
Chapter 2

Elements of Abstract Group
Theory

Mathematics is a game played according to certain simple rules with
meaningless marks on paper.

—David Hilbert1

The importance of symmetry in physics, and for quantum mechanics
in particular, was discussed in the preceding chapter. In this chapter,
we begin our development of the algebraic structure which enables us
to formalize what we mean by “symmetry” by introducing the notion
of a group and some related concepts. In the following chapters we will
explore the consequences of this algebraic structure for applications to
physics.

2.1 Groups: Definitions and Examples

The motivation for introducing an algebraic structure to describe sym-
metry in physical problems is based on transformations. But the def-
inition of a group is based on a much more abstract notion of what a
“transformation” entails. Accordingly, we first set out the conditions

1As quoted in, N. Rose, Mathematical Maxims and Minims (Rome Press,
Raleigh, North Carolina, 1988).
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that an abstract group must satisfy and then consider both abstract
and concrete examples.

Definition. A group G is a set of elements {a, b, c, . . .} together with
a binary composition law, called multiplication, which has the following
properties:

1. Closure. The composition of any two elements a and b in G, called
the product and written ab, is itself an element c of G: ab = c.

2. Associativity. The composition law is associative, i.e., for any
elements a, b, and c in G, (ab)c = a(bc).

3. Identity. There exists an element, called the unit or identity and
denoted by e, such that ae = ea = a for every element a in G.

4. Inverses. Every element a in G has an inverse, denoted by a−1,
which is also in G, such that a−1a = aa−1 = e.

The closure property ensures that the binary composition law does
not generate any elements outside of G. Associativity implies that
the computation of an n-fold product does not depend on how the
elements are grouped together.2 For example, the product abc is un-
ambiguous because the two interpretations allowed by the existence of
a binary composition rule, (ab)c and a(bc), are equal. As will be shown
in Sec. 2.3, the left and right identities are equal and unique, as are
the left and right inverses of each element. Thus we can replace the
existence of an identity and inverses in the definition of a group with
the more “minimal” statements:

3′. Identity. There exists a unique element, called the unit or identity
and denoted by e, such that ae = a for every element a in G.

4′. Inverses. Every element a in G has a unique inverse, denoted by
a−1, which is also in G, such that a−1a = e.

2In abstract algebra (the theory of calculation), binary composition can be asso-
ciative or non-associative. The most important non-associative algebras in physics
are Lie algebras, which will be discussed later in this course.
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The terms “multiplication,” “product,” and “unit” used in this def-
inition are not meant to imply that the composition law corresponds to
ordinary multiplication. The multiplication of two elements is only an
abstract rule for combining an ordered pair of two group elements to
obtain a third group element. The difference from ordinary multiplica-
tion becomes even more apparent from the fact that the composition
law need not be commutative, i.e., the product ab need not equal ba for
distinct group elements a and b. If a group does have a commutative
composition law, it is said to be commutative or Abelian .

Despite the somewhat abstract tone of these comments, a moment’s
reflection leads to the realization that the structure of groups is ideally
suited to the description of symmetry in physical systems. The group
elements often correspond to coordinate transformations of either ge-
ometrical objects or of equations of motion, with the composition law
corresponding to matrix multiplication or the usual composition law
of functions,3 so the associativity property is guaranteed.4 If two op-
erations each correspond to symmetry operations, then their product
clearly must as well. The identity corresponds to performing no trans-
formation at all and the inverse of each transformation corresponds
to performing the transformation in reverse, which must exist for the
transformation to be well-defined (cf. Example 2.4).

Example 2.1. Consider the set of integers,

. . . ,−3,−2,−1, 0, 1, 2, 3, . . .

with the composition rule being ordinary addition. The sum of any two
integers is an integer, thus ensuring closure, addition is an associative
operation, 0 is the identity, and the inverse of n is −n, which is clearly
an integer. Thus, the integers form a group under addition. This group
is denoted by Z (derived from the German word Zahlen for integers).

3For two functions f(x) and g(x), the application of f , followed by the application
of g is g[f(x)], and the application of g followed by the application of f is f [g(x)].

4The associativity of linear operations in general, and matrices in particular,
is discussed by Wigner in Group Theory (Academic, New York, 1959), along with
other group properties.
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Since the order in which two integers are added is immaterial, Z is an
Abelian group.

Example 2.2. The importance of the composition law for determining
whether a set of elements forms a group can be seen by again considering
the integers, but now with ordinary multiplication as the composition
rule. The product of any two integers is again an integer, multiplication
is associative, the unit is 1, but the inverse of n is 1/n, which is not an
integer if n 6= 1. Hence, the integers with ordinary multiplication do
not form a group.

Example 2.3. Consider the elements {1,−1} under ordinary multipli-
cation. This set is clearly closed under multiplication and associativity
is manifestly satisfied. The unit element is 1 and each element is its
own inverse. Hence, the set {1,−1} is a two-element group under mul-
tiplication.

Example 2.4. Consider the set of 2×2 matrices with real entries(
a b

c d

)
, (2.1)

such that the determinant, ad − bc, is non-zero. The composition law
is the usual rule for matrix multiplication:(

a1 b1

c1 d1

)(
a2 b2

c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

)
.

To determine if this set of matrices forms a group, we must first show
that the product of two matrices with non-zero determinant is also a
matrix with non-zero determinant. This follows from that fact that
for any pair of 2×2 matrices A and B, their determinants, denoted
by det(A) and det(B), satisfy det(AB) = (detA)(detB). Associativity
can be verified with a straightforward, but laborious, calculation. The
identity is (

1 0

0 1

)
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and the inverse of (2.1) is

1

ad− bc

(
d −b
−c a

)
,

which explains the requirement that ad−bc 6= 0. This group is denoted
by GL(2,R), for general linear group of 2×2 matrices with real entries.
Note that the elements of this group form a continuous set, so GL(2,R)
is a continuous group.

2.2 Permutation Groups

A permutation of n objects is a rearrangement of those objects. When
combined with the usual rule for function composition for successive
permutations (see below), these permutations are endowed with the
structure of a group, which is denoted by Sn. At one time, permuta-
tion groups were the only groups studied by mathematicians and they
maintain a special status in the subject through Cayley’s theorem , which
establishes a relationship between Sn and every group with n elements.
In this section, we will examine the structure of S3, both as an abstract
group and as the symmetry group of an equilateral triangle.

The group S3 is the set of all permutations of three distinguishable
objects, where each element corresponds to a particular permutation
of the three objects from a given reference order. Since the first object
can be put into any one of three positions, the second object into either
of two positions, and the last object only into the remaining position,
there are 3× 2× 1 = 6 elements in the set. These are listed below:

e =

(
1 2 3

1 2 3

)
a =

(
1 2 3

2 1 3

)
b =

(
1 2 3

1 3 2

)

c =

(
1 2 3

3 2 1

)
d =

(
1 2 3

3 1 2

)
f =

(
1 2 3

2 3 1

)

In this notation, the top line represents the initial, or reference, order
of the objects and the bottom line represents the effect of the per-
mutation. The composition law corresponds to performing successive
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permutations and is carried out by rearranging the objects according to
the first permutation and then using this as the reference order to rear-
range the objects according to the second permutation. As an example,
consider the product ad, where we will use the convention that opera-
tions are performed from right to left, i.e., permutation d is performed
first, followed by permutation a. Element d permutes the reference
order (1, 2, 3) into (3, 1, 2). Element a then permutes this by putting
the first object in the second position, the second object into the first
position, and leaves the third object in position three, i.e.,

a =

(
1 2 3

2 1 3

)
=

(
3 1 2

1 3 2

)
.

Notice that it is only the permutation of the distinct objects, not their
labelling, which is important for specifying the permutation. Hence,

ad =

(
1 2 3

1 3 2

)
= b ,

An analogous procedure shows that

da =

(
2 1 3

3 2 1

)(
1 2 3

2 1 3

)
=

(
1 2 3

3 2 1

)
= c ,

which shows that the composition law is not commutative, so S3 is a
non-Abelian group.

A geometric realization of S3 can be established by considering the
symmetry transformations of an equilateral triangle (Fig. 2.1). The
elements a, b, and c correspond to reflections through lines which in-
tersect the vertices at 3, 1, and 2, respectively, and d and f correspond
to clockwise rotations of this triangle by 2

3
π and 4

3
π radians, respec-

tively. The effects of each of these transformations on the positions
of the vertices of the triangle is identical with the corresponding ele-
ment of S3. Thus, there is a one-to-one correspondence between these
transformations and the elements of S3. Moreover, this correspondence
is preserved by the composition laws in the two groups. Consider for
example, the products ad and da calculated above for S3. For the equi-
lateral triangle, the product ad corresponds to a rotation followed by
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Figure 2.1: The symmetry transformations of an equilateral triangle labelled
by the corresponding elements of S3. The lines in the diagram corresponding
to the identity are lines through which reflections of transformations a, b and
c are taken. The transformations d and f are rotations.

a reflection. Thus, beginning with the standard order shown for the
identity the successive application of these transformations is shown
below:

1

2

3

1

23

3

21

d a

By comparing with Fig. 2.1, we see that the result of these transfor-
mations is equivalent to the transformation b. Similarly, one can show
that da = c and, in fact, that all the products in S3 are identical to
those of the symmetry transformations of the equilateral triangle. Two
such groups that have the same algebraic structure are said to be iso-
morphic to one another and are, to all intents and purposes, identical.
This highlights the fact that it is the algebraic structure of the group
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which is important, not any particular realization of the group. Further
discussion of this point will be taken up in the next chapter.

2.3 Elementary Properties of Groups

The examples in the preceding section showed that all groups are en-
dowed with several general properties. In this section, we deduce some
additional properties which, although evident in particular examples,
can be shown generally to follow from the properties of abstract groups.

Theorem 2.1. (Uniqueness of the identity) The identity element in
a group G is unique.

Proof. Suppose there are two identity elements e and e′ in G. Then,
according to the definition of a group, we must have that

ae = a

and

e′a = a

for all a in G. Setting a = e′ in the first of these equations and a = e
in the second shows that

e′ = e′e = e ,

so e = e′.

This theorem enables us to speak of the identity e of a group. The
notation e is derived from the German word Einheit for unity.

Another property common to all groups is the cancellation of com-
mon factors within equations. This property owes its existence to the
associativity of the group composition rule.
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Theorem 2.2. (Cancellation) In a group G, the left and right cancel-
lation laws hold, i.e., ab = ac implies b = c and ba = ca implies b = c.

Proof. Suppose that ab = ac. Let a−1 be an inverse of a. Then, by
left-multiplying by this inverse,

a−1(ab) = a−1(ac)

and invoking associativity,

(a−1a)b = (a−1a)c ,

we obtain

eb = ec ,

so b = c. Similarly, beginning with ba = ca and right-multiplying by
a−1 shows that b = c in this case also.

Notice that the proof of this theorem does not require the inverse
of a group element to be unique; only the existence of an inverse was
required. In fact, the cancellation theorem can be used to prove that
inverses are, indeed, unique.

Theorem 2.3. (Uniqueness of inverses) For each element a in a
group G, there is a unique element b in G such that ab = ba = e.

Proof. Suppose that there are two inverses b and c of a. Then ab = e
and ac = e. Thus, ab = ac, so by the Cancellation Theorem, b = c.

As in the case of the identity of a group, we may now speak of the
inverse of every element in a group, which we denote by a−1. As was
discussed in Sec. 2.1, this notation is borrowed from ordinary multipli-
cation, as are most other notations for the group composition rule. For
example, the n-fold product of a group element g with itself is denoted
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by gn. Similarly gngm = gn+m, which conforms to the usual rule of ex-
ponents for real numbers. However, there are some notable exceptions.
For two group elements a and b, the equality of (ab)n and anbn does
not generally hold. As the examples in Sec. 2.1 demonstrated, as long
as this notation is interpreted in the context of the appropriate group
composition rule, no confusion should arise.

2.4 Discrete and Continuous Groups

Groups are divided into two general categories: discrete and continuous.
The basis definitions apply to both types of group, but the discussion
of a number of properties depends sensitively on the discrete or con-
tinuous nature of the group. In this course, we will focus our attention
on discrete groups first, to establish a conceptual base, and consider
continuous groups later in the course.

2.4.1 Finite Groups

One of the most fundamental properties of a group G is number of
elements contained in the group. This is termed the order of G and is
denoted by |G|. The group Z of integers under addition, has infinite
order and the order of S3, the group of permutations of three objects,
is 6. We will be concerned initially with finite groups which, apart
from their applicability to a range of physical problems, have a number
interesting arithmetic properties.

Finite groups also have properties which are not shared by either
infinite or continuous groups. For example, if an element g of a finite
group G is multiplied by itself enough times, the unit e is eventually re-
covered. Clearly, multiplying any element g by itself a number of times
greater than |G| must eventually lead to a recurrence of the product,
since the number of distinct products is bounded from above by |G|.
To show this explicitly, we denote a recurring product by a and write

a = gp = gq ,

where p = q + n. Then, by using the associativity of the composition



Elements of Abstract Group Theory 23

law, gq+n = gqgn = gngq, so

gp = gqgn = gngq = gq ,

and, from the definition of the identity and its uniqueness, we conclude
that

gn = e .

Thus, the set of elements g, g2, g3, . . . represents a recurring sequence.
The order of an element g, denoted by |g|, is the smallest value of k
such that gk = e. The period of such an element g is the collection of
elements {e, g, g2, . . . , gk−1}.

Example 2.5. Using S3 as an example, |a| = |b| = |c| = 2 and
|d| = |f | = 3. The corresponding periods are {e, a}, {e, b}, {e, c},
and {e, d, f = d2}.

Theorem 2.4. (Rearrangement Theorem) If {e, g1, g2, . . . , gn} are
the elements of a group G, and if gk is an arbitrary group element,
then the set of elements

Ggk = {egk, g1gk, g2gk, . . . , gngk}

contains each group element once and only once.

Proof. The set Ggk contains |G| elements. Suppose two elements of
Ggk are equal: gigk = gjgk. By the Cancellation Theorem, we must have
that gi = gj. Hence, each group element appears once and only once in
Ggk, so the sets G and Ggk are identical apart from a rearrangement
of the order of the elements if gk is not the identity.
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2.4.2 Multiplication Tables

One application of this theorem is in the representation of the compo-
sition law for a finite group as a multiplication table . Such a table is a
square array with the rows and columns labelled by the elements of the
group and the entries corresponding to the products, i.e., the element
gij in the ith row and jth column is the product of the element gi la-
belling that row and the element gj labelling that column: gij = gigj.
To see how the construction of multiplication tables proceeds by utiliz-
ing only the abstract group properties, consider the simplest nontrivial
group, that with two distinct elements {e, a}. We clearly must have the
products e2 = e and ea = ae = a. The Rearrangement Theorem then
requires that a2 = e. The multiplication table for this group is shown
below:

e a
e e a
a a e

Note that the entries of this table are symmetric about the main diag-
onal, which implies that this group is Abelian.

Now consider the group with three distinct elements: {e, a, b}. The
only products which we must determine explicitly are ab, ba, a2, and b2

since all other products involve the unit e. The product ab cannot equal
a or b, since that would imply that either b = e or a = e, respectively.
Thus, ab = e. The Cancellation Theorem then requires that a2 = e,
b2 = a, and ba = e. The multiplication table for this group is shown
below:

e a b
e e a b
a a b e
b b e a

Because the entries of this table are symmetric about the main diagonal,
this group is also Abelian. Our procedure shows that every group
with two or three elements must have the multiplication tables just
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calculated, i.e., the algebraic structures of group with two and three
elements are unique! Thus, we can speak of the group with two elements
and the group with three elements. A similar procedure for groups
with four elements {e, a, b, c} yields two distinct multiplication tables
(Problem Set 2). As a final example, the multiplication table for S3 is
shown below:

e a b c d f
e e a b c d f
a a e d f b c
b b f e d c a
c c d f e a b
d d c a b f e
f f b c a e d

As is immediately evident from this table, S3 not Abelian.

2.5 Subgroups and Cosets

If, from a group G, we select a subset H of elements which themselves
form a group under the same composition law, H is said to be a sub-
group of G. According to this definition, the unit element {e} forms a
subgroup of G, and G is a subgroup of itself. These are termed improper
subgroups. The determination of proper subgroups is one of the cen-
tral concerns of group theory. In physical applications, subgroups arise
in the description of symmetry-breaking, where a term is added to a
Hamiltonian or a Lagrangian which lowers the symmetry to a subgroup
of the original symmetry operations.

Example 2.6. The group S3 has a number of proper subgroups: {e, a},
{e, b}, {e, c}, and {e, d, f}. The identification of these subgroups is
most easily carried out by referring to the symmetry operations of an
equilateral triangle (Fig. 2.1).
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If H = {e, h1, h2, . . . , hr} is a subgroup of a group G, and g is an
element of G, then the set

Hg = {eg, h1g, h2g, . . . , hrg}

is a right coset of H. Similarly, the set

gH = {ge, gh1, gh2, . . . , ghr}

is a left coset of H. A coset need not be a subgroup; it will be a subgroup
only if g is an element of H.

Theorem 2.5. Two cosets of a subgroup either contain exactly the
same elements or else have no common elements.

Proof. These cosets either have no common elements or have at
least one common element. We will show that if there is a single in
common, then all elements are common to both subgroups. Let Hg1

and Hg2 be two right cosets. If one common element of these cosets is
hig1 = hjg2, then

g2g
−1
1 = h−1

j hi

so g2g
−1
1 is in H. But also contained in H are the elements

Hg2g
−1
1 = {eg2g

−1
1 , h1g2g

−1
1 , h2g2g

−1
1 , . . . , hrg2g

−1
1 }

since, according to the Rearrangement Theorem, each element of H
appears once and only once in this sequence. Therefore, the elements
of Hg1 are identical to those of

(Hg2g
−1
1 )g1 = Hg2(g−1

1 g1) = Hg2

so these two cosets have only common elements.

Example 2.7. Consider again the group S3 and its subgroupH = {e, a}
(Example 2.6). The right cosets of this subgroup are

{e, a}e = {e, a}, {e, a}a = {a, e}, {e, a}b = {b, d}

{e, a}c = {c, f}, {e, a}d = {d, b}, {e, a}f = {f, c}
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We see that there are three distinct right cosets of {e, a},

{e, a}, {b, d}, {c, f}

of which only the first is a subgroup (why?). Similarly, there are three
left cosets of {e, a}:

{e, a}, {c, d}, {b, f}

Notice that the left and right cosets are not the same.

Theorem 2.6 (Lagrange’s theorem). The order of a subgroup H of
a finite group G is a divisor of the order of G, i.e., |H| divides |G|.

Proof. Cosets either have all elements in common or they are dis-
tinct (Theorem 2.5). This fact, combined with the Rearrangement The-
orem, means that every element of the group must appear in exactly
one distinct coset. Thus, since each coset clearly has the same number
of elements, the number of distinct cosets, which is called the index
of the subgroup, multiplied by the number of elements in the coset, is
equal to the order of the group. Hence, since the order of the coset and
the subgroup are equal, the order of the group divided by the order of
the subgroup is equal to the number of distinct cosets, i.e., an integer.

Example 2.8. The subgroup {e, a} of S3 is of order 2 and the subgroup
{e, d, f} is of order 3. Both 2 and 3 are divisors of |S3| = 6.

Lagrange’s theorem identifies the allowable orders of the subgroups
of a given group. But the converse of Lagrange’s theorem is not gener-
ally valid, i.e., the orders of the subgroups of a group G need not span
the divisors of G.
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2.6 The Quotient Group

2.6.1 Conjugacy Classes

Two elements a and b of a group G are said to be conjugate if there is
an element g in the group, called the conjugating element, such that
a = gbg−1. Conjugation is an example of what is called an equivalence
relation , which is denoted by “≡,” and is defined by three conditions:

1. a ≡ a (reflexive).

2. If a ≡ b, then b ≡ a (symmetric).

3. If a ≡ b and b ≡ c, then a ≡ c (transitive).

To show that conjugacy corresponds to an equivalence relation we
consider each of these conditions in turn. By choosing g = e as the
conjugating element, we have that a = eae−1 = a, so a ≡ a. If a ≡ b,
then a = gbg−1, which we can rewrite as

g−1ag = g−1a(g−1)−1 = b

so b ≡ a, with g−1 as the conjugating element. Finally, to show tran-
sitivity, the relations a ≡ b and b ≡ c imply that there are elements g1

and g2 such that b = g1ag
−1
1 and c = g2bg

−1
2 . Hence,

c = g2bg
−1
2 = g2g1ag

−1
1 g−1

2 = (g2g1)a(g2g1)−1

so c is conjugate to a with the conjugating element g1g2. Thus, conju-
gation fulfills the three conditions of an equivalency class.

One important consequence of equivalence is that it permits the
assembly of classes , i.e., sets of equivalent quantities. In particular,
a conjugacy class is the totality of elements which can be obtained
from a given group element by conjugation. Group elements in the
same conjugacy class have several common properties. For example,
all elements of the same class have the same order. To see this, we
begin with the definition of the order n of an element a as the smallest
integer such that an = e. An arbitrary conjugate b of a is b = gag−1.
Hence,

bn = (gag−1)(gag−1) · · · (gag−1)︸ ︷︷ ︸
n factors

= gang−1 = geg−1 = e
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so b has the same order as a.

Example 2.9. The group S3 has three classes: {e}, {a, b, c}, and {d, f}.
As we discussed in Example 2.5, the order of a, b, and c is two, and the
order of d and f is 3. The order of the unit element is 1 and is always
in a class by itself. Notice that each class corresponds to a distinct kind
of symmetry operation on an equilateral triangle. The operations a, b,
and c correspond to reflections, while d and f correspond to rotations.
In terms of operations in S3, the elements d and f correspond to cyclic
permutations of the reference order, e.g., 1 → 2, 2 → 3, and 3 → 1,
while a, b, and c correspond to permutations which are not cyclic.

2.6.2 Self-Conjugate Subgroups

A subgroup H of G is self-conjugate if the elements gHg−1 are identical
with those of H for all elements g of G. The terms invariant subgroup
and normal subgroup are also used. A group with no self-conjugate
proper subgroups is called simple . If gHg−1 = H for all g in G, then
given an element h1 in H, for any a, we can find an element h2 in H such
that ah1a

−1 = h2, which implies that ah1 = h2a, or that aH = Ha.
This last equality yields another definition of a self-conjugate subgroup
as one whose left and right cosets are equal. From the definition of self-
conjugacy and of classes, we can furthermore conclude that a subgroup
H of G is self-conjugate if and only if it contains elements of G in
complete classes, i.e., H contains either all or none of the elements of
classes of G.

The cosets of a self-conjugate subgroup are themselves endowed with
a group structure, with multiplication corresponding to an element-by-
element composition of two cosets and discounting duplicate products.
We show first that the multiplication of the elements of two right cosets
of a conjugate subgroup yields another right coset. Let H be a self-
conjugate subgroup of G and consider the two right cosets Ha and Hb.
Then, the multiplication of Ha and Hb produces products of the form

hiahjb = hi(ahj)b
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The product ahj can be written as hka for some hk in H, since H is
assumed to be self-conjugate. Thus, we have

hi(ahj)b = hi(hka)b = (hihk)(ab)

which is clearly an element of a right coset of H.

Example 2.10. Consider the subgroup {e, d, f} of S3. Right-multiplying
this subgroup by each element of S3 yields the right cosets of this sub-
group:

{e, d, f}e = {e, d, f}, {e, d, f}a = {a, c, b}, {e, d, f}b = {b, a, c}

{e, d, f}c = {c, b, a}, {e, d, f}d = {d, f, e}, {e, d, f}f = {f, e, d}

Similarly, left-multiplying by each element of S3 produces the left cosets
of this subgroup:

e{e, d, f} = {e, d, f}, a{e, d, f} = {a, b, c}, b{e, d, f} = {b, c, a}

c{e, d, f} = {c, a, b}, d{e, d, f} = {d, f, e}, f{e, d, f} = {f, e, d}

Thus, since the right and left cosets of {e, d, f} are the same, these
elements form a self-conjugate subgroup of S3 whose distinct cosets
are {e, d, f} and {a, b, c}. Multiplying these subgroups together and
neglecting duplicate elements yields

{e, d, f}{e, d, f} = {e, d, f}, {e, d, f}{a, b, c} = {a, b, c}

{a, b, c}{e, d, f} = {a, b, c}, {a, b, c}{a, b, c} = {e, d, f}

The quotient group (also called the factor group ) of a self-conjugate
subgroup is the collection of cosets, each being considered an element.
The order of the factor group is equal to the index of the self-conjugate
subgroup. With the notation used above, the quotient group is denoted
by G/H.
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Example 2.11. The cosets of the self-conjugate subgroup {e, d, f} of
S3 are {e, d, f} and {a, b, c}, so the order of the factor group is two. If
we use the notation

E = {e, d, f}, A = {a, b, c} (2.2)

for the elements of the factor group, we can use the results of Example
2.8 to construct the multiplication table for this group (shown below)
from which see that E is the identity of the factor group, and E and

E A
E E A
A A E

A are their own inverses. Note that this multiplication table has the
identical structure as the two-element group {e, a} discussed in Sec. 2.4.

2.7 Summary

In this chapter, we have covered only the most basic properties of
groups. One of the remarkable aspects of this subject, already evident
in some of the discussion here, is that the four properties that define a
group, have such an enormous implication for the properties of groups,
quite apart from their implications for physical applications, which will
be explored throughout this course. A comprehensive discussion of the
mathematical theory of groups, including many wider issues in both
pure and applied mathematics, may be found in the book by Gallian.5

5J.A. Gallian, Contemporary Abstract Algebra 4th edn. (Houghton Mifflin,
Boston, 1998).


