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Abstract: This paper invents a methodology to synthesize proportional derivative 
controller for robotic manipulator. The proposed design methodology is based on exact 
feedback linearization method. A proportional derivative controller candidate which 
linearly approximates the nonlinear controller which is resulted from exact feedback 
linearization method is evaluated under Lyapunov stability condition. We show the 
effectiveness of the proposed method by applying it to robotic manipulator model, 
obtaining the proportional derivative controller, simulating the closed loop behavior of 
the system.  A comparison of the proposed method with exact feedback linearization 
method shows that there is no significant performance degradation when approximating 
exact feedback linearization by the proposed method. 
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1. Introduction 
 Robots are ideal candidates for material handling operations, manufacturing, and measuring 
devices because of their capacity to pick up, move, and release an object, to manipulate both 
objects and tools and their capacity to explore the three dimensional space. 
Nowadays, robotic manipulator are extensively used in the industrial field. The desire of a 
high-speed or a high-precision performance for this kind of mechanical systems has led to 
research into improved control systems. These high performance control systems need, in 
general, the dynamical model of the robotic manipulator in order to generate the control input 
(Yurkovich, 1992). 
 Robotic manipulators are highly nonlinear, highly time-varying, and highly coupled. 
Moreover, there always exists uncertainty in the system model such as external disturbances, 
parameter uncertainty, sensor errors and so on, which cause unstable performance in the 
robotic system (Sadati et al, 2005). During the past decade, several design methods, e.g., robust 
control (Torres et al, 2007), optimal control (Shiller and  Dubowsky, 1985), adaptive control 
(Yazarel and  Cheah, 2002), backstepping control (Lotfazar et al,  2003), neural network 
(Patino et al, 2002), fuzzy logic (Kim et al, 2001), and sliding mode control (Purwar, 2007) for 
robotic manipulator control have been proposed. In addition, a feedback linearization method 
(Bedrossian, and Spong, 1995) was proposed to control robotic manipulator. By using 
Riemannian curvature factorization of the robot inertia matrix to generate feedback 
linearization, a nonlinear control law is derived. 
 Feedback linearization is a control design approach for nonlinear systems which attracted 
lots of research in recent years (Fattah, 2000; Mokhtari et al, 2006; Spong and Groeneveld, 
1997). The central idea is to algebraically transform nonlinear systems dynamics into (fully or 
partially) linear ones, so that linear control techniques can be applied. In the standard approach 
to exact feedback linearization, one uses coordinate transformation and static state feedback 
such that the closed-loop system, in the defined region, takes a linear canonical form. After the 
system’s linearization form is obtained, the linear control design scheme is employed to 
achieve stabilization or tracking (Isidori, 1995; Slotine and Li, 1991). 
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In the above exact feedback linearization, the controller characteristics have nonlinear 
functions such as multiplications of the state variables, polynomial functions, trigonometric 
functions, and so on, which the implementation of the controllers by using electronic devices 
have many difficulties (Gray and Meyer, 1977; Mahayana, 1991; Nurbambang and Mahayana, 
1990; Rangan et al, 1992). On the other hand, many researchers have proven that the 
performance of the controllers still maintain good response although the approach of the exact 
feedback linearization have been used (Chong et al, 1991; Ogawa et al, 1991). 
In (Mahayana, 1998) has been developed a synthesis of nonlinear control system to find a 
control methodology that makes the exact linearization controller more realizable, but without 
any significant performance degradation. Instead of the exact controller, the proposed 
controller was a general form of controller candidates which replace the function of the exact 
controller. The closed loop stability of the nonlinear system under the controller was evaluated 
by using the Lyapunov stability theory. The condition under which the origin of the closed 
loop system being asymptotically stable was derived by characteristic value shift theorem. 
In the simulation experiments of this paper, we synthesize the approximating state feedback for 
robotic control system. 
 
2. Dynamics of Robotic Manipulator 
 Let us assume that the manipulator of Figure 1 is in the horizontal plane { 0)( =qG } 

(Slotine and Li, 1991). The dynamics model of two-link robotic manipulator can be written 
explicitly as 
 

 
ôqqqCqqH =+ &&&& ),()(

 
(1)

  

where []Tqq 21=q  is the joint position vector; 
nxn

ÂÎ)(qH  denotes the moment of 

inertia; qqqC &&),(  are the Coriolis and centripetal forces; []T
ôô 21=ô   is the applied 

torque vector; H and C  in (1) can be described as 
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where  

 2423111
sin2cos2 qaqaaH ++=  

 242322112 sincos qaqaaHH ++==  

 222
aH = 

 2423 cossin qaqah -=  

with  
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Figure 1 

 
An articulated two-links manipulator 

 
 The inertial matrix )(qM  is symmetric and positive definite. It is also bounded as a 

function of q : IqMI 21 ìì ££)( . ),(2)( qqBqM &&-  is skew symmetric matrix, that is, 

[ ]0=- xqqBqMx ),(2)( &&T , where 1xnÂÎx  is a nonzero vector. 

Define ôu= and state variable [ ][ ],22114321
TT èèèèxxxx &&==x  the equations of 

motion for the robotic manipulator can be put in the form of following nonlinear state space: 
   

 uxgxfx )()( +=&  (3) 

 

where )(xf  is a nonlinear continuous function whose upper bound is known as 

,)( maxfxf £ )(xg  is a gain function with lower bound ,ming  ).(min xgg £<0  

 
 
3. Controller Synthesis 
A. Matrix Norm and Spectral Radius 

 Definition 1. (Goldberg, 1992; Lancaster and Tismenetsky, 1961) If ,x nnCAÎ then 

spectral norm of A  will be defined as 

 
2
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ns w

Aw
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def

 

(4) 

 
 Definition 2. (Goldberg, 1992; Lancaster and Tismenetsky, 1961) Spectral radius of a 

square matrix ,x nnCAÎ ),(Añ  is the maximum among the absolute values of the 

characteristic values of the matrix A . 
 To compute spectral norm value of a square matrix, we depart from (Lancaster and 
Tismenetsky, 1961) 
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where subscript *  denotes conjugate transpose of a matrix. 

 
B. Lyapunov Theory and Linearization 
 Consider nonlinear system of the form 

 
),(xfx =&

 
(6)

  

with ,)( 00 =f  or in other words the origin of system is the equilibrium point, and f  is a 

continuous vector field and at least once differentiable with respect to ,x  then the system can 

be approximated by using a linear time invariant system as follows, 

 xx Ø=&  (7)
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where nn xÂÎØ  is a constant matrix. 

 

Theorem 1. (Khalil, 1992; La Salle and Lefschetz, 1961) If the origin ( 0=x ) of the 
linearization result system (7) is asymptotically stable, then the origin of the original system (6) 
will be asymptotically stable. 
 
C. The method of shifting characteristic values 
 In this sub-section will be derived the sufficient condition for controller to make the system 
be asymptotically stable, if the closed loop system under exact controller has an asymptotically 
stable origin. Let the controller candidate can be expressed as 

 
),( xuu a

def

a =  
(9)

  
    

and )( xua  at least once differentiable with respect to x  and ).()( 00 ua =u  

The error between exact controller and controller candidate is 

 
)()()( xuxuxe -=a  

(10)

  
  
Assume a notation 

 
BKAAc +=  (11)

  
  

with cA  is closed loop system matrix with exact controller, and also be defined respectively, 

several variables as follows: 
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with P  is transformation matrix which transforms cA  to its diagonal canonical form; 

 
( )nëëëdiag ,,, 11

1 L=-PPAc  
(15)

   

with nëëë ,,, 11 L are characteristic values of closed loop matrix with exact controller cA , 

the shortest distance to imaginary axis is noted by cë  (by assumption that characteristic values 

lie in the strict left half of the complex plane). 
 Since the linear system from exact feedback linearization in the Brunovsky canonical form, 
then the closed loop system can be made such that all its characteristic values are different. 
This can be done, e.g., by using pole placement method (Chen, 1970). The assumption of all 

different characteristic values of cA  is necessary to make the transformation of matrix cA  to 

diagonal canonical form can be done (Boothby, 1975; Lancaster and Tismenetsky, 1961). 
 
Theorem 2. If  

0)()( <+cc AõêëRe
 

(16) 

then the origin of the system (3) under control input )(xua  will be asymptotically stable. 

 
Proof. Theorem 2 will be proved in many stages: construction under exact controller, existence 
of controller candidate, transformation of system under controller candidate to new state space 
coordinate, Lyapunov stability analysis, and analysis of shifting characteristic value. 
 
D. Construction under exact controller 
 Equation (1) can be linearized by choosing ô  appropriately. Taking ô  of the form (Slotine 
and Li, 1991) 

 qqqCvqHô &&),()( +=  (17)

   

where 1x2ÂÎv  is the new control input, leads to 

 vq =&&  (18)

   

 By choosing state variable [ ][ ],22114321

TT èèèèxxxx &&==x  it can be 

seen that the robotic manipulator dynamics can be expressed in the Brunovsky canonical form 
as  
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Define [] ;2,1i,ii ==
T

èè &a

iz  equation (19) can be put in the form of following three linear 

subsystems: 
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 Letting 

 ii,2ii,1i òëòëv &--=
 

(21)

  
   

 The parameters of the new control input, 1v  are chosen such that 901,1 =ë  and 

191,2 =ë  (which correspond to closed-loop poles of the joint angle 1 of - 9, - 10), and the 

parameters of the new control input, 2v  are chosen such that 1322,1 =ë  and 232,2 =ë  

(which correspond to closed-loop poles of the joint angle 2 of - 11, - 12). 

The feedback gain K  can be computed as follows: 
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E. Existence of controller candidate 

 Since ()nÂÌW®WTT :  with an open set W on nÂ is a diffeomorphism, then T  

is smooth. Furthermore )(xu  will be smooth. Based on the smoothness of )(xu , we can 

choose a new control input )(xua  that is continuous and at least once differentiable with 

respect to x  with )()( 00 uu =a , and it satisfies 

 
d£-

¥
)()( xuxua  

(23)   

with d is a positive constant, at a range nÂÌWÌn  where n is a bounded closed set. 
 
 
F. System transformation under controller candidate 

 Nonlinear dynamical system with control input )( xua  is 

 
)()()( xuxgxfx a+=&

 
(24)

  
  
Equation (24) can be arranged as 

 
)}()({)()( xexuxgxfx ++=&  (25) 

 
 After some complex calculations, Equation (25) can be written in new state variable, z , as 
follows 
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 The dynamic of system under controller candidate in new state space coordinate can be 
seen as a nonlinear system that consists of a linear part and a nonlinear perturbation. 

Since )( xua  has been chosen such that ,)()( 000 ==uua  then ,)( 00 =e  furthermore at 

0=z  
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This is shown that the equilibrium point of the system under controller candidate is same with 
the equilibrium point of the system under the exact controller. 
 
G. Lyapunov Stability Analysis 
 Nonlinear system in Equation (26) can be expressed as 

 
)(zfz c=&

 
(28)

  
  
with 

 

)}({

1

0

0

)( 1 zTåzAzf -

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

+=
M

cc

 

(29)

  
  

 Since )(zf c
 is smooth in a neighborhood of the origin then there exists 

z

zf

¶

¶)(c  in a 

neighborhood of the origin. The origin is an equilibrium point, since based on (27) 

 
00 =)(cf

 
(30) 

 
 Linearization of (28) in a neighborhood of the origin yields 
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with 
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 According to the Lyapunov stability theory, if the origin of system (32) is asymptotically 
stable then the origin of system (28) that is a closed loop system under controller candidate 

)( xu
a

, will be asymptotically stable. This can be achieved if all characteristic values of 

matrix ( )DA +c  lie in the strict left half of the complex plane. 

 
H. Analysis of shifting characteristic values 

 The linear system (32) can be described by the sum of a nominal system matrix, cA  and a 

perturbation matrix, D . Assume nzzz ,,, 21 L are characteristic values of ( )DA +c , by 

definition of characteristic value (Goldberg, 1992; Lancaster and Tismenetsky, 1961), it can be 
written as follows 

 
( ) n
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Assume 1-=PPAA
Dcc , with ).,,,( 21 nëëëdiag L=

DcA  Equation (34) can be written as 

follows 
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ii yr P  After a little manipulation, it can be found 
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After some complex calculations we can find 
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Assume cië  is characteristic value of matrix cA  which has shortest distance to iz, then 
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I. Construction of controller candidate 

 The parameter values used for the robotic manipulator are ,kg1
1
=m  ,m1

1
=l  

,kg2e =m  ,30o
e =ä  ,mkg12.0 2

1 =I  ,m5.01c =l  ,mkg25.0 2
e =I  

,m6.0ce =l  

  
We propose the controller candidate as 

 
xLxu =)(a  

(41)

  
    

where 
4x2ÂÎL . 

 The error between exact controller and approximation controller can be expressed as 
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where 
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After some complex calculations we can find 

 
ú
û

ù
ê
ë

é
=

)(

)(
)(

2

1

x

x
xå

å

å
 (44)  

 
where  

 
)(

][

)(
)(

1222

1
122212

1

xâ

xL

xK
xâ

x

ââ

áâáâ
å

-+

-
-

=

 

and 

  

)(
][

)(
)(

1121

2
211121

2

xâ

xL

xK
xâ

x

ââ

áâáâ
å

-+

-
-

=

 

with 

  
[ ],141312111 KKKK=K  

  
[ ],242322212 KKKK=K  

  
),2(

)cos60.0sin04.1()(

2
442

331

xxx

xxá

--

-=x
 

  
,)cos60.0sin04.1()( 2

2332 xxxá -=x  

  
,sin2.1cos08.234.3 3311 xxâ ++=  

  
,sin60.0cos04.197.0 3312 xxâ ++=  

Synthesis of Approximating State Feedback for Robotic Manipulator

300



.)( 21122211 ââââ -=xâ  

 

 By differentiating )(xå  with respect to ,x  and putting the value ,0=x  it can be found 
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and furthermore this will imply 
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 Since 0,=ê  then for this case, Equation (16) is always true, so it can be concluded that 

the origin of closed loop system (1) under the controller 
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is asymptotically stable. 
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J. Implementation the proposed controller 

 Let us define []Tee
21

=-=
d

qqe  as a tracking error vector. Implementation of 

approximating state feedback in robotic manipulator is arranged as follows 

 

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

--

--

--

--

=

2

2

1

1

18.327437.9775

05.1841217.958

31.372784.5971

148.6080.72340

è

e

è

e
T

&

&
ô

 

(50)  

where dq  is a desired output vector. 

 
4. Simulation Result and Discussion 
 The best way to compare performance between the controller which is synthesized by exact 
feedback linearization and the controller which is synthesized by approximating state feedback 
linearization, is to use digital simulation. The simulation results are shown in                     
Figure 2 – Figure 5. 

 
Figure 2. Response of joint angle 1. 

 

 
Figure 3. Response of joint angle 2. 
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Figure 4. Control torque of joint 1. 

 

 
Figure 5. Control torque of joint 2. 

 
 The transient response of joint angle 1 under exact feedback linearization (solid) has no 
overshoot. This is similar to overdamped response of a second order linear system. The 
transient response of joint angle 1 under approximating feedback linearization (dashed dot) has 
7.8 % overshoot. This response is similar to underdamped response of a second order linear 
system. The control torque of joint 1 under exact feedback linearization (solid) has overshoot 
which is slightly larger than control torque of joint 1 under approximating feedback 
linearization (dashed dot). 
 The transient response of joint angle 2 under exact feedback linearization (solid) has no 
overshoot. This is similar to response of joint angle 1. The transient response of joint angle 2 
under approximating feedback linearization (dashed dot) has 0.95 % overshoot. This response 
has slightly degraded performance. The control torque of joint 2 under exact feedback 
linearization (solid) has overshoot larger than control torque of joint 2 under approximating 
feedback linearization (dashed dot). The overshoot of torque response is used to push the joint 
angle 2 to achieve transient response without overshoot. 
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Simulation results show that there is no significant performance degradation when using the 
proposed method. 
 Table 1 shows the comparison of the proposed method and the exact feedback linearization 
method. 
 
Table 1. The comparison of the proposed method and the exact feedback linearization method. 
 

No Proposed Method 
Exact Feedback 

Linearization 
Method 

1 Linear State Feedback  Nonlinear State Feedback 
2 Simple Function Complexity Function 

3 
Practical Realization Is Easier 
And Possible 

Practical Realization Is More 
Difficult And May Be Impossible 

4 
Theoretical Response May Be 
Slightly Degraded 

Theoretical Response Is Optimal 

5 Practical Response Is Similar Practical Response Is Similar 
 
  
5. Conclusions 
 Exact feedback linearization is commonly used as a nonlinear controller. The main weak 
point of the exact linearization controller is that its implementation is difficult. This study 
presents a synthesis of approximating state feedback for robotic manipulator control system 
based on exact feedback linearization. The synthesis method is formulated by using Lyapunov 
theory, analysis of shifting characteristic values, and differential geometry. 
 The proposed method has four stages. First, the controller is synthesized by using exact 
feedback linearization. Second, the controller is replaced by the controller candidate which is 
synthesized by approximating an exact feedback controller. Third, stability of the controller 
candidate is verified by using Lyapunov theory. Fourth, the controller candidate is 
implemented by using digital simulation. 
 In case of a robotic manipulator controller, there is no significant performance degradation 
when approximating exact feedback linearization by the proposed method. The controller 
candidate has satisfied performance which is shown by a digital simulation. 
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