
A Semantic Foundation for Hidden State

Jan Schwinghammer1, Hongseok Yang2, Lars Birkedal3, François Pottier4, and
Bernhard Reus5

1 Saarland Univ. 2 Queen Mary Univ. of London 3 IT Univ. of Copenhagen
4 INRIA 5 Univ. of Sussex

Abstract. We present the first complete soundness proof of the anti-
frame rule, a recently proposed proof rule for capturing information hid-
ing in the presence of higher-order store. Our proof involves solving a
non-trivial recursive domain equation, and it helps identify some of the
key ingredients for soundness.

1 Introduction

Information hiding, or hidden state, is one of the key design principles used by
programmers in order to control the complexity of large-scale software systems.
Being able to exploit this principle in the formal setting of a program logic
could represent an important step towards the development of modular, scalable
program verification techniques.

The idea is that an object (or function, or module) need not reveal in its
interface the fact that it owns and maintains a private, mutable data struc-
ture. Hiding this internal invariant from the client has several beneficial effects.
First, the complexity of the object’s specification is slightly decreased. More im-
portantly, the client is relieved from the need to thread the object’s invariant
through its own code. In particular, when an object has multiple clients, they are
freed from the need to cooperate with one another in threading this invariant.
Last, by hiding its internal state, the object escapes the restrictions on aliasing
and ownership that are normally imposed to objects with mutable state.

It is worth emphasizing that hiding and abstraction (as studied, for instance,
in separation logic [1–3]) are distinct mechanisms, which may co-exist within a
single program logic.1

The recently proposed anti-frame proof rule [4] enables hiding in the pres-
ence of higher-order store (i.e., memory cells containing procedures or code frag-
ments). In this paper, we study the semantic foundation of the anti-frame rule,
and give the first complete soundness proof for it. Our proof involves the solution
of an intricate recursive domain equation, and it helps identify some of the key
ingredients for soundness.
1 Abstraction is often implemented in terms of assertion variables (called abstract

predicates by Parkinson) that describe the private data structures of an object.
These variables are exposed to a client, but their definitions are not, so that the
object’s internals are presented to the client in an abstract form. Hiding, on the
other hand, conceals the object’s internals completely.

Information hiding with frame and anti-frame rules Our results push
the frontier of recent logic-based approaches to information hiding. These ap-
proaches adopt a standard semantics of the programming language, and deal
with information hiding on a logical basis, by extending a Hoare calculus with
special proof rules. These usually take the form of frame rules that allow the
implementation of an object to ignore (hence implicitly preserve) some of the in-
variants provided by the context, and of anti-frame rules, which allow an object
to hide its internal invariant from the context [5–7, 4].

In its simplest form, the frame rule [5] states that invariants R can be added
to valid triples: if {P}C{Q} is valid, then so is {P ∗R}C{Q ∗R}, where the
separating conjunction P ∗ R indicates that P and R govern disjoint regions of
the heap. In subsequent developments, the rule was extended to handle higher-
order procedures [6, 7] and higher-order store [8, 9]. Moreover, it was argued that
both extensions of the rule support information hiding: they allow one to hide
the invariant of a module [6] and to prove properties of clients, as long as the
module is understood in continuation-passing style.

Thorough semantic analyses were required to determine the conditions under
which these extensions of the frame rule are sound. Indeed, the soundness of
these rules raises subtle issues. For instance, the frame rule for higher-order
procedures turns out to be inconsistent with the conjunction rule, a standard
rule of Hoare logic [6, 7]. Furthermore, seemingly innocent variants of the frame
rule for higher-order store have been shown unsound [9, 10].

In the most recent development in this line of research, Pottier [4] proposed
an anti-frame rule, which expresses the information hiding aspect of an object
directly, instead of in continuation-passing style. Besides giving several extensive
examples of how the anti-frame rule supports hidden state, Pottier argued that
the anti-frame rule is sound by sketching a plausible syntactic argument. This
argument, however, relied on several non-trivial assumptions about the existence
of certain recursively defined types and recursively defined operations over types.

In this paper, we systematically study the semantic foundation of hidden
state, as captured by frame and anti-frame rules, in the presence of higher-order
store. In particular, we describe our soundness proof of a program logic that has
both frame and anti-frame rules.

Overview of the technical development The anti-frame rule was originally
proposed in an expressive type system for an ML-like language [4]. In the context
of separation logic, it becomes an inference rule for deriving Hoare triples. A
slightly simplified version of it takes the following form:

{P ⊗R}C{(Q⊗R) ∗R}
{P}C{Q}

Recall that the separating conjunction P ′∗Q′ holds of a heap when the heap can
be split into two sub-heaps that respectively satisfy P ′ and Q′. In order to specify
properties of stored code, we allow assertions to contain nested triples [9], and
introduce a ⊗ operator, whose meaning is roughly the following: P ′⊗R′ denotes

a version of P ′ where R′ has been ∗-conjoined with the pre- and post-conditions
of every triple, including deeply nested triples.

In the anti-frame rule above, the code C can be thought of as allocating
and initializing an object. The assertion R describes an internal invariant of this
object, which one wishes to hide. The conjunct − ∗ R in the post-condition of
the premise ensures that the invariant R is established by C, so R holds initially.
The two occurrences of − ⊗ R in the premise guarantee that every triple that
appears in the premise has R as pre- and post-conditions, so every interaction
between the object and the outside preserves R. The invariant R does not appear
in the conclusion of the rule, so one reasons about the rest of the program just
as if the object had no internal state.

Our soundness proof of the anti-frame rule is based on two key components.
The first is a new interpretation of Hoare triples, which explicates the universal
and existential quantifications that are implicit in the anti-frame rule. Let P ◦R
abbreviate (P⊗R)∗R. Roughly speaking, in our interpretation, a triple{P}C{Q}
is valid if, for all invariants R, the triple

{P ◦R}C {∃R′. Q ◦ (R ◦R′)} (1)

holds in the standard interpretation of triples. Pottier [4] showed how the anti-
frame rule allows encoding ML-like weak references in terms of strong references.
Readers who are familiar with models of ML references (see, e.g., [11]) may
thus find the above interpretation natural. Roughly speaking, the code C has a
function type P → Q, whose interpretation is: “for all worlds R, if C is given an
argument of type P in world R, then, for some future world R◦R′ (an extension
of R), C returns a result of type Q in world R ◦R′.”

The second element in our soundness proof is a formalization of the above
intuition. Our interpretation of assertions is parameterized by a set W of worlds,
or invariants, so that, semantically, an assertion is a function W → P(Heap)
from worlds to (certain) sets of heaps. Corresponding to R ◦R′ in (1), there is a
semantic operation ◦ on W that lets us combine two invariants. This operation
induces a preorder on invariants, whereby R ◦ R′ is greater than (i.e., a future
world of) R.

In order to prove that the anti-frame rule is sound, we require assertions P
to be monotonic with respect to the preorder on invariants: that is, P (R) must
be a subset of P (R ◦R′), for all P , R and R′. This lets us relate an assertion P
at two different invariants R0 and R1, by first exhibiting an upper bound R2

of R0 and R1 and then using the monotonicity to conclude P (Ri) ⊆ P (R2) for
i ∈ {0, 1}. This forms an important step of our soundness proof.

In order to present our soundness proof as abstractly and elegantly as we
can, we begin with an axiomatization of worlds and world composition, that is,
we state a number of requirements that worlds should satisfy (Section 2). This
allows us to define the interpretation of triples and establish some of its key
properties in an abstract setting (Section 3).

In Sections 4 and 5, we move to a more concrete setting and present a small
imperative programming language that features higher-order store, in the form

of storable commands. We equip it with a proof system, which features nested
Hoare triples, frame rules, and anti-frame rules. As in Pottier’s original setting,
in this system, it is desirable that every assertion R be allowed to play the role of
an invariant. As a consequence, in this concrete instance, the set of invariants W
should be isomorphic to the semantic domain of assertions.

In summary, for this instance the requirements that we have described above
amount to the following non-standard recursive domain equation:

Assert ∼= Assert →m P(Heap). (2)

The subscript −m indicates that we consider only the subset of monotonic func-
tions. By restricting the codomain to subsets of Heap that satisfy particular
conditions, and by further restricting the function space, we can find a solution
to (a variant of) equation (2) in a category of complete metric spaces. However,
because monotonicity is defined in terms of the ordering over assertions, which
itself is defined in terms of the operation of composition ◦ on W (recall that W
and Assert are isomorphic), we cannot do this using “off-the-shelf” techniques
for solving recursive domain equations, like those of Rutten [12] or Birkedal et
al. [13]. Instead, we obtain a solution by explicitly constructing the inverse limit
of an appropriately chosen sequence of approximations to (2). We discuss these
challenges and our solution in more detail in Section 4.

Contributions In summary, our main contributions are the following:

– We highlight which semantic ingredients are critical in establishing the va-
lidity of the frame and anti-frame rules. We hope that this will lead to
increased understanding, and expect that these ingredients can be used as
building blocks in the soundness proofs of future logics with information
hiding principles.

– We give a proof of the soundness of a program logic that includes frame and
anti-frame rules for higher-order store.

For space reasons, many proofs are omitted; some can be found in the full version
of this paper [14].

2 Semantic setup

In this section, we describe semantic ingredients that can be used to validate
(certain types of) anti-frame and frame rules.
Programming language. Our assumptions on the semantics of the programming
language are fairly standard. We assume that there is a (pointed, chain-complete
partially ordered) set of heaps, Heap, and that commands either diverge, termi-
nate successfully, or fault, i.e., that Com = Heap ((Heap⊕{error}⊥) is the set
of (strict continuous) functions into Heap with an error element adjoined. We also
assume that there exists a family of projection functions (πk : Heap (Heap)k∈N.

The images of these projection functions must contain only finite elements2 and
the projection functions must satisfy the following conditions:

– ⊥ = π0(h) v . . . v πk(h) v πk+1(h) v . . . v h for all h ∈ Heap, i.e., the πk’s
form an increasing chain of approximations of the identity on Heap;

– πj ◦ πk = πmin{j,k} for all j, k; in particular, every πk is idempotent;
–

⊔
k πk(h) = h, i.e., every heap is the limit of its approximations.

For example, these conditions hold if Heap is an SFP domain (e.g., [15]) with
a particular choice of projections. Finally, we assume a partial commutative
associative operation h ·h′, which intuitively lets us combine heaps with disjoint
locations and is compatible with the projections: πk(h · h′) = πk(h) · πk(h′).

We write N∞ for the natural numbers extended with ∞, with ∞ + k =
k +∞ = ∞. We define π∞ = id and 2−∞ = 0. The rank of h, written rnk(h), is
the least k ∈ N∞ such that πk(h) = h.
Uniformity and distance. Our program logics concern properties of heaps that
are closed under the projection functions πk. We write UAdm for the set of
admissible3 subsets p ⊆ Heap that are uniform: for any k ∈ N, if h ∈ p then
πk(h) ∈ p. Using the heap combination operation, we define separating conjunc-
tion p ∗ q for p, q ∈ UAdm in the usual way: h ∈ p ∗ q iff h = h1 · h2 for some
h1 ∈ p and h2 ∈ q. We assume that p ∗ q is in UAdm.4

Uniformity gives rise to a notion of distance between (or, similarity of) prop-
erties of heaps. More precisely, writing πk(p) for the image of p under the pro-
jection πk, the function d(p, q) = 2−sup{k∈N∞ | πk(p)=πk(q)} defines a notion of
distance on UAdm. This function satisfies the requirements of a 1-bounded ul-
trametric: that is, d takes real values in the interval [0, 1], is symmetric, is such
that d(p, q) = 0 holds iff p = q, and satisfies d(p, q) ≤ max{d(p, r), d(r, q)} for
all p, q, r ∈ UAdm. With respect to this metric, UAdm is complete in the usual
sense that every Cauchy sequence has a limit. The metric and this completeness
result of UAdm make it possible to model recursively defined assertions using
the Banach fixed point theorem.
Worlds and assertions. Our semantics of assertions is defined in the category
CBUlt of complete 1-bounded ultrametric spaces and non-expansive functions.
This means that every semantic domain involved in the semantics has an ap-
propriate notion of distance and that every function is non-expansive, i.e., the
distance between two outputs is no greater than the distance between the two
corresponding inputs.

The main ingredients necessary for validating forms of anti-frame and frame
rules are a set of possible worlds, and an interpretation of the worlds as assertions.
Thus, we require:

2 An element d in a cpo D is finite iff for all chains {dn}n∈ω in D, d v
⊔

n∈ω dn implies
that d v dn for some n.

3 The admissibility of p means that p is closed under limits of chains and contains ⊥.
4 This assumption holds when Heap is constructed in a standard way in terms of finite

partial functions or records, just like our model in Sections 4 and 5.

1. A monoid (W, e, ◦) of worlds, or invariants, where W is an object in CBUlt
and the operation ◦ is non-expansive with respect to this metric. The monoid
structure induces a preorder v on W , by w v w′ ⇔ ∃w0 ∈ W.w′ = w ◦
w0. Note that ◦ is in general not commutative, and that w′ is obtained by
extending w on the right. Using this preorder, we define a domain

Assert def= (1
2 ·W) →m UAdm.

for assertions. Here, 1
2 · W denotes the scaling of the distance function on

W by 1/2, and the function space consists of the non-expansive monotone
functions. Assertions are thus parameterized by worlds, and this parameteri-
zation satisfies two conditions. The first condition is contractiveness, meaning
that the distance between worlds gets reduced when they are used in an asser-
tion: d(p(w0), p(w1)) ≤ d(w0, w1)/2 for all p ∈ Assert and all w0, w1 ∈ W .
In the definition, contractiveness is formalized in two steps, first by scaling
down the distance of worlds by 1/2 and then by stipulating that assertions
should preserve this scaled-down distance (i.e., be non-expansive).
The second condition is monotonicity: p(w) ⊆ p(w ◦ w0) holds for all p ∈
Assert and all w,w0 ∈ W . Here, w0 can be thought of as an invariant that
is hidden in world w and revealed in world w ◦ w0. If some heap h satisfies
the assertion p while w0 is hidden, then h still satisfies p after w0 is revealed.
Intuitively, because the commands stored in the heap h do not know about
the invariant w0, they must preserve it.

2. A non-expansive coercion function i : W → Assert , which offers a way of
interpreting worlds as assertions.
We do not in general require W ∼= Assert : a one-way coercion is sufficient
for our purposes. In fact, it is possible to define instances of our framework
where W is strictly “smaller” than Assert . Such a restriction, where not
every assertion can play the role of a hidden invariant, can be exploited to
establish the soundness of stronger versions of anti-frame and frame rules
than the ones in the literature [4, 9]. For details, see Appendix D of the full
version of this paper [14].

For the moment, we simply assume that the above ingredients are provided.
In Section 4, we actually construct a particular set of worlds, together with an
appropriate coercion function from worlds to assertions. In this particular case,
W ∼= Assert holds.

The parameterization of assertions by a monoid W has the interesting con-
sequence that the following ⊗ operator, from Assert ×W to Assert :

(p⊗ w) def= λw0. p (w ◦ w0)

is an action of this monoid over assertions, that is, it satisfies p ⊗ e = p and
(p ⊗ w) ⊗ w0 = p ⊗ (w ◦ w0). These are the semantic analogues of two of the
distribution axioms in Pottier’s type system [4], and are also included in the
logic of Section 5.

Healthiness conditions. The monoid of worlds and the coercion function must
satisfy two further compatibility conditions. To express these, we use the ab-
breviation p ◦ w

def= p ⊗ w ∗ i(w), where ∗ denotes the pointwise lifting of the
separating conjunction on UAdm to Assert . The first condition is:

Condition 1. Coercions preserve − ◦ w0: ∀w,w0 ∈ W. i(w ◦ w0) = i(w) ◦ w0.

This condition lets us explain the extension of one invariant w by a second
invariant w0 in terms of assertions. By unfolding the definition, we see that
i(w ◦ w0) is the assertion obtained by ∗-conjoining the assertion i(w0) to i(w),
and additionally ensuring that all computations described by the latter also
preserve the invariant w0.

The asymmetric nature of Condition 1 indicates that we cannot in general
expect the monoid to be commutative. Instead, we require a weaker property:
the existence of commutative pairs.

Definition 1 (Commutative pair). Let w0, w1, a0 and a1 be worlds. The
pair (a0, a1) is a commutative pair for (w0, w1) iff (1) w0 ◦ a1 = w1 ◦ a0, (2)
i(w0)⊗ a1 = i(a0) and (3) i(w1)⊗ a0 = i(a1).

·

a1 ??���
·

·
w0

__???
w1

??���
·

a0__???
If (a0, a1) is a commutative pair for (w0, w1) then w0 ◦ a1 =
w1◦a0 provides an upper bound of w0 and w1 with respect to the
extension order v. Intuitively, we can “merge” two invariants,
ensuring that all computations described in the first invariant
preserve the second invariant, and vice versa.

Condition 2. Every pair (w0, w1) of worlds has a commutative pair.

Pottier’s revelation lemma [4], which forms the core of his sketch of a syntactic
soundness argument for his anti-frame rule, assumes the existence of commuta-
tive pairs. Commutative pairs play a similarly important role in the semantic
soundness proofs below. The model described in Section 4 gives a rigorous jus-
tification for their existence.

As a consequence of Condition 1 and of the fact that ⊗ is a monoid action,
we have the following lemma:

Lemma 2. For all p ∈ Assert and all w,w0 ∈ W , (p ◦ w) ◦ w0 = p ◦ (w ◦ w0).

3 Semantic triples, anti-frame rule and frame rules

In this section we consider the soundness of specific versions of anti-frame and
frame rules, based on the semantic setting described above. For a command c ∈
Com, let πk(c) be the command defined by πk(c)(h) = error if c(πk(h)) = error,
and by πk(c)(h) = πk(c(πk(h))) if c(πk(h)) ∈ Heap. Note that π∞(c) = c.

Definition 3. Let tri be the ternary predicate on Assert × Com × Assert such
that tri(p, c, q) holds iff

∀u ∈ UAdm.∀h ∈ p(e) ∗ u. c(h) ∈ Ad(
⋃

w(q ◦ w)(e) ∗ u),

where Ad(−) is the admissible downward closure.

Anti-frame
|={p⊗ w0}c{q ◦ w0}

|={p}c{q}

Deep-frame
|={p}c{q}

|={p ◦ w0}c{q ◦ w0}

Shallow-frame

{p}c{q} |={p ∗ i(w0)}c{q ∗ i(w0)}

Fig. 1. Semantic versions of a basic form of anti-frame and frame rules

This definition deserves some explanation. First, the universal quantification
over u ∈ UAdm in the definition of tri(p, c, q) “bakes in” the first-order frame
rule, i.e., tri(p, c, q) is only true of commands c that validate the first-order frame
rule. Next, the existential quantification (union) over worlds w ∈ W achieves
the hiding of state from the post-condition of triples, as expressed by anti-frame
rules. Because uniform admissible sets are not closed under arbitrary unions, we
take the admissible downward closure. Technically, this makes sense because we
assume commands are continuous and because we consider partial correctness
only. We view the post-condition Ad(

⋃
w(q ◦ w)(e) ∗ u) ⊆ Heap as a subset of

Heap⊕{error}⊥ in the evident way. In particular, this means that tri(p, c, q) is
only true of commands c that do not fault for states in the pre-condition. This
definition does not “bake in” monotonicity w.r.t. invariants (worlds): p and q ◦w
are “closed” just by applying them to the empty world. This is rectified in the
following definition of validity:

Definition 4 (Validity). A (semantic) triple {p}c{q} holds with respect to w
and k ∈ N∞, which we write w |=k{p}c{q}, iff tri(p◦(w◦w0), πk(c), q◦(w◦w0))
holds for all w0 ∈ W . We sometimes omit the index when k = ∞.

As a consequence of the quantification over worlds w0 in this definition, the
validity of a triple is monotonic: if w |=k{p}c{q} and w v w′ then w′ |=k{p}c{q}.
The approximate validity (i.e., the case where k 6= ∞) is used when considering
nested triples. Recall that assertions are the contractive monotone functions
from W to UAdm.5 Because nested triples will be interpreted as elements in
Assert , they must be contractive. The approximations will allow us to satisfy this
requirement. We write |={p}c{q} to mean that w |=k {p}c{q} for all k, w. Also,
we write {p}c{q} |= {p′}c′{d′} to mean that w |=k {p}c{q} ⇒ w |=k {p′}c′{q′}
holds for all w, k.

We are now ready to describe semantic versions of examples of anti-frame
and frame rules and to prove their soundness. The semantic rules are given in
Fig. 1, where the first two rules should be understood as the implication from
the premise to the conclusion.

Our first lemma is a consequence of the monotonicity of assertions.

Lemma 5. For all w, we have that (1) tri(p ⊗ w, c, q) ⇒ tri(p, c, q) and (2)
tri(p, c, q ◦ w) ⇒ tri(p, c, q).

5 More precisely, they are the non-expansive monotone functions from 1
2
·W to UAdm.

Proof. For the first implication, suppose that u ∈ UAdm and h ∈ p(e)∗u. By the
monotonicity of p and by e v w we obtain p(e) ⊆ p(w) = p(w ◦ e) = (p⊗w)(e).
Therefore, h ∈ (p⊗ w)(e) ∗ u. The result now follows from the assumption that
tri(p⊗ w, c, q) holds.

For the second implication, suppose again that u ∈ UAdm and h ∈ p(e) ∗ u.
We must show that c(h) ∈ Ad(

⋃
w′(q ◦ w′)(e) ∗ u). From the assumption that

tri(p, c, q◦w) holds we obtain c(h) ∈ Ad(
⋃

w′′((q ◦ w) ◦ w′′)(e) ∗ u). By Lemma 2,⋃
w′′((q ◦ w) ◦ w′′)(e) =

⋃
w′′(q ◦ (w ◦ w′′))(e) ⊆

⋃
w′(q ◦ w′)(e).

The result then follows from the monotonicity of ∗ and the monotonicity of the
closure operation Ad(·). ut

The next lemma amounts to gluing two commutative pair diagrams together
(along a0 there). Its proof involves the associativity of ◦ as well as Condition 1.

Lemma 6. If (a0, a1) is a commutative pair for (w0, w1) and (b0, a2) is a com-
mutative pair for (a0, w2) then (b0, a1◦a2) is a commutative pair for (w0, w1◦w2).

The following proposition combines Lemmas 5 and 6, and relates the validity
of two triples in our anti-frame rule.

Proposition 7. For all worlds (w0, w), if (a0, a) is a commutative pair for
(w0, w), then a |=k{p⊗ w0}c{q ◦ w0} implies w |=k{p}c{q}.

Proof. We need to show that w |=k{p}c{q}, which by definition means that for
all w1, letting w2 = w ◦ w1 and d = πk(c),

tri(p ◦ w2, d, q ◦ w2). (3)

By Condition 2, there exists a commutative pair (b0, a1) for (a0, w1). Let b2 =
a ◦ a1. By Lemma 6, (b0, b2) is a commutative pair for (w0, w ◦ w1) = (w0, w2).
In particular, we have w0 ◦ b2 = w2 ◦ b0 and i(b2) = i(w2) ⊗ b0. The assumed
triple implies tri((p⊗ w0) ◦ b2, d, (q ◦ w0) ◦ b2). Thus,

tri((p ◦ w2)⊗ b0, d, (q ◦ w2) ◦ b0) (4)

follows, using the following equalities:

(p⊗w0) ◦ b2 = p⊗ (w0 ◦ b2) ∗ i(b2) = p⊗ (w2 ◦ b0) ∗ i(w2)⊗ b0

= (p⊗w2)⊗ b0 ∗ i(w2)⊗ b0 = (p⊗w2 ∗ i(w2))⊗ b0

= (p ◦w2)⊗ b0,

(q ◦ w0) ◦ b2 = q ◦ (w0 ◦ b2) = q ◦ (w2 ◦ b0) = (q ◦ w2) ◦ b0.

From (4), we derive the desired triple (3) as shown below:

tri((p ◦w2)⊗ b0, d, (q ◦w2) ◦ b0) ⇒ tri(p ◦w2, d, (q ◦w2) ◦ b0)
⇒ tri(p ◦w2, d, q ◦w2).

Both implications hold because of Lemma 5. ut

Corollary 8 (Anti-frame rule). The anti-frame rule in Fig. 1 is sound.

Proof. Pick w, k. Let p, c, q, w0 be as in the anti-frame rule in Fig. 1. We must
prove that w |=k{p}c{q}. By Condition 2, there exists a commutative pair (a0, a)
for (w0, w). By assumption, we have |={p⊗ w0}c{q ◦ w0}, so, in particular, a |=k

{p⊗ w0}c{q ◦ w0}. By Proposition 7, this implies w |=k{p}c{q}, as desired. ut

Next, we move on to the soundness proof of the two frame rules in Fig. 1.

Lemma 9. The following equivalence, which expresses a distribution axiom [9],
holds: w0 ◦ w |=k{p}c{q} iff w |=k{p ◦ w0}c{q ◦ w0}.

Proof. Pick w1. Let w′
1 = w ◦ w1. By Definition 4 and the associativity of ◦, it

suffices to prove the equivalence of tri(p ◦ (w0 ◦ w′
1), πk(c), q ◦ (w0 ◦ w′

1)) and
tri((p◦w0)◦w′

1, πk(c), (q◦w0)◦w′
1). This equivalence follows from Lemma 2. ut

Corollary 10 (Frame rules). The frame rules in Fig. 1 are sound.

Proof. The soundness of the deep frame rule follows from Lemma 9. The shallow
rule is sound thanks to the universal quantification over u in Definition 3. ut

4 A concrete model with recursively defined worlds

In this section, we consider a concrete instance of the general framework de-
scribed in Sections 2 and 3 where W is isomorphic to Assert . The Assert → W
direction of this isomorphism means that all assertions can be used as hidden
invariants. This lets us define a semantic model of the program logic that is
presented next (Section 5). The heap model in this particular case is given by
the following recursively defined cpos:

Heap = Rec(Val) Val = Int⊥⊕Com⊥ Com = Heap (Heap⊕{error}⊥ (5)

where Rec(Val) denotes records with entries in Val labelled by positive natural
numbers6. These labels serve as addresses or locations. The partial operation
h · h′ combines two heaps h and h′ (i.e., takes the union) whenever the domains
of h and h′ are disjoint. When h = ⊥ or h′ = ⊥, h · h′ is ⊥. The empty record
provides a unit for heap combination, thus there is also a unit for the separating
conjunction on UAdm. Finally, the solution of (5) in the category Cppo⊥ of
pointed cpos and strict continuous functions comes equipped with a family of
projections πk that satisfy the requirements of Section 2.

The key result of this section is the following theorem:

Theorem 11. There exists a monoid (W, e, ◦), where W is an object in CBUlt
with an isomorphism ι from W to (1

2 ·W) →m UAdm. The operation ◦ satisfies

∀w1, w2, w ∈ W. ι(w1 ◦ w2)(w) = ι(w1)(w2 ◦ w) ∗ ι(w2)(w).

6 Formally, Rec(D) = (ΣN⊆finNats+(N →D↓))⊥ where N →D↓ is the cpo of maps

from the finite address set N to D↓ = D \ {⊥} of non-bottom elements of D.

The equation in this theorem is just Condition 1, where the coercion i is taken
to be the isomorphism ι.
Construction of the worlds W in Theorem 11. In previous work [9] we gave a
model of a separation logic with nested triples and higher-order frame rules, but
no anti-frame rule. For this model we needed a solution W ′ to the following
domain equation:7

W ′ ∼= (1
2 ·W

′) → UAdm. (6)

Note that (6) is almost the same domain equation as described in Theorem 11
above, except that there is no restriction to monotonic functions in the function
space on the right. One can use a general existence theorem [12, 13] to obtain
a solution W ′ for (6) in the category CBUlt . In a second step, using the com-
plete metric on W ′, one can then define a monoid operation ◦ that satisfies the
equation stated in Theorem 11.

In the present setup, this two-step approach to constructing a solution W ∼=
Assert and a monoid operation ◦ cannot be applied, however, because of the
added monotonicity requirement in Theorem 11: since the order on W is defined
in terms of the operation ◦, one needs ◦ already in order to express this equation,
i.e., it appears necessary to define the operation ◦ at the same time as W . Thus
we construct W ∼= (1

2 ·W) →m UAdm explicitly, as (inverse) limit

W =
{

x ∈
∏

k≥0Wk | ∀k ≥ 0. ι◦k(xk+1) = xk

}
of a sequence of “approximations” Wk of W ,

W0

ι0 // W1
ι◦0

oo
ι1 // W2
ι◦1

oo
ι2 // . . .
ι◦2

oo
ιk // Wk+1
ι◦k

oo
ιk+1 // . . .
ι◦k+1

oo (7)

Each Wk is a complete 1-bounded ultrametric space equipped with a non-
expansive operation ◦k : Wk ×Wk → Wk and a preorder vk, so that Wk+1 =
(1
2 · Wk) →m UAdm are the non-expansive and monotone functions with re-

spect to vk. The maps ιk and ι◦k are given by ιk+1(w) = πk+2 ◦ w ◦ ι◦k and
ι◦k+1(w) = πk+1 ◦ w ◦ ιk. The diagram (7) forms a Cauchy tower [13], in that
supw dk+1(w, (ιk ◦ ι◦k)(w)) and supw dk(w, (ι◦k ◦ ιk)(w)) become arbitrarily small
as k increases. The operation ◦k+1 is defined in terms of ◦k and ι◦k:

(w1 ◦k+1 w2)(w) def= w1 (ι◦k(w2) ◦k w) ∗ w2(w).

One technical inconvenience is that the ◦k’s are not associative. However, asso-
ciativity holds “up to approximation k,” dk((x ◦k y) ◦k z, x ◦k (y ◦k z)) ≤ 2−k,
which yields associativity “in the limit” and thus a monoid structure on W by

(xk)k≥0 ◦ (yk)k≥0
def=

(
limj>k ι◦k(. . . (ι◦j−1(xj ◦j yj))

)
k≥0

.

7 Technically, we solved a different equation W ′ ∼= 1
2
(W ′ → UAdm). This difference is

insignificant, since the solution of one equation leads to that of the other equation.

To finish the proof of Theorem 11 one shows that ι(w) def= limk(λw′. wk+1(w′
k))

establishes an isomorphism ι between W and (1
2 ·W) →m UAdm, which satisfies

ι(w1 ◦ w2) = ι(w1)⊗ w2 ∗ ι(w2) for (p⊗ w) = λw′.p(w ◦ w′).
The details of the proof are given in the full version of this paper [14].

Existence of commutative pairs. To show that W forms an instance of our seman-
tic framework, we also need to prove the existence of commutative pairs. Given
a pair (w0, w1) of worlds, we construct a commutative pair using properties of
⊗ and the coercion ι. Since the monoid operation ⊗ is contractive in its sec-
ond argument, so is the function f(a0, a1) =

(
ι−1(ι(w0)⊗ a1), ι−1(ι(w1)⊗ a0)

)
on W × W . By the Banach fixed point theorem, there exists a unique pair
(a0, a1) = f(a0, a1). Thus ι(a0) = ι(w0) ⊗ a1 and ι(a1) = ι(w1) ⊗ a0. Since ι is
injective, we can prove the remaining w0 ◦a1 = w1 ◦a0 as follows. For all w ∈ W ,

ι(w0 ◦ a1)(w) = (ι(w0)⊗ a1)(w) ∗ ι(a1)(w) (by Theorem 11 and def. of ⊗)
= ι(a0)(w) ∗ (ι(w1)⊗ a0)(w) (by the above properties of a0, a1)
= ι(a0)(w) ∗ ι(w1)(a0 ◦ w) (by def. of ⊗)
= ι(w1 ◦ a0)(w) (by Theorem 11).

Theorem 12. The monoid (W, e, ◦) in Theorem 11 and the isomorphism ι :
W → Assert form an instance of the framework in Section 2.

5 Program logic

We now give one application of our semantic development. We present a program
logic for higher-order store, which includes anti-frame and frame rules. Using the
results of Sections 3 and 4, we define the semantics of the logic and prove its
soundness.
Programming language. Fig. 2 gives the syntax of a small imperative program-
ming language equipped with operations for stored code and heap manipulation.
The expressions in the language are integer expressions, variables, and the quote
expression ‘C’ for representing an unevaluated command C. The integer or code
value denoted by expression e1 is stored in a heap cell e0 using [e0]:=e1, and this
stored value is later looked up and bound to the variable y by let y=[e0] in D. In
the case that the value stored in cell e0 is code ‘C’, we can run (or “evaluate”)
this code by executing eval [e0]. As in ML, all variables x, y, z are immutable.
The language does not include while loops: they can be expressed by stored
code (using Landin’s knot). The interpretation of commands in the cpo Com of
(5) is straightforward [9]. The interpretation of the quote operation, ‘C’, uses
the injection of Com into Val in Section 4.
Assertions and distribution axioms. As in previous work [9], our assertion lan-
guage is first-order intuitionistic logic, extended with the separating connectives
e, ∗, and the points-to predicate 7→ [5]. The syntax of assertions appears in Fig. 2.
The standard connectives are omitted.

The most distinguishing features of the assertion language are Hoare triples
{P}e{Q} and invariant extensions P ⊗Q. The fact that a triple is an assertion

e ∈ Exp ::= −1 | 1 | e1+e2 | . . . | x | ‘C’ integer expression, variable, quote

C ∈ Com ::= [e1]:=e2 | let y=[e] in C | eval [e] assignment, lookup, unquote
| let x=new (e1, . . . , en) in C | free e allocation, disposal
| skip |C1;C2 | if (e1=e2) C1 C2 no op, sequencing, conditional

P, Q∈Assn ::= e1 7→ e2 | e | P ∗Q separating connectives
| {P}e{Q} | P ⊗Q Hoare triple, invariant extension
| X | µX.P | . . . assertion variable, recursion

Fig. 2. Syntax of expressions, commands and assertions

{P}e{Q}⊗R ⇔ {P ◦R}e{Q ◦R}
(κx.P)⊗R ⇔ κx.(P ⊗R) (κ∈{∀,∃}, x /∈ fv(R))

(P ⊗R)⊗R′ ⇔ P ⊗ (R ◦R′)
(P ⊕Q)⊗R ⇔ (P ⊗R)⊕ (Q⊗R) (⊕∈{⇒,∧,∨, ∗})

P ⊗R ⇔ P (R is e or P is one of true, false, e, e 7→ e′, . . .)
(µX.P)⊗R ⇔ µX.(P ⊗R) (X /∈ fv(R))

Fig. 3. Axioms for distributing −⊗R

means that triples can be nested. Intuitively, the assertion P⊗Q denotes a version
of P where every (possibly deeply nested) triple receives a copy of Q as an extra
∗-conjunct in its pre- and post-conditions. More precisely, the behaviour of the ⊗
operator is described by the axioms in Fig. 3, which let us distribute ⊗ through
all the constructs of the assertion language. These axioms use the abbreviation
Q ◦R for (Q⊗R) ∗R.

Assertions include assertion variables X ∈ X , and can be recursively defined:
the construct µX.P binds X in P and satisfies the axiom µX.P ⇔ P [X :=
µX.P]. Not every recursive assertion is permitted: for µX.P to be well-formed,
we require that P be formally contractive in X. In short, this means that every
free occurrence of X within P must lie either within a triple or within the second
argument of a ⊗ construct. (We omit the straightforward inductive definition
of formal contractiveness.) Semantically, this requirement ensures that µX.P
is well-defined as the unique fixed point of P , viewed as a function of X. In
particular, all assertions of the form µX.P ⊗X, where X does not appear in P ,
are formally contractive. Pottier’s applications of the anti-frame rule [4] make
extensive use of assertions of this form.

The interpretation of assertions uses W in Section 4. Given such W and
an environment η that maps variables x to values η(x) ∈ Val , we interpret an
assertion P as a non-expansive function JP Kη : AssertX → Assert . The uniform
admissible sets in UAdm, partially ordered by inclusion, form a complete Heyting
algebra with a monotone commutative monoid. The domain Assert , ordered
pointwise, inherits this structure (see Appendix B of the full version of this
paper [14]). This is used to interpret the intuitionistic first-order fragment, ∗

JP ⊗RKη,ξ = JP Kη,ξ ⊗ ι−1(JRKη,ξ) JµX.P Kη,ξ = fix (λq. JP Kη,ξ[X:=q])

J{P}‘C’{Q}Kη,ξ = λw. {h | rnk(h) > 0 ⇒ w |=rnk(h)−1{JP Kη,ξ} JCKη {JQKη,ξ}}

Fig. 4. Interpretation of assertions

Anti-frame
Γ ; Ξ `{P ⊗R}e{Q ◦R}

Γ ; Ξ `{P}e{Q}

Deep-frame
Γ ; Ξ `{P}e{Q}

Γ ; Ξ `{P ◦R}e{Q ◦R}

Shallow-frame

Γ ; Ξ `{P}e{Q} ⇒{P ∗R}e{Q ∗R}

Fig. 5. Proof rules from separation logic

and e of the assertion language. Fig. 4 shows three of the remaining cases. First,
via the isomorphism ι−1, we can turn any assertion r ∈ Assert into an invariant
ι−1(r) ∈ W and thus interpret the invariant extension P ⊗ R. Next, because
P must be formally contractive in X, the map q 7→ JP Kη,ξ[X:=q] on Assert is
contractive in the metric sense: thus, by the Banach fixed point theorem, it has
a unique fixed point. Finally, the interpretation of nested triples is in terms of
semantic triples, and uses approximate validity to ensure non-expansiveness.
Proof rules. The logic derives judgements of the form Γ ;Ξ ` P , where P is an
assertion, and Γ and Ξ respectively bind variables and assertion variables. For
instance, to prove that command C stores at cell 1 some code that writes 0 into
cell 10, one would need to derive Γ ;Ξ ` {1 7→ }‘C’{1 7→ {10 7→ } {10 7→ 0}}.

The logic includes the standard proof rules for intuitionistic logic and the
logic of bunched implications [16] as well as standard separation logic proof
rules [9]. We do not repeat these rules here. Fig. 5 shows a version of the anti-
frame rule and two versions of the frame rule: the deep frame rule (expressed
in combination with the distribution axioms) and the first-order shallow frame
rule (which takes the form of an axiom).

Theorem 13 (Soundness). The interpretation of assertions is well-defined,
and validates the distribution axioms of Fig. 3 and the inference rules of Fig. 5.

6 Conclusion and Future Work

We have presented a semantic framework for studying the soundness of anti-
frame and frame rules for languages with higher-order store. Moreover, we have
presented a concrete instance of the framework, and used it to give the first
rigorous proof of soundness of separation logic with anti-frame and frame rules
for a language with higher-order store.

We are aware of other instantiations of the semantic framework, which can
be used to show the soundness of stronger variants of the anti-frame and frame
rules, provided the universe W of invariants is restricted. For space reasons, we

have not included those instantiations in this extended abstract; they appear in
the full version of the paper [14].

Future work includes lifting the results in this paper to Pottier’s type-and-
capability system as well as extending our soundness results to generalized ver-
sions of the anti-frame and frame rules where invariants evolve in more sophis-
ticated ways over time [17, 18].
Acknowledgments We would like to thank Kristian Støvring and Jacob Thams-
borg for helpful discussions. Partial support has been provided by FNU project
272-07-0305 “Modular reasoning about software” and EPSRC.

References

1. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL. (2005)
247–258

2. Biering, B., Birkedal, L., Torp-Smith, N.: BI-hyperdoctrines, higher-order separa-
tion logic, and abstraction. TOPLAS 29(5) (2007)

3. Parkinson, M., Bierman, G.: Separation logic, abstraction and inheritance. In:
POPL. (2008) 75–86

4. Pottier, F.: Hiding local state in direct style: a higher-order anti-frame rule. In:
LICS. (2008) 331–340

5. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS. (2002) 55–74

6. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. In:
POPL. (2004) 268–280

7. Birkedal, L., Torp-Smith, N., Yang, H.: Semantics of separation-logic typing and
higher-order frame rules for Algol-like languages. LMCS 2(5:1) (2006)

8. Birkedal, L., Reus, B., Schwinghammer, J., Yang, H.: A simple model of separation
logic for higher-order store. In: ICALP. (2008) 348–360

9. Schwinghammer, J., Birkedal, L., Reus, B., Yang, H.: Nested Hoare triples and
frame rules for higher-order store. In: CSL. (2009) 440–454

10. Pottier, F.: Three comments on the anti-frame rule. Unpublished note (July 2009)
11. Levy, P.B.: Possible world semantics for general storage in call-by-value. In: CSL.

(2002) 232–246
12. Rutten, J.J.M.M.: Elements of generalized ultrametric domain theory. TCS 170(1–

2) (December 1996) 349–381
13. Birkedal, L., Støvring, K., Thamsborg, J.: The category-theoretic solution of re-

cursive metric-space quations. Technical Report ITU-2009-119, IT University of
Copenhagen (2009)

14. Schwinghammer, J., Yang, H., Birkedal, L., Pottier, F., Reus, B.: A semantic foun-
dation for hidden state. Available at http://www.dcs.qmul.ac.uk/∼hyang/paper/
fossacs10-full.pdf (December 2009)

15. Streicher, T.: Domain-theoretic Foundations of Functional Programming. World
Scientific (2006)

16. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bulletin of Symbolic
Logic 5(2) (June 1999) 215–244

17. Pilkiewicz, A., Pottier, F.: The essence of monotonic state. Submitted (October
2009)

18. Pottier, F.: Generalizing the higher-order frame and anti-frame rules. Unpublished
note (July 2009)

