
Software Assurance by Bounded Exhaustive Testing
Kevin Sullivan1, Jinlin Yang1, David Coppit2, Sarfraz Khurshid3, Daniel Jackson3

{sullivan, jy6q}@virginia.edu; coppit@cs.wm.edu; dnj@lcs.mit.edu; khurshid@csail.mit.edu
1. University of Virginia; 2. The College of William & Mary; 3. MIT

ABSTRACT
The contribution of this paper is an experiment that shows the
potential value of a combination of selective reverse engineering to
formal specifications and bounded exhaustive testing to improve
the assurance levels of complex software. A key problem is to scale
up test input generation so that meaningful results can be obtained.
We present an approach, using Alloy and TestEra for test input
generation, which we evaluate by experimental application to the
Galileo dynamic fault tree analysis tool.

Categories and Subject Descriptors
D.2.4. [Program Verification]. D.2.5 [Testing and Debugging].

General Terms
Experimentation, Reliability, Verification.

Keywords
Bounded exhaustive testing, specification-based testing, automated
test case generation, TestEra, formal methods, reverse engineering.

1. INTRODUCTION
Assuring the trustworthiness of even modestly complex software
programs remains a difficult, open problem of great importance.
An approach that has been proposed is bounded exhaustive testing
(BET) [32]: exhaustively testing all inputs up to a given complexity
or size. The underlying hypothesis is that, in practice, any given
failure mode is likely to manifest itself on some small input, and
testing all small inputs thus suffices to reveal these failure modes.

The primary contribution of this paper is an empirical test of the
feasibility and potential utility of bounded exhaustive testing
(BET) on a reasonably complex, production software system. We
adapted and applied BET to test the existing Galileo tool [8,15,42]
for dynamic fault tree (DFT) modeling [13,14,16], which is used in
the reliability analysis of complex engineering systems.

We had to perform three major technical tasks to enable the use of
BET. The first was to write a formal specification of the abstract
syntax and semantics of DFT’s. The second was to develop a test
oracle implementing the semantic mapping from DFT’s to
reliabilities. The third was to mitigate scalability limitations of the
tool used to generate test inputs from the DFT syntax specification.

Our previous work [9,10,11] addressed the first two issues: the
cost-and technical-effectiveness of selectively reverse engineering

Galileo to a formal specification of its core analysis capabilities,
and producing an implementation, designed for verifiability not
efficiency, which we used here as a test oracle. This paper takes the
step , envisioned in the earlier work [10], of using the specification
to drive BET. We report on our use of TestEra [32], whose inputs
are Alloy specifications [23], to generate all non-isomorphic fault
tree input structures up to the computational limits of TestEra and
the oracle. We measured utility in terms of unknown failure modes
revealed, and cost in terms of labor required.

The challenges encountered in this part of the work were, first, to
generate and run test inputs within sufficiently large bounds to get
meaningful results, and, second, to diagnose large numbers of
observed failures. The first challenge arose from limitations of the
test input generator and test oracle. The second challenge arose
because, in exhaustive testing, many inputs reveal the same failure.

This paper focuses on the first problem. We started by translating
our earlier Z [40] specification of DFT syntax into Alloy for use as
an input to TestEra. When we first ran TestEra it was unable to
generate inputs beyond very small bounds due to excessive
memory requirements. We developed techniques of specification
abstraction and tightening to extend its range. In the end we
generated millions of non-isomorphic test input structures and were
able to run hundreds of thousands of test cases, revealing several
previously unknown failure modes.

Traditional testing subjects a system to orders of magnitude fewer
tests, whose construction is labor intensive and unreliable. To our
knowledge, this work is the first to evaluate BET for a system with
input structures and computational procedures as complex as those
for DFT’s. Although we address only Galileo and have no evidence
that our results generalize beyond Galileo-like systems, the market
for a pragmatic, automated, formal approach is potentially great,
e.g., improving software assurance of legacy systems. Testing
cyber-infrastructure for vulnerabilities is a possible application.

The rest of this paper is organized as follows. Section 2 provides
background on specification-based testing. Section 3 describes our
approach. Section 4 describes impediments to test input generation
encountered and how we overcame them. Section 5 explains how
we used the approach to test Galileo. Section 6 reports our
experimental results and findings. Section 7 reflects on our
findings. Section 8 discusses related work. Section 9 concludes.

2. SPECIFICATION-BASED TESTING
We begin with a review of specification-based testing and test
selection criteria. Specification-based testing [2] uses the target
program’s specification, usually written in a formal specification
language, to generate a set of program inputs and to judge the
resulting outputs. Tools such as Korat [3] and TestEra [32] have
been developed to automate this process. It is claimed that
specification-based testing can improve the effectiveness of testing
by reducing the cost and increasing the chance of detecting bugs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSTA’04, July 11-14, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-820-2/04/0007...$5.00.

133

Real systems often have infinite input spaces, making exhaustive
testing impossible. As a result, many well-known test selection
criteria [2] have been developed to select test cases from an input
space to achieve limited confidence. The statement coverage
criterion, for example, requires that test cases be chosen to execute
each statement of a program at least once. Harrold [19] point s out
that more research is needed to provide evidence of the
effectiveness of the test selection criteria in revealing faults.

More recently , bounded exhaustive testing criterion has attracted
attention as an adequacy criterion. It requires exhaustive coverage
of the input space up to certain bounds on input size. Previous work
has demonstrated the feasibility and effectiveness of bounded
exhaustive testing on some small-scale systems using the TestEra
tool [32]. Prior to this experiment, the largest system on which the
technology had been evaluated was the Intentional Naming System
[32,38], with 2000 lines of Java code. Evidence of applicability to
larger-scale systems with structurally more complex input spaces
was absent. This paper helps to fill that void with a study of the
potential utility of TestEra for bounded exhaustive testing of a
complex tool.

TestEra itself is a framework for automated specification-based
testing [2] (with an orientation to Java programs, in particular). To
test a method, the user provides a specification that consists of a
precondition (which describes allowed inputs to the method) and a
post-condition (which describes the expected outputs). TestEra
uses the precondition to automatically generate a test suite for all
test inputs up to a given bound; a test input is within a bound of k if
at most k objects of any given class appear in it. TestEra executes
the method on each input, and uses the post-condition as a test
oracle to check the correctness of each output.

TestEra specifications are first-order logic formulas. As an
enabling technology, TestEra uses the Alloy toolset. Alloy [23] is a
first-order declarative language based on sets and relations. The
Alloy Analyzer [24] is an automatic tool that finds instances of
Alloy specifications, i.e., assignments of values to the sets and
relations of the specification that make the specifications
constraints evaluate to true. The analyzer finds an instance by: 1)
translating the Alloy specification into a Boolean satisfiability
formula, 2) using an off-the-shelf SAT solver to find a solution to
the formula, and 3) translating the solution back into sets and
relations. The analyzer can enumerate all instances (within a given
bound) using a SAT solver that supports enumeration, such as
mChaff [34] or relsat [1]. The analyzer generates complete
assignments: if the underlying SAT solver generates a solution
with "don't care'' bits, the analyzer grounds these bits out, i.e.,
systematically replaces them with 0’s and 1’s.

TestEra translates Alloy instances into test inputs that consist of
Java objects. Some inputs are isomorphic, i.e., they only differ in
the identity of their objects. Two linked lists, for example,
containing the same elements (up to isomorphism) in the same
order but whose buckets are different nodes will be isomorphic,
since no code will be able to tell them apart. Considering only
non-isomorphic inputs reduces the time to test the program,
without reducing the possibility of detecting bugs, because
isomorphic test inputs form a revealing sub-domain [45], i.e.,
produce identical results1. The analyzer has automatic symmetry
breaking [39] to eliminate many isomorphic inputs. TestEra users

1 We assume that object identities are used for comparisons only.

can also exploit support for total orders to guarantee generation of
exactly non-isomorphic inputs [25].

Initial case studies with TestEra focused on checking Java
programs. TestEra exposed bugs in a naming architecture for
dynamic networks [26] and a part of an earlier version of the Alloy
Analyzer [32]; these bugs have now been corrected. TestEra was
also used to systematically check methods on Java data structures,
such as from the Java Collection Framework [43].

3. OUR APPROACH
First, we selectively produce a formal specification of the parts of a
system viewed as most critical. The result is a mathematically
precise specification of the required behavior of that part of the
system under study.

Galileo was an existing system, so this activity amounted to reverse
engineering. We studied the code and other documentation, worked
with domain experts, etc. We ended up with a specification of what
the program should have been doing, which was slightly different
from what it was actually known to be doing.

Second, from the validated specification we derive two artifacts.
The first is an oracle designed for verifiability, not efficiency. The
result is in general an oracle that is unacceptably inefficient for
inputs that arise in practice but that is still adequate for small
inputs. In the future, we may explore executable specifications to
avoid having to derive separate oracle programs. We emphasized
verifiability of the oracle code by preserving and inspecting, as far
as possible, an isomorphism between the specification and its C++
code (in modularity, identifier names, data structures, etc) [7].

The second artifact derived from the specification is the input to a
specification-based test input generator. If the overall specification
is structured appropriately and written in the same language as that
taken by the generator, this step involves no more than ext racting
the relevant parts. In our case, the main specification was written in
Z [40], so the extraction of the input -space characterization (DFT
syntax) required a translation from Z to Alloy.

Third, we present the generated test cases as inputs to the legacy
system and oracle, and capture and compare the outputs.

Fourth, when the outputs disagree, we trace the cause of the
disagreement to faults in the legacy system, formal specification,
generator input (if different from the specification), or oracle.

An interesting phenomenon arises here. A given fault is often
revealed by a very large number of test cases. The problem then is
to partition a potentially huge number of observed failures into a
small number of equivalence classes by causative fault.

We explored an iterative approach to address this problem. To
begin, we select a single test case that reveals a fault and ask
domain experts to provide a correct output. The smallness of inputs
is advantageous here: it makes manual computation of the correct
answer easy. The hand-computed answer typically exposes the
location of the fault: system, oracle, or specification.

If the system produces an incorrect answer, a bug has been found.
If the oracle produces a wrong answer, the problem is either in the
oracle implementation or the specification. If the problem is in the
system or oracle, a decision to fix the bug or move on is made,
based on economic concerns. If the decision is to postpone the fix,
we modify the generator specification to mark with a comment,
“expect-failure,” all cases known to exercise the fault, thus

134

documenting the fault and causing our test harness to skip such
cases for an effectively much smaller test. For all the cases where
we decided to postpone a fix, it was easy to identify all fault trees
that would fail as a result of the given fault. For example, we could
easily mark generated fault trees that contained components with
inappropriately high failure rates; such failure rates would cause
the solver to compute invalid results. There is a potential risk in
deferring repairs: a marked input could also reveal a second fault if
the first fault is repaired and the test case is executed again.

Once all expected-failure inputs have been marked, we retest.
Additional failures at this point can only be attributable to other
faults. This process is iterated until no more faults are revealed. If
the fault is found to be in the specification, we correct it and update
the generator specification accordingly.

This whole process is iterated. Each iteration increases the bounds
on test case generation. Having removed or masked all faults
revealed by inputs up to size n, we try to generate inputs for size
n+1 and start again. We pursue this course until computational
resources (of the generator or oracle) are exhausted.

4. TECHNICAL CHALLENGES
Three elements limit the scalability and thus effectiveness of our
approach: the test generator, the oracle, and the cost of handling
large numbers of observed failures. First, the test case generator
cannot generate inputs beyond certain size bounds. It was unclear
what the bounds were or whether they were sufficiently large to
permit a really useful test set to be produced. Second, the oracle is
designed for verification, eschewing optimization. An oracle might
be (and in our case was) incapable of running quickly enough
beyond certain relatively small input sizes. We have already
discussed the problem posed by large numbers of observed
failures, and how we addressed it.

The main challenge is to loosen the bottleneck at the test generator.
Direct use of specifications produced by reverse engineering
proved inadequate: TestEra was unable to generate tests beyond
very small bounds. To extend the bounds, we devised several
strategies. The most interesting, which we now discuss, was
separation of generation concerns through a combination of
specification abstraction and abstract test case post-processing.

Separating generation concerns means offloading from the
generator to a post-processor the handling of aspects for which the
unique abilities of the generator are not needed. For example,
aspects of fault trees include their tree-like structures, the kinds of
gates and basic events at the nodes, and scalar values at basic
events. There are a number of complex global constraints which
must be satisfied for a fault tree to be valid, such as lack of cycles.
TestEra is well-suited for generating complex structures. Having it
generate from our original specification, however, required it to
enumerate identical structures differing only in gate and basic
event types and scalar values. TestEra so configured was not able
to generate tests to satisfactory bounds. It would terminate
abnormally, out of memory, even before traversing the space of
fault trees of three events (e.g., one gate, two basic events).

Our approach to this problem is to abstract details from the
specification that need not be handled by TestEra, replacing them
with placeholders, in order to focus the generator on the hard
problem of generating abstract fault tree (AFT) structures . Then
we use a post-processor (in this case some simple Perl scripts) to

generate concrete fault trees (FT’s) from the abstract ones by
systematically substituting all possible values at the placeholders.

In a first effort, we separated out the handling of scalar values. In a
second phase, we abstracted out the gate types at the nodes,
significantly extending the range again.

We can now generate all concrete trees with up to six events and all
abstract trees with up to seven. (See Table 1 for details.) Within this
scope significant interactions among the features of the fault tree
language can arise, and it is just in these interactions where the
most serious faults are expected to lie.

There are at least two benefits to this separation of concerns. First,
the generator is able to exhaustively generate to a larger bound
because the abstracted specification is less complex than the
original, with the number of states to explore much smaller.
Second, it is easier to validate the generation itself, since there are
fewer abstract than concrete inputs, making it possible (for very
small bounds) to inspect the inputs manually.

Figure 1 compares the number of fault trees and abstract fault trees
generated as a function of the bound on the number of events (gates
and basic events) in a tree. The X-axis represents the number of
events; the Y-axis, the logarithm of the number of instances. The
dashed line denotes fault trees; the solid line, abstract fault trees.
The curve for AFTs is not only lower, allowing generation to a
larger bound, but it also grows more slowly so that improvements
in generation technology have more leverage. It was also much
easier to verify the abstract generation results. For example, with a
bound of four events, there are only sixteen AFTs. One can
manually verify that all are generated correctly. There are,
however, 1571 fault trees for the same number of events.

5. GALILEO: A CASE STUDY
To develop and evaluate our approach we used it to help verify a
software system that we are developing for NASA. The system,
called Galileo [8,10,15,42], allows reliability engineers to model
and analyze the reliability of complex systems. It has been
deployed for production use at NASA.

0
1
2
3
4
5
6
7
8
9

3 4 5 6 7
Number of Event s

Lo
g(

nu
m

be
r

of
 i

ns
ta

nc
es

)

AFTs FTs

Figure 1. Comparison of Number of FT’s and AFT’s

135

5.1. Dynamic Fault Tree Analysis
Dynamic Fault Trees (DFT) [4,14,44] is a reliability modeling
notation that allows the engineer to model complex failures in
systems having redundancy and other fault tolerance mechanisms.
It supports modeling of uncovered failures, systems with multiple
phases of operation, sparing behavior, and more.

A dynamic fault tree is a directed acyclic graph in which the
internal nodes (gates) represent relationships among their inputs,
and the leaf nodes (basic events) represent component failures or
event occurrences. Gates can be either static or dynamic,
depending on whether the order of failures of inputs to the gate is
relevant. Dynamic fault trees can also model constraints between
failures. For example, the functional dependency constraint ensures
that a given failure in the model will cause the immediate,
simultaneous failure of one or more dependent basic events. A
sequence enforcing constraint ensures that certain failures do not
occur out of order.

Figure 2 shows an example fault tree with a spare gate, a functional
dependency, and three basic events. In this example, Events 1, 2,
and 3 might represent components in the system. The spare gate is
a dynamic gate that uses Event 1 until it is no longer in operation,
then uses Event 2, then Event 3. When there are no spares
available, the spare gate fails, as does the system. The functional
dependency indicates that the failure of Event 1 causes the
immediate failure of Event 3.

Fault trees can be used to compute a number of properties about the
system being modeled. For example, given a fault tree, suitable
statistical data on the failure of the basic events, and a system
operation time one can compute the overall probability of failure.

Analyses are performed by converting fault trees into state-based
or combinatorial representations [4]. Figure 3 shows a state
machine for the example tree. The labels on the arcs represent
stochastic transition rates. The left-most state is the initial state, in
which all the basic events are operational and the spare gate is
using Event 1. Transitions from states model basic event failures.
For example, when Event 1 fails, the next state has both Event 1
and Event 3 failed (the latter due to the functional dependency),

and the spare gate using Event 2. The shaded state is a system
failed state, as indicated by the failed status of the spare gate.

With certain qualifications (beyond the scope of this paper), such a
state machine can be converted to a continuous-time Markov chain
by replacing the labels on the arcs with the proper failure rates. One
can then compute the probability of failure by solving the Markov
chain and determining the probability of being in any state in which
the top -level event in the tree is failed.

While the example shown is simple, several complications make it
hard to develop an efficient, dependable software implementation.
First, interaction between the different modeling constructs
complicates the language semantics. Second, direct translation to
Markov chains is swamped by combinatorial explosion even for
relatively small trees. Galileo employs two major optimizations.
First, it decomposes large trees into independent sub-trees when it
can, solves the sub-trees independently, and composes the results
to produce an exact result.

Second, Galileo supports two solvers: a dynamic solver that solves
fault tree by translation to and analysis of Markov chain; and a
static solver, by translation to a BDD [13]. The dynamic solver can
solve most trees. The static is applicable only to trees without
dynamic gates. For such cases, however, it is enormously more
efficient. A crucial property, to which we will return in Section 6.2,
is that the two solvers should produce exactly the same answers on
inputs to which they are both applicable. What we did, then, in
testing Galileo against the oracle was to run each input for each of
the Galileo solvers whenever possible. We assumed that a
discrepancy between the oracle and one of the solvers would
clearly indicate a fault in the discrepant solver. As we discuss in
Section 6.2, we were wrong in one especially interesting case.

5.2. Galileo
Galileo [8,15,42] is a tool for modeling and analyzing fault trees. It
began as a research prototype for assessing the viability of using
mass-market applications as components. Due in part to the
success of this approach, NASA has supported more recent efforts
to further develop the tool. In fact, NASA is currently using the
tool to help model and diagnose faults in the International Space
Station. As a result of these developments, the original weak
dependability requirements of a research prototype are no longer
appropriate.

Recent enhancements to Galileo have placed greater pressure on
dependability. New features such as phased mission modeling and
analysis, diagnostic decision trees, and sensitivity analysis
complicate the software analysis routines considerably. As a result,
the dependability of the DFT solver, even with respect to simple
analyses, is of increasing concern.

For these reasons, we decided to focus our verification efforts on
the core reliability analysis capability, avoiding for now reliability
issues of the user interface and more sophisticated modeling and
analysis capabilities. To this end, we created a simple, easily
testable command-line version of the tool containing only the DFT
solver, fault tree data structure, and a textual parser, totaling 10,680
of non-comment, non-blank lines of C++ code.

Figure 2. A dynamic fault tree

136

5.3. Nova Implementation as Test Oracle
Nova [9,10] is a prototype dynamic fault tree modeling and
analysis tool. It was developed to evaluate the feasibility of
combining formal methods and package-oriented programming to
achieve both dependability and usability at low cost (albeit in this
case at the cost of efficiency). As part of this effort, Coppit and
Sullivan developed and validated a formal specification, written in
Z [40], of the abstract syntax and semantics of dynamic fault trees.
The specification was validated via technical reviews with domain
experts and limited formal analysis [9,10,11] using Z/Eves [37].

Here, we leverage the previous specification and implementation
effort. As with Galileo, we extract the DFT solver module and use
it to implement a text -only command line solver program. Nova
supports a variant of the Galileo DFT language which has been
redesigned in key ways to improve its regularity and orthogonality
characteristics. Unlike Galileo, Nova does not support phased
missions, sensitivity analysis, or other more advanced capabilities.

The Nova solver was developed from the formal specification.
While we did not perform a formal refinement to code, we did
work to design an implementation that would be easy to verify by
inspection [7]. In particular, we eschewed almost all optimizations
in data representation, and we sought to preserve, to the extent
possible, an isomorphism between specification and code. Each
key abstraction in the specification, for example, is represented by
a corresponding one in the code. The close correspondence eases
verification by inspection, giving us more confidence in the use of
the program as an oracle. On the other hand, the combinatorial
explosion in mapping fault trees to Markov chains swamps Nova
much more quickly than Galileo. For dynamic fault trees with
fewer than 4 nodes, Galileo is about 5 times as fast as Nova. As
trees grow in size, Nova becomes a bottleneck in testing.

5.4. TestEra as Test Case Generator
The Galileo fault tree solver takes as inputs strings in the fault tree
grammar. For input generation, we wrote a concretization

translation by hand using Java and Perl, to generate fault trees in
this grammar from TestEra’s output

As explained above, we used TestEra to generate only abstract
inputs; concrete fault trees were obtained in an additional step with
a Perl script replacing place-holders with all possible values from
appropriate domains. For each abstract input, this step may
generate a combinatorially larger number of concrete inputs. Prior
uses of TestEra have involved data translations that also make use
of a similar form of abstraction, but map each abstract input to one
concrete input.

Even for small bounds, there are a very large number of fault trees.
This necessitates generation to be restricted to exactly
non-isomorphic trees to enable feasible enumeration and checking.
Following Khurshid et al. [25], we manually added simple
symmetry breaking predicates to enable such generation.

Even with symmetry -breaking, the number of inputs generated
from our initial specification was infeasibly large. We tightened our
specification to incorporate test purposes, such as generation of
only those fault trees that represent a single connected component,
and focused checking on the desired functionality (as explained
earlier in this paper.).

6. RESULTS
For test generation we used a dual-CPU Pentium 3 at 1GHz with
1GB of RAM running Red Hat Linux 2.4.18-27.7.xsmp #1 SMP.
The generator ran unsatisfactorily under Windows due to
incompatible memory management requirements of the underlying
SAT solver. The machine used to run test cases was a dual-CPU
Pentium 4 at 3GHz with 1GB RAM and Windows XP Professional
version 2002 SP 1.

As an example of the fault trees we generated, Figure 4 shows the
three non-isomorphic abstract FTs generated with three events, and
no dependency constraints (functional dependencies or sequence
enforcements). A Perl script instantiates each Abstract Gate with
any of the five types of gate: AND, OR, PAND, KofM, or SPARE.

We were able to generate all abstract fault trees with up to seven
events and no dependency constraints; instantiate all concrete FTs
with up to six events and no constraints; and generate all concrete
FTs with up to five events, at most one FDep, and at most one Seq.

Table 1 summarizes the number of abstract and concrete trees. It
took about 75 hours to generate all abstract trees with seven events,

Figure 3. State machine for the example DFT

Figure 4. All AFTs with three events, no Seq’s or FDep’s

137

of which there are over two hundred thousand. The number of
concrete fault trees at this level is astronomical. At a scope of six
events, there are over four thousand abstract trees and ninety three
million concrete trees. We tested all concrete trees up to scope four,
and to scope five with no constraints. That amounted to about two
hundred fifty thousand inputs. We ran the production and oracle
code, which took about a week, identified and diagnosed failures,
and corrected or masked the faults. It would be impossible to run
all trees with six events due to the inefficiency of the oracle. It took
about 2 minutes to run a six-event input, so it would take 355 years
to run all such FTs. In future work, we will investigate principled,
verifiable optimization of the oracle as a strategy for extending the
feasible testing bound. Testing revealed eight faults in Galileo,
three in the specification, and three in the oracle. To make the
results concrete, we describe an instance of each.

6.1. A Fault in Galileo
Figure 2 shows a test case that revealed a fault in Galileo. As
discussed in Section 5.1, basic events Event 1, Event 2, and Event 3
must all fail for the spare gate to fail. If only Event 1 fails, the spare
gate should remain operational for as long as Event 2 does. In the
Markov chain for this tree, from the initial state in which no events
have failed a transition for Event 1 failing should lead to a state in
which Event 2 and the spare gate remain operational (the
lower-most state in Figure 3. However, debugging showed the
transition led to a state with Event 2 operational but not the spare
gate (the system-level failure event). The resulting unreliability
estimate for this model was thus higher than the correctly
computed value. This fault had gone undetected for at least three
reasons. First, the tool has still not yet seen extensive production
use. Second, the fault is in the interaction of two more rarely used
constructs (FDep and multiple spares). Third, there’s no easy way
to see that the output is wrong.

6.2. A Fault in the Specification
One of the most interesting faults that our testing revealed was the
omission of an important precondition from the specification. The
fault both was revealed by N-version programming [29], and
showed that we had also been “bitten” by one of its known risks.

Recall that we tested both the static and dynamic solvers against
the oracle. We assumed that a discrepancy between the oracle and
one of the solvers would reveal a fault in the other solver. That
assumption turned out to be wrong.

One equivalence class of tests revealed a discrepancy. Galileo’s
dynamic solver, which translates fault trees to optimized Markov
chains, agreed with the oracle, which translates them to
un-optimized Markov chains; but Galileo’s static solver, which
translates fault trees to BDD’s, disagreed with both. The test case
was given to our domain experts with a request to verify that the
static solver did not implement its specification.

To our befuddlement, our colleagues reported that the static solver
calculated the correct answer according to published definitions.
We then assumed that the dynamic solver and oracle must be
exhibiting a common failure—a classic N-version programming
problem. We were wrong here, too. We asked our experts to
compute the Markov-based solution by hand. They reported that it,
too, was computed correctly. The two methods were “known” to
yield the same, exact, answers, but they didn’t.

A weekend’s inquiry by a leading domain expert finally produced
an explanation. The journal article in which the equivalence of the
two methods was demonstrated contained an easy-to-overlook
condition: provided that basic event failure probabilities are
sufficiently small, the methods are valid and produce negligibly
divergent answers. (The article provided no definition of
sufficiently small.) High failure rates would violate the statistical
assumptions on which the methods are based. Figure 5 shows a
very simple test case that leads us to detect this fault. Event 1, a
basic event, has a large lambda value (e.g. failure rate), .01. This
condition had been forgotten, in a sense. Our testing recovered it.

What happened? The Markov-based dynamic solvers (Galileo and
oracle) agreed: an N-version failure on a common, undocumented
precondition. The static solver was also subject to the specification
fault but misbehaved in a different way: an N-version
programming success based on algorithmic diversity. Galileo now
uses a heuristic check and warns of high probabilities.

6.3. A Fault in the Nova Test Oracle
We also found a bug in Nova’s implementation of sequence
enforcement constraints. Recall that a sequence enforcer ensures
that events occur in a particular order. In Figure 6, the sequence
enforcer states that Event 2 will not fail before Event 1 fails. The
implementation should invalidate out-of-order failures. Nova
erroneously omitted this check. Our approach to informal but
principled derivation of oracles from specifications clearly remains
subject to human error.

toplevel Event_0;
Event_0 and Event_1;
Event_1 lambda=.01 cov=0 res=.5 repl= 2 dorm=.5;

Figure 5. The DFT that revealed a specification error

Table 1. The number of DFTs and AFTs generated

Events Seqs FDeps AFTs DFTs
3 0 0 3 48
3 0 1 4 56
3 1 0 6 96
3 1 1 8 112
4 0 0 16 1,571
4 0 1 46 3,614
4 1 0 192 18,852
4 1 1 552 43,368
5 0 0 176 186,668
5 0 1 717 616,806
5 1 0 10,560 11,201,520
5 1 1 43,020 37,017,000
6 0 0 4,229 93,454,072
7 0 0 230,470 astronomical

138

7. DISCUSSION
Bounded exhaustive testing has advantages that suggest that it
would be a good addition to the quality assurance toolkit. The sheer
volume of tests gives it a bug-detecting ability that appears greater
than that of manual, ad hoc testing, in which a suite comprises at
most a few hundred tests. The inclusion of every test within the
given scope ensures that most, if not all, bugs related to the
handling of structures within the scope will be detected. And yet,
unlike traditional approaches to using formal methods, and in light
of Coppit and Sullivan’s findings on the cost effectiveness of
selective formalization, bounded exhaustive testing appears to be
within the budget parameters of everyday development projects.

At the same time, the approach is not a panacea. Its soundness may
be compromised by errors in the oracle or in the specification from
which tests are generated. So long as the specification is too weak,
and the oracle errs on the side of incorrectly rejecting results, the
consequence will be false alarms. If there are many of these, the
approach will be impractical, but if there are relatively few, the root
cause should be easy to diagnose. On the other hand, if the
specification is too strong (so that too few tests are generated), or
the oracle incorrectly accepts results it should reject, the approach
will fail to find errors that should have been detected. Egregious
problems of this sort are likely to be detected. If the specification is
far too constraining, the size of the test suite will obviously be too
small. And to guard against an uncritical oracle, the oracle might
itself be evaluated by a kind of mutation testing (injecting bugs into
the program under test and checking that the oracle finds them).

A fundamental limitation of the approach shared with all testing
methods is its incompleteness. It is always possible, in general, that
a behavior just beyond the tested bound will be erroneous. A more
subtle problem shared with all systematic testing methods is that
one cannot draw any conclusions about the statistical reliability of
a system on the basis of bounded exhaustive input coverage.

Nevertheless, coverage metrics are widely used to build confidence
in software, and the criterion underlying BET—coverage of inputs
data up to certain sizes—should be no exception. It might also be
possible to collect data that correlates the criterion with known
remaining bug densities. The more specific the data to the kind of
program, the more credible the statistical data will be. In particular,
data collected for one version of a program, or for members of a
program family, should be very relevant.

There is evidence [33] from the analysis of the Java
library—smaller but nevertheless industrially relevant
programs—that input space coverage correlates strongly with code
coverage. As the bound on data structure size was increased, code
coverage increased in tandem, very rapidly. Moreover, code
coverage shouldered off at small bounds (structures containing 5 or
6 nodes), achieving a higher level of coverage than that obtained by
a random test suite of the same size (containing both large and
small inputs). This lends further credibility to our approach,
assuming that the correlation between code coverage and fault
detection can be demonstrated.

Less fundamentally, but still significant, are the sources of
incompleteness arising from the limited focus of the testing effort.
Reverse engineering from the existing system to a specification is
by necessity selective; test cases are generated only for some
components of the system, and only for some aspects of their
behavior. For example, we tested the code that translates fault trees
in abstract syntax to BDD’s and Markov chains, and the code for
solving these forms, but not the compilation code that generated
the abstract trees from the their concrete syntax. We also omitted
certain dynamic fault tree constructs from our specification, such
as phase-or gates, which are used in modeling phased-mission
systems. This kind of incompleteness is not specific to our
approach; it is inevitable in the cost/benefit tradeoff in deciding
how to target testing.

TestEra, our underlying test generation mechanism, does not
handle numeric data types well. Being based on Alloy, a first order
logic of relations, it handles the complexities of data structures
well, but has only minimal support for integers and none for real
numbers. This, among other things, means that scalar parameters of
fault trees (such as probabilistic failure rates represented by
floating point numbers) cannot be covered. It may be possible to
incorporate an additional constraint solver to handle numeric
components, in the same way that many theorem provers now
combine numeric and logical decision procedures.

Finally, since the test cases were generated from an Alloy
specification distinct from the original Z specification, there was a
further risk of compromising completeness. And indeed, our first
version of the Alloy specification did fail to generate all legal trees.
Alloy’s visualization facility, in which a series of generated trees
can be examined on-screen, helps mitigate this problem. It does
suggest however that ideally there should be no additional
translation step, and a single specification should suffice.

Despite the clear limitations of bounded exhaustive testing, it is
clear that it has already had a positive cost/benefit outcome for the
Galileo project. We believe it to be a good contender for future
projects, and are guardedly confident that improvements in the
technique will have the potential for industrial impact.

8. RELATED WORK
In this section we survey related work on specification-based test
generation and test selection criteria.

8.1. Evaluating Bounded Exhaustive Testing
A recent study [33] compares, for a variety of data structure
implementations, bounded exhaustive testing with testing using
randomly selected inputs using the Korat framework. The inputs in
the random sample are within a larger bound on the input size but
the number of inputs is fixed to be the same as the number in the
exhaustive sample. For comparing suites, the criterion used is

Figure 6. The DFT that revealed an error in Nova

139

mutation testing. The results show that for the benchmark
structures, bounded exhaustive testing outperforms random
selection in a majority of the cases. It is worth pointing out that the
inputs in the random sample were also originally generated with
Korat; indeed, inputs with complex structure cannot feasibly be
generated in an equally-likely random fashion.

8.2. Specification-Based Test Generation
Korat [3] is a testing tool similar to TestEra [32], the tool we used.
Like TestEra, it can exhaustively generate all non-isomorphic
instances of structurally complex data structures (e.g. binary tree,
linked list) up to certain size bounds (e.g. the number of nodes).
But unlike TestEra, it takes as input constraints written as Java
predicates. This has obvious merit in the unit testing of code
modules, since programmers do not have to learn a new notation.
But for our application, TestEra is more appropriate. Korat is very
sensitive to the way in which the input constraint is written, since
its generation algorithm follows the structure of the constraint.
TestEra, because it employs the Alloy Analyzer’s translation to
SAT, is largely insensitive to the constraint’s logical structure. This
makes it easier to write the constraint, and to structure it as a
conjunction of separate properties. For this kind of work, Alloy is
anyway better suited to the description of the data structures than
Java, since its relational operators allow a more succinct and
abstract description.

Dick and Faivre [12] pioneered the idea of generating test cases
automatically from model-based formal specifications. They
developed the now well-known DNF approach. Later Helke et al
[21] developed a technique based on the DNF approach for
automatically generating test cases from Z specifications. They
employed a theorem prover to support the generation and evaluated
their approach by generating test cases from a steam boiler’s
specification. Horcher [22] developed a technique for deriving test
cases from a Z specification. Offut etc. [35] developed a technique
to automatically generate test cases based on UML state-charts.
They evaluated their approach on a system with only 400 lines of C
and 7 functions. Chang etc. [5] developed Structural
Specification-Based Testing (SST) using ADL as the formal
specification language. Stocks etc. [41] developed the Test
Template framework. They applied it to test the implementation of
a symbol table, and a very small topological sort program [31].
Without any tool support, users had to manually create test cases.

Our work differs from all of these in two respects. First, the above
techniques were designed to generate test cases for
control-intensive systems; is able to generate complex structures.
Second, the part of Galileo on which we have evaluated our
approach is much larger than all the systems in previous case
studies.

8.3. Other Test Generation Approaches
Automatic test case generation is of course an old idea, and there is
a large literature on the topic. It is worthwhile to compare our
approach with at least one related approach to give a sense of the
differences. We compare our approach with that of Fisher, et al. for
spreadsheet testing [17].

First, to generate test cases, Fisher et al. adapted the
definition-usage-pairs (du-pairs) dataflow test adequacy criterion
for imperative programs. Our work is based on an entirely different
criterion: bounded exhaustive testing to computationally feasible
bounds. Second, they adopted Ferguson and Korel's chaining
approach for generating test cases satisfying the du-pairs criterion.

Our approach is specification-based not implementation-based.
Third, the inputs they generate are numerical vectors; ours are
complex structures. Above all, their technique generates vectors of
numbers based on the implementation of a spreadsheet to satisfy
du-pairs coverage. Ours exhaustively generates complex structures
up to a computational feasible bound based on an abstract, formal
specification.

8.4. Test Selection Criteria
Our criterion of exhausting a bounded input space differs from
traditional testing criteria, such as statement and branch coverage,
dataflow coverage [36], and modified condition/decision coverage
[6]. Code-based model checkers, such as Java Pathfinder [20] and
Verisoft [18], have traditionally focused on checking control
intensive properties and not properties of data structures. A recent
framework [27] (implemented using Java Pathfinder) shows how
traditional symbolic execution [28] can be generalized to enable
software model checkers for correctness checking and
(non-isomorphic) test generation for (multi-threaded) programs
that manipulate structurally complex data.

To the best of our knowledge, our work is the first to evaluate the
effectiveness of bounded exhaustive testing on a real large-scale
system.

9. CONCLUSIONS AND FUTURE WORK
We have presented a technique for improving one’s confidence in
software that brings together ideas from testing and automated
formal methods. It benefits from the advantages of each: like
testing, it can be applied ex post facto, and is insensitive to the code
size; and like formal methods, it is capable of exposing bugs that
have eluded other analyses. The key elements of the
technique—selectively reverse engineering a specification from
which both a characterization of well-formed inputs and an oracle
are derived, and the automatic generation of a huge test suite that
covers all inputs up to a given size—are not radical, but together
form a potent combination. Our experience shows that the
approach is feasible and effective, having revealed previously
unknown flaws in a component that is being transitioned into
production use.

If this experience can be consolidated in further experiments, the
technique might become a useful tool in the certification toolkit.
Exhausting all inputs up to a given size is intuitively appealing, and
in practice reveals subtle errors (partly due simply to the size and
density of the test suite). But it does not offer guarantees. We
cannot conclude from a successful analysis that errors of a
particular class are now absent, or that the probability of failure has
been reduced by some known amount. Nor, in our experience, were
we able to perform bounded exhaustive testing to a point that
would convince us we had found all significant failure modes—say
to trees of fifteen events, where complex interactions among fault
tree language constructs might emerge. Clearly finding a way to
obtain precise measures of increased dependability is a vital area of
future work. In the meantime, however, the technique still offers a
useful standard. The approach presented here appears particularly
well suited to testing software systems exhibiting behaviorally
simple but computationally complex processing of structurally
complex inputs. Bounded exhaustive testing might thus be added to
the traditional list of coverage criteria as another criterion that,
while still giving no absolute assurances, at least allows one to
recognize objectively a level of scrutiny that can be compared
across projects, and for which statistical data can be collected.

140

10. ACKNOWLEDGMENTS
The work of Kevin Sullivan was supported in part by an ITR grant
from the National Science Foundation (number 0086003). Daniel
Jackson and Sarfraz Khurshid acknowledge support from the ITR
program of the National Science Foundation (number 0086154),
and from the NASA Ames High Dependability Computing
Program (cooperative agreement NCC-2-1298). We thank David
Evans for commenting on a version of this paper, Wei Le for
helping with some experiments, Matthew Moskewicz for help with
the mchaff SAT solver and for pointing out that mchaff is not
optimized for enumeration. We thank Joanne Bechta Dugan and
her students for serving as tireless and effective domain experts.

11. REFERENCES
[1] Bayardo, R. J. Jr. and Schrag, R. C. Using CSP look-back

techniques to solve real-world SAT instances. In Proceedings
of the 14th National Conference on Artificial Intelligence and
9th Innovative Applications of Artificial Intelligence
Conference (AAAI-97/IAAI-97), pages 203-208, Menlo Park,
July 27-31 1997. AAAI Press.

[2] Beizer, B. Software Testing Techniques . 2nd edition, Van
Nostrand Reinhold, New York, USA, 1990.

[3] Boyapati, C., Khurshid, S., and Marinov, D. Korat:
Automated Testing Based on Java Predicates. ISSTA’02

[4] Boyd, M. A. Dynamic Fault Tree Models: Techniques for
Analysis of Advanced Fault Tolerant Computer Systems. PhD
thesis, Duke University, Department of Computer Science,
Apr. 1991.

[5] Chang, J., and Richardson, D. J. Structural
specification-based testing: automated support and
experimental evaluation. Proceedings of the 7th European
engineering conference held jointly with the 7th ACM
SIGSOFT international symposium on Foundations of
software engineering

[6] Chilenski, J. J., and Miller, S. P. Applicability of modified
condition/decision coverage to software testing. Software
Engineering Journal, 9(5):191-200

[7] Coppit, D, and Painter, R. Shared Semantic Domains for
Computational Reliability Engineering. In Proceedings of the
International Symposium on Software Reliability
Engineering, pages 168-180, Denver, Colorado, 17-20
November 2003. IEEE.

[8] Coppit, D., and Sullivan, K. J. Galileo: A tool built from
mass-market applications. In Proceedings of the 22nd
International Conference on Software Engineering, pages
750-3, Limerick, Ireland, 4-11 June 2000. IEEE.

[9] Coppit , D. Engineering Modeling and Analysis: Sound
Methods and Effective Tools . PhD thesis, The University of
Virginia, Charlottesville, Virginia, Jan. 2003. URL:
http://www.cs.wm.edu/˜coppit/papers/dissertation.pdf.

[10] Coppit , D., and Sullivan, K. J. Sound methods and effective
tools for engineering modeling and analysis. In Proceedings
of the 25th International Conference on Software
Engineering, pages 198–207, Portland, Oregon, 3–10 May
2003. IEEE.

[11] Coppit, D., Sullivan, K. J., and Dugan, J. B. Formal semantics
of models for computational engineering: A case study on
dynamic fault trees. In Proceedings of the International
Symposium on Software Reliability Engineering, pages
270–282, San Jose, California, 8–11 Oct. 2000. IEEE.

[12] Dick, J., and Faivre, A. Automating the generation and
sequencing of test cases from model-based specifications.
FME’93

[13] Doyle, S. A., and Dugan, J. B. Dependability assessment
using binary decision diagrams (bdds). In Proceedings of the
25th Annual International Symposium on Fault-Tolerant
Computing, pages 249–258, Pasadena, California, 27–30 July
1995.

[14] Dugan, J. B., Bavuso, S., and Boyd, M. Dynamic fault-tree
models for fault-tolerant computer systems. IEEE
Transactions on Reliability, 41(3):363–77, Sept. 1992.

[15] Dugan, J. B., Sullivan, K. J., and Coppit , D. Developing a
low-cost high-quality software tool for dynamic fault tree
analysis. In IEEE Transactions on Reliability, December 1999

[16] Dugan, J. B., Venkataraman, B., and Gulati, R. DIFTree: A
software package for the analysis of dynamic fault tree
models. In Annual Reliability and Maintainability Symposium
1997 Proceedings, Philadelphia, PA, January 1997.

[17] Fisher, M., Cao, M., Rothermel, G., Cook, C. R., Burnett, M.
M. Automated Test Case Generation for Spreadsheets,
Proceedings of the 24th International Conference on Software
Engineering, May 2002, pages 241–251.

[18] Godefroid, P. Model Checking for programming languages
using VeriSoft. In ACM Symposium on Principles of
Programming Languages (POPL), pages 174–186, 1997.

[19] Harrold, M. J. Testing: a roadmap. In ICSE - Future of SE
Track , pages 61–72, 2000

[20] Havelund, K. and Pressburger, T. Model checking Java
programs using Java PathFinder. International Journal on
Software Tools for Technology Transfer , 1999.

[21] Helke, S., Neustupny, T., and Santen, T. Automating test case
generation from Z specifications with Isabelle. Lecture Notes
in Computer Science, 1212:52–71, 1997.

[22] Horcher, H.-M. Improving software tests using Z
specifications. In Z User Meeting (ZUM’95), volume 967 of
LNCS.

[23] Jackson, D. Micromodels of software: Modelling and analysis
with Alloy. 2001. http://sdg.lcs.mit.edu/alloy/reference-man-
ual.pdf

[24] Jackson, D., Schechter, I., and Shlyakhter, I. Alcoa: the Alloy
Constraint Analyzer. In Proc. International Conference on
Software Engineering. 2000. Limerick, Ireland.

[25] Khurshid, S., Marinov, D., Shlyakhter, I., Jackson, D. A Case
for Efficient Solution Enumeration. Sixth International
Conference on Theory and Applications of Satisfiability
Testing (SAT 2003), S. Margherita Ligure - Portofino (Italy),
May 2003.

141

[26] Khurshid, S., and Marinov, D. “Checking a Java
implementation of a naming architecture using TestEra,” In
Post-CAV Workshop on Software Model Checking, volume
55(3) of Electronic Notes in Theoretical Computer Science
(ENTCS), Paris, France, July 2001. Elsevier Science.

[27] Khurshid, S., and Pasareanu, C., “Generalized symbolic
execution for model checking and testing,” 9th International
Conference on Tools and Algorithms for Construction and
Analysis of Systems (TACAS), Warsaw, Poland, April, 2003.

[28] King, J.C., “Symbolic execution and program testing,
Communications of the ACM, 19,7, 1976, pp. 385 – 394.

[29] Knight, J. C. and N. G. Leveson, An Experimental Evaluation
of the Assumption of Independence in Multi-Version
Programming, IEEE Transactions on Software Engineering,
vol. SE-12, pp. 96-109, January 1986.

[30] Lions, J.L., Ariane 5: Flight 501 Failure, Report by the
Inquiry Board, Paris, 1996.

[31] MacColl, I., Carrington, D., and Stocks, P. An Experiment in
Specification-based Testing. Technical Report No. 96-05,
Software Verification Research Centre, Department of
Computer Science, The University of Queensland. May 1996.

[32] Marinov, D., and Khurshid, S. TestEra: A novel framework
for automated testing of Java programs. In Proc. 16th IEEE
International Conference on Automated Software
Engineering (ASE), San Diego, CA, Nov. 2001.

[33] Marinov, D., A. Andoni, D. Daniliuc, S. Khurshid, and M.
Rinard, “An evaluation of exhaustive testing for data
structures,” MIT Computer Science and Artificial Intelligence
Laboratory Report MIT -LCS-TR-921, September, 2003.

[34] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L.,
Malik, S. Chaff: Engineering an Efficient SAT Solver. In
Proceedings of the 38th Design Automation Conference
(DAC’01), June 2001.

[35] Offutt, J., and Abdurazik, A. Generating Test from UML
Specifications. In UML conference proceedings, Fort Collins,
CO, October 1999.

[36] Rapps, S., and Weyuker, E. Selecting Software Test Data
Using Data Flow Information. IEEE Trans. on Software Eng.,
vol. SE-11, No. 4, Apr. 1985

[37] Saaltink, M. The Z/EVES system. In J.P. Bowen, M. G.
Hinchey, and D. Till, editors, ZUM’97: the Z Formal
Specification Notation, l0th International Conference of Z
Users, volume 1212 of Lecture Notes in Computer Science,
pages 72-85. Springer-Verlag, 1997.

[38] Schwartz, E. Design and implementation of intentional names.
Master’s thesis, MIT Laboratory for Computer Science,
Cambridge, MA, June 1999.

[39] Shlyakhter, L. Generating effective symmetry-breaking
predicates for search problems. In Proc. Workshop on Theory
and Applications of Satisfiability Testing. June 2001.

[40] Spivey, J. M. The Z Notation: A Reference Manual. Prentice
Hall International Series in Computer Science, Prentice-Hall,
1992.

[41] Stocks, P., and Carrington, D. A Framework for
Specification-Based Testing. IEEE Trans. Software Eng., vol.
22, no. 11, pp. 777–793, 1996.

[42] Sullivan, K. J., Dugan, J. B., and Coppit , D. The Galileo fault
tree analysis tool. In Proceedings of the 29th Annual
International Symposium on Fault-Tolerant Computing,
pages 232-5, Madison, Wisconsin, 15-18 June 1999.

[43] Sun Microsystems. Java 2 Platform, Standard Edition, v1.3.1
API Specification. http://java.sun.com/j2se/1.3/docs/api/

[44] Vesely, W. E., Goldberg, F. F., Roberts, N. H., and Haasl, D.
F. Fault Tree Handbook . U. S. Nuclear Regulatory
Commission, NUREG-0492, Washington DC, 1981.

[45] Weyuker, E. J., and Ostrand, T. J. Theories of program testing
and the the application of revealing subdomains. IEEE
Transactions on Software Engineering, 6(3):236-246, May
1980.

142

