contexts 

• Confirmability – Ensuring that the size and cost drivers are grounded in 

systems engineering theory and not just a result of the researcher’s 

imagination 
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Once the systems engineering drivers were defined, there was a shift in the 

research strategy to a positivist approach.  The positivist approach focuses on making 

formal propositions, quantifiable measures of variables, hypothesis testing, and the 

drawing of inferences about a phenomenon from a representative sample to a stated 

population.  The criteria associated with this approach are: 

• Construct validity – establishing the right operational measures for 

systems engineering size and cost 

• Internal validity – establishing causal relationships between the drivers 

and systems engineering effort 

• External validity – establishing the domain to which the systems 

engineering drivers can be generalized 

• Reliability – ensuring that the relationships between the size and cost 

drivers can be repeated with the same results 

These are discussed in more detail in Chapter 5.  The shift from interpretivist 

to positivist is analogous to a qualitative to quantitative shift in research.  While the 

beginning of the model building process required an open mind about the 

relationships between the size and cost drivers to effort, the latter part of the process 

involved testing the hypotheses previously defined and determining their suitability 

to the research questions.  Using both of these approaches increases the chances of 

obtaining interesting findings.   

The two research approaches and two strategies were applied to the same 

methodology used to develop the COCOMO model.  This proven model 

development process is outlined in the book Software Cost Estimation With 
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COCOMO II (Boehm, Abts et al. 2000) and illustrated in Figure 10.  The 

methodology has also been used to create the COCOTS (Abts, Boehm et al. 2001) 

and the COQUALMO (Baik, Boehm et al. 2002) models, among others. 

Analyze Existing
literature

1

2

3

4

5

6

7

Perform
Behavioral Analysis

Identify Relative
Significance

Perform Expert-
Judgement, Delphi
Assessment

Gather Project Data

Determine Bayesian
A-Posteriori Update

Gather more data;
refine model

A-PRIORI MODEL
+

SAMPLING DATA
=

A-POSTERIORI MODEL

 
Figure 10 Seven Step Modeling Methodology 

 
The methodology involves (1) analyzing existing literature for factors that 

affect systems engineering, (2) performing behavioral analyses to determine how the 

project is behaviorally different with respect to activities performed if the parameter 

has a higher versus lower rating, (3) identifying the relative significance of the 

factors on the quantities being estimated, (4) performing the expert-judgment Delphi 

assessment of the model parameters, (5) gathering historical project data and 

determining statistical significance of the various parameters, (6) determining the 

Bayesian posterior set of model parameters, and (7) gathering more data to refine the 

model based on the experiences. 

Steps 2, 4, 5, and 7 employ the field research design because they involve 

interviews, surveys, and refinement of hypotheses.  Steps 3, 6, and 7 employ the 



 

77 
 
 
 

quasi-experimental design because they involve the verification of the hypotheses.  

The interpretivist approach is used in steps 1 and 2 as the research question is 

approached with an open mind and the model is defined.  The positivist approach is 

used in steps 3, 4, 5, 6, and 7 because they involve the validation of the hypotheses.  

The use of these designs and approaches, and their relationship to the seven step 

methodology is summarized in Table 45. 

Table 45 Research Designs and Approaches Used  

in the 7-step Modeling Methodology 
 Step1: 

Analyze 
existing 
literature 

Step 2: 
Perform 
behavioral 
analysis 

Step 3: 
Identify 
relative 
significanc
e 

Step 4: 
Perform 
expert 
judgment; 
Delphi 
assessment 

Step 5: 
Gather 
project 
data 

Step 6: 
Determine 
Bayesian 
A-
Posteriori 
update 

Step 7: 
Gather 
more data; 
refine 
model 

Field research 
design  ●  ● ●  ● 

Quasi-
experimental 
research design 

  ●   ● ● 

Interpretivist 
approach ● ●      

Positivist  
approach   ● ● ● ● ● 

 
USC CSE Corporate Affiliate Program.  Leveraging off the strong 

relationships with industry, a working group of 15 core members was assembled to 

begin the development of the initial version of COSYSMO and identify possible 

sources of data to use for calibration of the model.  Since that time over a dozen 

more CSE affiliate organizations have joined the working group and have 

participated in various working group meetings to refine the model.  A COSYSMO 

e-mail distribution list has been created which contains over 100 subscribers.  This 

distribution list serves as the main communication channel for information pertaining 

to COSYSMO and upcoming working group meetings.  The diverse experience of 

the working group members includes but is not limited to space systems hardware, 
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information technology, radars, satellite ground stations, and military aircraft.  This 

broad scope helps ensure that the model is robust enough to address multiple areas. 

The typical involvement of affiliate companies is twofold.  First, each 

company provides a group of systems engineering experts to rate the model drivers 

through the use of a wideband Delphi survey.  This exercise allows for expert 

judgement to be captured and included in the model.  An additional source of 

expertise has been the members of INCOSE who have provided extensive valuable 

feedback that has greatly improved the model.  Second, the Affiliate companies 

provide historical project data for the COSYSMO calibration to validate the model 

parameters.  This ensures that the Cost Estimating Relationships (CERs) in the 

model are appropriately weighed according to the data received from completed 

projects. 

Need for industry data to calibrate COSYSMO.  Industrial participation in 

the development of COSYSMO is key to the usefulness and relevance of the model.  

Each driver has a corresponding item that can provide the necessary data for the 

calibration.  The initial industry calibration is essential to understanding the model’s 

robustness, establishing initial relationships between parameters and outcomes, and 

determining the validity of drivers.  However, each organization using COSYSMO 

will need to perform a local calibration.  Through the industry calibration, the 

working group can establish the values for various scale factors for each driver.  This 

might not be possible or feasible from a local calibration due to the size of the 

calibration data set and the narrow scope of a single organization’s project database.  

The industry data can also identify elements or features of the model that need 
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refinement.  Obtaining data from multiple sources may also identify new drivers that 

need to be included in future revisions of the model. 

An additional important reason for an industry-level calibration is the 

acceptance of the model for cost estimation by the Defense Contract Audit Agency 

(DCAA). Even though each organization needs to prove the local calibration 

matches the local organization's productivity and trends, the industry calibration 

shows DCAA the model meets the expectations and standards of the Systems 

Engineering industry.  Ensuring that COSYSMO is compatible with these standards 

plays an important role in its widespread acceptance and generalizability. 

Data Collection.  The collection of data itself, steps 4, 5, and 7, can be 

divided into two unique efforts: one focusing on expert data and the other on 

historical project data.  The process used for collecting expert data, the Delphi 

technique (Dalkey 1969) is performed in Step 4.  Developed at The RAND 

Corporation in the late 1940s, it serves as a way of making predictions about future 

events - thus its name, recalling the divinations of the Greek oracle of antiquity, 

located on the southern flank of Mt. Parnassus at Delphi (Ahern, Clouse et al. 2004).  

More recently, the technique has been used as a means of guiding a group of 

informed individuals to a consensus of opinion on some issue.   

Participants are asked to make an assessment regarding the ratings of size and 

cost drivers, individually in a preliminary round, without consulting the other 

participants in the exercise.  The first round results are then collected, tabulated, and 

returned to each participant for a second round, during which the participants are 

again asked to make an assessment regarding the same issue.  The second time 
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around the participants had the knowledge of what the other participants responded 

in the first round.  The second round usually results in a narrowing of the range in 

assessments by the group, pointing to some reasonable middle ground regarding the 

issue of concern.  The original Delphi technique avoided group discussion; but the 

Wideband Delphi technique (Boehm 1981) accommodated group discussion between 

assessment rounds.  Two rounds of the Wideband Delphi survey for COSYSMO 

have been completed.  The results are shown in the next section. 

The second data collection effort involves steps 5 and 7.  One completed 

project with an accurate count of systems engineering hours is considered one data 

point.  These projects have been contributed by CSE Affiliates that wish to have their 

application domains considered in the model.  To date, eleven projects have been 

submitted to the COSYSMO repository for analysis. 

Measurement reliability.  An important experimental issue in field and 

quasi-experimental research designs is that of measurement reliability (Jarvenpaa, 

Dickson et al. 1985).  This refers to the possible errors in measurement due to the 

accuracy of the measurement instrument.  Surveys were used for both the Delphi and 

historical project data.  Careful steps were taken to ensure that the design of the 

survey instrument followed the best practices in questionnaire design (Sudman and 

Bradburn 1982).  Some of these are: 

• Use of closed and open ended questions 

• Knowledge questions to screen out respondents who lack sufficient 

information 

• Consistent measurement scales for all questions of the same type 
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• Variability in polarity of the questions to avoid repetition 

• Efficient use of space on the questionnaire 

• Adequate level of difficulty of questions 

• Easier questions at the beginning; difficult questions at the end 

• Ample time to fill out questionnaire, typically 1 month 

• Questionnaire is as short as possible while still covering the key points 

These questionnaire features help the reliability of the data collection.  One 

aspect outside of the researcher’s control, however, is the administration of the 

questionnaire.  Since these are sent to participants by e-mail there is no way to 

control its administration.  Respondents, listed in Appendix C, complete the 

questionnaire at their own pace and in their own environment. 

The most active organizations are also members of INCOSE and specialize in 

developing systems for military applications.  One of the participants, Raytheon, has 

been extremely involved since the creation of the model and has implemented their 

own version of the model which they call SECOST. 

Lessons Learned.  Through the process of working with these organizations 

and refining the model definitions a number of useful lessons have been learned 

about collecting systems engineering data (Valerdi, Rieff et al. 2004).  These were 

consolidated into eleven key findings as part of an exercise done in conjunction with 

some of the organizations listed in Appendix D.  They include aspects such as scope 

of the model definitions, counting rules, data collection, and safeguarding procedures. 

The research approaches, research designs, and lessons learned have played a 

significant role in the development of COSYSMO.  In order to determine the 
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predictive power of the model it has been validated through the use of statistical 

techniques.  This effort represents step 5 of the seven step modeling methodology 

and is discussed in detail in the next section.  One of the most human-intensive 

portions of this work was obtaining data from aerospace companies.  The principal 

activities associated with the process of obtaining data from companies are illustrated 

in Figure 11.   

 
Figure 11 Data Handshaking 

 
4.2. Threats to Validity & Limitations 

 Two types of threats to validity exist: controllable and uncontrollable.  Great 

care has been taken to make sure COSYSMO is a useful model for systems 

engineering effort.  Experimental design, however, is not perfect.  Many external 

factors can affect the experiment and influence the overall result.  This section 

attempts to identify the most significant threats to the validity of COSYSMO and 

outlines ways in which they were reduced.  Most of these relate to external validity; 

the ability to generalize findings to other settings.  Consequently, a COSYSMO user 
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may ask: To what size or type of systems engineering projects can the model be 

generalized?  The external validity of an experiment can be strengthened by 

describing the population to which the results will apply before the model is used.  If 

a random systems engineering project is selected from a predetermined population 

(i.e, satellite ground stations) and COSYSMO yields an accurate estimate for 

systems engineering then the generalization can be made that systems engineering 

can be estimated with a certain degree of accuracy for satellite ground stations. 

 The data variability that is obtained from the data collection will determine 

how extensively the findings can be applied.  If the model is calibrated from projects 

for military or defense applications, it cannot be claimed that the systems 

engineering CERs will hold true for other types of projects.  The controllable threats 

to validity are: 

1. Construct validity.  The ensemble of size and cost drivers was carefully 

selected and tested to ensure that they were indeed adequate measures of 

systems engineering.  They were also verified with heuristics, previous 

studies, and expert opinion. 

2. Construct reliability.  Counting rules and definitions were developed, with 

industry feedback, to guard against possible multiple interpretations and 

ensure consistent use of the drivers throughout different systems engineering 

domains. 

3. Divergent definitions of Systems Engineering.  An industry-accepted 

standard was adopted (EIA/ANSI 632) to aid in the identification of systems 

engineering activities through a baseline Work Breakdown Structure. 
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4. Experts.  Expert sampling involves the assembling of a sample of persons 

with known or demonstrable experience and expertise in some area.  Often, 

we convene such a sample under the auspices of a "panel of experts."  There 

are actually two reasons one might do expert sampling. First, because it 

would be the best way to elicit the views of persons who have specific 

expertise.  Second, because the expert sampling might be used to provide 

evidence for the validity of another sampling approach.  For instance, the 

systems engineering drivers defined in COSYSMO need to be field tested by 

future users of the model.  A panel of experts with experience and insight into 

systems engineering can examine the definitions and determine their 

appropriateness and validity.  The advantage of doing this is that the drivers 

have significant practical relevance.  The disadvantage is that even the 

experts can be, and often are, wrong.  The responses in the Delphi survey 

came from “experts” in the field of systems engineering but the method used 

to administer the survey (e-mail) did not allow for screening of the survey 

respondents.  To control for this, a set of questions was included at the 

beginning of the survey that asked respondents for their years of experience 

in systems engineering and/or cost estimation.  The purpose of the question 

was to allow for the respondents to self select if they did not feel their 

experience was adequate to respond to the survey. 

 Other threats to validity exist which were identified but uncontrollable 

because they are often outside the range of control of the researcher.  They may be 

the main source of error in the model since their impact is difficult to quantify: 
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1. Noisy data.  Significant effort reporting differences and partial size 

information (i.e., size factor volatility and reuse) introduced some error in the 

data. 

2. Nonresponse bias.  Case study research is limited in its representativeness.  

The sample that is currently being used to calibrate COSYSMO is limited to 

the companies that have shown interest and made it possible to contribute 

systems engineering data or have been able to respond to the Delphi surveys.  

Because of the narrow focus on only a few projects, there is a limitation to 

the model’s generalizability because it only represents the CERs that are 

confirmed by the data set in use.  Attempts have been made to include 

INCOSE and non-INCOSE companies that use systems engineering but only 

aerospace and defense companies affiliated with INCOSE were responsive.  

Moreover, these companies often exhibited a CMMI rating of 3 or higher; 

biasing the results towards high maturity organizations. 

3. Sample Self-selection.  This dissertation involved the collection of data from 

six defense companies and the solicitation of inputs from experts employed at 

these companies which, in some cases, represent heterogeneous cultures due 

to the consolidation of the aerospace industry.  Some of these companies 

have acquired portions of each other.  As a result, a single aerospace 

company may reflect diverse cultural, productivity, and process standards 

inherited from all or portions of heritage companies it has acquired or merged 

with as shown in Table 46. 

Table 46 Consolidation of Aerospace Companies 
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Company Legacy 
BAE Systems4 British Aircraft Corporation, Fairchild Systems, 

General Dynamics Electronics, Lockheed Martin 
Control Systems, Lockheed Martin Aerospace 
Electronics Systems, Marconi, Sanders 

General Dynamics5 Allied-Signal, AT&T, Lucent, Digital System 
Resources, Lockheed Martin Power Control, 
Sylvania, Veridian, Western Electric/Bell Labs 

Lockheed Martin6 Ford Aerospace, General Dynamics, General 
Electric Aerospace, Goodyear Aerospace, Gould 
Electronics, IBM Federal Systems, Lockheed, 
Loral, Martin Marietta, RCA, Vought, Unisys, 
United Space Alliance, Xerox Electro-Optical 
Systems 

Northrop Grumman7 Aerojet, Grumman, Litton, Logicon, Newport 
News Shipbuilding, Northrop, TASC, Teledyne 
Ryan Aeronautical, TRW, Westinghouse 

Raytheon8 E-Systems, Hughes, Texas Instruments 
 

4. Model will not work outside of calibrated range.  The range of operation of 

COSYSMO is solely determined by the data that is used to calibrate it.  Some 

users may attempt to use the model outside of it calibrated range which can 

lead to estimates with serious inaccuracies.  As discussed in the previous 

chapter, no amount of disclaimer from the developer will keep the user from 

using the model to predict outside the region of the data. 

5. Case study research is vulnerable to subjective biases.  A project may be 

selected because of its dramatic, rather than typical, attributes; or because it is 

readily available.  To the extent selective judgments exclude certain projects 

from the data set or assign a high or low value to a driver significance, or 

                                                 
4 http://www.na.baesystems.com 
5 http://www.generaldynamics.com 
6 http://www.lockheedmartin.com 
7 http://www.northropgrumman.com 
8 http://www.raytheon.com 
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place them in one context rather than another, subjective interpretation is 

influencing the outcome.  Moreover, only successful projects are reported for 

inclusion in COSYSMO.  This makes the model biased towards successful 

projects because the unsuccessful projects do not collect or share data and are 

not included in the calibration. 

6. Difficult to identify external variables.  In quasi-experimental research it is 

difficult to identify all non-experimental project variables (i.e., competitive 

pressures, market trends, strategic advantages, etc.) and determine how to 

control or account for them. 

7. Telescoping.  The historical project data collection survey requires the 

respondent to go back in time and investigate the qualitative and quantitative 

parameters of the project.  The quantitative parameters may be found in 

project documentation, if available.  But the qualitative parameters will 

require a systems engineer or program manager to recollect a time frame in 

the past, referred to as telescoping.  This technique has obvious drawbacks 

because individuals may not remember everything that happened in the past 

or they may be formulating their responses from secondary references.  To 

overcome this, the focus is on obtaining historical project data on recently 

completed projects to increase the probability of accurate information and 

knowledgeable personnel with first hand experience. 

8. Group Conformity.  Solomon Asch's most famous experiments set a contest 

between physical and social reality. His subjects judged unambiguous stimuli 

– lines of different lengths – after hearing other opinions offering incorrect 



 

88 
 
 
 

estimates.  Subjects were very upset by the discrepancy between their 

perceptions and those of others and most caved under the pressure to 

conform: only 29% of his subjects refused to join the bogus majority.  In a 

similar way, systems engineers could fall into the same trap and agree with 

incorrect estimates based on what the group thinks is the correct choice. 

 With these threats in mind, a number of limitations also exist.  The 

application domain profile of the application domain of Delphi survey respondents is 

shown in Figure 12.   Nine out of forty (22%) participants who participated in Round 

1 also took part in Round 2.  To control for unfamiliarity of parametric models, 

follow up interviews were held with experts whose responses were outliers to get 

clarification on their answers.  The average years of experience in software or 

systems engineering of survey participants was 18 years and the average years of 

experience in cost modeling was 6 years.  Employees from fourteen different 

organizations participated in the survey but the majority (55%) of the participants 

were employees of Raytheon, Lockheed Martin, and Northrop Grumman.  Proceed 

with caution if either (1) you are not one of the six companies that provided data, (2) 

your systems are outside of the size range for which the model is calibrated, and (3) 

your definition of systems engineering is not compatible with ANSI/EIA 632.  
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Figure 12 Application Domains of Delphi Participants 

  

 As shown in Figure 12 half of the participants selected “Military/defense” or 

“Space Systems” as their application domain which sheds light on the focus of the 

model.  While the initial iteration of COSYSMO will most likely focus on these 

applications of systems engineering it will also provide useful results that other 

industries can compare themselves to. 

 Another important limitation of COSYSMO is its overlap with the well-

known COCOMO II model.  The danger with model overlap is that it can lead to 

unnecessary double-counting of effort because it is expected that systems 

engineering and software engineering are highly coupled in most organizations.    

The COCOMO II estimate of the software effort will surely account for the 

additional effort required by the additional testing; at the same time, the COSYSMO 

effort will account for additional test development and management since the 

systems engineers are required to perform additional validation and verification of 

the system.  Either model can account for this effort based on how users wish to 

allocate the testing activity. Each organization’s unique relationship between these 
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two disciplines needs to be reconciled when using COSYSMO and COCOMO II 

together.  One approach for accomplishing this is to examine the Work Breakdown 

Structures of each discipline. 

 COSYSMO uses the WBS defined in EIA/ANSI 632 while COCOMO II 

uses the one defined in MBASE/RUP.  The two models are more likely to 

demonstrate overlap in effort in the case of software-intensive systems.  Table 47 

shows the activities that could potentially overlap when using both models during an 

effort estimation exercise.  The numbers in the cells represent the typical percentage 

of effort spent on each activity during a certain phase of the software development 

life cycle as defined by COCOMO II.  Each column adds up to 100 percent. 

Table 47 COCOMO II and COSYSMO Overlaps 
 Software Development  Project Stage Inception Elaboration Construction Transition 

Management 14 12 10 14 
Environment/CM 10 8 5 5 
Requirements 38 18 8 4 
Design 19 36 16 4 
Implementation 8 13 34 19 
Assessment 8 10 24 24 
Deployment 3 3 3 30 

 
COCOMO II  
COSYSMO  

COCOMO II/COSYSMO overlap  
 
 The checkered cells indicate the COCOMO II/COSYSMO overlap activities 

that may be double counted when using the models simultaneously.  The gray cells 

indicate the systems engineering activities that are estimated in COSYSMO.  The 

exact amount of effort being double counted will vary for each organization based on 

the way they define systems engineering relative to software engineering.
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5. Results and Next Steps 

5.1. Delphi Results 

A Delphi exercise was conducted to reach group consensus and validate 

initial findings.  The Wideband Delphi technique has been identified as being a 

powerful tool for achieving group consensus on decisions involving unquantifiable 

criteria (Boehm 1981).  It was used it to circulate the initial findings and reach 

consensus on the parametric ratings provided by experts.  The cumulative experience 

of the experts in the second round includes over 200 years of cost estimation and 600 

years of systems engineering.  Part of the Wideband Delphi technique involves face-

to-face meetings to review the results of the previous round and discuss any possible 

changes.  Eleven COSYSMO Wideband Delphi meetings took place between March 

2002 and March 2004. 

Part of the Delphi process involved multiple distributions of the surveys to 

arrive at the values that experts could converge on.  The purpose of the survey was to 

(1) reach consensus from a sample of systems engineering experts, (2) determine the 

distribution of effort across effort categories, (3) validate the drivers of systems 

engineering size, (4) identify the cost drivers which have the most influence on effort, 

and (5) help the refinement of the scope of the model elements.   

Each size driver reflects the range of impact and variation assigned by the 

experts during the refinement exercises.  The group of size drivers includes a 

volatility factor that accounts for the amount of change that is involved in the four 
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factors.  For example, it can be used to adjust the number of requirements should 

they be ill-defined, changing, or unknown at the time the estimate is being 

formulated. 

Delphi Results.  After three Wideband Delphi meetings, COSYSMO was 

refined to reflect what INCOSE and other systems engineering organizations felt the 

most significant size and cost drivers were.  The relative weights for “Easy”, 

“Nominal”, and “Difficult” levels are presented in Table 48. 

Table 48 Relative Weights for Size Drivers from Delphi Round 3 

 Easy Nominal Difficult 
# of System Requirements 0.5 1.0 5 
# of Major Interfaces 1.7 4.3 9.8 
# of Critical Algorithms 3.4 6.5 18.2 
# of Operational Scenarios 9.8 22.8 47.4 

 
The # of Systems Requirements driver was kept as the frame of reference to 

the other three size drivers.  A graphical representation of these results is provided in 

Figure 13. 
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Figure 13 Relative Weights for Size Drivers from Delphi Round 3 
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 One interpretation of the size drivers is that a “Difficult” systems requirement 

requires five times the effort relative to a “Nominal” one.  Additionally, a “Difficult” 

operational scenario, the most influential size driver, requires forty seven times the 

effort of one “Nominal” system requirement, assuming a linear scale factor.  The 

fourteen cost drivers and their respective rating scales are shown in Table 49.  The 

individual values for all the applicable rating levels are provided.  The nominal 

ratings for all the drivers are always 1.0, but the polarity of the ratings depends on 

the definition of the driver. 

Table 49 Rating Scale Values for Cost Drivers from Delphi Round 3 
 Very 

Low Low Nominal High 
Very 
High 

Extra 
High EMR 

Requirements 
Understanding 1.87 1.37 1.00 0.77 0.60  3.12 

Architecture Understanding 1.64 1.28 1.00 0.81 0.65  2.52 
Level of Service 
Requirements 0.62 0.79 1.00 1.36 1.85  2.98 

Migration Complexity   1.00 1.25 1.55 1.93 1.93 
Technology Risk 0.67 0.82 1.00 1.32 1.75  2.61 
Documentation 0.78 0.88 1.00 1.13 1.28  1.64 
# and diversity of 
installations/platforms   1.00 1.23 1.52 1.87 1.87 

# of recursive levels in the 
design 0.76 0.87 1.00 1.21 1.47  1.93 

Stakeholder team cohesion 1.50 1.22 1.00 0.81 0.65  2.31 
Personnel/team capability 1.50 1.22 1.00 0.81 0.65  2.31 
Personnel 
experience/continuity 1.48 1.22 1.00 0.82 0.67  2.21 

Process capability 1.47 1.21 1.00 0.88 0.77 0.68 2.16 
Multisite coordination 1.39 1.18 1.00 0.90 0.80 0.72 1.93 
Tool support 1.39 1.18 1.00 0.85 0.72  1.93 

 
 

For example, the Requirements Understanding driver is worded positively 

since there is an effort savings associated with high or very high understanding of the 

requirements.  This is indicated by multipliers of 0.77 and 0.60, respectively 



 

94 
 
 
 

representing a 23% and 40% savings in effort compared to the nominal case.  

Alternatively, the Technology Risk driver has a cost penalty of 32% for “High” and 

75% for “Very High”.  Not all rating levels apply to all of the drivers.  Again, it is a 

matter of how the drivers are defined.  The Migration Complexity driver, for example, 

only contains ratings at “Nominal” or higher.  The rationale behind this is that the 

more complex the legacy system migration becomes, the more systems engineering 

work will be required.  Not having a legacy system as a concern, however, does not 

translate to a savings in effort.  The absence of a legacy system is the nominal case 

which corresponds to a multiplier of 1.0. 

The cost drivers are compared to each other in terms of their range of 

variability, or Effort Multiplier Ratio.  The EMR column is representative of an 

individual driver’s possible influence on systems engineering effort.  The cost 

drivers are presented in order of EMR value in Figure 14.  The four most influential 

cost drivers are: Requirements Understanding, Level of Service Requirements, 

Technology Risk, and Architecture Understanding.  The least influential, 

Documentation, # of Installations, Tool Support, and # of Recursive Levels in the 

Design were kept because users wanted to have the capability to estimate their 

impacts on systems engineering effort.  The relatively small influence of these four 

drivers does not mean that the model users felt they were insignificant.  Their 

presence gives users the ability to quantify their impact on systems engineering.  

This is what some researchers refer to as the difference between statistical 

significance and practical significance (Isaac and Michael 1997).   
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In the quest for obtain statistically significant findings, relevant factors may 

be overlooked.  Are quality issues and testing issues significant to systems 

engineering?  Is their influence important enough to be practical and included in 

COSYSMO?  Is the data for these drivers important enough to be worth the effort to 

obtain it?  Even when these practical matters are settled, there are valuable 

considerations of social and psychological nature that can override cost driver 

choices based solely on statistical significance.  In fact, debates continue to take 

place regarding the addition of other cost drivers into the model.  These debates 

naturally will go on as more contributors join the COSYSMO development effort.  

For now, the belief is that the most significant drivers have been identified and 

COSYSMO will be easily validated by the drivers’ relationships to systems 

engineering effort.  As shown in Appendix F, no two cost drivers are correlated 

higher than 0.6; validating that a reasonably orthogonal set has been identified. 
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Figure 14 Cost Driver EMRs in Order of Influence from Delphi Round 3 
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5.2. Model Verification 

Much energy has been spent on defining the inputs, outputs, counting rules, 

definitions, and level of detail required for this model.  The adage “A problem well 

defined is a problem half solved” reiterates the importance of clear definitions and 

model scope.  In a general sense, this model has been developed in the same way as 

deliverable and complex systems are, following an iterative systems engineering 

approach. 

The preceding chapters provided a description of the problem and an 

approach.  The next logical step is to shift the focus to model verification.  The 

process of model verification is twofold: first, a series of statistical tests are 

performed.  Second, feedback is obtained from end users to determine the impact of 

the model.  Specifically, step 5 of the model development methodology was 

performed as described in (Baik, Boehm et al. 2002) using the procedure outlined in 

(Chulani, Boehm et al. 1999) on the COSYSMO datapoints.  This section provides 

only the steps that were performed to analyze the data, not the data itself since the 

source data provided by organizations is protected for reasons of industrial security.  

Once data is obtained and a regression model is defined, a number of useful 

diagnostics tests are helpful in validating the regression model (Snee 1977).  These 

include: 

• Comparison of model predictors and coefficients with physical theory 

• Data splitting to obtain an independent measure of the model prediction 

accuracy 

• Outlier/residual analysis 
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 The form of the model follows the Ordinary Least Squared (OLS) criterion 

because it seeks to find a simple linear regression mean function to represent the 

relationship between the 18 systems engineering drivers, the independent variables, 

and systems engineering effort, the dependent variable.  The OLS approach has four 

inherent assumptions (Griffiths, Hill et al. 1993): (1) there is a lot of data available, 

(2) no outliers exist, (3) predictor variables are not correlated, and (4) predictors are 

either all continuous or all discrete.  In an ideal case all of these assumptions would 

be true, but in reality it is difficult to find a dataset with one or more of these 

characteristics.  Steps have been taken to meet these assumptions as much as 

possible without interfering with the systems being studied.  The first assumption 

was addressed by collecting data from 42 projects and 70 experts.  The second 

assumption was not realistic because some projects were indeed outliers and had to 

be removed from the dataset due to the fact that they addressed systems engineering 

size differently than other programs.  The third assumption was reasonably addressed 

which can be seen in Appendix F.  The fourth assumption was met by making all 

predictors continuous. 

5.2.1. Statistical Tests 

COSYSMO can be characterized by a multiple regression model where the 

response is Person Months (PM) and the predictors are the 18 drivers that have an 

influence on systems engineering effort.  This linear function is estimated from the 

data using the ordinary least squares (OLS) approach as defined by (Cook and 

Weisberg 1999).  The multiple regression model can be written in the form: 
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Equation 7  ttxktt xxy εβββ ++++= ...110  

 
 Where xt1…xtk represent the values of the predictor variables for the tth 

observation, kββ ...0  are the coefficients estimated via the OLS regression, tε  is the 

error term, and yt is the response variable for the tth observation.  Based on the 

normalizing transformations needed to express linear relationships in the model, 

logarithmic transformations are applied to the dependent and independent variables 

of the equation yielding: 

 Equation 8
 

)ln(...)ln()ln(...)ln()_ln( 14181544110 EMEMSSHRSSE ⋅++⋅+⋅++⋅+= βββββ  

 
 The assumption of the logarithmic transformation is based on experience of 

inspecting software engineering data from COCOMO II.  Systems engineering data 

should behave in a similar function and require the same transformation to be 

normalized.  Systems Engineering hours, denoted as SE_HRS, was used in order to 

avoid the discrepancy between different Person-Month standards.  The COCOMO 

suite of models use 152 hours per Person Month which can be adjusted depending on 

user preference.  The four size and fourteen cost predictors are listed in Table 50. 
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Table 50 COSYSMO Predictor Descriptions 
Predictor Term Description 

S1 log(REQ) # of System Requirements 

S2 log(INTF) # of Major Interfaces 

S3 log(ALG) # of Critical Algorithms 

S4 log(OPSC) # of Operational Scenarios 

EM1 log(RQMT) Requirements Understanding 

EM2 log(ARCH) Architecture Understanding 

EM3 log(LSVC) Level of Service Requirements 

EM4 log(MIGR) Migration Complexity 

EM5 log(TRSK) Technology Risk 

EM6 log(DOCU) Documentation to match lifecycle needs 

EM7 log(INST) # and diversity of installations/platforms 

EM8 log(RECU) # of recursive levels in the design 

EM9 log(TEAM) Stakeholder Team Cohesion 

EM10 log(PCAP) Personnel/Team Capability 

EM11 log(PEXP) Personnel Experience/Continuity 

EM12 log(PROC) Process Capability 

EM13 log(SITE) Multisite Coordination 

EM14 log(TOOL) Tool Support 

    
Once the data was collected and entered into a repository, the following 

multiple regression diagnostic tests were performed using the Arc software, a freely-

available academic statistics package (Cook and Weisberg 1999): 

• Model significance/F-test.  A series of F-tests were performed to compare 

the full model to it variations.  This procedure compares the difference 

between the Residual Sum of Squares (RSS) of the null hypothesis, or full 

model, and the RSS of the alternative hypothesis, or reduced model.  Also 

considered are the differences between the degrees of freedom of the two 

models and the Mean Square Error (MSE) of the alternative hypothesis.  

This can be represented as: 
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Equation 9 
AH

AHNHAHNH

MSE
dfdfRSSRSS

F
)/()( −−

=  

 
Large values of F provide evidence against the null hypothesis and in 

favor of the alternative hypothesis.  Significance levels for this test can be 

obtained in statistics textbooks (Cook and Weisberg 1999).  The F-values 

for the different models tested are shown in Table 52. 

• Correlation Matrix.  The correlation matrix can serve as an indicator of 

both strong and weak correlations between predictors.  Since the desire is 

to have a model with truly independent and orthogonal predictors, the 

correlations above 0.66 are flagged as being strong and possible 

candidates for elimination.  This criterion was previously used in 

COCOMO II (Chulani, Boehm et al. 1999).  See Appendix F for 

numerical results. 

• Sensitivity analysis.  The introduction of new data points to the model 

were tested for influence on the significance of the model predictors.  The 

t-values and p-values provided information about the influence of 

individual predictors on the mean function.  The t-values are the ratio 

between the estimate and its corresponding standard error, where the 

standard error is the square root of the variance.  It can also be interpreted 

as the signal-to-noise ratio associated with the corresponding predictor 

variable.  Hence, the higher the t-value, the stronger the signal or 

statistical significance of the predictor variable.  Typically, a high t-value 

is approximately 3.0 or 4.0, indicating statistical significance for predictor 
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variables.  The p-values are an indication of evidence that the probability 

of observing a value of the statistic is high or low.  Values less then 0.1 

are an indication of strong predictive influence on the mean function.  

The t-values and p-values for the final model are shown in Appendix H. 

• Stepwise Regression.  Two algorithms widely available in most statistics 

packages, and in this case implemented in Arc, are backward elimination 

and forward elimination.  These are useful in evaluating submodels by 

sequentially adding or removing predictor terms and comparing the 

results.  Stepwise regression algorithms do not guarantee finding optimal 

submodels, although the results obtained in this approach are useful in 

determining candidates for elimination.  This approach was previously 

used in COCOMO II (Baik 2000) and for this data set helped arrive at the 

reduced form of the model.  Forward selection was a better indicator of 

the best arrangement of predictors for COSYSMO because of the 

particular behavior of the data set and small number of degrees of 

freedom. 

5.2.2. Model Parsimony 

As stated earlier, one of the key objectives for COSYSMO is to avoid the use 

of highly redundant parameters as well as factors which make no appreciable 

contribution to the results.  In order to achieve this, four variations of the full model 

were tested to arrive at the final model that met all of the accuracy, parsimony, 

constructiveness, and simplicity objectives previously defined. 
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Full model.  The complete set of parameters described in sections 3.2 and 3.3 

serve as the baseline model.  They are listed again in Table 50 in logarithmic scale.  

Equation 8 can be rewritten as: 

Equation 10 

log[SE_HRS] = log[REQ] + log[INTF] + log[ALG] + log[OPSC] +  
   log[RQMT]  + log[ARCH] + …+ log[TOOL] 

 
 The advantage of starting with a baseline model that contains all of the model 

parameters is that tests for pair wise orthogonality can be performed.  The results of 

this analysis, found in Appendix F, show that no two cost drivers are correlated more 

than 0.66, indicating that they represent a parsimonious set.  Some of the four size 

drivers are correlated as high as 0.64 which was expected since system requirements 

are often related to interfaces, algorithms, and operational scenarios. 

 Reduced model.  To address the issue of correlated size drivers and reduce 

the number of predictors in the model, the four size drivers were combined into a 

single predictor called Size.  Equation 10 can be written as: 

 

Equation 11   

log[SE_HRS] = log[SIZE] + log[RQMT] + log[ARCH] + … + log[TOOL] 
 

It was found that the reduced model containing the Size parameter had a 

higher accuracy than the full model.  In other words, the combination of the size 

drivers had a higher explanatory power together rather than individually.  Combining 

the four size driver into one parameter also increased the degrees of freedom. 

Adjusted model.  The systems engineering hours for the projects reported by 

participants were not provided uniformly.  Only 13 of the 42 projects provided effort 
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for systems engineering activities during the entire development life cycle while the 

rest provided effort for only some of the life cycle phases defined in the model.  As a 

result, 29 of the 42 projects had to be normalized to fit the four phases of the 

development life cycle that were most commonly reported: Conceptualize, Develop, 

OT&E, and Transition to Operation.  The typical distribution of effort across these 

phases was obtained by surveying industry experts familiar with COSYSMO.  These 

results, shown in Table 51, were derived from the more detailed results shown in 

Appendix B.  It should be noted that the standard deviations associated with the 

results are relatively large indicating disagreement between experts on the typical 

distribution of systems engineering effort across the four phases.  Nevertheless, this 

profile of systems engineering effort across the four life cycle phases was useful in 

adjusting the reported effort on projects. 

Table 51 Systems Engineering Effort Distribution % Across ISO/IEC 15288 Phases 
Conceptualize Develop Operational Test & Eval Transition to Operation 

23 35 28 14 
 
 Projects that only reported hours for the development phase, in theory, were 

leaving out 65% of the effort had the project covered the first four life cycle phases.  

As a result, the hours reported were adjusted to add the missing 65% in order to 

normalize the data point. 

 Conceptually, COSYSMO can be used to estimate systems engineering effort 

for the entire life cycle.  This can be done by using a similar approach used in 

COCOMO II which estimates effort as a function of annual change traffic.  Since the 

Operate, Maintain, or Enhance; and Replace or Dismantle phases are often assigned 
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resources by “level of effort” it makes sense to estimate systems engineering 

resources based on how much the system changes once it is fielded.  The four size 

drivers can be tracked in terms of annual change traffic and the cost drivers can be 

reassessed based on the changing conditions of the program. 

 The normalized effort is denoted as SE_HRS_ADJ to reflect the adjustment 

applied to the reported hours.  Equation 11 is therefore rewritten as: 

Equation 12 

log[SE_HRS_ADJ] = log[SIZE] + log[RQMT] + log[ARCH] + … + 
log[TOOL] 

 
The model shown in Equation 12 yielded a better representation of the 

systems engineering hours spent on projects.  The relationship between SIZE and 

SE_HRS_ADJ for the 42 data points is shown in Figure 15.  The 8 data points that 

were removed from the analysis are shown in black while the rest of the projects are 

in hollow circles. 

 
Figure 15 Size Versus Adjusted Systems Engineering Hours 
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 Part of the data analysis included the elimination of points believed to be 

outliers.  The first test for outliers was a measure of productivity, shown in Equation 

13. 

Equation 13 

   PRODUCTIVITY = SIZE/SE_HRS_ADJ 

 

 It was determined that projects above a productivity of 0.14 provided their 

requirements count at a different level of decomposition than the rest of the projects. 

As a result, the productivity for these particular six projects was much higher than 

the rest of the data set; identifying a reduced domain for which a model would be 

more accurate.  The productivities for the 42 projects, with the 6 projects highlighted 

on the far right, are shown in Figure 16. 

 

 

Figure 16 Productivity Histogram for 42 projects 
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In addition to the 6 projects eliminated due to extremely high productivity, 2 

projects were also removed from the calibration domain due to a high degree of 

adjusted effort (more than 30%) across the systems engineering life cycle. 

 

Final Model.  With a smaller number of data points, a smaller number of 

aggregated parameters was considered.  The cost drivers were clustered into groups 

in section 3.3 based on common themes.  These five groups were determined to be 

logical groupings of cost drivers that addressed similar issues dealing with systems 

engineering.  This resulted in the model shown in Equation 14. 

Equation 14 

 log[SE_HRS_ADJ] = log[SIZE] + log[UNDERSTANDING] + 
    log[COMPLEXITY] + log[OPERATIONS] +  
     log[PEOPLE] + log[ENVIRONMENT] 
 
  Where 
   UNDERSTANDING = REQU * ARCH * TEAM * PEXP 
   COMPLEXITY = LSVC * TRSK * RECU * DOCU 
   OPERATIONS = INST * MIGR 
   PEOPLE = PCAP * PROC 
   ENVIRONMENT = SITE * TOOL  
 
 The model in Equation 14 provided additional degrees of freedom and a 

higher F-value.  However, not all six predictors met the p-value criterion of 0.1.  See 

regression results for this model in Appendix H.  Nevertheless, this model was used 

as the final calibrated version because it contained all of the parameters in the model 

in aggregated form. 

Reduced model.  A reduced form of the model was developed which 

includes predictors whose p-values were less than 0.1.  These are shown in Equation 
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15. The use of forward selection was helpful in identifying the best combination of 

parameters from the aggregated model.  However, this model has limited use since it 

includes less than half of the model parameters. 

 

Equation 15 

log[SE_HRS_ADJ] = log[SIZE] + log[COMPLEXITY] + log[PEOPLE] 
 

 Table 52 provides a comparison of model performance for the five 

permutations of COSYSMO. 

Table 52 Comparison of Model Performance 

Model 
iteration 

predictors R-squared Degrees 
of 
freedom 

F-value 

Full model 18 0.64 20 1.98 

Reduced 
Model  

15 0.63 23 2.66 

Adjusted 
model 

15 0.77 23 5.36 

Final model 
(used for 
Bayesian 
calibration) 

6 0.81 27 20.44 

Reduced 
model 

3 0.74 29 29.14 

 

 The most representative model was decided to be the Final model since it had 

a reasonable number of degrees of freedom while offering the ability to derive the 

original size and cost drivers.  Different PRED accuracy levels (Conte et al 1986) 

tested on this version of the model and are shown in Table 53. 
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Table 53 Model Accuracy of Delphi Based Model 

 Accuracy 

PRED(.20) 19% 

PRED(.25) 22% 

PRED(.30) 30% 

 

5.2.3. Bayesian Approximation 

 A Bayesian approximation was performed on the Final model since it 

contains, at least in aggregated form, all of the original parameters in the model.  The 

results yield the final calibrated model which, by updating Equation 2, can be written 

as: 

i

n

i

E
NS EMSizeAPM

1
)(

=
Π⋅⋅=  

A = 38.55 

Size = weights in Table 18 

E   = 1.06 

n = number of cost drivers (14) 

EM = multipliers in Table 19 

Equation 16 Final Bayesian Calibrated Model 

 

 A benefit of using the Bayesian method is that it allowed for expert opinion 

from the Delphi survey to influence the calibration derived from the historical data.  

Negative coefficients are representative of contradictory results and are common 

when limited amounts of data exist (Chulani et al 1999).  The updated weights and 
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ratings scale multipliers from the Bayesian calibration are provided in Table 54 and 

Table 55. 

Table 54 Relative Weights for Size Drivers for Bayesian Calibrated Model 

 Easy Nominal Difficult 
# of System Requirements 0.5 1.0 5 
# of Major Interfaces 1.1 2.8 6.3 
# of Critical Algorithms 2.2 4.1 11.5 
# of Operational Scenarios 6.2 14.4 30 

 

Table 55 Bayesian Calibrated Rating Scale Multipliers 
 

Very Low Low Nominal High 
Very 
High 

Extra 
High EMR 

Requirements 
Understanding 1.85 1.36 1.00 0.77 0.60  3.08 

Architecture 
Understanding 1.62 1.27 1.00 0.81 0.65  2.49 

Level of Service 
Requirements 0.62 0.79 1.00 1.32 1.74  2.81 

Migration Complexity   1.00 1.24 1.54 1.92 1.92 
Technology Risk 0.70 0.84 1.00 1.32 1.74  2.49 
Documentation 0.82 0.91 1.00 1.13 1.28  1.56 
# and diversity of 
installations/platforms   1.00 1.23 1.51 1.86 1.86 

# of recursive levels in 
the design 0.80 0.89 1.00 1.21 1.46  1.83 

Stakeholder team 
cohesion 1.50 1.22 1.00 0.81 0.66  2.27 

Personnel/team 
capability 1.48 1.22 1.00 0.81 0.66  2.28 

Personnel 
experience/continuity 1.46 1.21 1.00 0.82 0.67  2.18 

Process capability 1.46 1.21 1.00 0.88 0.77 0.68 2.15 
Multisite coordination 1.33 1.15 1.00 0.90 0.80 0.72 1.85 
Tool support 1.34 1.16 1.00 0.85 0.73  1.84 

 

 An example estimate using the final calibrated COSYSMO model is provided 

in Appendix E.  The accuracy of the model on the set of 34 projects (6 eliminated 

because of high productivity and 2 eliminated due to small percentage of effort 

reported) is provided in Table 56. 
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Table 56 Model Accuracy of Bayesian Calibrated Model 

 Accuracy 

PRED(.20) 19% 

PRED(.25) 27% 

PRED(.30) 41% 

 

An slight accuracy improvement can be seen from the Delphi-based model in 

Table 53 to the Bayesian calibrated model in Table 56.  In addition, the use of the 

Bayesian calibrated model enabled the elimination of negative coefficient in 

PEOPLE parameter shown in the regression results in Appendix H. 

5.2.4. Stratification by Organization 

Using the final model, a set of local calibrations were done for each 

individual organization to determine the effect on model accuracy.  The results were 

obtainable only for the companies that provided more than four data points. 

Table 57 Model Accuracy by Organization 

Organization N R-squared PRED(30) 

1 10 0.94 70% 

2 7 0.59 43% 

3 10 0.62 50% 

All 27 - 56% 

 

  

 The results in Table 57 validate the model accuracy posed in Hypothesis #4; 

PRED(30) at 50%.  In some cases, the prediction accuracy of the model is improved 
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even further when the organization’s disciplined data collection has uniform 

counting rules that can ensure consistency across programs.  Regardless of the results 

provided by the statistical validation, limitations of the model should be considered 

when the prediction accuracy of the model is determined.  Limitations were provided 

in previous sections as were their implications on model validity. 

 In addition to the rigorous quantitative analysis of the model, a qualitative 

analysis was performed to determine the impact of the model on each organization 

that provided data.  COSYSMO supporters were enthusiastic about the model’s 

influence in the way their organizations thought about systems engineering cost.  Out 

of 8 participants queried, 7 of them responded that COSYSMO greatly improved 

their ability to reason about systems engineering cost.  Example testimonials include: 

• Model helps answer the call for improvement on systems engineering 

revitalization and ensuring adequate SE resources identified in the Young 

Panel report for DoD Space Systems 

• The size and effort drivers will allow the user of the model to best describe 

the project and to perform sensitivity analysis to try to optimize the SE 

application and team aspects of the project 

• COSYSMO answers the ‘CMMI mail’ regarding a key requirement for 

Maturity Level 2: Costing by Attributes ---- specifically, counts of System 

Requirements, System Interfaces, Critical Algorithms, and Operational 

Scenarios as scaled by the environmental (team and application) cost drivers. 
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5.3. Conclusion 

 A new type of systems engineering cost model was presented and validated 

through industry data.  An objectively reduced subset of 42 industry projects from 6 

companies was used to calibrate the model in reduced form which produced a 

PRED(30) accuracy of 50%.  Together with counting rules and driver definitions, the 

model provides a way for systems engineers to reason about their cost decisions and 

presents a new vehicle for managers to approach systems engineering strategy via 

size and cost metrics. 

 Restatement of hypotheses.  The five hypotheses stated in Section 1.3 were 

tested to determine their validity. 

H#1: A combination of the four elements of functional size in COSYSMO 

contributes significantly to the accurate estimation of systems engineering 

effort. 

 The criterion used was a significance level less than or equal to 0.10 which 

translates to a 90% confidence level that these elements are significant.  This 

hypothesis was supported with the reduced form of the model. 

H#2: An ensemble of COSYSMO effort multipliers contribute significantly to 

the accurate estimation of systems engineering. 

 The same significance level of 0.10 was used to test this hypothesis which 

was supported with the reduced form of the model. 

H#3: The value of the COSYSMO exponent, E, which can represent 

economies/diseconomies of scale is greater than 1.0. 
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 For some organizations, the exponent was as low as 0.83 and as high as 1.31, 

as a result this hypothesis was partially supported.  The average value for E was 1.06. 

 H#4: There exists a subset of systems engineering projects for which it is 

possible to create a parametric model that will estimate systems engineering effort at 

a PRED(30) accuracy of 50%. 

 This hypothesis was supported with the subset of projects defined as the 

projects from organizations with more than 4 solid data points with systems 

engineering productivity below 0.14 size units per adjusted SE hours. 

H#5: COSYSMO makes organizations think differently about Systems 

Engineering cost.  

 This hypothesis was strongly supported.  Seven out of eight responded with 

resounding support within the COSYSMO pioneer community as evidenced by the 

testimonials in section 5.2.4; insufficient data elsewhere. 

5.3.1. Contributions to the Field of Systems Engineering 

This work has a number of significant contributions to the field of systems 

engineering.  These contributions have implications for researchers, practitioners, 

and educators. 

1. Development of a parametric Systems Engineering cost model.  Practitioners 

will benefit from the creation of COSYSMO because it is the first cost 

estimation model that provides systems engineering effort estimation.  The 

identification of significant size and cost drivers for systems engineering can 

also serve as a risk management list for projects. 
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2. Systems Engineering Sizing.  The development of counting rules for systems 

engineering using non-software metrics such as lines of code or function 

points is a significant contribution to the field of parametric cost modeling. 

3. Operationalization of cost drivers and rating scales.  The list of 14 cost 

drivers, their definitions, and their Cost Estimating Relationships provide 

useful teaching tools for systems engineering educators.  Results show that 

these cost drivers are independent of each other and are good indicators of 

systems engineering complexity.  A list of the cost drivers in order of 

influence was also generated to help people identify the factors that have the 

largest influence on cost. 

4. SE as an independent discipline.  Organizations such as INCOSE will benefit 

from COSYSMO because it helps justify the value of systems engineering in 

organizations.  Researchers in the area of parametrics can also build from this 

work to develop additional CERs that are independent of software or 

hardware development. 

5. Development of the first systems engineering focused model.  COSYSMO 

can also help efforts currently underway to develop frameworks and theories 

related to systems engineering.  One such example is the Grand Unified 

Theory of Systems Engineering (GUTSE) developed by George Friedman 

(Friedman 2003) which implies the future existence of a reliable cost model 

but currently does not include such a model. 

6. Institutional memory.  The development of COSYSMO has captured over 

500 person years of experience in systems engineering experience from over 
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a dozen heterogeneous organizations.  This baseline model can help 

researchers and educators develop case studies that can further the 

understanding of systems engineering. 

7. Convergence.  Industry experts were orchestrated to determine Delphi 

weights, driver definitions, counting rules, model form, and model scope.  

Convergence on these values demonstrates industry collaboration through the 

facilitation of academic researchers.  

8. Evidence of diseconomy of scale.  Empirical evidence verifies the hypothesis 

that systems engineering effort exhibits a diseconomy of scale. 

9. Systems engineering effort profile.  Through expert opinion, an effort profile 

was developed using the fundamental processes in ANSI/EIA 632 to define 

the model scope and distribute effort estimates across activities. 

 In addition to the practitioners that have benefited from COSYSMO, the 

following educational institutions have incorporated it into their systems engineering 

syllabus: University of California San Diego, George Mason University, Defense 

Acquisition University, and Southern Methodist University. 

5.3.2. Areas for Future Work 

The estimation of systems engineering cost is a complex but much needed 

process.  The acquisition community continues to demand more accurate 

quantification of the SE work that is performed on hardware and software systems.  

In order to realize more sophisticated methods for estimating SE effort, the models 

should be based on empirical data.  Rather than using rules of thumb, models should 

be data-driven.  Instead of having limited relevance only to standard life cycles, they 
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should be more flexible.  Further work is required to make the task of managing SE 

more quantitative. 

This section is divided into two parts to reflect the areas for future work that 

are needed in the short term and the long term.  The short term areas are ones that 

will need to be addressed as extensions of this dissertation work while the long term 

are ones that can provide future opportunities for research in this area. 

The process of developing COSYSMO has produced a number of useful Cost 

Estimating Relationships (CERs) that aid in estimating systems engineering effort.  

These CERs are accompanied by a set of rules that help guide the user in defining 

the scope of COSYSMO and how it relates to their organization.  One of the 

challenges of creating a generalizable model is that it has to be flexible enough to 

work in different application domains.  These domains operate differently by the 

nature of the customers they serve, the systems they build, and the environment in 

which their systems must operate.  COSYSMO constituents represent a diverse set of 

users that represent an additional level of complexity because of their heterogeneous 

nature.  This diversity has introduced the following challenges that need to be 

resolved: 

1. Effects of volatility and reuse.  These effects were deferred because of the 

difficulty in gathering data to calibrate them.  Future work should 

incorporate these relevant parameters into the model. 

2. Requirements counting.  The different levels of requirements decomposition 

that are used by organizations was previously presented.  More specific 

counting rules need to be developed to ensure consistency in this area. 
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3. The SEMP.  Effects of the Systems Engineering Management Plan (SEMP) 

is currently not included in COSYSMO, however, it plays a significant role 

in the effectiveness of systems engineering organizations.  For the time being, 

it has been included as part of the Process Capability cost driver.  Future 

exploration is required to define the best rating scale that captures its 

influence on systems engineering effort. 

4. Drivers with multiple viewpoints.  The consolidation of the model discussed 

in Chapter 8 brought about an overloading of some cost drivers.  This was 

caused by the merging of two or more drivers into one resulting in the 

introduction of multiple viewpoints for some drivers.  Drivers such as 

Technology Risk, Multisite Coordination, Migration Complexity, and # and 

Diversity of Installations & Platforms have two or more aspects of systems 

engineering embedded in their definitions.  These need to be simplified or 

rolled into separate cost drivers. 

5. CMMI & Key Process Areas.  The influence of CMMI as a cornerstone of 

this model was highlighted in section 3.  However, not every organization 

has adopted the CMMI framework in its processes.  As a result, an 

alternative method for measuring the process capability of an organization 

needs to be developed through the use of Key Process Areas (KPAs).  

Moreover, some confusion exists in situations where multiple organizations 

with different levels of maturity are operating under the same contract.  This 

situation is difficult to quantify from the COSYSMO standpoint and needs to 

be resolved. 
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6. Technology Readiness Levels.  Another difficulty in quantifying a cost 

driver occurs when multiple technologies with different maturity levels and 

different time horizons have an effect on the systems engineering 

organization(s). 

7. EIA/ANSI 632 activities.  The menu of EIA/ANSI 632 activities listed in 

Chapter 3 represents an industry standard which is not entirely applicable in 

practice.  Further investigation is needed to determine which systems 

engineering activities in EIA/ANSI 632 are more likely to be performed by 

organizations using COSYSMO.  

8. Compatibility with other models.  The MBASE framework presented 

includes several other product models that are closely related to systems 

engineering.  Software engineering activities estimated by COCOMO and 

system of system software integration activities estimated by COSOSIMO 

need to be clearly delineated to ensure minimal overlap or ways to account 

for their overlap with COSYSMO. 

9. Need more data.  The list of organizations that have contributed data 

provided enough data to calibrate an initial model, but more data is needed in 

order to perform more tests of significance on all the model parameters. 

10. Need more commercial company involvement.  The same list of 

aforementioned organizations indicates a heavy bias toward aerospace and 

military projects.  More commercial companies’ data needs to be obtained 

and incorporated into the model calibration. 
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Long Term Areas.  In order for COSYSMO to be a useful tool for the 

systems engineering community it must be adaptable to a situation of interest.  The 

initial release of the model will have an industry baseline calibration that is 

representative of the CERs and driver definitions at the industry level.  The model 

will be much more useful to individual organizations if it is calibrated for their use.  

This and other adaptations to the model are long term opportunities for future 

research. 

1. COSYSMO Tailoring.  Customizing the model to meet the needs of 

organizations is necessary to maximize the model’s predictive ability.  Local 

calibrations should be done and, if possible, product line calibrations for a 

specific family of products and customer calibrations for particular 

operational environments. 

2. Additional driver definitions.  Part of the customization process may involve 

the development of additional cost or size drivers.  This alternative should 

especially be investigated by commercial companies that participated in the 

initial calibration. 

3. Maintenance model.  The CERs for systems engineering may behave 

differently in the maintenance phase of the project life cycle.  This could 

serve as an opportunity to develop a COSYSMO maintenance model. 

4. Tool comparison matrix.  The development of a tool comparison matrix 

would be of value to enable the selection of the most appropriate cost 

estimating tool for a particular project.  Such a comparison would establish 

uniform definitions and factors that would encompass the breadth of how 
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COCOMO, COSYSMO, and COSOSIMO assess systems engineering.  Such 

a comparison would facilitate identification of areas lacking sufficient detail 

and establish understanding to appropriately quantify systems engineering.  

These findings would suggest common areas of enhancement and 

development for additional research. 

5. Risk Analyzer.  Since COSYSMO provides a single point estimate, it would 

benefit from a risk analysis tool that determines the amount of risk associated 

with a given estimate. 

6. Additional behavioral implications.  The process of effort estimation involves 

unique skills and knowledge about how people work together and how 

organizations interact with each other.  It would be interesting to investigate 

how other types of knowledge can affect the process of cost estimation.  

Some possible areas of investigation are: codified knowledge, Herbert 

Simon’s bounded rationality (what is in and what is out), Eric von Hippel’s 

sticky information (people’s ability to remember things), Eugene Ferguson’s 

idea of the mind’s eye (aesthetic knowledge), and group think. 

 As industry and academia collaborate to develop and validate a tool to more 

accurately forecast SE resources, more opportunities for research are created.  These 

areas could potentially change the way cost estimation models are developed and 

used. 
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Appendix A: ANSI/EIA 632 Activities 
 
Fundamental 

Processes 
Process Categories Activities 

Supply Process (1) Product Supply Acquisition 
and Supply Acquisition Process (2) Product Acquisition, (3) Supplier Performance 

Planning Process (4) Process Implementation Strategy, (5) Technical Effort 
Definition, (6) Schedule and Organization, (7) Technical 
Plans, (8)Work Directives 

Assessment Process (9) Progress Against Plans and Schedules, (10) Progress 
Against Requirements, (11) Technical Reviews 

Technical 
Management 

Control Process (12) Outcomes Management, (13) Information 
Dissemination 

Requirements 
Definition Process 

(14) Acquirer Requirements, (15) Other Stakeholder 
Requirements, (16) System Technical Requirements System 

Design Solution Definition 
Process 

(17) Logical Solution Representations, (18) Physical 
Solution Representations, (19) Specified Requirements 

Implementation Process (20) Implementation Product 
Realization Transition to Use 

Process 
(21) Transition to use 

Systems Analysis 
Process 

(22) Effectiveness Analysis, (23) Tradeoff Analysis, (24) 
Risk Analysis 

Requirements 
Validation Process 

(25) Requirement Statements Validation, (26) Acquirer 
Requirements, (27) Other Stakeholder Requirements, (28) 
System Technical Requirements, (29) Logical Solution 
Representations 

System Verification 
Process 

(30) Design Solution Verification, (31) End Product 
Verification, (32) Enabling Product Readiness 

Technical 
Evaluation 

End Products 
Validation Process 

(33) End products validation 



 

127 
 
 
 

Appendix B: Systems Engineering Effort Profile 
 
 

EIA 632 Fundamental Process Average Standard  
Deviation 

Acquisition & Supply 7% 3.5 
Technical Management 17% 4.5 
System Design 30% 6.1 
Product Realization 15% 8.7 
Technical Evaluation 31% 8.7 

 
 
 
 

Conceptualize Develop 
Operational 
Test 
& Eval. 

Transition  
to  
Operation 

Operate, 
Maintain, or 
Enhance  

Replace or 
Dismantle 

Acquisition 
and Supply 28 (12.3) 51 (18.6) 13 (11.3) 8 (5.0)   

Technical 
Management 22 (10.0) 38 (9.9) 25 (7.4) 15 (6.4)   

System 
Design 34 (12.4) 40 (19.4) 17 (9.6) 9 (6.2)   

Product 
Realization 13 (14.1) 30 (24.3) 32 (16.0) 25 (20.4)   

Technical 
Evaluation 18 (11.4) 27 (11.0) 40 (17.7) 15 (8.5)   

 
In each cell: Average (Standard Deviation) 
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Appendix C: List of Industry participants 
 
Aerospace Corporation Lockheed Martin SAIC 
Abe Santiago James Evans Michael McBride 
Marilee Wheaton Carl Newman Tony Jordano 
Paul Mohlman Rocky Hudson Don Greenlee 
Anh Tu Garry Roedler Robert Kaufman 
Susan Ruth Gary Hafen Ali Nikolai 
Paul Stelling David Lindstrom Phill Rowell 
Darryl Webb Jeffrey Shupp Charles Zumba 
Pat Maloney Craig Hayenga Dick Stutzke 
Karen Owens Greg Kaszuba  
James Horejsi Keith Young Softstar Systems 
Harlan Bittner Rick Edison Dan Ligett 
 Paul Robitaille  
BAE Systems George Walther SSCI 
Jim Cain Trish Persson Chris Miller 
Donovan Dockery Bob Beckley Sarah Sheard 
Merrill Palmer John Gaffney Jim Armstrong 
Gan Wang   
 Northrop Grumman UC Irvine 
Boeing Linda Brooks Arnie Goodman 
Maurie Hartman Steven Wong  
Scott Jackson Albert Cox US ARMY 
 Gregory DiBenedetto Cheryl Jones 
Galorath Jim VanGaasbeek  
Denton Tarbet   
Evin Stump Raytheon  
 Gary Thomas  
General Dynamics John Rieff  
Paul Frenz Deke Dunlap  
Fran Marzotto Randy Case  
Sheri Molineaux John McDonald  
 Bob Vojtech  
Honourcode Larry Kleckner  
Eric Honour Greg Cahill  
 Deke Dunlap  
 Ron Townsend  
 Stan Parson  
 Michael Ernstoff  
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Appendix D: List of Data Sources 
 
 
Raytheon Intelligence & Information Systems  

(Garland, TX) 
Northrop Grumman Mission Systems  

(Redondo Beach, CA) 
Lockheed Martin Transportation & Security Solutions  

(Rockville, MD) 
 
Integrated Systems & Solutions  
(Valley Forge, PA) 
 
Systems Integration  
(Owego, NY) 
 
Aeronautics  
(Marietta, GA) 
 
Maritime Systems & Sensors  
(Manassas, VA;  Baltimore, MD; Syracuse, NY) 

General Dynamics Maritime Digital Systems/ 
Advanced Information Systems  
(Pittsfield, MA) 
 
Surveillance & Reconnaissance Systems/ 
Advanced Information Systems 
(Bloomington, MN) 

BAE Systems National Security Solutions/ 
Integrated Solutions Sector 
(San Diego, CA) 
 
Information & Electronic Warfare Systems  
(Nashua, NH) 

SAIC Army Transformation  
(Orlando, FL) 
 
Integrated Data Solutions & Analysis  
(McLean, VA) 
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Appendix E: Example Estimate Using COSYSMO 
 Example of the model estimate.  The Bayesian calibrated version of the 
model can be used to estimate systems engineering effort.  

COSYSMO

Size
Drivers

Effort
Multipliers

36 Person 
Months of 
systems
engineering
effort

Calibration

100 easy, 50 
nominal, 75 
difficult 
requirements
2 easy, 3 difficult 
interfaces
4 easy algorithms
5 nominal 
operational 
scenarios

High requirements und
High tech risk
High process capability

 
 
 For the given size parameters and three effort multipliers the estimate for 
systems engineering effort is 192 person months.  After a COSYSMO estimate is 
performed it must go through the common sense test.  Does a system with that many 
requirements, interfaces, algorithms, operational scenarios; and an organization with 
high requirements understanding and high process capability; and a product with 
high technology risk warrant 36 person months of systems engineering?  If this does 
not make sense, then one or both of the following two alternatives must be exercised.  
First, the technical parameters may need to be adjusted to better reflect the system 
characteristics.  Second, the model calibration factor, size driver weights, and cost 
driver ratings must be adjusted to reflect that organization’s productivity. 
 
The person month estimate provided by COSYSMO should be taken into perspective 
relative to the project dynamics that are present.  Costs estimates generally fall into 
three different areas: 
 

1. Could Cost: The lowest reasonable cost estimate involved in fulfilling the 
essential systems engineering functions. 

2. Should Cost: The most likely cost involved in providing the systems 
engineering deliverables to bring a system into a condition of operational 
readiness. 

3. Would cost: The highest cost estimated for the systems engineering effort that 
might have to be performed in order to bring a system into a condition of 
operational readiness if significant difficulties arise. 

 
These categories, originally provided by (Sage 1992) have been modified to fit 
this circumstance.  What the user is interested in is neither of these, rather, the 
Will Cost is the desired result. 

192 
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Appendix F: Cost Driver Correlation Matrix 
 
 
REQ   1.0000  
INTF  0.5265  1.0000   
ALG   0.5141  0.8456  1.0000   
OPSC  0.4903  0.2561  0.0655  1.0000  
RQMT  0.1283  0.2982  0.3226 -0.0635  1.0000   
ARCH  0.1980  0.3288  0.3700 -0.2212  0.4903  1.0000  
LSVC -0.1476 -0.0875 -0.1776  0.0323  0.1697 -0.0055  1.0000  
MIGR  0.4756  0.4400  0.4987 -0.0890  0.0369  0.1836 -0.0967  1.0000   
TRSK -0.0123 -0.0433  0.0068 -0.1279 -0.3210  0.0503 -0.1946  0.2932  1.0000 
DOCU  0.1177  0.3480  0.2148  0.1774  0.5145  0.1937  0.2437 -0.0370 -0.3781 
INST  0.2446  0.3289  0.3275  0.0914  0.4816  0.0886 -0.0967  0.0931 -0.3534 
RECU  0.3126  0.2916  0.0163  0.2199  0.0978 -0.0119  0.1256 -0.0224 -0.4047 
TEAM -0.0423  0.0519  0.0464  0.1121  0.2470  0.1283 -0.2207 -0.2857 -0.0372 
PCAP -0.0399 -0.0801 -0.0490 -0.2764  0.4110  0.2430 -0.2874  0.0007 -0.0989 
PEXP  0.2582  0.2313  0.2935 -0.0880  0.1273  0.2899 -0.0979  0.4698  0.4012 
PROC -0.0915 -0.0147 -0.1761  0.1627 -0.0804 -0.2814  0.0872 -0.0502 -0.2486 
SITE  0.1896  0.3078  0.2076  0.0715  0.3475  0.1806 -0.0660 -0.0010 -0.1088 
TOOL -0.1709 -0.1145 -0.0021 -0.2644  0.2775  0.2287 -0.1376  0.0180 -0.2076 
         REQ    INTF     ALG    OPSC    RQMT    ARCH    LSVC    MIGR    TRSK 
 
 
 
 
DOCU  1.0000  
INST  0.5338  1.0000   
RECU  0.5162  0.3109  1.0000  
TEAM -0.1476 -0.0064 -0.2477  1.0000   
PCAP -0.0899  0.1028  0.0533  0.3073  1.0000   
PEXP -0.2354 -0.2403 -0.0771  0.0706  0.3159  1.0000  
PROC  0.0521 -0.1205  0.2254  0.0044 -0.3552 -0.1893  1.0000   
SITE  0.2878  0.3034  0.1877  0.2034 -0.1179  0.0132  0.3818  1.0000   
TOOL -0.0805  0.1631 -0.1848  0.1483  0.1544 -0.0455  0.0905  0.2417  1.0000 
        DOCU    INST    RECU    TEAM    PCAP    PEXP    PROC    SITE    TOOL 
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Appendix G: Cost Driver Distributions 
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Appendix H: Regression Results for Final Model 
 
Data set = COSYSMO, Name of Fit = L1 
Deleted cases are 
(8) 
Normal Regression 
Kernel mean function = Identity 
Response      = log[SE_HRS_ADJ] 
Terms         = (log[SIZE] log[_3COMPLEXITY] log[_3ENVIRONMENT] 
log[_3OPERATIONS] log[_3PEOPLE] log[_3UNDERSTANDING]) 
Coefficient Estimates 
Label            Estimate        Std. Error    t-value    p-value 
Constant         3.65195         0.740909        4.929     0.0000 
log[SIZE]        0.820202        0.108061        7.590     0.0000 
log[_3COMPLEXITY]0.584024        0.470309        1.242     0.2250 
log[_3ENVIRONMENT]0.400851       0.704392        0.569     0.5740 
log[_3OPERATIONS]0.956473        0.629541        1.519     0.1403 
log[_3PEOPLE]    -2.13820        0.809700       -2.641     0.0136 
log[_3UNDERSTANDING]0.0301342    0.269532        0.112     0.9118 
 
R Squared:               0.819548     
Sigma hat:               0.695759     
Number of cases:              42 
Number of cases used:         34 
Degrees of freedom:           27 
 
Summary Analysis of Variance Table 
Source         df       SS            MS           F    p-value 
Regression      6     59.36       9.89333      20.44    0.0000 
Residual       27   13.0702      0.484081   
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