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Abstract. The Slot Filling task requires a system to automatically distill information 
from a large document collection and return answers for a query entity with speci-
fied attributes (‘slots’), and use them to expand the Wikipedia infoboxes. We de-
scribe two bottom-up Information Extraction style pipelines and a top-down 
Question Answering style pipeline to address this task. We propose several novel 
approaches to enhance these pipelines, including statistical answer re-ranking and 
Markov Logic Networks based cross-slot reasoning. We demonstrate that our system 
achieves state-of-the-art performance, with 3.1% higher precision and 2.6% higher 
recall compared with the best system in the KBP2009 evaluation.  
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1 Introduction 

The increasing number of open evaluations and shared resources has made it possible 
for many natural language processing tasks to benefit from system combination. For-
tunately, the Slot Filling track of the recently launched Knowledge Base Population 
(KBP) task1 at the Text Analysis Conference (TAC) provides a platform to attempt 
system combination for information extraction.  

The KBP Slot Filling task involves learning a pre-defined set of attributes for per-
son and organization entities based on a source collection of documents. A query con-
tains a name-string, docid, entity-type, node-id (entry ID) in Wikipedia, an optional 
list of slots to ignore. For example, [Andy Warhol, ABC-20080611-9372, PER, SF7, 
per:date_of_birth] is a query for the painter “Andy Warhol”, for which a system 
should return all slot types except per:date_of_birth.   KBP 2010 defined 26 slot types 
for persons and 16 slot types for organizations. This task has attracted many partici-
pants from IE and Question Answering (QA) communities. In addition, a large 
amount of system or human annotated data are shared as a community effort. 

In this paper we present a state-of-the-art Slot Filling system that includes two bot-
tom-up IE style pipelines and a QA style pipeline, with several novel enhancements 
including statistical answer re-ranking and Markov Logic Networks (MLN) based 
cross-slot reasoning. We evaluate performance across our pipelines, with the systems 
from KBP2009 and human annotators.   

                                                           
1 http://nlp.cs.qc.cuny.edu/kbp/2010/ 



2 System Overview 

Figure 1 depicts the general procedure of our approach.  All three pipelines begin with 
an initial query processing stage where query expansion techniques are used to im-
prove recall.  The next step of the system is pipeline dependent, representing three 
alternative approaches to the KBP task: IE, pattern matching and QA.   After genera-
tion of the best answer candidate sets form the individual systems, they are combined 
to re-rank confidence on the system-wide answer set and for cross-slot reasoning.  
 

 
Figure 1. Slot Filling System Pipelines  

3 Bottom-up and Top-down Pipelines 

These pipelines are organized in two forms: bottom-up IE based approaches that ex-
tract all possible attributes for a given query and then fill in the slots by mapping and 
inference (section 3.1 and 3.2); and top-down QA based approach that search for an-
swers constructed from target entities and slot types (section 3.3). 

3.1 Pattern Matching 

In pattern matching approach, we first automatically obtain the ranked patterns by 
learning from query-answer (q-a) pairs, and then apply these patterns to find answers 



to unseen queries. For example, given the pair (Michael Jackson, 50) for slot per:age, 
we can extract sentences in which Michael Jackson and 50 co-occur:  

(1) Michael Jackson died at the age of 50  ;  (2) Michael Jackson (50) … 
Pattern can be constructed as  

(1) <Q> died at the age of <A> ; (2) <Q> (<A>) 
  This approach consists of the following steps: 
 (1) Selection of query-answer pairs 
We extract q-a pairs from the facts listed in Wikipedia infobox2 by some mappings 
from infobox fields to KBP slots. q-a pairs are split into two sets: half for pattern ex-
traction, and the other half for pattern assessment. 
(2) Pattern extraction 
For each q-a pair from the training set, we use a search engine3 to retrieve the top 
1000 documents in the source collection, and pick out sentences in which the query 
and answer co-occur.  In addition to populating static patterns for different q-a pairs, 
we also apply entity type replacement and regular expressions to make patterns as 
general as possible.  
(3) Pattern assessment 
For each q-a pair from a stand-alone development set, we search the top 1000 docu-
ments and pick out the sentences in which the query occurs. We apply patterns for 
each sentence and if it can be matched, extract the entity at the exact place as the an-
swer. We sort the patterns in the descending order of precision (matching rate), and 
filter those with precision below a threshold. 
(4) Pattern matching  
To obtain candidate answers for slot filling, we locate the sentences where q occurs, 
apply the patterns generated by step (3) and extract the answer when there is a pattern 
match. We then rank the answers according to the sum of precisions of all patterns 
that produce the answer. 
(5) Filtering answers 
We set a low threshold to include more candidate answers, and then apply several 
filtering steps to distill the best answers. Filtering steps include removing answers 
with inappropriate entity types, erroneous answers that are not in dictionary resources 
(e.g., the country dictionary for slot per:country_of_birth) or inappropriate answers 
whose dependency parsing paths to the query do not satisfy certain constraints (e.g., 
for slot org:subsidiaries, org:parents, the query and the answer should not have a 
conjunction relation). 

3.2 Supervised IE 

We apply a cross-document English IE system (Ji et al., 2009) to extract relations and 
events defined in NIST Automatic Content Extraction Program (ACE 2005)4. Rela-
tion extraction and event extraction are based on maximum entropy models, incorpo-
rating diverse lexical, syntactic, semantic and ontological knowledge. ACE2005 

                                                           
2 http://en.wikipedia.org/wiki/Help:Infobox 
3 http://lucene.apache.org/ 
4 http://www.nist.gov/speech/tests/ace/ 



defines 6 main relation types and 18 subtypes; 8 event types and 33 subtypes. We 
apply the following mapping between ACE relation/event and KBP. 

Given a 3-tuple <emi, emj, r> from relation extraction which indicates that the en-
tity mentions emi  and emj  holds a relation r, and if r  matches a slot type r’ and emi 

matches the query entity q in slot filling, then the answer  in the uncompleted 3-
tuple < q, a, r’> for slot filling is emj. 

Given a 3-tuple <t, arg, e> and arg = {emi, emj, …} from event extraction which 
indicates that the trigger word t  indicates an event type e and the involving arguments 
in arg include emi, emj, and so on. If the event type e  matches a slot type e‘,emi 
matches the query entity q in slot filling and emj satisfies the role constraint, then the 
answer a is emj. For example, if a MARRY event matches per:spouse slot, and one 
person entity emi matches the query, and the other involved entity emj satisfies the 
role constraint of PERSON, then we return emj  as the answer. 

3.3 Question Answering 

We also apply the web module of an open domain QA system, OpenEphyra (Schlae-
fer et al., 2007) to retrieve candidate answers for the KBP slot filling task.  Since can-
didate answers must be entailed in the KB and a corresponding document id 
identified, additional answer processing is necessary to determine the candidate an-
swer’s relevance and retrieve the corresponding docid(s) for the document collection. 

To estimate the relevance, R, of a q-a pair, we use the joint probability of observing 
both the query and answer by means of the answer pattern probability: 

P (q, a) = P (q NEAR a) 
where NEAR is defined as within the same sentence boundary. At the sentence level, 
we calculate the frequency of q-a pair occurrence in the reference corpus and modify 
the related Corrected Conditional Probability (CCP) formula to assess R for query 
pattern q and answer pattern a: 

( )
( , ) *#

( )* ( )

frequency qNEARa
R q a totalsentences

frequency q frequency a
=  

  After the relevance scores are calculated, the values for each KBP slot are rescaled 
from 0-1 in order to facilitate the comparison of relevance values among different 
slot. 

4 More Queries and Fewer Answers 

We enhance the above three pipelines based on the following extensions. We hy-
pothesize that cleverly designed query expansion techniques (section 4.1) will im-
prove recall of candidate answers to the query. By obtaining more potential correct 
answers in the ranked list, we can exploit effective learning-to-rank technique to se-
lect the best answer (section 4.2).  Furthermore, most slot filling methods often pro-
duce logically incoherent answers. We design a novel cross-slot reasoning approach 



based on Markov Logic Networks (MLN) to further refine the quality of answers and 
predict new answers (section 4.3). 

4.1 Query Expansion 

In order to generate informative natural language questions from each pair of <query 
name, slot type>, we develop the following expansion methods. 
(1)  Template expansion 
We generated 59 question templates for the 16 organization slots and 62 question 
templates for the 26 person slots. For example, the following semantically equivalent 
questions are generated for the “person: age” slot type: 

• What is <per>'s age?  
• How old is <per>? 
• When was <per> born? 

During candidate answer generation, the tag <per> is replaced by the target.  On 
average, each target value produced an initial set of 112 candidates per slot.  After 
filtering by stop words, and sufficient co-occurrence with the query and answer pat-
tern in the reference corpus, queries averages 4.9 answers each in the baseline results, 
which suggests a very high rate of spurious results from the web module.  For this 
reason, query expansion is a necessary step in the QA pipeline and a rough estimate 
using a small set of queries without enhanced expansion suggests the impact of this 
step on recall leads to approximately a four-fold improvement. 
(2)  Name expansion 
The query name may be mentioned in its alternative names in the corpus, thus, name 
expansion can help improve the recall of slot filling. Wikipedia uses redirect links to 
indicate navigations among pages that mention the same entity. For example, the en-
tity name "Seyed Ali Khamenei" is redirected to "Ali Khamenei". We mine redirect 
links from Wikipedia database (dump up to Mar., 2010) and use them as dictionary 
resources to form extra query names. 

4.2 Statistical Re-Ranking 

We develop a Maximum Entropy (MaxEnt) based supervised re-ranking model to re-
rank candidate answers for the same slot.  We train our model from 452 labeled q-a 
pairs to predict the confidence of each candidate answer’s correctness. We incorporate 
the following semantics and global statistics based features into the re-ranker:  
― Web Module Rank.  We use the answer confidence assigned by the 

OpenEphyra system as a re-ranking feature. For a query, this feature can provide 
information on the confidence of the answer based on web results. 

― Answer Validation Score. We calculate the answer relevance R(q, a) for each 
query pair in the answer validation procedure. This feature provides confidence 
information based on co-occurrence in the document collection. 

― Answer Name Type.  We incorporate the name type of the candidate answer 
(persons, geo-political, organizations, etc.) as an additional feature for re-
ranking. Names are tagged using dictionary files compiled by the Ephyra project.   



― Slot Type.  Using the KBP slot type as a feature allows us to re-rank slot types 
so that our QA system is more likely to get correct answers for a slot type with a 
higher confidence.   

4.3 MLN based Cross-Slot Reasoning 

In the slot filling task, each slot is often dependent on other slots, but systems built for 
the slot filling task often ignore these dependencies and process each slot individually. 
In particular, the family slots include such dependency relationships (e.g.  X is 

per:children of Y  Y is per:parents of  X; X  is per:spouse of Y   Y is not likely 
to be per:siblings of X). Therefore we develop a reasoning component to approach a 
real world acceptable answer in which all slot dependencies are satisfied. On the other 
hand, we can design propagation rules to enhance recall, for example, X was born on 
date Y  X’s age is approximately (the current year – Y).  

We noticed that heuristic inferences are highly dependent on the order of applying 
rules, and the performance may have been limited by the thresholds which may over-
fit a small development corpus. We use Markov Logic Networks (Richardson and 
Domingos, 2006), a statistical relational learning language, to model these inference 
rules more declaratively. Markov Logic extends first order logic in that it adds a 
weight to each first order logic formula, allowing for violation of those formulas with 
some penalty. We use the Alchemy toolkit (Kok et al., 2007) to encode inference rules 
such as: 
  SpouseOf(a,b)→(~ChildOf(a,b)∧~ParentOf(a,b)∧~OtherFamilyOf(a,b)∧~SiblingOf(a,b) 
  Then our remaining uncertainty with regard to this formula will be captured by a 
weight associated with it. Markov Logic will make it possible to compactly specify 
probability distributions over these complex relational inferences, and easily capture 
non-deterministic (soft) rules that tend to hold among slots but do not have to. We 
incorporate hard rules such as name/date/number/title format constraints for slots in-
cluding per:title, per:country_of_death and org:number_of_em ployees/members, as 
well as soft rules such as per:birth_of_date to per:age propagation. 

5 Experimental Results 

In this section we present the overall performance of our three pipelines by comparing 
to the best system at KBP2009 evaluation and human annotation, and break down the 
performance to demonstrate the impact of key techniques. 

5.1 Data and Scoring Metric 

We randomly select 21 queries (11 persons and 10 organizations) and the entire 
source collection (1,289,649 documents in total) from KBP 2009 evaluation corpora 



to evaluate our methods5. For each query, we combine the human annotation from 
LDC based on exhaustive search (110 instances) and the correct answers from KBP 
2009 human assessment (195 instances) to form our initial answer keys (K) including 
263 unique instances.    
  Despite of the requirement  conducting search as exhaustive as possible, a single 
human annotator can only achieve lower than 50% recall, we follow the human as-
sessment procedure as in KBP 2009 evaluation.  We ask another human annotator to 
manually check all those instances generated by the system but not in human annota-
tion, and if an instance is correct, it will be added to form the expanded answer key set 
(K’). Since this human assessment procedure is time consuming, we only apply it to 
the final best pipeline for comparison, while use relative scores for the detailed break 
down analysis experiments.   

We follow the KBP 2010 scoring metric6 to evaluate each pipeline. This is a uni-
form scoring metric based on standard Precision, Recall and F-measure. Since only 
non-NIL answers are informative in applications, we focus on scoring non-NIL an-
swers. A unique answer instance <query, slot type, answer> is considered as correct if 
it matches any instance in the answer key. We added additional answer normalizations 
to the scorer in order to get more reliable scores and speed up human assessment 
(normalized 6% instances in the test set). The normalizations are based on a list of 
362 country name variants (e.g. “the United States = USA”) and a list of 423 person 
fullname-nickname pairs. If a system returns an answer set S, we compute the follow-
ing scores: 

• Relative Precision =  # (K ∩ S) /# S        Relative Recall =  # (K ∩ S) /# K 
• Precision =  # (K’ ∩ S) /# S       Recall =  # (K’ ∩ S) /# K’ 

5.2 System/Human Comparison 

Table 3 presents the relative scores for three single pipelines. Although these scores 
were evaluated against an incomplete answer key set, it indicates that pattern match-
ing can achieve the best result.  Supervised IE method performs the worst because not 
all of the slot types have corresponding relation and event types. QA method obtained 
comparable precision but much lower recall because the candidate answers are re-
stricted by query template design and the annotations (e.g. name tagging) used for 
answer validation.  

Table 3. Pipeline Relative Performance against Incomplete Answer Keys (%) 

Pipeline Relative Precision Relative Recall Relative F-measure 
Supervised IE 13.09 12.82 12.95 

Pattern  
Matching 

18.95 18.46 18.70 

QA 18.97 11.11 14.02 

                                                           
5 In order to compare with KBP2009 participants, we mapped some fine-grained KBP 2010 slot 
types back to KBP2009 slot types (e.g. maped  “country_of_birth”, “stateorprovince_of_birth”  
and “city_of_birth” back to  “place_of_birth”).  
6 http://nlp.cs.qc.cuny.edu/kbp/2010/scoring.html 



One advantage of QA is that answer candidates can still receive a high confidence 
despite the context sentence structure.  For example, the QA system is the only ap-
proach that returned a correct answer for the slot org:headquarters, producing the 
query answer pair <Convocation of Anglicans in North America, Nigeria> and return-
ing the context sentence “In May, Global South spokeman and Nigerian Archbishop 
Peter Akinola consecrated Martyn Minns of Virginia as Bishop of the Church of Nige-
ria for an outreach programme called Convocation of Anglicans in North America.” 

The most common mistakes of the QA pipeline are directly related to the use of co-
occurrence statistics. Although semantic evidence indicates an answer is invalid, it is 
still returned.   For example, the QA pipeline identified context sentence, “Masked 
fighters parade beneath yellow flags beside the faces of Nasrallah and Abbas Mous-
sawi , Nasrallah's predecessor who was assassinated, along with his wife and son, in 
an attack by an Israeli helicopter pilot”, but since only co-occurrence were used, the 
following inaccurate answer pair was generated for the slot per:title <abbas mous-
sawi, assassinated> and should have been returned for per:cause_of_death. 

In addition, we compared our absolute scores with the LDC human annotator and 
the top slot filling system in KBP2009 evaluation which achieved the best score for 
non-NIL slots. The results are shown in Table 4. 

Table 4.  Performance Comparison with State-of-the-art System and  
Human Annotator 

System/Human Precision Recall F-Measure 
Pattern Matching 35.26 34.36 34.81 

09 Best System 32.12 31.79 31.96 
Single LDC Human Annotator 100 41.83 58.99 

 
From Table 4 we can see that our pattern matching approach achieved significantly 

better results than the top site at KBP2009 evaluation, on both precision and recall.  
We can also conclude that Slot Filling is a very challenging task even for human be-
cause the human annotator can only find 41.83% answers.  

5.3 Impact of Statistical Re-Ranking 

We then evaluate the impact of combination methods and will demonstrate they are 
also essential steps to achieve good slot filling results. We will describe the results for 
statistical re-ranker in this subsection and cross-slot reasoning in 5.4 respectively.  

We evaluate the impact of re-ranking on the QA pipeline. The relative scores are 
presented in Table 5. We can see that statistical re-ranking significantly improved 
(about 5%) both precision and recall of the QA pipeline. 

Table 5. Statistical Re-Ranking on QA (%) 

QA Pipeline Relative Precision Relative Recall Relative F-measure 
Before Re-Ranking 16.41 6.54 9.36 
After Re-Ranking 18.97 11.11 14.02 

 



Supervised Re-Ranking helps to mitigate the impact of errors produced by scoring 
based on co-occurrence. For example, when applied to our answer set, the answer 
“Clinton” for the query “Dee Dee Myers”, had a system relevance score for the attrib-
ute per:children due to frequent co-occurrence that was reduced and consequently 
removed by re-ranking. Alternatively, the query “Moro National Liberation Front” 
and answer “1976”did not have a high co-occurrence in the text collection, but was 
bumped up by the re-ranker based on the slot type feature org:founded .   

5.4 Impact of Cross-Slot Reasoning 

Experimental results demonstrate the cross-slot reasoning approach described in sec-
tion 4.3 can enhance the quality of slot filling in two aspects: (1) It can generate new 
results for the slots which the pipelines failed altogether; (2) It can filter out or correct 
logically incoherent answers. For the test set, this method significantly improved the 
precision of slot filling without any loss in recall. Table 6 presents the number of spu-
rious errors removed by this approach when it is applied to various pipelines.  

 
Table 6. Impact of Cross-Slot Reasoning 
Applied Pipeline #Removed Errors 

Baseline 30 
+Validation 23 

 
QA 

 +Re-Ranking 16 
Supervised IE 7 

Pattern Matching 3 

6 Related Work 

The task of extracting slots for persons and organizations has attracted researchers 
from various fields, e.g., relation extraction, question answering, web people search, 
etc. Most KBP systems follow one of the three pipelines we described, such as IE-
based approaches (Bikel et al., 2009) and QA based methods (Li et al., 2009). Some 
previous work (e.g. Schiffman et al., 2007) demonstrated that IE results can be used to 
significantly enhance QA performance.  

Answer validation and re-ranking has been crucial to enhance QA performance 
(e.g. Magnini et al., 2002; Peñas et al., 2007). Recent work (Ravichandran et al., 
2003) has showed that high performance for QA systems can be achieved using as 
few as four features in re-ranking. Our results on the QA pipeline support this finding.  
The same related work (Huang et al., 2009) reports that systems viewed as a re-ranker 
work clearly outperforms classifier based approaches, suggesting a re-ranking was a 
better implementation choice.  
  (Bikel et al., 2009) designed inference rules to improve the performance of slot fill-
ing. We followed their idea but incorporated inference rules into Markov Logic Net-
works (MLN).  



7 Conclusion 

We developed three effective pipelines for the KBP slot filling task. We advance 
state-of-the-art performance using several novel approaches including statistical an-
swer re-ranking and cross-slot reasoning based on Markov Logic Networks (MLN). 
Experimental results demonstrated that the pattern matching pipeline outperforms the 
top system in KBP2009 evaluation.  
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