

THE CONSTRUCTIVE SYSTEMS ENGINEERING COST MODEL (COSYSMO)

by

Ricardo Valerdi

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the

Requirements for the Degree
DOCTOR OF PHILOSOPHY

(INDUSTRIAL AND SYSTEMS ENGINEERING)

August 2005

Copyright 2005 Ricardo Valerdi

ii

DEDICATION

This dissertation is dedicated to my mother and father,
Lucía and Jorge.

iii

ACKNOWLEDGEMENTS

 If I have been able to see further than others, it is because I have stood on the

shoulders of giants.

 Sir Isaac Newton

No intellectual achievement occurs in a vacuum. All new creativity builds on the

efforts that have gone before. Like Newton, I have been able to stand on the shoulders of

extremely talented people. I am forever in debt to these giants which have contributed

intellectual ingredients to this work. First, my family for providing a strong foundation.

Second, my academic advisors and colleagues for exposing me to the world of

engineering. And third, the organizations that supported this research through funding,

expertise, and data.

My mother, Lucia, for teaching me values that have helped me become a member

of society and my father for teaching me how to use those values to make a contribution.

To my fiancée Briana for her unconditional support and unending patience.

The ideas presented here exist as a result of the trailblazing vision and persistence

of my advisor, Dr. Barry W. Boehm. Unconditional intellectual support was provided by

Dr. Stan Settles, Dr. George Friedman, Dr. Ann Majchrzak, Dr. Elliot Axelband, Dr. Bert

Steece and Don Reifer.

iv

The realization of this model exists because of the tremendous support of the

Center for Software Engineering corporate affiliates. Specifically, Gary Thomas from

Raytheon whose development of myCOSYSMO served as a catalyst for the acceptance of

the model among practitioner circles. Special thanks to Merrill Palmer, John Gaffney,

and Dan Ligett for thoroughly reviewing this manuscript. Others providing intellectual

support are listed in Appendix C.

I am grateful for the support of Marilee Wheaton and Pat Maloney from The

Aerospace Corporation. Additional support was provided by the Air Force Space and

Missile Systems Center, Office of the Chief Engineer. This research has also received

visibility and endorsement from: the International Council on Systems Engineering

(Corporate Advisory Board, Measurement Working Group, and Systems Engineering

Center of Excellence); Southern California Chapter of the International Society of

Parametric Analysts; Practical Software & Systems Measurement; and the Space Systems

Cost Analysis Group.

v

TABLE OF CONTENTS

DEDICATION.. ii

ACKNOWLEDGEMENTS... iii

LIST OF TABLES.. vii

LIST OF FIGURES .. x

ABREVIATIONS.. xi

ABSTRACT... xiii

1. Introduction... 1

1.1. Motivation for a Systems Engineering Cost Model.. 1
1.1.1. Fundamentals of Systems Engineering... 2

1.1.2. Comparison Between COCOMO II and COSYSMO................................. 5
1.1.3. COSYSMO Objectives ... 7

1.2. Systems Engineering and Industry Standards... 9
1.3. Proposition and Hypotheses.. 14

2. Background and Related Work... 17

2.1. State of the Practice .. 17
2.2. COSYSMO Lineage ... 22
2.3. Overview of Systems Engineering Estimation Methods 23

3. Model Definition... 28

3.1. COSYSMO Derivation ... 28
3.1.1. Evolution... 28
3.1.2. Model Form .. 31

3.2. Systems Engineering Size Drivers.. 38
3.2.1. Number of System Requirements ... 42
3.2.2. Number of System Interfaces.. 48
3.2.3. Number of Algorithms.. 50
3.2.4. Number of Operational Scenarios... 54

3.3. Systems Engineering Cost Drivers ... 56
3.3.1. Understanding Factors .. 58
3.3.2. Complexity Factors... 61
3.3.3. Operations Factors .. 65
3.3.4. People Factors... 67
3.3.5. Environment Factors... 69

vi

4. Methodology... 72
4.1. Research Design & Data Collection ... 72
4.2. Threats to Validity & Limitations... 82

5. Results and Next Steps.. 91
5.1. Delphi Results... 91

5.2. Model Verification.. 96
5.2.1. Statistical Tests ... 97
5.2.2. Model Parsimony .. 101
5.2.3. Bayesian Approximation .. 108
5.2.4. Stratification by Organization... 110

5.3. Conclusion .. 112
5.3.1. Contributions to the Field of Systems Engineering 113
5.3.2. Areas for Future Work .. 115

Appendix A: ANSI/EIA 632 Activities .. 126

Appendix B: Systems Engineering Effort Profile... 127

Appendix C: List of Industry participants .. 128

Appendix D: List of Data Sources .. 129

Appendix E: Example Estimate Using COSYSMO ... 130

Appendix F: Cost Driver Correlation Matrix.. 131

Appendix G: Cost Driver Distributions .. 132

Appendix H: Regression Results for Final Model.. 137

vii

LIST OF TABLES

Table 1 Collection of Definitions of Systems Engineering .. 3

Table 2 Differences between COCOMO II and COSYSMO ... 6

Table 3 Notable Systems Engineering Standards ... 9

Table 4 Cost Models With Systems Engineering Components .. 19

Table 5 Size Drivers and Corresponding Data Items.. 39

Table 6 Adjustment Factors for Size Drivers ... 42

Table 7 Number of System Requirements Definition... 43

Table 8 Number of System Requirements Rating Scale... 43

Table 9 Number of System Interfaces Definition ... 48

Table 10 Number of System Interfaces Rating Scale ... 49

Table 11 Number of System-Specific Algorithms Definition .. 50

Table 12 Number of System-Specific Algorithms Rating Scale 50

Table 13 Candidate Entities and Attributes for Algorithms ... 51

Table 14 Number of Operational Scenarios Definition .. 54

Table 15 Number of Operational Scenarios Rating Scale .. 54

Table 16 Cost Drivers and Corresponding Data Items ... 56

Table 17 Requirements Understanding Definition ... 59

Table 18 Requirements Understanding Rating Scale ... 59

Table 19 Architecture Understanding Definition ... 59

Table 20 Architecture Understanding Rating Scale.. 59

Table 21 Stakeholder Team Cohesion Definition... 60

viii

Table 22 Stakeholder Team Cohesion Rating Scale... 60

Table 23 Personnel Experience/Continuity Definition ... 61

Table 24 Personnel Experience/Continuity Rating Scale ... 61

Table 25 Level of Service Requirements Definitions... 61

Table 26 Level of Service Requirements Rating Scale .. 62

Table 27 Technology Risk Definition... 62

Table 28 Technology Risk Rating Scale... 63

Table 29 Number of Recursive Levels in the Design Definition...................................... 63

Table 30 Number of Recursive Levels in the Design Rating Scale.................................. 64

Table 31 Documentation Match to Life Cycle Needs Definition 64

Table 32 Documentation Match to Life Cycle Needs Rating Scale 64

Table 33 Number and Diversity of Installations/Platforms Definition............................. 66

Table 34 Number and Diversity of Installations/Platforms Rating Scale......................... 66

Table 35 Migration Complexity Definition .. 67

Table 36 Migration Complexity Rating Scale .. 67

Table 37 Personnel/Team Capability Definition .. 67

Table 38 Personnel/Team Capability Rating Scale .. 67

Table 39 Process Capability Definition .. 68

Table 40 Process Capability Rating Scale .. 68

Table 41 Multisite Coordination Definition ... 69

Table 42 Multisite Coordination Rating Scale.. 70

Table 43 Tool Support Definition... 70

ix

Table 44 Tool Support Rating Scale... 70

Table 45 Research Designs and Approaches Used... 77

Table 46 Consolidation of Aerospace Companies.. 85

Table 47 COCOMO II and COSYSMO Overlaps.. 90

Table 48 Relative Weights for Size Drivers from Delphi Round 3.................................. 92

Table 49 Rating Scale Values for Cost Drivers from Delphi Round 3............................. 93

Table 50 COSYSMO Predictor Descriptions ... 99

Table 51 Systems Engineering Effort Distribution % Across ISO/IEC 15288 Phases .. 103

Table 52 Comparison of Model Performance... 107

Table 53 Model Accuracy of Delphi Based Model .. 108

Table 54 Relative Weights for Size Drivers for Bayesian Calibrated Model................. 109

Table 55 Bayesian Calibrated Rating Scale Multipliers ... 109

Table 56 Model Accuracy of Bayesian Calibrated Model.. 110

Table 57 Model Accuracy by Organization.. 110

x

LIST OF FIGURES

Figure 1 COSYSMO System Life Cycle Phases .. 11

Figure 2 Model Life Cycle Phases Compared .. 21

Figure 3 Notional Relationships Between Operational Scenarios.................................... 35

Figure 4 Examples of Diseconomies of Scale .. 37

Figure 5 Notional Example of Requirements Translation from Customer to Contractor. 44

Figure 6 Cockburn’s Hierarchy as Related to COSYSMO Use Case Levels................... 48

Figure 7 Effort Decomposition Associated With an Algorithm 52

Figure 8 Operational Scenario Example ... 55

Figure 9 Cost Driver Clustering.. 58

Figure 10 Seven Step Modeling Methodology ... 76

Figure 11 Data Handshaking .. 82

Figure 12 Application Domains of Delphi Participants.. 89

Figure 13 Relative Weights for Size Drivers from Delphi Round 3................................. 92

Figure 14 Cost Driver EMRs in Order of Influence from Delphi Round 3...................... 95

Figure 15 Size Versus Adjusted Systems Engineering Hours .. 104

Figure 16 Productivity Histogram for 42 projects .. 105

xi

ABREVIATIONS

ANSI American National Standards Institute
C4ISR Command Control Communications Computer Intelligence

Surveillance Reconnaissance
CER Cost Estimation Relationship
CM Configuration Management
CMM Capability Maturity Model
CMMI Capability Maturity Model Integration
COCOMO II Constructive Cost Model version II
COCOTS Constructive Commercial-off-the-shelf Model
COPROMO Constructive Productivity Model
COPSEMO Constructive Phased Schedule Estimation Model
COQUALMO Constructive Quality Model
CORADMO Constructive Rapid Application Development Model
COSOSIMO Constructive System-of-systems Cost Model
COSYSMO Constructive Systems Engineering Cost Model
CSE Center for Software Engineering
CSER Conference on Systems Engineering Research
DCAA Defense Contract Audit Agency
DF Degrees of Freedom
DoD Department of Defense
EIA Electronic Industries Alliance
EM Effort Multiplier
EMR Effort Multiplier Ratio
GAO Government Accountability Office
GUTSE Grand Unified Theory of Systems Engineering
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IKIWISI I’ll Know It When I See It
INCOSE International Council on Systems Engineering
IP Information Processing
ISO International Organization for Standardization
KPA Key Process Area
KPP Key Performance Parameter
KSLOC Thousands of Software Lines of Code
MBASE Model Based System Architecting and Software Engineering
MIL-STD Military Standard
MITRE MIT Research Corporation
MMRE Mean Magnitude of Relative Error
MSE Mean Square Error
OLS Ordinary Least Squares
OTS Off The Shelf
PM Person Month

xii

PRED Prediction level
PRICE Parametric Review of Information for Costing and Evaluation
RSERFT Raytheon Systems Engineering Resource Forecasting Tool
RSS Residual Sum of Squares
RUP Rational Unified Process
SE Systems Engineering
SEER System Evaluation and Estimation of Resources
SEMP Systems Engineering Management Plan
SMC Space and Missile Systems Center
SoS System-of-systems
SSCM Small Satellite Cost Model
SW Software
TPM Technical Performance Measure
TRL Technology Readiness Level
USCM Unmanned Satellite Cost Model
WBS Work Breakdown Structure

xiii

ABSTRACT

As organizations develop more complex systems, increased emphasis is being

placed on Systems Engineering (SE) to ensure that cost, schedule, and performance

targets are met. Correspondingly, the failure to adequately plan and fund the systems

engineering effort appears to have contributed to a number of cost overruns and schedule

slips, especially in the development of complex aerospace systems. This has resulted in a

recent increased emphasis on revitalizing systems engineering in government and

commercial organizations.

This dissertation presents a parametric model that can help people reason about

their decisions related to systems engineering. COSYSMO, the Constructive Systems

Engineering Cost Model, is an “open” model that contains eighteen parameters: four size

drivers and fourteen effort multipliers. It is built on a framework similar to its well-

known predecessor, COCOMO II, and integrates accepted systems engineering standards

to define its scope.

Funded by industry affiliates, the model focuses on large-scale systems for

military applications that employ a disciplined approach to systems engineering. Data

was collected from six aerospace companies in the form of expert opinion and historical

project data to define and calibrate the model. In reduced form, the model yields a

PRED(30) of 50% for programs within a defined productivity range. In principle, the

model should apply similarly to commercial systems engineering, but there is a lack of

data to test this hypothesis.

xiv

The ultimate contributions of this dissertation can be found in at least two major

areas: (a) in the theoretical and methodological domain of systems modeling in the quest

of a more quantitative cost estimation framework, and (b) in advancing the state of

practice in the assessment and tracking of systems engineering in the development of

large aerospace systems.

1

1. Introduction

1.1. Motivation for a Systems Engineering Cost Model

It is clear that we have been living in the Systems Age for some time as

evidenced by the role of technologically enabled systems in our every day lives.

Most of our every day functions are dependent on, or enabled by, large scale man

made systems that provide useful technological capabilities. The advent of these

systems has created the need for systems thinking and ultimately systems

engineering.

The function of systems engineering – coupled with the other traditional

disciplines such as electrical engineering, mechanical engineering, or civil

engineering – enables the creation and implementation of systems of unprecedented

size and complexity. However, these disciplines differ in the way they create value.

Traditional engineering disciplines are value-neutral; the laws of physics control the

outcome of electronics, mechanics, and structures. Tangible products serve as

evidence of the contribution that is easily quantifiable. Systems engineering has a

different paradigm in that its intellectual output is often intangible and more difficult

to quantify. Common work artifacts such as requirements, architecting, design,

verification, and validation are not readily noticed. For this reason, systems

engineering is better suited for value-based approach artifacts where value

considerations are integrated with systems engineering principles and practices. The

link between systems engineering artifacts to cost and schedule is recognized but

2

currently not well understood. This leads to the principal research question

addressed in this dissertation:

How much systems engineering effort, in terms of person months, should be

allocated for the successful conceptualization, development, and testing of

large-scale systems?

The model presented in this dissertation, COSYSMO, helps address this issue using

a value-based approach.

1.1.1. Fundamentals of Systems Engineering

Systems engineering is concerned with creating and executing an

interdisciplinary process to ensure that the customer and stakeholder needs are

satisfied in a high quality, trustworthy, cost efficient and schedule compliant manner

throughout a system's entire life cycle. Part of the complexity in understanding the

cost involved with systems engineering is due to the diversity of definitions used by

different systems engineers and the unique ways in which systems engineering is

used in practice. The premier systems engineering society, INCOSE, has long

debated the definition of systems engineering and only recently converged on the

following:

Systems Engineering is an interdisciplinary approach and means to enable
the realization of successful systems. It focuses on defining customer needs
and required functionality early in the development cycle, documenting
requirements, then proceeding with design synthesis and system validation
while considering the complete problem.

 Experts have provided their own definitions of systems engineering as shown

in Table 1.

3

Table 1 Collection of Definitions of Systems Engineering

Source Definition
Simon Ramo
(Jackson 2002)

A branch of engineering that concentrates on the design and
application of the whole as distinct from the parts…looking
at a problem in its entirety, taking into account all the facets
and all the variables and relating the social to the technical
aspects.

George Friedman
(Jackson 2002)

That engineering discipline governing the design,
evaluation, and management of a complex set of interacting
components to achieve a given purpose [function].

Andrew Sage
(Sage 1992)

Systems engineering involves the application of a general set
of guidelines and methods useful for assisting clients in the
resolution of issues and problems [system definition] which
are often large scale and scope. Three fundamental steps
may be distinguished: (a) problem or issue formulation
[requirements], (b) problem or issue analysis [synthesis]
and (c) interpretation of analysis results [verification].

Ben Blanchard and
Wolter Fabrycky,
(Blanchard and
Fabrycky 1998)

The application of efforts necessary to (1) transform an
operational need into a description of system performance
[requirements] (2) integrate technical parameters and
assure compatibility of all physical, functional and program
interfaces in a manner that optimizes [or balances] the total
system definition and design [synthesis] and (3) integrate
performance, producibility, reliability, maintainability,
manability [human operability], supportability and other
specialties into the total engineering effort.

Each of these definitions are appropriate for different situations. Each of

them contains a different perspective that is representative of the application of the

principles of systems engineering. These definitions also highlight the broad

applicability of systems engineering across domains. Defining systems engineering

is the first step in understanding it. Managing it, however, requires a deeper

understanding of the cost and tradeoffs associated with it.

A constituency of practitioners familiar with the benefits provided by the

Constructive Cost Model (COCOMO) in the realm of software engineering proposed

4

the development of a similar model to focus on systems engineering (Boehm, Egyed

et al. 1998). No formal approach to estimating systems engineering existed at the

time, partially because of the immaturity of systems engineering as a formal

discipline and the lack of mature metrics. The beginnings of systems engineering

can be traced back to the Bell Telephone Laboratories in the 1940s (Auyang 2004).

However, it was not until almost thirty years later that the first U.S. military standard

was published (MIL-STD-499A 1969). The first professional systems engineering

society, INCOSE, was not organized until the early 1990s and the first commercial

U.S. systems engineering standards, ANSI/EIA 632 and IEEE 1220, followed shortly

thereafter. Even with the different approaches of defining systems engineering, the

capability to estimate it is desperately needed by organizations. Several heuristics

are available but they do not provide the necessary level of detail that is required to

understand the most influential factors and their sensitivity to cost.

Fueled by industry support and the US Air Force’s systems engineering

revitalization initiative (Humel 2003), interest in COSYSMO has grown. Defense

contractors as well as the federal government are in need of a model that will help

them better control and prevent future shortfalls in the $18 billion federal space

acquisition process (GAO 2003). COSYSMO is also positioned to make immediate

impact on the way organizations – and other engineering disciplines – view systems

engineering.

Based on the previous support for COCOMO II, COSYSMO is positioned to

leverage off the existing body of knowledge developed by the software community.

The synergy between software engineering and systems engineering is intuitive

5

because of the strong linkages in their products and processes. Researchers

identified strong relationships between the two disciplines (Boehm, 1994),

opportunities for harmonization (Faisandier & Lake, 2004), and lessons learned

(Honour, 2004). There have also been strong movements towards convergence

between software and systems as reflected in two influential standards: ISO 15504

Information technology - Process assessment and the CMMI1. Organizations are

going as far as changing their names to reflect their commitment and interest in this

convergence. Some examples include the Software Productivity Consortium

becoming the Systems & Software Consortium and the Software Technology

Conference becoming the Software & Systems Technology Conference. Despite the

strong coupling between software and systems they remain very different activities

in terms of maturity, intellectual advancement, and influences regarding cost.

1.1.2. Comparison Between COCOMO II and COSYSMO

On the surface, COCOMO II and COSYSMO appear to be similar. However,

there are fundamental differences between them that should be highlighted. These

are obvious when the main assumptions of the model are considered:

• Sizing. COCOMO II uses software size metrics while COSYSMO uses

metrics at a level of the system that incorporates both hardware and software.

• Life cycle. COCOMO II, based on a software tradition, focuses exclusively

on software development life cycle phases defined by MBASE2 (Boehm and

1 Capability Maturity Model Integration
2 Model Based System Architecting and Software Engineering

6

Port 1999) while COSYSMO follows the system life cycle provided by

ISO/IEC 15288.

• Cost Drivers. Each model includes drivers that model different phenomena.

The overlap between the two models is minimal since very few of the

COCOMO II parameters are applicable to systems engineering. One

appreciable overlap is the software-related systems engineering effort

estimated by both models. This overlap is covered in section 4.2

A more fundamental difference between the two models is that COCOMO II

benefits from existing software engineering metrics. COSYSMO does not benefit

from such a deep body of knowledge. As the first model to focus on issues outside

of the software domain, it faces numerous challenges.

Table 2 Differences between COCOMO II and COSYSMO

 COCOMO II COSYSMO
Estimates Software development Systems engineering
Estimates size via Thousands of Software

Lines of Code (KSLOC),
Function Points, or
Application Points

Requirements, Interfaces,
Algorithms, and
Operational Scenarios

Life cycle phases MBASE/RUP Phases:
(1) Inception, (2)
elaboration, (3)
construction, and (4)
transition

ISO/IEC 15288 Phases:
(1) Conceptualize, (2)
Develop, (3) Operation,
Test, and Evaluation, (4)
Transition to Operation,
(5) Operate Maintain or
Enhance, and (6) Replace
or dismantle.

Form of the
model

1 size factor, 5 scale
factors, and 18 effort
multipliers

4 size factors, 1 scale
factor, 14 effort
multiplier

Represents
diseconomy of
scale through

Five scale factors One exponential system
factor

7

COCOMO II was a natural starting point which provided a useful and mature

framework. The scope of this dissertation is to identify the relevant parameters in

systems engineering while building from the lessons learned in software cost

estimation. As much synergy as exists, software engineering and systems

engineering must be treated as independent activities. This involves measuring them

independently and identifying metrics that best capture the size and cost factors for

each.

1.1.3. COSYSMO Objectives

COSYSMO is a model that can help people reason about the cost

implications of systems engineering. User objectives include the ability to make the

following:

• Investment decisions. A return-on-investment analysis involving a systems

engineering effort needs an estimate of the systems engineering cost or a life

cycle effort expenditure profile.

• Budget planning. Managers need tools to help them allocate project

resources.

• Tradeoffs. Decisions often need to be made between cost, schedule, and

performance.

• Risk management. Unavoidable uncertainties exist for many of the factors

that influence systems engineering.

8

• Strategy planning. Setting mixed investment strategies to improve an

organization’s systems engineering capability via reuse, tools, process

maturity, or other initiatives.

• Process improvement measurement. Investment in training and initiatives

often need to be measured. Quantitative management of these programs can

help monitor progress.

To enable these user objectives the model has been developed to provide

certain features to allow for decision support capabilities. Among these is to provide

a model that is:

• Accurate. Where estimates are close to the actual costs expended on the

project. See section 5.2.1.

• Tailorable. To enable ways for individual organizations to adjust the model

so that it reflects their business practices. See section 5.2.4.

• Simple. Understandable counting rules for the drivers and rating scales. See

section 3.2.

• Well-defined. Scope of included and excluded activities is clear. See

sections 3.2 and 3.3.

• Constructive. To a point that users can tell why the model gives the result it

does and helps them understand the systems engineering job to be done.

• Parsimonious. To avoid use of highly redundant factors or factors which

make no appreciable contribution to the results. See section 5.2.2.

• Pragmatic. Where inputs to the model correspond to the information

available early on in the project life cycle.

9

This research puts these objectives into context with the exploration of what

systems engineering means in practice. Industry standards are representative of

collective experiences that help shape the field as well as the scope of COSYSMO.

1.2. Systems Engineering and Industry Standards

The synergy between software engineering and systems engineering is

evident by the integration of the methods and processes developed by one discipline

into the culture of the other. Researchers from software engineering (Boehm 1994)

and systems engineering (Rechtin 1998) have extensively promoted the integration

of both disciplines but have faced roadblocks that result from the fundamental

difference between the two disciplines (Pandikow and Törne 2001).

The development of systems engineering standards has helped the

crystallization of the discipline as well as the development of COSYSMO. Table 3

includes a list of the standards most influential to this effort.

Table 3 Notable Systems Engineering Standards

Standard (year) Title
MIL-STD-499A (1969) Engineering Management
MIL-STD-490-A (1985) Specification Practices
ANSI/EIA-632 (1999) Processes for Engineering a System
CMMI (2002) Capability Maturity Model Integration
ANSI/EIA-731.1 (2002) Systems Engineering Capability Model
ISO/IEC 15288 (2002) Systems Engineering – System Life Cycle Processes

The first U.S. military standard focused on systems engineering provided the

first definition of the scope of engineering management (MIL-STD-499A 1969). It

was followed by another standard that provided guidance on the process of writing

system specifications for military systems (MIL-STD-490A 1985). These standards

were influential in defining the scope of systems engineering in their time. Years

10

later the standard ANSI/EIA 632 Processes for Engineering a System (ANSI/EIA

1999) provided a typical systems engineering WBS3. This list of activities was

selected as the baseline for defining systems engineering in COSYSMO. The

standard contains five fundamental processes and 13 high level process categories

that are representative of systems engineering organizations. The process categories

are further divided into 33 activities shown in Appendix A. These activities help

answer the what of systems engineering and helped characterize the first significant

deviation from the software domain covered by COCOMO II. The five fundamental

processes are (1) Acquisition and Supply, (2) Technical Management, (3) System

Design, (4) Product Realization, and (5) Technical Evaluation. These processes are

the basis of the systems engineering effort profile developed for COSYSMO. The

effort profile is provided in Appendix B.

This standard provides a generic industry list which may not be applicable to

every situation. Other types of systems engineering WBS lists exist such as the one

developed by Raytheon Space & Airborne Systems (Ernstoff and Vincenzini 1999).

Lists such as this one provide, in much finer detail, the common activities that are

likely to be performed by systems engineers in those organizations, but are generally

not applicable outside of the companies or application domains in which they are

created.

Under the integrated software engineering and systems engineering paradigm,

or Capability Maturity Model Integration® (CMMI 2002), software and systems are

intertwined. A project’s requirements, architecture, and process are collaboratively

3 Work Breakdown Structure

11

developed by integrated teams based on shared vision and negotiated stakeholder

concurrence. A close examination of CMMI process areas – particularly the staged

representation – strongly suggests the need for the systems engineering function to

estimate systems engineering effort and cost as early as CMMI Maturity Level 2.

Estimates can be based upon a consistently provided organizational approach from

past project performance measures related to size, effort and complexity. While it

might be possible to achieve high CMMI levels without a parametric model, an

organization should consider the effectiveness and cost of achieving them using

other methods that may not provide the same level of stakeholder confidence and

predictability. The more mature an organization, the more benefits in productivity

they experience (ANSI/EIA 2002).

After defining the possible systems engineering activities used in COSYSMO,

a definition of the system life cycle phases is needed to help define the model

boundaries. Because the focus of COSYSMO is systems engineering, it employs

some of the life cycle phases from ISO/IEC 15288 Systems Engineering – System

Life Cycle Processes (ISO/IEC 2002). These phases were slightly modified to reflect

the influence of the aforementioned model, ANSI/EIA 632, and are shown in Figure

1.

Conceptualize Develop
Oper Test
& Eval

Transition
to

Operation

Operate,
Maintain,
or
Enhance

Replace
or

Dismantle

Figure 1 COSYSMO System Life Cycle Phases

12

Life cycle models vary according to the nature, purpose, use and prevailing

circumstances of the system. Despite an infinite variety in system life cycle models,

there is an essential set of characteristic life cycle phases that exists for use in the

systems engineering domain. For example, the Conceptualize stage focuses on

identifying stakeholder needs, exploring different solution concepts, and proposing

candidate solutions. The Development stage involves refining the system

requirements, creating a solution description, and building a system. The

Operational Test & Evaluation stage involves verifying/validating the system and

performing the appropriate inspections before it is delivered to the user. The

Transition to Operation stage involves the transition to utilization of the system to

satisfy the users’ needs. These four life cycle phases are within the scope of

COSYSMO. The final two were included in the data collection effort but did not

yield enough data to perform a calibration. These phases are: Operate, Maintain, or

Enhance which involves the actual operation and maintenance of the system required

to sustain system capability, and Replace or Dismantle which involves the retirement,

storage, or disposal of the system.

Each stage has a distinct purpose and contribution to the whole life cycle and

represents the major life cycle periods associated with a system. The stages also

describe the major progress and achievement milestones of the system through its

life cycle. These life cycle stages help answer the when of systems engineering and

COSYSMO. Understanding when systems engineering is performed relative to the

system life cycle helps define anchor points for the model.

13

System-of-Interest. The ISO/IEC 15288 standard also provides a structure

that helps define the system hierarchy. Systems can be characterized by their

architectural structure or levels of responsibility. Each project has the responsibility

for using levels of system composition beneath it and creating an aggregate system

that meets the customer’s requirements. Each particular subproject views its system

as a system-of-interest within the grand scheme. The subproject’s only task may be

to deliver their system-of-interest to a higher level in the hierarchy. The top level of

the hierarchy is then responsible for integrating the subcomponents that are delivered

and providing a functional system. Essential services or functionalities are required

from the systems that make up the system hierarchy. These systems, called enabling

systems, can be made by the organization itself or purchased from other

organizations.

The system-of-interest framework helps answer the where of systems

engineering for use in COSYSMO. In the case where systems engineering takes

place at different levels of the hierarchy, organizations should focus on the portion of

the system which they are responsible for testing. Identifying system test

responsibility helps crystallize the scope of the systems engineering estimate at a

specific level of the system hierarchy.

The diversity of systems engineering standards can be quite complex (Sheard

1997), therefore only the applicable standards have been mentioned here. With the

need and general context for the model defined, the central proposition and

hypotheses for this research are proposed.

14

1.3. Proposition and Hypotheses

Clear definitions of the what, when, and where of systems engineering sets

the stage for the statement of purpose for COSYSMO. The central proposition at the

core of this research is:

There exists a subset of systems engineering projects for which it is possible

to create a parametric model that will estimate systems engineering effort

(a) for specific life cycle phases

(b) at a certain level of system decomposition

(c) with the same statistical criteria as the COCOMO suite of models at a

comparable stage of maturity in time and effort

This statement provides the underlying goal of the model by clarifying its

solution space. The selection of the subset of systems engineering projects attempts

to provide a homogenous group of projects from which the model can be based. For

the COSYSMO data set, useful discriminators included: systems engineering

productivity, systems engineering domain, and organization providing the data. The

term parametric implies that a given equation represents a mean function that is

characteristic of Cost Estimating Relationships in systems engineering. Specific life

cycle phases are selected based on the data provided by industry participants.

Counting rules are provided for a level of system decomposition to ensure uniform

counting rules across organizations that use the model. Similar statistical criteria are

used to evaluate COSYSMO for comparison with other cost estimation models.

The central proposition was validated through the use of the scientific method

(Isaac and Michael 1997) and analysis of data (Cook and Weisberg 1999) with the

15

aim of developing a meaningful solution. In terms of scientific inquiry, the model

was validated through the following hypotheses:

H#1: A combination of the four elements of functional size in COSYSMO

contributes significantly to the accurate estimation of systems engineering

effort.

 The criteria used was a significance level less than or equal to 0.10 which

translates to a 90% confidence level that these elements are significant.

H#2: An ensemble of COSYSMO effort multipliers contribute significantly to

the accurate estimation of systems engineering.

The same significance level of 0.10 was used to test this hypothesis.

H#3: The value of the COSYSMO exponent, E, which can represent

economies/diseconomies of scale is greater than 1.0.

 To test this hypothesis, different values for E were calculated and their effects

were tested on model accuracy.

 H#4: There exists a subset of systems engineering projects for which it is

possible to create a parametric model that will estimate systems engineering effort at

a PRED(30) accuracy of 50%.

 Various approaches were used to fine tune the model and bring to a point

where it was possible to test this hypothesis.

Each hypothesis is designed to test key assumptions of the model. These

assumptions, as well as the structure of the model, are discussed in more detail in the

next section. In addition to the four quantitative hypotheses, a qualitative hypothesis

was developed to test the impact of the model on organizations.

16

H#5: COSYSMO makes organizations think differently about Systems

Engineering cost.

 The hypothesis was validated through interviews with engineers from the

participating companies that provided historical data and expert opinion in the

Delphi survey.

17

2. Background and Related Work

2.1. State of the Practice

The origins of parametric cost estimating date back to World War II (NASA

2002). The war caused a demand for military aircraft in numbers and models that far

exceeded anything the aircraft industry had manufactured before. While there had

been some rudimentary work to develop parametric techniques for predicting cost,

there was no widespread use of any cost estimating technique beyond a bottoms-up

buildup of labor-hours and materials. A type of statistical estimating was suggested

in 1936 by T. P. Wright in the Journal of Aeronautical Science. Wright provided

equations which could be used to predict the cost of airplanes over long production

runs, a theory which came to be called the learning curve. By the time the demand

for airplanes had exploded in the early years of World War II, industrial engineers

were using Wright's learning curve to predict the unit cost of airplanes. Today,

parametric cost models are used for estimating software development (Boehm, Abts

et al. 2000), unmanned satellites (USCM 2002), and hardware development (PRICE-

H 2002).

A parametric cost model is defined as: a group of cost estimating

relationships used together to estimate entire cost proposals or significant portions

thereof. These models are often computerized and may include many interrelated

Cost Estimation Relationships (CERs), both cost-to-cost and cost-to-non-cost. The

use of parametric models in engineering management serves as valuable tools for

engineers and project managers to estimate engineering effort. Developing these

18

estimates requires a strong understanding of the factors that affect, in this case,

systems engineering effort.

An important part of developing a model such as COSYSMO is recognizing

previous work in related areas. This process often provides a stronger case for the

existence of the model and ensures that its capabilities and limitations are clearly

defined. This section provides an overview of an analysis done on eight existing cost

models - three of which focus on software and five on hardware (Valerdi, Ernstoff et

al. 2003). These models include SE components and each employs its own unique

approaches to sizing systems. An overview of the genesis and assumptions of each

model sheds light on their individual applicability. While it has been shown that the

appropriate level of SE effort leads to better control of project costs (Honour 2002),

identifying the necessary level of SE effort is not yet a mature process. Some

projects use the traditional 15% of the prime mission product or prime mission

equipment to estimate systems engineering, while other projects tend to use informal

rules of thumb. These simplified and inaccurate methods can lead to excessively

high bids by allocating too many hours on SE or, even worse, may underestimate the

amount of SE needed.

One significant finding during the review was that SE costs were extremely

sensitive to the sizing rules that formed the basis of these models. These rules help

estimators determine the functional size of systems and, by association, the size of

the job. Similar comparative analysis of cost models has been completed (Kemerer

1987), which focused exclusively on models for software development. Going one

19

step further, both software and hardware cost models are considered since they are

both tightly coupled with SE.

Cost models have been an essential part of DoD acquisition since the 1970s.

Hardware models were the first to be developed and were followed by software

models in the 1980s (Ferens 1999). The corresponding owner/developer and domain

of applicability for the models of interest is provided in Table 4.

Table 4 Cost Models With Systems Engineering Components

Model Name Owner/Developer Domain
COCOMO II USC Software
PRICE-H PRICE Systems, LLC Hardware
PRICE-S PRICE Systems, LLC Software
Raytheon SE Resource Forecasting Tool Raytheon Hardware
SEER-H Galorath, Inc. Hardware
SEER-SEM Galorath, Inc. Software
SSCM The Aerospace Corporation Hardware
USCM8 Los Angeles Air Force Base Hardware

The eight aforementioned models were compared in five key areas relevant to

systems engineering:

1. Model inputs for software or hardware size

2. Definition of systems engineering

3. Model inputs for systems engineering

4. Life Cycle stages used in the model

5. Domain of applicability

 These areas provided valuable information on the applicability of each model

to systems engineering sizing. The increasing frequency and number of programs

that have run significantly over-budget and behind schedule (GAO-03-1073 2003)

because SE problems were not adequately understood should, by itself, be reason

enough for the acquisition community to press for improvement in forecasting SE

20

resource needs. However, even if the history of SE problems is ignored, the future

paints an even more demanding picture. The undeniable trend is toward increasingly

complex systems dependent on the coordination of interdisciplinary developments

where effective system engineering is no longer just another technology, but the key

to getting the pieces to fit together. It is known that increasing front-end analysis

reduces the probability of problems later on, but excessive front-end analysis may

not pay the anticipated dividends. The key is to accurately estimate early in a

program the appropriate level of SE in order to ensure system success within cost

and schedule budgets.

Most widely used estimation tools, shown in Table 4, treat SE as a subset of a

software or a hardware effort. Since complex systems are not dominated by either

hardware or software, SE ought not to be viewed as a subset of hardware or software.

Rather, because many functions can be implemented using either hardware or

software, SE is becoming the discipline for selecting, specifying and coordinating the

various hardware and software designs. Given that role, the correct path is to

forecast SE resource needs based on the tasks that systems engineering must perform

and not as an arbitrary percentage of another effort. Hence, SE estimation tools must

provide for aligning the definition of tasks that SE is expected to do on a given

project with the program management's vision of economic and schedule cost,

performance, and risk.

Tools that forecast SE resources largely ignore factors that reflect the scope

of the SE effort, as insufficient historical data exists from which statistically

significant algorithms can be derived. To derive cost-estimating relationships from

21

historical data using regression analysis, one must have considerably more data

points than variables; such as a ratio of 5 to 1. It is difficult to obtain actual data on

systems engineering costs and on factors that impact those costs. For example, a

typical factor may be an aggressive schedule, which will increase the demand for SE

resources. The result is a tool set that inadequately characterizes the proposed

program and therefore inaccurately forecasts SE resource needs. Moreover, the tools

listed in Table 4 use different life cycle stages, complicating things even further.

The names of the different life cycle stages and a mapping to each other is provided

in Figure 2. The three software models have different life cycle stages than the five

hardware models. As a result, only models with similar life cycle phases are mapped

to each other.

Figure 2 Model Life Cycle Phases Compared

As the parallels between hardware and software estimation models are drawn

and the relationships between these and systems engineering are defined it is easy to

identify the pressing need for a model that can estimate systems engineering as an

Model Life Cycle Stages

COCOMO II

PRICE-S

SEER-SEM

PRICE-H

RSERFT

SEER-H

SSCM

USCM8

Inception Elaboration Construction Transition

Initial concept Design Production Operation

Development Production Operations Support

Inception Development Launch

Disposal

Concept
System
Reqs

S/W
Reqs

Pre
Design

Detailed
Design

Code/unit
test I&T H/W &

S/W Int
Field
Test

Mgmt
Plan

System
Design

Specs
& I/F

Status &
Reviews

Test
Plans AI&T V&V SupportSystem

Analys
Test &
Delivery

Sys
Concpt

Reqs
Design

Pre
Design

Detail
Design I&T Program

Test
OT&ES/W Req

Analys
Code &
Unit Test

Ops
Support

Orbital Ops
Support

Inception Development Launch Orbital Ops
Support

22

independent function. The fundamental approach for developing a model that meets

this demand relates back to the area of software cost estimation from which the

theoretical underpinnings of COSYSMO are derived. This area of research is

described in the next section.

2.2. COSYSMO Lineage

In order to place COSYSMO in the right context it must be linked to the

work that has preceded it. A wealth of models and processes exist in the area of

software engineering, from which this work is derived. Particularly the Model-

Based System Architecting and Software Engineering (MBASE) framework (Boehm

and Port 1999) developed for the purposes of tailoring a software project’s balance

of discipline and flexibility via risk considerations. As an elaboration of the spiral

model (Boehm and Hansen 2001), MBASE provides a framework for projects to use

various process, product, property, and success models. Process models include the

waterfall model, evolutionary development, incremental development, spiral

development, rapid application development, and many others. Product models

include various ways of specifying operational concepts, requirements, architectures,

designs, and code, along with their interrelationships. Property models include

models for cost, schedule, performance, reliability, security, portability, etc., and

their tradeoffs. Success models include organization and project goals, stakeholder

win-win, business-case, or IKIWISI (I’ll know it when I see it). COSYSMO is

considered a property model because it focuses on the effort and cost associated with

systems engineering and the tradeoffs between decisions that affect systems

engineering. Awareness of COSYSMO’s model category can help prevent clashes

23

between other models within or outside of the model category (Boehm and Port

1999). Equally important as COSYSMO’s lineage is its link to existing systems

engineering estimation methods. It provides valuable context of the state of the

practice surrounding it while informing users of the available alternatives.

2.3. Overview of Systems Engineering Estimation Methods

A number of useful systems engineering estimation techniques are currently

in use by practitioners. They vary in both maturity and sophistication. Subsequently,

some are more easily adaptable to the changing environment and others take more

time to develop. The logic behind these approaches is fundamentally different,

leaving only their results as measures of merit. It is believed that a hybrid approach

that borrows from each method is the best way to capture systems engineering

phenomena that a single approach may miss. Six estimation techniques are

presented here in order of sophistication.

Heuristics & rules of thumb. Heuristic reasoning has been commonly used

by engineers to arrive at quick answers to their questions. Practicing engineers,

through education, experience, and examples, accumulate a considerable body of

contextual intuition. These experiences evolve into instinct or common sense that

are seldom recorded. These can be considered insights, lessons learned, and rules of

thumb, among other names, that are brought to bear on certain situations. Ultimately,

this knowledge is based on experience and often provides valuable results. Systems

engineering cost estimation heuristics and rules of thumb have been developed by

researchers and practitioners (Boehm, Abts et al. 2000; Honour 2002; Rechtin 1991).

One such rule of thumb, provided by Barry Horowitz, retired CEO of MITRE

24

Corporation, adopts the following logic for estimating systems engineering effort

(Horowitz 2004):

If it is a custom developed system (mostly) or an Off-the-Shelf (OTS)

integration (mostly)

Then the former gets 6-15% of the total budget for SE, the later gets

15-25% of budget (where selection of OTS products as well as

standards is considered SE).

The following additional rules apply:

If the system unprecedented

Then raise the budget from minimum level to 50% more

If the system faces an extreme requirement (safety, performance, etc)

Then raise the budget by 25% of minimum

If the system involves a large number of distinct technologies, and

therefore a diversity of engineering disciplines and specialties

Then raise the budget by 25% of minimum

If the priority for the system is very high compared to other systems also

competing for resources

Then add 50% to the base

Note that the % of SE is larger for OTS, but since the budgets for these

projects are much lower, so are the numbers for SE.

Expert opinion. This is the most informal of the approaches because it

simply involves querying the experts in a specific domain and taking their subjective

25

opinion as an input. This approach is useful in the absence of empirical data and is

very simple. The obvious drawback is that an estimate is only as good as the

expert’s opinion, which can vary greatly from person to person. However, many

years of experience is not a guarantee of future expertise due to new requirements,

business processes, and added complexity. Moreover, this technique relies on

experts and even the most highly competent experts can be wrong. A common

technique for capturing expert opinion is the Delphi (Dalkey 1969) method which

was improved and renamed Wideband Delphi (Boehm 1981). This dissertation

employs the Wideband Delphi method which is elaborated in section 5.1.

Case studies and analogy. Recognizing that companies do not constantly

reinvent the wheel every time a new project comes along, there is an approach that

capitalizes on the institutional memory of an organization to develop its estimates.

Case studies represent an inductive process, whereby estimators and planners try to

learn useful general lessons by extrapolation from specific examples. They examine

in detail elaborate studies describing the environmental conditions and constraints

that were present during the development of previous projects, the technical and

managerial decisions that were made, and the final successes or failures that resulted.

They then determine the underlying links between cause and effect that can be

applied in other contexts. Ideally, they look for cases describing projects similar to

the project for which they will be attempting to develop estimates and apply the rule

of analogy that assumes previous performance is an indicator of future performance.

The sources of case studies may be either internal or external to the estimator’s own

organization. Homegrown cases are likely to be more useful for the purposes of

26

estimation because they reflect the specific engineering and business practices likely

to be applied to an organization’s projects in the future. Well-documented cases

studies from other organizations doing similar kinds of work can also prove very

useful so long as their differences are identified.

Top Down & Design To Cost. This technique aims for an aggregate

estimate for the cost of the project based upon the overall features of the system.

Once a total cost is estimated, each subcomponent is assigned a percentage of that

cost. The main advantage of this approach is the ability to capture system level

effort such as component integration and configuration management. It can also be

useful when a certain cost target must be reached regardless of the technical features.

The top down approach can often miss the low level nuances that can emerge in

large systems. It also lacks detailed breakdown of the subcomponents that make up

the system.

Bottom Up & Activity Based. Opposite the top-down approach, bottom-up

begins with the lowest level cost component and rolls it up to the highest level for its

estimate. The main advantage is that the lower level estimates are typically provided

by the people who will be responsible for doing the work. This work is typically

represented in the form of a Work Breakdown Structure (WBS), which makes this

estimate easily justifiable because of its close relationship to the activities required

by the project elements. This can translate to a fairly accurate estimate at the lower

level. The disadvantages are that this process is labor intensive and is typically not

uniform across entities. In addition, every level folds in another layer of

conservative management reserve which can result in an over estimate at the end.

27

Parametric cost estimation models. This method is the most sophisticated

and most difficult to develop. Parametric models generate cost estimates based on

mathematical relationships between independent variables (i.e., requirements) and

dependent variables (i.e., effort). The inputs characterize the nature of the work to

be done, plus the environmental conditions under which the work will be performed

and delivered. The definition of the mathematical relationships between the

independent and dependent variables is the heart of parametric modeling. These

relationships are commonly referred to Cost Estimating Relationships (CERs) and

are usually based upon statistical analyses of large amounts of data. Regression

models are used to validate the CERs and operationalize them in linear or nonlinear

equations. The main advantage of using parametric models is that, once validated,

they are fast and easy to use. They do not require a lot of information and can

provide fairly accurate estimates. Parametric models can also be tailored to a

specific organization’s CERs. The major disadvantage of parametric models is that

they are difficult and time consuming to develop and require a lot of clean, complete,

and uncorrelated data to be properly validated.

As a parametric model, COSYSMO contains its own CERs and is structured

in a way to accommodate the current systems engineering standards and processes.

Its structure is described in detail in the next section.

28

3. Model Definition

3.1. COSYSMO Derivation

Since its inception, COSYSMO has gone through three major iterations. This

section describes each of these spirals and the properties of the model at those points

in time culminating with the final form of the model represented in Equation 6.

3.1.1. Evolution

Spiral #1: Strawman COSYSMO. The first version of COSYSMO

contained a list of 16 systems engineering cost drivers. This representation of the

model was referred to as the “strawman” version because it provided a skeleton for

the model with limited content. The factors identified were ranked by relative

importance by a group of experts. Half of the factors were labeled application

factors and the other half were labeled team factors. Each parameter was determined

to have a high, medium, or low influence level on systems engineering cost. The

most influential application factor was requirements understanding and the most

influential team factor was personnel experience.

Function points and use cases were identified as possible measures of

systems engineering functional size. Factors for volatility and reuse were also

identified as relevant. At one point the initial list of parameters grew to as many as

24 during one of the brain storming sessions. For reasons related to model

parsimony, the number of parameters in the model was eventually reduced from 24

to 18.

29

Spiral #2: COSYSMO-IP. The second major version of COSYSMO

included refined definitions and a revised set of cost drivers. Most importantly, it

included measures for functional size that were independent of the software size

measures used in COCOMO II. This version had the letters “IP” attached to the end

to reflect the emphasis on software “Information Processing” systems as the initial

scope. Rooted from interest from industry stakeholders, the focus at the time was to

estimate systems engineering effort for software intensive systems. Moreover, this

version only covered the early phases of the life cycle: Conceptualize, Develop, and

Operational Test & Evaluation. Recognizing that the model had to evolve out of the

software intensive arena and on to a broader category of systems, a model evolution

plan was developed to characterize the different types of systems that could

eventually be estimated with COSYSMO and their corresponding life cycle stages

(Boehm, Reifer et al. 2003).

 The important distinction between size drivers and cost drivers was also

clarified. At this stage, a general form for the model was proposed containing three

different types of parameters: additive, multiplicative, and exponential.

30

Equation 1

Where:

 PM = Person Months

 A = calibration factor

Size = measure(s) of functional size of a system that has an additive effect on

 systems engineering effort

E = scale factor(s) having an exponential or nonlinear effect on systems

 engineering effort

EM = effort multipliers that influence systems engineering effort

The general rationale for whether a factor is additive, exponential, or

multiplicative comes from the following criteria (Boehm, Valerdi et al 2005):

1. A factor is additive if it has a local effect on the included entity. For example,

adding another source instruction, function point entity, requirement, module,

interface, operational scenario, or algorithm to a system has mostly local

additive effects. From the additive standpoint, the impact of adding a new

item would be inversely proportional to its current size. For example, adding

1 requirement to a system with 10 requirements corresponds to a 10%

increase in size while adding the same single requirement to a system with

100 requirements corresponds to a 1% increase in size.

31

2. A factor is multiplicative if it has a global effect across the overall system.

For example, adding another level of service requirement, development site,

or incompatible customer has mostly global multiplicative effects. Consider

the effect of the factor on the effort associated with the product being

developed. If the size of the product is doubled and the proportional effect of

that factor is also doubled, then it is a multiplicative factor. For example,

introducing a high security requirement to a system with 10 requirements

would translate to a 40% increase in effort. Similarly, a high security

requirement for a system with 100 requirements would also increase by 40%.

3. A factor that is exponential has both a global effect and an emergent effect

for larger systems. If the effect of the factor is more influential as a function

of size because of the amount of rework due to architecture, risk resolution,

team compatibility, or readiness for SoS integration, then it is treated as an

exponential factor.

These statements are pivotal to the hypotheses stated in section 1.3. The next

section describes the form of the model and how the hypotheses are tested.

3.1.2. Model Form

Spiral #3: COSYSMO. Substantial insight was obtained from the

development of the first two iterations of the model. The current version, referred to

simply as COSYSMO, has a broader scope representative of the extensive

participation from industrial affiliates and INCOSE. Limiting the boundaries and

scope of the model has been one of the most challenging tasks to date, partially

32

because of the features desired by the large number of stakeholders involved in the

model development process.

The current operational form of the COSYSMO model is shown in Equation

2. As previously noted, the size drivers and cost drivers were determined via a

Delphi exercise by a group of experts in the fields of systems engineering, software

engineering, and cost estimation. The definitions for each of the drivers, while not

final, attempt to cover those activities that have the greatest impact on estimated

systems engineering effort and duration.

33

Equation 2 i

n

i

E
NS EMSizeAPM

1
)(

=
Π⋅⋅=

Where:

PMNS = effort in Person Months (Nominal Schedule)

A = calibration constant derived from historical project data

Size = determined by computing the weighted sum of the four size drivers

E = represents economy/diseconomy of scale; default is 1.0

n = number of cost drivers (14)

EMi = effort multiplier for the ith cost driver. Nominal is 1.0. Adjacent

multipliers have constant ratios (geometric progression). Within their

respective rating scale, the calibrated sensitivity range of a multiplier is the

ratio of highest to lowest value.

Each parameter in the equation represents the Cost Estimating Relationships

(CERs) that were defined by systems engineering experts. The Size factor represents

the additive part of the model while the EM factor represents the multiplicative part

of the model. Specific definitions for these parameters are provided in the following

sections.

A detailed derivation of the terms in Equation 2 and motivation for the model

is provided here. The dependent variable is the number of systems engineering

person months of effort required under the assumption of a nominal schedule, or

PMNS. COSYSMO is designed to estimate the number of person months as a

function of a system’s functional size with considerations of diseconomies of scale.

34

Namely, larger systems will require proportionally more systems engineering effort

than smaller systems. That is, larger systems require a larger number of systems

engineering person months to complete. The four metrics selected as reliable

systems engineering size drivers are: Number of System Requirements, Number of

Major Interfaces, Number of Critical Algorithms, and Number of Operational

Scenarios. The weighted sum of these drivers represents a system’s functional size

from the systems engineering standpoint and is represented in the following CER:

Equation 3 ∑ Φ+Φ+Φ=
k

ddnneeNS wwwPM

Where:

k = REQ, INTF, ALG, OPSC

w = weight

e = easy

n = nominal

d = difficult

Φ = driver count

Equation 3 is an operationalization of the four size drivers and includes

twelve possible combinations of weights combined with size metrics. Discrete

weights for the size drivers, w , can take on the values of “easy”, “nominal”, and

“difficult”; and quantities ,Φ , can take on any continuous integer value depending

on the number of requirements, interfaces, algorithms, and operational scenarios in

the system of interest. All twelve possible combinations may not apply to all

35

systems. This approach of using weighted sums of factors is similar to the software

function approach used in other cost models (Albrecht and Gaffney 1983).

The CER shown in Equation 3 is a representation of the relationship between

functional size and systems engineering effort. The effect of each size driver on the

number of systems engineering person months is determined by its corresponding

weight factor. Figure 3 illustrates the relationship between the number of operational

scenarios and functional size. This size driver was selected as an example since it

was shown to have the highest influence on systems engineering effort.

Figure 3 Notional Relationships Between Operational Scenarios

Versus Functional Size

The five curves in Figure 3 are a notional representation of the effects of the

weights of the easy, nominal, and difficult operational scenarios on functional size.

In addition to functional size there are other people-related emergent properties of

systems that arise as larger system-of-systems are created. These properties are

similar to the ones previously observed in software development (Banker et al 1994).

Different systems engineering efforts may exhibit different levels of productivity

36

which must be represented in COSYSMO. An exponential factor, E, is added to the

CER and is represented in Equation 4:

Equation 4
E

k
ddnneeNS wwwPM ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ+Φ+Φ= ∑

This factor relates to hypothesis #3. In the case of small projects the

exponent, E, could be equal to or less than 1.0. This would represent an economy of

scale which is generally very difficult to achieve in large people-intensive projects.

Most large projects would exhibit diseconomies of scale and as such would employ a

value greater than 1.0 for E. Systems development activities may have different

diseconomies of scale because of two main reasons: growth of interpersonal

communications overhead and growth of large-system integration overhead. The

impact of interpersonal communications has been modeled by researchers in the area

of human networks and is believed to be influential in systems engineering. The

COCOMO II model includes a diseconomy of scale factor which is approximately

1.1. Other theories suggest that human related diseconomies behave in ways

proportional to 2^n, n^2, or n^2-n. A notional example is shown in Figure 4 which

includes the actual diseconomies of scale built into COCOMO II and COSYSMO.

While the cost models are not as dramatic as theories suggest it must be noted that

this parameter only covers human diseconomies. Technical diseconomies are

adequately by size and cost drivers.

37

2 n̂

n 2̂

n 2̂-n

COSYSMO

COCOMO

0

5

10

15

20

25

30

35

1 2 3 4 5

Functional Size

Pr
od

uc
t S

iz
e

Figure 4 Examples of Diseconomies of Scale

Just as different systems may exhibit various economies of scale, different

organizations may exhibit various relationships between systems engineering size

and effort. The CER in Equation 5 requires a calibration or adjustment factor that

allows for the tuning of COSYSMO to accurately reflect an organization’s business

line productivity. This factor, A, is included in Equation 5.

Equation 5
E

k
ddnneeNS wwwAPM ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ+Φ+Φ⋅= ∑

Finally, there is a group of fourteen effort multipliers that have been

identified to be significant drivers of systems engineering effort. These are used to

adjust the nominal person month effort to reflect the system under development.

Each driver is defined by a set of rating levels and corresponding multiplier factors.

The nominal level always has an effort multiplier of 1.0, which has no effect on the

38

CER. Off-nominal ratings change the overall estimated effort based on their user-

defined values. Equation 6 includes these multiplicative factors, EM.

Equation 6 ∏∑
=

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ+Φ+Φ⋅=

14

1j
j

E

k
ddnneeNS EMwwwAPM

 Equation 6 is the final COSYSMO CER that was used in the Delphi surveys

and historical data collection. Each parameter will be introduced together with its

rating scale and counting rules.

3.2. Systems Engineering Size Drivers

The role of the Size drivers is to capture the functional size of the system

from the systems engineering perspective. They represent a quantifiable

characteristic that can be arrived at by objective measures (i.e., physical size). It can

be shown that developing a satellite ground station represents a larger systems

engineering effort than developing a toaster and in order to differentiate the two, four

properties were developed to help quantify the difference. In software cost

estimation, some common measures of size include Software Lines of Code (SLOC),

Function Points (FP), or Application Points (AP). These sizing approaches contain

adjustment factors that give the model the flexibility to estimate software

development for different languages running on different platforms. However, when

the system involves hardware, software, people, and processes, these measures

become insufficient.

Since the focus of this work is systems engineering effort, the size drivers

need to apply to software, hardware, and systems containing both. The set of size

39

drivers that affect systems engineering effort were defined to be: # of Requirements,

of Major Interfaces, # of Critical Algorithms, and # of Operational Scenarios.

Originally, three additional size drivers were considered: # of Modes (merged with

scenarios), # of Level of Service Requirements, and # of design levels (determined to

be multiplicative cost drivers). Of these four, # of Requirements has been the most

controversial and volatile. This is due in part to the different types of requirements

(i.e., functional, operational, environmental) that are used to define systems and their

functions, the different levels of requirements decomposition used by organizations,

and the varying degree of quality of requirements definition (how well they are

written).

The size drivers are quantitative parameters that can be derived from project

documentation. Table 5 lists the typical sources that can provide information for

each of the four size drivers in COSYSMO.

Table 5 Size Drivers and Corresponding Data Items

Driver Name Data Item
of System Requirements Counted from the system specification
of Major Interfaces Counted from interface control document(s)
of Critical Algorithms Counted from system spec or mode description docs
of Operational Scenarios Counted from test cases or use cases

 Early in the system life cycle, these sources may not be available to

organizations due to the evolutionary nature of systems. In this case surrogate

sources of data must be obtained or derived in order to capture leading indicators

related to the four size drivers. Some of these sources may be previous acquisition

programs or simulations of future programs.

40

 Each size driver has both continuous and categorical variable attributes. As a

continuous variable it can represent a theoretical continuum such as “requirements”

or interfaces”, which can range from small systems to very large systems of systems;

with most cases falling within an expected range. As a categorical variable it can be

represented in terms of discrete categories such as “easy” or “difficult” that cannot

be measured more precisely. The categorical scales are presented next and the

counting rules for determining the values of the continuous variables are provided in

the following sections.

Each of the drivers in Table 5 can be adjusted with three factors: volatility,

complexity, and reuse. System requirements are frequently volatile and, in a

dynamic environment, are expected to increase as the project progresses. This

phenomenon, known as scope creep, is commonly quantified by expansion and

stability patterns (Hammer et al 1998). Although new requirements are created,

deleted, and modified throughout the life cycle of the project, empirical studies

suggest that there tends to be an average number of low level requirements that need

to be written in order to satisfy the requirements at the previous i.e. high level.

These studies show that the expansion of requirements shows an expected bell curve.

Intuitively, it makes sense to implement stable requirements first and hold off on the

implementation of the most volatile requirements until late in the development cycle

(Firesmith 2004). Any volatility beyond what is normally expected can greatly

contribute to an increase in size.

The second factor used to adjust the size drivers of COSYSMO model is the

complexity level of the requirements. A typical system may have hundreds, or

41

potentially thousands, of requirements that are decomposed further into requirements

pertaining to the next subsystem. Naturally, not all requirements have the same level

of complexity. Some may be more complex than others based on how well they are

specified, how easily they are traceable to their source, and how much they overlap

with other requirements. It has been determined that a simple sum of the total

number of requirements is not a reliable indicator of functional size. Instead, the

sum of the requirements requires a complexity weight to reflect the corresponding

complexity of each requirement. Logically, the more complex a requirement the

greater the weight that is assigned to it. It is up to the individual organization to

make an assessment of the complexity of the size drivers associated with their

systems. Guidance on how to accomplish this for each size driver is provided in the

next sections.

Reuse is the third important factor used to adjust the number of requirements.

As reuse facilitates the usage of certain components in the system it tends to bring

down the efforts involved in the system development. The sum of requirements is

adjusted downwards when there are a significant number of reused requirements.

This is meant to capture an organization’s familiarity with the development,

management, and testing of requirements. However, reused requirements are not

free from systems engineering effort. There are three components of reuse each of

which has a cost: redesign, reimplementation, and retest. Redesign is necessary

when the existing functionality may not be exactly suited to the new task. When this

is so, the application to be reused will likely require some rework to support new

functions, and it may require reverse engineering to understand its current operation.

42

Some design changes may be in order as well. Changing design will also result in

reimplementation changes. Even if redesign and reimplementation are not required,

retesting is almost always needed to ensure legacy systems operate properly in their

new environment. In summary, reuse may adjust the influence of size drivers

upwards or downwards depending on the system characteristics. The three

adjustment factors are summarized in Table 6.

Table 6 Adjustment Factors for Size Drivers

Adjustment Factor Influence on Size
Volatility Increase
Complexity Increase
Reuse Increase or decrease

Of the three adjustment factors, complexity was the most useful when

characterizing each size driver. Experts found it easier to assign complexity levels to

size drivers based on their past experience with systems. To facilitate the assignment

of the complexity adjustment factors, a corresponding definition and rating scale was

developed for each size driver. The rating scale is divided into three sections: easy,

nominal, and difficult; each corresponding to a complexity weight for each of the

three levels. Volatility and reuse were left as future add-ons to the model because

they were more difficult to obtain expert opinion.

3.2.1. Number of System Requirements

The definition and three adjustment factors alone do not capture all the

impact introduced by requirements. Additional work is involved in decomposing

requirements so that they may be counted at the appropriate system-of-interest. As

part of this dissertation, rules have been developed to help clarify the definition and

43

adjustment factors while providing consistent interpretations of the size drivers for

use in cost estimation.

Other data items, or sources, may be available on certain projects depending

on the processes used in the organization. For example, system requirements may be

counted from the requirements verification matrix or a requirements management

tool such as DOORS.

Table 7 Number of System Requirements Definition

Table 8 Number of System Requirements Rating Scale
Easy Nominal Difficult

- Simple to implement - Familiar - Complex to implement or
engineer

- Traceable to source - Can be traced to source with
some effort

- Hard to trace to source

- Little requirements overlap - Some overlap - High degree of requirements
overlap

 A particular system may have some requirements that could be considered

easy because they are straightforward and have been implemented successfully

before, some requirements could be nominal because they are moderately complex

and require some effort, and some requirements could be difficult because they are

very complex and have a high degree of overlap with other requirements.

The challenge with requirements is that they can be specified by either the

customer or the contractor. In addition, these organizations often specify system

Number of System Requirements
This driver represents the number of requirements for the system-of-interest at a specific level of
design. The quantity of requirements includes those related to the effort involved in system
engineering the system interfaces, system specific algorithms, and operational scenarios.
Requirements may be functional, performance, feature, or service-oriented in nature depending on
the methodology used for specification. They may also be defined by the customer or contractor.
Each requirement may have effort associated with it such as verification and validation, functional
decomposition, functional allocation, etc. System requirements can typically be quantified by
counting the number of applicable shalls/wills/shoulds/mays in the system or marketing specification.
Note: some work is involved in decomposing requirements so that they may be counted at the
appropriate system-of-interest.

44

requirements at different levels of decomposition and with different levels of

sophistication. Customers may provide high level requirements in the form of

system capabilities, objectives, or measures of effectiveness; these are translated into

requirements by the contractor and decomposed into different levels depending on

the role of the system integrator. The prime contractor could decompose the initial

set of requirements and expand them to subcontractors below it as illustrated in

Figure 5.

Customer Contractor

Capabilities, Objectives, or
Measures of Effectiveness 10 Requirements (prime)

100 Requirements (sub)

10:1
expansion

1,000 Requirements (sub)

10:1
expansion

Figure 5 Notional Example of Requirements Translation from Customer to
Contractor

For purposes of this example, the expansion ratio from one level of

requirement decomposition to the other is assumed to be 10:1. Different systems

will exhibit different levels of requirements decomposition depending on the

application domain, customer’s ability to write good system requirements, and the

functional size of the system. The requirements flow framework in Figure 5

provides a starting point for the development of rules to count requirements. These

rules were designed to increase the reliability of requirements counting by different

45

organizations on different systems regardless of their application domain. The five

rules are as follows:

1. Determine the system of interest. For an airplane, the system of interest

may be the avionics subsystem or the entire airplane depending on the

perspective of the organization interested in estimating systems

engineering. This key decision needs to be made early on to determine the

scope of the COSYSMO estimate and identify the requirements that are

applicable for the chosen system.

2. Decompose system objectives, capabilities, or measures of effectiveness

into requirements that can be tested, verified, or designed. The

decomposition of requirements must be performed by the organization using

COSYSMO. The level of decomposition of interest for COSYSMO is the

level in which the system will be designed and tested; which is equivalent to

the TYPE A, System/Segment Specification (MIL-STD 490-A 1985).

3. Provide a graphical or narrative representation of the system of interest

and how it relates to the rest of the system. This step focuses on the

hierarchical relationship between the system elements. This information can

help describe the size of the system and its levels of design. It serves as a

sanity check for the previous two steps.

4. Count the number of requirements in the system/marketing specification

or the verification test matrix for the level of design in which systems

engineering is taking place in the desired system of interest. The focus of

the counted requirements needs to be for systems engineering. Lower level

46

requirements may not be applicable if they have no effect on systems

engineering. Requirements may be counted from the Requirements

Verification Trace Matrix (RVTM) that is used for testing system

requirements. The same rules apply as before: all counted requirements must

be at the same design or bid level and lower level requirements must be

disregarded if they do not influence systems engineering effort.

5. Determine the volatility, complexity, and reuse of requirements. Once

the quantity of requirements has been determined, the three adjustment

factors can be applied. Currently three complexity factors have been

determined: easy, nominal, and difficult. These weights for these factors

were determined using expert opinion through the use of a Delphi survey

(Valerdi et al 2003). The volatility and reuse factors are optional and depend

on the version of COSYSMO implementation being used.

The objective of the five steps is to lead users down a consistent path of

similar logic when determining the number of system requirements for the purposes

of estimating systems engineering effort in COSYSMO. It has been found that the

level of decomposition described in step #2 may be the most volatile step as

indicated by the data collected thus far. To alleviate this, a framework of software

use case decomposition was adopted (Cockburn 2001). The basic premise behind

the framework is that different levels exist for specific system functions. Choosing

the appropriate level can provide a focused basis for describing the customer and

developer needs. A metaphor is used to describe four levels: sky level, kite level, sea

level, and underwater level. The development of COSYSMO can be used to further

47

illustrate the sea level metaphor. The summary level, or sky level, represents the

highest level that describes either a strategic or system scope.

For example, a sky level goal for COSYSMO is to “build a systems

engineering cost model.” The stakeholders of the model stated this as their basic

need that in turn drives a collection of user level goals. A kite level goal provides

more detailed information as to “how” the sky level goal will be satisfied.

Continuing the example, it includes the standards that will drive the definition of

systems engineering and system life cycle phases. The sea level goals represent a

user level task that is the target level for counting requirements in COSYSMO. It

involves utilizing size and cost drivers, definitions, and counting rules that will

enable the accurate estimation of systems engineering effort, also providing more

information on how the higher goals at the kite level will be satisfied. The sea level

is also important because it describes the environment in which the model developers

interact with the users and stakeholders. A step below is the underwater level which

is of more concern to the developer. In this example, it involves the selection of

implementation and analysis tools required to meet the user goals. The examples are

mapped to Cockburn’s hierarchy in Figure 6.

48

perform statistical
analysis of
historical data

The system shall estimate SE cost

adopt EIA 632 as
the WBS and ISO
15288 as the life
cycle standard

adjust model’s
productivity
factors based on
local calibration

utilize size and
cost drivers,
definitions, and
counting rules

provide rules for
data collection
and local
calibration

implement model
in MS Excel

adopt ISO 15288
to define system
life cycle phases

Figure 6 Cockburn’s Hierarchy as Related to COSYSMO Use Case Levels

(adapted from Cockburn 2001)

Going down the hierarchy from sky to underwater provides information on

“how” a particular requirement will be satisfied by the system while going up the

hierarchy provides information on “why” a particular requirement exists.

3.2.2. Number of System Interfaces

System interfaces are also important drivers of systems engineering effort.

The greatest leverage in system architecting is at the interfaces (Rechtin 1991) but

this leverage comes at a price. Both the quantity and complexity of interfaces

require more systems engineering effort.

Table 9 Number of System Interfaces Definition

Number of System Interfaces
This driver represents the number of shared physical and logical boundaries between system
components or functions (internal interfaces) and those external to the system (external
interfaces). These interfaces typically can be quantified by counting the number of external and
internal system interfaces among ISO/IEC 15288-defined system elements.

49

Table 10 Number of System Interfaces Rating Scale
Easy Nominal Difficult

- Simple message - Moderate complexity - Complex protocol(s)
- Uncoupled - Loosely coupled - Highly coupled
- Strong consensus - Moderate consensus - Low consensus
- Well behaved - Predictable behavior - Poorly behaved

 Similar problems of decomposition exist for this driver because interfaces are

defined at multiple levels of the system hierarchy. The target level for counting

interfaces involves the following rules:

1. Focus on technical interfaces only. Other parameters in the model address

organizational interfaces.

2. Identify the interfaces that involve systems engineering for your system

of interest. Counting interfaces at the integrated circuit level is often too low.

Sometimes there may be multiple levels of interfaces connecting higher

system elements, lower system elements, and elements at the same level of

the system hierarchy.

3. Determine the number of unique interface types. If twenty interfaces exist

but there are only two types of interfaces, then the relevant number to count

is two.

4. Focus on the logical aspects of the interface. This provides a better

indicator of the complexity of each interface from a systems engineering

standpoint. Counting the number of wires in an interface may not be a good

indicator. Instead, the protocol used or the timing requirement associated

with the interface will be a better indicator.

5. Determine complexity of each interface. Bidirectional interfaces count as

two interfaces because they require coordination on both ends.

50

3.2.3. Number of Algorithms

 The number and complexity of algorithms is also a useful driver for

determining systems engineering size and ultimately effort. Both hardware and

software algorithms increase systems engineering activities throughout all phases of

the life cycle.

Table 11 Number of System-Specific Algorithms Definition

Table 12 Number of System-Specific Algorithms Rating Scale
Easy Nominal Difficult

- Algebraic - Straight forward calculus - Complex constrained
optimization; pattern
recognition

- Straightforward structure - Nested structure with decision
logic

- Recursive in structure
 with distributed control

- Simple data - Relational data - Noisy, ill-conditioned data
- Timing not an issue - Timing a constraint - Dynamic, with timing and

uncertainty issues
- Adaptation of library-based
solution

- Some modeling involved - Simulation and modeling
involved

 Since the influence of algorithms can vary by organization, the process of

identifying an algorithm for COSYSMO can also be different. Ultimately there are

different sources from which the algorithms can be obtained. For example, during

the conceptual stage of a system, there is a limited amount of information available.

Only functional block diagrams may be available which can serve as indicators of

how many algorithms may exist in the system. As the system design evolves and

more uncertainties are resolved, there are more sources available to aid in the

Number of System-Specific Algorithms
This driver represents the number of newly defined or significantly altered functions that require
unique mathematical algorithms to be derived in order to achieve the system performance
requirements. As an example, this could include a complex aircraft tracking algorithm like a
Kalman Filter being derived using existing experience as the basis for the all aspect search
function. Another example could be a brand new discrimination algorithm being derived to identify
friend or foe function in space-based applications. The number can be quantified by counting the
number of unique algorithms needed to realize the requirements specified in the system specification
or mode description document.

51

estimation of algorithms. Table 13 includes examples of the entities that are

available at different stages of the system life cycle and their corresponding

attributes that can be used to estimate the number of algorithms. They are listed in

typical order of availability; the first entities are typically available during the

conceptual stages while the latter ones are available as the system design evolves.

Table 13 Candidate Entities and Attributes for Algorithms

Entities Attributes
Historical database # of algorithms
Functional block diagram # of functions that relate to algorithms
Mode description document algorithms
Risk analysis algorithm related risks
System specification algorithms
Subsystem description documents algorithms
Configuration baseline technical notes

 The attributes may provide more detailed information about the functions that

the algorithms perform. This can aid in determining the complexity of that algorithm,

an important step in estimating size for COSYSMO.

 Determining the quantity of algorithms in a system can also differ across

organizations. System algorithms are unique in the sense that they are highly related

to the “# of Requirements” and “# of Interfaces” size drivers. If not explicitly

defined up front, the number of algorithms can be derived from a system-level

requirement or deduced from the properties of an interface. In terms of systems

engineering effort, the existence of an algorithm introduces additional work related

to simulation, implementation, test cases, documentation, and support. These

activities are illustrated in Figure 7.

52

Figure 7 Effort Decomposition Associated With an Algorithm

 There exists an entire process in which the general types of algorithms

needed are determined, math is developed to implement them, algorithm-related

requirements are communicated to other designers (subsystems, hardware, software,

etc.) for what data and data quality requirements, and algorithm trade-offs are

performed. These activities are within the scope of systems engineering and are

covered in COSYSMO.

 In some cases, a significant amount of effort associated with systems

engineering as related to algorithms will involve reuse which can reduce the

complexity of algorithms and in turn the effort associated with their implementation.

Conversely, there may be situations where algorithms are unprecedented and loosely

defined. From an implementation standpoint, the number of design constraints –

such as timing restrictions or processor limitations – may influence the complexity of

53

software algorithms when compared to hardware algorithms. In either case, both

types of algorithms should be counted and assigned a level of complexity for input

into COSYSMO.

 To demonstrate the process of identifying and counting an algorithm an

example is provided from the field of signal compression. For purposes of this

example it is assumed that a system specification has been developed. From this

specification, the following system level requirement is obtained: All images

captured by the sensor shall be compressed in compliance with MPEG-4 coding

standard. This requirement triggers several possible solutions that meet the required

standard. A developer may decide to implement the requirement with a well-known

algorithm used for compressing visual images: MPEG-4 Visual Texture Coding

(VTC). As illustrated in Figure 7 this algorithm generates products associated with it

which lead to increased systems engineering effort that is estimated by COSYSMO.

Other effort generated by the implementation specification, such as software

engineering, is not estimated by COSYSMO. Models such as COCOMO II should

be used to estimate the software development effort. For purposes of COSYSMO,

the MPEG-4 VTC algorithm counts as one distinct algorithm even if it is used

multiple times in the same system. Since this is a well known algorithm with

predictable behavior it qualifies as an “easy” algorithm.

54

3.2.4. Number of Operational Scenarios

The fourth and final size driver captures the operational scenarios of a system.

The more operational scenarios – and the more complex these scenarios are – the

more systems engineering effort will be required.

Table 14 Number of Operational Scenarios Definition

Table 15 Number of Operational Scenarios Rating Scale
Easy Nominal Difficult

- Well defined - Loosely defined - Ill defined
- Loosely coupled - Moderately coupled - Tightly coupled or many

dependencies/conflicting
requirements

- Timelines not an issue - Timelines a constraint - Tight timelines through
scenario network

- Few, simple off-nominal
threads

- Moderate number or complexity
of off-nominal threads

- Many or very complex off-
nominal threads

 In a similar way requirements were defined at sea level, operational scenarios

must also be identified at a level that is of interest to systems engineering. An

example of a typical target level for operational scenarios is shown in Figure 8.

Number of Operational Scenarios
This driver represents the number of operational scenarios that a system must satisfy.
Such scenarios include both the nominal stimulus-response thread plus all of the off-
nominal threads resulting from bad or missing data, unavailable processes, network
connections, or other exception-handling cases. The number of scenarios can typically
be quantified by counting the number of system test thread packages or unique end-to-
end tests used to validate the system functionality and performance or by counting the
number of use cases, including off-nominal extensions, developed as part of the
operational architecture.

55

process error
scenario #1 for
sale transaction

The system shall process financial transactions

process sale
transaction
workflow

process deposit
transaction
workflow

provide sale
scenario in
English

allow for
discounts and
coupons to be
used

… …

Figure 8 Operational Scenario Example

(adapted from Cockburn 2001)

 Hypothesis #1 proposes that the weighted sum of these drivers is a good

predictor of size and as size increases the amount of systems engineering effort also

increases. Given that the calculation for size is a composite measure of the four size

drivers it is evident that a system can be considered large a number of different ways.

For example, a system with multiple independent interfaces and very few

requirements can be similar in size to a system with few independent interfaces and

many requirements.

 The use of the words “multiple”, “very few”, “few”, and “many” add a

dimension of complexity as the subjectivities in the attributes is quantified. Great

care must be taken to use consistent interpretations of these words on systems being

estimated. The cost drivers in the model, somewhat subjective in nature, attempt to

capture the most important system and development environment characteristics that

drive systems engineering cost.

56

3.3. Systems Engineering Cost Drivers

The cost drivers in the model represent the multiplicative part of the model

introduced in Section 3.1. These drivers are also referred to as effort multipliers

since they affect the entire systems engineering effort calculation in a multiplicative

manner. Assigning ratings for these drivers is not as straight forward as the size

drivers mentioned previously. The difference is that most of the cost drivers are

qualitative in nature and require subjective assessment in order to be rated. Table 16

shows the data items or information needed in order to assess the cost drivers.

Table 16 Cost Drivers and Corresponding Data Items
Driver Name Data Item

Requirements understanding Subjective assessment of the system requirements
Architecture understanding Subjective assessment of the system architecture
Level of service requirements Subjective difficulty of satisfying the key performance

parameters
Migration complexity Influence of legacy system (if applicable)
Technology risk Maturity, readiness, and obsolescence of technology
Documentation to match life cycle
needs

Breadth and depth of required documentation

and Diversity of
installations/platforms

Sites, installations, operating environment, and diverse
platforms

of Recursive levels in the design Number of applicable levels of the Work Breakdown Structure
Stakeholder team cohesion Subjective assessment of all stakeholders
Personnel/team capability Subjective assessment of the team’s intellectual capability
Personnel experience/continuity Subjective assessment of staff consistency
Process capability CMMI level or equivalent rating
Multisite coordination Location of stakeholders and coordination barriers
Tool support Subjective assessment of SE tools

In the COCOMO II model, an ensemble of similar drivers is used to modify

the amount of effort to reflect product, platform, personnel, and project factors that

have been shown to influence cost and schedule for software projects. It has been

determined that these themes were not appropriate for systems engineering. New

57

themes have been developed that aggregate the unique phenomena observed in

systems engineering. These themes are:

 Understanding. Drivers that capture the level of comprehension and

familiarity of the systems engineering team.

 Complexity. Drivers that capture the difficulty, risk, and program-related

factors that can influence systems engineering effort.

 Operations. Drivers that capture the planning involved with the

implementation from the systems engineering standpoint.

 People. Drivers that capture the capability of the systems engineering

team.

 Environment. Drivers that capture the level of sophistication under which

systems engineering is being performed.

The criteria for assigning cost drivers to these themes included driver polarity

and correlation. Drivers that were associated with productivity savings such as

“understanding” or “capability” drivers were grouped together while those associated

with productivity penalties such as “complexity” were grouped together. Moderately

correlated parameters were also combined based on the results from the correlation

matrix in Appendix F.

Hypothesis #2 proposes that clusters of these drivers are accurate predictors

of systems engineering effort. Different permutations of these drivers were

compared and the best set, shown in Figure 9, was selected based on the

aforementioned criterion.

58

Figure 9 Cost Driver Clustering

In addition to a description, each driver was assigned a rating scale that

described different attributes that could be used to rate the degree of impact on

systems engineering effort. Rating levels included: Very Low, Low, Nominal, High,

Very High, and Extra High. The Nominal level represents zero impact on

productivity and is therefore assigned a multiplier of 1.0. Levels above and below

nominal are assigned multipliers above or below 1.0 to reflect their impact on

systems engineering effort. The increase or decrease of multipliers along the rating

scale will depend on the polarity of each driver. For example, the requirements

understanding is defined in such a way that Very Low understanding will have a

productivity penalty on systems engineering. As a result, it will have a multiplier of

greater than 1.0, such as 1.87, to reflect an 87% productivity penalty. The

multipliers for the rating scaled are provided in section 5.1.

3.3.1. Understanding Factors

The first cost driver theme deals with the systems engineering team’s

comprehension of and familiarity with the system of interest. Higher ratings for

59

these drivers represent a productivity savings. There are four understanding factors,

the most influential being Requirements Understanding.

Table 17 Requirements Understanding Definition

Table 18 Requirements Understanding Rating Scale
Very low Low Nominal High Very High

Poor: emergent
requirements or
unprecedented
system

Minimal: many
undefined areas

Reasonable: some
undefined areas

Strong: few
undefined areas

Full understanding
of requirements,
familiar system

Counting the number of requirements and rating their complexities is

addressed by the size driver. But the overall degree of understanding of these

requirements – by all the stakeholders – has a multiplicative effect on the total

amount of effort needed for systems engineering.

Table 19 Architecture Understanding Definition

Table 20 Architecture Understanding Rating Scale
Very low Low Nominal High Very High

Poor
understanding
of architecture
and COTS,
unprecedented
system

Minimal
understanding of
architecture and
COTS, many
unfamilar areas

Reasonable
understanding of
architecture and
COTS, some
unfamiliar areas

Strong
understanding of
architecture and
COTS, few
unfamiliar areas

Full understanding
of architecture,
familiar system
and COTS

>6 level WBS 5-6 level WBS 3-4 level WBS 2 level WBS

Understanding the architecture is also an important part of being able to

design the system (Rechtin 1991). The understanding of the system architecture is

Architecture understanding
This cost driver rates the relative difficulty of determining and managing the system architecture in terms of
platforms, standards, components (COTS/GOTS/NDI/new), connectors (protocols), and constraints. This
includes tasks like systems analysis, tradeoff analysis, modeling, simulation, case studies, etc.

Requirements understanding
This cost driver rates the level of understanding of the system requirements by all stakeholders including
systems, software, hardware, customers, team members, users, etc. Primary sources of added systems
engineering effort are unprecedented systems, unfamiliar domains, or systems whose requirements are
emergent with use.

60

different than the understanding of requirements and therefore warrants its own

driver. Besides unprecedentedness and domain unfamiliarity, primary sources of

added systems engineering effort are new technologies, complex COTS products and

choices, and depth of the product hierarchy or Work Breakdown Structure (WBS).

Table 21 Stakeholder Team Cohesion Definition

Table 22 Stakeholder Team Cohesion Rating Scale
 Very Low Low Nominal High Very High
Culture Stakeholders

with diverse
expertise, task
nature,
language,
culture,
infrastructure
Highly
heterogeneous
stakeholder
communities

Heterogeneous
stakeholder
community
Some similarities
in language and
culture

Shared project
culture

Strong team
cohesion and
project culture
Multiple
similarities in
language and
expertise

Virtually
homogeneous
stakeholder
communities
Institutionaliz
ed project
culture

Compatibili
ty

Highly
conflicting
organizational
objectives

Converging
organizational
objectives

Compatible
organizational
objectives

Clear roles &
responsibilities

Strong
mutual
advantage to
collaboration

Familiarity
and trust

Lack of trust Willing to
collaborate, little
experience

Some familiarity
and trust

Extensive
successful
collaboration

Very high
level of
familiarity
and trust

The mutual culture, compatibility, familiarity, and trust of the stakeholders

involved in the development of the system are key project factors that have

significant importance in the systems engineering domain. The group’s ability to

work together is a factor that has been highlighted as being important for software

system development (Brooks 1995), and analyzed as a significant software cost

driver in COCOMO II (Boehm et al 2000).

Stakeholder team cohesion
Represents a multi-attribute parameter which includes leadership, shared vision, diversity of
stakeholders, approval cycles, group dynamics, Integrated Product Team framework, team
dynamics, trust, and amount of change in responsibilities. It further represents the heterogeneity
in stakeholder community of the end users, customers, implementers, and development team.

61

Table 23 Personnel Experience/Continuity Definition

Table 24 Personnel Experience/Continuity Rating Scale
 Very low Low Nominal High Very High
Experience Less than 2

months
1 year
continuous
experience,
other technical
experience in
similar job

3 years of
continuous
experience

5 years of
continuous
experience

10 years of
continuous
experience

Annual
Turnover

48% 24% 12% 6% 3%

The team experience rating measures the systems engineers’ experience

relevant to the system of interest and its context. It should be noted that often times

many years of experience does not translate to competency in a certain area.

Experience is rated as of the beginning of the project and is expected to increase as

the project goes on, unless adversely affected by personnel turnover.

3.3.2. Complexity Factors

 Complexity factors account for variation in effort required to develop

systems caused by the characteristics of the system under development. A system

that has multiple “ilities”, immature technology, a complex design, and excessive

documentation will require more effort to complete. There are four complexity

factors, the most influential being Level of Service Requirements.

Table 25 Level of Service Requirements Definitions

Level of service requirements
This cost driver rates the difficulty and criticality of satisfying the ensemble of level of service
requirements, such as security, safety, response time, interoperability, maintainability, Key
Performance Parameters (KPPs), the “ilities”, etc.

Personnel experience/continuity
The applicability and consistency of the staff at the initial stage of the project with respect to the domain,
customer, user, technology, tools, etc.

62

Table 26 Level of Service Requirements Rating Scale
 Very low Low Nominal High Very High

Difficulty Simple; single
dominant KPP

Low, some
coupling among
KPPs

Moderately
complex,
coupled KPPs

Difficult,
coupled KPPs

Very complex,
tightly coupled
KPPs

Criticality Slight
inconvenience

Easily
recoverable
losses

Some loss High financial
loss

Risk to human
life

The level of service requirements, “ilities”, or Key Performance Parameters,

provide an indication of the complexity of the systems engineering effort required to

meet all of the stakeholder requirements. The “ilities” may include: reliability,

usability, performance, affordability, maintainability, and so forth. The “ilities” are

imperatives of the external world as expressed at the boundaries with the internal

world of the system (Rechtin 1991). Reliability, usability, and performance are the

imperative of the user, affordability that of the client, and maintainability that of the

operator. This driver has two different viewpoints, difficulty and criticality, that help

represent the two dimensions associated with this driver. Ratings for these

viewpoints are often not the same. In cases where systems may have a high degree

of difficulty in meeting a response time requirement, there is an equally severe level

of criticality associated with not meeting it.

Table 27 Technology Risk Definition

Technology Risk
The maturity, readiness, and obsolescence of the technology being implemented. Immature or
obsolescent technology will require more Systems Engineering effort.

63

Table 28 Technology Risk Rating Scale
 Very Low Low Nominal High Very High

Lack of
Maturity

Technology
proven and
widely used
throughout
industry

Proven through
actual use and
ready for
widespread
adoption

Proven on pilot
projects and
ready to roll-
out for
production jobs

Ready for pilot
use

Still in the
laboratory

Lack of
Readiness

Mission proven
(TRL 9)

Concept
qualified (TRL
8)

Concept has
been
demonstrated
(TRL 7)

Proof of
concept
validated (TRL
5 & 6)

Concept
defined (TRL 3
& 4)

Obsolescence - Technology is
the state-of-the-
practice
- Emerging
technology
could compete
in future

- Technology
is stale
- New and
better
technology is
ready for pilot
use

- Technology
is outdated and
use should be
avoided in new
systems
- Spare parts
supply is
scarce

Another attribute of the project may be the risk being employed by adopting a

certain technology. Some work has been done to show the negative effects of

technologies over a long time horizon (Valerdi and Kohl 2004) and frameworks have

been developed to show how products with short life cycles can affect the overall

project risk (Smith 2004). The maturity of the technology or lack thereof, has a

significant effect on the amount of systems engineering effort required on a project.

In addition, too mature or obsolete technology can increase the necessary amount of

systems engineering effort.

Table 29 Number of Recursive Levels in the Design Definition

of recursive levels in the design
The number of levels of design related to the system-of-interest (as defined by ISO/IEC 15288)
and the amount of required SE effort for each level.

64

Table 30 Number of Recursive Levels in the Design Rating Scale
 Very Low Low Nominal High Very High

Number
of levels

1 2 3-5 6-7 >7

Required
SE effort

Focused on
single
product

Some vertical
and horizontal
coordination

More complex
interdependencies
coordination, and
tradeoff analysis

Very complex
interdependencies
coordination, and
tradeoff analysis

Extremely
complex
interdependencies
coordination, and
tradeoff analysis

Larger and more complex systems require more systems engineering effort

because of the growing number of complexities involved in horizontal and vertical

requirements negotiation, tradeoff analyses, architecting, interface definition,

scheduled coordination, risk management, and integration. In principle, the systems

engineering effort required for a particular system depends solely on the system-of-

interest included below it in the design hierarchy, as defined in ISO/IEC 15288.

However, a 2-level system within a 4-level system of systems may have more

coordination and integration concerns than a standalone 2-level system.

Table 31 Documentation Match to Life Cycle Needs Definition

Table 32 Documentation Match to Life Cycle Needs Rating Scale
 Very low Low Nominal High Very High

Formality General goals,
stories

Broad guidance,
flexibility is
allowed

Risk-driven
degree of
formality

Partially
streamlined
process, largely
standards-driven

Rigorous,
follows strict
standards
and
requirements

Detail Minimal or no
specified
documentation
and review
requirements
relative to life
cycle needs

Relaxed
documentation
and review
requirements
relative to life
cycle needs

Risk-driven
degree of
formality,
amount of
documentation
and reviews in
sync and
consistent with
life cycle needs
of the system

High amounts of
documentation,
more rigorous
relative to life
cycle needs,
some revisions
required

Extensive
documentati
on and
review
requirements
relative to
life cycle
needs,
multiple
revisions
required

Documentation match to life cycle needs
The formality and detail of documentation required to be formally delivered based on the life cycle
needs of the system.

65

Some system products require large amounts of documentation. The

importance and enforcement of this requirement is often related to the type of system

being developed and the nature of the system’s users, operators, and maintainers.

Less documentation is needed when the users and operators are expert and stable,

and the developers become the maintainers. The importance of this factor, then, is

based on the match or mismatch of documentation requirements to the life cycle

needs of the system. Attempting to save costs via very low or low documentation

levels will generally incur extra costs during the maintenance portion of the life cycle.

Poor or missing documentation can also cause additional problems in other stages of

the life cycle. This driver includes two dimensions, formality and detail, to represent

the different aspects of documentation that need to be considered. A nominal rating

involves documentation consistent with life cycle needs. Its degree of formality and

detail are risk-driven; if it is low risk not to include something, it is not included.

3.3.3. Operations Factors

The operations factors refer to the hardware and software environments that a

system will operate within. Depending on the system of interest, the platform might

be an aircraft carrier; an aircraft; an airborne missile; a navigation, guidance, and

control system; or a level of the computer system’s software infrastructure. The

existence of legacy issues may also impact the amount of systems engineering effort

required to incorporate the new system with existing technologies and cultures.

66

Table 33 Number and Diversity of Installations/Platforms Definition

Table 34 Number and Diversity of Installations/Platforms Rating Scale
 Nominal High Very High Extra High

Sites/
installations

Single installation
site or configuration

2-3 sites or diverse
installation
configurations

4-5 sites or diverse
installation
configurations

>6 sites or diverse
installation
configurations

Operating
environment

Existing facility
meets all known
environmental
operating
requirements

Moderate
environmental
constraints;
controlled
environment (i.e.,
A/C, electrical)

Ruggedized mobile
land-based
requirements; some
information security
requirements.
Coordination
between 1 or 2
regulatory or cross
functional agencies
required.

Harsh environment
(space, sea
airborne) sensitive
information security
requirements.
Coordination
between 3 or more
regulatory or cross
functional agencies
required.

<3 types of
platforms being
installed and/or
being phased
out/replaced

4-7 types of
platforms
being installed
and/or being phased
out/replaced

8-10 types of
platforms
being installed
and/or being phased
out/replaced

>10 types of
platforms being
installed and/or
being phased
out/replaced

Homogeneous
platforms

Compatible
platforms

Heterogeneous, but
compatible
platforms

Heterogeneous,
incompatible
platforms

Platforms

Typically
networked using a
single industry
standard protocol

Typically
networked using a
single industry
standard protocol
and multiple
operating systems

Typically
networked using a
mix of industry
standard protocols
and proprietary
protocols; single
operating systems

Typically
networked using a
mix of industry
standard protocols
and proprietary
protocols; multiple
operating systems

A particular system may have significant platform considerations if it has to

address many installations or configurations, it is required to operate in

unprecedented environments, or it has to accommodate many heterogeneous

platforms. These three viewpoints are represented in the driver rating scale.

and diversity of installations/platforms
The number of different platforms that the system will be hosted and installed on. The
complexity in the operating environment (space, sea, land, fixed, mobile, portable,
information assurance/security, constraints on size weight, and power). For example, in
a wireless network it could be the number of unique installation sites and the number of
and types of fixed clients, mobile clients, and servers. Number of platforms being
implemented should be added to the number being phased out (dual count).

67

Table 35 Migration Complexity Definition

Table 36 Migration Complexity Rating Scale
 Nominal High Very High Extra High

Legacy
contractor

Self; legacy system
is well documented.
Original team
largely available

Self; original
development team
not available; most
documentation
available

Different
contractor; limited
documentation

Original contractor
out of business; no
documentation
available

Effect of
legacy

system on
new system

Everything is new;
legacy system is
completely replaced
or non-existent

Migration is
restricted to
integration only

Migration is related
to integration and
development

Migration is related
to integration,
development,
architecture and
design

 The presence of a legacy system can introduce multiple aspects of effort that

are related to the contractor of the original system, the number of sites or

installations, the operating environment, the percent of legacy components that are

being affected, and the cutover requirements that affect the new system. If the

project has no significant legacy system concerns, a Nominal rating is given.

3.3.4. People Factors

People factors have a strong influence in determining the amount of effort

required to develop a system. These factors are for rating the systems engineering

team’s vs. individual’s capability and experience and for rating the project’s process

capability.

Table 37 Personnel/Team Capability Definition

Table 38 Personnel/Team Capability Rating Scale
Very Low Low Nominal High Very High

15th percentile 35th percentile 55th percentile 75th percentile 90th percentile

Personnel/team capability
Composite intellectual capability of a team of Systems Engineers (compared to the national pool of
SEs) to analyze complex problems and synthesize solutions.

Migration complexity
This cost driver rates the extent to which the legacy system affects the migration complexity, if any.
Legacy system components, databases, workflows, environments, etc., may affect the new system
implementation due to new technology introductions, planned upgrades, increased performance,
business process reengineering, etc.

68

 The team capability driver combines the intellectual horsepower of the team

members, how much of the workday horsepower is focused on the problems, and the

extent to which the horsepower is pulling in compatible directions. It is measured

with respect to an assumed national or global distribution of team capabilities.

Table 39 Process Capability Definition

Table 40 Process Capability Rating Scale
 Very Low Low Nominal High Very High Extra High

A
ss

es
sm

en
t

R
at

in
g

Level 0 (if
continuous
model)

Level 1 Level 2 Level 3 Level 4 Level 5

Pr
oj

ec
t T

ea
m

 B
eh

av
io

ra
l C

ha
ra

ct
er

is
tic

s

Ad Hoc
approach to
process
performance

Performed
SE process,
activities
driven only
by immediate
contractual
or customer
requirements,
SE focus
limited

Managed SE
process,
activities
driven by
customer and
stakeholder
needs in a
suitable
manner, SE
focus is
requirements
through
design,
project-
centric
approach –
not driven by
organizational
processes

Defined SE
process,
activities
driven by
benefit to
project, SE
focus is
through
operation,
process
approach
driven by
organizational
processes
tailored for
the project

Quantitatively
Managed SE
process,
activities
driven by SE
benefit, SE
focus on all
phases of the
life cycle

Optimizing
SE process,
continuous
improvement,
activities
driven by
system
engineering
and
organizational
benefit, SE
focus is
product life
cycle &
strategic
applications

SE
M

P
So

ph
is

tic
at

io
n

Management
judgment is
used

SEMP is used
in an ad-hoc
manner only
on portions of
the project that
require it

Project uses a
SEMP with
some
customization

Highly
customized
SEMP exists
and is used
throughout the
organization

The SEMP is
thorough and
consistently
used;
organizational
rewards are in
place for those
that improve it

Organization
develop best
practices for
SEMP; all
aspects of the
project are
included in the
SEMP;
organizational
rewards exist
for those that
improve it

Process capability
The consistency and effectiveness of the project team at performing SE processes. This may be based on
assessment ratings from a published process model (e.g., CMMI, EIA-731, SE-CMM, ISO/IEC15504). It
can alternatively be based on project team behavioral characteristics, if no assessment has been

69

 The procedure for determining a project’s systems engineering process

capability is organized around the Software Engineering Institute’s Capability

Maturity Model Integration® (CMMI). The time period for rating process capability

is the time the project starts, and should be a reflection of the project only – not of

the total organization’s maturity level. There are two methods of rating process

capability. The first captures the CMMI® continuous model (CMMI 2002; Shrum

2000) and the systems engineering maturity model EIA 731 (ANSI/EIA 2002). The

second combines the degrees of mastery of each process area as done for the

software CMM in COCOMO II (Clark 1997; Boehm et al 2000). Only the first

method is employed here. The project team behavioral characteristics are somewhat

analogous to the CMMI levels and can be used by organizations that do not use

CMMI ratings. The final viewpoint captures levels of sophistication of the Systems

Engineering Management Plan. The higher the sophistication of this document, the

higher the systems engineering effort savings because the level of planning

associated with a SEMP is indicative of well-managed systems engineering

processes.

3.3.5. Environment Factors

 The environment factors capture the sophistication of the systems

engineering environment in a project. Coordination and support are the two drivers

that make up this theme.

Table 41 Multisite Coordination Definition

Multisite coordination
Location of stakeholders, team members, resources, corporate collaboration barriers.

70

Table 42 Multisite Coordination Rating Scale
 Very Low Low Nominal High Very High Extra High

C
ol

lo
ca

tio
n

International,
severe time
zone impact

Multi-city
and multi-
national,
considerable
time zone
impact

Multi-city
or multi-
company,
some time
zone effects

Same city or
metro area

Same building
or complex,
some co-
located
stakeholders or
onsite
representation

Fully co-
located
stakeholders

C
om

m
un

ic
at

i
on

s

Some phone,
mail

Individual
phone, FAX

Narrowband
e-mail

Wideband
electronic
communication

Wideband
electronic
communication,
occasional
video
conference

Interactive
multimedia

C
or

po
ra

te
 c

ol
la

bo
ra

tio
n

ba
rr

ie
rs

Severe
export and
security
restrictions

Mild export
and security
restrictions

Some
contractual
&
Intellectual
property
constraints

Some
collaborative
tools &
processes in
place to
facilitate or
overcome,
mitigate
barriers

Widely used
and accepted
collaborative
tools &
processes in
place to
facilitate or
overcome,
mitigate
barriers

Virtual team
environment
fully
supported by
interactive,
collaborative
tools
environment

Given the increasing frequency of multisite developments, and indications

that these developments require a significant amount of coordination, it is important

to account for their impact on systems engineering. Determining the rating for this

driver involves assessing three factors: collocation, communications, and corporate

collaboration barriers.

Table 43 Tool Support Definition

Table 44 Tool Support Rating Scale
Very low Low Nominal High Very High

No SE tools Simple SE tools,
little integration

Basic SE tools
moderately
integrated
throughout the
systems
engineering
process

Strong, mature SE
tools, moderately
integrated with
other disciplines

Strong, mature
proactive use of
SE tools
integrated with
process, model-
based SE and
management
systems

Tool support
Coverage, integration, and maturity of the tools in the Systems Engineering environment.

71

Systems engineering includes the use of tools that perform simulation,

modeling, optimization, data analysis, requirements traceability, design

representation, configuration management, document extraction, etc. The role of

tools and integrated support environments have been shown to be influential in

software system development (Baik 2000). Similarly, the use of extensive, well-

integrated, mature tool support can improve systems engineering productivity. The

effort to tailor such tools to a given project is included in COSYSMO estimates, but

the effort to develop major new project-specific tools is not. This effort can be

adequately covered in COCOMO II or other software cost estimation models.

Equally important to the model size and cost drivers is the process that was

used to arrive at the definitions and rating scales. The next section provides insight

on the methodology used to develop the current form of COSYSMO and some

limitations that are associated with the model.

72

4. Methodology

4.1. Research Design & Data Collection

The previous sections outlined the need for COSYSMO and outlined the

details of the individual drivers that affect systems engineering. The next steps in

developing a useful model involve (1) the identification of the appropriate research

designs and approaches; and (2) the correct application of these methods to the

research question.

Historically, research in the behavioral sciences goes back to the emergence

of psychology as a scientific discipline in the 1800’s. As psychology matured, it

evolved into a collection of methodologies which included scientific inquiry,

measurement, and data analysis (Freud 1924). Branches of psychology emerged and

provided different analytical techniques which incorporated statistical models and

experimental techniques (Berne 1964). Other behavior-oriented fields such as

sociology have contributed much in the sense of formal research methods and

research design (Babbie 2004). The field of education has provided frameworks for

categorizing different types of research designs, methods, and strategies (Isaac and

Michael 1997). In this light, the research approach adopted for this work is a

combination of field research and quasi-experimental research. The nature of the

research question – how to estimate systems engineering – played the major role in

determining the selection of these approaches.

Research Design. The purpose of field research design is to study the

background, current status, and environmental interactions of a given social unit.

73

The social units of interest are organizations that develop large-scale technology

enabled systems and the systems engineers that work on them. The expert data that

has been collected through the Delphi survey attempts to capture project phenomena

to help understand the role of systems engineering in an organization. The strengths

of this method are that it provides:

• an in-depth investigation of systems engineering organizations

• useful anecdotes or examples to illustrate more generalized statistical

findings

• observations of real world phenomena and opportunities to incorporate

them into theory

The purpose of quasi-experimental research design is to approximate the

conditions of the true experiment in a setting that does not allow control or

manipulation of all relevant variables. The multiple factors that affect the conditions

can compromise the validity of the design. Since the desired social unit – the

systems engineering organization – is influenced by multiple outside forces such as

corporate culture, customer pressures, financial priorities, employment challenges,

and technical obstacles, it is nearly impossible to control all of the conditions.

However, this method is useful because it allows for:

• investigation of cause-and-effect relationships

• variance of different type of projects operating under different conditions

• opportunity to test specific hypotheses

Combining the strengths of field research and quasi-experimental research

provides significant benefits because they use different perspectives in the data

74

collection process. Having the right frame of mind while defining the hypotheses

and then testing them is also extremely important. During the development of

COSYSMO, two different research approaches were adopted: interpretivist and

positivist. These two techniques provide fundamentally different approaches at

gathering data and validating it, but using them at different stages of the research

process can enable a more complete study (Klein and Myers 1999).

Research Approach. The interpretivist approach focuses on the complexity

of human sense making as the situation emerges. It enables researchers to learn as

much as possible about the phenomena being studied and arrive at qualitative

conclusions as to the most important factors. The interpretivist approach was used

when developing the size and cost driver definitions with USC corporate affiliates.

Through a series of interviews, surveys, and working group meetings the

identification and definition of the most significant size and cost drivers was

accomplished. The three criteria for the interpretivist approach are:

• Credibility – establishing a match between the constructed realities of

systems engineering and the respondents or stakeholders

• Transferability – presenting sufficiently detailed systems engineering cost

drivers as to enable judgment that these findings can be transferred to

other contexts

• Confirmability – Ensuring that the size and cost drivers are grounded in

systems engineering theory and not just a result of the researcher’s

imagination

75

Once the systems engineering drivers were defined, there was a shift in the

research strategy to a positivist approach. The positivist approach focuses on making

formal propositions, quantifiable measures of variables, hypothesis testing, and the

drawing of inferences about a phenomenon from a representative sample to a stated

population. The criteria associated with this approach are:

• Construct validity – establishing the right operational measures for

systems engineering size and cost

• Internal validity – establishing causal relationships between the drivers

and systems engineering effort

• External validity – establishing the domain to which the systems

engineering drivers can be generalized

• Reliability – ensuring that the relationships between the size and cost

drivers can be repeated with the same results

These are discussed in more detail in Chapter 5. The shift from interpretivist

to positivist is analogous to a qualitative to quantitative shift in research. While the

beginning of the model building process required an open mind about the

relationships between the size and cost drivers to effort, the latter part of the process

involved testing the hypotheses previously defined and determining their suitability

to the research questions. Using both of these approaches increases the chances of

obtaining interesting findings.

The two research approaches and two strategies were applied to the same

methodology used to develop the COCOMO model. This proven model

development process is outlined in the book Software Cost Estimation With

76

COCOMO II (Boehm, Abts et al. 2000) and illustrated in Figure 10. The

methodology has also been used to create the COCOTS (Abts, Boehm et al. 2001)

and the COQUALMO (Baik, Boehm et al. 2002) models, among others.

Analyze Existing
literature

1

2

3

4

5

6

7

Perform
Behavioral Analysis

Identify Relative
Significance

Perform Expert-
Judgement, Delphi
Assessment

Gather Project Data

Determine Bayesian
A-Posteriori Update

Gather more data;
refine model

A-PRIORI MODEL
+

SAMPLING DATA
=

A-POSTERIORI MODEL

Figure 10 Seven Step Modeling Methodology

The methodology involves (1) analyzing existing literature for factors that

affect systems engineering, (2) performing behavioral analyses to determine how the

project is behaviorally different with respect to activities performed if the parameter

has a higher versus lower rating, (3) identifying the relative significance of the

factors on the quantities being estimated, (4) performing the expert-judgment Delphi

assessment of the model parameters, (5) gathering historical project data and

determining statistical significance of the various parameters, (6) determining the

Bayesian posterior set of model parameters, and (7) gathering more data to refine the

model based on the experiences.

Steps 2, 4, 5, and 7 employ the field research design because they involve

interviews, surveys, and refinement of hypotheses. Steps 3, 6, and 7 employ the

77

quasi-experimental design because they involve the verification of the hypotheses.

The interpretivist approach is used in steps 1 and 2 as the research question is

approached with an open mind and the model is defined. The positivist approach is

used in steps 3, 4, 5, 6, and 7 because they involve the validation of the hypotheses.

The use of these designs and approaches, and their relationship to the seven step

methodology is summarized in Table 45.

Table 45 Research Designs and Approaches Used

in the 7-step Modeling Methodology
 Step1:

Analyze
existing
literature

Step 2:
Perform
behavioral
analysis

Step 3:
Identify
relative
significanc
e

Step 4:
Perform
expert
judgment;
Delphi
assessment

Step 5:
Gather
project
data

Step 6:
Determine
Bayesian
A-
Posteriori
update

Step 7:
Gather
more data;
refine
model

Field research
design ● ● ● ●

Quasi-
experimental
research design

 ● ● ●

Interpretivist
approach ● ●

Positivist
approach ● ● ● ● ●

USC CSE Corporate Affiliate Program. Leveraging off the strong

relationships with industry, a working group of 15 core members was assembled to

begin the development of the initial version of COSYSMO and identify possible

sources of data to use for calibration of the model. Since that time over a dozen

more CSE affiliate organizations have joined the working group and have

participated in various working group meetings to refine the model. A COSYSMO

e-mail distribution list has been created which contains over 100 subscribers. This

distribution list serves as the main communication channel for information pertaining

to COSYSMO and upcoming working group meetings. The diverse experience of

the working group members includes but is not limited to space systems hardware,

78

information technology, radars, satellite ground stations, and military aircraft. This

broad scope helps ensure that the model is robust enough to address multiple areas.

The typical involvement of affiliate companies is twofold. First, each

company provides a group of systems engineering experts to rate the model drivers

through the use of a wideband Delphi survey. This exercise allows for expert

judgement to be captured and included in the model. An additional source of

expertise has been the members of INCOSE who have provided extensive valuable

feedback that has greatly improved the model. Second, the Affiliate companies

provide historical project data for the COSYSMO calibration to validate the model

parameters. This ensures that the Cost Estimating Relationships (CERs) in the

model are appropriately weighed according to the data received from completed

projects.

Need for industry data to calibrate COSYSMO. Industrial participation in

the development of COSYSMO is key to the usefulness and relevance of the model.

Each driver has a corresponding item that can provide the necessary data for the

calibration. The initial industry calibration is essential to understanding the model’s

robustness, establishing initial relationships between parameters and outcomes, and

determining the validity of drivers. However, each organization using COSYSMO

will need to perform a local calibration. Through the industry calibration, the

working group can establish the values for various scale factors for each driver. This

might not be possible or feasible from a local calibration due to the size of the

calibration data set and the narrow scope of a single organization’s project database.

The industry data can also identify elements or features of the model that need

79

refinement. Obtaining data from multiple sources may also identify new drivers that

need to be included in future revisions of the model.

An additional important reason for an industry-level calibration is the

acceptance of the model for cost estimation by the Defense Contract Audit Agency

(DCAA). Even though each organization needs to prove the local calibration

matches the local organization's productivity and trends, the industry calibration

shows DCAA the model meets the expectations and standards of the Systems

Engineering industry. Ensuring that COSYSMO is compatible with these standards

plays an important role in its widespread acceptance and generalizability.

Data Collection. The collection of data itself, steps 4, 5, and 7, can be

divided into two unique efforts: one focusing on expert data and the other on

historical project data. The process used for collecting expert data, the Delphi

technique (Dalkey 1969) is performed in Step 4. Developed at The RAND

Corporation in the late 1940s, it serves as a way of making predictions about future

events - thus its name, recalling the divinations of the Greek oracle of antiquity,

located on the southern flank of Mt. Parnassus at Delphi (Ahern, Clouse et al. 2004).

More recently, the technique has been used as a means of guiding a group of

informed individuals to a consensus of opinion on some issue.

Participants are asked to make an assessment regarding the ratings of size and

cost drivers, individually in a preliminary round, without consulting the other

participants in the exercise. The first round results are then collected, tabulated, and

returned to each participant for a second round, during which the participants are

again asked to make an assessment regarding the same issue. The second time

80

around the participants had the knowledge of what the other participants responded

in the first round. The second round usually results in a narrowing of the range in

assessments by the group, pointing to some reasonable middle ground regarding the

issue of concern. The original Delphi technique avoided group discussion; but the

Wideband Delphi technique (Boehm 1981) accommodated group discussion between

assessment rounds. Two rounds of the Wideband Delphi survey for COSYSMO

have been completed. The results are shown in the next section.

The second data collection effort involves steps 5 and 7. One completed

project with an accurate count of systems engineering hours is considered one data

point. These projects have been contributed by CSE Affiliates that wish to have their

application domains considered in the model. To date, eleven projects have been

submitted to the COSYSMO repository for analysis.

Measurement reliability. An important experimental issue in field and

quasi-experimental research designs is that of measurement reliability (Jarvenpaa,

Dickson et al. 1985). This refers to the possible errors in measurement due to the

accuracy of the measurement instrument. Surveys were used for both the Delphi and

historical project data. Careful steps were taken to ensure that the design of the

survey instrument followed the best practices in questionnaire design (Sudman and

Bradburn 1982). Some of these are:

• Use of closed and open ended questions

• Knowledge questions to screen out respondents who lack sufficient

information

• Consistent measurement scales for all questions of the same type

81

• Variability in polarity of the questions to avoid repetition

• Efficient use of space on the questionnaire

• Adequate level of difficulty of questions

• Easier questions at the beginning; difficult questions at the end

• Ample time to fill out questionnaire, typically 1 month

• Questionnaire is as short as possible while still covering the key points

These questionnaire features help the reliability of the data collection. One

aspect outside of the researcher’s control, however, is the administration of the

questionnaire. Since these are sent to participants by e-mail there is no way to

control its administration. Respondents, listed in Appendix C, complete the

questionnaire at their own pace and in their own environment.

The most active organizations are also members of INCOSE and specialize in

developing systems for military applications. One of the participants, Raytheon, has

been extremely involved since the creation of the model and has implemented their

own version of the model which they call SECOST.

Lessons Learned. Through the process of working with these organizations

and refining the model definitions a number of useful lessons have been learned

about collecting systems engineering data (Valerdi, Rieff et al. 2004). These were

consolidated into eleven key findings as part of an exercise done in conjunction with

some of the organizations listed in Appendix D. They include aspects such as scope

of the model definitions, counting rules, data collection, and safeguarding procedures.

The research approaches, research designs, and lessons learned have played a

significant role in the development of COSYSMO. In order to determine the

82

predictive power of the model it has been validated through the use of statistical

techniques. This effort represents step 5 of the seven step modeling methodology

and is discussed in detail in the next section. One of the most human-intensive

portions of this work was obtaining data from aerospace companies. The principal

activities associated with the process of obtaining data from companies are illustrated

in Figure 11.

Figure 11 Data Handshaking

4.2. Threats to Validity & Limitations

 Two types of threats to validity exist: controllable and uncontrollable. Great

care has been taken to make sure COSYSMO is a useful model for systems

engineering effort. Experimental design, however, is not perfect. Many external

factors can affect the experiment and influence the overall result. This section

attempts to identify the most significant threats to the validity of COSYSMO and

outlines ways in which they were reduced. Most of these relate to external validity;

the ability to generalize findings to other settings. Consequently, a COSYSMO user

83

may ask: To what size or type of systems engineering projects can the model be

generalized? The external validity of an experiment can be strengthened by

describing the population to which the results will apply before the model is used. If

a random systems engineering project is selected from a predetermined population

(i.e, satellite ground stations) and COSYSMO yields an accurate estimate for

systems engineering then the generalization can be made that systems engineering

can be estimated with a certain degree of accuracy for satellite ground stations.

 The data variability that is obtained from the data collection will determine

how extensively the findings can be applied. If the model is calibrated from projects

for military or defense applications, it cannot be claimed that the systems

engineering CERs will hold true for other types of projects. The controllable threats

to validity are:

1. Construct validity. The ensemble of size and cost drivers was carefully

selected and tested to ensure that they were indeed adequate measures of

systems engineering. They were also verified with heuristics, previous

studies, and expert opinion.

2. Construct reliability. Counting rules and definitions were developed, with

industry feedback, to guard against possible multiple interpretations and

ensure consistent use of the drivers throughout different systems engineering

domains.

3. Divergent definitions of Systems Engineering. An industry-accepted

standard was adopted (EIA/ANSI 632) to aid in the identification of systems

engineering activities through a baseline Work Breakdown Structure.

84

4. Experts. Expert sampling involves the assembling of a sample of persons

with known or demonstrable experience and expertise in some area. Often,

we convene such a sample under the auspices of a "panel of experts." There

are actually two reasons one might do expert sampling. First, because it

would be the best way to elicit the views of persons who have specific

expertise. Second, because the expert sampling might be used to provide

evidence for the validity of another sampling approach. For instance, the

systems engineering drivers defined in COSYSMO need to be field tested by

future users of the model. A panel of experts with experience and insight into

systems engineering can examine the definitions and determine their

appropriateness and validity. The advantage of doing this is that the drivers

have significant practical relevance. The disadvantage is that even the

experts can be, and often are, wrong. The responses in the Delphi survey

came from “experts” in the field of systems engineering but the method used

to administer the survey (e-mail) did not allow for screening of the survey

respondents. To control for this, a set of questions was included at the

beginning of the survey that asked respondents for their years of experience

in systems engineering and/or cost estimation. The purpose of the question

was to allow for the respondents to self select if they did not feel their

experience was adequate to respond to the survey.

 Other threats to validity exist which were identified but uncontrollable

because they are often outside the range of control of the researcher. They may be

the main source of error in the model since their impact is difficult to quantify:

85

1. Noisy data. Significant effort reporting differences and partial size

information (i.e., size factor volatility and reuse) introduced some error in the

data.

2. Nonresponse bias. Case study research is limited in its representativeness.

The sample that is currently being used to calibrate COSYSMO is limited to

the companies that have shown interest and made it possible to contribute

systems engineering data or have been able to respond to the Delphi surveys.

Because of the narrow focus on only a few projects, there is a limitation to

the model’s generalizability because it only represents the CERs that are

confirmed by the data set in use. Attempts have been made to include

INCOSE and non-INCOSE companies that use systems engineering but only

aerospace and defense companies affiliated with INCOSE were responsive.

Moreover, these companies often exhibited a CMMI rating of 3 or higher;

biasing the results towards high maturity organizations.

3. Sample Self-selection. This dissertation involved the collection of data from

six defense companies and the solicitation of inputs from experts employed at

these companies which, in some cases, represent heterogeneous cultures due

to the consolidation of the aerospace industry. Some of these companies

have acquired portions of each other. As a result, a single aerospace

company may reflect diverse cultural, productivity, and process standards

inherited from all or portions of heritage companies it has acquired or merged

with as shown in Table 46.

Table 46 Consolidation of Aerospace Companies

86

Company Legacy
BAE Systems4 British Aircraft Corporation, Fairchild Systems,

General Dynamics Electronics, Lockheed Martin
Control Systems, Lockheed Martin Aerospace
Electronics Systems, Marconi, Sanders

General Dynamics5 Allied-Signal, AT&T, Lucent, Digital System
Resources, Lockheed Martin Power Control,
Sylvania, Veridian, Western Electric/Bell Labs

Lockheed Martin6 Ford Aerospace, General Dynamics, General
Electric Aerospace, Goodyear Aerospace, Gould
Electronics, IBM Federal Systems, Lockheed,
Loral, Martin Marietta, RCA, Vought, Unisys,
United Space Alliance, Xerox Electro-Optical
Systems

Northrop Grumman7 Aerojet, Grumman, Litton, Logicon, Newport
News Shipbuilding, Northrop, TASC, Teledyne
Ryan Aeronautical, TRW, Westinghouse

Raytheon8 E-Systems, Hughes, Texas Instruments

4. Model will not work outside of calibrated range. The range of operation of

COSYSMO is solely determined by the data that is used to calibrate it. Some

users may attempt to use the model outside of it calibrated range which can

lead to estimates with serious inaccuracies. As discussed in the previous

chapter, no amount of disclaimer from the developer will keep the user from

using the model to predict outside the region of the data.

5. Case study research is vulnerable to subjective biases. A project may be

selected because of its dramatic, rather than typical, attributes; or because it is

readily available. To the extent selective judgments exclude certain projects

from the data set or assign a high or low value to a driver significance, or

4 http://www.na.baesystems.com
5 http://www.generaldynamics.com
6 http://www.lockheedmartin.com
7 http://www.northropgrumman.com
8 http://www.raytheon.com

87

place them in one context rather than another, subjective interpretation is

influencing the outcome. Moreover, only successful projects are reported for

inclusion in COSYSMO. This makes the model biased towards successful

projects because the unsuccessful projects do not collect or share data and are

not included in the calibration.

6. Difficult to identify external variables. In quasi-experimental research it is

difficult to identify all non-experimental project variables (i.e., competitive

pressures, market trends, strategic advantages, etc.) and determine how to

control or account for them.

7. Telescoping. The historical project data collection survey requires the

respondent to go back in time and investigate the qualitative and quantitative

parameters of the project. The quantitative parameters may be found in

project documentation, if available. But the qualitative parameters will

require a systems engineer or program manager to recollect a time frame in

the past, referred to as telescoping. This technique has obvious drawbacks

because individuals may not remember everything that happened in the past

or they may be formulating their responses from secondary references. To

overcome this, the focus is on obtaining historical project data on recently

completed projects to increase the probability of accurate information and

knowledgeable personnel with first hand experience.

8. Group Conformity. Solomon Asch's most famous experiments set a contest

between physical and social reality. His subjects judged unambiguous stimuli

– lines of different lengths – after hearing other opinions offering incorrect

88

estimates. Subjects were very upset by the discrepancy between their

perceptions and those of others and most caved under the pressure to

conform: only 29% of his subjects refused to join the bogus majority. In a

similar way, systems engineers could fall into the same trap and agree with

incorrect estimates based on what the group thinks is the correct choice.

 With these threats in mind, a number of limitations also exist. The

application domain profile of the application domain of Delphi survey respondents is

shown in Figure 12. Nine out of forty (22%) participants who participated in Round

1 also took part in Round 2. To control for unfamiliarity of parametric models,

follow up interviews were held with experts whose responses were outliers to get

clarification on their answers. The average years of experience in software or

systems engineering of survey participants was 18 years and the average years of

experience in cost modeling was 6 years. Employees from fourteen different

organizations participated in the survey but the majority (55%) of the participants

were employees of Raytheon, Lockheed Martin, and Northrop Grumman. Proceed

with caution if either (1) you are not one of the six companies that provided data, (2)

your systems are outside of the size range for which the model is calibrated, and (3)

your definition of systems engineering is not compatible with ANSI/EIA 632.

89

Figure 12 Application Domains of Delphi Participants

 As shown in Figure 12 half of the participants selected “Military/defense” or

“Space Systems” as their application domain which sheds light on the focus of the

model. While the initial iteration of COSYSMO will most likely focus on these

applications of systems engineering it will also provide useful results that other

industries can compare themselves to.

 Another important limitation of COSYSMO is its overlap with the well-

known COCOMO II model. The danger with model overlap is that it can lead to

unnecessary double-counting of effort because it is expected that systems

engineering and software engineering are highly coupled in most organizations.

The COCOMO II estimate of the software effort will surely account for the

additional effort required by the additional testing; at the same time, the COSYSMO

effort will account for additional test development and management since the

systems engineers are required to perform additional validation and verification of

the system. Either model can account for this effort based on how users wish to

allocate the testing activity. Each organization’s unique relationship between these

90

two disciplines needs to be reconciled when using COSYSMO and COCOMO II

together. One approach for accomplishing this is to examine the Work Breakdown

Structures of each discipline.

 COSYSMO uses the WBS defined in EIA/ANSI 632 while COCOMO II

uses the one defined in MBASE/RUP. The two models are more likely to

demonstrate overlap in effort in the case of software-intensive systems. Table 47

shows the activities that could potentially overlap when using both models during an

effort estimation exercise. The numbers in the cells represent the typical percentage

of effort spent on each activity during a certain phase of the software development

life cycle as defined by COCOMO II. Each column adds up to 100 percent.

Table 47 COCOMO II and COSYSMO Overlaps
 Software Development Project Stage Inception Elaboration Construction Transition

Management 14 12 10 14
Environment/CM 10 8 5 5
Requirements 38 18 8 4
Design 19 36 16 4
Implementation 8 13 34 19
Assessment 8 10 24 24
Deployment 3 3 3 30

COCOMO II
COSYSMO

COCOMO II/COSYSMO overlap

 The checkered cells indicate the COCOMO II/COSYSMO overlap activities

that may be double counted when using the models simultaneously. The gray cells

indicate the systems engineering activities that are estimated in COSYSMO. The

exact amount of effort being double counted will vary for each organization based on

the way they define systems engineering relative to software engineering.

91

5. Results and Next Steps

5.1. Delphi Results

A Delphi exercise was conducted to reach group consensus and validate

initial findings. The Wideband Delphi technique has been identified as being a

powerful tool for achieving group consensus on decisions involving unquantifiable

criteria (Boehm 1981). It was used it to circulate the initial findings and reach

consensus on the parametric ratings provided by experts. The cumulative experience

of the experts in the second round includes over 200 years of cost estimation and 600

years of systems engineering. Part of the Wideband Delphi technique involves face-

to-face meetings to review the results of the previous round and discuss any possible

changes. Eleven COSYSMO Wideband Delphi meetings took place between March

2002 and March 2004.

Part of the Delphi process involved multiple distributions of the surveys to

arrive at the values that experts could converge on. The purpose of the survey was to

(1) reach consensus from a sample of systems engineering experts, (2) determine the

distribution of effort across effort categories, (3) validate the drivers of systems

engineering size, (4) identify the cost drivers which have the most influence on effort,

and (5) help the refinement of the scope of the model elements.

Each size driver reflects the range of impact and variation assigned by the

experts during the refinement exercises. The group of size drivers includes a

volatility factor that accounts for the amount of change that is involved in the four

92

factors. For example, it can be used to adjust the number of requirements should

they be ill-defined, changing, or unknown at the time the estimate is being

formulated.

Delphi Results. After three Wideband Delphi meetings, COSYSMO was

refined to reflect what INCOSE and other systems engineering organizations felt the

most significant size and cost drivers were. The relative weights for “Easy”,

“Nominal”, and “Difficult” levels are presented in Table 48.

Table 48 Relative Weights for Size Drivers from Delphi Round 3

 Easy Nominal Difficult
of System Requirements 0.5 1.0 5
of Major Interfaces 1.7 4.3 9.8
of Critical Algorithms 3.4 6.5 18.2
of Operational Scenarios 9.8 22.8 47.4

The # of Systems Requirements driver was kept as the frame of reference to

the other three size drivers. A graphical representation of these results is provided in

Figure 13.

Difficult

Difficult

Difficult

Difficult

Nominal

Nominal

Nominal

Nominal

Easy

Easy

Easy

Easy

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

of Operational
Scenarios

of Critical
Algorithms

of Interfaces

of System
Requirements

Figure 13 Relative Weights for Size Drivers from Delphi Round 3

93

 One interpretation of the size drivers is that a “Difficult” systems requirement

requires five times the effort relative to a “Nominal” one. Additionally, a “Difficult”

operational scenario, the most influential size driver, requires forty seven times the

effort of one “Nominal” system requirement, assuming a linear scale factor. The

fourteen cost drivers and their respective rating scales are shown in Table 49. The

individual values for all the applicable rating levels are provided. The nominal

ratings for all the drivers are always 1.0, but the polarity of the ratings depends on

the definition of the driver.

Table 49 Rating Scale Values for Cost Drivers from Delphi Round 3
 Very

Low Low Nominal High
Very
High

Extra
High EMR

Requirements
Understanding 1.87 1.37 1.00 0.77 0.60 3.12

Architecture Understanding 1.64 1.28 1.00 0.81 0.65 2.52
Level of Service
Requirements 0.62 0.79 1.00 1.36 1.85 2.98

Migration Complexity 1.00 1.25 1.55 1.93 1.93
Technology Risk 0.67 0.82 1.00 1.32 1.75 2.61
Documentation 0.78 0.88 1.00 1.13 1.28 1.64
and diversity of
installations/platforms 1.00 1.23 1.52 1.87 1.87

of recursive levels in the
design 0.76 0.87 1.00 1.21 1.47 1.93

Stakeholder team cohesion 1.50 1.22 1.00 0.81 0.65 2.31
Personnel/team capability 1.50 1.22 1.00 0.81 0.65 2.31
Personnel
experience/continuity 1.48 1.22 1.00 0.82 0.67 2.21

Process capability 1.47 1.21 1.00 0.88 0.77 0.68 2.16
Multisite coordination 1.39 1.18 1.00 0.90 0.80 0.72 1.93
Tool support 1.39 1.18 1.00 0.85 0.72 1.93

For example, the Requirements Understanding driver is worded positively

since there is an effort savings associated with high or very high understanding of the

requirements. This is indicated by multipliers of 0.77 and 0.60, respectively

94

representing a 23% and 40% savings in effort compared to the nominal case.

Alternatively, the Technology Risk driver has a cost penalty of 32% for “High” and

75% for “Very High”. Not all rating levels apply to all of the drivers. Again, it is a

matter of how the drivers are defined. The Migration Complexity driver, for example,

only contains ratings at “Nominal” or higher. The rationale behind this is that the

more complex the legacy system migration becomes, the more systems engineering

work will be required. Not having a legacy system as a concern, however, does not

translate to a savings in effort. The absence of a legacy system is the nominal case

which corresponds to a multiplier of 1.0.

The cost drivers are compared to each other in terms of their range of

variability, or Effort Multiplier Ratio. The EMR column is representative of an

individual driver’s possible influence on systems engineering effort. The cost

drivers are presented in order of EMR value in Figure 14. The four most influential

cost drivers are: Requirements Understanding, Level of Service Requirements,

Technology Risk, and Architecture Understanding. The least influential,

Documentation, # of Installations, Tool Support, and # of Recursive Levels in the

Design were kept because users wanted to have the capability to estimate their

impacts on systems engineering effort. The relatively small influence of these four

drivers does not mean that the model users felt they were insignificant. Their

presence gives users the ability to quantify their impact on systems engineering.

This is what some researchers refer to as the difference between statistical

significance and practical significance (Isaac and Michael 1997).

95

In the quest for obtain statistically significant findings, relevant factors may

be overlooked. Are quality issues and testing issues significant to systems

engineering? Is their influence important enough to be practical and included in

COSYSMO? Is the data for these drivers important enough to be worth the effort to

obtain it? Even when these practical matters are settled, there are valuable

considerations of social and psychological nature that can override cost driver

choices based solely on statistical significance. In fact, debates continue to take

place regarding the addition of other cost drivers into the model. These debates

naturally will go on as more contributors join the COSYSMO development effort.

For now, the belief is that the most significant drivers have been identified and

COSYSMO will be easily validated by the drivers’ relationships to systems

engineering effort. As shown in Appendix F, no two cost drivers are correlated

higher than 0.6; validating that a reasonably orthogonal set has been identified.

3.12

2.98

2.61

2.52

2.31

2.31

2.21

2.16

1.93

1.93

1.93

1.93

1.87

1.64

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

Requirements Understanding

Level of Service Requirements

Technology Risk

Architecture Understanding

Personnel/team capability

Stakeholder team cohesion

Personnel experience/continuity

Process capability

Migration Complexity

Multisite coordination

of recursive levels in the design

Tool support

and diversity of installations/platforms

Documentation

Figure 14 Cost Driver EMRs in Order of Influence from Delphi Round 3

96

5.2. Model Verification

Much energy has been spent on defining the inputs, outputs, counting rules,

definitions, and level of detail required for this model. The adage “A problem well

defined is a problem half solved” reiterates the importance of clear definitions and

model scope. In a general sense, this model has been developed in the same way as

deliverable and complex systems are, following an iterative systems engineering

approach.

The preceding chapters provided a description of the problem and an

approach. The next logical step is to shift the focus to model verification. The

process of model verification is twofold: first, a series of statistical tests are

performed. Second, feedback is obtained from end users to determine the impact of

the model. Specifically, step 5 of the model development methodology was

performed as described in (Baik, Boehm et al. 2002) using the procedure outlined in

(Chulani, Boehm et al. 1999) on the COSYSMO datapoints. This section provides

only the steps that were performed to analyze the data, not the data itself since the

source data provided by organizations is protected for reasons of industrial security.

Once data is obtained and a regression model is defined, a number of useful

diagnostics tests are helpful in validating the regression model (Snee 1977). These

include:

• Comparison of model predictors and coefficients with physical theory

• Data splitting to obtain an independent measure of the model prediction

accuracy

• Outlier/residual analysis

97

 The form of the model follows the Ordinary Least Squared (OLS) criterion

because it seeks to find a simple linear regression mean function to represent the

relationship between the 18 systems engineering drivers, the independent variables,

and systems engineering effort, the dependent variable. The OLS approach has four

inherent assumptions (Griffiths, Hill et al. 1993): (1) there is a lot of data available,

(2) no outliers exist, (3) predictor variables are not correlated, and (4) predictors are

either all continuous or all discrete. In an ideal case all of these assumptions would

be true, but in reality it is difficult to find a dataset with one or more of these

characteristics. Steps have been taken to meet these assumptions as much as

possible without interfering with the systems being studied. The first assumption

was addressed by collecting data from 42 projects and 70 experts. The second

assumption was not realistic because some projects were indeed outliers and had to

be removed from the dataset due to the fact that they addressed systems engineering

size differently than other programs. The third assumption was reasonably addressed

which can be seen in Appendix F. The fourth assumption was met by making all

predictors continuous.

5.2.1. Statistical Tests

COSYSMO can be characterized by a multiple regression model where the

response is Person Months (PM) and the predictors are the 18 drivers that have an

influence on systems engineering effort. This linear function is estimated from the

data using the ordinary least squares (OLS) approach as defined by (Cook and

Weisberg 1999). The multiple regression model can be written in the form:

98

Equation 7 ttxktt xxy εβββ ++++= ...110

 Where xt1…xtk represent the values of the predictor variables for the tth

observation, kββ ...0 are the coefficients estimated via the OLS regression, tε is the

error term, and yt is the response variable for the tth observation. Based on the

normalizing transformations needed to express linear relationships in the model,

logarithmic transformations are applied to the dependent and independent variables

of the equation yielding:

 Equation 8

)ln(...)ln()ln(...)ln()_ln(14181544110 EMEMSSHRSSE ⋅++⋅+⋅++⋅+= βββββ

 The assumption of the logarithmic transformation is based on experience of

inspecting software engineering data from COCOMO II. Systems engineering data

should behave in a similar function and require the same transformation to be

normalized. Systems Engineering hours, denoted as SE_HRS, was used in order to

avoid the discrepancy between different Person-Month standards. The COCOMO

suite of models use 152 hours per Person Month which can be adjusted depending on

user preference. The four size and fourteen cost predictors are listed in Table 50.

99

Table 50 COSYSMO Predictor Descriptions
Predictor Term Description

S1 log(REQ) # of System Requirements

S2 log(INTF) # of Major Interfaces

S3 log(ALG) # of Critical Algorithms

S4 log(OPSC) # of Operational Scenarios

EM1 log(RQMT) Requirements Understanding

EM2 log(ARCH) Architecture Understanding

EM3 log(LSVC) Level of Service Requirements

EM4 log(MIGR) Migration Complexity

EM5 log(TRSK) Technology Risk

EM6 log(DOCU) Documentation to match lifecycle needs

EM7 log(INST) # and diversity of installations/platforms

EM8 log(RECU) # of recursive levels in the design

EM9 log(TEAM) Stakeholder Team Cohesion

EM10 log(PCAP) Personnel/Team Capability

EM11 log(PEXP) Personnel Experience/Continuity

EM12 log(PROC) Process Capability

EM13 log(SITE) Multisite Coordination

EM14 log(TOOL) Tool Support

Once the data was collected and entered into a repository, the following

multiple regression diagnostic tests were performed using the Arc software, a freely-

available academic statistics package (Cook and Weisberg 1999):

• Model significance/F-test. A series of F-tests were performed to compare

the full model to it variations. This procedure compares the difference

between the Residual Sum of Squares (RSS) of the null hypothesis, or full

model, and the RSS of the alternative hypothesis, or reduced model. Also

considered are the differences between the degrees of freedom of the two

models and the Mean Square Error (MSE) of the alternative hypothesis.

This can be represented as:

100

Equation 9
AH

AHNHAHNH

MSE
dfdfRSSRSS

F
)/()(−−

=

Large values of F provide evidence against the null hypothesis and in

favor of the alternative hypothesis. Significance levels for this test can be

obtained in statistics textbooks (Cook and Weisberg 1999). The F-values

for the different models tested are shown in Table 52.

• Correlation Matrix. The correlation matrix can serve as an indicator of

both strong and weak correlations between predictors. Since the desire is

to have a model with truly independent and orthogonal predictors, the

correlations above 0.66 are flagged as being strong and possible

candidates for elimination. This criterion was previously used in

COCOMO II (Chulani, Boehm et al. 1999). See Appendix F for

numerical results.

• Sensitivity analysis. The introduction of new data points to the model

were tested for influence on the significance of the model predictors. The

t-values and p-values provided information about the influence of

individual predictors on the mean function. The t-values are the ratio

between the estimate and its corresponding standard error, where the

standard error is the square root of the variance. It can also be interpreted

as the signal-to-noise ratio associated with the corresponding predictor

variable. Hence, the higher the t-value, the stronger the signal or

statistical significance of the predictor variable. Typically, a high t-value

is approximately 3.0 or 4.0, indicating statistical significance for predictor

101

variables. The p-values are an indication of evidence that the probability

of observing a value of the statistic is high or low. Values less then 0.1

are an indication of strong predictive influence on the mean function.

The t-values and p-values for the final model are shown in Appendix H.

• Stepwise Regression. Two algorithms widely available in most statistics

packages, and in this case implemented in Arc, are backward elimination

and forward elimination. These are useful in evaluating submodels by

sequentially adding or removing predictor terms and comparing the

results. Stepwise regression algorithms do not guarantee finding optimal

submodels, although the results obtained in this approach are useful in

determining candidates for elimination. This approach was previously

used in COCOMO II (Baik 2000) and for this data set helped arrive at the

reduced form of the model. Forward selection was a better indicator of

the best arrangement of predictors for COSYSMO because of the

particular behavior of the data set and small number of degrees of

freedom.

5.2.2. Model Parsimony

As stated earlier, one of the key objectives for COSYSMO is to avoid the use

of highly redundant parameters as well as factors which make no appreciable

contribution to the results. In order to achieve this, four variations of the full model

were tested to arrive at the final model that met all of the accuracy, parsimony,

constructiveness, and simplicity objectives previously defined.

102

Full model. The complete set of parameters described in sections 3.2 and 3.3

serve as the baseline model. They are listed again in Table 50 in logarithmic scale.

Equation 8 can be rewritten as:

Equation 10

log[SE_HRS] = log[REQ] + log[INTF] + log[ALG] + log[OPSC] +
 log[RQMT] + log[ARCH] + …+ log[TOOL]

 The advantage of starting with a baseline model that contains all of the model

parameters is that tests for pair wise orthogonality can be performed. The results of

this analysis, found in Appendix F, show that no two cost drivers are correlated more

than 0.66, indicating that they represent a parsimonious set. Some of the four size

drivers are correlated as high as 0.64 which was expected since system requirements

are often related to interfaces, algorithms, and operational scenarios.

 Reduced model. To address the issue of correlated size drivers and reduce

the number of predictors in the model, the four size drivers were combined into a

single predictor called Size. Equation 10 can be written as:

Equation 11

log[SE_HRS] = log[SIZE] + log[RQMT] + log[ARCH] + … + log[TOOL]

It was found that the reduced model containing the Size parameter had a

higher accuracy than the full model. In other words, the combination of the size

drivers had a higher explanatory power together rather than individually. Combining

the four size driver into one parameter also increased the degrees of freedom.

Adjusted model. The systems engineering hours for the projects reported by

participants were not provided uniformly. Only 13 of the 42 projects provided effort

103

for systems engineering activities during the entire development life cycle while the

rest provided effort for only some of the life cycle phases defined in the model. As a

result, 29 of the 42 projects had to be normalized to fit the four phases of the

development life cycle that were most commonly reported: Conceptualize, Develop,

OT&E, and Transition to Operation. The typical distribution of effort across these

phases was obtained by surveying industry experts familiar with COSYSMO. These

results, shown in Table 51, were derived from the more detailed results shown in

Appendix B. It should be noted that the standard deviations associated with the

results are relatively large indicating disagreement between experts on the typical

distribution of systems engineering effort across the four phases. Nevertheless, this

profile of systems engineering effort across the four life cycle phases was useful in

adjusting the reported effort on projects.

Table 51 Systems Engineering Effort Distribution % Across ISO/IEC 15288 Phases
Conceptualize Develop Operational Test & Eval Transition to Operation

23 35 28 14

 Projects that only reported hours for the development phase, in theory, were

leaving out 65% of the effort had the project covered the first four life cycle phases.

As a result, the hours reported were adjusted to add the missing 65% in order to

normalize the data point.

 Conceptually, COSYSMO can be used to estimate systems engineering effort

for the entire life cycle. This can be done by using a similar approach used in

COCOMO II which estimates effort as a function of annual change traffic. Since the

Operate, Maintain, or Enhance; and Replace or Dismantle phases are often assigned

104

resources by “level of effort” it makes sense to estimate systems engineering

resources based on how much the system changes once it is fielded. The four size

drivers can be tracked in terms of annual change traffic and the cost drivers can be

reassessed based on the changing conditions of the program.

 The normalized effort is denoted as SE_HRS_ADJ to reflect the adjustment

applied to the reported hours. Equation 11 is therefore rewritten as:

Equation 12

log[SE_HRS_ADJ] = log[SIZE] + log[RQMT] + log[ARCH] + … +
log[TOOL]

The model shown in Equation 12 yielded a better representation of the

systems engineering hours spent on projects. The relationship between SIZE and

SE_HRS_ADJ for the 42 data points is shown in Figure 15. The 8 data points that

were removed from the analysis are shown in black while the rest of the projects are

in hollow circles.

Figure 15 Size Versus Adjusted Systems Engineering Hours

105

 Part of the data analysis included the elimination of points believed to be

outliers. The first test for outliers was a measure of productivity, shown in Equation

13.

Equation 13

 PRODUCTIVITY = SIZE/SE_HRS_ADJ

 It was determined that projects above a productivity of 0.14 provided their

requirements count at a different level of decomposition than the rest of the projects.

As a result, the productivity for these particular six projects was much higher than

the rest of the data set; identifying a reduced domain for which a model would be

more accurate. The productivities for the 42 projects, with the 6 projects highlighted

on the far right, are shown in Figure 16.

Figure 16 Productivity Histogram for 42 projects

106

In addition to the 6 projects eliminated due to extremely high productivity, 2

projects were also removed from the calibration domain due to a high degree of

adjusted effort (more than 30%) across the systems engineering life cycle.

Final Model. With a smaller number of data points, a smaller number of

aggregated parameters was considered. The cost drivers were clustered into groups

in section 3.3 based on common themes. These five groups were determined to be

logical groupings of cost drivers that addressed similar issues dealing with systems

engineering. This resulted in the model shown in Equation 14.

Equation 14

 log[SE_HRS_ADJ] = log[SIZE] + log[UNDERSTANDING] +
 log[COMPLEXITY] + log[OPERATIONS] +
 log[PEOPLE] + log[ENVIRONMENT]

 Where
 UNDERSTANDING = REQU * ARCH * TEAM * PEXP
 COMPLEXITY = LSVC * TRSK * RECU * DOCU
 OPERATIONS = INST * MIGR
 PEOPLE = PCAP * PROC
 ENVIRONMENT = SITE * TOOL

 The model in Equation 14 provided additional degrees of freedom and a

higher F-value. However, not all six predictors met the p-value criterion of 0.1. See

regression results for this model in Appendix H. Nevertheless, this model was used

as the final calibrated version because it contained all of the parameters in the model

in aggregated form.

Reduced model. A reduced form of the model was developed which

includes predictors whose p-values were less than 0.1. These are shown in Equation

107

15. The use of forward selection was helpful in identifying the best combination of

parameters from the aggregated model. However, this model has limited use since it

includes less than half of the model parameters.

Equation 15

log[SE_HRS_ADJ] = log[SIZE] + log[COMPLEXITY] + log[PEOPLE]

 Table 52 provides a comparison of model performance for the five

permutations of COSYSMO.

Table 52 Comparison of Model Performance

Model
iteration

predictors R-squared Degrees
of
freedom

F-value

Full model 18 0.64 20 1.98

Reduced
Model

15 0.63 23 2.66

Adjusted
model

15 0.77 23 5.36

Final model
(used for
Bayesian
calibration)

6 0.81 27 20.44

Reduced
model

3 0.74 29 29.14

 The most representative model was decided to be the Final model since it had

a reasonable number of degrees of freedom while offering the ability to derive the

original size and cost drivers. Different PRED accuracy levels (Conte et al 1986)

tested on this version of the model and are shown in Table 53.

108

Table 53 Model Accuracy of Delphi Based Model

 Accuracy

PRED(.20) 19%

PRED(.25) 22%

PRED(.30) 30%

5.2.3. Bayesian Approximation

 A Bayesian approximation was performed on the Final model since it

contains, at least in aggregated form, all of the original parameters in the model. The

results yield the final calibrated model which, by updating Equation 2, can be written

as:

i

n

i

E
NS EMSizeAPM

1
)(

=
Π⋅⋅=

A = 38.55

Size = weights in Table 18

E = 1.06

n = number of cost drivers (14)

EM = multipliers in Table 19

Equation 16 Final Bayesian Calibrated Model

 A benefit of using the Bayesian method is that it allowed for expert opinion

from the Delphi survey to influence the calibration derived from the historical data.

Negative coefficients are representative of contradictory results and are common

when limited amounts of data exist (Chulani et al 1999). The updated weights and

109

ratings scale multipliers from the Bayesian calibration are provided in Table 54 and

Table 55.

Table 54 Relative Weights for Size Drivers for Bayesian Calibrated Model

 Easy Nominal Difficult
of System Requirements 0.5 1.0 5
of Major Interfaces 1.1 2.8 6.3
of Critical Algorithms 2.2 4.1 11.5
of Operational Scenarios 6.2 14.4 30

Table 55 Bayesian Calibrated Rating Scale Multipliers

Very Low Low Nominal High
Very
High

Extra
High EMR

Requirements
Understanding 1.85 1.36 1.00 0.77 0.60 3.08

Architecture
Understanding 1.62 1.27 1.00 0.81 0.65 2.49

Level of Service
Requirements 0.62 0.79 1.00 1.32 1.74 2.81

Migration Complexity 1.00 1.24 1.54 1.92 1.92
Technology Risk 0.70 0.84 1.00 1.32 1.74 2.49
Documentation 0.82 0.91 1.00 1.13 1.28 1.56
and diversity of
installations/platforms 1.00 1.23 1.51 1.86 1.86

of recursive levels in
the design 0.80 0.89 1.00 1.21 1.46 1.83

Stakeholder team
cohesion 1.50 1.22 1.00 0.81 0.66 2.27

Personnel/team
capability 1.48 1.22 1.00 0.81 0.66 2.28

Personnel
experience/continuity 1.46 1.21 1.00 0.82 0.67 2.18

Process capability 1.46 1.21 1.00 0.88 0.77 0.68 2.15
Multisite coordination 1.33 1.15 1.00 0.90 0.80 0.72 1.85
Tool support 1.34 1.16 1.00 0.85 0.73 1.84

 An example estimate using the final calibrated COSYSMO model is provided

in Appendix E. The accuracy of the model on the set of 34 projects (6 eliminated

because of high productivity and 2 eliminated due to small percentage of effort

reported) is provided in Table 56.

110

Table 56 Model Accuracy of Bayesian Calibrated Model

 Accuracy

PRED(.20) 19%

PRED(.25) 27%

PRED(.30) 41%

An slight accuracy improvement can be seen from the Delphi-based model in

Table 53 to the Bayesian calibrated model in Table 56. In addition, the use of the

Bayesian calibrated model enabled the elimination of negative coefficient in

PEOPLE parameter shown in the regression results in Appendix H.

5.2.4. Stratification by Organization

Using the final model, a set of local calibrations were done for each

individual organization to determine the effect on model accuracy. The results were

obtainable only for the companies that provided more than four data points.

Table 57 Model Accuracy by Organization

Organization N R-squared PRED(30)

1 10 0.94 70%

2 7 0.59 43%

3 10 0.62 50%

All 27 - 56%

 The results in Table 57 validate the model accuracy posed in Hypothesis #4;

PRED(30) at 50%. In some cases, the prediction accuracy of the model is improved

111

even further when the organization’s disciplined data collection has uniform

counting rules that can ensure consistency across programs. Regardless of the results

provided by the statistical validation, limitations of the model should be considered

when the prediction accuracy of the model is determined. Limitations were provided

in previous sections as were their implications on model validity.

 In addition to the rigorous quantitative analysis of the model, a qualitative

analysis was performed to determine the impact of the model on each organization

that provided data. COSYSMO supporters were enthusiastic about the model’s

influence in the way their organizations thought about systems engineering cost. Out

of 8 participants queried, 7 of them responded that COSYSMO greatly improved

their ability to reason about systems engineering cost. Example testimonials include:

• Model helps answer the call for improvement on systems engineering

revitalization and ensuring adequate SE resources identified in the Young

Panel report for DoD Space Systems

• The size and effort drivers will allow the user of the model to best describe

the project and to perform sensitivity analysis to try to optimize the SE

application and team aspects of the project

• COSYSMO answers the ‘CMMI mail’ regarding a key requirement for

Maturity Level 2: Costing by Attributes ---- specifically, counts of System

Requirements, System Interfaces, Critical Algorithms, and Operational

Scenarios as scaled by the environmental (team and application) cost drivers.

112

5.3. Conclusion

 A new type of systems engineering cost model was presented and validated

through industry data. An objectively reduced subset of 42 industry projects from 6

companies was used to calibrate the model in reduced form which produced a

PRED(30) accuracy of 50%. Together with counting rules and driver definitions, the

model provides a way for systems engineers to reason about their cost decisions and

presents a new vehicle for managers to approach systems engineering strategy via

size and cost metrics.

 Restatement of hypotheses. The five hypotheses stated in Section 1.3 were

tested to determine their validity.

H#1: A combination of the four elements of functional size in COSYSMO

contributes significantly to the accurate estimation of systems engineering

effort.

 The criterion used was a significance level less than or equal to 0.10 which

translates to a 90% confidence level that these elements are significant. This

hypothesis was supported with the reduced form of the model.

H#2: An ensemble of COSYSMO effort multipliers contribute significantly to

the accurate estimation of systems engineering.

 The same significance level of 0.10 was used to test this hypothesis which

was supported with the reduced form of the model.

H#3: The value of the COSYSMO exponent, E, which can represent

economies/diseconomies of scale is greater than 1.0.

113

 For some organizations, the exponent was as low as 0.83 and as high as 1.31,

as a result this hypothesis was partially supported. The average value for E was 1.06.

 H#4: There exists a subset of systems engineering projects for which it is

possible to create a parametric model that will estimate systems engineering effort at

a PRED(30) accuracy of 50%.

 This hypothesis was supported with the subset of projects defined as the

projects from organizations with more than 4 solid data points with systems

engineering productivity below 0.14 size units per adjusted SE hours.

H#5: COSYSMO makes organizations think differently about Systems

Engineering cost.

 This hypothesis was strongly supported. Seven out of eight responded with

resounding support within the COSYSMO pioneer community as evidenced by the

testimonials in section 5.2.4; insufficient data elsewhere.

5.3.1. Contributions to the Field of Systems Engineering

This work has a number of significant contributions to the field of systems

engineering. These contributions have implications for researchers, practitioners,

and educators.

1. Development of a parametric Systems Engineering cost model. Practitioners

will benefit from the creation of COSYSMO because it is the first cost

estimation model that provides systems engineering effort estimation. The

identification of significant size and cost drivers for systems engineering can

also serve as a risk management list for projects.

114

2. Systems Engineering Sizing. The development of counting rules for systems

engineering using non-software metrics such as lines of code or function

points is a significant contribution to the field of parametric cost modeling.

3. Operationalization of cost drivers and rating scales. The list of 14 cost

drivers, their definitions, and their Cost Estimating Relationships provide

useful teaching tools for systems engineering educators. Results show that

these cost drivers are independent of each other and are good indicators of

systems engineering complexity. A list of the cost drivers in order of

influence was also generated to help people identify the factors that have the

largest influence on cost.

4. SE as an independent discipline. Organizations such as INCOSE will benefit

from COSYSMO because it helps justify the value of systems engineering in

organizations. Researchers in the area of parametrics can also build from this

work to develop additional CERs that are independent of software or

hardware development.

5. Development of the first systems engineering focused model. COSYSMO

can also help efforts currently underway to develop frameworks and theories

related to systems engineering. One such example is the Grand Unified

Theory of Systems Engineering (GUTSE) developed by George Friedman

(Friedman 2003) which implies the future existence of a reliable cost model

but currently does not include such a model.

6. Institutional memory. The development of COSYSMO has captured over

500 person years of experience in systems engineering experience from over

115

a dozen heterogeneous organizations. This baseline model can help

researchers and educators develop case studies that can further the

understanding of systems engineering.

7. Convergence. Industry experts were orchestrated to determine Delphi

weights, driver definitions, counting rules, model form, and model scope.

Convergence on these values demonstrates industry collaboration through the

facilitation of academic researchers.

8. Evidence of diseconomy of scale. Empirical evidence verifies the hypothesis

that systems engineering effort exhibits a diseconomy of scale.

9. Systems engineering effort profile. Through expert opinion, an effort profile

was developed using the fundamental processes in ANSI/EIA 632 to define

the model scope and distribute effort estimates across activities.

 In addition to the practitioners that have benefited from COSYSMO, the

following educational institutions have incorporated it into their systems engineering

syllabus: University of California San Diego, George Mason University, Defense

Acquisition University, and Southern Methodist University.

5.3.2. Areas for Future Work

The estimation of systems engineering cost is a complex but much needed

process. The acquisition community continues to demand more accurate

quantification of the SE work that is performed on hardware and software systems.

In order to realize more sophisticated methods for estimating SE effort, the models

should be based on empirical data. Rather than using rules of thumb, models should

be data-driven. Instead of having limited relevance only to standard life cycles, they

116

should be more flexible. Further work is required to make the task of managing SE

more quantitative.

This section is divided into two parts to reflect the areas for future work that

are needed in the short term and the long term. The short term areas are ones that

will need to be addressed as extensions of this dissertation work while the long term

are ones that can provide future opportunities for research in this area.

The process of developing COSYSMO has produced a number of useful Cost

Estimating Relationships (CERs) that aid in estimating systems engineering effort.

These CERs are accompanied by a set of rules that help guide the user in defining

the scope of COSYSMO and how it relates to their organization. One of the

challenges of creating a generalizable model is that it has to be flexible enough to

work in different application domains. These domains operate differently by the

nature of the customers they serve, the systems they build, and the environment in

which their systems must operate. COSYSMO constituents represent a diverse set of

users that represent an additional level of complexity because of their heterogeneous

nature. This diversity has introduced the following challenges that need to be

resolved:

1. Effects of volatility and reuse. These effects were deferred because of the

difficulty in gathering data to calibrate them. Future work should

incorporate these relevant parameters into the model.

2. Requirements counting. The different levels of requirements decomposition

that are used by organizations was previously presented. More specific

counting rules need to be developed to ensure consistency in this area.

117

3. The SEMP. Effects of the Systems Engineering Management Plan (SEMP)

is currently not included in COSYSMO, however, it plays a significant role

in the effectiveness of systems engineering organizations. For the time being,

it has been included as part of the Process Capability cost driver. Future

exploration is required to define the best rating scale that captures its

influence on systems engineering effort.

4. Drivers with multiple viewpoints. The consolidation of the model discussed

in Chapter 8 brought about an overloading of some cost drivers. This was

caused by the merging of two or more drivers into one resulting in the

introduction of multiple viewpoints for some drivers. Drivers such as

Technology Risk, Multisite Coordination, Migration Complexity, and # and

Diversity of Installations & Platforms have two or more aspects of systems

engineering embedded in their definitions. These need to be simplified or

rolled into separate cost drivers.

5. CMMI & Key Process Areas. The influence of CMMI as a cornerstone of

this model was highlighted in section 3. However, not every organization

has adopted the CMMI framework in its processes. As a result, an

alternative method for measuring the process capability of an organization

needs to be developed through the use of Key Process Areas (KPAs).

Moreover, some confusion exists in situations where multiple organizations

with different levels of maturity are operating under the same contract. This

situation is difficult to quantify from the COSYSMO standpoint and needs to

be resolved.

118

6. Technology Readiness Levels. Another difficulty in quantifying a cost

driver occurs when multiple technologies with different maturity levels and

different time horizons have an effect on the systems engineering

organization(s).

7. EIA/ANSI 632 activities. The menu of EIA/ANSI 632 activities listed in

Chapter 3 represents an industry standard which is not entirely applicable in

practice. Further investigation is needed to determine which systems

engineering activities in EIA/ANSI 632 are more likely to be performed by

organizations using COSYSMO.

8. Compatibility with other models. The MBASE framework presented

includes several other product models that are closely related to systems

engineering. Software engineering activities estimated by COCOMO and

system of system software integration activities estimated by COSOSIMO

need to be clearly delineated to ensure minimal overlap or ways to account

for their overlap with COSYSMO.

9. Need more data. The list of organizations that have contributed data

provided enough data to calibrate an initial model, but more data is needed in

order to perform more tests of significance on all the model parameters.

10. Need more commercial company involvement. The same list of

aforementioned organizations indicates a heavy bias toward aerospace and

military projects. More commercial companies’ data needs to be obtained

and incorporated into the model calibration.

119

Long Term Areas. In order for COSYSMO to be a useful tool for the

systems engineering community it must be adaptable to a situation of interest. The

initial release of the model will have an industry baseline calibration that is

representative of the CERs and driver definitions at the industry level. The model

will be much more useful to individual organizations if it is calibrated for their use.

This and other adaptations to the model are long term opportunities for future

research.

1. COSYSMO Tailoring. Customizing the model to meet the needs of

organizations is necessary to maximize the model’s predictive ability. Local

calibrations should be done and, if possible, product line calibrations for a

specific family of products and customer calibrations for particular

operational environments.

2. Additional driver definitions. Part of the customization process may involve

the development of additional cost or size drivers. This alternative should

especially be investigated by commercial companies that participated in the

initial calibration.

3. Maintenance model. The CERs for systems engineering may behave

differently in the maintenance phase of the project life cycle. This could

serve as an opportunity to develop a COSYSMO maintenance model.

4. Tool comparison matrix. The development of a tool comparison matrix

would be of value to enable the selection of the most appropriate cost

estimating tool for a particular project. Such a comparison would establish

uniform definitions and factors that would encompass the breadth of how

120

COCOMO, COSYSMO, and COSOSIMO assess systems engineering. Such

a comparison would facilitate identification of areas lacking sufficient detail

and establish understanding to appropriately quantify systems engineering.

These findings would suggest common areas of enhancement and

development for additional research.

5. Risk Analyzer. Since COSYSMO provides a single point estimate, it would

benefit from a risk analysis tool that determines the amount of risk associated

with a given estimate.

6. Additional behavioral implications. The process of effort estimation involves

unique skills and knowledge about how people work together and how

organizations interact with each other. It would be interesting to investigate

how other types of knowledge can affect the process of cost estimation.

Some possible areas of investigation are: codified knowledge, Herbert

Simon’s bounded rationality (what is in and what is out), Eric von Hippel’s

sticky information (people’s ability to remember things), Eugene Ferguson’s

idea of the mind’s eye (aesthetic knowledge), and group think.

 As industry and academia collaborate to develop and validate a tool to more

accurately forecast SE resources, more opportunities for research are created. These

areas could potentially change the way cost estimation models are developed and

used.

121

References

Abts, C., Boehm, B. W. and Bailey-Clark, E. (2001). COCOTS : A Software COTS-

Based System (CBS) Cost Model - Evolving Towards Maintenance Phase
Modeling. Proceedings of the Twelfth Software Control and Metrics
Conference, London, England.

Ahern, D. M., Clouse, A. and Turner, R. (2004). CMMI Distilled - A Practical Guide

to Integrated Process Improvement, Addison-Wesley.

Albrecht, A. J., Gaffney, J., (1983), “Software function, source lines of code, and

development effort prediction: A software Science validation,” IEEE
Transactions on Software Engineering, Vol. SE-9, pp. 639-648.

ANSI/EIA (1999). ANSI/EIA-632-1988 Processes for Engineering a System.

ANSI/EIA (2002). EIA-731.1 Systems Engineering Capability Model.

Auyang, S. Y. (2004). Engineering – An Endless Frontier. Cambridge, MA, Harvard

University Press.

Babbie, E. (2004). The Practice of Social Research, Wadsworth.

Baik, J. (2000). The Effect of CASE Tools on Software Development Effort.

Unpublished Dissertation, USC Computer Science Department.

Baik, J., Boehm, B. W. and Steece, B. (2002). "Disaggregating and Calibrating the

CASE Tool Variable in COCOMO II." IEEE Transactions on Software
Engineering Vol. 28(No. 11).

Berne, E. (1964). Games People Play: The Psychology of Human Relationships.

New York, Grove Press, Inc.

Blanchard, B. S. and Fabrycky, W. J. (1998). Systems Engineering and Analysis,

Prentice Hall.

Boehm, B. W. (1981). Software Engineering Economics, Prentice-Hall.

Boehm, B. W. (1994). "Integrating Software Engineering and Systems Engineering."

The Journal of NCOSE Vol. 1 (No. 1): pp. 147-151.

Boehm, B. W., Egyed, A. and Abts, C. (1998). Proceedings Focused Workshop #10:

Software Engineering and System Engineering, Center for Software
Engineering.

122

Boehm, B. W. and Port, D. (1999). "Escaping the Software Tar Pit: Model Clashes
and How to Avoid Them." ACM Software Engineering Notes.

Boehm, B. W., Abts, C., Brown, A. W., Chulani, S., Clark, B., Horowitz, E.,

Madachy, R., Reifer, D. J. and Steece, B. (2000). Software Cost Estimation
With COCOMO II, Prentice Hall.

Boehm, B. W. and Hansen, W. (2001). "The Spiral Model as a Tool for Evolutionary

Acquisition." CrossTalk: pp. 4-9.

Boehm, B. W., Reifer, D. J. and Valerdi, R. (2003). COSYSMO-IP: A Systems

Engineering Cost Model. 1st Annual Conference on Systems Integration,
Hoboken, NJ.

Boehm, B. W., (2003) "Value-Based Software Engineering." ACM Software

Engineering Notes.

Boehm, B., Valerdi, R., Lane, J., Brown, A. W., (2005) “COCOMO Suite

Methodology and Evolution,” CrossTalk - The Journal of Defense Software
Engineering.

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering,

Addison-Wesley.

Chulani, S., Boehm, B. W. and Steece, B. (1999). "Bayesian Analysis of Empirical

Software Engineering Cost Models." IEEE Transactions on Software
Engineering: pp. 513-583.

Clark, B. K. (1997). The Effects of Software Process Maturity on Software

Development Effort. Unpublished Dissertation, USC Computer Science
Department.

CMMI (2002). Capability Maturity Model Integration - CMMI-SE/SW/IPPD/SS,

V1.1. Pittsburg, PA, Carnegie Mellon - Software Engineering Institute.

Conte, S. D., Dunsmore, H. E., Shen, V. Y., (1986) Software Engineering Metrics

and Models, Benjamin/Cummings Publishing Company.

Cook, D. and Weisberg, S. (1999). Applied Regression Including Computing and

Graphics, John Wiley & Sons.

Dalkey, N. (1969). The Delphi Method: An Experimental Study of Group Opinion,

RAND Corporation.

123

Ernstoff, M. and Vincenzini, I. (1999). Guide to Products of System Engineering.
International Council on Systems Engineering, Las Vegas, NV.

Faisandier, A, Lake, J., Harmonization of Systems and Software Engineering,

INCOSE INSIGHT, Vol. 7, Issue 3., October 2004.

Ferens, D. (1999). Parametric Estimating - Past, Present, and Future. 19th PRICE

European Symposium.

Freud, S. (1924). A General Introduction to Psycho-Analysis. New York,

Washington Square Press, Inc.

Friedman, G. (2003). ISE541 Lecture Notes. USC Industrial & Systems Engineering.
GAO-03-1073 (2003). Defense Acquisitions Improvements Needed in Space

Systems Acquisition Management Policy.

Griffiths, W. E., Hill, R. C. and Judge, G. G. (1993). Learning and Practicing

Econometrics, John Wiley & Sons, Inc.

Honour, E. C. (2002). Toward an Understanding of the Value of Systems

Engineering. First Annual Conference on Systems Integration, Hoboken, NJ.

Horowitz, B. (2004). Systems Engineering Estimation Rules of Thumb. R. Valerdi.

Charlottesville, VA: Personal communication.

Humel, P. (2003). Systems Engineering Revitalization at Space and Missile Systems

Center. INCOSE Los Angeles Chapter Meeting, The Aerospace Corporation.

Isaac, S. and Michael, W. B. (1997). Handbook in Research and Evaluation. San

Diego, CA, EdITS.

ISO/IEC (2002). ISO/IEC 15288:2002(E) Systems Engineering - System Life Cycle

Processes.

Jackson, S. (2002). ISE541 Lecture Notes. USC Industrial & Systems Engineering.

Jarvenpaa, S. L., G. W. Dickson, G. W. and DeSanctis, G. (1985). "Methodological

Issues in Experimental IS Research: Experiences and Recommendations."
MIS Quarterly Vol. 9(No. 2).

Kemerer, C. (1987). "An Empirical Validation of Software Cost Estimation Models."

Communications of the ACM Vol. 30(No. 5): pp. 416-429.

124

Klein, H. K. and Myers, M. D. (1999). "A Set of Principles for Conducting and
Evaluating Interpretive Field Studies in Information Systems." MIS Quarterly
Vol. 23 (No. 1).

MIL-STD 490-A (1985) Specification Practices.

MIL-STD-499A (1969). Engineering Management.

NASA (2002). Cost Estimating Handbook.

Pandikow, A. and Törne, A. (2001). Integrating Modern Software Engineering and

Systems Engineering Specification Techniques. 14th International
Conference on Software & Systems Engineering and their Applications.

PRICE-H (2002). Your Guide to PRICE-H: Estimating Cost and Schedule of

Hardware Development and Production. Mt. Laurel, NJ, PRICE Systems,
LLC.

Rechtin, E. (1991). Systems Architecting: Creating & Building Complex Systems,

Prentice Hall.

Rechtin, E. (1998). System and Software Architecture. Proceedings Focused

Workshop #10: Software Engineering and System Engineering.

Sage, A. P. (1992). Systems Engineering, John Wiley & Sons, Inc.

Sheard, S. (1997). The Frameworks Quagmire, A Brief Look. Proceedings for the

Seventh Annual Symposium of the International Council on Systems
Engineering, Los Angeles, CA.

Shrum, S. (2000). "Choosing a CMMI Model Representation." CrossTalk.

Smith, J. (2004). An Alternative to Technology Readiness Levels for Non-

Developmental Item (NDI) Software - CMU/SEI-2004-TR-013. Pittsburg,
PA, Carnegie Mellon - Software Engineering Institute.

Snee, R. (1977). "Validation of Regression Models: Methods and Examples."

Technometrics Vol. 19 (No. 4).

Sudman, S. and Bradburn, N. M. (1982). Asking Questions: A Practical Guide to

Questionnaire Design. San Francisco, CA, Jossey-Bass.

USCM (2002). USCM8 Knowledge Management System, Tecolote Research, Inc.

125

Valerdi, R., Ernstoff, M., Mohlman, P., Reifer, D. and Stump, E. (2003). Systems
Engineering Sizing in the Age of Acquisition Reform. 18th Annual Forum on
COCOMO and Software Cost Modeling, Los Angeles, CA.

Valerdi, R. and Kohl, R. (2004). An Approach to Technology Risk Management. 1st

Annual MIT Engineering Systems Division Symposium, Cambridge, MA.

Valerdi, R., Rieff, J. E., Roedler, G. J. and Wheaton, M. J. (2004). Lessons Learned

From Collecting Systems Engineering Data. Ground Systems Architecture
Workshop, El Segundo, CA.

126

Appendix A: ANSI/EIA 632 Activities

Fundamental

Processes
Process Categories Activities

Supply Process (1) Product Supply Acquisition
and Supply Acquisition Process (2) Product Acquisition, (3) Supplier Performance

Planning Process (4) Process Implementation Strategy, (5) Technical Effort
Definition, (6) Schedule and Organization, (7) Technical
Plans, (8)Work Directives

Assessment Process (9) Progress Against Plans and Schedules, (10) Progress
Against Requirements, (11) Technical Reviews

Technical
Management

Control Process (12) Outcomes Management, (13) Information
Dissemination

Requirements
Definition Process

(14) Acquirer Requirements, (15) Other Stakeholder
Requirements, (16) System Technical Requirements System

Design Solution Definition
Process

(17) Logical Solution Representations, (18) Physical
Solution Representations, (19) Specified Requirements

Implementation Process (20) Implementation Product
Realization Transition to Use

Process
(21) Transition to use

Systems Analysis
Process

(22) Effectiveness Analysis, (23) Tradeoff Analysis, (24)
Risk Analysis

Requirements
Validation Process

(25) Requirement Statements Validation, (26) Acquirer
Requirements, (27) Other Stakeholder Requirements, (28)
System Technical Requirements, (29) Logical Solution
Representations

System Verification
Process

(30) Design Solution Verification, (31) End Product
Verification, (32) Enabling Product Readiness

Technical
Evaluation

End Products
Validation Process

(33) End products validation

127

Appendix B: Systems Engineering Effort Profile

EIA 632 Fundamental Process Average Standard
Deviation

Acquisition & Supply 7% 3.5
Technical Management 17% 4.5
System Design 30% 6.1
Product Realization 15% 8.7
Technical Evaluation 31% 8.7

Conceptualize Develop
Operational
Test
& Eval.

Transition
to
Operation

Operate,
Maintain, or
Enhance

Replace or
Dismantle

Acquisition
and Supply 28 (12.3) 51 (18.6) 13 (11.3) 8 (5.0)

Technical
Management 22 (10.0) 38 (9.9) 25 (7.4) 15 (6.4)

System
Design 34 (12.4) 40 (19.4) 17 (9.6) 9 (6.2)

Product
Realization 13 (14.1) 30 (24.3) 32 (16.0) 25 (20.4)

Technical
Evaluation 18 (11.4) 27 (11.0) 40 (17.7) 15 (8.5)

In each cell: Average (Standard Deviation)

128

Appendix C: List of Industry participants

Aerospace Corporation Lockheed Martin SAIC
Abe Santiago James Evans Michael McBride
Marilee Wheaton Carl Newman Tony Jordano
Paul Mohlman Rocky Hudson Don Greenlee
Anh Tu Garry Roedler Robert Kaufman
Susan Ruth Gary Hafen Ali Nikolai
Paul Stelling David Lindstrom Phill Rowell
Darryl Webb Jeffrey Shupp Charles Zumba
Pat Maloney Craig Hayenga Dick Stutzke
Karen Owens Greg Kaszuba
James Horejsi Keith Young Softstar Systems
Harlan Bittner Rick Edison Dan Ligett
 Paul Robitaille
BAE Systems George Walther SSCI
Jim Cain Trish Persson Chris Miller
Donovan Dockery Bob Beckley Sarah Sheard
Merrill Palmer John Gaffney Jim Armstrong
Gan Wang
 Northrop Grumman UC Irvine
Boeing Linda Brooks Arnie Goodman
Maurie Hartman Steven Wong
Scott Jackson Albert Cox US ARMY
 Gregory DiBenedetto Cheryl Jones
Galorath Jim VanGaasbeek
Denton Tarbet
Evin Stump Raytheon
 Gary Thomas
General Dynamics John Rieff
Paul Frenz Deke Dunlap
Fran Marzotto Randy Case
Sheri Molineaux John McDonald
 Bob Vojtech
Honourcode Larry Kleckner
Eric Honour Greg Cahill
 Deke Dunlap
 Ron Townsend
 Stan Parson
 Michael Ernstoff

129

Appendix D: List of Data Sources

Raytheon Intelligence & Information Systems

(Garland, TX)
Northrop Grumman Mission Systems

(Redondo Beach, CA)
Lockheed Martin Transportation & Security Solutions

(Rockville, MD)

Integrated Systems & Solutions
(Valley Forge, PA)

Systems Integration
(Owego, NY)

Aeronautics
(Marietta, GA)

Maritime Systems & Sensors
(Manassas, VA; Baltimore, MD; Syracuse, NY)

General Dynamics Maritime Digital Systems/
Advanced Information Systems
(Pittsfield, MA)

Surveillance & Reconnaissance Systems/
Advanced Information Systems
(Bloomington, MN)

BAE Systems National Security Solutions/
Integrated Solutions Sector
(San Diego, CA)

Information & Electronic Warfare Systems
(Nashua, NH)

SAIC Army Transformation
(Orlando, FL)

Integrated Data Solutions & Analysis
(McLean, VA)

130

Appendix E: Example Estimate Using COSYSMO
 Example of the model estimate. The Bayesian calibrated version of the
model can be used to estimate systems engineering effort.

COSYSMO

Size
Drivers

Effort
Multipliers

36 Person
Months of
systems
engineering
effort

Calibration

100 easy, 50
nominal, 75
difficult
requirements
2 easy, 3 difficult
interfaces
4 easy algorithms
5 nominal
operational
scenarios

High requirements und
High tech risk
High process capability

 For the given size parameters and three effort multipliers the estimate for
systems engineering effort is 192 person months. After a COSYSMO estimate is
performed it must go through the common sense test. Does a system with that many
requirements, interfaces, algorithms, operational scenarios; and an organization with
high requirements understanding and high process capability; and a product with
high technology risk warrant 36 person months of systems engineering? If this does
not make sense, then one or both of the following two alternatives must be exercised.
First, the technical parameters may need to be adjusted to better reflect the system
characteristics. Second, the model calibration factor, size driver weights, and cost
driver ratings must be adjusted to reflect that organization’s productivity.

The person month estimate provided by COSYSMO should be taken into perspective
relative to the project dynamics that are present. Costs estimates generally fall into
three different areas:

1. Could Cost: The lowest reasonable cost estimate involved in fulfilling the
essential systems engineering functions.

2. Should Cost: The most likely cost involved in providing the systems
engineering deliverables to bring a system into a condition of operational
readiness.

3. Would cost: The highest cost estimated for the systems engineering effort that
might have to be performed in order to bring a system into a condition of
operational readiness if significant difficulties arise.

These categories, originally provided by (Sage 1992) have been modified to fit
this circumstance. What the user is interested in is neither of these, rather, the
Will Cost is the desired result.

192

131

Appendix F: Cost Driver Correlation Matrix

REQ 1.0000
INTF 0.5265 1.0000
ALG 0.5141 0.8456 1.0000
OPSC 0.4903 0.2561 0.0655 1.0000
RQMT 0.1283 0.2982 0.3226 -0.0635 1.0000
ARCH 0.1980 0.3288 0.3700 -0.2212 0.4903 1.0000
LSVC -0.1476 -0.0875 -0.1776 0.0323 0.1697 -0.0055 1.0000
MIGR 0.4756 0.4400 0.4987 -0.0890 0.0369 0.1836 -0.0967 1.0000
TRSK -0.0123 -0.0433 0.0068 -0.1279 -0.3210 0.0503 -0.1946 0.2932 1.0000
DOCU 0.1177 0.3480 0.2148 0.1774 0.5145 0.1937 0.2437 -0.0370 -0.3781
INST 0.2446 0.3289 0.3275 0.0914 0.4816 0.0886 -0.0967 0.0931 -0.3534
RECU 0.3126 0.2916 0.0163 0.2199 0.0978 -0.0119 0.1256 -0.0224 -0.4047
TEAM -0.0423 0.0519 0.0464 0.1121 0.2470 0.1283 -0.2207 -0.2857 -0.0372
PCAP -0.0399 -0.0801 -0.0490 -0.2764 0.4110 0.2430 -0.2874 0.0007 -0.0989
PEXP 0.2582 0.2313 0.2935 -0.0880 0.1273 0.2899 -0.0979 0.4698 0.4012
PROC -0.0915 -0.0147 -0.1761 0.1627 -0.0804 -0.2814 0.0872 -0.0502 -0.2486
SITE 0.1896 0.3078 0.2076 0.0715 0.3475 0.1806 -0.0660 -0.0010 -0.1088
TOOL -0.1709 -0.1145 -0.0021 -0.2644 0.2775 0.2287 -0.1376 0.0180 -0.2076
 REQ INTF ALG OPSC RQMT ARCH LSVC MIGR TRSK

DOCU 1.0000
INST 0.5338 1.0000
RECU 0.5162 0.3109 1.0000
TEAM -0.1476 -0.0064 -0.2477 1.0000
PCAP -0.0899 0.1028 0.0533 0.3073 1.0000
PEXP -0.2354 -0.2403 -0.0771 0.0706 0.3159 1.0000
PROC 0.0521 -0.1205 0.2254 0.0044 -0.3552 -0.1893 1.0000
SITE 0.2878 0.3034 0.1877 0.2034 -0.1179 0.0132 0.3818 1.0000
TOOL -0.0805 0.1631 -0.1848 0.1483 0.1544 -0.0455 0.0905 0.2417 1.0000
 DOCU INST RECU TEAM PCAP PEXP PROC SITE TOOL

132

Appendix G: Cost Driver Distributions

Requirements Understanding (RQMT)

0
5

10
15
20

Very
Low

Low Nominal High Very
High

Level of Service Requirements (LSVC)

0
5

10
15
20

Very
Low

Low Nominal High Very
High

Architecture Understanding (ARCH)

0

5

10

15

20

Very
Low

Low Nominal High Very
High

133

Migration Complexity (MIGR)

0

5

10

15

20

Nominal High Very High Extra High

Technology Maturity (TMAT)

0
5

10
15
20

Very
Low

Low Nominal High Very
High

Documentation (DOCU)

0
5

10
15
20

Very
Low

Low Nominal High Very
High

134

Installations & Platforms (INST)

0
5

10
15
20
25

Nominal High Very High Extra High

Recursive Levels in the Design (RECU)

0
5

10

15
20

Very
Low

Low Nominal High Very
High

Stakeholder Team Cohesion (TEAM)

0
5

10
15
20

Very
Low

Low Nominal High Very
High

135

Personnel/Team Capability (PCAP)

0
5

10
15
20

Very
Low

Low Nominal High Very
High

Personnel Experience (PEXP)

0
5

10
15
20
25

Very
Low

Low Nominal High Very
High

Process Capability (PROC)

0
5

10
15
20

Very
Low

Low Nominal High Very
High

Extra
High

136

Multisite Coordination (SITE)

0

5

10

15

Very
Low

Low Nominal High Very
High

Extra
High

Tool Support (TOOL)

0
5

10
15
20

Very
Low

Low Nominal High Very
High

137

Appendix H: Regression Results for Final Model

Data set = COSYSMO, Name of Fit = L1
Deleted cases are
(8)
Normal Regression
Kernel mean function = Identity
Response = log[SE_HRS_ADJ]
Terms = (log[SIZE] log[_3COMPLEXITY] log[_3ENVIRONMENT]
log[_3OPERATIONS] log[_3PEOPLE] log[_3UNDERSTANDING])
Coefficient Estimates
Label Estimate Std. Error t-value p-value
Constant 3.65195 0.740909 4.929 0.0000
log[SIZE] 0.820202 0.108061 7.590 0.0000
log[_3COMPLEXITY]0.584024 0.470309 1.242 0.2250
log[_3ENVIRONMENT]0.400851 0.704392 0.569 0.5740
log[_3OPERATIONS]0.956473 0.629541 1.519 0.1403
log[_3PEOPLE] -2.13820 0.809700 -2.641 0.0136
log[_3UNDERSTANDING]0.0301342 0.269532 0.112 0.9118

R Squared: 0.819548
Sigma hat: 0.695759
Number of cases: 42
Number of cases used: 34
Degrees of freedom: 27

Summary Analysis of Variance Table
Source df SS MS F p-value
Regression 6 59.36 9.89333 20.44 0.0000
Residual 27 13.0702 0.484081

	 Appendix A: ANSI/EIA 632 Activities
	 Appendix B: Systems Engineering Effort Profile
	 Appendix C: List of Industry participants
	 Appendix D: List of Data Sources
	 Appendix E: Example Estimate Using COSYSMO

