
Top-down and Bottom-up:
A Combined Approach to Slot Filling

Zheng Chen, Suzanne Tamang, Adam Lee, Xiang Li, Marissa Passantino and Heng Ji

Computer Science Department, Queens College and Graduate Center

City University of New York, New York, NY 13367, USA
hengji@cs.qc.cuny.edu

Abstract. The Slot Filling task requires a system to automatically distill information
from a large document collection and return answers for a query entity with speci-
fied attributes (‘slots’), and use them to expand the Wikipedia infoboxes. We de-
scribe two bottom-up Information Extraction style pipelines and a top-down
Question Answering style pipeline to address this task. We propose several novel
approaches to enhance these pipelines, including statistical answer re-ranking and
Markov Logic Networks based cross-slot reasoning. We demonstrate that our system
achieves state-of-the-art performance, with 3.1% higher precision and 2.6% higher
recall compared with the best system in the KBP2009 evaluation.

Keywords: Slot Filling, Information Extraction, Question Answering

1 Introduction

The increasing number of open evaluations and shared resources has made it possible
for many natural language processing tasks to benefit from system combination. For-
tunately, the Slot Filling track of the recently launched Knowledge Base Population
(KBP) task1 at the Text Analysis Conference (TAC) provides a platform to attempt
system combination for information extraction.

The KBP Slot Filling task involves learning a pre-defined set of attributes for per-
son and organization entities based on a source collection of documents. A query con-
tains a name-string, docid, entity-type, node-id (entry ID) in Wikipedia, an optional
list of slots to ignore. For example, [Andy Warhol, ABC-20080611-9372, PER, SF7,
per:date_of_birth] is a query for the painter “Andy Warhol”, for which a system
should return all slot types except per:date_of_birth. KBP 2010 defined 26 slot types
for persons and 16 slot types for organizations. This task has attracted many partici-
pants from IE and Question Answering (QA) communities. In addition, a large
amount of system or human annotated data are shared as a community effort.

In this paper we present a state-of-the-art Slot Filling system that includes two bot-
tom-up IE style pipelines and a QA style pipeline, with several novel enhancements
including statistical answer re-ranking and Markov Logic Networks (MLN) based
cross-slot reasoning. We evaluate performance across our pipelines, with the systems
from KBP2009 and human annotators.

1 http://nlp.cs.qc.cuny.edu/kbp/2010/

2 System Overview

Figure 1 depicts the general procedure of our approach. All three pipelines begin with
an initial query processing stage where query expansion techniques are used to im-
prove recall. The next step of the system is pipeline dependent, representing three
alternative approaches to the KBP task: IE, pattern matching and QA. After genera-
tion of the best answer candidate sets form the individual systems, they are combined
to re-rank confidence on the system-wide answer set and for cross-slot reasoning.

Figure 1. Slot Filling System Pipelines

3 Bottom-up and Top-down Pipelines

These pipelines are organized in two forms: bottom-up IE based approaches that ex-
tract all possible attributes for a given query and then fill in the slots by mapping and
inference (section 3.1 and 3.2); and top-down QA based approach that search for an-
swers constructed from target entities and slot types (section 3.3).

3.1 Pattern Matching

In pattern matching approach, we first automatically obtain the ranked patterns by
learning from query-answer (q-a) pairs, and then apply these patterns to find answers

to unseen queries. For example, given the pair (Michael Jackson, 50) for slot per:age,
we can extract sentences in which Michael Jackson and 50 co-occur:

(1) Michael Jackson died at the age of 50 ; (2) Michael Jackson (50) …
Pattern can be constructed as

(1) <Q> died at the age of <A> ; (2) <Q> (<A>)
 This approach consists of the following steps:
 (1) Selection of query-answer pairs
We extract q-a pairs from the facts listed in Wikipedia infobox2 by some mappings
from infobox fields to KBP slots. q-a pairs are split into two sets: half for pattern ex-
traction, and the other half for pattern assessment.
(2) Pattern extraction
For each q-a pair from the training set, we use a search engine3 to retrieve the top
1000 documents in the source collection, and pick out sentences in which the query
and answer co-occur. In addition to populating static patterns for different q-a pairs,
we also apply entity type replacement and regular expressions to make patterns as
general as possible.
(3) Pattern assessment
For each q-a pair from a stand-alone development set, we search the top 1000 docu-
ments and pick out the sentences in which the query occurs. We apply patterns for
each sentence and if it can be matched, extract the entity at the exact place as the an-
swer. We sort the patterns in the descending order of precision (matching rate), and
filter those with precision below a threshold.
(4) Pattern matching
To obtain candidate answers for slot filling, we locate the sentences where q occurs,
apply the patterns generated by step (3) and extract the answer when there is a pattern
match. We then rank the answers according to the sum of precisions of all patterns
that produce the answer.
(5) Filtering answers
We set a low threshold to include more candidate answers, and then apply several
filtering steps to distill the best answers. Filtering steps include removing answers
with inappropriate entity types, erroneous answers that are not in dictionary resources
(e.g., the country dictionary for slot per:country_of_birth) or inappropriate answers
whose dependency parsing paths to the query do not satisfy certain constraints (e.g.,
for slot org:subsidiaries, org:parents, the query and the answer should not have a
conjunction relation).

3.2 Supervised IE

We apply a cross-document English IE system (Ji et al., 2009) to extract relations and
events defined in NIST Automatic Content Extraction Program (ACE 2005)4. Rela-
tion extraction and event extraction are based on maximum entropy models, incorpo-
rating diverse lexical, syntactic, semantic and ontological knowledge. ACE2005

2 http://en.wikipedia.org/wiki/Help:Infobox
3 http://lucene.apache.org/
4 http://www.nist.gov/speech/tests/ace/

defines 6 main relation types and 18 subtypes; 8 event types and 33 subtypes. We
apply the following mapping between ACE relation/event and KBP.

Given a 3-tuple <emi, emj, r> from relation extraction which indicates that the en-
tity mentions emi and emj holds a relation r, and if r matches a slot type r’ and emi

matches the query entity q in slot filling, then the answer in the uncompleted 3-
tuple < q, a, r’> for slot filling is emj.

Given a 3-tuple <t, arg, e> and arg = {emi, emj, …} from event extraction which
indicates that the trigger word t indicates an event type e and the involving arguments
in arg include emi, emj, and so on. If the event type e matches a slot type e‘,emi
matches the query entity q in slot filling and emj satisfies the role constraint, then the
answer a is emj. For example, if a MARRY event matches per:spouse slot, and one
person entity emi matches the query, and the other involved entity emj satisfies the
role constraint of PERSON, then we return emj as the answer.

3.3 Question Answering

We also apply the web module of an open domain QA system, OpenEphyra (Schlae-
fer et al., 2007) to retrieve candidate answers for the KBP slot filling task. Since can-
didate answers must be entailed in the KB and a corresponding document id
identified, additional answer processing is necessary to determine the candidate an-
swer’s relevance and retrieve the corresponding docid(s) for the document collection.

To estimate the relevance, R, of a q-a pair, we use the joint probability of observing
both the query and answer by means of the answer pattern probability:

P (q, a) = P (q NEAR a)
where NEAR is defined as within the same sentence boundary. At the sentence level,
we calculate the frequency of q-a pair occurrence in the reference corpus and modify
the related Corrected Conditional Probability (CCP) formula to assess R for query
pattern q and answer pattern a:

()
(,) *#

()* ()

frequency qNEARa
R q a totalsentences

frequency q frequency a
=

 After the relevance scores are calculated, the values for each KBP slot are rescaled
from 0-1 in order to facilitate the comparison of relevance values among different
slot.

4 More Queries and Fewer Answers

We enhance the above three pipelines based on the following extensions. We hy-
pothesize that cleverly designed query expansion techniques (section 4.1) will im-
prove recall of candidate answers to the query. By obtaining more potential correct
answers in the ranked list, we can exploit effective learning-to-rank technique to se-
lect the best answer (section 4.2). Furthermore, most slot filling methods often pro-
duce logically incoherent answers. We design a novel cross-slot reasoning approach

based on Markov Logic Networks (MLN) to further refine the quality of answers and
predict new answers (section 4.3).

4.1 Query Expansion

In order to generate informative natural language questions from each pair of <query
name, slot type>, we develop the following expansion methods.
(1) Template expansion
We generated 59 question templates for the 16 organization slots and 62 question
templates for the 26 person slots. For example, the following semantically equivalent
questions are generated for the “person: age” slot type:

• What is <per>'s age?
• How old is <per>?
• When was <per> born?

During candidate answer generation, the tag <per> is replaced by the target. On
average, each target value produced an initial set of 112 candidates per slot. After
filtering by stop words, and sufficient co-occurrence with the query and answer pat-
tern in the reference corpus, queries averages 4.9 answers each in the baseline results,
which suggests a very high rate of spurious results from the web module. For this
reason, query expansion is a necessary step in the QA pipeline and a rough estimate
using a small set of queries without enhanced expansion suggests the impact of this
step on recall leads to approximately a four-fold improvement.
(2) Name expansion
The query name may be mentioned in its alternative names in the corpus, thus, name
expansion can help improve the recall of slot filling. Wikipedia uses redirect links to
indicate navigations among pages that mention the same entity. For example, the en-
tity name "Seyed Ali Khamenei" is redirected to "Ali Khamenei". We mine redirect
links from Wikipedia database (dump up to Mar., 2010) and use them as dictionary
resources to form extra query names.

4.2 Statistical Re-Ranking

We develop a Maximum Entropy (MaxEnt) based supervised re-ranking model to re-
rank candidate answers for the same slot. We train our model from 452 labeled q-a
pairs to predict the confidence of each candidate answer’s correctness. We incorporate
the following semantics and global statistics based features into the re-ranker:
― Web Module Rank. We use the answer confidence assigned by the

OpenEphyra system as a re-ranking feature. For a query, this feature can provide
information on the confidence of the answer based on web results.

― Answer Validation Score. We calculate the answer relevance R(q, a) for each
query pair in the answer validation procedure. This feature provides confidence
information based on co-occurrence in the document collection.

― Answer Name Type. We incorporate the name type of the candidate answer
(persons, geo-political, organizations, etc.) as an additional feature for re-
ranking. Names are tagged using dictionary files compiled by the Ephyra project.

― Slot Type. Using the KBP slot type as a feature allows us to re-rank slot types
so that our QA system is more likely to get correct answers for a slot type with a
higher confidence.

4.3 MLN based Cross-Slot Reasoning

In the slot filling task, each slot is often dependent on other slots, but systems built for
the slot filling task often ignore these dependencies and process each slot individually.
In particular, the family slots include such dependency relationships (e.g. X is

per:children of Y  Y is per:parents of X; X is per:spouse of Y Y is not likely
to be per:siblings of X). Therefore we develop a reasoning component to approach a
real world acceptable answer in which all slot dependencies are satisfied. On the other
hand, we can design propagation rules to enhance recall, for example, X was born on
date Y  X’s age is approximately (the current year – Y).

We noticed that heuristic inferences are highly dependent on the order of applying
rules, and the performance may have been limited by the thresholds which may over-
fit a small development corpus. We use Markov Logic Networks (Richardson and
Domingos, 2006), a statistical relational learning language, to model these inference
rules more declaratively. Markov Logic extends first order logic in that it adds a
weight to each first order logic formula, allowing for violation of those formulas with
some penalty. We use the Alchemy toolkit (Kok et al., 2007) to encode inference rules
such as:
 SpouseOf(a,b)→(~ChildOf(a,b)∧~ParentOf(a,b)∧~OtherFamilyOf(a,b)∧~SiblingOf(a,b)
 Then our remaining uncertainty with regard to this formula will be captured by a
weight associated with it. Markov Logic will make it possible to compactly specify
probability distributions over these complex relational inferences, and easily capture
non-deterministic (soft) rules that tend to hold among slots but do not have to. We
incorporate hard rules such as name/date/number/title format constraints for slots in-
cluding per:title, per:country_of_death and org:number_of_em ployees/members, as
well as soft rules such as per:birth_of_date to per:age propagation.

5 Experimental Results

In this section we present the overall performance of our three pipelines by comparing
to the best system at KBP2009 evaluation and human annotation, and break down the
performance to demonstrate the impact of key techniques.

5.1 Data and Scoring Metric

We randomly select 21 queries (11 persons and 10 organizations) and the entire
source collection (1,289,649 documents in total) from KBP 2009 evaluation corpora

to evaluate our methods5. For each query, we combine the human annotation from
LDC based on exhaustive search (110 instances) and the correct answers from KBP
2009 human assessment (195 instances) to form our initial answer keys (K) including
263 unique instances.
 Despite of the requirement conducting search as exhaustive as possible, a single
human annotator can only achieve lower than 50% recall, we follow the human as-
sessment procedure as in KBP 2009 evaluation. We ask another human annotator to
manually check all those instances generated by the system but not in human annota-
tion, and if an instance is correct, it will be added to form the expanded answer key set
(K’). Since this human assessment procedure is time consuming, we only apply it to
the final best pipeline for comparison, while use relative scores for the detailed break
down analysis experiments.

We follow the KBP 2010 scoring metric6 to evaluate each pipeline. This is a uni-
form scoring metric based on standard Precision, Recall and F-measure. Since only
non-NIL answers are informative in applications, we focus on scoring non-NIL an-
swers. A unique answer instance <query, slot type, answer> is considered as correct if
it matches any instance in the answer key. We added additional answer normalizations
to the scorer in order to get more reliable scores and speed up human assessment
(normalized 6% instances in the test set). The normalizations are based on a list of
362 country name variants (e.g. “the United States = USA”) and a list of 423 person
fullname-nickname pairs. If a system returns an answer set S, we compute the follow-
ing scores:

• Relative Precision = # (K ∩ S) /# S Relative Recall = # (K ∩ S) /# K
• Precision = # (K’ ∩ S) /# S Recall = # (K’ ∩ S) /# K’

5.2 System/Human Comparison

Table 3 presents the relative scores for three single pipelines. Although these scores
were evaluated against an incomplete answer key set, it indicates that pattern match-
ing can achieve the best result. Supervised IE method performs the worst because not
all of the slot types have corresponding relation and event types. QA method obtained
comparable precision but much lower recall because the candidate answers are re-
stricted by query template design and the annotations (e.g. name tagging) used for
answer validation.

Table 3. Pipeline Relative Performance against Incomplete Answer Keys (%)

Pipeline Relative Precision Relative Recall Relative F-measure
Supervised IE 13.09 12.82 12.95

Pattern
Matching

18.95 18.46 18.70

QA 18.97 11.11 14.02

5 In order to compare with KBP2009 participants, we mapped some fine-grained KBP 2010 slot
types back to KBP2009 slot types (e.g. maped “country_of_birth”, “stateorprovince_of_birth”
and “city_of_birth” back to “place_of_birth”).
6 http://nlp.cs.qc.cuny.edu/kbp/2010/scoring.html

One advantage of QA is that answer candidates can still receive a high confidence
despite the context sentence structure. For example, the QA system is the only ap-
proach that returned a correct answer for the slot org:headquarters, producing the
query answer pair <Convocation of Anglicans in North America, Nigeria> and return-
ing the context sentence “In May, Global South spokeman and Nigerian Archbishop
Peter Akinola consecrated Martyn Minns of Virginia as Bishop of the Church of Nige-
ria for an outreach programme called Convocation of Anglicans in North America.”

The most common mistakes of the QA pipeline are directly related to the use of co-
occurrence statistics. Although semantic evidence indicates an answer is invalid, it is
still returned. For example, the QA pipeline identified context sentence, “Masked
fighters parade beneath yellow flags beside the faces of Nasrallah and Abbas Mous-
sawi , Nasrallah's predecessor who was assassinated, along with his wife and son, in
an attack by an Israeli helicopter pilot”, but since only co-occurrence were used, the
following inaccurate answer pair was generated for the slot per:title <abbas mous-
sawi, assassinated> and should have been returned for per:cause_of_death.

In addition, we compared our absolute scores with the LDC human annotator and
the top slot filling system in KBP2009 evaluation which achieved the best score for
non-NIL slots. The results are shown in Table 4.

Table 4. Performance Comparison with State-of-the-art System and
Human Annotator

System/Human Precision Recall F-Measure
Pattern Matching 35.26 34.36 34.81

09 Best System 32.12 31.79 31.96
Single LDC Human Annotator 100 41.83 58.99

From Table 4 we can see that our pattern matching approach achieved significantly

better results than the top site at KBP2009 evaluation, on both precision and recall.
We can also conclude that Slot Filling is a very challenging task even for human be-
cause the human annotator can only find 41.83% answers.

5.3 Impact of Statistical Re-Ranking

We then evaluate the impact of combination methods and will demonstrate they are
also essential steps to achieve good slot filling results. We will describe the results for
statistical re-ranker in this subsection and cross-slot reasoning in 5.4 respectively.

We evaluate the impact of re-ranking on the QA pipeline. The relative scores are
presented in Table 5. We can see that statistical re-ranking significantly improved
(about 5%) both precision and recall of the QA pipeline.

Table 5. Statistical Re-Ranking on QA (%)

QA Pipeline Relative Precision Relative Recall Relative F-measure
Before Re-Ranking 16.41 6.54 9.36
After Re-Ranking 18.97 11.11 14.02

Supervised Re-Ranking helps to mitigate the impact of errors produced by scoring
based on co-occurrence. For example, when applied to our answer set, the answer
“Clinton” for the query “Dee Dee Myers”, had a system relevance score for the attrib-
ute per:children due to frequent co-occurrence that was reduced and consequently
removed by re-ranking. Alternatively, the query “Moro National Liberation Front”
and answer “1976”did not have a high co-occurrence in the text collection, but was
bumped up by the re-ranker based on the slot type feature org:founded .

5.4 Impact of Cross-Slot Reasoning

Experimental results demonstrate the cross-slot reasoning approach described in sec-
tion 4.3 can enhance the quality of slot filling in two aspects: (1) It can generate new
results for the slots which the pipelines failed altogether; (2) It can filter out or correct
logically incoherent answers. For the test set, this method significantly improved the
precision of slot filling without any loss in recall. Table 6 presents the number of spu-
rious errors removed by this approach when it is applied to various pipelines.

Table 6. Impact of Cross-Slot Reasoning
Applied Pipeline #Removed Errors

Baseline 30
+Validation 23

QA

 +Re-Ranking 16
Supervised IE 7

Pattern Matching 3

6 Related Work

The task of extracting slots for persons and organizations has attracted researchers
from various fields, e.g., relation extraction, question answering, web people search,
etc. Most KBP systems follow one of the three pipelines we described, such as IE-
based approaches (Bikel et al., 2009) and QA based methods (Li et al., 2009). Some
previous work (e.g. Schiffman et al., 2007) demonstrated that IE results can be used to
significantly enhance QA performance.

Answer validation and re-ranking has been crucial to enhance QA performance
(e.g. Magnini et al., 2002; Peñas et al., 2007). Recent work (Ravichandran et al.,
2003) has showed that high performance for QA systems can be achieved using as
few as four features in re-ranking. Our results on the QA pipeline support this finding.
The same related work (Huang et al., 2009) reports that systems viewed as a re-ranker
work clearly outperforms classifier based approaches, suggesting a re-ranking was a
better implementation choice.
 (Bikel et al., 2009) designed inference rules to improve the performance of slot fill-
ing. We followed their idea but incorporated inference rules into Markov Logic Net-
works (MLN).

7 Conclusion

We developed three effective pipelines for the KBP slot filling task. We advance
state-of-the-art performance using several novel approaches including statistical an-
swer re-ranking and cross-slot reasoning based on Markov Logic Networks (MLN).
Experimental results demonstrated that the pattern matching pipeline outperforms the
top system in KBP2009 evaluation.

Acknowledgement

This work was supported by the U.S. Army Research Laboratory under Cooperative
Agreement Number W911NF-09-2-0053, the U.S. NSF CAREER Award under Grant
IIS-0953149, Google, Inc., DARPA GALE Program, CUNY Research Enhancement
Program, PSC-CUNY Research Program, Faculty Publication Program and GRTI
Program. The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official policies, either ex-
pressed or implied, of the Army Research Laboratory or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

References

Dan Bikel, Vittorio Castelli, Radu Florian and Ding-jung Han. 2009. Entity Linking and Slot
Filling through Statistical Processing and Inference Rules. Proc. TAC 2009 Workshop.

Huang, Z., Thint, M., and Celikyilmaz, A. 2009. Investigation of question classifier in question
answering. Proc. ACL 2009.

Heng Ji, Ralph Grishman, Zheng Chen and Prashant Gupta. 2009. Cross-document Event Ex-
traction, Ranking and Tracking. Proc. RANLP 2009.

S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, D. Lowd, and P. Domingos. 2007. The
Alchemy system for statistical relational AI. Technical report, Department of Computer Sci-
ence and Engineering, University of Washington.

Fangtao Li, Zhicheng Zheng, Fan Bu, Yang Tang, Xiaoyan Zhu and Minlie Huang. 2009. THU
QUANTA at TAC 2009 KBP and RTE Track. Proc. TAC 2009 Workshop.

Bernardo Magnini, Matteo Negri, Roberto Prevete and Hristo Tanev. 2002. Mining Knowledge
from Repeated Co-occurrences: DIOGENE at TREC-2002. Proc. TREC-2002.

Anselmo Peñas, Álvaro Rodrigo, Felisa Verdejo. 2007. Overview of the Answer Validation
Exercise 2007. Working Notes of CLEF 2007.

Ravichandran, D., Hovy, E., and Och, F. J. 2003. Statistical QA -classifier vs. re-ranker: what's
the difference?. Proc. ACL 2003 Workshop on Multilingual Summarization and Question
Answering.

Matt Richardson and Pedro Domingos. 2006. Markov Logic Networks. Machine Learning.
62:107-136.

Nico Schlaefer, Jeongwoo Ko, Justin Betteridge, Guido Sautter, Manas Pathak, Eric Nyberg.
2007. Semantic Extensions of the Ephyra QA System for TREC 2007. Proc. TREC 2007.

Barry Schiffman, Kathleen McKeown, Ralph Grishman, and James Allan. 2007. Question An-
swering Using Integrated Information Retrieval and Information Extraction. Proc. NAACL
2007.

