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ABSTRACT 
The contribution of this paper is an experiment that shows the 
potential value of a combination of selective reverse engineering to 
formal specifications and bounded exhaustive testing to improve 
the assurance levels of complex software. A key problem is to scale 
up test input generation so that meaningful results can be obtained. 
We present an approach, using Alloy and TestEra for test input 
generation, which we evaluate by experimental application to the 
Galileo dynamic fault tree analysis tool. 

Categories and Subject Descriptors  
D.2.4. [Program Verification]. D.2.5 [Testing and Debugging]. 

General Terms  
Experimentation, Reliability, Verification. 

Keywords  
Bounded exhaustive testing, specification-based testing, automated 
test case generation, TestEra, formal methods, reverse engineering. 

1. INTRODUCTION 
Assuring the trustworthiness of even modestly complex software 
programs remains a difficult, open problem of great importance. 
An approach that has been proposed is bounded exhaustive testing 
(BET) [32]: exhaustively testing all inputs up to a given complexity 
or size. The underlying hypothesis is that, in practice, any given 
failure mode is likely to manifest itself on some small input, and 
testing all small inputs thus suffices to reveal these failure modes. 

The primary contribution of this paper is an empirical test of the 
feasibility and potential utility of bounded exhaustive testing 
(BET) on a reasonably complex, production software system. We 
adapted and applied BET to test the existing Galileo tool [8,15,42] 
for dynamic fault tree (DFT) modeling [13,14,16], which is used in 
the reliability analysis of complex engineering systems.  

We had to perform three major technical tasks to enable the use of 
BET. The first was to write a formal specification of the abstract 
syntax and semantics of DFT’s. The second was to develop a test 
oracle implementing the semantic mapping from DFT’s to 
reliabilities. The third was to mitigate scalability limitations of the 
tool used to generate test inputs from the DFT syntax specification.  

Our previous work [9,10,11] addressed the first two issues: the 
cost-and technical-effectiveness of selectively reverse engineering 

Galileo to a formal specification of its core analysis capabilities, 
and producing an implementation, designed for verifiability not 
efficiency, which we used here as a test oracle. This paper takes the 
step , envisioned in the earlier work [10], of using the specification 
to drive BET. We report on our use of TestEra [32], whose inputs 
are Alloy specifications [23], to generate all non-isomorphic fault 
tree input  structures up to the computational limits of TestEra and 
the oracle. We measured utility in terms of unknown failure modes 
revealed, and cost in terms of labor required.  

The challenges encountered in this part of the work were, first, to 
generate and run test inputs within sufficiently large bounds to get 
meaningful results, and, second, to diagnose large numbers of 
observed failures. The first challenge arose from limitations of the 
test input generator and test oracle. The second challenge arose 
because, in exhaustive testing, many inputs reveal the same failure.  

This paper focuses on the first problem.  We started by translating 
our earlier Z [40] specification of DFT syntax into Alloy for use as 
an input to TestEra. When we first ran TestEra it was unable to 
generate inputs beyond very small bounds due to excessive 
memory requirements. We developed techniques of specification 
abstraction and tightening to extend its range. In the end we 
generated millions of non-isomorphic test input structures and were 
able to run hundreds of thousands of test cases, revealing several 
previously unknown failure modes. 

Traditional testing subjects a system to orders of magnitude fewer 
tests, whose construction is labor intensive and unreliable. To our 
knowledge, this work is the first to evaluate BET for a system with 
input structures and computational procedures as complex as those 
for DFT’s. Although we address only Galileo and have no evidence 
that our results generalize beyond Galileo-like systems, the market 
for a pragmatic, automated, formal approach is potentially great, 
e.g., improving software assurance of legacy systems. Testing 
cyber-infrastructure for vulnerabilities is a possible application.  

The rest of this paper is organized as follows. Section 2 provides 
background on specification-based testing. Section 3 describes our 
approach. Section 4 describes impediments to test input generation 
encountered and how we overcame them. Section 5 explains how 
we used the approach to test Galileo. Section 6 reports our 
experimental results and findings. Section 7 reflects on our 
findings. Section 8 discusses related work. Section 9 concludes.  

2. SPECIFICATION-BASED TESTING 
We begin with a review of specification-based testing and test 
selection criteria. Specification-based testing [2]  uses the target 
program’s specification, usually written in a formal specification 
language, to generate a set of program inputs and to judge the 
resulting outputs. Tools such as Korat [3] and TestEra [32] have 
been developed to automate this process. It is claimed that 
specification-based testing can improve the effectiveness of testing 
by reducing the cost and increasing the chance of detecting bugs. 
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Real systems often have infinite input spaces, making exhaustive 
testing impossible. As a result, many well-known test selection 
criteria [2] have been developed to select test cases from an input 
space to achieve limited confidence. The statement coverage 
criterion, for example, requires that test cases be chosen to execute 
each statement of a program at least once. Harrold [19] point s out 
that more research is needed to provide evidence of the 
effectiveness of the test selection criteria in revealing faults.  

More recently , bounded exhaustive testing criterion has attracted 
attention as an adequacy criterion. It requires exhaustive coverage 
of the input space up to certain bounds on input size. Previous work 
has demonstrated the feasibility and effectiveness of bounded 
exhaustive testing on some small-scale systems using the TestEra 
tool [32]. Prior to this experiment, the largest system on which the 
technology had been evaluated was the Intentional Naming System 
[32,38], with 2000 lines of Java code. Evidence of applicability to 
larger-scale systems with structurally more complex input spaces 
was absent. This paper helps to fill that void with a study of the 
potential utility of TestEra for bounded exhaustive testing of a 
complex tool. 

TestEra itself is a framework for automated specification-based 
testing [2] (with an orientation to Java programs, in particular). To 
test a method, the user provides a specification that consists of a 
precondition (which describes allowed inputs to the method) and a 
post-condition (which describes the expected outputs). TestEra 
uses the precondition to automatically generate a test suite for all 
test inputs up to a given bound; a test input is within a bound of k if 
at most k objects of any given class appear in it. TestEra executes 
the method on each input, and uses the post-condition as a test 
oracle to check the correctness of each output. 

TestEra specifications are first-order logic formulas. As an 
enabling technology, TestEra uses the Alloy toolset. Alloy [23] is a 
first-order declarative language based on sets and relations. The 
Alloy Analyzer [24] is an automatic tool that finds instances of 
Alloy specifications, i.e., assignments of values to the sets and 
relations of the specification that make the specifications 
constraints evaluate to true. The analyzer finds an instance by: 1) 
translating the Alloy specification into a Boolean satisfiability 
formula, 2) using an off-the-shelf SAT solver to find a solution to 
the formula, and 3) translating the solution back into sets and 
relations. The analyzer can enumerate all instances (within a given 
bound) using a SAT solver that supports enumeration, such as 
mChaff [34] or relsat [1]. The analyzer generates complete 
assignments: if the underlying SAT solver generates a solution 
with "don't care'' bits, the analyzer grounds these bits out, i.e., 
systematically replaces them with 0’s and 1’s. 

TestEra translates Alloy instances into test inputs that consist of 
Java objects. Some inputs are isomorphic, i.e., they only differ in 
the identity of their objects. Two linked lists, for example, 
containing the same elements (up to isomorphism) in the same 
order but whose buckets are different nodes will be isomorphic, 
since no code will be able to tell them apart. Considering only 
non-isomorphic inputs reduces the time to test the program, 
without reducing the possibility of detecting bugs, because 
isomorphic test inputs form a revealing sub-domain [45], i.e., 
produce identical results1. The analyzer has automatic symmetry 
breaking [39] to eliminate many isomorphic inputs. TestEra users 
                                                                 
1 We assume that object identities are used for comparisons only. 

can also exploit support for total orders to guarantee generation of 
exactly non-isomorphic inputs [25]. 

Initial case studies with TestEra focused on checking Java 
programs. TestEra exposed bugs in a naming architecture for 
dynamic networks [26] and a part of an earlier version of the Alloy 
Analyzer [32]; these bugs have now been corrected. TestEra was 
also used to systematically check methods on Java data structures, 
such as from the Java Collection Framework [43].  

3. OUR APPROACH 
First, we selectively produce a formal specification of the parts of a 
system viewed as most critical. The result is a mathematically 
precise specification of the required behavior of that part of the 
system under study.  

Galileo was an existing system, so this activity amounted to reverse 
engineering. We studied the code and other documentation, worked 
with domain experts, etc. We ended up with a specification of what 
the program should have been doing, which was slightly different 
from what it was actually known to be doing. 

Second, from the validated specification we derive two artifacts. 
The first is an oracle designed for verifiability, not efficiency. The 
result is in general an oracle that is unacceptably inefficient for 
inputs that arise in practice but that is still adequate for small 
inputs. In the future, we may explore executable specifications to 
avoid having to derive separate oracle programs. We emphasized 
verifiability of the oracle code by preserving and inspecting, as far 
as possible, an isomorphism between the specification and its C++ 
code (in modularity, identifier names, data structures, etc) [7]. 

The second artifact derived from the specification is the input to a 
specification-based test input  generator. If the overall specification 
is structured appropriately and written in the same language as that 
taken by the generator, this step involves no more than ext racting 
the relevant parts. In our case, the main specification was written in 
Z [40], so the extraction of the input -space characterization (DFT 
syntax) required a translation from Z to Alloy.  

Third, we present the generated test cases as inputs to the legacy 
system and oracle, and capture and compare the outputs. 

Fourth, when the outputs disagree, we trace the cause of the 
disagreement to faults in the legacy system, formal specification, 
generator input (if different from the specification), or oracle.  

An interesting phenomenon arises here. A given fault is often 
revealed by a very large number of test cases. The problem then is 
to partition a potentially huge number of observed failures into a 
small number of equivalence classes by causative fault.  

We explored an iterative approach to address this problem. To 
begin, we select a single test case that reveals a fault and ask 
domain experts to provide a correct output. The smallness of inputs 
is advantageous here: it makes manual computation of the correct 
answer easy. The hand-computed answer typically exposes the 
location of the fault: system, oracle, or specification.  

If the system produces an incorrect answer, a bug has been found. 
If the oracle produces a wrong answer, the problem is either in the 
oracle implementation or the specification. If the problem is in the 
system or oracle, a decision to fix the bug or move on is made, 
based on economic concerns. If the decision is to postpone the fix, 
we modify the generator specification to mark with a comment, 
“expect-failure,” all cases known to exercise the fault, thus 
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documenting the fault and causing our test harness to skip such 
cases for an effectively much smaller test. For all the cases where 
we decided to postpone a fix, it was easy to identify all fault trees 
that would fail as a result of the given fault. For example, we could 
easily mark generated fault trees that contained components with 
inappropriately high failure rates; such failure rates would cause 
the solver to compute invalid results. There is a potential risk in 
deferring repairs: a marked input could also reveal a second fault if 
the first fault is repaired and the test case is executed again.  

Once all expected-failure inputs have been marked, we retest. 
Additional failures at this point can only be attributable to other 
faults. This process is iterated until no more faults are revealed. If 
the fault is found to be in the specification, we correct it and update 
the generator specification accordingly.  

This whole process is iterated. Each iteration increases the bounds 
on test case generation. Having removed or masked all faults 
revealed by inputs up to size n, we try to generate inputs for size 
n+1 and start again. We pursue this course until computational 
resources (of the generator or oracle) are exhausted. 

4. TECHNICAL CHALLENGES 
Three elements limit the scalability and thus effectiveness of our 
approach: the test generator, the oracle, and the cost of handling 
large numbers of observed failures. First, the test case generator 
cannot generate inputs beyond certain size bounds. It was unclear 
what the bounds were or whether they were sufficiently large to 
permit a really useful test set to be produced. Second, the oracle is 
designed for verification, eschewing optimization. An oracle might 
be (and in our case was) incapable of running quickly enough 
beyond certain relatively small input sizes. We have already 
discussed the problem posed by large numbers of observed 
failures, and how we addressed it. 

The main challenge is to loosen the bottleneck at the test generator. 
Direct use of specifications produced by reverse engineering 
proved inadequate: TestEra was unable to generate tests beyond 
very small bounds. To extend the bounds, we devised several 
strategies.  The most interesting, which we now discuss, was 
separation of generation concerns through a combination of 
specification abstraction and abstract test case post-processing.  

Separating generation concerns means offloading from the 
generator to a post-processor the handling of aspects for which the 
unique abilities of the generator are not needed. For example, 
aspects of fault trees include their tree-like structures, the kinds of 
gates and basic events at the nodes, and scalar values at basic 
events. There are a number of complex global constraints which 
must be satisfied for a fault tree to be valid, such as lack of cycles. 
TestEra is well-suited for generating complex structures. Having it 
generate from our original specification, however, required it to 
enumerate identical structures differing only in gate and basic 
event types and scalar values. TestEra so configured was not able 
to generate tests to satisfactory bounds. It would terminate 
abnormally, out of memory, even before traversing the space of 
fault trees of three events (e.g., one gate, two basic events).  

Our approach to this problem is to abstract details from the 
specification that need not be handled by TestEra, replacing them 
with placeholders, in order to focus the generator on the hard 
problem of generating abstract fault tree (AFT) structures . Then 
we use a post-processor (in this case some simple Perl scripts) to 

generate concrete fault trees (FT’s) from the abstract ones by 
systematically substituting all possible values at the placeholders.  

In a first effort, we separated out the handling of scalar values. In a 
second phase, we abstracted out the gate types at the nodes, 
significantly extending the range again.  

We can now generate all concrete trees with up to six events and all 
abstract trees with up to seven. (See Table 1 for details.) Within this 
scope significant interactions among the features of the fault tree 
language can arise, and it is just in these interactions where the 
most serious faults are expected to lie. 

There are at least two benefits to this separation of concerns. First, 
the generator is able to exhaustively generate to a larger bound 
because the abstracted specification is less complex than the 
original, with the number of states to explore much smaller. 
Second, it is easier to validate the generation itself, since there are 
fewer abstract than concrete inputs, making it possible (for very 
small bounds) to inspect the inputs manually. 

Figure 1 compares the number of fault trees and abstract fault trees 
generated as a function of the bound on the number of events (gates 
and basic events) in a tree. The X-axis represents the number of 
events; the Y-axis, the logarithm of the number of instances. The 
dashed line denotes fault trees; the solid line, abstract fault trees. 
The curve for AFTs is not only lower, allowing generation to a 
larger bound, but it also grows more slowly so that improvements 
in generation technology have more leverage. It was also much 
easier to verify the abstract generation results. For example, with a 
bound of four events, there are only sixteen AFTs. One can 
manually verify that all are generated correctly. There are, 
however, 1571 fault trees for the same number of events. 

5. GALILEO: A CASE STUDY 
To develop and evaluate our approach we used it to help verify a 
software system that we are developing for NASA. The system, 
called Galileo [8,10,15,42], allows reliability engineers to model 
and analyze the reliability of complex systems. It has been 
deployed for production use at NASA. 

0
1
2
3
4
5
6
7
8
9

3 4 5 6 7
Number of Event s

Lo
g(

nu
m

be
r 

of
 i

ns
ta

nc
es

)

AFTs FTs

 
Figure 1. Comparison of Number of FT’s and AFT’s 

135



5.1. Dynamic Fault Tree Analysis 
Dynamic Fault Trees (DFT) [4,14,44] is a reliability modeling 
notation that allows the engineer to model complex failures in 
systems having redundancy and other fault tolerance mechanisms. 
It supports modeling of uncovered failures, systems with multiple 
phases of operation, sparing behavior, and more. 

A dynamic fault tree is a directed acyclic graph in which the 
internal nodes (gates) represent relationships among their inputs, 
and the leaf nodes (basic events) represent component failures or 
event occurrences. Gates can be either static or dynamic, 
depending on whether the order of failures of inputs to the gate is 
relevant. Dynamic fault trees can also model constraints between 
failures. For example, the functional dependency constraint ensures 
that a given failure in the model will cause the immediate, 
simultaneous failure of one or more dependent basic events. A 
sequence enforcing constraint ensures that certain failures do not 
occur out of order. 

Figure 2 shows an example fault tree with a spare gate, a functional 
dependency, and three basic events. In this example, Events 1, 2, 
and 3 might represent components in the system. The spare gate is 
a dynamic gate that uses Event 1 until it is no longer in operation, 
then uses Event 2, then Event 3. When there are no spares 
available, the spare gate fails, as does the system. The functional 
dependency indicates that the failure of Event 1 causes the 
immediate failure of Event 3. 

Fault trees can be used to compute a number of properties about the 
system being modeled. For example, given a fault tree, suitable 
statistical data on the failure of the basic events, and a system 
operation time one can compute the overall probability of failure. 

Analyses are performed by converting fault trees into state-based 
or combinatorial representations [4]. Figure 3 shows a state 
machine for the example tree. The labels on the arcs represent 
stochastic transition rates. The left-most state is the initial state, in 
which all the basic events are operational and the spare gate is 
using Event 1. Transitions from states model basic event failures. 
For example, when Event 1 fails, the next state has both Event 1 
and Event 3 failed (the latter due to the functional dependency), 

and the spare gate using Event 2. The shaded state is a system 
failed state, as indicated by the failed status of the spare gate. 

With certain qualifications (beyond the scope of this paper), such a 
state machine can be converted to a continuous-time Markov chain 
by replacing the labels on the arcs with the proper failure rates. One 
can then compute the probability of failure by solving the Markov 
chain and determining the probability of being in any state in which 
the top -level event in the tree is failed. 

While the example shown is simple, several complications make it 
hard to develop an efficient, dependable software implementation. 
First, interaction between the different modeling constructs 
complicates the language semantics. Second, direct translation to 
Markov chains is swamped by combinatorial explosion even for 
relatively small trees. Galileo employs two major optimizations. 
First, it decomposes large trees into independent sub-trees when it 
can, solves the sub-trees independently, and composes the results 
to produce an exact result.  

Second, Galileo supports two solvers: a dynamic solver that solves 
fault tree by translation to and analysis of Markov chain; and a 
static solver, by translation to a BDD [13]. The dynamic solver can 
solve most trees. The static is applicable only to trees without 
dynamic gates. For such cases, however, it is enormously more 
efficient. A crucial property, to which we will return in Section 6.2, 
is that the two solvers should produce exactly the same answers on 
inputs to which they are both applicable. What we did, then, in 
testing Galileo against the oracle was to run each input for each of 
the Galileo solvers whenever possible. We assumed that a 
discrepancy between the oracle and one of the solvers would 
clearly indicate a fault in the discrepant solver. As we discuss in 
Section 6.2, we were wrong in one especially interesting case. 

5.2. Galileo 
Galileo [8,15,42] is a tool for modeling and analyzing fault trees. It 
began as a research prototype for assessing the viability of using 
mass-market applications as components. Due in part to the 
success of this approach, NASA has supported more recent efforts 
to further develop the tool. In fact, NASA is currently using the 
tool to help model and diagnose faults in the International Space 
Station. As a result of these developments, the original weak 
dependability requirements of a research prototype are no longer 
appropriate. 

Recent enhancements to Galileo have placed greater pressure on 
dependability. New features such as phased mission modeling and 
analysis, diagnostic decision trees, and sensitivity analysis 
complicate the software analysis routines considerably. As a result, 
the dependability of the DFT solver, even with respect to simple 
analyses, is of increasing concern. 

For these reasons, we decided to focus our verification efforts on 
the core reliability analysis capability, avoiding for now reliability 
issues of the user interface and more sophisticated modeling and 
analysis capabilities. To this end, we created a simple, easily 
testable command-line version of the tool containing only the DFT 
solver, fault tree data structure, and a textual parser, totaling 10,680 
of non-comment, non-blank lines of C++ code. 

 
Figure 2. A dynamic fault tree 
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5.3. Nova Implementation as Test Oracle 
Nova [9,10] is a prototype dynamic fault tree modeling and 
analysis tool. It was developed to evaluate the feasibility of 
combining formal methods and package-oriented programming to 
achieve both dependability and usability at low cost (albeit in this 
case at the cost of efficiency). As part of this effort, Coppit and 
Sullivan developed and validated a formal specification, written in 
Z [40], of the abstract syntax and semantics of dynamic fault trees. 
The specification was validated via technical reviews with domain 
experts and limited formal analysis [9,10,11] using Z/Eves [37]. 

Here, we leverage the previous specification and implementation 
effort. As with Galileo, we extract the DFT solver module and use 
it to implement a text -only command line solver program. Nova 
supports a variant of the Galileo DFT language which has been 
redesigned in key ways to improve its regularity and orthogonality 
characteristics. Unlike Galileo, Nova does not support phased 
missions, sensitivity analysis, or other more advanced capabilities. 

The Nova solver was developed from the formal specification. 
While we did not perform a formal refinement to code, we did 
work to design an implementation that would be easy to verify by 
inspection [7]. In particular, we eschewed almost all optimizations 
in data representation, and we sought to preserve, to the extent 
possible, an isomorphism between specification and code. Each 
key abstraction in the specification, for example, is represented by 
a corresponding one in the code. The close correspondence eases 
verification by inspection, giving us more confidence in the use of 
the program as an oracle. On the other hand, the combinatorial 
explosion in mapping fault trees to Markov chains swamps Nova 
much more quickly than Galileo. For dynamic fault trees with 
fewer than 4 nodes, Galileo is about 5 times as fast as Nova. As 
trees grow in size, Nova becomes a bottleneck in testing. 

5.4. TestEra as Test Case Generator 
The Galileo fault tree solver takes as inputs strings in the fault tree 
grammar. For input generation, we wrote a concretization 

translation by hand using Java and Perl, to generate fault trees in 
this grammar from TestEra’s output 

As explained above, we used TestEra to generate only abstract 
inputs; concrete fault trees were obtained in an additional step with 
a Perl script replacing place-holders with all possible values from 
appropriate domains. For each abstract input, this step may 
generate a combinatorially larger number of concrete inputs. Prior 
uses of TestEra have involved data translations that also make use 
of a similar form of abstraction, but map each abstract input to one 
concrete input. 

Even for small bounds, there are a very large number of fault trees. 
This necessitates generation to be restricted to exactly 
non-isomorphic trees to enable feasible enumeration and checking. 
Following Khurshid et al. [25], we manually added simple 
symmetry breaking predicates to enable such generation. 

Even with symmetry -breaking, the number of inputs generated 
from our initial specification was infeasibly large. We tightened our 
specification to incorporate test purposes, such as generation of 
only those fault trees that represent a single connected component, 
and focused checking on the desired functionality (as explained 
earlier in this paper.). 

6. RESULTS 
For test generation we used a dual-CPU Pentium 3 at 1GHz with 
1GB of RAM running Red Hat Linux 2.4.18-27.7.xsmp #1 SMP. 
The generator ran unsatisfactorily under Windows due to 
incompatible memory management requirements of the underlying 
SAT solver. The machine used to run test cases was a dual-CPU 
Pentium 4 at 3GHz with 1GB RAM and Windows XP Professional 
version 2002 SP 1. 

As an example of the fault trees we generated, Figure 4 shows the 
three non-isomorphic abstract FTs generated with three events, and 
no dependency constraints (functional dependencies or sequence 
enforcements). A Perl script instantiates each Abstract Gate  with 
any of the five types of gate: AND, OR, PAND, KofM, or SPARE. 

We were able to generate all abstract fault trees with up to seven 
events and no dependency constraints; instantiate all concrete FTs 
with up to six events and no constraints; and generate all concrete 
FTs with up to five events, at most one FDep, and at most one Seq. 

Table 1 summarizes the number of abstract and concrete trees. It 
took about 75 hours to generate all abstract trees with seven events, 

 
Figure 3. State machine for the example DFT 

 
Figure 4. All AFTs with three events, no Seq’s or FDep’s 
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of which there are over two hundred thousand. The number of 
concrete fault trees at this level is astronomical. At a scope of six 
events, there are over four thousand abstract trees and ninety three 
million concrete trees. We tested all concrete trees up to scope four, 
and to scope five with no constraints.  That amounted to about two 
hundred fifty thousand inputs. We ran the production and oracle 
code, which took about a week, identified and diagnosed failures, 
and corrected or masked the faults. It would be impossible to run 
all trees with six events due to the inefficiency of the oracle. It took 
about 2 minutes to run a six-event input, so it would take 355 years 
to run all such FTs.  In future work, we will investigate principled, 
verifiable optimization of the oracle as a strategy for extending the 
feasible testing bound. Testing revealed eight faults in Galileo, 
three in the specification, and three in the oracle. To make the 
results concrete, we describe an instance of each. 

6.1. A Fault in Galileo 
Figure 2 shows a test case that revealed a fault in Galileo. As 
discussed in Section 5.1, basic events Event 1, Event 2, and Event 3 
must all fail for the spare gate to fail. If only Event 1 fails, the spare 
gate should remain operational for as long as Event 2 does. In the 
Markov chain for this tree, from the initial state in which no events 
have failed a transition for Event 1 failing should lead to a state in 
which Event 2 and the spare gate remain operational (the 
lower-most state in Figure 3. However, debugging showed the 
transition led to a state with Event 2 operational but not the spare 
gate (the system-level failure event). The resulting unreliability 
estimate for this model was thus higher than the correctly 
computed value. This fault had gone undetected for at least three 
reasons. First, the tool has still not yet seen extensive production 
use. Second, the fault is in the interaction of two more rarely used 
constructs (FDep and multiple spares). Third, there’s no easy way 
to see that the output is wrong. 

6.2. A Fault in the Specification 
One of the most interesting faults that our testing revealed was the 
omission of an important  precondition from the specification. The 
fault both was revealed by N-version programming [29], and 
showed that we had also been “bitten” by one of its known risks.  

Recall that we tested both the static and dynamic solvers against 
the oracle. We assumed that a discrepancy between the oracle and 
one of the solvers would reveal a fault in the other solver. That 
assumption turned out to be wrong. 

One equivalence class of tests revealed a discrepancy. Galileo’s 
dynamic solver, which translates fault trees to optimized Markov 
chains, agreed with the oracle, which translates them to 
un-optimized Markov chains; but Galileo’s static solver, which 
translates fault trees to BDD’s, disagreed with both. The test case 
was given to our domain experts with a request to verify that the 
static solver did not implement its specification.  

To our befuddlement, our colleagues reported that the static solver 
calculated the correct answer according to published definitions. 
We then assumed that the dynamic solver and oracle must be 
exhibiting a common failure—a classic N-version programming 
problem. We were wrong here, too. We asked our experts to 
compute the Markov-based solution by hand. They reported that it, 
too, was computed correctly. The two methods were “known” to 
yield the same, exact, answers, but they didn’t. 

A weekend’s inquiry by a leading domain expert finally produced 
an explanation. The journal article in which the equivalence of the 
two methods was demonstrated contained an easy-to-overlook 
condition: provided that basic event failure probabilities are 
sufficiently small, the methods are valid and produce negligibly 
divergent answers. (The article provided no definition of 
sufficiently small.) High failure rates would violate the statistical 
assumptions on which the methods are based. Figure 5 shows a 
very simple test case that leads us to detect this fault. Event 1, a 
basic event, has a large lambda value (e.g. failure rate), .01. This 
condition had been forgotten, in a sense. Our testing recovered it.  

What happened? The Markov-based dynamic solvers (Galileo and 
oracle) agreed: an N-version failure on a common, undocumented 
precondition. The static solver was also subject to the specification 
fault but misbehaved in a different way: an N-version 
programming success based on algorithmic diversity. Galileo now 
uses a heuristic check and warns of high probabilities. 

6.3. A Fault in the Nova Test Oracle 
We also found a bug in Nova’s implementation of sequence 
enforcement constraints. Recall that a sequence enforcer ensures 
that events occur in a particular order. In Figure 6, the sequence 
enforcer states that Event 2 will not fail before Event 1 fails. The 
implementation should invalidate out-of-order failures. Nova 
erroneously omitted this check. Our approach to informal but 
principled derivation of oracles from specifications clearly remains 
subject to human error.  

 
toplevel Event_0; 
Event_0 and Event_1; 
Event_1 lambda=.01 cov=0 res=.5 repl= 2 dorm=.5; 
 

Figure 5. The DFT that revealed a specification error 

Table 1. The number of DFTs and AFTs generated 

Events Seqs FDeps AFTs DFTs 
3 0 0 3 48 
3 0 1 4 56 
3 1 0 6 96 
3 1 1 8 112 
4 0 0 16 1,571 
4 0 1 46 3,614 
4 1 0 192 18,852 
4 1 1 552 43,368 
5 0 0 176 186,668 
5 0 1 717 616,806 
5 1 0 10,560 11,201,520 
5 1 1 43,020 37,017,000 
6 0 0 4,229 93,454,072 
7 0 0 230,470 astronomical 
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7. DISCUSSION 
Bounded exhaustive testing has advantages that suggest that it 
would be a good addition to the quality assurance toolkit. The sheer 
volume of tests gives it a bug-detecting ability that appears greater 
than that of manual, ad hoc testing, in which a suite comprises at 
most a few hundred tests. The inclusion of every test within the 
given scope ensures that most, if not all, bugs related to the 
handling of structures within the scope will be detected. And yet, 
unlike traditional approaches to using formal methods, and in light 
of Coppit and Sullivan’s findings on the cost effectiveness of 
selective formalization, bounded exhaustive testing appears to be 
within the budget parameters of everyday development projects. 

At the same time, the approach is not a panacea. Its soundness may 
be compromised by errors in the oracle or in the specification from 
which tests are generated. So long as the specification is too weak, 
and the oracle errs on the side of incorrectly rejecting results, the 
consequence will be false alarms. If there are many of these, the 
approach will be impractical, but if there are relatively few, the root 
cause should be easy to diagnose. On the other hand, if the 
specification is too strong (so that too few tests are generated), or 
the oracle incorrectly accepts results it should reject, the approach 
will fail to find errors that should have been detected. Egregious 
problems of this sort are likely to be detected. If the specification is 
far too constraining, the size of the test suite will obviously be too 
small. And to guard against an uncritical oracle, the oracle might 
itself be evaluated by a kind of mutation testing (injecting bugs into 
the program under test and checking that the oracle finds them). 

A fundamental limitation of the approach shared with all testing 
methods is its incompleteness. It is always possible, in general, that 
a behavior just beyond the tested bound will be erroneous. A more 
subtle problem shared with all systematic testing methods is that 
one cannot draw any conclusions about the statistical reliability of 
a system on the basis of bounded exhaustive input coverage. 

Nevertheless, coverage metrics are widely used to build confidence 
in software, and the criterion underlying BET—coverage of inputs 
data up to certain sizes—should be no exception. It might also be 
possible to collect data that correlates the criterion with known 
remaining bug densities. The more specific the data to the kind of 
program, the more credible the statistical data will be. In particular, 
data collected for one version of a program, or for members of a 
program family, should be very relevant. 

There is evidence [33] from the analysis of the Java 
library—smaller but nevertheless industrially relevant 
programs—that input space coverage correlates strongly with code 
coverage. As the bound on data structure size was increased, code 
coverage increased in tandem, very rapidly. Moreover, code 
coverage shouldered off at small bounds (structures containing 5 or 
6 nodes), achieving a higher level of coverage than that obtained by 
a random test suite of the same size (containing both large and 
small inputs). This lends further credibility to our approach, 
assuming that the correlation between code coverage and fault 
detection can be demonstrated. 

Less fundamentally, but still significant, are the sources of 
incompleteness arising from the limited focus of the testing effort. 
Reverse engineering from the existing system to a specification is 
by necessity selective; test cases are generated only for some 
components of the system, and only for some aspects of their 
behavior. For example, we tested the code that translates fault trees 
in abstract syntax to BDD’s and Markov chains, and the code for 
solving these forms, but not the compilation code that generated 
the abstract trees from the their concrete syntax. We also omitted 
certain dynamic fault tree constructs from our specification, such 
as phase-or gates, which are used in modeling phased-mission 
systems. This kind of incompleteness is not specific to our 
approach; it is inevitable in the cost/benefit tradeoff in deciding 
how to target testing. 

TestEra, our underlying test generation mechanism, does not 
handle numeric data types well. Being based on Alloy, a first order 
logic of relations, it handles the complexities of data structures 
well, but has only minimal support for integers and none for real 
numbers. This, among other things, means that scalar parameters of 
fault trees (such as probabilistic failure rates represented by 
floating point numbers) cannot be covered. It may be possible to 
incorporate an additional constraint solver to handle numeric 
components, in the same way that many theorem provers now 
combine numeric and logical decision procedures. 

Finally, since the test cases were generated from an Alloy 
specification distinct from the original Z specification, there was a 
further risk of compromising completeness. And indeed, our first 
version of the Alloy specification did fail to generate all legal trees. 
Alloy’s visualization facility, in which a series of generated trees 
can be examined on-screen, helps mitigate this problem. It does 
suggest however that ideally there should be no additional 
translation step, and a single specification should suffice. 

Despite the clear limitations of bounded exhaustive testing, it is 
clear that it has already had a positive cost/benefit outcome for the 
Galileo project. We believe it to be a good contender for future 
projects, and are guardedly confident that improvements in the 
technique will have the potential for industrial impact. 

8. RELATED WORK 
In this section we survey related work on specification-based test 
generation and test selection criteria. 

8.1. Evaluating Bounded Exhaustive Testing 
A recent study [33] compares, for a variety of data structure 
implementations, bounded exhaustive testing with testing using 
randomly selected inputs using the Korat framework. The inputs in 
the random sample are within a larger bound on the input size but 
the number of inputs is fixed to be the same as the number in the 
exhaustive sample. For comparing suites, the criterion used is 

 
Figure 6. The DFT that revealed an error in Nova 
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mutation testing. The results show that for the benchmark 
structures, bounded exhaustive testing outperforms random 
selection in a majority of the cases. It is worth pointing out that the 
inputs in the random sample were also originally generated with 
Korat; indeed, inputs with complex structure cannot feasibly be 
generated in an equally-likely random fashion. 

8.2. Specification-Based Test Generation 
Korat [3] is a testing tool similar to TestEra [32], the tool we used. 
Like TestEra, it can exhaustively generate all non-isomorphic 
instances of structurally complex data structures (e.g. binary tree, 
linked list) up to certain size bounds (e.g. the number of nodes). 
But unlike TestEra, it takes as input constraints written as Java 
predicates. This has obvious merit in the unit testing of code 
modules, since programmers do not have to learn a new notation. 
But for our application, TestEra is more appropriate. Korat is very 
sensitive to the way in which the input constraint is written, since 
its generation algorithm follows the structure of the constraint. 
TestEra, because it employs the Alloy Analyzer’s translation to 
SAT, is largely insensitive to the constraint’s logical structure. This 
makes it easier to write the constraint, and to structure it as a 
conjunction of separate properties. For this kind of work, Alloy is 
anyway better suited to the description of the data structures than 
Java, since its relational operators allow a more succinct and 
abstract description. 

Dick and Faivre [12] pioneered the idea of generating test cases 
automatically from model-based formal specifications. They 
developed the now well-known DNF approach. Later Helke et al 
[21]  developed a technique based on the DNF approach for 
automatically generating test cases from Z specifications. They 
employed a theorem prover to support the generation and evaluated 
their approach by generating test cases from a steam boiler’s 
specification. Horcher [22] developed a technique for deriving test 
cases from a Z specification. Offut etc. [35] developed a technique 
to automatically generate test cases based on UML state-charts. 
They evaluated their approach on a system with only 400 lines of C 
and 7 functions. Chang etc. [5] developed Structural 
Specification-Based Testing (SST) using ADL as the formal 
specification language. Stocks etc. [41] developed the Test 
Template framework. They applied it to test the implementation of 
a symbol table, and a very small topological sort program [31]. 
Without any tool support, users had to manually create test cases. 

Our work differs from all of these in two respects. First, the above 
techniques were designed to generate test cases for 
control-intensive systems; is able to generate complex structures. 
Second, the part of Galileo on which we have evaluated our 
approach is much larger than all the systems in previous case 
studies. 

8.3. Other Test Generation Approaches 
Automatic test case generation is of course an old idea, and there is 
a large literature on the topic. It is worthwhile to compare our 
approach with at least one related approach to give a sense of the 
differences. We compare our approach with that of Fisher, et al. for 
spreadsheet testing [17]. 

First, to generate test cases, Fisher et al. adapted the 
definition-usage-pairs (du-pairs) dataflow test adequacy criterion 
for imperative programs. Our work is based on an entirely different 
criterion: bounded exhaustive testing to computationally feasible 
bounds. Second, they adopted Ferguson and Korel's chaining 
approach for generating test cases satisfying the du-pairs criterion. 

Our approach is specification-based not implementation-based. 
Third, the inputs they generate are numerical vectors; ours are 
complex structures. Above all, their technique generates vectors of 
numbers based on the implementation of a spreadsheet to satisfy 
du-pairs coverage. Ours exhaustively generates complex structures 
up to a computational feasible bound based on an abstract, formal 
specification. 

8.4. Test Selection Criteria 
Our criterion of exhausting a bounded input space differs from 
traditional testing criteria, such as statement and branch coverage, 
dataflow coverage [36], and modified condition/decision coverage  
[6]. Code-based model checkers, such as Java Pathfinder [20] and 
Verisoft [18], have traditionally focused on checking control 
intensive properties and not properties of data structures. A recent 
framework [27] (implemented using Java Pathfinder) shows how 
traditional symbolic execution [28] can be generalized to enable 
software model checkers for correctness checking and 
(non-isomorphic) test generation for (multi-threaded) programs 
that manipulate structurally complex data. 

To the best of our knowledge, our work is the first to evaluate the 
effectiveness of bounded exhaustive testing on a real large-scale 
system. 

9. CONCLUSIONS AND FUTURE WORK 
We have presented a technique for improving one’s confidence in 
software that brings together ideas from testing and automated 
formal methods. It benefits from the advantages of each: like 
testing, it can be applied ex post facto, and is insensitive to the code 
size; and like formal methods, it is capable of exposing bugs that 
have eluded other analyses. The key elements of the 
technique—selectively reverse engineering a specification from 
which both a characterization of well-formed inputs and an oracle 
are derived, and the automatic generation of a huge test suite that 
covers all inputs up to a given size—are not radical, but together 
form a potent combination. Our experience shows that the 
approach is feasible and effective, having revealed previously 
unknown flaws in a component that is being transitioned into 
production use. 

If this experience can be consolidated in further experiments, the 
technique might become a useful tool in the certification toolkit. 
Exhausting all inputs up to a given size is intuitively appealing, and 
in practice reveals subtle errors (partly due simply to the size and 
density of the test suite). But it does not offer guarantees.  We 
cannot conclude from a successful analysis that errors of a 
particular class are now absent, or that the probability of failure has 
been reduced by some known amount. Nor, in our experience, were 
we able to perform bounded exhaustive testing to a point that 
would convince us we had found all significant failure modes—say 
to trees of fifteen events, where complex interactions among fault 
tree language constructs might emerge. Clearly finding a way to 
obtain precise measures of increased dependability is a vital area of 
future work. In the meantime, however, the technique still offers a 
useful standard. The approach presented here appears particularly 
well suited to testing software systems exhibiting behaviorally 
simple but computationally complex processing of structurally 
complex inputs. Bounded exhaustive testing might thus be added to 
the traditional list of coverage criteria as another criterion that, 
while still giving no absolute assurances, at least allows one to 
recognize objectively a level of scrutiny that can be compared 
across projects, and for which statistical data can be collected. 
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