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ABSTRACT

This paper reports the first results of an investigation into solutions to problems

of security in computer systems; it establishes the basis for rigorous investigation by

providing a general descriptive model of a computer system.

Borrowing basic concepts and constructs from general systems theory, we present

a basic result concerning security in computer systems, using precise notions of

"security" and "compromise".  We also demonstrate how a change in requirements can be

reflected in the resulting mathematical model.

A lengthy introductory section is included in order to bridge the gap between

general systems theory and practical problem solving.
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PREFACE

General systems theory is a relatively new and rapidly growing mathematical

discipline which shows great promise for application in the computer sciences.  The

discipline includes both "general systems-theory" and "general-systems-theory":  that is,

one may properly read the phrase "general systems theory" in both ways.

In this paper, we have borrowed from the works of general systems theorists,

principally from the basic work of Mesarovic´, to formulate a mathematical framework

within which to deal with the problems of secure computer systems.  At the present time

we feel that the mathematical representation developed herein is adequate to deal with

most if not all of the security problems one may wish to pose.  In Section III we have

given a result which deals with the most trivial of the secure computer systems one might

find viable in actual use.  In the concluding section we review the application of our

mathematical methodology and suggest major areas of concern in the design of a secure

system.

The results reported in this paper lay the groundwork for further, more specific

investigation into secure computer systems.  The investigation will proceed by

specializing the elements of the model to represent particular aspects of system design

and operation.  Such an investigation will be reported in the second volume of this series

where we assume a system with centralized access control.  A preliminary investigation

of distributed access is just beginning; the results of that investigation would be reported

in a third volume of the series.
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SECTION I

INTRODUCTION

GENERAL SYSTEMS

We shall begin by presenting a brief description of general systems theory as we

shall use it in this paper.  We consider a system in its most general form to be a relation

on abstract sets.  We express this mathematically by the expression

S  ⊆   X  ×  Y

where the system  S  is a relation on the abstract sets  X  and  Y.  If  S  is a function from

X  to  Y (S: X → Y), then it is natural to consider  S  to be a functional system.  In this

case, it is convenient to consider the elements of  X  to be inputs and the elements of  Y

to be outputs so that  S expresses a functional input-output relationship.  By appropriate

choice of the sets  X  and  Y  (and a set  Z  to represent states when necessary), one can

closely represent some situation of particular interest and reach significant conclusions

about that situation.

This very general definition of a system provides a framework of investigation which has

very wide applicability and, as we shall see in Section III, unexpected power.  We shall

illustrate the concept’s applicability with three examples.

Example 1: Consider a savings account in a bank which compounds interest quarterly.

The general situation of varying payments, withdrawals, and interest rates can be

described by a difference equation as follows:

bk = (bk-1 + pk)  .  (1 + ik) (1.1)

where  bk  represents the balance after the computation of interest at the end of the k-th

quarter,  pk represents the net transaction (that is, the net of deposits and withdrawals) in



2

the account during the k-th quarter1, and ik represents the quarterly interest rate at the

end of the k-th quarter. A seven-year history of such a savings account (seven years for

tax purposes) is represented by a system

S(b0) ⊆ P × I × B

where

b0 represents the initial balance in the account;

P = R28represents the twenty-eight transactions2 ;

I = R28 represents the twenty-eight quarterly interest rates; and

B = R28 represents the twenty-eight successive balances;

and (p, i, b) ∈  S(b0) if and only if equation (1.1) holds for every  k  from 1 to 28

inclusive, where p = (p1,  •  •  •  , p28); i = (i1,  •  •  •  , i28); and b = (b1,  •  •  •  , b28).

The system  S(b0) describes in full generality the seven-year savings-account history in

any circumstance.  Certain results in econometrics are equivalent to determining  b28
under further specific assumptions.  For example, the determination of  b28  for (p,i,b)  ∈
S(O)  where p2  =   •  •  •  =  p28  =   0  and i1  =  i2  =  •  •  •  =  i28  >  0  is

accomplished using the compound interest formula

b28  =  p1  •  (1 + i1)28 .

A number of remarks concerning this example are in order.  It is certainly true that the use

of an  econometric table prepared for a specific situation is easier than the direct use of

the difference equation (1.1).  On the other hand, small changes in a situation can make the
use of tables cumbersome.  For example, suppose that the pj in the sequence

(p1, p2,  •  •  •  , p28) are positive and distinct and that i1  =  i2 =   •  •  •  =  i28  >  0.

Then by use of econometric tables, we compute b28 by the formula

                                                
1 We assume for simplicity that interest is paid on the amount in the account at the end of
the quarter.

2 The set of 28-tuples of real numbers.
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28
b28  =  ∑    pj  •  (F/P, i1, 29 - j).3

j=1

This means that the compound amount factor  (F/P, il , 29 - j)  must be looked up 28

times in the compound interest factors table one is using.  If we further complicate the
problem of having the ij in (il,  i2,  •  •  •  , i28) distinct and positive, then we could

compute b28 by the iterative method:

b28  =  (b27 + p28)  •  (F/P, i28, 1)

b27  =  (b26 + p27)  • (F/P, i27, 1)

•

•

•
b1  =  (b0 + p1)  •  (F/P, i1, 1) ;

or we could use the single formula obtainable by straightforward algebraic substitution in
the equations above.  So, to find  b28, we start with  b0  and work backwards; in using the

compound interest factors tables we should have to do 28 look-ups, each on a different

page since in each quarter the interest is different from that in any other quarter.  If it
happens that each  ij  <  k%, where k% is the lowest interest for which we have a table,

our problem has become even more severe.  It is much easier in these cases, especially on

a digital computer, simply to use the difference equation (1.1).

The preceding remarks should illustrate that the most important characteristics of the

system (that is, the difference equation) are its appropriateness to the situation modeled

and its general applicability.

Example  2:  Consider the motion of a body  B  suspended on an ideal spring.  The

                                                
3 See [6] in the references at the end of this section, page 594.
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motion is governed by the differential equation

m • s"(t) + k • s(t) = x(t) (1.2)

where m is the mass of B, s(t) is the position of B at time t, k is a constant of the spring,

and x(t) is an external force acting on B at time t.  If C is the set of all analytic functions
on [0,˚˚), then the differential equation (1.2) with initial conditions  s(0) = a  and  s'(0) = b

is represented by the system  S(a,b)  defined as follows:

S(a,b)  ⊆   C × C

where  (x(t), s(t))  ∈   S(a,b)  if and only if  s(0) = a  and  s'(0) = b, and the functions x and

s satisfy (1.2) for all  t  ∈  [0,∞).  Hence the familiar analytical tool of differential

equations is a system under our very broad definition.  Our third example will show that

finite-state machines are also encompassed in our concept of system.

Example  3:  Consider a vending machine which accepts nickels, dimes, and quarters for a

ten-cent cup of coffee and gives change if any is due.  Let  A  =  {5,10,25}  represent the
coins acceptable to the machine.  Let B1 =  {φ,C}   where "φ" means "no  coffee" and

"C" means "coffee".  Let B2  =  {0,5,10,25} represent the coins the machine can return.

The set  B  =  B1  ×  B2  ×  B2  specifies the set of outputs that can occur at any time.

Now let the set Q = {q0,q1} represent the states of the machine.  We  give a state

transition function f:  A  ×  Q  →  Q  and an output function g:   A  ×  Q  →  B by the

following  table:
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Table I

State-Transition

a  =  5 a  =  10 a  =  25 a  =  5 a  =  10 a  =  25

f(a,q0) ql q0 q0 g(a,q0) (φ,0,0) (C,0,0) (C,5,10)

f(a,q1) q0 q0 q1 g(a,q1) (C,0,0) (C,5,0) (φ,0,25)

We have now modeled the vending machine as a finite-state machine in the usual manner.

Now suppose that we observe  n  trials.  Let  An  and  Bn  be, respectively, the sets of all
n-tuples from the sets  A  and  B.  Then for a given initial state  q  =  qi,  i  ∈   {0,1}, there

corresponds to any input tape  x  in  An  a unique output tape  y  in  Bn.  We have

defined a mapping

Sq :  An  →   Bn

such that for each  x  in  An  the image  y = Sq(x)   is the unique output sequence

corresponding to the input sequence  x  and the initial state  q = qi.  We say that the

vending machine is represented by the system  S  ⊆   An  ×  Bn  where  S  =  Sq0
  ∪   Sq1

.

Considering that in normal operation of the machine the initial state is  q0,  we can

consider the vending machine to be the functional system  Sq0.

The examples we have presented are intended to enhance the intelligibility of the

discussion of system modeling in the next section.  Additionally, the enrichment of one's

intuitive notions through the use of examples will, hopefully, serve a similar purpose in

the next section.
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SYSTEM MODELING

The mathematics of relations among objects with which we deal is designed to provide a

useful model for our investigation of secure computer systems.  Three desirable

properties of such a model suggested by the examples of the previous section are

generality, a predictive ability, and appropriateness.  In this section, we shall discuss each

of these properties in turn, commenting on its relation to a "useful" model of a particular

situation.

Differential equations are systems that frequently display great generality.  Equation (1.2)

illustrates this point clearly.  Without knowing the mass of  B  and without specifying the

spring constant k, we can nevertheless analyze the general system.  In fact, for  x(t) ≡ 0,

(1.2)  has the closed form solution

s(t) = A • sin(nt + C), (l.3)

where  n  =  (k/m)1/2  and  A  and  C  are constants determined by the initial conditions  a

and  b.  Moreover, equation (1.2) is a special case of the more general form

s"(t)  +  2k • s'(t)  +  n2 • s(t)  =  x(t)

which models a vast number of elastic vibrations including electrical oscillations (as in a

capacitor) and the vibrations in pipe organs[3].

A model too closely tied to a specific application loses the possibility of more general

applicability.  On the other hand, a model insufficiently rooted in the problem at hand

will not allow accurate prediction of the behavior of the  physical system being modeled.

For example, knowing the initial conditions of the suspended weight B,  the mass of  B,

and the spring constant  d,  we can predict precisely where  B  will be 5.83337 seconds

from "let-go."  The same sort of precise predictive power is desirable in modeling discrete

computer systems.  Moreover, in modeling secure computer systems we must deny
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ourselves the luxury of accepting approximate  answers and insist on absolute rather than

probabilistic determinacy.

The last important feature of a model is its appropriateness to the situation of interest.

In each of the three examples of Section I, the type of system used appropriately

described the important properties of the situation being modeled.  One particular

advantage of an appropriate model can be  illustrated by the third example, while the

severe problems which an inappropriate model can cause  can be demonstrated by a

discussion of the second example.

The vending machine modeled in Example 3 illustrates that problems other than

correctness can be detected in a model appropriate to a given situation.  In particular, the
machine we have defined has this interesting characteristic:  if in state  ql  one continually

inserts quarters into the machine, the machine monotonously returns a quarter and gives

no coffee.  This is a behavioral characteristic which the vending machine company might

consider undesirable.  We have purposely constructed our sample machine in this way in

order to show that while the machine is "correct" in its operation, we may consider it to

be non-viable  as a profit-making item. 4

Now consider the situation modeled in Example 2.  If a discrete model had been chosen

over a continuous one, the model might have been represented by discrete observations of

the spring-weight tandem

ut  =  s(t),   t  =  0,   1,   2,   3,   •   •   • (1.4)

                                                
4 This characteristic (i.e., returning quarters inserted after a single nickel has been put into
the machine) is one which might irritate customers and not sell coffee in the process.  An
alternative approach which, although not correct, might be more acceptable to a vending
machine company would be to set  f(25, q1)  =  q0  and g(25,  q1)  =  (C,5,10):  that is,

make change for the quarter, supply coffee, and ignore the nickel.  Purposefully or
inadvertently, this may well be the course chosen by some vending machine companies.
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where  s(t)  is the same position function appearing in (1.2).  Suppose  B  has mass = 1

gram, the time interval is 1 second, and the spring constant is  k = 39.478 g/sec2.  In this

special case, the motion of  B  indicates no apparent movement--the body  B  is always in

the same position (s(0)) at each observation time.  The periodicity of  B's  motion is

precisely what makes a continuous differential-equation model more appropriate than a

discrete model of the type described (in addition to the more accurate predictive power).

The point is that an inappropriate model of a problem situation can obfuscate the

essential issues involved, thus complicating the problem.

The major task in system modeling is to provide a useful model of the situation under

scrutiny, a model which exhibits generality, a predictive ability, and appropriateness to

the problem at hand.

SECURE  COMPUTER SYSTEMS

A number of systems have been built and designed which attack the general problem of

security in some form and to some extent.  In some cases, privacy of data is the principal

objective; in others, the prime objective is access control.  For the security criteria which

we shall establish, however, no existing system of which we are aware is adequate. 5

When we speak of a secure computer system, we mean one which satisfies some

definition of "security".  Our interest is security in the usual military and governmental

senses -- that is, security involving classifications and needs-to-know.

We shall investigate a bounded form of the general problem of security.  Our interest shall

be to certify that within the digital computer, which is only part of a total system, no

security compromise will occur.  The elements with which we shall deal, then, are

processes (programs in execution), data, access control algorithms, classifications of data

and processes, and the needs-to-know of elements within the digital computer.

                                                
5 See reference [14] at the end of this section.



9

PROBLEMS OF SECURITY

Let us consider a security compromise to be unauthorized access to information, where

unauthorized means that an inappropriate clearance or a lack of need-to-know is involved

in the access to the information.  Then a central problem to be solved within the

computing system is how to guarantee that unauthorized access (by a process) to

information (file, program, data) does not occur.

If we can certify that unauthorized access cannot occur within the system, then we must

next consider the secondary effects of the method by which security has been achieved.

Principally we shall have to address ourselves to the general question of the viability of

the resultant system in terms of economic and technological feasibility and in terms of

usefulness to the user.

SUMMARY  AND  REFERENCES

In this chapter we have introduced general systems theory very briefly and have shown

examples of its application.  Together with the short discussion on system modeling, the

general systems theory and examples should provide an adequate basis for reading the rest

of this paper.

The reader who may wish to investigate system theory for himself is referred first to the

book edited by Klir [10], which can profitably be read with or without any background in

mathematics.  The reader will find further examples of systems in the book [15] by

Mesarovic´, Macko, and Takahara.  In particular, beginning on page 69 of [15] the reader

will find the basic mathematical concept of a system which we have borrowed.  Other

books which should be of interest are those by Klir [9], Hammer [7], von Bertalanffy [1],

and Zadeh and Polak [16].

In the section entitled SECURE COMPUTER SYSTEMS we defined in broad terms

what we mean by a secure computer system.  Our general notion of a secure system is

derived in large measure from the investigative work performed by Burke [2], who has
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abstracted essentials of a secure system from the Multics system, as an archetype of

multi-user systems, and from his knowledge of security problems.  The reader can find

numerous articles in the literature which touch on the area of secure computer systems;

we list [4,5,11,12,13] as representative of what is available.  As we pointed out, however,

none of the generally available literature deals specifically with the problem we address in

this paper.

Finally, we have indicated in this chapter what we consider to be the general problems we

shall encounter in investigating secure computer systems.

1. von Bertalanffy, Ludwig., General System  Theory, George Braziller, Inc., New

York, 1968.

2. Burke, Edmund L., private communication.

3. Ford, Lester R., Differential Equations, McGraw-Hill Book Company, New York,

1955.

4. Graham, G. Scott, and Peter J. Denning, "Protection Principles and practic (sic),"

AFIPS Conf. Proc. 40, Spring Joint Computer Conference 1972, pp. 417-429.

5. Graham, R. M., "Protection in an information processing utility," Comm ACM,  15

May  1968, pp.  365-369.

6. Grant,  E. L., and W. G. Iveson,  Principles of Engineering Economy, The  Ronald

Press Company, New  York,  1970.

7. Hammer, Preston  C., ed., Advances  in  Mathematical  Systems Theory,

Pennsylvania State  University Press, University  Park, Pennsylvania,  1969.

8. Hoffman, L. J., "Computers  and  privacy:  a  survey," Computing Surveys, 1,

2 June, 1969, pp. 85-104.

9. Klir, George J., An Approach to General Systems Theory, van Nostrand Reinhold
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Company, 1969.

10. Klir, George J., ed., Trends in General Systems Theory, Wiley-Interscience, New

York,  1972.

11. Lampson, B.  W., "Dynamic protection structures," AFIPS Conf. Proc. 35, Fall

Joint Computer Conference 1969,  pp.  27-38.

12. Lampson, B. W., "On reliable and extendable operating systems," Techniques in

software engineering, NATO Science Committee Working Material Vol. II,

September, 1969.

13. Lampson, B. W., "Protection," Proc. Fifth Annual Princeton Conf. on Inf. Sciences

and Systems, Dept. of E. E., Princeton University, Princeton, N. J., March, 1971,

pp. 437-443.

14. Lipner, Steven B., "Computer Security Research and Development Requirements",

MTP-142, March 1973.

15. Mesarovic´, M. D., D. Macko, and Y. Takahara, Theory of Hierarchical, Multilevel,

Systems, Academic Press, New York, 1970.

16. Zadeh, L. A., and E. Polak, System Theory, McGraw-Hill Book Company, New

York,1969.
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SECTION II

FOUNDATIONS OF A MATHEMATICAL MODEL

ELEMENTS OF  THE MODEL

We begin by identifying elements of the model which correspond to parts of the real

system to be modeled.  We assume the real system to have multiple users operating

concurrently on a common data base with multi-level classification for both users and data

and need-to-know categories associated with both users and data.  In our model we deal

with subjects (processes), which one should consider surrogates for the users.

We show the elements of our model in Table II, wherein we identify sets,

elements of the sets, and an interpretation of the elements of the sets.

Table  II

Elements  of  the  Model

Set Elements Semantics

S {S1,S2, •  •  • ,Sn} subjects; processes, programs in execution

O {O1,O2, •  •  • ,Om} objects; data, files, programs, subjects

C {C1,C2, •  •  • ,Cq}

{C1 > C2 >  •  •  •  > Cq

classifications; clearance level of a subject,
classification of an object

K {K1,K2, •  •  • , Kr } needs-to-know categories; project
numbers, access privileges
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A {A1,A2, •  •  •  ,Ap} access attributes; read, write, copy,
append, owner, control

R {R1,R2, •  •  •  ,Ru} requests; inputs, commands, requests for
access to objects by subjects

D {D1,D2, •  •  • ,Dv} decisions; outputs, answers, "yes", "no",
"error"

T {1,2,  •  •  • ,t, •  •  • } indices; elements of the time set;
identification of discrete moments; an
element  t  is an index to request and
decision sequences

Pα all subsets of α power set of  α

αβ all functions from the set b
to the set a

-------------------

α × β {(a,b): a ∈  α, b ∈  β} Cartesian product of the sets α and β

F CS × CO × (PK)S × (PK)O

an arbitrary element of F is
written f = (f1,f2,f3,f4)

classification/need-to-know vectors;
f1: subject-classification function

f2: object-classification function

f3: subject-need-to-know function

f4: object-need-to-know function

X RT

an arbitrary element of  X
is written  x

request sequences

Y DT

an arbitrary element of  Y
is written  y

decision sequences
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M {M1,M2, •  •  • , Mc},

c = nm2p;
an element  Mk  of M is an

n  ×  m  matrix with entries
from PA; the (i,j)-entry of
Mk shows Si's access

attributes relative to Oj

access matrices

V P(S  ×  O)  ×  M  ×  F states

Z VT

an arbitrary element of  Z
is written  z; zt ∈  z  is the

t-th state in the state
sequence  z

state sequences

STATES OF THE SYSTEM

We have defined the states of the system in such a way as to embody all the information

which we consider pertinent to security considerations.

A state   v  ∈   V  is a 3-tuple  (b,M,f)  where

b  ∈  P(S × O), indicating which subjects have access to which objects in

the state  v;

M  ∈  M, indicating the entries of the access matrix in the state  v;

and

f  ∈  F, indicating the clearance level of all subjects, the

classification level of all  objects, and the needs-to-know

associated with all subjects, and objects in the state  v.

STATE-TRANSITION  RELATION

Let  W ⊆   R  ×  D  ×  V  ×  V.  The system  Σ(R,D,W,z0)  ⊆   X  ×  Y  ×  Z  is defined by
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(x,y,z)  ∈  Σ (R,D,W,z0)  if and only if  (xt,yt,zt,zt,-l)  ∈  W for each  t  ∈   T,

where  z0  is a specified initial state usually of the form  (φ,M,f), where  φ

denotes the empty set.

W  has been defined as a relation. It can be specialized to be a function, although this is

not necessary for the development herein. When considering design questions, however,

W  will be a function, specifying next-state and next-output.  W  should be considered

intuitively as embodying the rules of operation by which the system in any given state

determines its decision for a given request and moves into a next state.

SUMMARY  AND  REFERENCES

In this section we have established elements of a mathematical model of a system; these

elements were chosen to represent as nearly as possible the realities of the problem

situation and to enable as easy a transition as possible from mathematical model to design

specifications.

The states of the system have been defined in such a way as to incorporate all

information which seems pertinent to correct operation of a secure system ("secure

system" to be defined precisely in the next section).

Finally, we have included in the model a state-transition relation  W  which is the key to

modeling:  given  W  one may predict the behavior of the system for a given set of initial

conditions  and a given request sequence.
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SECTION III

A FUNDAMENTAL RESULT

COMPROMISE  AND SECURITY

We define a compromise state as follows:  v = (b,M,f) ∈ V is a compromise state

(compromise) if there is an ordered pair  (S,O)  ∈   b  such that

(i) fl(S)  <  f2(O) or

(ii) f3(S)  ⊇/    f4(O).

In other words,  v  is a compromise if the current allocation of objects to subjects  (b)

includes an assignment  ((S,O))  with at least one of two undesirable characteristics:

(i') S's  clearance is lower than  O's  classification;

(ii') S  does not have some need-to-know category that is assigned to  O.

In order to make later discussions and arguments a little more succinct, we shall define a

security condition.  (S,O)  ∈  S  ×  O  satisfies the security condition relative to  f

(SC rel f)  if

(iii) fl(S)  ≥  f2(O) and

(iv) f3(S)  ⊇  f4(O).

A state  v = (b,M,f)  ∈  V  is a secure state if each  (S,O)  ∈   b satisfies SC rel f.  The

definitions of secure states and compromise states indicate the validity of the following

unproved proposition.

Proposition:   v  ∈   V   is not a secure state  iff  v  is a compromise.
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A state sequence   z  ∈  Z  has a compromise  if   zt   is a compromise for some  t  ∈   T.

z  is a secure state sequence if  zt   is a secure state for each  t  ∈ T.  We shall call  (x,y,z)

∈ Σ  (R,D,W,z0)  an appearance of the system.  (x,y,z)  ∈   Σ (R,D,W,z0)  is a secure

appearance  if  z  is a secure state sequence.  The appearance  (x,y,z) has  a

compromise if   z   has a compromise.

Σ(R,D,W,z0)  is a secure system  if every appearance of  Σ(R,D,W,z0) is secure.

Σ(R,D,W,z0)  has a compromise if any appearance of Σ(R,D,W,z0)  has a compromise.

Proposition:  z  ∈   Z   is not secure iff   z   has a compromise.

Proposition:   Σ(R,D,W,z0)  is not secure iff  Σ(R,D,W,z0) has a compromise.

ASSUMPTIONS

We make assumptions, as shown in Table III, which reflect a subset of requirements (or

lack of requirements) to be imposed on the system.  In Section IV we shall change some

of these assumptions and observe the effect on the system.

Table III

Initial Requirements

REQUIREMENTS

RAISE? LOWER?

SUBJECT CLEARANCE NO NO

OBJECT CLASSIFICATION NO NO

INCREASE? DECREASE?

SUBJECT NEEDS-TO-KNOW NO NO

OBJECT NEEDS-TO-KNOW NO NO
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Table  III, in effect, says that "no" is the answer to each of the questions

“Is there a requirement to (raise / lower / increase / decrease) a (subject’s /

object’s) (classification or clearance / needs-to-know)?”.

BASIC SECURITY THEOREM

Basic Security Theorem:
Let  W  ⊆   R × D × V × V be any relation such that  (Ri,Dj,(b*,M*,f*),(b,M,f)  ∈   W

implies

(i) f = f* and
(ii) every   (S,O)    ∈   b*  -  b satisfies  SC  rel f*.

Σ(R,D,W,z )  is a secure system for  any secure state  z .

Proof:  Let z0 = (b,M,f) be secure.  Pick (x,y,z)  ∈   Σ(R,D,W,z) and write

zt = (b (t), M (t), f (t))  for each  t  ∈   Τ.

z1  is a secure state.  (x1,y1,z1,z )  ∈   W.  Thus by  (i),  f(1)  =  f.  By (ii), every  (S,O)

in  b(1)  –  b  satisfies SC rel f(1).  Since  z  is secure, every  (S,O)  ∈   b  satisfies SC rel f.

Since  f  =  f(l),  every  (S,O)  ∈   b(1)  satisfies SC rel f(1).  That is  z1  is secure.

If  zt-1  is secure,  zt  is secure.   (xt,yt,zt,zt–1)  ∈  W.  Thus by (i),  f (t)  =  f(t–1).  By

(ii), every  (S,O)  in b(t) – b(t–1)  satisfies SC rel f(t).  Since zt–1 is secure, every (S,O)  ∈

b(t–1)  satisfies SC rel f (t-1).  Since f (t)  =   f(t–1), every  (S,O)  ∈   b(t) satisfies

SC rel f(t).  That is,  zt is secure.  By induction,  z  is secure so that (x,y,z)  is a secure

appearance.  (x,y,z) being arbitrary,  Σ(R,D,W,z0)  is secure.
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SUMMARY

In this chapter we have applied the mathematical model of Section II to the modeling of a

secure computer system.  We have defined a secure system precisely, through the

definitions of security and compromise, and have given a rule of operation,  W,  which we

have shown  guarantees that the system is secure in its operation.
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SECTION  IV

CONCLUSION

INTRODUCTION

We attempted to provide in Section I a motivation and basis for the remainder of this

paper.  We pointed out three desirable properties of a model -- generality, predictive

ability, and appropriateness -- and these were illustrated by example.  Also, we discussed

the general principle that the specificity of prediction is roughly proportional to the

amount and level of detail of information available about the system being modeled; this

was illustrated by the discussion of the spring-mass system.

Subsequently, we developed a mathematical model of general applicability to the study of

secure computer systems, abstracting the elements of the model from our own and others'

notions of what the real system may be like.

We then applied the model, under a given set of assumptions, to the question of security

(compromise).  We gave a rule by which, for the assumptions given, the system would

remain secure in its operation; we also gave a proof of the last assertion.

Notice this important point:  our proof did not depend on the choice of elements for the

set  A  (access attributes).  This means that any set is acceptable and any access matrix is

acceptable.  Stated differently, we have shown that under the given assumptions security

of the system is  independent of the access matrix and the rules (if  any) by which the

access matrix is  changed.

Thus, we have modeled the system in such generality that we are not in a position to

investigate its viability.  For, clearly, one may arbitrarily choose rules of access matrix

control while retaining the property of security.  Therefore, one may choose the rules in
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such a way as to prevent users from ever acquiring access to information; the severe

danger is that a set of rules might be chosen which has  an intuitive sense of correctness

but which may  lead the system into undesirable states.

We shall address ourselves in this section to some of the specific questions to be

considered if a viable system is to be developed from our model.

PROBLEM  REFORMULATION

One may change the system problem to be attacked in a variety of ways.  In general one

states a set of requirements and a set of criteria to be met.  The requirements and criteria

may be very general or very specific:  the more specific these are, the more specific can be

the behavior predicted by modeling and the greater the probability that a viable system

will result from the design into which the model is transformed.

In our situation we can immediately recognize two areas of problem reformulation.  First,

one may change the requirements of the type we assumed in Section III.  We shall, in fact,

do so and derive a result from the changed assumptions.  Second, one may impose criteria

to be met by the access control mechanisms of the system.  We shall investigate this

briefly in the next two sections.

We change the assumptions we made in Section III, as shown in Table IV.
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Table IV

Modified Requirements

REQUIREMENTS

RAISE? LOWER?

SUBJECT CLEARANCE YES NO

OBJECT CLASSIFICATION NO YES

INCREASE? DECREASE?

SUBJECT NEEDS-TO-KNOW YES NO

OBJECT NEEDS-TO-KNOW NO YES

Basic  Security  Theorem  (revised):
Let W  ⊆  R × D × V × V  be any relation such that (Ri,Dj,(b*,M*,f*),(b,M,f))  ∈   W

implies

(i) f*1(S)  ≥  f1(S)  for each  S  ∈   S,

f*2(O)  ≤  f2(O)  for each O  ∈   O,

f*3(S)  ⊇   f3(S)  for each S  ∈   S,

f*4(O)  ⊆   f4(O)  for each O  ∈   O, and

(ii) every (S,O)  ∈   b* –  b  satisfies  SC rel f*.

Then  Σ(R,D,W,z0)  is a secure system for any secure state z0.

Proof:  Let z0 = (b,M,f) be secure.  Pick (x,y,z)  ∈   Σ(R,D,W,z) and write

zt = (b (t), M (t), f (t))  for each  t  ∈   Τ.

z1  is a secure state.  (x1,y1,z1,z0)  ∈   W.  By (ii), every  (S,O) in b(1) – b  satisfies SC

rel f(1).   Since  z  is secure, every  (S,O)  in  b  satisfies SC rel f; that is,  f1(S)  ≥  f2(O)
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and  f3(S)  ⊇  f4(O) .  By (i), we have, for each  (S,O)  in  b(1)  –  (b(1)  –  b),  f1
(1)(S)  ≥

f1(S)  ≥  f2(O)  ≥  f2
(1) (O)  and  f3

(1) (S) ⊇  f3 (S)  ⊇  f4 (O)  ⊇  f4
(1)(O), so that each

(S,O)  in b(1)  satisfies  SC  rel  f(1). That is,  z1  is secure.

If  zt-1  is secure, then  zt  is secure.

(xt,yt,zt,zt-1)  ∈  W.   By (ii), every  (S,O) in b(t) – b(t-l)  satisfies  SC  rel f(t).  Since

zt-1  is secure, every (S,O)  in b(t-l) satisfies SC rel f(t-l); that is,  f1
(t-1)(S)  ≥  f2

(t-1)(O)

and  f3
(t-1)(S)   ⊇   f4

(t-1)(O).  By (i), we have for each  (S,O)  in b(t)  –  (b(t)  –  b(t-l)),

f1
(t)(S)  ≥  f1(t-1)(S)  ≥  f2(t-1)(O)  ≥  f2

(t) (O)  and

f3
(t)(S)  ⊇   f3(t-1)(S)  ⊇   f4(t-1)(O)  ⊇   f4

(t)(O), so that each  (S,O)  in b(t)  satisfies

SC  rel  f(1). That is,  zt  is secure.

By  induction,  z  is secure so that (x,y,z) is a secure appearance.   (x,y,z)  being
arbitrary, ∑(R,D,W,z0)  is secure.

The  revised theorem just proved indicates that dynamic

(i) raising of subject clearance;

(ii) lowering of object classification;

(iii) increasing of subject needs-to-know; and

(iv) decreasing of object needs-to-know

can be provided in the system without security compromise.  Again, however, the proof

is independent of what is happening in the access matrix, the subject of the next section.

We note here that our investigations into the security of a system in the cases that a

subject's clearance may be lowered dynamically, an object's classification may be

increased dynamically, and similar changes in needs-to-know are as yet undocumented.

Those investigations lead us to believe that severe questions of the viability of the

resulting system are raised by the options listed above.

ACCESS CONTROL

In a real sense, the relation  W  we have specified provides a rule of access control which
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governs security as we have defined it. We have also provided in the model for access

control to govern protection, privilege, and mode of use through the access matrix we have

defined.

Two problems are immediately evident.  First, unless the system guarantees the

inviolability of rule  W  our security theorem does not apply.  Second, unless we deal

with some specific criteria and rules relating to the access matrix, we can say little if

anything concerning viability of the system; again, if access matrix controls are provided,

the system must be structured so as to guarantee their inviolability else our modeling will

not apply.

Let us consider a situation in which the interaction of security control and access control
can cause a compromise.  Specifically, if a subject Si is allowed "append" access to an

object Ok, a file or segment, then guaranteeing inviolability of rule  W  means the system

must prevent  Si  from appending information of a classification higher than that of  Ok:

otherwise we risk having (Sj,Ok) in b, where Sj has "read" access to Ok, while

f1(Sj)  <  f2(Ok)  resulting in compromise. This example shows that inadequate access

controls (over the "append" access of Si to Ok) can cause a violation of W  (by raising

f2(Ok),  contrary to our assumption up to this point), resulting in a compromise state.

DATA BASE SHARING

We have assumed a shared data base for the multi-user system but have stated no

requirements nor criteria for "correct" sharing.  The concluding remark of the preceding

section suggests that we must do so.  At least, we must specifically prevent the situation

we discussed; alternatively, one might choose to change our definition of compromise.

Unfortunately, a change in the definition of compromise in this situation would be in the

direction of weakening rule  W  with the result that the model will reflect the real problem

less accurately than we have succeeded in doing thus far.

In addition, one may impose additional criteria relating to sharing of the data base, such as

prevention of deadlock, preservation of integrity of the information, and prevention of
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permanent blocking — such criteria have to do with reliability of the system and therefore

relate to its usefulness.

SUMMARY AND REFERENCES

In this chapter we have discussed the generalities of changing the definition of the

problem to be solved.  We showed an example by stating and proving the security

theorem for a new set of assumptions relating to changes in classifications and needs-to-

know.

We pointed out briefly that the system which one might develop from our model would

have to guarantee inviolability of the rule of operation  W.  Techniques have been

documented which use hardware, software, or combinations of these for protection of

privileged algorithms; references [1,2,3,4,5,6,8,9,10] are relevant.

We discussed briefly the question of a shared data base.  For a discussion of problems and

a solution see [7].

In summary, we have attempted to show in this section that the model can be used to

answer questions posed with a given set of requirements and criteria and to indicate that a

central problem in the design of a secure system will be to certify that the access controls

are inviolable.
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