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Abstract— We introduce a low-complexity distributed slotted
MAC protocol that can support all feasible arrival rates in a wire-
less backhaul network (WBN). For arbitrary wireless networks,
such a maximum throughput protocol has been notoriously
hard to realize because even if global topology information is
available, the problem of computing the optimal link transmission
set at each slot is NP-complete. For the logical tree structures
induced by WBN traffic matrices, we first introduce a centralized
algorithm that solves the optimal scheduling problem in a number
of steps at most linear in the number of nodes in the network.
This is achieved by discovering and exploiting a novel set of
graph-theoretical properties of WBN contention graph. Guided
by the centralized algorithm, we design a distributed protocol
where, at the beginning of each slot, nodes coordinate and
incrementally compute the optimal link transmission set. We
then introduce an algorithm to compute the minimum number
of steps to complete this computation, thus minimizing the per-
slot overhead. Using both analysis and simulations, we show that
in practice our protocol yields low overhead when implemented
over existing wireless technologies and significantly outperforms
existing suboptimal distributed slotted scheduling mechanisms.

I. INTRODUCTION

Wireless Backhaul Networks (WBNs) forego costly wired
infrastructure via wirelessly multi-hopping to and from high-
speed wired Internet entry points. We consider WBN archi-
tectures that use scheduled Medium Access Control (MAC)
protocols such as IEEE 802.16. Scheduled access is attractive
for backbone systems like WBNs because it not only avoids
well-known starvation/unfairness phenomena of contention-
based access (e.g., 802.11) but can also provide throughput
and delay guarantees.

In a scheduled access MAC protocol, all nodes are time-
slot synchronized and communication occurs in a sequence of
frames. Each frame consists of a scheduling phase followed
by a data phase, both of fixed duration and spanning several
slots. During the scheduling phase, nodes must determine a set
of conflict-free links that will transmit during the data phase.

We introduce a distributed scheduled access MAC protocol
that can support all feasible arrival rates in a WBN. Such
a maximum throughput protocol has been notoriously chal-
lenging to realize in wireless networks of arbitrary topologies
for two reasons. First, selecting the optimal link transmission
set can be a problem of extremely high complexity even
if centralized information is available: in a seminal paper
[14], Tassiulas and Ephremides established that selecting a
conflict-free set of links having a maximum sum of queue

sizes at each scheduling phase is a maximum throughput
policy. Unfortunately, this requires solving an instance of the
maximum weight independent set (MWIS) problem before
each frame, which is NP-complete in general. Second, the
duration of the scheduling phase should be long enough so
that nodes can exchange all the messages needed in order
to solve any instance of the optimal scheduling problem,
thereby requiring a deterministic upper bound on the number
of message exchange steps. This bound should also be as small
as possible since it determines the scheduling phase duration,
a fixed per-frame overhead during the protocol operation.

In this paper, we exploit the WBN tree structure and solve
the MWIS scheduling problem in a number of steps at most
linear in the number of nodes in the network.1 We first prove
that the WBN contention graph possesses a recursive reduction
property, where at each reduction step it is always possible to
find a link where all its interfering neighbors interfere with
each other. We utilize this property to devise a two-phase
centralized scheduling algorithm that computes a MWIS by
sequentially executing at each link exactly once in each phase,
regardless of the MWIS problem instance at each frame. Based
on the centralized algorithm, we design a distributed protocol
in which nodes converge to a MWIS using at most two-
hop message exchanges. Despite being linear in terms of the
number of links in the network, the bound on the number of the
protocol messages exchanged can still be large in practice. We
provide an algorithm that solves the offline design optimization
problem of determining the minimum number of protocol
message-exchange rounds required to compute any instance
of the MWIS problem for a given WBN topology.

Finally, we compare our protocol to a protocol that com-
putes a maximal link transmission set at each frame. For
arbitrary wireless networks, maximal scheduling has been
shown to guarantee at least one-eighth of all feasible arrival
rates [7], [11], [16] and can be implemented using distributed
protocols with a linear bound on the scheduling phase [2].
We show that maximal scheduling remains suboptimal in the
case of WBNs, and our protocol yields 0.02% to 75% of
the overhead of existing maximal protocols, depending on the
degree and depth of the WBN topology structure.

The rest of the paper is organized as follows: In Section

1The tree structure is logical (for forwarding and routing) vs. physical
(interference).



II, we review the state of the art in distributed scheduled
access protocols for both arbitrary and tree-structured wireless
networks. In Section III, we define the WBN interference
model and the maximum throughput scheduling policy. In
Section IV, we introduce the graph-theoretical properties of the
WBN contention graph which lead to a centralized algorithm
that solves the MWIS problem in linear time. We introduce
the distributed protocol that realizes the centralized algorithm
in Section V. We solve the overhead minimization problem in
Section VI and evaluate the protocol performance in Section
VII. Section VIII concludes.

II. RELATED WORK

The problem of providing throughput guarantees through
distributed scheduling has received significant attention lately.
Related work can be classified with respect to the topology
structure considered under the following link interference
constraints: either multi-channel systems where only primary
interference exists (due to the half-duplex radio constraint), or
single-channel systems where both primary interference and
secondary interference (due to hidden terminals) exist.

Wireless networks of arbitrary topologies: Given the
difficulty of the MWIS problem, previous work has focused
on evaluating the performance of suboptimal approaches based
on maximal scheduling. On one hand, it was shown in [7]
and [16] that maximal scheduling in multi-channel networks
can achieve at least 50% of the maximum throughput region
for single-hop flows and multi-hop flows respectively. On the
other hand, [11] showed that this guarantee decreases to 1/8
in single-channel systems.

In addition, while existing maximal scheduling algorithms
describe required message exchanges and acknowledge the
need for node coordination, they are not fully-specified
medium access protocols. The specifications of such protocols
determine the overhead induced by the scheduling phase and
play an important role on overall performance. Recently,
Modiano et al. introduced a distributed randomized schedul-
ing algorithm for maximum throughput scheduling in multi-
channel networks [8], however, the coordination protocol to
achieve the required objective has not been specified there.

Tree-structured wireless networks: Tree-structured net-
works have been addressed using techniques that exploit their
special structure. In [10], a distributed scheduled access pro-
tocol is designed on top of the 802.11 PHY and demonstrated
better performance than that achieved by 802.11 DCF. The
work in [15] focuses on packet scheduling for delay guarantees
using techniques from wireline networks. Both [10] and [15]
use a two-frame period where half the links are activated
in each frame. This technique utilizes only two link activa-
tion sets, hence cannot realize all feasible arrival rates. The
work in [12], designs an asynchronous distributed maximum
throughput protocol for multi-channel systems. In [1] it is also
shown that multi-channel systems allow distributed heuristics
based on Longest Queue First (LQF) to be throughput optimal.
However, in such heuristics, the number of steps required to
compute the optimal schedule at each frame is only given
in terms of average complexity. In contrast to [1] and [12],
our protocol achieves maximum throughput for a broader set

of interference constraints of WBNs by directly solving the
MWIS problem in an upper-bounded number of steps, at most
linear in the number of nodes in the WBN.

III. SYSTEM MODEL

We represent the WBN by a Network Graph (NG) G(N,L)
where each edge (u, v) ∈ L signifies that nodes u and v of the
set N are within range and have established a logical wireless
link. Each node has a single radio transceiver and cannot
transmit and receive simultaneously. This primary interference
constraint prohibits two links sharing a node from being sched-
uled simultaneously. Secondary interference constraints arise
between links that do not share a common node but at least one
of their corresponding transmitter or receiver nodes are within
range. This definition of secondary interference constraint
refers to a communication model where each successful link
transmission requires a successful DATA/ACK exchange. Sec-
ondary interference can be mitigated by preassigning different
channels (orthogonal frequency bands or spread spectrum
codes) to all nodes within a two-hop neighborhood. We will
call WBNs with primary interference only, multi-channel and
WBNs with both primary and secondary interference, single
channel.

Nodes in the WBN communicate using a logical tree
structure overlaid on top of the physical topology defined by
the nodes’ wireless proximities. This structure can be explicitly
enforced by planning. It can also be implicitly induced by
cycle-free routing protocols. In this case, the WBN topology
changes at the time scale of the routing updates which would
span several frames. For simplicity we consider the WBN
topology to be static and that secondary interference among
the different branches of the WBN tree has been suppressed.
This holds for multi-channel WBNs, where only primary
interference exists. In the single channel case, this can be
achieved by directional antennas [10] or by embedding the
WBN tree in a hexagonal structure [3].

A link transmission set is a set of links that can transmit
simultaneously subject to the WBN scheduling constraints.
Since a multi-channel system has primary interference con-
straints only, any matching in the NG is a link transmission
set (e.g., the link set {a, e, k, l, o, r} in the NG of Fig. 1).
In a single-channel system, a link transmission set must also
satisfy the secondary interference constraints (e.g., the link set
{a, h, k, l} in the NG of Fig. 1).

The WBN operates with a synchronized frame structure. At
each frame, the scheduling phase decides a link transmission
set to transmit during the entire data transmission phase. Each
link transmission set is represented by a 0-1, |L|×1 vector in
which each unit entry at index l corresponds to link l scheduled
for transmission. We denote the set of all link transmission sets
in the WBN by I(G).

Each link l is represented by a queue maintained at its
transmitter node. Let Al(k) and Ql(k) be the number of
arrivals at l and the number of packets already in the queue of
l at the beginning of time slot k, respectively. Let the arrival
rate at link l be λl. An arrival rate vector λ = {λl, l ∈ L}
is feasible if there exists a collection of link transmission sets



Ij ∈ I(G) and numbers αj ∈ [0, 1) such that:

λl ≤
M∑

j=1

αjIj , and,

M∑

j=1

αj < 1 (1)

The set of all feasible rates forms the feasibility region denoted
by Λ. A scheduling algorithm is a maximum throughput
algorithm (or stable algorithm) if for every feasible set of
arrival rates, the average queue size of each link l does not
grow to infinity, that is, lim supm E[Ql(k)] < ∞ for every
link l in the WBN.

In [14], Tassiulas and Ephremides considered a synchro-
nized slotted system where each frame consists of a single
slot. They established that selecting at each slot k a link
transmission set with maximum sum of queue sizes is a
maximum throughput algorithm [14]:

I∗(k) = arg max
I∈I(G)

QT (k)I (2)

The result was shown to hold for arbitrary topologies, arbitrary
link scheduling constraints and i.i.d arrival processes. It has
also been extended to more general classes of arrival processes,
and multi-slot frames [13]. Despite its universality, this algo-
rithm assumes that the scheduling procedure is made by a
centralized controller where instant information is perfectly
disseminated to and from the controller. Furthermore, to
determine the optimal link transmission set requires solving a
Maximum Weight Independent Set (MWIS) problem at each
frame, which is NP-complete in general. In multi-channel
systems, the problem reduces to a Maximum Weighted Match-
ing (MWM) computation, which is of polynomial complexity
(O(N3)). To the best of our knowledge, no known distributed
algorithm exists to exactly solve either MWIS or MWM, for
any topology structure.

We proceed to show that the WBN structure allows to
overcome the above difficulties and solve the MWIS problem
distributively, in linear time, for both multi-channel and single
channel systems. Due to space limitations, we refer the reader
to [6] for all proofs.

IV. LINEAR COMPLEXITY SCHEDULING

In this section, we introduce a set of graph-theoretical
properties particular to the link interference relationships of the
WBN structure. Using these properties, we devise a centralized
algorithm that can provably solve the MWIS problem in linear
time.

A. Graph-theoretical properties of WBNs

The link interference relationships in the WBN can be
captured by a Contention Graph (CG) G(V,E). Each vertex
v in the CG corresponds to a link in the NG of the WBN
and each edge in the CG signifies that the two links in NG
corresponding to the two endpoint vertices of the edge are
interfering. The CG allows us to abstract the specific link inter-
ference constraints and treat multi-channel and single-channel
systems in a unified manner. For example, the CG in Fig. 1(b)
corresponds to a multi-channel WBN. An independent set in a
CG corresponds to a link transmission set in its corresponding
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Fig. 1. (a) A Network Graph (NG) (b) corresponding multi-channel
Contention Graph (CG). Each CG vertex corresponds to a link in NG. The
integer below each CG vertex id denotes the sequence label assigned by the
enumeration algorithm (Section IV-B). The integer pairs above each CG vertex
id denote the optimal enumeration pair (SEQ1, SEQ2) assigned by the
overhead minimization algorithm (Section VI).

NG. Thus, solving the MWIS problem on a CG, where the
weight of each vertex is equal to the corresponding link’s
queue backlog at the beginning of a frame, leads to maximum
throughput guarantees.

The graph-theoretical properties of both single-channel and
multi-channel WBN CG are summarized by the following
lemma:

WBN Clique Lemma: Given a WBN CG, there is always
at least one vertex v such that v and all its neighbors form a
clique. Moreover, if v is removed from the CG, the resulting
subgraph possesses the same property.

The Clique Lemma reveals a fundamental recursive poperty
of a WBN CG and can be proven by showing that it holds for
CG vertices corresponding to links connected to leaf nodes
in the corresponding NG. 2 For example, when the NG in
Fig. 1(a) corresponds to a multi-channel system, leaf link p
interferes only with links o and m and the vertices of all three
links in the corresponding multi-channel CG (Fig. 1(b)) form
a clique. Similarly, when the NG in Fig. 1(a) corresponds to
a single-channel system, leaf link p interferes only with links
o,m, l, n and it can be shown that all links form a clique in
the corresponding single-channel CG.

The Clique Lemma is crucial because it determines the cor-
rect order by which certain weight-exchange operations should
be executed on a per-CG-vertex basis to provably compute the
MWIS. More specifically, our scheduling algorithm requires
a fixed enumeration sequence, pre-computed offline by an
enumeration algorithm. The enumeration algorithm utilizes the

2Although it is possible to prove that the Clique Lemma also holds for
non-leaf links, any link satisfying the Lemma suffices to solve the MWIS
problem.



Clique Lemma to assign a unique label to each CG vertex.
This pre-computed enumeration sequence of labels determines
the correct order in which the CG vertices should exchange
their weights. The sequence is used by the MWIS algorithm
to compute a MWIS at each instance of the MWIS problem.
Next, we describe the enumeration and MWIS algorithms in
detail.

B. Enumeration Algorithm

Given the WBN CG, the enumeration algorithm picks any
CG vertex satisfying the Clique Lemma and assigns to it label
1. Next, this vertex is eliminated and the same vertex selection-
elimination step repeats for the reduced CGs by assigning
labels in increasing order, until all vertices of the CG have
been considered. The specific steps of the algorithm are as
follows.

Enumeration Algorithm: A graph ICG is initialized to
graph CG. At every iteration i, and as long as ICG is not
empty: (i) select an arbitrary vertex v in ICG such that v and
all its neighbors constitute a clique (guaranteed to exist by the
Clique Lemma), (ii) label v by the number i, and (iii) delete
v and all its adjacent edges from ICG.

Fig. 1 depicts the output of the enumeration algorithm in the
multi-channel WBN CG. The sequence label of each vertex is
shown below its id.

C. MWIS algorithm

The centralized MWIS scheduling algorithm takes as input a
weighted CG and returns an independent set. It consists of the
Weight-Exchange Phase and the Independent Set Construction
Phase summarized below and presented in detail in [6]:

Weight Exchange Phase: Initialize a vertex set called
TRAV to be empty. Also, initialize the residual weight RW of
each vertex to its weight. Based on the enumeration sequence,
traverse each vertex of the CG in increasing label order. For
each vertex v traversed, if its RW is positive: (i) add it to the
TRAV set, (ii) decrease its RW to zero, and (iii) decrease the
RW of its neighbors in CG by v’s RW; otherwise skip to the
next vertex.

Independent Set Construction Phase: Initialize a vertex
set I to be empty. Traverse every vertex v in TRAV in
decreasing label order. Vertex v will be included in set I as
long as I does not contain any neighbor of v.

Table I illustrates the Weight Exchange Phase and Table II
illustrates the following Independent-set Construction Phase
for an initial set of weights in the CG of Fig. 1(b).

MWIS Theorem: The independent set I computed by the
end of the Independent-set Construction Phase of the MWIS
scheduling algorithm is a MWIS.

Proof: We start by noting that, in a vertex-integer-
weighted graph, the weight of any independent set is upper
bounded by the cardinality of any clique cover3 of this graph

3In a vertex-integer-weighted graph G, a set C of cliques is called a clique
cover if every vertex of G is an element of at least as many elements of C
as its weight is.

[9]. Given this fact, we prove that it is possible to find a clique
cover in the CG whose cardinality is a tight lower bound to
the weight of set I . Then, the cardinality of the clique cover
equals the weight of I , and I is a MWIS.

The clique cover is constructed as follows. By the Clique
Lemma, the set consisting of any vertex v and all its neighbors
that have been enumerated after v form a clique. We denote
such a clique by Cv . Now, construct a clique set C containing
RWv copies of each clique Cv of vertex v in the TRAV set
that was built during the Weight Exchange phase - RWv is the
residual weight of v when visited during the Weight Exchange
phase.

Clique set C is a clique cover because (i) every vertex v
in the TRAV set is covered by exactly as many cliques in
C as its initial weight Wv (by the construction of C) and (ii)
every vertex v′ not it the TRAV set is covered by at least as
many cliques as its initial weight (otherwise, v′ would have
been part of the TRAV set).

We now proceed to show by contradiction that the weight of
I is tightly lower-bounded by the cardinality of C. Suppose I
has strictly less weight than the cardinality of C. Then either
(1) one vertex in I is covered by fewer cliques of C than its
weight or (2) there are cliques in C which do not include any
vertex in I .

Claim (1) does not hold because I is a subset of TRAV
and, by construction, any vertex v in TRAV is covered by
exactly as many cliques in C as v’s weight RWv .

Claim (2) does not hold because every clique in C covers
exactly one vertex of I . This can be shown as follows. Since
CG vertices are traversed in reverse when building I , every
clique Cv in C contains at least one of I’s vertices: if none of
v’s adjacent TRAV neighbors with higher sequence number
is in I (i.e, v has not been eliminated yet from I by the time
it is traversed), then v itself would have been part of I . In
addition, no clique can contain more than one vertex of an
independent set.

Based on the above, C is a clique cover and a lower-bound
to the weight of I . Thus, I is a MWIS.

Both phases of the MWIS scheduling algorithm require a
number of iterations equal to the number of nodes in CG,
which is in turn equal to the number of links L in the WBN.
Since the WBN topology is a tree, the scheduling algorithm
requires a total of 2(N-1) steps, which is linear in the number
of nodes in the network.

V. DISTRIBUTED PROTOCOL

The MWIS algorithm of the previous section is centralized
and executed on the vertices of the WBN CG. We now use this
algorithm to design a slotted distributed protocol executed by
the nodes in the WBN that still solves the MWIS problem
in linear time. In the following, we focus on the protocol
description for the multi-channel case. The single channel case
follows similar steps and is described in detail in [6].

The frame structure of the distributed protocol is reported in
Fig. 2. Each data transmission phase can accommodate several
packets for each sender and is preceded by a scheduling phase.
Each scheduling phase is made up of two sub-phases: the
Weight-exchange phase and the Independent-set Construction



TABLE I

WEIGHT EXCHANGE PHASE FOR CG OF FIG. 1(B) FOR SOME INITIAL WEIGHTS. CG VERTICES SHOWN AND VISITED IN INCREASING LABEL ORDER.

Inc-label-sorted CG vertices and their residual weights RW TRAV
Iteration (=label #) a h k q o c i j r p b f n d m e l g

Initial weights 1 2 1 2 3 2 2 3 2 4 4 2 3 5 2 6 4 6
1 0 1 3 4 a
2 0 0 4 a, h
3 0 2 1 a, h, k
... ...
18 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 -1 a, h, k, q, o, c, j, p, b, n, d, e, l

Data Packet 1 ……. Data Packet N

Data Transmission Phase

Weight Phase MWIS Phase

Round 1 ……. Round MaxSEQ1 Round 1 ……. Round MaxSEQ2

Scheduling Phase

Fig. 2. The distributed protocol frame structure.

phase denoted by Weight-phase and MWIS-phase respectively.
The Weight-phase and MWIS-phase consist of several syn-
chronized rounds each. Each link in the WBN NG is mapped
to a particular Weight-phase round and to a particular MWIS-
phase round.

During each Weight-phase round, the end nodes of the
link mapped to this round broadcast the residual weight of
this link (if positive) and both these nodes and the nodes
within their range update the residual weights of their adjacent
links. During each MWIS-phase round, the end nodes of the
link mapped to this round broadcast their independent set
membership status (if the link has not so far been excluded
from the scheduling phase) and the nodes within their range
update the independent set membership status of their adjacent
links.

The size of each round, the number of rounds per phase,
and the information about which round each node should start
performing the protocol actions are all constant and predeter-
mined. This information is computed offline based on a variant
of the enumeration procedure discussed in Section IV. Thus,
the scheduling phase yields constant overhead per frame. We
discuss overhead minimization in Section VI and next present
the scheduling phase mechanism.

TABLE II

INDEPENDENT-SET CONSTRUCTION PHASE AFTER WEIGHT-EXCHANGE

PHASE OF TABLE I. MWIS IS A SUBSET OF THE TRAV SET. VERTICES IN

TRAV SET SHOWN AND VISITED IN DECREASING LABEL ORDER.

MWIS membership: 1: ∈ MWIS, -1: �∈MWIS
Iter l e d n b p j c o q k h a
1 1
2 1 -1 -1
3 1 -1
...
6 1 1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1

A. Offline Parallel Enumeration Procedure

The scheduling phase is based on two enumeration se-
quences SEQ1 and SEQ2 generated offline for the Weight-
phase and the MWIS-phase respectively. We call the procedure
that generates SEQ1 and SEQ2 the Parallel Enumeration
procedure. This procedure assigns labels sequentially to CG
vertices based on the order each link is allowed to exchange
its weight and MWIS status information. The end nodes of
two links that have the same SEQ1 (SEQ2) enumeration label
are allowed to transmit a weight-exchange (independent set
membership) control packet during the same Weight-phase
(MWIS-phase) round. The details of how to enumerate the
CG vertices in an optimal way is discussed in Section VI.

Fig. 1(b) shows the (SEQ1,SEQ2) enumeration pair above
each link’s id shown in the multi-channel CG. The details of
the distributed protocol scheduling phase (Weight-Phase and
MWIS-Phase) are given next.

B. Online Scheduling Phase

We demonstrate the protocol operation for a multi-channel
implementation based on a transmitter-oriented channel as-
signment scheme. Each node has been assigned a channel for
transmissions and channels have been assigned such that there
is no secondary interference. When a node is scheduled to
receive from a particular transmitter during a frame, it switches
to the channel of that transmitter. For this purpose, nodes
maintain a local schedule for the weight-phase and for the
MWIS-phase that indicates when and which link they should
transmit for or receive information from.

1) Weight-Phase: Each node maintains a per-link residual
weight table where each residual weight entry is initialized
to be equal to the link’s queue size at the beginning of the
scheduling phase.

At the beginning of each weight-phase round i, both end
nodes of every i-enumerated link l broadcast l’s residual
weight RW on their channels if RW is positive. Then, both
endpoint nodes of link l and all nodes within their range
decrement the residual weight of their adjacent links by RW .
As a result, the end nodes of every link whose CG vertex is
adjacent to link l’s CG vertex and has a higher SEQ1 label
will decrement the residual weight of that link. Moreover, a
link for which the residual weight becomes zero or negative is
eliminated by its end nodes from the rest of the weight-phase
and the MWIS-phase that will follow. Consequently, the end
nodes of such a link will not broadcast its weight and that link



will not be scheduled to transmit during the data transmission
phase.

Fig. 3(a) shows an example of the Weight-phase during the
first Weight-phase round based on the enumeration sequence
shown in Fig. 1(b). Broadcasting nodes are dotted in black,
and their weight transmissions are represented by arrows. The
black endpoint nodes of links a and o (both having a SEQ1
label equal to 1) are the broadcasting nodes and both black
and white nodes update their residual weight information for
their adjacent links b, c, d,m, and p. Note that the root node
of the tree and the leaf nodes do not need to broadcast the
weight of their links, and hence they are preconfigured not to
do so.

b
a

c
d

ge

h i
j
f

k l

m n

rqo p

b
a

c
d

ge

h i
j
f

k l

m n

rqo p

a b

Fig. 3. Weight-phase and MWIS-phase in multi-channel WBN based on the
(SEQ1, SEQ2) enumeration sequences shown in Fig. 1(b)

2) MWIS-Phase: This phase consists of sequential local
broadcasts of the links’ MWIS-membership status in the
conflict-free data transmission set. The objective of this phase
is to incrementally obtain the conflict-free transmission set
using the TRAV set calculated in the Weight-phase.

At the beginning of each round i, both end nodes of every i-
enumerated link l broadcast a MWIS-membership packet only
if link l has been included in the MWIS transmission set during
the weight phase: l broadcasted its positive RW value during
the Weight-phase, and l is not a neighbor of any link which has
been already scheduled for data transmission. By the end of
each MWIS-phase round, both end nodes of each broadcasting
link l and each node that could sense the MWIS-membership
transmission of the end nodes of l, eliminate each link whose
CG vertex is adjacent to the CG vertex of link l.

Fig. 3(b) shows an example of the MWIS-phase during the
first MWIS-phase round based on the enumeration shown in
Fig. 1(b): the end nodes of link g dotted in black are the
broadcasting nodes, and both set of nodes dotted in black
and white eliminate links d, e, f , and l from the MWIS
transmission set.

VI. OVERHEAD MINIMIZATION

The overhead of the distributed protocol is dictated by the
duration required to complete the MWIS computation for the
scheduling phase. This consists of control slot durations, τ1

and τ2, and the number of control slots, SEQ1 and SEQ2, in
the Weight-phase and MWIS-phase respectively:

Overhead = SEQ1 × τ1 + SEQ2 × τ2 (3)

The durations τ1 and τ2 depend on the physical layer. We
present minimum slot durations for an 802.16 PHY in [6].
The number of control slots SEQ1 and SEQ2 is at most linear
in the number of nodes in the network. This bound is topology-
independent and holds even in networks with no spatial reuse
(e.g., star topology), however it can still yield high overhead
as the network size increases.

In this section, we design algorithms that exploit spatial
reuse to minimize the overhead given by Eq. (3) by mini-
mizing both SEQ1 and SEQ2 for a given a WBN topology.
In contrast to the distributed protocol, these algorithms are
centralized and executed at the much slower time scale of
topology changes in the WBN. The algorithms determine the
minimum constant per-frame overhead as well as the optimal
transmission schedule during the control phase of the protocol.

The determination of the optimal schedule cannot be ad-
dressed by existing graph coloring approaches because, in
addition to spatial constraints, there exist time constraints
dictated by the protocol operation. Our solution toward finding
the minimum overhead exploits the problem structure and is
based on a set of optimal recursive procedures. Guided by our
optimal algorithms, we also derive closed form expressions
for the case of regular D-ary trees of depth L to gain insights
on the amount of overhead as a function of the breadth and
depth of the WBN.

A. Problem definition: Enumeration Constraints

The minimum overhead computation problem has both time
and spatial enumeration constraints. Time constraints dictate
which CG vertices can be enumerated first (hence, have lower
labels), whereas spatial constraints ensure that no control
messages will collide during the scheduling phase.
SEQ1 Time Constraints: As discussed in the centralized
algorithm, any CG vertex is constrained to satisfy the Clique
Lemma when it is SEQ1-enumerated.
SEQ1 Spatial Constraints: In order to avoid collisions
between weight-exchange packets, two links that are within 2
hops in multi-channel networks and 4 hops in single-channel
networks cannot be enumerated by the same SEQ1 label
number. Under both access constraints, this is equivalent to the
restriction that CG vertices that are within a shortest distance
of 3 cannot be enumerated by the same label number. For
example, in the network shown in Fig. 1(a) under multi-
channel access constraints, link g cannot be enumerated by
the label number of any other link in the network.
SEQ2 Time Constraints: Regarding SEQ2 enumeration
constraints, CG vertices are supposed to inform their
neighbors of their independent transmission set membership
status in reverse order with respect to the SEQ1 sequence.
Hence, for each pair (v, v′) of adjacent CG vertices:

if SEQ1v < SEQ1v′ ⇒ SEQ2v < SEQ2v′ (4)



SEQ2 Spatial Constraints: The MWIS phase allows more
spatial reuse than the Weight-phase because it only re-
quires nodes to sense MWIS-membership transmissions in-
stead of decoding weight-exchange packets. Sensing the cor-
rect MWIS-membership transmissions requires links subject to
primary interference in a multi-channel NG (subject to both
primary and secondary interference in a single-channel NG)
not to be enumerated by the same SEQ2 label number. Under
both single-channel and multi-channel access constraints, this
is equivalent to the restriction that adjacent CG vertices cannot
be enumerated by the same label.

B. Solution: Minimum-Enumeration Algorithms

We now present algorithms to compute the minimum
number of Weight-phase rounds (SEQ1) and MWIS-phase
rounds (SEQ2) for any multi-channel WBN. The single-
channel case is treated in a similar fashion and can be found
in [6]. We first introduce the Highest-label Vertex Theorem,
crucial in solving the problem and deriving the algorithms’
optimality proofs:

Highest-label Vertex Theorem: In the minimum-overhead
solution, both highest SEQ1 and SEQ2 enumeration labels
are occupied by a single and the same CG vertex.

The Highest-label Vertex Theorem provides a starting point
toward the solution. Since the highest label for both SEQ1 and
SEQ2 will be occupied by a single vertex in the CG, it suffices
to consider a problem instance that minimizes SEQ1 and SEQ2
starting from a vertex. The minimum-overhead solution is the
minimum solution over all problem instances.

We associate the problem instance of each WBN node
R with a candidate tree TR rooted at R. We then design
algorithms that operate on each candidate tree TR to compute
the minimum SEQ1R and minimum SEQ2R, thus minimiz-
ing Eq. (3) for the node R problem instance. Given TR,
our algorithms utilize the Highest-label Vertex Theorem to
constrain the set of links in TR assuming the root R has
the highest label. Focusing on a WBN node R, we proceed
to describe the methodology that solves its corresponding
problem instance using three algorithms: the Candidate Tree
Construction Algorithm, Min-SEQ1 computation algorithm,
Min-SEQ2 computation algorithm. The optimality proofs can
be found in [6].

1) Candidate Tree Construction Algorithm: For any non-
leaf node R in the network, a candidate tree TR is constructed
as follows:

• The candidate tree is initialized to be the same as the NG
except that R is designated to be the root of the candidate
tree.

• Every node in the candidate tree is assigned a weight
equal to the number of children is has, and every link
in the network graph is represented by the corresponding
non-leaf parent vertex in the candidate tree.

Fig. 4 illustrates the construction of the candidate tree TR

for the WBN in Fig. 1(a), when the root R is the node adjacent
to links l and g.
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Fig. 4. The Tl,g candidate tree construction for the network shown in
Fig. 1(a) when the root is the node adjacent to links l and g.

2) Min-SEQ1 computation algorithm: This algorithm finds
the minimum SEQ1 size assuming the highest index link is
adjacent to R, the root of the candidate tree. The intuition
behind the algorithm is to find the minimum SEQ1 size for the
smallest subtrees of the candidate tree and then to recursively
find the minimum SEQ1 size for each combination of subtrees
as they join to build larger subtrees at the higher levels,
culminating at the root of the candidate tree. The algorithm
proceeds as follows.

Delete the leaf vertices of the candidate tree, denote the
lowest level number of the remaining candidate tree TR by
L, and associate with each vertex v in the tree two distinct-
element sets: Selfv and Childrenv . Selfv contains the SEQ1
numbers of all the links adjacent to node v in the NG
while Childrenv contains the SEQ1 numbers of all the links
corresponding to every child vertex v′ of v in the remaining
candidate tree. The contents of these two sets vary during the
minimum-size computation procedure as they are adjusted to
satisfy the SEQ1 spatial and time constraints. At the end of the
computation procedure, the maximum-valued element in the
Self set of R is equal to the desired minimum value SEQ1R.
This holds assuming that the root vertex R in the candidate tree
represents the link with the highest SEQ1 label, according to
the Highest-label Vertex Theorem. We now proceed to describe
the steps needed to arrive to the Self set of the root R of TR.

For each vertex v of the candidate tree, denote its children
vertices and weight by Chv and Wv respectively. For every
vertex v in the remaining subtree, initialize the Selfv set to
{1, 2, 3 . . . Wv} and the Childrenv set to be empty.

Starting from level L − 1 of the tree recursively up to the
root level 0, traverse each vertex on the same level of the
tree. For each such vertex v, traverse each child vertex v′ of
v and increase Selfv′ label values such that the SEQ1 Spatial
Constraints are satisfied. More specifically, before increasing
the label values of a Selfv′ set, the SEQ1 enumeration labels
for the links represented by the subtree rooted at v′ were
optimized for maximal spatial reuse during previous iterations;
however, this was done assuming the labels in the Selfv′ are
independent from the labels in the Self sets of the other
children of v (which is generally not the case according to
the SEQ1 Spatial Constraints discussed earlier). Therefore, to
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maintain SEQ1-size optimality, increasing the label values in
a Selfv′ set should be done while preserving as much spatial
reuse as possible. To achieve this objective, we increase the
value of every element member in Selfv′ by the minimum
value such that the spatial constraint is not violated:

Selfv′ ∩ (Childrenv′∪Selfv′′) = φ

∀ (v′, v′′) ∈ Chv × Chv (5)

The Children set of v is now made equal to the union of all
the Self sets of its children. The Self set of v is then made
equal to the minimum lexicographic set of Wv elements such
that both spatial and time constraints are captured as follows:

Selfv ∩ (Childrenv ∪ Selfv′′ ∪ Childrenv′′) = φ, (6)

and

∀ vertex v′ ∈ Chv : ∃x ∈ Selfv such that

SEQ1x > SEQ1x′ ∀x′ ∈ Selfv′ (7)

Fig. 5 shows the final Self and Children sets of each vertex in
the candidate tree of Fig. 4.

3) Min-SEQ2 Computation Algorithm: This algorithm re-
cursively finds the minimum SEQ2 size using similar intuition
as that for finding the minimum SEQ1 size: start by finding the
minimum SEQ2 size for the smallest subtrees of a candidate
tree and then recursively find the minimum SEQ2 size for each
combination of subtrees as they join to build larger subtrees
at the higher level of the candidate tree. The algorithm is as
follows:

Denote the lowest level number of the candidate tree TR by
L and the set of the children of each vertex v by Chv . Sort the
children of each vertex v by their weight in decreasing order
and denote the position of each child v′ of v in the sorted list
by orderv′ . Starting from level L − 1 of the tree recursively
up to level 0, traverse all the tree vertices at the same level.
For every vertex v traversed, update its weight wv as follows:

wv = max(wv′ + orderv′)∀v′ ∈ Chv

The final weight of the root vertex is the minimum SEQ2
Parallel Enumeration index for R. Fig. 5 shows the final weight
of each vertex in the candidate tree of Fig. 4 after execution
of the Min-SEQ2 Computation Algorithm.

C. Minimum overhead of D-ary Trees of depth L

Following the steps of the minimum overhead computation
algorithms in the previous section, it is possible to derive
simple closed form expressions for the special case of D-
ary trees of depth L where each non-leaf node has the same
number of children D, and all leaf nodes are L hops away
from the tree’s root node. The minimum size computation
formulas for both single-channel and multi-channel WBNs are
reported in table III. We observe that, for fixed depth L, the

TABLE III

MINIMUM (SEQ1,SEQ2) OVERHEAD FOR D-ARY TREES WITH DEPTH L

Min SEQ1 Min SEQ2

Multi-channel D + LD2 − D2 − 1 LD − 1

Single-channel D + D2 + 2D3(L − 2) − 1 2LD − D2 − D − 1

order of overhead increase as a function of the node degree D
is quadratic in multi-channel WBNs and order-3 polynomial
in single-channel WBNs. On the other hand, the order of
overhead increase as a function of depth L for a fixed degree
D is linear in both multi-channel and single-channel networks.
Hence, trees that grow by depth yield less overhead with our
protocol than trees that grow by breadth.

VII. PERFORMANCE EVALUATION

We compare our protocol with maximal scheduling proto-
cols since they can be implemented in a distributed manner.

For multi-channel systems, Lin and Shroff outline a max-
imal protocol in [7] based on Hoepman’s algorithm for dis-
tributed weighted matchings [4]. The time complexity of this
algorithm is is O(N) for wired networks and its complexity
increases by an order if the primary interference constraints
are taken into account [8]. More importantly, complexity is
only given in the average sense with no deterministic upper
bound on the overhead. To the best of our knowledge, upper
bounds are only provided by the work in [7], which specifies
a protocol to compute maximal schedules in 2N rounds for
single-channel systems. We therefore denote the protocol in [2]
as Maximal and compare it with the single-channel version of
our protocol.

Overhead. The Maximal protocol is time slotted and uses
a transmission architecture similar to ours: a scheduling phase
followed by a data transmission phase for each frame. The
scheduling phase of Maximal consists of a constant number of
rounds where nodes are scheduled to broadcast an ID message
during one round and a schedule inclusion / exclusion message
during another round. More specifically, each node in the
network is allocated one round to broadcast an ID message, a
second round to potentially broadcast an exclusion message,
and a third round to potentially broadcast an inclusion message
(if the link has not transmitted an exclusion message yet).
Therefore, based on our PHY parameter values for the control
slot durations, each ID message (inclusion and exclusion
message) should be allocated a round of at least τ1 (τ2). Hence,
the overhead of Maximal is equal to (τ1 + 2τ2)N where N is
the number of nodes in the network.
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Fig. 6. MWISTS-to-Maximal Overhead Ratio in Single-channel Networks

For D-ary trees with depth L, the overhead of Maximal
becomes (τ1 + 2τ2)(DL+1 − 1)/(D − 1). Fig. 6 depicts
the overhead ratio of our single-channel protocol (denoted
by WBN-MWIS) over Maximal as a function of D and L
parameters. The overhead of our protocol is computed using
the SEQ1 and SEQ2 formulas in Table III and both protocols
use the minimum slot durations τ1 = 17µs and τ2 = 9µs
computed in [6] assuming 802.16 PHY specifications. We
observe that the overhead of WBN-MWIS can be at most 75%
of Maximal for (D=2,L=4) and at least 0.02% of Maximal for
(D=8,L=8). In general the ratio quickly decreases when either
the degree or the depth of the tree increases. When D is fixed
and L varies, the decrease is exponential of order O(LD−L).
When L is fixed and D is varied, the decrease is polynomial of
order O(D1−L). Hence, deep WBNs are worse for Maximal
protocol than for WBN-MWIS.

Stability. Single-channel maximal scheduling protocols
have been analytically shown to guarantee at least 1/8 of the
maximum throughput region in arbitrary wireless networks.
We show through simulations that their performance limita-
tions hold for the case of WBN topologies. We conducted
experiments for the WBN shown in Fig. 1. The capacity of
each transmission link is normalized to one packet per slot
and all packets are of equal size. Using the technique in [5],
we compute the link Max-Min Fair (MMF) rates, and use
them as input CBR traffic load to the WBN links. We monitor
the average queue sizes every 900,000 time units. The total
running time for the experiment was 17,100,000 time units.

For WBN-MWIS, we observed that the average queue size
of each link remained constant, which verifies the stability
property of the scheduling algorithm on the (feasible) MMF
allocation. However, Maximal was only found stable by scal-
ing down all input rates to 25% of the MMF rate allocation.
This fraction depends on the particular WBN topology and on
that the arrival rates were scaled down as a fraction of the

MMF rates. However, this example illustrates that a maximal
scheduling protocol fails to schedule a significant amount of
points which can be scheduled using WBN-MWIS.

VIII. CONCLUSIONS

In this paper, we introduced a distributed low-complexity
maximum-throughput scheduling protocol for Wireless Back-
haul Networks (WBNs). We showed that the MWIS problem
for the WBN setting can be solved in linear time using novel
graph-theoretical properties of the WBN contention graph. We
also provided algorithms to minimize the overhead of the
scheduling phase. We have demonstrated that our protocol
outperforms existing protocols based on maximal scheduling
both in terms of overhead as well as throughput performance.
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