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Abstract: This paper describes and demonstrates modifications of the harmony search method to support multimodal structural optimi-
zation. Several researchers have recognized the potential of population-based optimization methods, such as genetic algorithms and particle
swarm optimization, to support multimodal optimization, that is, generating a range of good alternative solutions, rather than a single best
solution. Among these population-based methods is the harmony search method, which has been demonstrated to be efficient and effective in
many unimodal structural optimization problems. Toward the goal of making the harmony search method more effective in multimodal
optimization, this paper describes a new strategy for generating solutions called close-harmony improvisation, and a new strategy for replac-
ing solutions called local replacement. Examples demonstrate the effect of the two strategies used individually and in tandem. The discussion
compares results with conventional harmony search and finds that close-harmony improvisation consistently improves the fitness of the
search results, although the effect is sometimes mild, whereas local replacement is quite effective in increasing the diversity of the search
result. DOI: 10.1061/(ASCE)ST.1943-541X.0000378. © 2011 American Society of Civil Engineers.
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Introduction

Population-based metaheuristic optimization methods have been
widely applied in structural optimization. These methods include
genetic algorithms, particle swarm optimization, ant colony optimi-
zation, harmony search method, and several hybrids of these and
other methods. Hasancebi et al. (2009) gives a thorough overview
and comparison of such methods. Some researchers have noted that
population-based methods have the potential to generate a range
of viable alternatives, which can be more useful than developing
a single best solution (Balling 2006; von Buelow 2007; Winslow
2008). One advantage is that fitness functions typically cannot
account for considerations that are difficult to quantify, such as
aesthetics and constructability. An optimization algorithm that
produces alternatives allows a human designer to assess those
alternatives with respect to external considerations. Optimization
methods that identify multiple locally optimal solutions are called
multimodal.

Balling et al. (2006) and von Buelow (2007) have developed
multimodal genetic algorithms for structural optimization, which
have proven effective but computationally intensive. Examples
in the Balling et al. study used a population of 1,000 designs
computed over 500 generations, meaning 500,000 model evalua-
tions. Examples in the von Buelow (2007) study used a multi-
level arrangement with a population of 20 topologies, each with
50 corresponding geometries, resulting in a total population of
1,000 that is run for hundreds of cycles, implying hundreds of
thousands of model evaluations, similar to Balling et al. (2006).

There is a question as to whether useful multimodal optimization
can be achieved more efficiently.

Harmony search is a promising possibility because it produces
one design with each cycle rather than an entire new population and
therefore offers the potential to produce well-developed solutions
with fewer model evaluations. This paper presents modifications to
the harmony search method that address this question. These mod-
ifications concern two steps of the search process: the strategy for
generating new solutions and the strategy for replacing existing
solutions with new solutions. These modifications have been ap-
plied to multimodal optimization of a two-dimensional (2D) truss
and a three-dimensional (3D) arch structure by using decision var-
iables that include member cross sections (size), geometric proper-
ties of the framework (shape), and the presence or absence of
members (topology). The discussion begins with a formal state-
ment of the representation of the optimization problem followed
by a review of the conventional harmony search method. This paper
then describes the modifications incorporated in the proposed
method followed by examples and conclusions.

Representation of the Optimization Problem

A particular design configuration is called a solution, and is rep-
resented as a vector x of decision variables xi. The objective is to
find a solution that minimizes a fitness function f ðxÞ subject to
multiple constraints

gjðxÞ ≤ 0 ð1Þ
A variable xi may vary continuously (as for geometric dimen-

sions), may represent discrete symbolic values from a predefined
list (as for standard structural cross sections), or may be boolean
(as for member removal in defining structural topology). For a con-
tinuous variable xi, the value must lie between a specified upper
bound (xUi ) and lower bound (xLi ).

Concerning constraints, there are three types: stiffness, strength,
and stability. Stiffness constraints are formulated as shown in
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Eq. (2), in which Δj = displacement in a specified coordinate
direction of a node j, and Δallow = allowable displacement in that
coordinate direction

gjðxÞ ¼
Δj

Δallow
� 1 ð2Þ

There are multiple options for defining strength constraints. One
of the examples discussed subsequently uses a simple allowable
stress criterion for truss elements, and in that case, the strength con-
straints are defined as shown in Eq. (3), in which σk is the stress in
element k, and σallow is the allowable stress

gkðxÞ ¼
σk

σallow
� 1 ð3Þ

Other examples use strength criteria defined in the AISC LRFD
steel design code (AISC 2001). These criteria are expressed in
interaction formulas for axial force and bending moment for frame
elements as shown in Eqs. (4) and (5)

Pu

ϕPn
≥ 0:2 : gbk ¼

Pu

ϕPn
þ 8
9

�
Mux

ϕbMnx
þ Muy

ϕbMny

�
� 1 ð4Þ

Pu

ϕPn
< 0:2 : gbk ¼

Pu

2ϕPn
þ
�

Mux

ϕbMnx
þ Muy

ϕbMny

�
� 1 ð5Þ

in which Pu, Mux, and Muy = maximum axial force, strong axis
bending moment, and weak axis bending moment as a result of
factored loads; Pn, Mnx, and Mny = nominal capacity of a member
in axial force, strong axis bending moment, and weak axis bending
moment; ϕ and ϕb = capacity reduction factors for axial force and
bending; and gbk = value of the bending and axial constraint for
element k.

In addition, for AISC hollow structural sections (HSS), the
strength constraints consider shear and torsion as shown in Eq. (6)

gtk ¼
�

Pu

ϕPn
þ Mux

ϕbMnx
þ Muy

ϕbMny

�
þ
�

Vu

ϕvVn
þ Tu

ϕTTn

�
2
� 1 ð6Þ

in which Vu and Tu = maximum shear and torsion in a member as
a result of factored loads, Vn and Tn = nominal capacity of the
member in shear and torsion, and ϕv and ϕT = capacity reduction
factors for shear and torsion. The value of the constraint for element
k, gk , is taken as the larger of gbk and gtk .

The degree of constraint violation for a solution is set as the
maximum value among all positive constraints rather than as a
sum of the positive constraints because in problems with topologi-
cal variables, some solutions have more members than others.
Comparing the sum of the constraint values could be misleading
in that case. In addition to stiffness constraints for joints and
strength constraints for elements, the method can also account for
stability constraints for the entire structure with an option to per-
form a large displacement analysis. If the analysis fails to converge,
the solution is considered unstable and assigned a large constraint
value (1:0 × 106 for the examples in this paper).

Review of the Harmony Search Method

The harmony search method was introduced by Geem et al. (2001)
and is based on a musical metaphor where variable values are
viewed as musical pitches: a solution vector is analogous to a
musical chord. That method will be called conventional harmony
search. The following is a brief summary of its essential steps:

Step 1: Initialization. Produce a collection of solutions with
random values. The collection is called harmony memory,
and the number of solutions is the harmony memory size (μ).
Step 2: Improvisation. Improvise (i.e., generate) a new solu-
tion derived from the solutions in harmony memory by using a
stochastic procedure described subsequently.
Step 3: Replacement. If the fitness of the new solution is better
than that of the worst solution in harmony memory, replace
that worst solution with the new solution. This replacement
strategy will be called global replacement (GR).
Step 4: Termination check. If the termination criterion is not
satisfied, go to step 2. The termination criterion is typically a
specified maximum number of cycles.

Step 2 generates a new solution by using three control param-
eters to guide the stochastic process: the harmony memory consid-
eration rate (η), the pitch adjustment rate (ρ), and the bandwidth
(β). The η and ρ parameters represent probabilities. Improvising
a new solution involves the following steps: First, initialize a sol-
ution vector by assigning each variable a random value. For each
variable, with a probability defined by η, set the value to that of a
randomly chosen solution in harmony memory. If the value was
chosen from harmony memory, then with a probability defined
by ρ, modify the value by a small change, called a pitch adjustment.
For continuous variables, the pitch adjustment is calculated as a
uniform random number on the interval ½�1; 1� times the band-
width parameter β, which is typically a small percentage of the
possible range. For discrete variables, the pitch adjustment typically
means a few discrete steps. The examples in this study used a band-
width of 1% of the variable range for continuous variables, and one
discrete step for discrete variables.

The success of the harmony search is typically sensitive to the
values of the control parameters (Degertekin 2008). Researchers
have proposed a range of adaptive strategies to set the η and ρ fac-
tors dynamically (Hasancebi et al. 2010; Mahdavi et al. 2007;
Wang and Huang 2010). The examples in this study use the adap-
tive method proposed by Hasancebi et al. (2010). In this method, at
the beginning of design cycle i, the algorithm computes values of ηi
and ρi on the basis of past values by using Eqs. (7) and (8)

ηi ¼
�
1þ 1� �η

�η
e�λNð0;1Þ

��1
ð7Þ

ρi ¼
�
1þ 1� �ρ

�ρ
e�λNð0;1Þ

��1
ð8Þ

in which �η and �ρ = average values over all solutions in harmony
memory, Nð0; 1Þ = normally distributed random number with an
expected value of 0 and a variance of 1, and λ = parameter set to
0.35 for the examples in this study. Hasancebi et al. (2010) provide
more detail.

Concerning modifications of harmony search to support multi-
modal optimization, Gao et al. (2009) have proposed a notable
method. When a new solution is improvised, that method deter-
mines the solutions in harmony memory within a specified dis-
tance, in which distance is some scalar measure of similarity;
these solutions are said to be in the vicinity. If the fitness of the
new solution is higher than the average fitness of solutions in its
vicinity, and if the number of solutions in the vicinity is fewer than a
user-specified limit, then the new solution may replace the worst
solution in harmony memory. This method has characteristics in
common with the replacement method proposed in this study, but
there are significant differences explained subsequently.
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Modifications for Multimodal Optimization

One characteristic of conventional harmony search is the tendency
of the solutions to converge toward a common configuration as
cycles progress. This characteristic supports unimodal optimization
but not multimodal optimization. In terms of the music metaphor,
multimodal optimization seeks to produce not a single harmonious
chord, but rather a diverse collection of chords, as in an interesting
piece of music. The proposed modifications to support multimodal
optimization concern the improvisation and replacement steps of
the algorithm, with the replacement step relying on an approach
to constraint handling that avoids penalty functions. The modifica-
tions also rely on methods to measure similarity among solutions.
The discussion begins with constraint handling and measures of
similarity and then moves to the replacement and improvisation
steps.

Constraint Handling

Published implementations of harmony search have commonly
handled constraints by using penalty functions (Degertekin 2008;
Hasancebi et al. 2010; Geem et al. 2001), however there are several
well-known drawbacks to that approach (Deb 2000). Simple pen-
alty methods typically require trial and error experimentation to set
parameters effectively. More complex adaptive penalty methods
are well suited to some types of problems, but not others. The
method presented in this paper handles constraints by adapting
the method proposed by Deb (2000) for genetic algorithms. This
method uses the following three rules for comparing solutions:
1. Any feasible solution is preferred to any infeasible solution;
2. Among two infeasible solutions, the one having the smaller

constraint violation is preferred; and
3. Among two feasible solutions, the one having the better objec-

tive function value is preferred.
When applied to harmony search, these rules create two modes

of operation called culling and refinement. Culling concerns the
application of rules 1 and 2 in guiding the replacement of infeasible
solutions in harmony memory. Refinement concerns the applica-
tion of rules 1 and 3 in guiding the replacement of feasible solutions
in harmony memory. This method of constraint handling is similar
to one proposed by Gao et al. (2009) for the harmony search
method, although Gao does not reference the study by Deb (2000).

Measure of Similarity: Normalized Euclidean Distance

The methods proposed in this study rely on normalized Euclidean
distance as a measure of similarity. The following discussion re-
views this concept and explains its application in guiding the
search. The definition of normalized Euclidean distance can begin
with the definition of normalized value for a variable. For a solution
x, the normalized value vi of the variable xi is defined by Eq. (9):

vi ¼
xi � xLi
xUi � xLi

ð9Þ

The concept of normalized value leads to normalized difference.
Considering two solutions, xðjÞ and xðkÞ, the normalized difference

dðjkÞi between the corresponding variables xðjÞi and xðkÞi is defined as
the difference between their normalized values:

dðjkÞi ¼ vðjÞi � vðkÞi ¼ xðjÞi � xðkÞi

xUi � xLi
ð10Þ

For boolean variables, the normalized difference between two
variables equals 0 when the values are equal, and 1 when the values
are different. For section variables, which are assigned discrete

symbolic values from a predefined list, the organization is similar
but somewhat more complex. In addition to specifying the list
of sections, the user also specifies the primary section property
(e.g., area or strong axis moment of inertia) for the variable. The
numeric values of that section property serve as the basis for com-
puting normalized difference per Eq. (10). Typically, the cross
section area would be the primary section property for an axial force
member, whereas strong axis moment of inertia or plastic modulus
would be for a section used primarily in bending (Hasancebi
et al. 2010).

By using the normalized difference, the normalized Euclidean
distance DðjkÞ between solutions xðjÞ and xðkÞ is defined as follows
(Deb 2000):

DðjkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nd

XNd

i¼1

�
dðjkÞi

�
2

vuut ð11Þ

in which Nd = number of design variables in a solution. For the sake
of brevity, the following discussion uses the term distance to mean
normalized Euclidean distance unless otherwise noted.

By using these concepts, design space can be viewed as a unit
hypercube with a dimension equal to the number of decision var-
iables. One particularly useful concept is the maximum distance
between two feasible solutions, which will be called the feasible
diameter (Df ) of the design space. The new replacement method
proposed in this paper, described subsequently, employs this con-
cept. The algorithm maintains a lower-bound estimate of Df at
design cycle i, denoted DðiÞ

f , by computing the distance between
each newly generated feasible solution and all previously deter-
mined feasible solutions. The DðiÞ

f parameter is set to the maximum
distance found to that point in the search and so increases mono-
tonically as the search progresses.

Replacement Method: Local Replacement

To counter the tendency of conventional harmony search to con-
verge, this paper proposes a new replacement method called local
replacement. When a new solution is improvised, local replacement
first considers the set of feasible solutions, the distance of which
from that solution is less than a specified distance Rn, called the
neighborhood radius; the solutions in harmony memory within that
radius are called close neighbors of the new solution; the number
of close neighbors Nn is called the close neighbor count (Sn). If
Nn < Sn, the neighborhood is called uncrowded; if Nn ¼ Sn, the
neighborhood is called crowded; and if Nn > Sn, the neighborhood
is called overcrowded. When the neighborhood of a new feasible
solution is uncrowded, the new solution is compared with and may
replace the worst solution in harmony memory. If the neighborhood
is crowded or overcrowded, then the set of close neighbors is sorted
by fitness and the new solution is compared with the close neighbor
with fitness rank equal to Sn. If the fitness of the new solution
is better than the fitness of the Sn-ranked neighbor, then the new
solution replaces that neighbor. When the neighborhood is over-
crowded, then the algorithm employs thinning, in which all solu-
tions with fitness worse than that of the Sn-ranked close neighbor
are reset, meaning that the constraint violation is set to a large value
(1:0 × 105 for examples in this study) that marks the solution as
infeasible. After a solution has been reset, it will be replaced in
later design cycles by any feasible solution or by any infeasible
solution with a lower constraint violation. Local replacement inhib-
its convergence by limiting the number of feasible solutions within
a neighborhood. When the algorithm finds a neighborhood that is
crowded or overcrowded, it puts only better solutions there, not
more solutions.
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Local replacement depends on two parameters, Sn and Rn. The
Sn parameter needs to be a fraction of the harmony memory size, μ.
The examples in this study set Sn to one-fifth of the harmony
memory size, by using μ ¼ 75 and Sn ¼ 15. Similarly, Rn needs
to be a fraction of the feasible diameter Df ; if Rn is greater than
or equal to Df , then all feasible solutions could fall in one neigh-
borhood, which would defeat the purpose. The method presented in
this paper sets Rn as a fraction of the current lower-bound estimate
of the feasible diameter DðiÞ

f , which means that Rn is adaptive; its
value depends on the particular problem and the stage of the search.
The examples in this study used Rn ¼ 0:25DðiÞ

f .
As discussed previously, local replacement shares characteris-

tics with a replacement strategy proposed by Gao et al. (2009). That
strategy is similar in that it considers the fitness of nearby neigh-
bors, but it is different in that it replaces the worst solution in
harmony memory, irrespective of whether that worst solution is
nearby. Local replacement, in contrast, replaces the Sn-ranked close
neighbor when the neighborhood is crowded or overcrowded.
Replacing the worst solution in harmony memory is one of the
clearest common characteristics of the many published versions of
the harmony search method, so local replacement represents a sig-
nificant departure from established practice.

Improvisation Method: Close Harmony

As described previously, when conventional harmony search im-
provises a variable value for a new solution it may use a value from
a randomly selected solution. When a value is selected from an
existing solution, all solutions in harmony memory have an equal
probability of being chosen as the source of the variable value. This
approach will be called full-harmony improvisation and has been
proven to work well for unimodal optimization. To better support
multimodal optimization, the proposed method uses a new im-
provisation method called close-harmony improvisation. In close-
harmony improvisation, the algorithm selects a subset of closely
related solutions. There are several potential approaches to imple-
menting this concept. The one pursued in this study is to improvise
a new solution by first randomly selecting a solution from harmony
memory and then gathering all solutions with a distance from that
solution that is less than or equal to a specified distance. The set
of solutions is called the close-harmony set, and the specified dis-
tance is called the close-harmony radius (Rh). The new solution is
improvised from the close-harmony set in the same way that full-
harmony improvisation generates a solution from the entire har-
mony memory. In order to make Rh adaptive, in this study it is
set equal to the average distance among all solutions in harmony
memory.

Concerning control parameters in close-harmony improvisa-
tion, the algorithm modifies the adaptive strategy proposed by
Hasancebi et al. (2010), shown in Eqs. (7) and (8). In that strategy,
the terms �η and �ρ are averaged over all the solutions in harmony
memory. In close-harmony improvisation, the modified version in-
stead averages those values over the members of the close-harmony
set. Hasancebi et al. (2010) notes that the adaptive strategy allows
for different values of the control parameters during different
phases of the search. The intent of the modification for close har-
mony is to also allow different values of the control parameters in
different regions of design space.

Accounting for Topology

The proposed algorithm supports topologic optimization by using
methods proposed by Balling et al. (2006) for optimization with
a genetic algorithm. In particular, the specification of a member

includes an option to mark it as removable. Member removal is
modeled by giving the member an extremely low stiffness (the ex-
amples in this study use 1:0 × 10�6 times the specified stiffness),
which models the effect of removing the member but maintains
numeric stability in structural analysis. Structures that are kinemat-
ically unstable produce extremely large violations of stiffness con-
straints. In addition, when the maximum strength constraint value
for a member is less than a specified threshold (the examples in this
paper use 1:0 × 10�4), that member is marked as spurious and the
algorithm removes it. Balling et al. (2006) provides further detail.

When a member is marked as removable, the algorithm adds
a boolean decision variable to the solution, called a topologic
variable, in which a value of true means the member is removed.
In harmony search, topologic variables introduce a new stochastic
parameter, the member removal rate (α), which specifies the prob-
ability that a member will be removed when a model is generated
randomly. For example, when α ¼ 0:2, there is a 20% chance that
a randomly generated topologic variable will take the value of true.
In addition, topologic variables are not considered by the pitch
adjustment mechanism in improvisation, as that mechanism is in-
tended to introduce small changes to a variable’s value, and boolean
variables do not allow small changes.

Examples

Overview

The following discussion applies the two new strategies described
previously to two examples: a widely published planar truss prob-
lem and a three-dimensional arch bridge. Each example considers
four search methods on the basis of the possible combinations of
two improvisation strategies, full harmony (FH) and close harmony
(CH), and two replacement strategies, global replacement (GR),
and local replacement (LR). The four methods are denoted as
follows: FH-GR, CH-GR, FH-LR, and CH-LR. Note that FH-GR
corresponds to conventional harmony search. The primary method
of interest is CH-LR, which employs both of the new strategies.
The CH-GR and FH-LR methods are included to better demon-
strate the effect of each new strategy acting alone. For each of the
four methods, the study performed 10 optimization runs of 4,000
design cycles each.

Concerning control parameters, only a few researchers have
offered guidance on setting values. Lee et al. (2005) recommended
η between 0.7 and 0.95, ρ between 0.2 and 0.5, and μ between 10
and 50 on the basis of empirical observation. Degertekin (2008)
noted that optimization results are sensitive to the parameter set-
tings and recommended η ¼ 0:8, ρ ¼ 0:4, and μ in the range of
50 to 100. Wang and Huang (2010), in a study of optimization test
functions, recommended large values of η, an adaptive strategy for
ρ, and μ ¼ 50. For harmony memory size, μ ¼ 50 appears to have
the strongest consensus for unimodal optimization. The examples
presented here all use μ ¼ 75 on the basis of reasoning that
multimodal optimization should use a larger population to develop
a diverse range of solutions. Concerning η and ρ, as discussed
previously, all examples use the adaptive strategy proposed by
Hasancebi et al. (2010), with initial values of η ¼ 0:8 and ρ ¼ 0:2.

10-Bar Truss Example

Problem Definition
The 10-bar, 6-node truss shown in Fig. 1 has been widely published
in the optimization literature. The great majority of studies have
considered only member-size optimization, but some have also
considered structural shape and topology in addition to member
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sizes. The following discussion presents the problem as studied by
Balling et al. (2006) and Rajan (1995).

In this example, L ¼ 360 in (9.14 m) and F ¼ 100 kip
(445 kN). Stress was constrained to be less than 25 ksi (172 MPa).
Vertical displacements at joints 2 and 4 were constrained to less
than 2 in. (5.08 cm). The modulus of elasticity was 10,000 ksi
(68.9 GPa). The material density was 0:1728 kip=ft3 (27:1 kN=m3).
Each of the 10 members had a section selected from 32 discrete
cross-sectional areas given by Rajan (1995). Shape is optimized
by allowing the vertical coordinates of joints 1, 3, and 5 to range
from D ¼ 180 in. (4.57 m) to D ¼ 1;000 in. (25.4 m). Topology
is optimized by allowing all members to be removed except the
member between joints 6 and 4 and the member between joints
4 and 2. The member removal rate was α ¼ 0:2. For the eight
members that were removable, the corresponding section variables
were not considered in the calculation of distance between solu-
tions, as the value of such a section variable has no bearing on
a solution when its corresponding member is removed. Note that
the topologic variables for removable members are included in the
computation of distance.

Although Rajan (1995) and Balling et al. (2006) both studied
this problem, there are important differences in their analyses.
Rajan used population size P ¼ 40 and number of generations
G ¼ 96, for a total of 3,840 model evaluations. In contrast, Balling
et al. used P ¼ 1; 000, and G ¼ 500, for a total of 500,000 model
evaluations. Part of the difference in results is from different objec-
tives. The Rajan study was unimodal, whereas the Balling et al.
study was multimodal. The study presented here was configured for
computational demand on a scale similar to the Rajan study, while
attempting to achieve most of the multimodal benefits achieved by
the Balling et al. study.

Results
The goal of multimodal optimization is to produce a diverse range
of high-quality alternatives. For this example, one measure of suc-
cess toward that goal is the number of different topologies gener-
ated and the fitness of the best instance of each. Fig. 2 shows
three of the topologies typically generated during an optimization
run; the line thickness in the figures is drawn proportional to the
cross-section area of the truss member. Fitness results are reported
in normalized form as fitness divided by the best result found
by conventional harmony search (FH-GR), which was 3.06 kips
(13.6 kN). Table 1 summarizes the normalized fitnesses for the
best topologies found by each strategy; all values in the table
were averaged over 10 runs.

Consider first the effect of close-harmony improvisation. Com-
paring the methods that use global replacement (FH-GR and
CH-GR), close harmony found more feasible topologies than full
harmony (an average of 8.2 compared with 5.4) and improved fit-
ness for each of the top six topologies. Comparing the methods that

used local replacement (FH-LR and CH-LR), the same trend held;
close-harmony again produced more feasible topologies (an aver-
age of 9.9 compared with 6.7), and the fitness of each of the top six
topologies was better than those found by full harmony. For both
replacement strategies, close harmony produced better results than
full harmony in both the fitness and the diversity.

The effects of local replacement compared with global replace-
ment are less clearly positive. For both the full-harmony and close-
harmony cases, local replacement found lower quality results for
the first-ranked topology than did global replacement: 4.57% worse
for the case of full harmony and 2.30% worse for the case of close
harmony. For the second-ranked topology, however, local replace-
ment found slightly better quality (2.08%) for the full-harmony
case and essentially equal quality for the close-harmony case. For
the third- through sixth-ranked topologies, local replacement found
successively better quality, by more than 20% for the 5th and
6th ranked topologies.

Note that the study of Balling et al. (2006) found 26 feasible
topologies and a best weight of 2.736 kips (12.17 kN) for a solution
with topology C from Fig. 2. Those results are significantly better
than the results produced by any of the strategies here, in which the
best average over 10 runs is 3.04 kips (13.5 kN). The Balling et al.
study, however, used 500,000 model evaluations per run, rather
than the 4,075 used in this study (75 evaluations on initialization
of harmony memory plus 4,000 design cycles), so it is reasonable
to expect a better result. The study of Rajan (1995) found a best
weight of 3.254 (14.47 kN) kips by using 3,840 model evaluations.
The CH-GR method, mentioned previously, which is most effective
for unimodal optimization, produced a best result in its 10 runs of
2.90 kips (12.9 kN) and a worst result of 3.16 kips (14.1 kN);
these are better results than those of the Rajan study with a com-
parable number of model evaluations. The CH-LR method, which
is most effective for multimodal optimization, produced a best
result in 10 runs of 2.91 (12.9 kN) kips and a worst result of

Fig. 1. The 10-bar truss example Fig. 2. Examples of selected topologies commonly found in the 10-bar
truss problem; the member thickness is drawn proportional to the
cross-sectional area

Table 1. Average Number of Feasible Topologies and Average Best
Normalized Fitness for Top Six Topologies

Avg. number
of feasible
topologies

Normalized fitness

Method
1st
topo.

2nd
topo.

3rd
topo.

4th
topo.

5th
topo.

6th
topo.

FH-GR 5.4 1.00 1.12 1.25 1.50 1.89 2.38

FH-LR 6.7 1.05 1.10 1.18 1.26 1.57 2.00

CH-GR 8.2 0.993 1.09 1.18 1.37 1.64 1.89

CH-LR 9.9 1.02 1.08 1.16 1.22 1.29 1.45
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3.25 kips (14.5 kN); this is better on average than the result of the
Rajan study and essentially equal in the worst case.

Measuring Diversity of Solutions
One measure of diversity is the average distance between all pairs
of solutions. Fig. 3 plots the history of this average distance for
each of the four methods. The FH-GR curve clearly shows the ten-
dency of conventional harmony search to converge. The CH-GR
curve shows that close-harmony improvisation provides higher
average distance during the early cycles but eventually declines
to be nearly equal to the FH-GR curve. Local replacement has a
more significant impact on average distance. The FH-LR curve fol-
lows the FH-GR curve closely until about cycle 500, at which point
it diverges to a trajectory in which the average distance is increasing
rather than decreasing. The divergence occurs at this point because
the local replacement mechanism is not invoked until the algorithm
encounters a crowded or overcrowded neighborhood, which for
this problem does not occur until about the 500th design cycle.
Up until that point, FH-LR and FH-GR have the same behavior,
as the curves reflect. The CH-LR and CH-GR curves show a similar
pattern.

Another useful perspective on diversity is to consider the sol-
utions in harmony memory as a graph of nodes and links, in which
each solution is a node and the link lengths correspond to the
distance between solutions. Such a graph will be called a design-
distance graph. In general, it is not mathematically possible to
generate a two-dimensional drawing of such a graph in which all

the links are drawn to an accurate scaling of distance, but it is pos-
sible to generate an approximate drawing that minimizes the error
in link lengths. Fig. 4 shows two such design–distance graphs: one
for a selected run of the FH-GR strategy in part A; and one for a
selected run of the CH-LR strategy in part B. The graphs were gen-
erated by using the neato software package in the Graphviz suite
from AT&T Research Labs (AT&T Research 2010). The width
of the square graph area corresponds to a distance of 1.0, and the
diameter of each circle is proportional to the fitness of the corre-
sponding solution. Part A of the figure graphically illustrates the
tendency of the FH-GR method to converge. Part B illustrates
the effect of local replacement in maintaining diversity among sol-
utions by limiting the number of solutions in any neighborhood.

Basket-Handle Arch Bridge

Overview
To apply the application to a more realistic example, the following
discussion considers the arch structure shown in Fig. 5, a simplified
model of a pedestrian bridge with the arches in a basket-handle
configuration. The span L ¼ 1;200 in (30.5 m); the width W ¼
96 in (2.44 m). Cross sections are selected either from a list of
32 AISC HSS round sections or a list of 75 AISC HSS rectangular
tube sections. The lists are compiled by selecting the lightest sec-
tion for each shape variety. The model includes one geometric
decision variable, the span-to-depth ratio of the arch (γ), which
ranges from 4 to 12, plus the five section variables indicated in
Fig. 5 as follows:

Rib: The main arch rib, a round HSS section.
Brace: Members that connect the two arches near the crown,
a round HSS section.
Hanger: The suspenders which transfer load from the deck to
the arch, a round HSS section.
Tie beam: The longitudinal beams at the deck level, a rectan-
gular HSS section.
Transverse beam: The beams which span between the tie, a
rectangular HSS section.

Concerning structural modeling, the structure uses a pin sup-
port for each arch at one end of the bridge and roller supports at
the other. The hanger members are pin-ended, and the connections
between the arches and the tie beams are also pinned. Concerning
materials, the rectangular tube sections use a yield stress of 46 ksi
(317 MPa), and the round sections use a yield stress of 42 ksi
(290 MPa). Dead load includes the self weight of the model plus
a superimposed dead load on the deck area of 0:08 kip=ft2

(3.83 kPa). The live load is 0:85 k=ft2 (4.07 kPa) distributed on
the deck area. Superimposed dead and live loads are applied to
the nodes of each transverse beam, at the beam ends, and a midspan
node according to tributary area. The vertical deflection of the
nodes of the tie beam are limited to L=1;000 for live load only. The
analysis includes four load combinations: two to check stiffness
and two to check strength and stability. The combinations for stiff-
ness include one with full live load and one with live load on half
the span; these combinations use linear analysis. The combinations
for strength and stability include one with dead plus live and an-
other with dead plus live load on half the span; these combinations
are factored according to the AISC LRFD code (AISC 2001) and
use large displacement analysis. Note that these load combinations
are unrealistically simple, in particular because they do not account
for lateral loads. Concerning stability criteria, the algorithm checks
each member to account for member-level compression stability
according to the AISC LRFD requirements discussed previously
by using an effective length factor K ¼ 1:0 and an unsupported

Fig. 3. Average distance among solutions for the four search strategies

Fig. 4. Design-distance graphs for two search methods; each dot
represents a solution, and the length of the link between two dots
is approximately proportional to the normalized Euclidean distance
between the solutions; the CH-LR method produces many longer links,
reflecting greater diversity among solutions
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length equal to the member length. System-level stability was
considered as described in the discussion of stability constraints.

Results
The motivation for this example is that it is multimodal. Optimi-
zation runs reveal two distinct solution types that result in good
fitness. Examples of these types are shown in Figs. 6 and 7,
and will be called the slender-arch type and the stiff-arch type.
Although the stiff-arch solution type is clearly suboptimal in
fitness, it could be preferred when aesthetics are considered. The
challenge for a multimodal optimization algorithm is to find good
solutions of both types so that the designer can be aware of the
range of viable options.

Table 2 summarizes the results of the four methods. The re-
ported fitnesses are normalized with respect to the average of the
best result of the FH-GR method, 17.2 kips (76.5 kN). For each
of the four methods, the table lists the average, best, and worst
normalized fitness for the best solution found over the 10 runs.
In addition, the table includes notes concerning whether the solu-
tions at the conclusion of each run included only the stiff-rib type,
only the slender-rib type, or included both types. The results show
that global replacement has a strong tendency to converge. Both
the FH-GR and CH-GR methods converged to the locally optimal
stiff-rib solution type in five of the 10 runs, and FH-GR converged
to the slender-rib solution type in four of the 10 runs. In contrast,
the methods employing local replacement, FH-LR and CH-LR,
concluded with both solution types in all of their respective runs.
For this problem, it is clear that local replacement is superior to
global replacement, not only for multimodal optimization but also
for unimodal optimization.

Concerning the question of full-harmony versus close-harmony
improvisation, the effect of close-harmony improvisation is mildly
positive. The CH-GR method produces an average 1.40% percent
better than FH-GR, and the CH-LR method produces an average
1.53% better than FH-LR. Because the global replacement strategy
is inferior for this problem, the comparison of the full-harmony and
close-harmony strategies focuses on the methods that employ local
replacement. In the preceding discussion, Table 2 compared the
fitness of the best solution found by each method; in considering
multimodal optimization, it is also important to examine the fitness
of locally optimal alternative solutions. Table 3 compares the best
slender-rib solutions and the best stiff-rib solutions for the FH-LR

Fig. 5. Configuration of basket-handle bridge example

Fig. 6. A representative example of the slender-rib solution type

Fig. 7. A representative example of the stiff-rib solution type

Table 2. Normalized Fitness Results for Ten Runs of Each Method

Normalized fitness

NotesMethod Average Best Worst

FH-GR 1.00 0.927 1.03 5 runs concluded all stiff-rib type.

1 run concluded all slender-rib type.

4 runs concluded with both types.

FH-LR 0.978 0.953 1.03 All runs found both solution types.

CH-GR 0.986 0.939 1.03 5 runs concluded all stiff-rib type.

4 runs concluded all slender-rib type.

1 run concluded with both types.

CH-LR 0.963 0.907 0.996 All runs found both solution types.
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and CH-LR methods. The fitness values are normalized with re-
spect to the average of the best result of the FH-LR method,
16.8 kips (74.8 kN). The results show that for the slender-rib sol-
ution, CH-LR produces better average, best, and worst results
among the 10 runs. For the stiff-rib solution type, CH-LR produces
average, best, and worst results about 1% better than FH-LR, a
modest but consistent difference.

Conclusions and Future Work

The examples demonstrate the clear tendency of the global replace-
ment strategy to converge toward one solution. In the 10-bar truss
example, this tendency led to the positive result that the FH-GR and
CH-GR strategies produced the best global optima for that prob-
lem. In the arch-bridge example, this tendency led to the negative
result that both the CH-GR and FH-GR strategies converged to a
locally optimal solution type in five of their 10 runs. In addition,
even in the cases where global replacement led to a superior global
optimum, local replacement always resulted in better locally opti-
mal alternatives, making it a better strategy for multimodal optimi-
zation. The arch-bridge problem also demonstrated that local
replacement can be an effective strategy for unimodal optimization,
by avoiding convergence to a locally optimal solution. Concerning
close-harmony improvisation, in both examples, close-harmony
improvisation produced better fitness than full-harmony improvi-
sation, although the improvements were modest in some cases.
In addition, close harmony significantly improved diversity of sol-
utions for the truss problem. In summary, local replacement has a
profound effect on improving the diversity of the search result,
whereas close-harmony improvisation has a consistent but some-
times mild effect on improving fitness.

Concerning future research, further study is needed on the
question of adaptive methods for determining the close-harmony
radius and the neighborhood radius. The examples presented here
set the close-harmony radius equal to the average of the distance
among solutions, but there is clearly opportunity to develop
more sophisticated methods. For the neighborhood radius, the ex-
amples presented used 0.25 times the known feasible diameter DðiÞ

f .

This method is partially adaptive in that it is calculated on the basis
of DðiÞ

f but also depends on the 0.25 factor, which is rather arbitrary.
In addition to investigating such adaptive methods, future work will
test these strategies on a wider range of structural optimization
problems.
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Table 3. Comparison of Normalized Fitness for Each Solution Type

Method

Normalized fitness

Slender-rib solution Stiff-rib solution

Avg. Best Worst Avg. Best Worst

FH-LR 1.00 0.974 1.05 1.06 1.05 1.08

CH-LR 0.985 0.927 1.02 1.05 1.04 1.07
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