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1.1 Introduction

Statistical natural language processing (SNLP)1 is a field lying in the
intersection of natural language processing and machine learning. SNLP
differs from traditional natural language processing in that instead of
having a linguist manually construct some model of a given linguistic
phenomenon, that model is instead (semi-) automatically constructed
from linguistically annotated resources. Methods for assigning part-
of-speech tags to words, categories to texts, parse trees to sentences,
and so on, are (semi-) automatically acquired using machine learning
techniques.

The recent trend of applying statistical techniques to natural lan-
guage processing came largely from industrial speech recognition re-
search groups at AT&T’s Bell Laboratories and IBM’s T.J. Watson
Research Center. Statistical techniques in speech recognition have so
vastly outstripped the performance of their non-statistical counterparts
that rule-based speech recognition systems are essentially no longer an
area of research. The success of machine learning techniques in speech
processing led to an interest in applying them to a broader range of
NLP applications. In addition to being useful from the perspective of
producing high-quality results, as in speech recognition, SNLP systems
are useful for a number of practical reasons. They are cheap and fast

1The authors would like to thank Jason Baldridge, Stephen Clark, Beata Kouch-
nir, Jochen Leidner, and Sarah Luger for their thorough comments on this chapter.
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to produce, and they handle the wide variety of input required by a
real-world application. SNLP is therefore especially useful in industry.
In particular:

. SNLP affords rapid prototyping. Whereas fully hand-crafted systems
are extremely time consuming to build, statistical systems that are
automatically trained using corpora can be produced more quickly.
This allows many different approaches to be tried and evaluated
in a short time-frame. As an example, Cucerzan and Yarowsky de-
scribed how one might create a new part-of-speech tagger in a single
day (Cucerzan and Yarowsky, 2002). An even more ambitious ex-
ample is Al-Onaizan et al.’s “machine translation in a day” experi-
ment wherein they used statistical techniques to develop a complete
Chinese-English machine translation system in a 24-hour period (Al-
Onaizan et al., 1999).

. Statistical systems are “robust” (Junqua and van Noord, 2001). Al-
though this has a wide variety of meanings, in SNLP it generally
means that a system will always produce some output no matter
how badly formed the input is, and no matter how novel it is. For
example, a text classification system may be able to classify a text
even if all of the words in that text are previously unseen. Handling
all kinds of input is necessary in real-world applications; a system
which fails to produce output when it is unable to analyze a sentence
will not be useful.

. Statistical systems are often cheaper to produce than hand-crafted
rule-based systems. Because the process of creating a statistical sys-
tem is more automated than the process of creating a rule-based
system, the actual number of participants needed to create a system
will often be less. Furthermore, because they are learned from data,
statistical systems require less knowledge of the particular language
being analyzed. This becomes a budgetary issue on a multi-language
project because of the expense of hiring language consultants or staff
with specialized skills.

A common theme with many early SNLP systems was a pride in
minimizing the amount of linguistic knowledge used in the system. For
example, Fred Jelinek, the then leader of IBM’s speech recognition
research group, purportedly said, “Every time I fire a linguist, my per-
formance goes up.” The sentiment is rather shocking. Should Jelinek’s
statement strike fear into the hearts of all linguists reading this chap-
ter? Is there a strong opposition between theoretical linguistics and
SNLP? Will SNLP put linguists out of work?

We put forth a positive answer in this chapter: there is a useful role
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for linguistic expertise in statistical systems. Jelinek’s infamous quote
represents biases of the early days of SNLP. While a decade’s worth of
research has shown that SNLP can be an extremely powerful tool and
is able to produce impressive results, recent trends indicate that using
naive approaches that are divorced from linguistics can only go so far.
There is therefore a revival of interest in integrating more sophisticated
linguistic information into statistical models. For example, language
models for speech recognition are moving from being word-based “n-
gram” models towards incorporating statistical grammars (Chelba and
Jelinek, 1998, Charniak, 2001). So there is indeed a role for the linguist.
This chapter will provide an entry point for linguists entering into the
field of SNLP so that they may apply their expertise to enhance an
already powerful approach to natural language processing.

Lest we represent SNLP as a completely engineering-oriented disci-
pline, we point the interested reader to Abney (1996) which describes
a number of ways in which SNLP might inform academic topics in lin-
guistics. For example, SNLP can be useful for psycholinguistic research
since systems typically encode graduated notions of well-formedness.
This offers a more psychologically plausible alternative to the tradi-
tional binary grammatical/ungrammatical distinction. In a similarly
academic vein, Johnson (1998) shows how Optimality Theory can be
interpreted in terms of statistical models. This in turn suggests a num-
ber of interesting directions that OT might take.

The rest of this chapter is as follows: We begin by presenting a
simple worked example designed to illustrate some of the aspects of
SNLP in Section 1.2. After motivating the usefulness of SNLP, we then
move onto the core methods used in SNLP: modeling, learning, data
and evaluation (Sections 1.3, 1.4, 1.5, and 1.6 respectively). These core
methods are followed by a brief review of some of the many applications
of SNLP (Section 1.7). We conclude with a discussion (Section 1.8)
where we make some comments about the current state of SNLP and
possible future directions it might take.

1.2 A Simple Worked Example

Imagine we have just founded a start-up company, and want to auto-
mate the task of replying to customer email queries. Further imagine
that we decide to do this by parsing each sentence in the messages,
carrying out some sort of semantic interpretation step (for example, by
querying a database of customer orders) and then on the basis of this
interpretation, automatically generate an appropriate reply.

Assuming that we have a grammar in place, one problem that would
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need to be addressed by our start-up company is ambiguity. A question
as simple as “Do you sell Apple laptops?” has multiple parses (two
are shown in Figure 1) corresponding to multiple interpretations. The
question could either be asking:

(a)whether the company stocks Apple-branded laptops, or

(b)whether the company sells laptop computers to Apple.

For sentences which have multiple parses, how do we know which is the
most likely interpretation? Given that all of these parses are possible
in some context or other, we are faced with the problem of having
to select the most likely parse. (Sounds like the perfect application of
probability, no?)

(a)

S

VP

NP

NP Nom

Aux Pronoun Verb Proper-noun Noun

Do you sell Apple laptops?

(b)

S

VP

NP

NP NP Nom

Aux Pronoun Verb Proper-noun Noun

Do you sell Apple laptops?

FIGURE 1 Two possible parses (T1 and T2) for “Do you sell Apple
laptops?”.

Let’s assume for the moment that our start-up company is using
context-free grammars (CFGs) to do the parsing. Also, let’s assume
that the sentences within a message are independent of each other.2

2This assumption is clearly wrong – the meaning of one sentence in a message
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CFGs are defined by a set of rules where each rule is of the form
A → β, where A is a non-terminal symbol and β is a sequence of termi-
nal and/or non-terminal symbols. Probabilistic context-free grammars
(PCFGs) extend CFGs by associating each rule with a probability:

A → β [p]

A simple grammar is shown in Figure 2 (adapted from Jurafsky and
Martin (2000)).

S → NP VP [.80] Det → that [.05]
S → Aux NP VP [.15] Det → the [.80]
S → VP [.05] Det → a [.15]
NP → Det Noun [.20] Noun → laptops [.50]
NP → Proper-Noun [.35] Noun → desktops [.50]
NP → Nom [.05] Verb → sell [.30]
NP → Pronoun [.40] Verb → ship [.55]
Nom → Noun [.75] Verb → repair [.15]
Nom → Noun Noun [.20] Aux → can [.60]
Nom → Proper-Noun Noun [.05] Aux → do [.40]
VP → Verb [.55] Proper-Noun → Apple [.50]
VP → Verb NP [.40] Proper-Noun → Sony [.50]
VP → Verb NP NP [.05] Pronoun → you [.40]

Pronoun → I [.60]

FIGURE 2 A very simple probabilistic grammar for English

The probability of a rule is the likelihood that a sequence of ter-
minals or non-terminals β will occur given that they are immediately
dominated by a non-terminal symbol A. This is written as the condi-
tional probability P (A → β|A). Having probabilities associated with
the application of each rule is useful for disambiguation, because they
can be combined to calculate the probability of a parse tree as a whole.
Competing parses for a single sentence can then be compared against
each other using this probability to see which parse is most likely (and
thus preferred). The probability of a particular parse T can be defined
as the product of the probabilities of every rule A → β used to expand
each node A in the parse tree:

P (T ) =
∏

P (A → β|A)

is not unrelated to the sentences that precede it – yet is indicative of the kinds of
simplifying assumptions made in practical SNLP systems.
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For example, the probability of the tree corresponding to the ques-
tion about whether the e-commerce company stocks Apple laptops
would be:

P (T1) =P (S → Aux NP VP | S) ∗ P (Aux → Do | Aux)∗

P (NP → Pronoun | NP) ∗ P (Pronoun → you | Pronoun)∗

P (VP → Verb NP | VP) ∗ P (Verb → sell | Verb)∗

P (NP → Nom | NP) ∗ P (Nom → Proper-Noun Noun | Nom)∗

P (Proper-Noun → Apple | Proper-Noun)∗

P (Noun → laptops | Noun)

=.15 ∗ .40 ∗ .40 ∗ .40 ∗ .40 ∗ .30 ∗ .05 ∗ .05 ∗ .50 ∗ .50

=7.2 ∗ 10−7

In comparison, the probability of the tree corresponding to the ques-
tion as to whether the e-commerce company sells computers to Apple
would be:

P (T2) =P (S → Aux NP VP | S) ∗ P (Aux → Do | Aux)∗

P (NP → Pronoun | NP) ∗ P (Pronoun → you | Pronoun)∗

P (VP → Verb NP NP | VP) ∗ P (Verb → sell | Verb)∗

P (NP → Proper-Noun | NP)∗

P (Proper-Noun → Apple | Proper-Noun)∗

P (NP → Nom | NP) ∗ P (Nom → Noun | Nom)∗

P (Noun → laptops | Noun)

=.15 ∗ .40 ∗ .40 ∗ .40 ∗ .05 ∗ .30 ∗ .35 ∗ .50 ∗ .05 ∗ .75 ∗ .50

=4.725 ∗ 10−7

According to the probabilistic grammar in Figure 2, P (T1) > P (T2).
We might conclude that the first tree is preferred over the second tree,
and would therefore come to the conclusion that the customer wanted
to know whether we sold laptops made by Apple.

A natural question to ask is where did the probabilities that are
assigned to each grammar rule come from? While we could have man-
ually assigned them (perhaps by inspecting parse trees and looking for
likely combinations of rule applications), this approach would be time-
consuming and error-prone. Instead, the probabilities associated with
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CFG rules are usually automatically set through a process called esti-

mation. Section 1.4 reviews some of the popular estimation techniques.
Finally, we did not really justify why we tied probabilities to context-

free rules rather than tying them to other aspects of the tree. Other
models of parse selection are also possible. For example, better perfor-
mance can be achieved if we also include greater syntactic context into
rules; if we add information about the lexical head of a given phrase
then performance improves again. The process of specifying how some
task is going to be tackled is known as modeling.

1.3 Modeling

SNLP, like linguistics and science in general, can be thought of as build-
ing theories and testing them. For example, if we were interested in
seeing whether our latest theory of long distance dependencies helped
in question answering, we would create a model of how questions are
answered and incorporate information about long-distance dependen-
cies into that model. We would then test the model by evaluating the
performance of the question answering system. Modeling is the general
task of constructing machinery which mimics some task. The process
of building a statistical model takes place in a number of stages:

1. First, the structural components of a model are constructed. This
usually takes place manually, but can take place automatically
for some kinds of tasks such as text classification through clus-
tering documents by similarity. If we were building a model of
syntax, we would first enumerate a set of possible grammar rules.
In non-statistical linguistics, this step would be the entirety of the
modeling process. It would be up to the linguist to write appropri-
ately constrained rules so that no ill-formed sentences would be
admitted. In statistical approaches, however, models also include
a probabilistic part in addition to structural components.

2. Next, the model is parameterized. Parameters can be thought of
as variables that take probabilities as values. The parameters of
a model of grammar would correspond to the rule probabilities.
The probabilities would specify how the rules combine together.
This would free the linguist from having to exactly constrain a
grammar in order to eliminate all spurious parses, by letting the
probabilities automatically select preferred parses.

3. Finally, the model is instantiated by assigning values to the pa-
rameters. Instantiating a model of grammar would amount to
specifying probabilities for the application of each of the rules.
Probabilities are usually estimated from linguistically annotated
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data, such as a treebank (sentences annotated with their parse
trees).

The interaction of how a model is parameterized and how its values
are estimated is a significant concern. If we specify a model that is
too complex (has too many parameters to be estimated), then we will
model the training set (samples of the phenomena we are interested in
modeling) too closely, and so fail to adequately predict future examples
of that phenomena. In the extreme, we would consider that the training
set is the world and so completely fail to generalize to new situations.
This failure to generalize beyond the training data is called overfitting.
An extreme example grammar that overfitted would be one that had a
single rule per sentence. A more natural overfitted example would be a
model that only contained syntactic constructs found in the treebank.
If we constructed a grammar by extracting only those rules found in
our treebank, and if some examples of some class of ambiguities (such
as PP attachment) were not contained in it, then an overfitted model
would not consider them at all. Overfitting is a central concern to us
as we never have enough (annotated) training material and so always
run the risk of basing our decisions upon insufficient evidence.

In contrast, if our model overgeneralizes, then again performance at
some task will suffer. We will incorrectly model malformed examples.
An example grammar that would overgeneralize would contain rules
which generated any string possible. This is called underfitting. Un-
derfitted models are too simple. When modeling, we therefore need to
strike the correct balance between simplicity and complexity. Generally,
this trade-off is carried out manually, by a process of trial-and-error.
We will return to this problem later when we talk about smoothing

(Section 1.4.1).

In addition to overfitting and underfitting, another fundamental as-
pect of modeling is whether a model should be generative or discrim-

inative. This depends on whether we are concerned with building up
machinery which could create language or whether part of the language
is already given (observed) in which case the task would be to discrim-
inate between alternative structures. Generative models, as the name
implies, are concerned with actually creating structures. Generative
models are natural ways of thinking about many tasks. Grammars can
be thought of as generative models in that they can be used to generate
sentences. Discriminative models instead try to distinguish between a
set of possibilities when something is already given. In particular, they
do not fully model the task. Machine translation can be thought of as
a discriminative task. Given a sentence in the source language we want
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to choose the best possible translation from a set of sentences in the
target language. Within a discriminative approach the source sentence
is not modeled.

Generative and discriminative models also have a fundamental dif-
ference in how they relate to probability theory. If we consider a gen-
erative model of part-of-speech (POS) tagging, then we are interested
in the joint probability P (words, tags). This generative model relates
sentences to their POS tag sequences (and vice-versa). It also models
the (marginal) distributions of sentences and POS tag sequences in iso-
lation of each other. One problem with generative (joint) approaches is
that we need to deal with the distributions of all points in the model.
A discriminative model P (tags | words) does not model the (marginal)
distribution of words – P (words) – and is therefore simpler than the
joint probability P (words, tags). Discriminative approaches model the
choices we can make given some context, and do not waste effort on
the context itself. Joint and discriminative models are currently under
intense investigation (Johnson, 2001, Lafferty et al., 2001).

1.4 Estimation / Learning

Once we have worked out how to model some task and which param-
eters to use, the next step is to assign values to the parameters. This
step is called estimation (if you are statistically-minded) or learning.
Here, we will use the term estimation. Once we have written down a set
of grammar rules, we then want to estimate the probabilities of each of
the rules using some training data. There are a number of techniques
that can be used to estimate probabilities from data. Techniques can
be distinguished by properties such as bias and scalability:

. Bias has a variety of meanings, but typically it can be thought of
as some systematic preference for some type of model instantiations.
Bias in estimation is usually present either by design, or else as some
property of the process itself. Occam’s razor is one example of bias by
design (towards simple models); Epicurus’s principle of multiple ex-
planations (‘if more than one model is consistent with the data, keep
all models’) is another. Examples of bias in design are maximum like-
lihood estimators (Section 1.4.1) which are biased towards models
that give maximal consideration to the training set, and maximum
entropy models (Section 1.4.2) which are biased towards models that
are probabilistically simple.

. Scalability is a practical concern about whether an estimation method
can be used with a large number of parameters, or with limited com-
putational resources. If we have to associate one parameter per word
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then we need an estimation technique which will scale appropriately.
Also, we want the estimation method to be fast enough to train so
that we can run it again and again when testing different possible
models. Clearly, this enterprise will only work if we can deal with
hundreds of thousands of parameters, and in reasonable time.

There are a large number of estimation methods that can be used
to assign values to the parameters of a model. Here, we briefly look at
some of the more popular approaches. We concentrate on supervised
methods, which assume the training material is annotated in some man-
ner, but also turn to weakly supervised methods (Section 1.5.1), which
use both annotated and unannotated training data.

1.4.1 Maximum likelihood and smoothing

By far the most popular estimation method in SNLP is maximum like-

lihood estimation (MLE). A maximum likelihood estimator finds a set
of parameters such that the probability of the training set, given a
model, as high as possible. As such, it has a firm statistical grounding.
However, the real reason for its popularity is the fact that the param-
eters can be estimated by simple counting. For example, if some word
takes a given part-of-speech tag n times, and the sum of all possible
part-of-speech tags for that word is N , then if we make the (incorrect)
assumption that words are independent of each other, the maximum
likelihood estimate of the probability that the word takes a given part-
of-speech tag would be the ratio n

N
. The probability of a grammar rule

applying to a particular word could be estimated by counting the num-
ber of times it applies to the word divided by the total number of rules
applied to that word in a treebank.

MLE is biased towards the training set. When the training set con-
tains errors (which is often referred to as “noisy” data) or when the
training set is not representative of examples we want to classify in
the future, the models produced using MLE need to be modified: for
typical language training sets, models estimated using MLE tend to
overfit. Usually, these models are smoothed in an attempt to improve
performance. Good smoothing is central to successful MLE. For exam-
ple, Collins and Brooks showed how a simple model of PP-attachment,
estimated using MLE, could be greatly improved by smoothing (Collins
and Brooks, 1995). Popular smoothing methods include backing-off, lin-
ear interpolation and Good-Turing smoothing and combinations thereof
(Chen and Goodman, 1996). Successful smoothing is a ‘black art’ and
generally involves a large degree of engineering. Note that performance
could also be increased by selecting some other, possibly simpler model,
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and then applying MLE without smoothing.

1.4.2 Maximum entropy

Counting-based MLE can be acceptable when the model explicitly cap-
tures dependencies within some task. However, sometimes dependencies
are not obvious and therefore cannot easily be encoded into a model.
Instead of enumerating the points of dependencies explicitly, one could
use an estimation technique which automatically accounts for depen-
dencies when they exist. Maximum entropy (maxent) models – also
called log-linear models – are capable of correctly estimating the pa-
rameters for modeling data which may contain dependencies (Abney,
1997). Maxent is a form of MLE, but the parameters are calculated
using iterative numerical optimization methods. Maxent has been ap-
plied to almost all SNLP tasks, usually producing competitive results
(Ratnaparkhi, 1998).

Maxent, like counting-based MLE, is also prone to vagaries of the
training set. While it does have a preference for simplicity, it can pro-
duce suboptimal results, especially when dealing with very sparse data.3

Maxent models are estimated using numerical optimization methods.
Previously we mentioned that scalability is an important consideration
when building large models. Malouf showed that for a range of lan-
guage tasks, general-purpose constrained optimization techniques such
as limited memory variable metric approaches converged much faster
than special-purpose maxent estimation methods such as Generalized
or Improved Iterative Scaling (Malouf, 2002).

1.4.3 Kernel methods

The previous two methods assumed some model abstracted from the
training set, with associated parameters that need to be estimated. The
idea then is that the instantiated model is a summary of the training
set. Kernel methods (such as Support Vector Machines ) take an alter-
native approach. The ‘model’ is determined in terms of a number of
key training examples which, when combined together in a functional
form, are able to act as a classifier. These training items are usually
selected such that the resulting classifier maximally separates the train-
ing examples. Frequently, this separation is generally not possible in the
original feature space, and so the training examples are transformed,
via a kernel function, into another space, whereby the training exam-
ples can be linearly separated. Kernel methods are attractive since they
can capture non-linear interactions between features (maxent models

3Recent work has addressed this problem using a Gaussian prior (Chen and
Rosenfeld, 1999).
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assume features are related in a log-linear manner). Kernel methods
have been applied to an increasing range of language tasks, usually
with (near) state-of-the-art performance (Joachims, 1998).

As with maxent models, kernel methods require numerical optimiza-
tion. Current estimation methods for SVMs do not scale well and there-
fore properly training them is infeasible for some applications. For
example, when classifying phones using the TIMIT corpus, Salomon
et al. (2002) estimated that it would take six years of CPU time to
estimate the SVM model. There are various extensions and approxi-
mations which help reduce this burden.

1.4.4 Ensemble approaches

One of the findings over the last decade has been the fact that per-
formance can often be increased by combining different models into
an ensemble. Multiple models can be combined simply by having each
model vote on the classification being made, say a part-of-speech tag.
The ensemble would then output the tag which received the most votes.
Other options include weighting each constituent model’s vote by how
well it does on some testing set, and so forth.

Ensemble techniques (such as boosting, bagging and stacking) are
currently popular (Dietterich, 2000). The basic idea here is that all
models will be biased in some manner, and so this unwanted bias can
be eliminated by averaging over a number of alternative models. In the
language domain, examples of ensemble approaches have been applied
to POS tagging (Brill and Wu, 1998), parsing (Henderson, 1998) and
text classification (Ghani, 2000). In virtually all cases, ensemble tech-
niques produce the best results. The price to pay here is that ensemble
methods greatly increase the computational burden associated with es-
timation. For example, instead of estimating a single model, we now
need to estimate possibly hundreds of models. Furthermore, ensemble
models push complexity to the extreme and are very hard to interpret.

1.5 Data

SNLP is a data-intensive field. Because it uses machine learning to
automatically estimate a model’s parameters from data, the success
or failure of an undertaking can depend on the quality and availabil-
ity of appropriate data. The data used in computational linguistics
tasks generally takes the form of corpora. Corpora can be divided into
two categories: annotated corpora and unannotated corpora. Unanno-
tated corpora are simply large collections of raw text. They are useful
for tasks such as n-gram language modeling which rely on estimating
the frequency of words, bigrams, and trigrams, or for context-sensitive
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spelling correction. Annotated corpora add additional information to
the text, such as phonetic transcription, part-of-speech tags, parse trees,
rhetorical relations, etc.

In the early days of computational linguistics, statistical approaches
were limited by the availability of machine-readable text. Now, the
heavy increase in use of the internet over the past decade has greatly
expanded the amount of easily accessible machine-readable text. There
have been a number of interesting proposals on how to exploit the
web as a data source. For example, Resnik (1999) describes a method
for mining the web for bilingual texts, which are vital for statistical
machine translation. The method automatically gathers web pages that
are potential translations of each other by looking for documents in one
language which have links whose text contains the name of another
language. For example if an English web page had a link with the text
“Español” or “en Español” then the page linked to is treated as a
candidate translation of the English page into Spanish.

While the web offers a promising source of data for a few tasks, most
natural language processing tasks require data of a very specialized sort.
Tasks as simple as part-of-speech tagging or as complicated as parsing
require a corpus of linguistically annotated examples. Figure 3 describes
a number of annotated corpora that are commonly used in computa-
tional linguistics research. Most are available through the Linguistics
Data Consortium4. The availability of an appropriate annotated corpus
greatly facilitates statistical NLP research into a particular task. For
example, the Penn Treebank is an invaluable resource for statistical
parsing. The syntactic structures associated with each sentence in the
Penn Treebank could be used to estimate the probabilities of rules for
the statistical context free grammar introduced earlier, which would
then allow us to perform the disambiguation on e-mail response.

The creation of a resource as large as the Penn Treebank is costly,
time-intensive and often tedious. Marcus et al. (1993) give a detailed
description of the process. The high cost of creating an annotated cor-
pus is largely to do with having to pay salaries of appropriately skilled
laborers (such as linguistics graduate students). Depending upon the
amount of data required, the availability of staff and the amount of
error checking carried out, the process can take years. The Penn Tree-
bank itself was developed over a three year period using a team of
four annotators, all with graduate training in linguistics. Marcus et al.
(1993) estimated that a team of five part-time annotators annotating
three hours a day should be able to produce an output of about 2.5

4http://www.ldc.upenn.edu/
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Corpus name Words Description
Brown Corpus 1M The first modern, computer readable

corpus. Consists of various texts in
American English.

BNC 100M A large corpus of spoken and written
British English, completely annotated
with part-of-speech tags.

Penn Treebank 1M Wall Street Journal sentences anno-
tated with parse trees.

CHILDES various A collection of child language data cor-
pora.

Switchboard 3M Transcribed telephone conversations
and spoken texts. Includes recordings
of the sentences used in the Penn Tree-
bank.

HCRC Map Task 145K Audio, video, and transcriptions of
spoken dialogue between individuals
participating in a cooperative task.

Canadian Hansard 20M Bilingual sentence-aligned French and
English proceedings of the Canadian
parliament.

FIGURE 3 Various commonly used corpora
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million words a year of parse-annotated sentences, based on an (op-
timistic) average rate of 750 words per hour. This estimate does not
factor in any additional time for verifying the parses.

Research into SNLP is largely guided by the availability of appropri-
ately annotated resources. Particular tasks, such as statistical parsing,
tend to get more attention than other problems such as semantic in-
terpretation simply because corpora annotated with parse trees exist.
Corpora annotated with logical forms, on the other hand, tend not to
exist in sufficient quantities. As such, research into statistical semantic
interpretation is far less developed.

1.5.1 Weakly supervised methods

Given the central role of annotated material and the high costs as-
sociated with creating new annotated resources, recent research has
focused on bootstrapping larger amounts of training data from exist-
ing resources. One approach is to combine relatively small quantities
of manually annotated material with much larger volumes of unanno-
tated material, using methods such as co-training. Co-training can be
informally described in the following manner (Blum and Mitchell, 1998,
Yarowsky, 1995):

. Pick two (or more) “views” of a classification problem.

. Build separate models for each of these “views” and train each model
on a small set of labeled data.

. Sample from an unlabeled data set to find examples that each model
independently labels with high confidence (Nigam and Ghani, 2000).

. Take these examples as being valuable training examples and iterate
this procedure until the unlabeled data is exhausted.

Effectively, by picking confidently labeled data from each model to
add to the training data, one model is labeling data for the other. Co-
training differs from iterative re-estimation techniques in the Expecta-
tion Maximization (EM) family, since co-training is greedy in relying on
the addition of confidently labeled material to re-estimate and gather
new parameters, rather than re-estimating all parameters in each it-
eration. This greediness helps prevent co-training from falling into a
suboptimal local minimum.

Co-training has been used for applications such as word-sense dis-
ambiguation (Yarowsky, 1995), web-page classification (Blum and
Mitchell, 1998), named-entity identification (Collins and Singer, 1999),
statistical machine translation (Callison-Burch, 2002) and parsing
(Steedman et al., 2003). Figure 4 shows the performance of a statisti-
cal parser as it is co-trained with another statistical parser. Although
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both parsers were initially trained with parse trees from the Brown
corpus (non-newswire material), evaluation is in terms of performance
at predicting parses for another domain, namely newswire material
(the Penn Treebank). The unlabeled examples were raw newswire sen-
tences. The higher curve shows what happens when a tiny amount
of domain-specific annotated training material is added to the much
larger volume of unannotated material from a different domain.
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FIGURE 4 Cross-genre bootstrapping results from Steedman et al. (2003).
The upper curve is for 1000 sentences labeled data from Brown plus 100

WSJ sentences, while the lower curve only uses 1000 sentences from Brown.
The F-Score is a measure of the precision and recall of the parsers.

Another approach is to involve people in the annotation task (apart
from the act of creating the initial seed set of annotated data, co-
training is fully automatic). Active learning is similar to co-training,
except that when two (or more views) all predict different annotations
for some example, that example is labeled by a person. Otherwise,
the system automatically annotates examples. Active learning (in the
language community) has been applied to the task of building parsers
and taggers.
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1.6 Evaluation

One of the most critical parts of any NLP task (be it statistical or non-
statistical) is having a clearly defined evaluation metric. This metric is
used to judge how successful a particular method is by comparing it
against the performance of other methods. Since it might not always
be obvious which method is best for a given task, having a defined
evaluation metric allows alternative approaches to be quantitatively
compared with each other.

For example, one widely studied task is text classification. Most
newly developed machine learning techniques will be applied to text
classification as a standard benchmark task. The evaluation metrics
used for text classification (as well as for many other tasks) are pre-

cision and recall. In the context of text classification, precision is the
number of correctly classified documents divided by the number of clas-
sifications posited. Recall is the number of documents assigned a par-
ticular classification divided by the number of documents in the testing
set which actually belong to that class. Precision and recall are com-
plementary measures of accuracy, and can vary with each other. For
example, if a text classifier assigned a classification to only one docu-
ment, but got that document’s classification correct, it would have a
precision of 100%, but would have a very low recall if there were a lot
of instances of documents of that class. Similarly, if a text classifier
assigned the same classification to all documents it would have a recall
of 100% for that label (because it correctly labeled every instance of
class), but a very low precision (because it incorrectly labeled instances
of other classes as that class). Determining the precision and recall for
one machine learning technique allows it to be compared to others. Fur-
thermore, in order for two machine learning techniques to be directly
compared they need to be compared on identical tasks.

Yang and Liu (1999) compared the effectiveness of various ma-
chine learning techniques (including support vector machines, k-nearest
neighbors, neural networks, linear least-squares fit mapping, and naive
Bayes) on the same text classification task. They trained systems to
perform “topic spotting” using identical newswire articles. Because
each of the techniques was trained on an identical set of data, and
further because they were tested on their ability to categorize the same
set of articles their resulting scores were directly comparable. In cases
where the difference in scores was very close Yang and Liu (1999)
performed significance tests to determine whether the differences were
due to better performance or to random factors. Though significance
testing is not frequently done in natural language processing research
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(often because one method obviously outperforms another, or else the
assumptions behind hypothesis testing are violated), it can be useful in
experimental methodology. Interested readers are referred to Dietterich
(1998) for further discussion.

1.6.1 Training and testing sets

The notion of training and testing sets is important. Because of the
“learned from data” nature of statistical natural language processing
applications, training and testing data must be disjoint. A common
pitfall is to train on data which is included in the evaluation set. This
will result in falsely high performance estimates. The reason that per-
formance estimates may be falsely high is because of the potential for
overfitting the testing data. If the testing data is included in the train-
ing data then a machine learning technique may learn how to classify
those examples exactly, but while doing so may not generalize well to
unseen data.5

In situations where there is only a small amount of data available for
training it may be difficult to divide the data into training and testing
sets such that the testing set will fairly reflect the data as a whole. In
such cases people often use cross validation. In cross validation the data
is randomly divided into n sections. The learner is trained from n − 1
of these sections and then evaluated against the remaining one. This
is done n times, and the performance of the system is reported as the
average of the ten evaluations. Note that reporting performance using
cross-validation reduces the need for significance testing as chance vari-
ation in performance is accounted for through the averaging process.

1.6.2 System evaluation

A clearly defined evaluation metric does not only help in the compari-
son of different machine learning algorithms, but also in the comparison
of full-blown NLP systems. In many situations it is useful to be able to
evaluate the performance of various systems for a particular task. For
instance, in industry you might be integrating other people’s software
into your own NLP applications. When deciding which commercial soft-
ware package to purchase, or whether to purchase software rather than
using an open source alternative, it is important to get an idea of the
relative accuracy of the various systems. In such cases it will not be
a matter of dividing a set of labeled data into a testing set, since the

5In a similar vein, it is common practice to further divide the training data by
separating out a held-out set to help counteract overfitting. A learning algorithm
will optimize its performance on the training data until the performance on the
held-out begins to fall. When this happens one may assume that the algorithm is
failing to generalize and is instead overfitting.
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systems will likely be trained already, and the training data may not
be distributed with the system.

When evaluating a commercial system it may prove useful to develop
a baseline system to compare it against. A baseline system is usually the
simplest implementation that one can think of. For instance, in part-of-
speech tagging a baseline system would be one that always assigns the
most frequent tag given a particular word without attempting to do any
contextual disambiguation. Having a baseline system allows a reference
point which can determine how difficult the task is. If a baseline system
performs well, the task may be easy in which case you might not need
to license a commercial system. If a system does not do much better
than the baseline, it could either be because the task is very easy, the
so-called baseline system is not really trivial, or else because the system
is not very good (which should again give you pause about licensing
it).

Finally, it is useful to gauge the upper and lower bounds upon per-
formance. The upper bound is usually human performance at the task,
whilst the lower bound might be chance. The baseline performance lies
between these two extremes.

1.6.3 Component evaluation and error analysis

When evaluating a third-party system it is often only possible to do a
“black box” evaluation wherein a system is just evaluated based on its
performance as a whole. However, when developing your own system
or when combining other systems it is possible to design evaluation
metrics for each piece of the system. This will allow weak points to be
identified, and expose parts that would be most effective to upgrade.

When performing component evaluation or when evaluating one’s
own system, it is often fruitful to see exactly which cases it is getting
wrong, and to try to identify why. Performing such an error analysis

is useful because it can often lead to indications about how the system
may be improved. Performing an error analysis is one stage in the
development of a SNLP system in which a linguistics background comes
in especially handy. Being able to inspect the types of errors that are
being made, and being able to generalize them into linguistic features
is extremely useful for subsequent redesign of the statistical model used
by the system.

1.7 Applications

SNLP is not just traditional natural language processing (or computa-
tional linguistics) augmented with probabilities. There are some appli-
cations which are more naturally handled with statistical techniques.
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Relatively simple statistical methods can often be used in place of more
involved rule based theories. Here, we quickly review a representative
set of applications from a SNLP perspective.

1.7.1 Part-of-Speech Tagging

One of the early successes of SNLP was part-of-speech ( POS) tagging.
The basic task here is to assign a label (from a set of POS tags) to each
token encountered. Figure 5 shows an example sentence with POS tags.
The sentence is from the Parsed Wall Street Journal and the tags are
from the Penn tagset.

The DT stores NNS they PRP work VBP for IN may MD be VB sold VBN

FIGURE 5 Example sentence with POS tags

POS tagging is useful for most NLP tasks especially information
extraction, shallow parsing and full parsing.

There are many ways to tag sentences. The most popular method is
to take a large corpus of sentences marked with tags (such as the Penn
Treebank) and then train a model upon those tagged sentences. More
formally, if S is a sentence and T is the associated tag sequence, we con-
struct a model for the distribution P (T, S). This is a joint probability.
If all we care about is assigning tags to sentences, then we could instead
construct a model for the conditional probability P (T | S). Typically,
Hidden Markov Models (HMMs) are used to construct tagging models
(see the speech chapter for a discussion of HMMs). However it should be
noted that a range of other methods are also possible. Current taggers
operate at around 96% per-token accuracy.

Taggers can also be built by hand. For example, Samuelsson and
Voutilainen (1997) argue that a manually built tagger can be compet-
itive with its stochastic cousins. However, manually creating a tagger
requires much more effort than creating it automatically, assuming that
a corpus exists.

Why does POS tagging have such high accuracy? There are a num-
ber of reasons why this is so. Closed-class words – which are frequent
– are usually unambiguous. Of the open-class words, the per-word dis-
tribution of possible tags is usually sharply peaked around a few tags.
This means that in most situations, there are only a few possible tags.
Finally, the context required to disambiguate most words is usually
only a few words and/or surrounding POS tags. This information is
local. In turn this means that we are likely to see again some previ-
ously observed context and so know which decision to make. For some
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non-English languages, current taggers are effective, but it is an open
question whether they are equally effective for all languages.

1.7.2 Statistical Parsing

After the success of assigning syntactic categories to words, one might
be interested in seeing whether broad-coverage parsing could be im-
proved using statistical means. This task is considerably harder than
tagging as we cannot be sure if the grammar actually parses most nat-
urally occurring sentences; even if we could parse all sentences, we still
need to select among potentially thousands of alternatives. Finally, we
would like to make this selection efficient.

Within rule-based natural language processing, it is probably true
to say that none of these problems were ever truly solved. For example,
the Alvey Natural Language Tools Grammar can only parse around
20% of the Wall Street Journal (Grover et al., 1993). These parsers,
while efficient, could never parse in-coverage sentences that had more
than about 20 tokens (Carroll, 1993). More recent developments within
rule-based parsing have increased the efficiency of the parsers, but the
lengths of the sentences that they can effectively handle are still fairly
short (Kiefer et al., 1999).

In contrast to these rule-based ‘deep’ parsers, there has been an al-
ternative vein of work developing much shallower probabilistic parsers
(Magerman and Weir, 1992, Collins, 1996, Charniak, 1999, Collins,
2000). These parsers usually contain grammars that are induced from
parsed treebanks (such as the Penn Treebank). Furthermore, they usu-
ally also contain a probabilistic component which enables them to find
the best parse for a given sentence, in near-linear time. Such systems
are easily capable of parsing almost all naturally occurring sentences.

Finally, there has been some work on combining stochastic methods
with more linguistically motivated parsers. For example, Johnson et al.
(1999) showed how a broad-coverage LFG parser could use maximum
entropy techniques to select the best parse. Osborne (2000) also showed
how a DCG parser could also use similar techniques.

1.7.3 Text Classification

Moving up to documents, a useful task is text classification. This means
assigning some text (which may be a book, an e-mail, a computer pro-
gram, etc.) a label. The label will have a meaning depending on the
domain. For example, in electronic commerce, the labels may deal with
ordering products, reviewing the status of orders, and so on; in author-
ship determination, the labels are authors.

Text classification turns out to be a relatively easy task. The usual
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approach is to reduce a text to a bag-of-words (an order independent
set of words) and then treat these words as a vector annotated with the
label of the text that it represents. Finally, these labeled vectors can
then be used to train any one of several machine learning classification
algorithms (Yang and Liu, 1999). Treating a document as a bag-of-
words clearly throws away a lot of linguistic information. However, this
abstraction reduces the dimensionality of the problem (the number of
features of the task that need to be tracked). Minimizing the number
of dimensions make training more efficient and also can improve per-
formance (this relates to a problem called overfitting, which we discuss
in Section 1.3).

1.7.4 Question Answering

The task of question answering moves beyond simple document clas-
sification into the realm of intelligent information retrieval. Question
answering (QA) is concerned with retrieving short passages within doc-
uments that answer a user’s question. QA is different from simple web
searching because fully-formed questions encode information about the
type of answer being looked for, where as keyword queries do not. For
example the questions:

(a)Who was elected the 16th president of the United States?

(b)When was the 16th president of the United States elected?

indicate that the user is either looking for a name or a date, whereas
the keyword query 16th, President, “United States”, elected does not.
The QA process usually involves several different stages: first the ques-
tion is analyzed for answer type, then candidate documents are marked
up for named entities that correspond to that answer type, and finally
short passages are selected and ranked by their probability of answer-
ing the question. All of these tasks can be performed within a SNLP
framework. For example, Ittycheriah et al. (2000) used a maximum en-
tropy model component to perform answer type classification. Leidner
and Callison-Burch (2003) propose that answer ranking and evaluation
of QA systems could be done automatically using a large collection of
frequently asked question (FAQ) pages gathered from the web. These
pages provide a potentially valuable source of information for a statis-
tical question answering system since they constitute a ready source of
questions paired with their answers. Rather than having to hand-craft
rules for a question answering system, the components of a system
might be learned automatically from a corpus assembled from internet
resources.
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1.7.5 Machine Translation

Unsurprisingly, machine translation, which is arguably the hardest task
in NLP, has a statistical formulation (Brown et al., 1993, Knight, 1999).
Suppose we are translating between English and French. In statistical
translation, we take the view that every English string, e, is a possible
translation of a French string f . We assign to every pair of strings
< f, e > a probability P (e|f), which we interpret as the probability that
a translator, when presented with f , will produce e as its translation.
Given a French string f , the job of the machine translation system is
to find that English string ê, from all possible English strings for which
P (e|f) is greatest.

To estimate P (e|f) , Brown et al. (1993) take the view that trans-
lation is a process of string re-writing where each string in the source
sentence can be expanded into zero or more words in the target lan-
guage; each word translates into a particular target word; and the words
translated into the target language are then rearranged to reflect the
syntax of that language. While string re-writing may seem like a sim-
plistic way of viewing translation, it does have the advantage that its
probabilities can be estimated from available data, which takes the form
of bilingual sentence-aligned corpora such as the Canadian Hansard.

Recent work in statistical machine translation has taken two di-
rections. The first is to augment the Brown et al. (1993) translation
model with more linguistically sophisticated information. For instance
Yamada and Knight (2001) formulate a syntax based translation model
and show that it produces better translation results between English
and Japanese than the re-writing method does. The other vein of re-
search has to do with coping with scarce linguistic resources. Since
statistical machine translation is learned from parallel corpora it does
not tend to work well for language pairs which do not have extensive
parallel corpora. Al-Onaizan et al. (2000) examines how human beings
cope with scarce translation resources by seeing how well they man-
age to translate a new language (Tetun) into English given only a few
examples. Callison-Burch (2002) applies weakly supervised learning to
machine translation as a way of bootstrapping parallel corpora for new
language pairs, and shows that a bilingual corpus consisting of 200,000
machine translated sentences achieves the translation accuracy of a hu-
man translated corpus containing 20,000 sentence pairs.

1.8 Discussion

SNLP is an exciting field that has brought together linguists, statis-
ticians and machine learning researchers. As a result of this synergy,
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computational linguistics has been invigorated by a concentration upon
data and quantitatively testable theories. This flow of ideas is not one
way: the machine learning community draws upon the language domain
as a source of large, hard problems worthy of tackling.

In large part, the success of the SNLP enterprise has been due to
the availability of annotated data: the Penn treebank, for example,
spawned a large body of research. Access to annotated material signif-
icantly simplifies the estimation task to such an extent that we now
have useful, robust tools such as POS taggers and probabilistic parsers
that are routinely used by the community. As useful as these tools are,
it could be argued that they are all relatively simple. For example,
progress in broad-coverage parsers for linguistically sophisticated for-
malisms such as HPSG has been much less dramatic; we still have no
robust methods for assigning logical forms to utterances in discourse.
One reason for the relative simplicity of our current breed of tools is
that suitable annotated material in sufficient quantities simply does not
exist. Note that even for those tools we do have, it could be argued that
performance is not at a maximum: more mileage could be had if only
there was more annotated training material. In the section on data, we
touched upon weakly supervised approaches such as co-training and
active learning. These methods directly address the question of creat-
ing more annotated training material. It is very likely that these areas
will become of central concern to researchers in SNLP in the very near
future.

Orthogonal to the question of annotated material, there is also a need
for better models of how language actually works. For example, while
we have reasonable ideas how language behaves overall, we do not have
good probabilistic models of how discourse varies, nor do we really know
how language changes over time, or across domains. That is, language
is usually assumed to come from the same source: it is modeled as
stationary. Moving over to non-stationary language models is beyond
the current state-of-the-art and is likely to be so for a long time to
come. Simply throwing ever larger quantities of training material at
bad models will not make them correct (Curran and Osborne, 2002).
Instead, we need to develop sophisticated models that can deal with
change in language. It is here that linguists are likely to have a key role
to play.

This chapter sketched the field of SNLP and touched upon the cur-
rent state-of-the-art and some of the problems that need to be tackled
before we can fully analyze naturally occurring language. Progress in
the field comes from linguists, computer scientists, statisticians and
machine learning researchers. The cross disciplinary nature of natural
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language is exciting. Having a better understanding of the tools of the
trade - statistics and precise models of language - will allow you to
make progress in the field.

1.9 Further reading

There are two good textbooks that cover SNLP: Manning and Schütze’s
“Foundations of Statistical Natural Language Processing” is a compre-
hensive treatment of the field. Jurafsky and Martin’s “Speech and Lan-
guage Processing” covers natural language processing more broadly, but
does give significant treatment of statistical methods, including those
used in speech processing. Other textbooks that provide introductions
to relevant disciplines, but do not focus on SNLP, are Tom Mitchell’s
“Machine Learning”, and DeGroot and Schervish’s “Probability and
Statistics”.
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