
The dMARS Architecture: A Specification of the

Distributed Multi-Agent Reasoning System

MARK D’INVERNO dinverm@westminster.ac.uk

Cavendish School of Computer Science, University of Westminster, London W1M 8JS, UK

MICHAEL LUCK mml@ecs.soton.ac.uk

School of Electronics and Computer Science, University of Southampton S017 1BJ, UK

MICHAEL GEORGEFF michael.georgeff@infotech.monash.edu.au

Faculty of Information Technology Monash University, Victoria 3800, Australia

DAVID KINNY dnk@agentis.net

Agentis Software, Level 2, 33 Lincoln Square South, Carlton, Victoria 3053, Australia

MICHAEL WOOLDRIDGE mjw@csc.liv.ac.uk

Department of Computer Science, University of Liverpool, Liverpool L69 7ZF, UK

Abstract. The Procedural Reasoning System (PRS) is the best established agent architecture currently

available. It has been deployed in many major industrial applications, ranging from fault diagnosis on the

space shuttle to air traffic management and business process control. The theory of PRS-like systems has

also been widely studied: within the intelligent agents research community, the belief-desire-intention

(BDI) model of practical reasoning that underpins PRS is arguably the dominant force in the theoretical

foundations of rational agency. Despite the interest in PRS and BDI agents, no complete attempt has yet

been made to precisely specify the behaviour of real PRS systems. This has led to the development of a

range of systems that claim to conform to the PRS model, but which differ from it in many important

respects. Our aim in this paper is to rectify this omission. We provide an abstract formal model of an

idealised dMARS system (the most recent implementation of the PRS architecture), which precisely

defines the key data structures present within the architecture and the operations that manipulate these

structures. We focus in particular on dMARS plans, since these are the key tool for programming dMARS

agents. The specification we present will enable other implementations of PRS to be easily developed, and

will serve as a benchmark against which future architectural enhancements can be evaluated.

Keywords: agent architectures, procedural reasoning system, BDI, formal specification.

1. Introduction

Since the mid 1980s, many control architectures for practical reasoning agents have
been proposed [56]. Most of these have been deployed only in limited artificial
environments; very few have been applied to realistic problems, and even fewer have
led to the development of useful field-tested applications. The most notable excep-
tion is the Procedural Reasoning System (PRS). Originally described in 1987 [19],
this architecture has progressed from an experimental LISP version to a fully fledged
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C++ implementation known as the distributed Multi-Agent Reasoning System
(dMARS), which has been applied in perhaps the most significant multi-agent
applications to date [21].
For example, Oasis is a system for air traffic management that can handle the flow

of over 100 aircraft arriving at an airport. It addresses issues of scheduling aircraft,
comparing actual progress with established sequences of aircraft, estimating delays,
and notifying controllers of was to correct deviations. The prototype implementation
comprised several different kind of agents, including aircraft agents and coordinator
agents, each of which was based around PRS. Oasis successfully completed opera-
tional tests at Sydney Airport in 1995. Similarly, dMARS has been used as the basis
of an agent-based simulation system, Swarmm, developed for Australia’s Defence
Science and Technology Organisation, to simulate air mission dynamics and pilot
reasoning. More recent work has sought to apply dMARS to represent different
roles in an organisation in more general business software for running call centres or
internet services. The Agentis system allowed the generation of fully automated,
server-side customer-service applications. The first major installation aimed to use
4000 dMARS agents.
The PRS architecture has its conceptual roots in the belief-desire-intention (BDI)

model of practical reasoning developed by Michael Bratman and colleagues [3], and
in tandem with the evolution of the PRS architecture into an industrial-strength
production architecture, the theoretical foundations of the BDI model have also
been closely investigated (see, e.g., [43] for a survey).
A whole range of practical development efforts relating to BDI systems have been

undertaken, and can be divided into those that are almost straight-forward reim-
plementations and refinements of PRS and dMARS on the one hand, and those that
are more loosely based on broader BDI principles. The former category includes
systems such as UM-PRS developed at the University of Michigan, a freely available
reimplementation of PRS [36], PRS-Lite developed at SRI by Myers [41], Huber’s
JAM system [31], and the commercial JACK system [5], which are respectively
increasingly sophisticated. The latter category includes Bratman’s IRMA architec-
ture [3], Burmeister and Sundermeyer’s COSY [4], and the GRATE� system devel-
oped by Jennings [33], all of which are reviewed in [23]. Nevertheless, PRS and
dMARS remain as the exemplar BDI systems.
Despite the success of the PRS architecture, in terms of both its demonstrable

applicability to real-world problems and its theoretical foundations, there has to date
been no systematic attempt to unambiguously define its operation. There have,
however, been several attempts in this direction. For example, in [45], Rao and
Georgeff give an abstract specification of the architecture, and informally discuss the
extent to which an embodiment of it could be said to satisfy various possible axioms
of BDI theory [43]. However, that specification is (quite deliberately) at a high level,
and does not lend itself to direct implementation. Another related attempt is
embodied by the AgentSpeak(L) language developed by Rao [42]. AgentSpeak(L) is
a programming language based on an abstraction of the PRS architecture; irrelevant
implementation detail is removed, and PRS is stripped to its bare essentials. Building
on this work, d’Inverno and Luck have constructed a formal specification (in Z [49])
of AgentSpeak(L) [13]. This specification reformalises Rao’s original description so
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that it is couched in terms of state and operations on state that can be easily refined
into an implemented system. In addition, being based on a simplified version of
dMARS, the specification provides a starting point for actual specifications of these
more sophisticated systems.
In summary, there are several logical models of abstracted BDI systems, and

several efforts to define particular BDI systems. Although each of these has been
successful in terms of its specific aims, the situation remains that the abstract theo-
retical models are divorced from the realities of the computational architectures,
while the specifications of particular systems has largely been point work, concen-
trating on an accurate representation rather than a consideration of the general
architecture.
BDI is regarded by many as a foundational topic in many areas of artificial

intelligence and cognitive science, both for its folk psychological basis for under-
standing and predicting behaviour, and for its use and deployment in systems and
applications as described above. Because of the distinct approaches to BDI, the
computational and the theoretical, interpretation and understanding of agent
architectures tends to be done in only one of these areas.
In this paper, we seek to provide a complete, general, computational model of

probably the most widely used, implemented BDI system, dMARS, and show how it
relates to other architectures. The particular contributions of this paper are three-
fold: first, we provide the first complete yet general description of dMARS and its
operation; second we show how the the general model may be modified to accom-
modate architectural variations within the basic model, and how this is facilitated by
the formalisation we have provided; third, we show how the formal model may be
used as an evaluation framework to provide a means for a stronger and cleaner
comparison with other architectures. In this sense the formal model here can be
considered a reference specification. On the one hand, it can be put to straight- forward
use by developers seeking to build BDI systems. On the other, it can be used for
analysis, design and evaluation purposes both by researchers seeking to understand
and compare complete architectures and specific architectural variants, and by
researchers seeking to develop new architectures, both general models, and those
tailored to particular application domains.
The work continues and extends the work begun in providing the reformalisation

of Rao’s AgentSpeak(L) described above, by giving the first complete description of
dMARS (the system upon which AgentSpeak(L) is based) and its operation through
an abstract formal specification. In so doing, we provide an operational semantics
for dMARS, and thus offer a benchmark against which future BDI systems and
PRS-like implementations can be compared. The specification is abstract in that
important aspects of the dMARS system are included, but unnecessary implemen-
tation-specific details are omitted. Our approach is very similar to that of [55], in
which a formal specification of the MYWORLD architecture was developed using
VDM, a formal specification language closely related to Z.
The remainder of this paper is structured as follows: First, in Section 2 we present

an overview of the dMARS system. In Section 3, we describe the Z notation used
subsequently to develop the specification of dMARS in the rest of the paper. The
specification itself begins in Section 4, in which we describe the basic types and
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primitive components of the system, and in Section 5 we proceed to specify more
complex components including plans. The next section specifies the dMARS agent
and its state, followed by a description of its cycle of operation. At the end of the
paper we summarise the contribution made by this specification, its relation to
previous work, and prospects for the future.

2. An overview of dMARS

Developed by Georgeff and Lansky [19], the PRS is arguably the best-known agent
architecture. It has been widely applied in fault-diagnosis on the space shuttle [32] air
traffic control, air mission dynamics and business solutions [21]. Both PRS and its
successor dMARS are prime examples of the popular agent paradigm introduced
above as the BDI approach [3]. As Figure 1 shows, a BDI architecture typically
contains four key data structures: beliefs, goals, intentions and a plan library.
An agent’s beliefs correspond to information the agent has about the world, which

may be incomplete or incorrect. In implemented BDI agents the typically repre-
sentation of an agents beliefs is symbolically (e.g., as propositions [19]). An agent’s
desires (or goals, in the system) intuitively correspond to the tasks allocated to it.
The intuition with BDI systems is that an agent will not, in general, be able to

achieve all its desires, even if these desires are consistent. Agents must therefore fix
upon some subset of available desires and commit resources to achieving them.
These chosen desires are intentions, and an agent will typically continue to try to
achieve an intention until either it believes the intention is satisfied, or it believes the
intention is no longer achievable [7]. In dMARS agents, the BDI model is opera-
tionalised by plans. Each agent has a plan library, which is a set of plans, or recipes,
specifying courses of action that may be undertaken by an agent in order to achieve

Beliefs

Desires

Plan
Library

Interpreter

Intentions

Sensor Input Action Output

Figure 1. A BDI agent architecture: PRS.
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its intentions. An agent’s plan library represents its procedural knowledge, or know-
how: knowledge about how to bring about states of affairs.
Each plan contains several components. The trigger or invocation condition for a

plan specifies the circumstances under which the plan should be considered, usually
specified in terms of events. For example, the plan ‘‘make tea’’ may be triggered by
the event ‘‘thirsty’’. In addition, a plan has a context, or pre-condition, specifying the
circumstances under which the execution of the plan may commence. For example,
the plan ‘‘make tea’’ might have the context ‘‘have tea-bags’’. A plan may also have a
maintenance condition, which characterises the circumstances that must remain true
while the plan is executing. Finally, a plan has a body, defining a potentially quite
complex course of action, which may consist of both goals (or subgoals) and
primitive actions. Our ‘‘tea’’ plan might have the body get boiling water; add tea-bag
to cup; add water to cup. Here, get boiling water is a subgoal, (something that must be
achieved when plan execution reaches this point in the plan), whereas add tea-bag to
cup and add water to cup are primitive actions, i.e., actions that can be performed
directly by the agent. Primitive actions can be thought of as procedure calls.
dMARS agents monitor both the world and their own internal state, and any

events that are perceived are placed on an event queue. The interpreter in Figure 1 is
responsible for managing the overall operation of the agent. It continually executes
the following cycle:

– observe the world and the agent’s internal state, and update the event queue to
reflect the events that have been observed;

– generate new possible desires (tasks), by finding plans whose invocation condition
matches an event in the event queue;

– select from this set of matching plans one for execution (an intended means);
– push the intended means onto an existing or new intention stack, according to

whether or not the event is a subgoal; and
– select an intention stack, take the topmost plan (intended means), and execute the

next step of this current plan: if the step is an action, perform it; otherwise, if it is a
subgoal, post this subgoal on the event queue.

In this way, when a plan starts executing, its subgoals will be posted on the event
queue which, in turn, will cause plans that achieve this subgoal to become active, and
so on. Once the intention stack executes successfully then the event is removed from
the event queue. This is the basic execution model of dMARS agents. Note that
agents do no first-principles planning at all, as all plans must be generated by the
agent programmer at design time. The planning performed by agents consists en-
tirely of context-sensitive subgoal expansion, which is deferred until a point in time
at which the subgoal is selected for execution.
Although PRS and dMARS allow explicit forking and spawning (enabling more

than one intention to be pursued at a time), only one intention is used to respond to a
goal. This is because usually it is only worthwhile pursuing a goal in one way – there
is little value in achieving the same goal in more than one way. (Sometimes one does
follow two paths at once, to mitigate risk, however. For example, if your goal is to
get married, it may be worth dating two people at once to increase your chances of
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success). The latter case is relatively rare, and in those situations in which it is
desired, it can be explicitly programmed using fork or spawn operations.
The response to events, however, should trigger all matching plans. Since the

semantics for event-triggered plans is ‘‘whenever some event occurs do something’’,
all plans must be triggered in response to an event. If the user does not wish this, it
can be bypassed by having one plan respond to the event and then explicitly handling
the others using goal invocation.
In PRS, planning ahead is possible through meta-plans (or alternatively decision

theory, specialised knowledge, etc). However, in practice, users rarely use meta-plans
because this knowledge can always be embedded in the object plan – it just requires
the inclusion of an extra step in the plan to call the relevant planning engine (which
could also include the set of plans used by dMARS). For example, a plan to go
overseas would include a step ‘‘plan itinerary’’. The reason dMARS does not do this
automatically is the assumption that in most cases the environment is so uncertain
that planning ahead will not help – it is better to try something and if that does not
work, try something else. For special cases, a special planning component can be
called, as mentioned above. In general, however, the most sensible course of action,
as in much human and animal behaviour, is to do anything appropriate to achieving
the goal, and reassess or retry on failure.
Other efforts to give a formal semantics to BDI architectures include a range of

BDI logics that have been developed by Rao and Georgeff [43]. These logics are
extensions to the branching time logic CTL� [17], which also contain normal modal
connectives for representing beliefs, desires, and intentions. Most work on BDI
logics has focused on possible relationships between the three ‘mental states’ [44]
and, more recently, on developing proof methods for restricted forms of the logics.
In future work we will investigate the relationship between this work and the
operational semantics described in this paper.

3. Notation

3.1. The Z specification language

There is a large and varied number of formal techniques and languages available to
specify properties of software systems [11]. These include state-based languages such
as VDM [34], Z [49] and B [35], process-based languages such as CCS [39] and CSP
[30], temporal logics [17], modal Logics [6], and Statecharts [50]. There are advocates
for each of these approaches to modelling various aspects of computer programs, but
it is perhaps the most controversial aspect of the use of formal techniques in the
agent field is that they do not directly relate strongly enough to the construction of
actual software.
In choosing the language Z, therefore, we deliberately adopt a technique which not

only enables designs of systems to be developed formally, but allows for the sys-
tematic reduction of these specifications to implementations. Furthermore, Z is a
specification language that is increasingly being used both in industry and academia,
as a strong and elegant means of formal specification, and is supported by a large
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array of books (e.g., [2, 25, 47, 53]), industrial case studies (e.g., [8, 10, 51]), well-
documented refinement methods [52], and available tools for animating operations
(e.g., [26, 46, 48]). In this respect, Z offers just the qualities we need, helping us
maintain the critical link between formal models and implemented systems.
Additionally, Z has other benefits.

– It is more accessible than many other formalisms since it is based on existing
elementary components such as set theory and first order predicate calculus.

– It is an extremely expressive language, allowing a consistent, unified and struc-
tured account of a computer system and its associated operations.

– As with the related language VDM [24], Z is gaining increasing acceptance as a
tool within the artificial intelligence community (e.g., [9, 22, 40, 55]) and is
therefore appropriate for the current work in terms of standards and dissemina-
tion capabilities.

In this section, we introduce the syntax of the Z language by way of example.
Much of this will be intuitive to many, but for a more detailed exposition,
the authors recommend consulting one of the array of existing Z text books cited
above.

3.2. Syntax

Z, developed at Oxford University in the late 1970s, is based on set theory and
first order predicate calculus. The key syntactic element of Z is the schema, which
allows specifications to be structured into manageable modular components. Z
schemas consist of two parts, the upper declarative part, which declares variables
and their types, and the lower predicate part, which relates and constrains those
variables.
If we allow d to stand for a set of declarations, p to be a set of predicates and S to

be the name of a schema we have the basic notation for a schema as follows:

It is therefore appropriate to liken the semantics of a schema to that for Cartesian
products. For example suppose we define a schema as follows:
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This is very similar to the following Cartesian product type.

The difference between these forms is that there is no notion of order in the
variables of the schema type. In addition, a schema may have a predicate part that
can be used to constrain the state variables. Thus, we can state that the variable, first,
can never be greater than second.

Modularity is facilitated in Z by allowing schemas to be included within other
schemas. For example, if we wished to include all the information of schema, S, in
another schema T along with a further set of declarations, d and predicates, p, we
would write the schema below.

We can select a state variable, var, of a schema, schema, by writing schema.var. For
example, it should be clear that Pair.first refers to the variable first in the schema
Pair.
Now, operations in a state-based specification language are defined in terms of

changes to the state. Specifically, an operation relates variables of the state after the
operation (denoted by dashed variables) to the value of the variables before the
operation (denoted by undashed variables).

Operations may also have inputs (denoted by variables with question marks),
outputs (exclamation marks) and a precondition. In the GettingCloser schema below,
there is an operation with an input variable, new?; if new? lies between the variables
first and second, then the value of first is replaced with the value of new? The original
value of first is the output as old ! The DPair symbol, is an abbreviation for
Pair ^ Pair0 and, as such, includes in this schema all the variables and predicates of
the state of Pair before and after the operation. Note that the equals symbol, =, is
used both for equality constraint and assignment. Note, also, that because by writing
DPair we are essentially just including all the declarations and predicates (with both
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dashed and undashed state variables) from Pair we can simply refer to them as first,
say, rather than Pair.first.

Finally, we can declare global, axiomatic definitions, where the value of the
variables is fixed as follows:

where d is a set of declarations and p is a set of predicates. For example, we can
declare two global variables that must be strictly less than 10 and strictly more than
ten, respectively, as follows:

To introduce a type in Z where no information about the elements within that type
are known, a given set is used. For example, ½TREE� represents the type of all trees
without saying anything about the nature of the individual elements within the type.
If we wish to state that a variable takes on a value, a set of values, or an ordered pair
of values of this type, we write x : TREE, x : P TREE and x : TREE � TREE,
respectively. Suppose we have xs : TREE � TREE then the expression first xs and
second xs are the first element and second element of the ordered pair xs.
The most important type is the relation type, expressing a mapping between source

and target sets. The type of a relation with source X and target Y is PðX � YÞ, and
any element of this type (or relation) is simply a set of ordered pairs.
The definition of functions is also standard: relations are functions if no element

from the source is related to more than one element in the target set. If every element
in the source set is related, then the function is total; partial functions do not relate
every source set element. Total functions are represented by (!) and partial func-
tions by (!j ). Sequences are simply special types of function where the domain
consists of contiguous natural numbers.
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We introduce two examples of relations, Rel1 and Rel2, by way of illustration.
Rel1 defines a function between trees, while Rel2 defines a sequence of trees. The size
of the source set determines whether Rel1 is a partial or a total function; If the only
elements of the source set are tree1, tree2 and tree3, then the function is total,
otherwise it is partial.

The sequence Rel2 is more usually written in Z as htree4; tree2; tree3i. Operations
on sequences include taking the head, tail and concatenation.

The domain of a relation or function is the set of source elements that are related.
Similarly, the range is the set of target set elements which are related. The inverse of a
relation is obtained by reversing each of the ordered pairs so that the domain be-
comes the range and the range becomes the domain. A relation can be restricted to a
particular subset of its domain using domain restriction. Similarly a relation can be
anti-restricted by a set in such a way such that the resulting relation does not contain
any ordered pairs whose second element is in the restricting set. This is known as
anti-range restriction. Lastly, one relation can be updated by another relation using
relational overriding. The second relation can be thought of as ‘‘new’’ information
about its domain elements, overwriting any existing pairs whose first element is in the
domain of the second.
Examples of these operators can be seen below.
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Sets of elements can be defined using set comprehension. For example, the
expression fx : N j x < 4 � x � xg denotes the set f0; 1; 4; 9g. To state that, say, the
square of every natural number greater than 10 is greater than 1000, we write
8n : N j n > 10 � n � n > 100. The expression, l a : A j P, selects the unique element
from the type A, which satisfies the predicate P.
A summary of the notation that is used in this paper is given in Figure 2. As

well as the standard Z we also provide some auxiliary Z definitions in Appendix C.
As stated earlier, more complete treatments of Z and its formal semantics [31]
can be found elsewhere. It should also be noted that whilst this paper does
contain formal material we will always attempt to provide intuition, exam-
ples and discussions in English to support the mathematical specification of
dMARS.

4. Beliefs, goals, and actions

Now in order to illustrate the operation of a dMARS agent, we will build up an
example scenario throughout the course of development of the specification. Our
example, loosely inspired by the example used by Rao to illustrate AgentSpeak(L)
[42], is concerned with the design of an agent for clearing rubbish from a collection of
adjacent locations. Some of these locations (which we will call boxes) contain rub-
bish bins that may be either full or empty, and the agent is designed to empty bins
into a truck that it can drive away to a dump. A simple diagram of a particular state
of this world is illustrated in Figure 3 which, for example, includes the empty binA in
box2.

4.1. Beliefs and belief formulae

We begin our specification by defining the allowable beliefs of an agent. Beliefs in
dMARS are rather like PROLOG facts: they are essentially ground literals of classical
first-order logic (i.e., positive or negative atomic formulae containing no variables).
In order to define atomic formulae, we need a stock of constants, variables, function
and predicate symbols. Since we are not concerned with the contents of these sets, we
define them as given sets.

A term is either a constant, a variable or a function symbol applied to a (non-empty)
sequence of terms.
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Figure 2. Summary of Z notation used.
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429429An atom is a predicate symbol applied to a (possibly empty) sequence of terms.

With reference to our example scenario, we can suppose that: the set of constants
includes box1, box2, . . ., and binA, binB, truckT; the set of variables includes X and
Y; and the set of predicate symbols includes location, adjacent, full, empty. The set of
atoms can thus include the following expressions for example.

A belief formula is then either an atom or the negation of an atom.

Now, a critical distinction can be made between belief formulae that contain
variables and those that do not. The latter belief formulae are referred to as beliefs,
and encode the representation an agent has of its environment. In order to define
beliefs, however, we must first define an auxiliary function, belformulavars, which
returns the variables within a belief formula. This relies, in turn, on defining two
further functions, which return the variables in terms and atoms respectively. Note
here that we must apply the function termvars to the terms ðconst cÞ and ðvar vÞ, we
could not apply it to either variables (v) or constants (c).

grid1 grid2 grid3 grid4 grid6 grid7 grid8 grid9

BA

grid5 grid10 grid11

empty bin full bintruck

B A DUMP

agent

Figure 3. Example scenario of rubbish collection.
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The set of beliefs is thus defined as those containing no variables.

For example, the expressions pos locationðagent;XÞ and not fullðYÞ are belief for-
mulae, but since they contain variables they are not beliefs. Only when the variables
are bound, do the belief formulae become actual beliefs about the world. For
example, pos locationðagent; box7Þ and not fullðbinAÞ indicate that the agent is at
box7 and that binA is not full.

4.2. Goals

dMARS allows an agent’s goals to be specified in terms of a simple temporal modal
language with two unary connectives in addition to the connectives of classical logic.
The operators are ‘‘!’’ and ‘‘?’’, for ‘‘achieve’’ and ‘‘query’’ respectively, so that a
formula !/ in dMARS is read ‘‘achieve /’’. Thus an agent with goal !/ has a goal of
performing some (possibly empty) sequence of actions, such that after these actions
are performed, / will be true. Similarly, a formula ‘‘?/’’ means ‘‘query /’’. Thus an
agent with goal ?/ has a goal of performing some (possibly empty) sequence of
actions, such that after it performs these actions, it will know whether or not / is
true. In order to define these additional connectives, we must first define situation
formulae: these are expressions whose truth can be evaluated with respect to a set of
beliefs, and are thus not temporal.

We need to consider a temporal formula because we assume that the achievement
of a goal takes place over a sequence of atomic state transitions. Given states
s1; s2; s3; . . . ; sn, !/ is true if and only if / holds in sn, and ?/ is true if and only if /
holds in s1.

– In the trivial case, if / is already believed, then !/ and ?/ are both true without the
need to execute any plan.

– If q/ is already believed, then ?/ is not true. The expression !/ can be made true
by executing a plan that guarantees, upon successful completion, that !/ is true in
the final state (i.e., / holds in sn).

– If / is unknown, then ?/ can be made true by executing a plan that guarantees,
upon successful completion, that / was indeed true prior to the plan being
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executed (i.e., / holds in s1). Thus, the fact that the plan completes successfully
indicates that / was true prior to execution. Equally, !/ can be made true by
executing a plan that guarantees upon successful completion / is true in the final
state (i.e., / holds in sn).

A temporal formula, known as a goal, is then a belief formula prefixed with an
achieve operator, or a situation formula prefixed with a query operator. Thus an
agent can have a goal either of achieving a state of affairs or of determining whether
the state of affairs holds.

For example, achieve emptyðbinBÞ is the goal to empty binB, and the expression
query fullðbinBÞ is the goal to determine whether the same bin is full.

4.3. Actions

The types of action that agents can perform may be classified as either external (in
which case the domain of the action is the environment outside the agent) or internal
(in which case the domain of the action is the agent itself). External actions are
specified as if they are procedure calls or method invocations (and in reality, from the
agent programmer’s perspective, they usually are). An external action thus comprises
an external action symbol (cf. the procedure name) taken from the set ½ActionSym�,
and a sequence of terms (cf. the parameters of the procedure).

An example of such an action is moveðbox7; box8Þ which moves the agent from
box7 to box8.
Internal actions may be one of two types: add or remove a belief from the data

base (cf. the PROLOG assert and retract clauses). As specified later, an agent’s
database contains only ground atoms; it is therefore not possible to add or remove
an atom that contains variables.

Now, if the agent moved as determined by the example above, it would clearly
need to perform the following (internal) actions in order to update its beliefs:
add locationðagent; box8Þ and remove locationðagent; box7Þ. Similarly, if the agent
emptied binB then it would add the predicate emptyðbinBÞ and remove the predicate
fullðbinBÞ.
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5. Plans

As described earlier, the BDI model is operationalised in dMARS by plans, with
each agent having its own plan library representing its procedural knowledge, or
know-how: knowledge about how to bring about states of affairs.
Plans are adopted by agents, in the way we describe below. Once adopted, plans

constrain an agent’s behaviour and act as intentions. Plans consists of six compo-
nents: an invocation condition (or triggering event); an optional context (a situation
formula) that defines the pre-conditions of the plan, i.e., what must be believed by
the agent for a plan to be executable; the plan body, which is a tree representing a
kind of flow-graph of actions to perform; a maintenance condition that must be true
for the plan to continue executing; a set of internal actions that are performed if the
plan succeeds; and finally, a set of internal actions that are performed if the plan fails.
The tree representing the body has states as nodes, and arcs (branches) representing
either a goal, an internal action or an external action as defined below. Executing a
plan successfully involves traversing the tree from the root (start state) to any leaf
node (end state). This is illustrated in Figure 4 in which there is an invocation
condition, a context, a body, maintenance conditions, and success and failure ac-
tions. The plan body is a tree of states and branches, in which each branch is either a
query goal, an achieve goal or an external action.
Now, in order to specify the invocation condition, we define triggers, which are

simply those events that cause a plan to be adopted. Four types of events are
allowable as triggers: the acquisition of a new belief; the removal of a belief; the
receipt of a message; or the acquisition of a new goal. This last type of trigger event
allows goal-driven as well as event-driven processing.

As noted above, plan bodies are trees in which arcs are labelled with either goals or
actions, and states are place-holders. Since states are not important in themselves, we
define them using the given set ½State�. Thus we define a branch (or arc) within a plan
body as being labelled with either an internal or external action, or a subgoal.

Next, we define plan bodies. A dMARS plan body is either an end tip containing a
state, or a fork containing a state and a non-empty set of branches each leading to
another tree.
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All of these components can now be brought together into the definition of a plan as
follows: (The definition of the optional type used here and other related components,
which are non-standard Z, can be found in Appendix C.)

If a plan does not have a body, it is called a primitive plan.

Now, returning to our example, consider a plan which we will call PlanP, illus-
trated in Figure 5, which is triggered whenever an agent perceives a full bin. For
future reference we will call this PlanP. The plan body, which is not included in this
diagram, but is shown in Figure 6, specifies the course of action to take for the agent
to empty the bin.
In the example scenario, the invocation condition holds (is made true) by binding

the variable W to the full binB. The context of the plan states that the plan can only
be adopted if the agent believes there to be a truck which is currently not in use;
if such a truck can be found then variable X is bound to it. There are no mainte-
nance conditions or fail actions but if the plan succeeds then the agent updates
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Figure 4. The dMARS plan structure.
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its belief base to record the fact that the bin is now empty. Part of a possible body
for such a plan to empty the bin is illustrated in Figure 6. First, it includes steps to
find the location of the bin, which is bound to variable Y, and the location of the
truck, which is bound to variable Z. (Remember that variable W is now bound to
binB in order to establish the truth of the invocation condition), and X is bound to
truckT.
The next stage of the plan is to test whether the bin and the truck are currently at

the same location. If not, the right branch is traversed and an achieve goal to get
them to the same location is encountered. At this point, a subgoal is posted to the
event queue and, when processed, requires another plan (say PlanQ) to achieve it.
Once PlanQ has succeeded, the execution of PlanP can continue. (In fact, this
subgoaling may continue with PlanQ requiring further plans, but we defer discussion
of this until later in the paper.)
At this point (on the left branch), the agent can attempt to perform the external

action of loading the bin onto the truck before trying to achieve the goal of getting
the truck to the dump which may, in turn, require further planning. Lastly, the bin is
emptied and the plan succeeds. (Note that although the plan might seem incomplete
because the bin has not been returned to its original location, this was not part of the
aim of the plan.)
It can be seen from the example above that when a plan is adopted by an agent for

execution more information besides just the plan (i.e., trigger, context, body,
maintenance conditions and internal actions) needs to be represented. We also need
to include, amongst other things, any bindings that have been used during the
execution of the plan, the current state reached in the plan, and the branches that are
available to an agent in attempting to move to a new state from the current state.
This extra information reflects the important distinction between plans as recipes for
action (which are contained in the plan library) on the one hand, and plans the agent
has adopted and set about executing, (which are components of the mental state of
the agent) on the other. We distinguish plans as recipes from plans as components of
mental state directing action, by referring to the latter as plan instances.
To provide a full explanation of plan instances, we require definitions of how

bindings, substitutions and unification takes place in dMARS. The reader unfamiliar
with such issues is therefore referred to Appendix A, which considers these aspects at
length. Similarly, it is also necessary to define functions on the tree structures of the
plan body, details of which can be found in Appendix B. These important aspects are

Figure 5. A dMARS plan for rubbish collection (PlanP).
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not discussed here in order to avoid impeding the flow of the exposition, but both are
required to specify how dMARS plans are instantiated as intentions, and we con-
sider this next.

6. Plan instances

The basic execution mechanism for dMARS agents, described in Section 2, involves
an agent matching the invocation condition and context of each plan against the
chosen event in the event queue and the current set of beliefs, respectively. It then
generates a set of candidate, matching plans, selects one, and makes a plan instance
for it. This plan instance represents the status of the plan through its course of
execution, and contains a copy of the original plan and, in addition:

– the environment of the plan (i.e., any bindings that have been generated in the
course of executing the plan);

– the current state reached in the plan (initially the root of the plan body);
– the set of branches that can be traversed from this state;

Figure 6. A dMARS plan body for PlanP.
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– (if determined) the branch it is attempting to traverse;
– an identifier to uniquely identify the plan instance to the agent owner from the set

½PlanInstId� of all such identifiers;
– and finally, the status of the plan (either ‘‘active’’, indicating that the plan is

currently executing, or ‘‘inactive’’, indicating that the plan has temporarily been
suspended).

When a branch cannot be traversed (for example, because an action or subgoal
fails), then the branch itself fails and is removed from the set of possible branches.
If the branch that the agent is attempting to traverse is defined, the agent has cho-
sen the branch to attempt next, but if it is undefined, no such choice has been made.
A plan instance is thus formally specified in the following schema. The predicates

ensure that the plan instance is well defined, and in turn assert the following:

– that the current state is one of the plan’s states;
– that if the current state is a leaf node then the set of possible next branches

available is empty;
– that the set of possible branches currently available from the current state is a

subset of all the branches leading from the current state as defined in the original
plan (from which the plan instance is derived);

– and that the selected branch is always one of the possible branches.

The schema uses the auxiliary function, NextBranches, to identify the set of
possible next branches from a given state in a plan, and AllStates, to give all the
states of a plan. Full definitions of these functions can be found in Appendix B.

For example, suppose that PlanP, introduced earlier, has been selected as a plan
instance, and instantiated with the variable W bound to binB in order to make the
plan invocation condition true, and the variable X bound to truckT in order to make
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the context true. Further suppose that the agent has executed this plan so that it has
just established that the location of the bin is box4 and that the location of the truck
is box5. The variables Y and Z are therefore bound to the constants box4 and box5,
respectively. The current state reached by the agent is therefore P2 of Figure 6. Now,
if the agent has not committed to either of the possible branches, then the plan
instance at this point would be represented as described in Figure 7.
At this point, the agent needs to determine whether box4 and box5 are the same.

Clearly they are not and the agent would follow the course as determined by the right
hand branch. The next branch then states that the agent must now get to the truck by
making its location the same as that of the variable Z which is bound to the location
of the truck. At this point this subgoal is posted as an internal event (which will be
discussed and formally introduced later in the paper), and the status of the plan is set
to suspended.

6.1. Subtypes of plan instance

Now, when a plan is first selected as a plan instance, the current state is set to the first
state in the plan, and its status is set to active. A plan is said to have succeeded when
it reaches its end state, and it is said to have failed if it is not in the end state and there
are no available branches (i.e., it has failed if it has tried each branch and none have
been successful). We can therefore define three important types of plan instances as
follows:

7. Intentions and events

7.1. Intentions

Intentions have been discussed in the literature at great length over the years, from
Bratman’s work on the BDI model of practical reasoning [3] through to Cohen and

Figure 7. The plan instance for PlanP .
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Levesque’s [7] notion of intention being defined in terms of the commitment an agent
has to make when it is faced with a number of alternative, desirable courses of
action. In these views, intention is seen as the key to resource-bounded intelligent
action since, in general, an agent cannot hope to achieve all of its goals and must
decide which goals to fix on. The goals to which an agent is committed become its
intentions, directing (in general) its perception, action and reasoning.
There are many formal models that explore desirable properties of agent inten-

tions including, for example, that of never intending to achieve something that is
already true or that can never be true [54]. Despite all this, an intention in dMARS,
and in other BDI-inspired architectures, is operationalised as a sequence of plan
instances. In response to an external event, an intention is created containing the
generated plan instance. If this plan, in turn, creates an internal event to which the
agent responds with another plan, the new plan is concatenated to the intention. In
this way, the plan at the top of the intention stack is the plan that will be executed
first in any intention. It is the only plan that may have an active status.
To illustrate, we continue with our example, and assume that PlanP is instantiated

as a plan instance in response to the new external event of discovering a full bin.
However, during the course of executing the plan, subgoals that require further
planning must be achieved. For example, PlanQ might be selected to enable the
agent to get to the same location as the truck. Once PlanQ is accomplished suc-
cessfully, the agent can resume execution of PlanP. However, PlanQ may itself
require a further plan, PlanR, to achieve a subgoal within PlanQ. In this case, the
resulting intention (call it IntentionI) would be written as follows:

The general structure of intentions is shown in Figure 8 where the plan instance
generated initially in response to the external event is the plan instance
(PlanInstanceð1Þ) at the bottom of the stack. Whilst the status of the plan instances
from 1 to m� 1 must be suspended, the plan instance at the top of the stack may be
active (if it is currently executing) or suspended (if it has posted a subgoal that has
not yet been processed) as will be discussed later. Formally, an intention is simply a
sequence of plan instances.

7.2. Events

Events are perceived and subsequently processed by agents in order to establish
which plans should be selected as intentions. An event essentially comprises the
triggering event itself (that activates plans) and, optionally, a plan instance identifier
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that identifies the event-generating plan, an environment, and a set of plan instances
that may already have failed and may not be retried. (Note that attempting a new
plan is not the same as backtracking. Whereas backtracking restores system state,
reposting a goal after plan failure does not – it takes off from where the last plan
failed.) Recall that a plan fails when all branches leading from a non-end state (an
intermediate or start state) have been attempted for traversal, but have failed and
have therefore been removed. In this case an end state of the plan cannot be reached
and so it cannot succeed.

The simplest type of event is an external event such as adding a new belief in
response to perception. Such events are not associated with an existing plan instance
when they first enter the buffer (though of course they will become associated later,
once a plan instance is generated for them).

PlanInstance(1)

PlanInstance(m)

PlanInstance(m-1)

Intention

Figure 8. The dMARS intention structure.
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By contrast, a subgoal event is an internal event that occurs when the branch of an
executing plan at the top of an intention is an achieve goal that cannot be achieved
immediately. In this case, the environment variable of the event is defined, containing
a subset of the bindings from the environment of the executing plan that posted the
goal. More specifically, the environment of the event is restricted to bindings only for
those variables that are contained in the trigger of this subgoal event. This is because
it is only these bindings that are relevant when the event is, in turn, processed to
generate new applicable and relevant plans.
Any plan instances that fail to achieve the subgoal are added to the failures

variable to make sure they are never retried.
(In order to proceed with the full specification, we must first define auxil-

iary functions to return the set of variables contained in a goal and a situation
formula.)

In the following schema the final predicate states that the variables contained
within the environment are all contained in the trigger event. This requires
the inverse (�) of the function constructor (goalevent) that creates the trigger type
from the goal type (i.e., goalevent�) to be applied to the trigger. The function
goalvars can then be applied to the resulting goal to obtain the set of variables
contained within it.

8. An operational semantics for dMARS agents

The operation of dMARS agents is driven by the interaction of intentions and
events. Events, (which may be the addition or deletion of beliefs, or the generation of
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new goals or subgoals), provide triggers to execute appropriate plans in the agent’s
plan library. As events are posted on the agent’s event queue, so plans are selected
from the agent’s plan library that are relevant and applicable to the event. Deter-
mining whether a plan is relevant and applicable to an event reduces to attempting to
unify the invocation condition and context, respectively, with the event. From the set
of applicable plans found by such unification, the agent chooses one plan, and from
it generates a plan instance that is then added to the current intentions of the agent.
This plan is thus an intended means [42].
Plans in dMARS are sequences of actions and goals with choice points so that,

at any point, there may be more than one path to traverse in order to complete
the plan. Intentions, which are those plans currently executing, determine
which actions the agent takes, and may also give rise to the generation of new
subgoals, both of which occur in the course of the agent’s efforts to carry out the
plan.
The following formal model specifies how relevant and applicable plans are

determined initially, how one is chosen, and then how it is used. Essentially, an event
either causes the generation of a new intention, or adds a plan instance to an existing
one. An agent then selects an intention to execute and, depending on the current
component of the plan, different courses of behaviour are required. Actions may be
executed directly and may lead to the posting of new events if the database is
modified as a result, while goals either lead to the further instantiation of plans, or to
the posting of new events (subgoals to be achieved) and the suspension of the cur-
rently executing plan.
This section provides a detailed specification of the dMARS agent operation,

covering the agent and agent state, the generation of relevant and applicable plans,
the way in which events are processed, the execution of intentions, and finally the
achievement and failure of plans.

8.1. The dMARS agent state

As in other BDI architectures such as AgentSpeak(L) [42], a dMARS agent consists
of a plan library, an intention-selection function, an event-selection function and a
plan-selection function. It also has a substitution-selection function for choosing
between possible alternative bindings, and a function for selecting which branch in a
plan should be attempted next. The belief domain specifies the set of belief formulae
representing all possible beliefs of the agent. Similarly, the goal domain is a set of
temporal formulae that includes all the belief formulae in the belief domain, prefixed
with query and achieve, as well as other temporal formulae consisting of predicate
symbols not contained in the belief domain. Every goal of a plan must be contained
in the goal domain. The designer of an agent may also specify the basic capabilities
of an agent in terms of the external actions it can perform. In this case any external
action contained in a plan of the plan library must be contained within these
capabilities.
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Typically the event-selection function takes the head of the event queue
which means that the dMARS agent will process events on a first-come first-served
basis.

In specifying the state of the agent, we indicate which aspects may change over
time. These components are the agent’s beliefs (which are ground belief formulae),
intentions (sequences of plan instances), and events yet to be processed (represented
as a sequence). Clearly, any belief of the agent must be attainable by applying some
substitution to a belief formula within its belief domain.
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An operation only affects the state of the dMARS agent rather than the agent
itself. The N symbol states that the state variables contained within the
dMARSAgentState schema do not change.

Initially, an agent is provided with an event queue, and sets of beliefs and intentions
that ‘‘pump prime’’ its subsequent intention generation and action. This initial state
is specified as follows:

Finally, we must specify that agents can perceive external events that are placed at
the end of the event buffer.

8.2. Relevant and applicable plans

A plan is relevant with respect to an event if there exists a most general unifier
(mgu) to bind the triggering events of the plan and the event so that they are equal.
This is the way an agent ascertains those plans in its plan library that are considered
as ways of reacting to the new event. (A description of the mgu can be found in
Appendix A.)
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Relevant plans are specified in the function relplans, which takes an event e and a
set of plans ps, and returns a set of plan/substitution pairs, such that if ðp; rÞ is
returned, then p is a relevant plan in ps for the event e, and r is the mgu for p. The
signatures of the functions defining mgus are given in Appendix B. If the event is a
subgoal event, and therefore contains a substitution environment, it must be applied
to the invocation conditions before the relevant plans are generated.

Let us return to our example of PlanP and consider how it might be selected as
a relevant plan. Suppose an external event, provided as input to the agent, states
that binB is full. (Remember that an external event contains no information other
than the trigger, which is typically the addition or removal of a belief.) Now there
may be many plans whose invocation can be unified with the predicate fullðbinBÞ
in the same way as PlanP. The function relplans below returns all such plans
together with the minimal substitution which matches the event trigger and the
invocation. In the case of PlanP that substitution is simply fðW; binBÞg. There
are, of course, other substitutions that could be applied such as
fðW; binBÞ; ðX; truckUÞg, but the first is more general since it is a subset of the
second. Indeed we can see that it is a mgu. (Consult Appendix A for a more
general description of unification.)
Now, a relevant plan is applicable if its context is a logical consequence of the

beliefs of the agent. That is the agent will only attempt to execute a relevant plan if its
context currently holds with respect to its beliefs.
Thus, we can define a predicate, dMarsLogCons, to hold between a situation

formula and the belief base of an agent if the situation formula is a logical conse-
quence of the belief base. (Note that dMARS is resource-bounded and does not
perform full-fledged logical inference. There are many potential ways of imple-
menting different forms of inference for this purpose, some of which are more or less
resource-intensive than others. In the simplest case, this might amount simply to
seeing whether the situation formula is contained in a belief database.)

Using this logical consequence relation, we can define an applicable plan relation to
hold between a relevant plan, a substitution and a current set of beliefs. This is
specified in the function, applplans, which takes a set of plans (and the substitutions
which make them relevant), and the current beliefs, and returns the applicable plans
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and updated substitutions. These updated substitutions contain the bindings re-
quired to make that plan both relevant and applicable. (The definition of substitu-
tion composition can be found in Appendix A.)

Returning to our example, the function applplans takes a set of (relevant) plan-
substitution pairs f. . . ; ðPlanP; fðW; binBÞgÞ; . . .g and, for each plan and substitu-
tion, attempts to find another substitution which, when composed with the existing
substitution, can be applied to the context of the plan to make it a logical conse-
quence of the beliefs of the agent.
Let us now assume that the agent has correct beliefs about the world as

represented in Figure 3. The beliefs will therefore include the predicate
belform freeðtruckTÞ. Composing the applicable substitution fðW; binBÞ with the
substitution fðX; truckTÞg results in the following substitution.

If this is applied to the context of PlanP (belform freeðXÞ), the result is
belform freeðTruckTÞ, which is a logical consequence of the agents’ beliefs. (In fact
the belief is actually contained in the agents belief base.) Clearly no other substi-
tution is going to contain a set of bindings which is a subset that can make the plan
both applicable and relevant. (This is what is meant by the mgu, which is defined in
Appendix A.) However, there may well be other plans which are both relevant and
applicable and the agent according to a particular environment, must then choose
between them. It can do this non-deterministically or by using some form of meta-
reasoning [45].

8.3. Processing events

With the dMARS agent and its state specified, we can define the dMARS operation
cycle. There are two possible modes of operation, depending on whether the event
buffer is empty or not. If the event buffer is not empty, an event is selected from it
(typically the first element) and then relevant plans and, in turn, applicable plans are

THE dMARS ARCHITECTURE 33



determined. An applicable plan is selected and used to generate a plan instance using
the function CreatePlanInstance defined here. It simply takes a plan and a substi-
tution, and creates a plan instance in its initial state.

With an external event, a new intention containing just the plan instance as a
singleton sequence is created. With an internal event, the plan instance is pushed
onto the intention stack that generated that (subgoal) event. As the status of any
newly created plan instance is active, the status of the intention is updated auto-
matically. Note that a failed plan instance cannot be re-selected for an internal event.
Also, if the event is external then it must be updated to include the identifier of the
new plan instance to which it is associated.
In the schema below, note that as plans is defined as the set of all applicable

plans and associated unifiers, applying the function to the selected plan returns its
unifier. In the final predicate, the triggering intention is removed from the set of
intentions, the new plan instance is pushed onto it and replaced into the set of agent
intentions.

The schema above uses the following definition for MakeEvent which simple
creates an element of type Event from its constituent parts.
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8.4. Executing intentions

The remainder of this section addresses the agent operation when the event buffer is
empty. We refer to this as the intention execution operation. Essentially, at any time,
the agent has a set of intentions (each of which is a sequence of plan instances) that it
is currently executing. It must first select an intention to execute (either non-deter-
ministically or using some form of meta-level reasoning) with the qualification that
the uppermost plan instance of this intention has an active status. The agent then
locates the current state in the plan body of the plan instance, and determines the set
of available branches that leave that state. From these branches, one is selected,
which is either an external action (that is performed), a query goal (that is unified
with the agent’s beliefs) or an achieve goal (that causes an internal (subgoal) event to
be posted and the status of the plan to be set to suspended).
The variables included in the schema below enable the specification of intention

execution to be written more elegantly, but do not define the state, and are reset on
every operation cycle. When the event buffer becomes empty, all these variables are
set to be undefined.

The first step is to select an intention, intention0, identify the executing plan, plan0,
at the top of this intention stack such that the plan is active, and select the branch of
the plan to execute, branch0.
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Before considering the different cases arising from the different types of selected
branch, we must introduce two schemas to specify a move to the next state if the
branch is successful, and to delete a branch if it fails. First, however, we introduce
the auxiliary function, AchieveBranch, which takes a plan instance and moves it on
to the next state as determined by the branch variable of the plan instance.

There are then four cases, depending on whether the branch is an external action, an
internal action, a query goal, or an achieve goal.

8.4.1. External actions. If the branch is an external action, then it is executed
immediately. Its success or failure is modelled by the function executeaction, which
takes a plan instance with a selected branch that is an external action, and returns the
binding that succeeded. If it is not in the domain, the function models the action
failing.

With a successful branch, the binding of the action is composed with the substi-
tution environment.
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The branch is then traversed to reach the next state, specified by the schema
BranchSucceed defined above. The operation of achieving an external action and so
moving onto the next state as defined by the tree is therefore defined as the com-
position of two operations as follows:

An unsuccessful branch fails and there is no state change.

After this occurs the branch must be removed.

8.4.2. Internal actions. If the branch is an internal action (denoted by the local
variable action), the database is modified according to that action. If this action
results in a change to the database, an event is added to the set of events.
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The auxiliary function, MakeEvent, in the schema above, simply constructs an
event from its constituent components. This operation is then composed with the
operation, BranchSucceed, as before.

8.4.3. Query goals. In the case of a query goal, qgoal, if the environment applied
to the goal can be unified with the set of beliefs, the mgus are generated and one is
chosen (sub). This binding is composed with the substitution environment and the
next state is reached. The unifiquery relation holds between a goal and a set of beliefs
if the situation formula contained in the querygoal follows from the set of beliefs,
according to the substitution which is maximal.

Where no such unification is possible, the branch fails.

8.4.4. Achieve goals. Finally, with an achieve goal, g, that can be unified with the
beliefs, the rest of the executing plan is unified as in the previous case, and the branch
succeeds. If the goal cannot be unified, the goal achieve event is posted, the executing
plan is suspended by setting the status parameter. The identifier of the new internal
event is set to the current executing plan.
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Once an achieve goal is posted, the execution cycle can restart, otherwise further
operations are performed as follows.

8.5. Achieving and failing plans

A successful branch leads to a new state that is either not an end state, in which case
execution of another branch ensues, or is an end state, in which case the plan
succeeds. In the latter possibility, the substitution environment, ðthe planÞ:env, is
applied to the success conditions, ðthe planÞ:plan:succ, to give a sequence of ground
internal actions, groundacts. Then, the database is updated by performing these
ground actions one at a time on the current set of beliefs to give the new set of beliefs,
beliefs0. The auxiliary definition fold is given in Appendix C.

Two further cases arise if a plan succeeds. If there are more plans in the intention,
the current substitution environment, ðthe planÞ:env, is updated to include
the appropriate bindings from both the achieved plan, plan, and the environment
of the next plan in the stack, next:env. The successful plan instance is then removed
from the top of the selected intention so that the new executing plan, which is
re-activated, is the second in the original stack. (The term ðthe intentionÞ 2 returns
the second plan instance within the intention.) TEVars, returns the set of variables of
a trigger event. Also the internal event which generated the completed plan is re-
moved.
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If there are no more plans, the intention has succeeded and can be removed as can
the external event which generated it.

Finally, if a branch fails but more branches remain, these may then be attempted.
If there are no further alternatives, however, the plan fails. When this is the only plan
on the stack, the intention fails completely (which is not specified here), otherwise the
substitution environment is applied to the plan’s fail conditions, failacts, and the
ground fail internal actions, groundacts0, are performed. Since it is not the only plan
on the stack, it must have been triggered by an existing goal event in the event queue,
g, which is then found and updated to record the failed plan instance so that it is not
retried. The status of the second plan remains suspended.

9. Evaluation and comparison

9.1. Variations on dMARS

In the preceding sections, we have described the basic dMARS architecture and
semantics. However, many aspects of this basic framework may be adjusted without
fundamentally affecting the architecture itself. In particular, the formalisation of
dMARS given here allows us to identify those aspects that may be easily modified,
and facilitates the modification.
For example beliefs could equally well be represented as database tables. This

does not affect the general architecture or reactive planning capability and the
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specification would change very little. In this case it would simply be a matter of
redefining the belief data structure and, then redefining related elements such as
logical consequence.
Goals could be equally well (or better) be represented as any temporal formula.

Thus, a goal could be any temporal formula in any temporal language, and the
invocation condition on plans could equally be any temporal formula. If the latter
logically implies the former, then the plan is applicable. This is a very clean extension
of the dMARS invocation mechanism. Again, it would be a simple matter to change
the specification to accommodate this with almost no change to the rest of the
architecture specification.
We can demonstrate how other data structures can be accommodated within the

same basic architectural framework more specifically by outlining another very real
benefit of this specification; it allows a very easy comparison to be made with other
languages that have been similarly specified [38]. The BDI model as described here,
and as instantiated in dMARS, is the inspiration for a host of related models and
systems and we specifically look at comparisons with AgentSpeak(L) [13] and 3APL
[12].
The abstract programming language, 3APL [27, 28], with a well-defined formal

semantics in terms of a transition system, has been based on the BDI model. 3APL
uses features of both logic programming and imperative programming, and captures
some of the features of other BDI-based languages such as AGENT-0 and Agent-
Speak(L). The key distinction between 3APL and the operation of a dMARS agent
is that it contains no notion of events and, indeed, the authors suggest that events are
not necessary for agent languages that attempt to capture the intuitions of the BDI
model.
By comparing systems using the abstract specification provides for a more uni-

form and unifying perspective. We show how this can be achieved readily with
these languages by briefly comparing definitions and schemas from the three lan-
guages.
We begin by considering data structures. AgentSpeak(L), 3APL and dMARS both

have their atom, action, term and belief primitives defined in almost exactly the same
way. The only difference is that 3APL allows for a slightly richer representation of
belief allowing, for example, implication.

dMARS and AgentSpeak(L) both use triggering events in order for subgoals of
plans to be placed in a queue for further planning, and uses intentions as sequences of
plans to be executed. In 3APL, events are unnecessary since goals are themselves
modified in the process of planning and acting, and instead of using intentions,
3APL simply attempts to execute its current goals.
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The definition of a 3APL Goal is therefore slightly more sophisticated allowing,
for example, sequential composition and choice. An AgentSpeak(L) goal on the
other hand is simply either a query or an achieve atom.

AgentSpeak(L) plans are much more simple than dMARS plans and simply
consist if a Trigger event, a pre-condition which is a set of beliefs and a body which is
a sequence of goals and actions.

A 3APL agent uses plans called practical reasoning rules not only to plan in the
more conventional sense, but also to reflect on its goals. Reflection allows an agent to
re-consider one of its plans in a situation in which the plan will fail with respect to
the goal it is trying to achieve or has already failed, or where a more optimal strategy
can be pursued. In 3APL practical reasoning rules are divided into four classes: rules,
which are used not only to respond to the current situation but also to create new
goals; plan-rules, which are used to find plans for achievement goals; failure-rules,
which are used to replan when plans fail; and optimisation-rules, which can replace
less effective plans with more optimal plans. A practical reasoning rule consists of an
(optional) head, which is a goal, an (optional) body which is a goal, a guard which is
a belief and a type to define its purpose.

D’INVERNO ET AL.42



The agents themselves are defined by their expertise and rulebase (planbase) in
3APL, dMARS and AgentSpeak(L). However, the state of agents at run-time differ.
The state of AgentSpeak(L) and dMARS agents includes beliefs, executing inten-
tions, events to be processed, and actions to be performed, while the state of 3APL
agents simply contains beliefs and goals. At the agent state level we therefore need
fewer state variables to specify 3APL agents. We do not provide details of the
formalisation where as it should be reasonably clear to the reader how these would
all compare.
It is also a straightforward matter to make comparison between the operation of

different systems. In AgentSpeak(L) and dMARS, there are two parts to the oper-
ation of agents, processing events and executing intentions. Processing an event
involves selecting a plan triggered by the event and adding it as an intention to an
intention stack. Executing intentions involves selecting an intention, locating its
topmost plan, and performing the plan’s next component. In 3APL, the agent either
applies its rules to its current goals, which involves manipulating it’s goals to which
the rules can apply, or executes them which amounts to executing either a basic
action or query goal at the front of a goal.

10. Conclusions

As the technology of intelligent agents matures further, we can expect to see a
progression from the ‘‘scruffiness’’ of early investigative work to the ‘‘neatness’’
of rigour and formality [15]. In this paper, we have contributed to the growing
body of ‘‘neat’’ intelligent agent research, by presenting a complete formal speci-
fication of the best-known and most important agent architecture developed to
date.
The specification we have presented in this paper is significant for a number of

reasons. First, we need to understand clearly how an architecture works in order that
we can evaluate it against others. Implementations are too low-level to allow such
evaluations to take place. Formal specifications, using standard software engineering
tools like the widely used Z language, are an ideal medium through which to com-
municate the operation of an architecture (e.g., [16]).
Second, there are understood methods for moving from an abstract specification

in Z to an implementation, through a systematic process of refinement and reifica-
tion. Such a process is not possible from a natural language description. Reimple-
mentation and evaluation of the dMARS architecture in different languages and
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environments is therefore a realistic possibility. This kind of transition is demon-
strated, for example, through the provision of a simple agent simulation environ-
ment [37], and more recently through the development of a sophisticated Jini-based
development environment [1], both based on an extensive agent framework [14]
represented in Z. While both of these implementations address the specific issues
involved in instantiating a broad encompassing framework, the work in this paper
focuses on the specification of a mature, implemented and deployed system, in the
reverse direction.
Finally, by understanding the model-theoretic foundations of PRS, (through

rigorously defining the data structures and operations on those structures that
constitute the architecture), we make it possible to develop a proof theory for the
architecture. Such a proof theory has been developed for the MYWORLD architecture
[55], and also for Rao’s AgentSpeak(L) [42], which is itself a restricted version of
PRS. Once such an axiomatisation is available, there will exist a straight line from
the implementation of PRS to its theory, making it possible to compare the actual
behaviour of the architecture against the philosophical idealisations of it that have
been developed by BDI theorists [44]. In future work, we hope to investigate such
axiomatisations.
Equally importantly, the provision of a formal specification of a system such as

dMARS (for which there does not exist even a complete informal specification),
using a standard language, allows an easy and simple comparison of it with alter-
native architectures and systems specified in the same way. For example, related
work on reformalising AgentSpeak(L) [13] and 3APL [12] enables exactly such
comparisons to be made to identify points of agreement and difference [29]. In
addition, the accumulation of these efforts results in an accessible resource in the
specification of techniques for development of agent systems. Not only might this
not otherwise be available, but it is unlikely to be so in a form relevant both to agent
architects and developers. In other words, we have provided what amount to
architectural building blocks that can be used in the development of agent languages
and architectures in general, to combat wheel re-invention.
Some features of various BDI systems still remain to be included in specifica-

tions such as this. For example, some BDI plan representation languages support
parallelism, wait goals, continuous processes, programmatic variables, etc.
The original PRS supported internal actions that went beyond assertions or
retractions from the agent database as does dMARS. These are not considered in
the model provided here, but are clearly avenues for further development of this
work.
The BDI model as manifested by PRS and dMARS remains central to agent-

based systems, just as it has done over the course of the last 15 years or so. Indeed,
the claim still holds. Only very recently, Georgeff argued that BDI embodies the
key requirements for systems to function effectively in the uncertain and
dynamic environments of the emerging information age [20]. If this is so, then
a clear and precise specification and understanding of the manifestation of this
model and its relation to systems development is required. Through the descrip-
tion and specification of dMARS contained in this paper, we have provided exactly
that.
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Appendix A. Substitutions and unification

In this appendix, we define binding and unification as used in dMARS, which is
critical to providing a comprehensive model of the system’s operation. Binding refers
to the way a variable may be associated with a term. For example, the variable X
may be associated with the constant 4, and the variable Y with the term fðU;VÞ. A
substitution is a set of such bindings from variables to terms. For example, the
substitution containing the two bindings above would be fðX; 4Þ; ðY; fðU;VÞÞg.
Formally, a substitution is a partial function between variables and terms. In gen-
eral, substitutions are partial functions, since only some variables will be mapped to
terms.

However, any term in the range of the substitution (defined by the auxiliary
function subrangevars below) cannot contain any of the variables in the domain of
the relation.

Therefore, the intersection of the set of variables in the domain with the set of
variables contained in the terms of the range must be empty.

A.1. Substitution application

Next, definitions are provided to specify the application of substitutions to various
dMARS expressions. The function ASVar applies either the identity mapping to a
variable if the variable is not in the domain of the substitution, or applies the
substitution if it is in the domain.

Similarly, we can then define what it means for a substitution to be applied to a
term. If it is a constant, it is unchanged; a variable requires that the function defined
above is applied; and a function requires recursive application of the substitution to
each of the terms within it.
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In exactly the way we can define the application of a substitution to an internal
action, a situation formula, a plan, a goal, a belief formula and a trigger event, as
given by ASAtom, ASIntAction, ASSit, ASGoal, ASBelForm and ASTrigger,
respectively.

A.2. Substitution composition

Consider two substitutions, s and r, such that no variable bound in r appears
anywhere in s. The composition of s with r, written s z r, is obtained by applying s
to the terms in r and combining these with the bindings from s. For example, if
s ¼ fx=A; y=B; z=Cg and r ¼ fu=A; v=Fðx; y; zÞg then, since none of the variables
bound in r (u; v) appear in s, it is meaningful to compose s with r. In this case
s z r ¼ fu=A; v=FðA;B;CÞ; x=A; y=B; z=Cg.
The auxiliary function allvars returns the set of all variables contained in a sub-

stitution
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A.3. Unification

Unification is concerned with how substitutions can be applied to two expressions in
order that they can be equated in some way. Clearly, there may be many substitu-
tions that make two expressions equal and it is therefore important to select the
substitution that contains the fewest number of bindings. This substitution is called
the most general unifier (mgu).
A substitution is a unifier for two expressions if the substitution, applied to both of

them, makes them equal.them equal.

The definition is analogous for unifying trigger events.

A substitution is more general than another substitution if there exists a third
substitution which, when composed with the first, gives the second. (For example,
the unifier fx=A; y=B; z=Cg is more general than the unifier fu=A; v=FðA;B;CÞ;
x=A; y=B; z=Cg; the more general a unifier the lesser number of bindings it contains.)

The mgu of two expressions is a substitution which unifies the expressions such
that there is no other unifier that is more general. This is a partial function, since any
two expressions may not have a unifier at all. However, if there does exist an mgu
then it is unique.
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Here we define the signatures for the most general unifier of two trigger events.

Appendix B. Auxiliary functions for dMARS plans

Five auxiliary definitions are required in order to specify the operation of a dMARS
agent. These are functions that are applied to the tree structure that comprises the
plan’s body.

1. Start determines the start state of a plan.
2. AllStates gives all the states of a plan.
3. AllBranches specifies all the branches of a plan.
4. NextBranches identifies the set of possible next branches from a given state in a

plan.
5. NextState gives the next state in a plan when applied to the current state and the

branch traversed.

Recall that the basic representation of a tree a pair. The first element of the pair is
a state and the second is a set of pairs. Each of these pairs contains a branch and a
further tree.

Therefore, for a non-primitive plan, the first of the pair represents the start node.
The start state of a primitive plan is thus simply the single state that comprises its
body.
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The set of all the states within the body of a plan is defined by recursing through
the tree structure. In the base case, the leaf node is returned. The AllStates function is
specified in terms of a further auxiliary function, AllBodyStates, defined on the body
of a plan.

The branches of a tree can be defined using an analogous function although here,
the application of the function in the base case returns the empty set (since an end
state clearly has no branches).

Suppose there is some state in the body of a plan s : State, and some non-empty set
of branches from this state to other trees, next : P1ðBranch � BodyÞ so that
Forkðs; nextÞ is a subtree of the plan’s entire body. The branches leading from state s
are given simply by the domain of next. Assuming the existence of the subtree
relation ( subtree ) we define the function NextBranches as follows:

Similarly, it is possible to define a function that takes some branch from a node
(path) and returns the next node (which may be a leaf or fork node). It is achieved by
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taking the set of pairs of branches and trees (next) and applying it to the chosen
branch (path).

Appendix C. Auxiliary generic Z definitions

In this appendix, we define generic auxiliary functions used in the main body of the
paper.
The function, fold, takes a function, an initial value and a sequence, and first

applies the function to the first element in the sequence and the initial value. Then it
applies the function to the second element in the sequence and the result of the first
function application and so on. For example, fold f xha; bi ¼ fðf x aÞb. The double
line in the schema definition states that we are declaring generic functions, which
means that, in the case of the fold function say, we can replace X and Y with any
types we chose.

The function, map, takes another function and applies it to every element in a list.
Similarly, mapset, applies a function to every element in a set.
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In specifying dMARS, it is useful to be able to assert that an element is optional.
The following definitions provide for a new type, optional½T�, for any existing type,
T, which consists of the empty set and singleton sets containing elements of T. The
predicates, defined and undefined test whether an element of optional½T� is defined
(i.e., contains an element of type T) or not (i.e., is the empty set), and the function,
the, extracts the element from a defined member of optional½T�.
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