
                                                                                

International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-2, Issue-5, November 2012 
 

221 

 

 

Abstract— The field of Software Engineering has been 

complimented with a number of research works that helps in 

developing software products that performs well within 

ever-changing organizational environments. Functional 

efficiency of a product greatly depends on the software 

development approach used to build it and the testing techniques 

involved. Most widely used software development approaches are 

conventional approach, object-oriented approach and 

agent-oriented approach. Among the Software Development Life 

Cycle (SDLC) phases, software testing is an important activity 

aimed at evaluating an attribute or capability of a program or 

system and determining that it meets the functionality of the 

system like the actual code or the non-functional requirements of 

the system like amicable user interface. There are various testing 

strategies used in the conventional approach like unit testing, 

integration testing, validation testing and system testing. As all the 

basic entities are viewed as objects and classes in the 

object-oriented software development, conventional testing 

approaches are not suitable and thereby specialized 

object-oriented software testing evolves. Recent literature study 

claims that none of the existing Agent Oriented Software 

Engineering (AOSE) methodologies possesses testing phase in 

their SDLC stating that the software developed using agent 

paradigm were been tested using either conventional or 

object-oriented testing mechanism. Since the agent characteristics 

such as autonomy, pro-activity, reactivity, social ability, 

intelligence etc., differs with object characteristics, object-oriented 

testing mechanisms are not sufficient and also inadequate to test 

the agent oriented software. Thus this paper compares various 

approaches of building and testing the software with the help of a 

case study (online book store application) and thereby the need for 

a specialized agent-oriented software testing mechanism is 

justified for the better functional outcome of the software product 

developed using agent oriented approach 
 

Index Terms— Software Engineering, Agent-Oriented 

Software Testing, Software Development Life Cycle.  

I. INTRODUCTION 

A software development methodology refers to the 

framework that is used to structure, plan, and control the 

process of developing a software system [1]. A wide variety 

of such frameworks have evolved over the years, each with its 

own recognized strength and weaknesses. Now an increasing 

number of problems in industrial, commercial, medical, 

networking and educational application domains are being 

solved by agent-based solutions [2]. The key abstraction in 

these solutions is the agent. An “agent” is an autonomous, 

flexible and social system that interacts with its environment 

in order to satisfy its design agenda. In some cases, two or 

more agents should interact with each other in a multi agent 

system (MAS) to solve a problem that they cannot handle 

alone. 
 

Manuscript received on November, 2012.  

 N.Sivakumar, Assistant Professor, Department of Computer Science 

and Engineering, Pondicherry Engineering College, Puducherry, India. 

K.Vivekanandan, Professor, Department of Computer Science and 

Engineering, Pondicherry Engineering College, Puducherry, India. 

 

According to the above mentioned facts, developing 

agent-based systems, developers will face new abstractions 

and concepts. Also they should handle main challenges that 

exist in the development of complex, open and distributed 

systems. For example, autonomy of agents, emergent 

behaviour and dynamic configuration are among the 

prominent features of multi-agent systems but in practice and 

in development time these features make system development 

more complex and practitioners need new methods and tools 

to handle these types of complexity. 

Agent-oriented software engineering (AOSE) is a new 

discipline that encompasses necessary methods, techniques 

and tools for developing agent-based systems. It is a powerful 

way of approaching complex and large scale software 

engineering problems and developing agent-base systems. 

Several AOSE methodologies were proposed for developing 

software, equipped with distinct concepts and modelling 

tools, in which the key abstraction used in its concepts is that 

of an agent [3]. Few AOSE methodologies were listed below. 

1. MAS CommonKADS (1996-1998) 

2. MaSE(1999) 

3. GAIA(2000) 

4. MESSAGE(2001) 

5. TROPOS(2002) 

6. PROMETHEUS(2002) 

7. ADLEFE(2002) 

8. INGENIAS(2002) 

9. PASSI(2002) 

10. AOR Modeling(2003) 

When we analysed and compared the strengths and 

weaknesses of the above mentioned AOSE methodologies, 

the strong weakness that we observed from almost all the 

methodologies were, there is no proper testing mechanism for 

testing the agent-oriented software [4]. Our survey states that 

the agent based software are currently been tested by using 

Object-Oriented (OO) testing techniques, upon mapping of 

Agent-Oriented (AO) abstractions into OO constructs. 

However agent properties such as Autonomy, Proactivity, and 

Reactivity etc., cannot be mapped into OO constructs. There 

arises the need for proper testing techniques for agent based 

software. The main objective of the paper is to analyse the 

existing testing approaches for testing an agent-based system 

and thereby the need for specialized testing technique is 

justified 

II. OBJECT ORIENTED SOFTWARE TESTING 

As an increment to the existing conventional approach, 

object-oriented approach was developed as the next great 

advance of software engineering. Software developed using 

object-oriented concept has a different structure and 

behaviour that the one developed using procedural languages. 

Object-oriented approach is a data centric approach rather 

than algorithmic and it is a method based on hierarchy of 

Exploring the Need for Specialized Testing 

Technique for an Agent-Based Software 

N.Sivakumar, K.Vivekanandan 



 

Exploring the Need for Specialized Testing Technique for an Agent-Based Software 

222 

classes and well-defined and cooperating objects [5]. An 

object can be defined as a thing or entity which can store data 

and send & receive messages whereas class can be defined as 

group of objects that share common properties and 

relationships. Everything in object-oriented programming is 

grouped as self sustainable objects, thereby gaining 

reusability by means of four important object-oriented 

features such as Encapsulation, Abstraction, Inheritance and 

Polymorphism. Encapsulation can be defined as wrapping up 

of data and functions into a single unit. Objects are described 

as implementations of abstract data types (ADTs). Usually an 

ADT definition is called class, while an object is a runtime 

instance of a class. Inheritance is the process by which objects 

of one class acquire the properties of another class. 

Polymorphism enables a number of different operations to 

have the same name i.e program entities should be permitted 

to refer to objects of more than one class, when a hierarchical 

relationship among these classes exits.  

As in the conventional testing, unit, integration, validation 

and system testing are the testing levels involved in object 

oriented testing [6]. Though the levels are the same, the 

approach of testing widely differs. As everything in 

object-oriented software is viewed as objects and classes 

conventional testing cannot be accommodated in 

object-oriented software.  

A. Object Oriented Unit Testing [7] 

The primary aim of unit testing is to uncover errors within a 

given unit. In the context of object-orientation, the smallest 

unit may be a method or a class. Testing a method which is 

considered as a single operation of a class is termed as 

intra-method testing and testing the integrity of the class as a 

whole is termed as intra-class testing. A class is a combination 

of data members and member functions. Testing a unit may 

involve more than one class because a class can contain a 

number of different operations and a particular operation may 

exist as part of a number of different classes. Class testing is 

driven by operations encapsulated by the class and the state 

behavior of the class. Objects may also interact with one 

another with unforeseen combinations and invocations. These 

aspects of object-oriented features make the conventional 

testing unfit to test object-oriented software and thereby the 

need for object-oriented testing is justified. 

B. Object Oriented Integrating Testing 

Integrating the classes to be tested and verifying the class 

interaction, polymorphic calls and exception handling is 

termed as integration testing in object-oriented concept [8]. 

As class is considered to be a unit, integration testing is called 

as inter-class testing. As object-oriented software does not 

have any hierarchical control structure, the integration testing 

cannot be done either top-down or bottom-up as did in 

conventional integrated testing. Linear integration of classes 

cannot be performed in object-oriented software as there will 

be direct and indirect communication of components that 

make up the class.   

There are two important strategies for integrated testing of 

object-oriented system such as Thread based testing and Use 

based testing. Thread-based testing, integrates the set of 

classes required to respond to one input or event for the 

system. Each thread is integrated and tested individually. 

Regression testing is applied to ensure that no side effects 

occur. Use-based testing, begins the construction of the 

system by testing those classes (called independent classes) 

that use very few of server classes. After the independent 

classes are tested, the dependent classes that use the 

independent classes are tested. This sequence of testing layers 

of dependent classes continues until the entire system is 

constructed. 

C. Object Oriented Validation and System Testing 

There is no significant difference between the conventional 

software testing and object-oriented software testing with 

respect to validation level and system level testing since both 

(conventional & object-oriented) the tests focuses on 

user-visible actions and user-recognizable output from the 

system. Conventional black box testing can be applied for 

validating the object-oriented software. 

III. AGENT ORIENTED SOFTWARE TESTING 

Agent-oriented paradigm can be considered as the 

extension of object-oriented paradigm [9]. There is a growing 

need for agent-oriented system to tackle complex problems. A 

software agent is defined as a software program that can 

perform specific tasks for a user and possessing a degree of 

intelligence that permits it to perform parts of its tasks 

autonomously and to interact with its environment in a useful 

manner. More than one agent is composed together and 

interaction is exhibited among themselves to achieve the 

targeted goal is termed as a Multi-Agent System (MAS). 

MASs are meant for building complex distributed system. An 

agent can be termed as an intelligent object due to the fact that 

agent possesses certain unique anthropomorphic 

characteristics such as autonomy, pro-activity, reactivity, 

social ability, mobility, etc., 

 Autonomy: The ability to take goal directed autonomous 

decisions without intervening with human or other agents. 

Pro-activity: The ability to initiate actions to accomplish 

the goals rather than responding to the unpredictable 

environment. 

Reactivity: The ability to respond in selective and timely 

fashion by perceiving the environment. 

Social ability: The ability to work in collaboration with 

other agents and human in order to achieve the goal. 

Mobility: The ability to move from one 

platform/environment to another in self-directed way. 

Testing an agent-oriented system is a complex task and very 

little work is been carried out so far [10]. There are plenty of 

agent oriented software engineering methodologies that deals 

about how an agent based system is analysed, designed and 

implemented. There is no testing framework explored in any 

of the existing methodologies stating that the agent oriented 

software can be tested using the existing object-oriented 

testing techniques. Though objects and agents looks similar 

they differ widely too. 

A. Agent Oriented Unit Testing 

In a multi-agent system it may not always be possible to 

scan/gather the complete agent requirements, due to the fact 

that agent changes its functionalities based on the 

environmental need so as to achieve the goal. Agent is an 

important building block of a multi-agent system and it is very 

essential to verify whether the agent in isolation matches with 

the specification under normal and abnormal condition. Thus 

in an agent-oriented programming, the smallest building 

block/unit is an agent itself. Unit testing with respect to agent 

based system is to individually test all the agents involved in 

the system. Testing an agent is based on its own 



                                                                                

International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-2, Issue-5, November 2012 
 

223 

 

mental attributes such as goal, plan, role and action. Test 

cases are to be generated so as to ensure the following, 

1. To test whether the goal of an agent is achieved. 

2. To test whether the plan get triggered by the event that is 

supposed to handle. 

3. To test whether the agent takes appropriate role as 

expected by the environment 

4. To test whether the agent performs the activity as per the 

functionality.  

B. Agent Oriented Integrated Testing 

 Multi-agent system is a logical collection of agents that 

interact with each other in a way that implements the 

functionality of the system. After ensuring that the individual 

agent in isolation is working as per the requirement, the next 

immediate step is to integrate the agents involved in the MAS 

so as to test the interaction, and communication among 

agents. The protocol involved in communication among agent 

is also tested during integration. 

A. Agent Oriented System Testing 

System testing in agent oriented approach will test the 

complete functionality and test the system as a whole. Here 

the perceptions and actions of all the agents are tested as a 

whole by providing proper test cases. 

IV. CONVENTIONAL VS OBJECT-ORIENTED 

TESTING 

Based on the survey from various literatures comparison is 

made between the approaches of conventional and 

object-oriented testing and we found more reasons why 

testing approach followed in conventional software cannot be 

applied to object-oriented software. Difference between 

conventional testing and object-oriented testing are tabulated 

below. 

Table I. Difference between conventional and 

object-oriented software testing 

 

V. OBJECT-ORIENTED VS AGENT-ORIENTED 

TESTING 

Though it is considered that agent-oriented paradigm is a 

natural extension of object-oriented paradigm, the properties 

of an objects and agents differ widely [11]. Agent is termed as 

an intelligent object since agent possesses few unique 

properties such as pro-activity, reactivity, autonomous, social 

ability, learnability etc. This intelligence factor of agent 

makes testing more complex and thus it is difficult to 

incorporate object-oriented testing techniques for 

agent-based software and there arises the need for specialized 

testing techniques. The kind of interaction between objects 

and between agents is represented in Fig.2. The following 

table explores the major differences of an object and agent. 

 

Table II. Difference between Object-oriented and 

Agent-oriented software testing 

 

VI. CASE STUDY 

The main objective of the paper is to justify the need for 

specialized testing technique for agent oriented system. To 

explore the need for agent oriented software testing, an online 

book store application has been considered as a case study.  

The scope of the application is to develop a fully online 

system for worldwide sale of books, which enables an end 

user to browse for books online, add books to a shopping cart, 

and place an order for the books in the cart. This system will 

offer a broad range of books to customers, and a personalized 

friendly user interface. The system facilitates fast and reliable 

service at all stages, from locating a desired book, to deliver 

of the purchase.  



 

Exploring the Need for Specialized Testing Technique for an Agent-Based Software 

224 

A. Conventional Development 

In traditional / conventional   approach, the book store 

application is built using various software development 

phases like requirement analysis, design, implementation and 

testing. The requirement is usually done by identifying the 

stakeholders, recognizing the multiple view points, working 

towards collaboration and asking the preliminary questions. 

The requirements analysis  of the book store include 

identifying the users, the type of books available, the 

interface, catalogue maintenance, update of the books, stock 

maintenance, customer details, details of the author and 

publisher, placement of orders, delivery of goods, receipt 

maintenance, payment modes, etc.   

Design engineering encompasses the set of principles, 

concepts that lead to the development of a high quality 

software product. A prototype of the product is developed in 

the design phase, for the user to understand how the 

culmination of the product will appear. Design prototype of 

the book store is show in Fig.1. 

Implementation phase comprises the actual coding which 

implements the functionalities specified. A structured 

programming language is employed for this purpose. 

 

Fig 1. Process Model for online book store 

B. Conventional Testing 

 The conventional testing for the book store application is 

done as follows: The unit testing begins by splitting the book 

store application into various modules like order placing, 

delivery, stock maintenance, payment modes, etc. The 

functionalities of these modules are tested in isolation. Every 

module is taken one at a time and tested individually with an 

aim to locate bugs. If any discrepancy occurs, the errors are 

rectified and the module is tested again. Testing a module 

could be iterative and may have no constraints on the number 

of times it is tested. Once the module has been tested and 

believed to be error free, the next module is taken up for 

testing. This process continues all until all the modules in the 

book store application are tested individually. 

The integration testing begins by grouping the modules like 

the order, stock and its interface and tested. It should be noted 

that these modules have already been tested individually and 

believed to be error free. When these separate modules are 

integrated, we test the communication, data flow and the 

interface between these modules and observe the way they 

work as a whole.  If any error occurs in the communication 

channel or in the grouping, then those specific errors are 

located and rectified. After this testing is successful, the 

delivery module is added in an incremental fashion and the 

new integrated system is now checked on the whole for 

functional specifications. The errors, if any, are rectified and 

the process continues until all the modules in the system are 

unified and tested.  

System testing follows integration testing. The system is 

tested as an agglomeration of all the modules present in the 

design along with their functionalities. At every stage, bugs 

are located and corresponding corrections are made. The 

modules of the book store like placing order, stock delivery, 

books, catalogue, etc. developed in the implementation phase 

are unit tested and integrated to undergo integration testing. 

The error free modules are installed and the system as a whole 

is tested. It also includes recovery testing, security testing, 

stress testing and performance testing. Stress testing is when a 

large number of orders are placed, the response pattern of the 

‘placing order’, ‘purchase’ and ‘delivery’ modules are tested 

and observed. The time interval between occurrence of a fault 

and its recovery forms the main criteria of recovery testing. 

Suppose the stock counts go negative, a system error or fault 

occurs. The time taken for the stock to gain a positive number 

and time taken by the system to recover is termed as recovery 

testing. 

In the acceptance testing, before the product release, it will 

be tested by placing an order, checking the stocks and 

delivery of the books at different scenarios. If the user is not 

satisfied with the behavior of the system or the modules 

involved, then some modifications to the existing design is 

necessary. 

The black box testing is done by a series of inputs applied 

to the book store system (placing an order) and corresponding 

output is noted and verified (delivery of books if the stock is 

available). The inputs are given and the outputs generated 

help to locate the possibility of errors in the system. 

The white box testing is performed by giving inputs like 

making purchase orders for books from the publisher, that fall 

below the minimal level of stock. The logical correctness of 

the module is verified by noting the output.  

C. Object-Oriented Development 

The intent of object oriented analysis (OOA) is to define all 

classes (and the relationship and behavior associated with 

them) that are relevant to the online book store application. 

To accomplish this, a number of tasks are put forth: 

1. Basic user requirements must be communicated between 

the customer and the software engineer. 

2. Classes must be identified (i.e. methods and attributes are 

identified). 

3. A class hierarchy is defined.  

4.  Object-object relationship (object connections) should 

be represented. 

5. Object behavior must be modeled. 

6. Tasks 1 through 5 are re applied iteratively until the 

model is complete. 

The OO analysis includes writing use cases, developing 

activity diagram, state transition diagram, class diagram and 

other UML diagram. A scenario is a very specific sequence of 

actions and responses that detail how the system will interact 

with a user. It is useful for pinpointing vague or 



                                                                                

International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-2, Issue-5, November 2012 
 

225 

 

missing requirements, and for verifying that the system does 

what's expected of it. A complete system would have several 

top-level scenarios, each showing a typical interaction with 

the system. The scenarios are the basis for detailed 

requirements. 

The scenario for the online book store application is: 

• User searches for a title by browsing or keyword search  

• System displays information about the title.  

• User selects a title to buy  

• User places the order 

• System displays shipping address and billing address  

• User confirms order and payment method.  

• System processes order, notifies warehouse for shipping, 

and issues an electronic receipt. 

The analysis model defines a complete set of classes that 

describe some element of the problem domain. As the design 

model evolves, it is necessary to define a set of design classes 

that i.) Refine the analysis class by providing design detail 

that will enable the classes to be implemented, ii.) Create a 

new set of design classes that implement a software 

infrastructure to support the business solution. The different 

design classes are; 

1. User interface class 

2. Business domain class 

3. Process classes 

4. Persistent classes 

5. System classes 

The classes formed in the analysis phase are refined to 

avoid redundancy and reduced as much as possible to classes 

in the design phase. The class relation diagram includes all 

classes and relations between the classes. The class relation 

diagram for an online book store is shown in fig 2. 

 

The final product of the design phase is the general 

architecture of the application. Although there are many user 

interface design models, there are certain steps to be followed 

like: 

1.  Using information developed during interface analysis, 

define interface objects and actions. 

2.  Define events (user actions) that will cause the state of 

the user interface to change the model of this behavior. 

3.  Depict each interface state as it will actually look to the 

end user. 

4.  Indicate how the user interprets the state of the system 

from information provided through the interface. 

The code for the system is usually generated based on the 

architecture of the design. The code may be in any of the high 

level object oriented language like C++ or Java. 

 

 
 

 

 

D. Object-Oriented Testing 

The object oriented testing process begins with syntactic 

semantic and consistency testing. For the given book store 

application, we verify the semantic correctness by giving 

inputs like various names of book both which are valid and 

invalid. The syntactic correctness is verified by examining the 

syntax of the code. Consistency is evaluated 

Fig 2.Class Interaction diagram for online book store 

 



 

Exploring the Need for Specialized Testing Technique for an Agent-Based Software 

226 

by examining whether the customer receives the ordered 

book. 

The integration testing, for book store application can be 

performed by testing events like purchase order ( ). It checks 

for the stock level and places order to the publisher 

accordingly, by invoking the necessary threads. Use based 

testing is achieved by testing independent class like the 

address class followed by testing its dependent class; the 

customer class. Validation testing for book store can be 

performed if the final system satisfies the user requirements.  

System testing for book store is complimented by posting 

queries with large processing time and by simultaneously 

issuing enormous queries to the system. Based on the 

response and performance of the system to these queries and 

time taken to process these queries, stress and performance 

parameters are evaluated. This is almost similar to the testing 

done in traditional system except that the objects are tested 

finely for their properties and behavior in OO testing 

methodology. Security testing is very important in 

applications like book store where cash transactions are 

involved. It is necessary to maintain secure information about 

the transaction time, date, the amount involved and above all, 

the details of the parties involved in it. When a customer 

purchases a book, it is necessary to verify his/her identity but 

it is equally important to safeguard and ensure security of the 

user’s identity. 

E. Agent-Oriented Development 

The bookstore application has been developed in agent 

oriented approach using Prometheus methodology [13]. 

Goals are central to the functioning of software agents that 

realize the system. The use of goals in requirements 

engineering or system specification phase facilitates a 

mapping into the detailed design and implementation, as well 

as providing mechanism for requirement specification. In 

addition it also requires specifications of functionalities 

related to the identified goals. 

The initial set of goals identified for online book store 

application is 

• Fully online system  

• Wide range of books 

• User friendly interface 

• Purchase of books 

• Delivery of books 

• Competitive prices 

Goals are refined iteratively to be more specific. Often 

similar sub goals arise under different initial goals. A  

grouping of similar sub goals provides the basis for 

“functionalities”. For example, refining the original goal of 

fully online system, we obtain sub goals like pay online, order 

online, find books, while the original goal of purchase books 

leads to find books, place order, make payment and arrange 

delivery. Pay online and make payment are closely related 

and are therefore grouped together. 

We continue to work with the list of goals and sub goals, 

coalescing similar goals and adding goals as we see that a 

particular grouping is lacking some aspect. For example, the 

sub goals of deliver internationally, courier delivery and 

arrange delivery are coalesced into single sub goal ‘arrange 

delivery’. 

Functionality includes grouping of related goals, percepts, 

actions and data relevant to the behavior. Functionalities 

allow for a mixture of both top-down and bottom-up design. 

They are identified by top-down process of goal development. 

At the same time, they provide a bottom-up mechanism for 

determining agent type and their responsibilities. The process 

of designing and grouping goals sets the initial stage of 

functionalities. Once the functionalities have been identified, 

functionality descriptors are developed.  

Scenarios are complementary to goals. Scenario 

development involves how the goals are a part of various 

processes within the system. Scenarios help to identify the 

missing goals. Scenarios are used primarily to illustrate the 

normal running of the system, although it can be useful to 

develop some scenarios that indicate what is expected to 

happen when something goes wrong. As scenarios are 

developed, it is common to identify additional goals that are 

needed. Examples of scenarios developed for our system are; 

stock order scenario, book finding scenario, new catalogue 

scenario, order book scenario, etc. The architectural design 

provides the basis for high level design. There are 3 aspects 

developed during architectural design 

1. Deciding agent types 

2. Describing the interactions between the agents 

3. Designing the overall system structure 

Some interactions between the agents may be based on 

message passing, possibly for transfer of control as well as 

data. In our application, sales transaction functionality may 

pass control to delivery management functionality once it has 

completed its job. The architectural design defines what 

agents are to be a part of the system and method of interaction 

between these agents to meet the required functionality of the 

system. A major decision that is made during the architectural 

design is the types of agents used. Agent types are formed by 

combining functionalities. The choice of how functionalities 

are to be combined is made by considering functionalities and 

scenarios and developing possible groupings of 

functionalities into agents, which are then evaluated 

according to the standard criteria of coupling and cohesion. 

Coupling is the property of a group of components. 

In agent systems, coupling is mainly exhibited in 

communication between agents. On the other hand, cohesion 

is a property of a single component. A component is cohesive 

if all of its parts are related. In finalizing the architectural 

design, deciding the interfaces play a major role. Interface 

description includes perceptions and actions. Percepts often 

require some processing in order to extract the information 

that is of value to the agent system. In systems where percepts 

originate from physical sensing devices of some sort, the data 

often contains the significant amounts of noise, which may 

require the use of techniques to filter and cleanse the data. 

Actions may also be complex, requiring significant design 

and development outside the realm of the reasoning system. 

Typically a system will have a number of perceptions and 

actions that forms the initial definition of how the system will 

interact with the environment and it is extremely important to 

ensure that these interfaces are correct and or achievable. 

Following are the percepts and actions identified for the 

electronic bookstore. The percepts are bank transaction 

response, cheaper price report, stock arrival, new catalogue, 

etc. the various actions involved are bank transaction, deliver 

book, request delivery tracking, place delivery request, email 

stock order, etc. In the electronic bookstore, two external data 

are identified and they are Courier DB and Postal DB. In 

addition the other clusters of information are Customer DB, 

Customer orders, Pending orders, Delivery problems, Books 

DB, Stock DB, Stock orders. The various agents are 

identified in this phase and are used for online 



                                                                                

International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-2, Issue-5, November 2012 
 

227 

 

book store application. They are basically customer relations 

agent, delivery manager agent, sales assistant agent and stock 

manager agent. Each agent has its own functionalities, actions 

and protocols through which it communicates with the other 

agent. For example, sales assistant agent has its functions like 

bank transaction and page display for the customer. For this it 

uses customer database. This agent has to percept user input, 

arrival at their site and bank transaction response. Book 

finding, book ordering, update customer profile are the 

various protocols it uses to communicate with stock manager, 

delivery manager and customer relations agent respectively. It 

also uses various other protocols for different scenario. The 

initial data coupling diagram is shown in fig.3. 

In the detailed design capabilities, plans and events of the 

agents are analyzed. The main steps in the final stage are 

1. Decomposition using capability overview diagram 

2. Sub tasks and alternative plans 

3. Developing events and messages 

4. Details of actions and percepts 

5. Details of data 

 Stock management capability is broken down into 

ordering, delay handling and handling new stock. When a 

book is ordered it is important for that event to carry 

information as to which book is being ordered. 

However not all of these design entities are carried to 

implementation. For example, functionalities are used to 

determine the agent types but they do not correspond to any 

run time entity. Also messages, plans and beliefs do not 

directly map into object oriented languages. Although it is 

possible to implement an object oriented design using an OO 

language, it is difficult to realize and maintain. Hence we 

make use of a range of agent oriented programming language 

[12] like JACK, JADE, etc. 

F. Agent-Oriented Testing 

Although the agent technology is gaining popularity there 

is a lack of proper testing mechanism for agent based systems. 

Unit testing will test the functionality of a particular agent. In 

the case of delivery manager agent, its functionalities like 

placing the delivery request and requesting for delivery 

tracking is tested and verified.  

Consider the integration testing of modules like sales 

assistant agent and stock manager agent. They need to 

communicate via the protocol ‘book finding’. The integration 

test will identify the bugs; if there is any problem in 

communication between the agents. 

In the example considered, the system testing will test the 

percepts like failed stock arrival, cheaper price report, new 

catalogue, stock arrival, and regular order trigger. In a similar 

way, its actions like email of the stock order are also tested. 

 Though the testing strategies such as unit, integration and 

system testing are the same for conventional, object-oriented 

and agent-oriented software, the testing approach might differ 

widely. Presently, an agent system is usually tested using the 

traditional and object oriented testing strategy. Though 

objects and agents share similar characteristics, they also 

differ widely. Agent is termed as an intelligent object as agent 

possesses certain unique properties such as intelligence, 

autonomy, pro-activity, reactivity, mobility etc., Currently 

agent oriented software were tested using object-oriented 

testing technique upon mapping Object-Oriented (OO) 

constructs into Agent-Oriented (AO) constructs. However 

agent properties such as Autonomy, Pro-activity, and 

Reactivity etc., cannot be mapped into OO constructs. 

Moreover at certain instance, an agent responds differently 

for same input at different scenario. These situations cannot 

be handled by object-oriented testing techniques. 

 
Fig.3 Data Coupling diagram for online bookstore 

 

 

 



 

Exploring the Need for Specialized Testing Technique for an Agent-Based Software 

228 

VII. CASE STUDY INTERPRETATION 

 Testing is an important activity in software development 

life cycle. However, testing is often disregarded in agent 

oriented atmosphere and the main focus is shifted to design 

and analysis activities alone. As per existing scenario, to test 

an agent oriented system we employ the existing testing 

techniques like the traditional testing and the object oriented 

testing. There is an allusion that the testing methods of the 

traditional approach can be made use of for testing the 

software developed in agent oriented approach as well. There 

is no specific testing technique developed for agent oriented 

approach. The existing testing strategies may help to test the 

functionality of the system but fail to efficiently test the 

properties of agents. They lack efficacy in determining the 

agent interaction and autonomous functionality of the agent. 

The various agent properties like heterogeneity, dynamism, 

autonomy, proactive and reactive behavior etc, cannot be 

tested glibly and with ease by the existing testing strategies. 

These properties of agents are the most important and 

highlight of the agent oriented approach. If these properties 

are not tested in detail, then the overall performance of the 

agent system is pulled down by the possible errors that are left 

undetected or unexamined. To reach out to all the possible 

errors and rectify them; is facilitated only by a testing strategy 

designed especially for agent oriented approach. 
 

Table III. Life Cycle coverage of various development 

paradigm. 
 

 
Traditional 

Object 

oriented 

Agent 

oriented 

Analysis ü  ü  ü  

Design ü  ü  ü  

Implementation ü  ü  ü  

Testing ü  ü  ? 

VIII. CONCLUSION AND FUTURE WORK 

The book store application under consideration has aided 

effectively in pin pointing the advantage and disadvantages of 

various approaches. The traditional model has been 

accompanied by its own requirement analysis, design, 

development, implementation and testing phases. The 

paradigm shift to object oriented approach has been 

complimented with its requirement analysis, design, 

development, implementation and testing methods. 

Unfortunately, the agent oriented approach has not been able 

to achieve the plethora of its development cycle. A separate 

agent oriented testing strategy is the need of the hour. This 

would complement the agent oriented development phases 

and improve the overall efficiency of agent oriented software 

in building complex systems effectively and with ease. 

REFERENCES 

[1] Roger S.Pressman, “Software Engineering – A Practitioner’s 

Approach”, Tata Mc Graw Hill, 6th edition, 2005. 

[2] Nicholas R.Jennings, Michael Woolridge, “Agent oriented software 

engineering”,Queen Mary and Westfield college, University of 

London. 

[3] Federico Bergenti, Marie Pierre Gleizes, Franco Zambonelli, 

“Methodologies and Software Engineering for Agent Systems-book”, 

Kluwer Academic Publishers. 

[4] Chia-En Lin, Krishna M.Kavi, Frederick T. Sheldon and Thomas E. 

Potok, “A Methodology to Evaluate Agent Oriented Software 

Engineering Techniques”, Computer Science and Engineering 

department, University of North Texas. 

[5] Bray, Mike. "Object-Oriented Design", Carnegie Mellon Software 

Engineering Institute, Feb 2008. 

[6] James.A.Whittaker, "What is software testing? And why is it so hard?", 

Florida Instittute of Technology,IEEE 2000. 
[7] Shalini Gambhir, “ Testing strategies for Object-Oriented Systems” , 

International Journal of computer Science and Information Technology 
& Security, Vol.2, No.2, April 2012. 

[8] Zhe (Jessie) Li and Tom Maibaum, ”An Approach to Integration 

Testing of Object-Oriented Programs”, Department of Computing and 

Software McMaster University, Hamilton, ON, Canada, IEEE 2007. 

[9] Praveen Ranjan Srivastava, Karthik Anand V, Mayuri Rastogi, Vikrant 

Yadav, G Raghurama, ”Extension of object oriented software testing 

techniques to agent oriented software testing”, Journal Of Object 

Technology, Birla Institute of technology and science, Pilani, India. 

[10] Mailyn Moreno, Juan Pavon, Alejandro Rosete. Testing in Agent 

Oriented Methodologies. IWANN 2009, Part II, LNCS 5518, pp. 

138–145, 2009.© Springer-Verlag Berlin Heidelberg 2009 

[11] Levine, David, “Relationship between Agent and Object 

Technologies”, Agent technology green paper, OMG Agent work 

group, 1999. 

[12] Shoham, Y. Agent oriented programming (Technical Report 

STAN-CS-90-1335) Stanford University: Computer science 

department, 1994.   

[13]  L. Padgham, J. Thangarajah, and M. Winikoff: “The          

 Prometheus  Design Tool – A Conference  Management System 

Case Study.” In: M.  Luck and  L. Padgham (Eds.): AOSE 2007, 

LNCS 4951, pp.  197–211,  Springer-Verlag Berlin Heidelberg 

2008. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	I. INTRODUCTION
	II. OBJECT ORIENTED SOFTWARE TESTING
	A. Object Oriented Unit Testing [7]
	B. Object Oriented Integrating Testing
	C. Object Oriented Validation and System Testing

	III. AGENT ORIENTED SOFTWARE TESTING
	A. Agent Oriented Unit Testing
	B. Agent Oriented Integrated Testing
	A. Agent Oriented System Testing

	IV. CONVENTIONAL VS OBJECT-ORIENTED TESTING
	V. OBJECT-ORIENTED VS AGENT-ORIENTED TESTING
	VI. CASE STUDY
	A. Conventional Development
	B. Conventional Testing
	C. Object-Oriented Development
	D. Object-Oriented Testing
	E. Agent-Oriented Development
	F. Agent-Oriented Testing

	VII. CASE STUDY INTERPRETATION
	VIII. CONCLUSION AND FUTURE WORK

