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Abstract

We describe evolution of spiking neural architectures to control navigation of autonomous mobile

robots. Experimental results with simple fitness functions indicate that evolution can rapidly generate

spiking circuits capable of navigating in textured environments with simple genetic representations that

encode only the presence or absence of synaptic connections. Building on those results, we then describe

a low-level implementation of evolutionary spiking circuits in tiny micro-controllers that capitalizes on

compact genetic encoding and digital aspects of spiking neurons. The implementation is validated on a

sugar-cube robot capable of developing functional spiking circuits for collision-free navigation.

I. Spiking Neural Circuits

The great majority of biological neurons communicate using self-propagating electrical

pulses called spikes. Computational approaches to the study of brain function define two

classes of neuron models that, among other things, differ in their interpretation of the

role of spikes. Connectionist models [23], by far the most widespread, assume that what

matters in the communication is the firing rate of a neuron, that is, the average quantity of

spikes emitted by the neuron within a relatively long time window (for example, over 100

ms). In these models the real-value output of a neuron represents the firing rate, possibly

normalized relatively to the maximum attainable value. Pulsed models [19], instead, are

based on assumption that the firing time, that is, the precise time of emission of a single

spike, may convey important information [25]. Often, these pulsed network models use

complex activation functions that represent the emission of spikes on a very fine timescale

[22].

Leaving aside the question of whether information transmitted among neurons is en-

coded by firing rate, firing time, or a combination of both, artificial spiking neural networks

are attracting increased attention because they could capture and exploit more efficiently

(i.e., with fewer neurons or with higher probability) non-linear time series of input sig-

nals; can be implemented in tiny and low-power chips [13] that exploit the sub-threshold

physics of transistors in analog VLSI [20]; and allow biologically plausible investigations

of computation in nervous systems. In this paper we are concerned mainly with the latter

issue and show that adaptive networks of spiking neurons can be efficiently implemented

also in tiny, low-cost, and largely available digital circuits.
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Designing circuits of spiking neurons that display a desired functionality is still a chal-

lenging task. The most successful results in the field of robotics obtained so far focused on

the first stages of sensory processing and on relatively simple motor control. For example,

Indiveri et al. [12] developed neuromorphic vision circuits that emulate interconnections

among neurons in the early layers of the biological retina in order to extract motion in-

formation and implement a simple form of attentive selection. These vision circuits have

been interfaced with a Koala robot and their output has been used to drive the wheels

of the robot in order to follow lines [14]. In another line of work, Lewis et al. developed

an analog VLSI circuit with four spiking neurons capable of controlling a robotic leg and

adapting the motor commands using sensory feedback [18]. This neuromorphic circuit

consumes less than 1 microwatt and takes less than 0.4 square millimeters of chip area.

Despite these promising implementations, there are not yet methods for developing com-

plex spiking circuits that could display minimally-cognitive functions or learn behavioral

abilities through autonomous interaction with a physical environment. Artificial evolu-

tion thus may represent a promising methodology to generate networks of spiking circuits

with desired functionalities expressed as behavioral criteria (fitness function). In previous

work [4], we showed that evolution of spiking circuits can generate functional networks

of spiking circuits for vision-based navigation of autonomous robots. Neuro-ethological

analysis of an evolved circuit revealed functional specialization of single neurons and the

role of spiking correlation on behavior. More recently, DiPaolo [3] used a similar approach

to investigate the role of noise and synaptic plasticity in light-directed tasks.

In this article, we expand our previous work [7], [4] and describe a compact digital

implementation of evolutionary spiking circuits that capitalize on our findings that such

circuits do not require specification of synaptic weights and thus result in compact genetic

encodings. The resulting evolutionary spiking circuit on chip, which occupies less than

50 bytes of memory, is validated on a sugar-cube robot that autonomously and reliably

develops the ability to navigate around a maze in a less than an hour. A preliminary

implementation of this model was described in [7]. Here we describe a final implementation,

a new set of experiments, and the analysis of evolved network architectures.

In the next section we describe the network architecture and genetic representation used
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in these experiments. In the section that follows we briefly describe a set of evolutionary

experiments on vision-based navigation with a neuron model that captures non-linear dy-

namics of synaptic integration and post-spike membrane behavior. These experiments are

based on the specifications that we presented in [4]. We then describe the implementation

in a micro-controller of a simplified neuron model and evolutionary algorithm and present

a set of evolutionary experiments with a fully autonomous sugar-cube robot. Finally, we

discuss the relationship between our low-level digital implementation and other analog

VLSI implementations of spiking networks, as well as scalability issues and extensions of

our model.

II. Network Architecture and Genetic Representation

In this section we describe the architecture and genetic representation of evolutionary

spiking neurons, which is common to all experiments presented in this article.

The number of neurons and sensors is predefined and cannot be changed by the evolu-

tionary process. Only the connectivity pattern and neuron signs are genetically encoded

and evolved. A network is composed of n neurons and s sensory neurons (figure 1).

Each neuron can receive connections from all neurons (including itself) and from all

sensory receptors. A neuron can be excitatory or inhibitory and all outgoing connections

have the same sign. Synaptic connections have weight w = 1 and their signs are determined

by the pre-synaptic neuron (positive if the neuron is excitatory, negative if the neuron is

inhibitory). The state of a neuron is described by its membrane potential. Incoming

spikes affect the membrane potential; we will assume that excitatory spikes increase its

value and inhibitory spikes decrease it. In the absence of input activity the membrane

potential tends towards a resting value (this process is also known as leakage). When

the membrane potential exceeds its firing threshold, the neuron emits a spike. Following

a spike, the membrane potential is lowered to a negative value from which it gradually

returns to its resting potential. This hinders the emission of a new spike within the time

interval that immediately follows the firing event. This time interval is also known as

refractory period.

Sensory neurons are not connected among themselves and are always excitatory. At

each time interval, they emit a spike with a probability proportional to the response of
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Fig. 1. Network architecture (only a few neurons and connections are shown) and genetic representation

for one neuron. Left : A conventional representation showing the network architecture. White circles

represent excitatory neurons, black circles represent inhibitory ones. Right : The same network unfolded

in time. The circles on the top row represent the neurons and sensory receptors at a given time step; the

circles on the left column represent the neurons at the next time step. The array of squares represent

existing connections between neurons and from receptors to neurons. Top right : Genetic representation

of one neuron. The neuron sign (excitatory or inhibitory) and the connectivity array are genetically

encoded as 1’s (excitatory neuron, connection, respectively) and 0’s (inhibitory neuron, no connection,

respectively). For every neuron, the first bit represents the neuron sign and the remaining bits represent

the presence/absence of its incoming connections.

the corresponding sensor. The response of a sensor is linearly scaled in the interval [0, 1].

A binary genetic string encodes the sign of each neuron and the presence of synaptic

connections. All other neuronal and synaptic parameters are predefined and equal for all

neurons. The genetic string is composed of n blocks, one for each neuron in the network.

The first bit of the block encodes the sign of the neuron and the remaining n + s bits

encode the presence/absence of a connection from the n neurons and from the s sensory

neurons in the network. Therefore, the total genetic length is n(1 + n + s) bits.

III. Evolution of Vision-Based Navigation

In this first set of experiments we assess the evolvability of connectivity patterns (pres-

ence/absence of a connection) and neuron signs of fully recurrent spiking networks for a

vision-based navigation task (preliminary results and additional experimental conditions

are described in [4]).
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Fig. 2. A Khepera robot equipped with a linear camera is positioned in an arena with black and white

vertical stripes of random size painted on the walls at irregular intervals. The arena is lit from above

in order to let the evolutionary experiments continue at night. The robot is connected to a workstation

through rotating contacts that provide serial data transmission and power supply. The spiking networks

and genetic operators run on the workstation. The robot communicates with the workstation every 100

ms.

A Khepera robot equipped with a linear camera is asked to navigate in a square arena

measuring 60 by 60 cm with textured walls (figure 2). The walls are filled with black

and white vertical stripes. Width and spacing of the stripes have a uniform random

distribution within the interval [0.5, 5] cm.

The vision system (figure 3) is composed of a linear array of 64 photoreceptors (left

hole) spanning a visual field of 36 deg and of a light sensor (right hole) used to adjust the

sensitivity of the receptors to the global illumination level. Each photoreceptor returns a

value between 0 (black) and 255 (white). Given the relatively low spatial frequency of the

stripes on the walls, we read the activations of only 16 photoreceptors equally spaced on the

array (1 every 4). These values are convolved with a Laplace filter spanning three adjacent

(sampled) photoreceptors (weights of the Laplace filter are {−.5, 1,−.5}) in order to detect

contrast (figure 3). Finally, the convolved image is rectified by taking the absolute values

and scaling them in the range [0, 1]. The resulting 16 values represent the probabilities of

emitting a spike for each corresponding sensory neuron at every update of the network.

The states of all neurons in the network (including sensory neurons) are synchronously

updated every millisecond, but the sensors and motors of the robot are updated only once
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Fig. 3. The Khepera robot is equipped with a linear vision system composed of 64 photoreceptors.

Only 16 photoreceptors are read every 100 ms and filtered through a Laplace filter in order to detect

areas of contrast. The Laplace operator transforms the vector of values of receptor activation into a

vector representing the values of the ”sources” of the variation in the activation of adjacent receptors,

thus extracting the contrast information from the vector of receptor activations. The filtered values are

transformed into positive values and scaled in the range [0, 1]. These values represent the probability of

emitting a spike for each corresponding sensory neuron.

every 100 ms. During this interval, the spiking probability of sensory neurons corresponds

to the most recent value returned by the robot. In addition to the 16 visual neurons, there

is a bias neuron that is always active and can be used by evolution to determine a basic

level of activity in the network in the absence of input-generated activity.

The network consists of 10 neurons that can be connected to each other and to all

sensory neurons (figure 1). The number of spikes emitted by four motor neurons within

the last 20 ms of the sensory-motor interval (100 ms) is used to set the speeds of the two

wheels in push-pull mode. Each wheel of the robot is coupled to two neurons. The firing

rate (number of spikes fired within 20 ms divided by maximum number of spikes) of one

neuron is mapped into forward speed and the firing rate of the other neuron is mapped into

backward speed. The sum of these two direction-specific speeds gives the final direction

of rotation and speed of the wheel. Each wheel can take a maximum rotational speed of

80 mm/s, which would be obtained for a firing rate corresponding to the production of a

spike at each update cycle of the network. However, since a neuron can fire at maximum
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once every two update cycles (because of the refractory period), the maximum speed is 40

mm/s.

In this set of experiments, we chose the Spike Response Model [8] of spiking neurons

because the model is relatively simple and encompasses a large class of spiking neurons,

including the simplified model that will be described later for the micro-controller im-

plementation. In what follows, we describe the model and give between brackets the

parameter values used in this experiment. In the Spike Response Model, the membrane

potential υi(t) of a neuron i at time t is obtained by adding two kernels - one, ε(s), de-

scribing the effect of incoming spikes, and one, η(s), describing the refractory period - as

follows

υi(t) =
∑

j

wj

∑

f

εj(sj) +
∑

f

ηi(si) (1)

where sn = t− tfn is the difference between current time t and the firing time tf of neuron

n, and wj (1 for all synapses) is the synaptic strength of the connection from neuron j.

If the membrane potential υi(t) exceeds the neuron threshold θi (0.1 for all neurons), the

neuron emits a spike and the corresponding time instant is added to the set of firing times.

In these experiments

The properties of the kernel ε(s) are specified by a) the delay ∆ (2 ms for all synapses)

between the generation of a spike at the pre-synaptic neuron and the time of arrival at

the synapse, b) a synaptic time constant τs (10 ms for all synapses), and c) a membrane

time constant τm (4 ms for all synapses). A possible function ε(s) describing this behavior

[9] is given by

ε(s) = exp[−(s−∆)/τm](1− exp[−(s−∆)/τs]) (2)

for ∆ ≤ s ≤ 20, otherwise ε(s) = 0.

The refractory period depends only on the membrane time constant τm. A possible

kernel η(s) [9] is given by

η(s) = − exp[−s/τm] (3)

The value returned by η(s) is weighted by a random value with uniform distribution in

the range [0, 1] in order to break ties in a network of interconnected neurons and prevent

spontaneous emergence of locked oscillations.
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In this set of experiments we use a generational, fixed population size, genetic algorithm

[10]. A population of 60 individuals is evolved using rank-based truncated selection (15

best individuals, each generating 4 offspring), one-point crossover (p = 0.1 per pair), bit

mutation (p = 0.05 per bit), and elitism (size=1).

Each individual of the population is decoded and tested on the robot two times for 40

seconds each (400 sensory-motor steps). The robot is not repositioned between trials of

the same individual or between different individuals. The fitness function Φ is the sum

of the speeds of the two wheels vleft and vright measured by the optical encoders at every

time step t (100 ms), only if both wheels rotate in the forward direction, averaged over T

time steps available (here T = 400 + 400)

Φ =
1

T

T∑

t

(vt
left + vt

right) (4)

If vleft or vright are less than 0 (backward rotation) or equal to 0 (no rotation), Φt = 0. This

fitness function selects individuals for the ability to go as straight and as fast as possible.

In addition, since the robot takes only a few seconds to travel across the arena and wheels

rotate considerably less if the robot is stuck against a wall, the fitness function implicitly

encourages selective reproduction of individuals that can avoid walls. The fitness function

does not use the active infrared sensors available on the robot to measure distance from

the walls (as we did in previous experimental work [6, e.g.]) because the response profile of

these sensors varies depending on the reflection properties of the walls (black stripes reflect

approximately 40% less infrared light than white stripes) and on the infrared spectrum

component of ambient illumination.

In this set of experiments, the neural network, evolutionary algorithm, and fitness com-

putation are implemented on a desktop PC connected to the robot through the serial

port and rotating contacts, which provide also energy supply. For a description of the

methodology, see [21, chapter 3].

We have run three experiments on the physical robot. Each experiment starts with

a different random initialization of the genetic strings. One generation on the physical

robot took 80 minutes. In all runs, artificial evolution took less than 30 generations to

discover spiking controllers capable of navigating around the environment and avoiding

the walls. The graph on the left of figure 4 displays population mean and population best
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Fig. 4. Left : Fitness values obtained on the physical robot Khepera (best fitness = thick line; average

fitness = thin line). Each data point is the average of three evolutionary runs with different random

initializations. Bars indicate standard error. Right : Trajectory of en evolved individual. The plot is

obtained by tracking the wheel rotations for an entire trial (40 s) and fitting the trajectory within the

square arena. The black disk shows the position of the robot at the end of the trial.

fitness values averaged across three runs. Fitness values above 0.6 already correspond to

robots that can move forward and avoid walls. Further fitness gains correspond to faster

and smoother trajectories (an example is shown on the right side of figure 4). Fitness

values of 1.0 cannot be reached because the robot sometimes must reduce the speed of one

wheel in order to turn and avoid walls.

Since initial populations are randomly created, only 50% of the connections are present.

This percentage did not change significantly along generations in any of the evolutionary

runs. In [4] we described several methods of analysis and used them to understand an

evolved spiking controller (evolved in a different arena from that used for the experiments

described here). For the purpose of this paper, the most important result is that a compact

genetic representation that describes only the pattern of connectivity and neuron sign is

sufficient to evolve functional networks of spiking controllers. In the rest of this paper,

we capitalize on this result to implement a simplified evolutionary spiking network in

low-power microcontrollers.
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Fig. 5. Components of a microcontroller with von Neumann architecture (Values are given for the

Microchip PIC16F268 microcontroller). The microprocessor unit is composed of an Arithmetic Logic

Unit and of control devices to move data from/to memory banks and input/output ports. The memory

banks are organized in physically separated locations. For example, the microcontroller shown in the figure

uses the ROM memory to store a program composed of a maximum of 2k instructions; a RAM memory

to store 224 bytes of data; and an EEPROM memory to store 128 bytes of data. The input/output ports

can be connected to sensors, keyboards, LEDs, motorized actuators, or any other peripheral. Gray lines

represent the bus where one instruction or data item at a time is moved across components.

IV. Evolutionary Spiking Circuits in a Microcontroller

A microcontroller is an integrated circuit composed of a microprocessor unit, memory, and

input/output peripheral devices (figure 5). In other words, it is a full computer in a single

chip capable of receiving, storing, processing, and transmitting signals to the external

world. Most applications using microcontrollers require very low power consumption,

small size, robustness to hard operating conditions, and low price. These features come at

the expense of the number of transistors and instructions per second, resulting in very low

computing power compared to personal computers. Consequently, low-level languages,

such as assembler, are often used to exploit efficiently every single bit of memory.

The core idea explored in this paper is that spiking circuits can be mapped quite eas-

ily into microcontrollers because spikes are essentially binary events and the non-linear

dynamics and neural information is given by spiking time and spike count, rather than

by non-linear, real-valued, activation functions used in connectionist neuron models. In

this implementation we use a few logic operations (such as AND, NOT, and bit shift) to
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implement a network of spiking neurons.

The experiments described in the previous section showed that artificial evolution can

easily discover functional spiking circuits by exploring only the space of neuron sign and

connectivity. Both variables can be described by a single bit (1 = positive sign for neurons,

connection enabled for synapses; 0 = negative sign, connection disabled for synapses) and

therefore can be efficiently stored and easily manipulated in microcontrollers.

The next two subsections will describe the neuron and evolutionary model, respectively.

Implementation details are described in Appendix A and B. The section that follows

will describe an example of this implementation where a microrobot equipped with a

microcontroller evolves without human intervention in less than two hours the ability to

move around a maze.

The chip used in the experiments described here belongs to the PIC (Peripheral Interface

Controller) family of microcontrollers by Arizona Microchip Technology (www.microchip.com).

However, the same implementation method is applicable to any other type of microcon-

troller.

A. Neuron Model and Implementation

The neuron model used in the experiments with the Khepera robot described above

is much too complex to be implemented in a microcontroller because it uses several

non-linear functions, requires floating-point representation and relatively high comput-

ing speed. Therefore, the neuron model used here is a simple integrate-and-fire model

with leakage and refractory period.

The behavior of a neuron (figure 6) is described by the following series of steps:

1. Refractory period. If the neuron has emitted a spike within the previous time interval

∆t, the membrane potential is not updated. In these experiments, ∆t = 1.

2. The contribution of incoming spikes et
i is given by the sum of spikes ot

j at time t through

existing connections wij weighted by the sign of emitting neurons sj:

et
i =

N∑

j

ot
jwijsj (5)

where ot
j ∈ {0, 1}, wij ∈ {0, 2}, sj ∈ {−1, 1}.
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Fig. 6. Behavior of a neuron with constant firing threshold. Values are those used in the experiments

described in this paper.

3. The membrane potential υt
i is updated by adding the contribution of incoming spikes to

the available potential. If the result is lower than the resting potential υmin
i , the membrane

potential is set to the resting potential.

υt
i =





υt−1
i + et

i υt−1
i + et

i ≥ υmin
i

υmin
i otherwise

(6)

where υmin
i = 0 ∀i in these experiments.

4. Spike generation. If the membrane potential is larger than, or equal to, a threshold

υmax
i , the output of the neuron is set to 1 (spike) and the membrane potential to its

resting potential υmin
i ; otherwise the output of the neuron is set to 0 (no spike) and the

membrane potential is not affected.

ot
i =





1 and υt
i = υmin

i : υt
i > υmax

i + rt

0 : otherwise
(7)

where here the threshold υmax
i = 5 ∀i and rt is a random integer in the range [−2, 2] to

prevent the emergence of locked oscillations in networks with feedback connections.

5. Leakage. A leaking constant ki is subtracted from the membrane potential only if the

result of this operation is larger or equal to the resting potential υmin
i

υt
i =





υt
i − ki : υt

i − ki ≥ υmin
i

υmin
i : otherwise

(8)

Here ki = 1 ∀i.
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Fig. 7. Digital representation of one neuron in the microcontroller.

The circuit architecture is similar to that used for the experiments on vision-based

navigation described above. Each neuron can be connected to all neurons (including

itself) and to all sensory neurons, as in figure 1. The sign of the neuron determines the

effect of its spikes on other neurons (equation 6). The presence of a spike in the sensory

neuron is determined by the activity of sensors, as explained later.

The implementation (figure 7) exploits the 8-bit architecture of the microcontroller used in

these experiments. Therefore, the network is composed of 8 neurons and 8 sensory neurons.

At every network cycle, the spiking state of all neurons and sensory neurons are encoded

by the byte OUTPS and INPS, respectively (a bit takes value 1 if the corresponding

neuron emitted a spike at the previous cycle, otherwise is 0). The sign of all neurons is

described by the byte SIGN (bit value is 1 if the corresponding neuron is excitatory, 0 if

it is inhibitory). The pattern of incoming connections for one neuron is described by byte

NCONN for connections from neurons and by byte ICONN for connections from sensory

neurons. Each neuron has one byte MEMB to store its membrane potential. The threshold

of all neurons is encoded by the byte THRES. This network requires 28 bytes of RAM

memory (INPS, OUTPS, SIGN, THRES, 8 x MEMB, 8 x NCONN, 8 x ICONN). Nine

additional bytes are used to store random numbers, counters, and temporary variables

that are shared with the evolutionary algorithm described in the next subsection.

The update of a neuron is partly done in parallel by performing AND operations between

the byte storing the spikes and the byte storing the connections from excitatory neurons.

The resulting number of active bits are used to increment the membrane potential of the

neuron. Contributions from inhibitory neurons are computed in a similar fashion after
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taking the complement (NOT) of the byte storing the sign of all neurons and combining it

with the pattern of connections. The resulting number of active bits is used to decrement

the membrane potential. Network architectures of less than 8 neurons and/or sensory

neurons can easily be implemented by masking (with AND) unused bits with a byte with

bit value 1 for every used neuron. Details of the implementation are given in Appendix A.

B. Evolution Model and Implementation

The same genetic encoding used for the experiments with the Khepera (see figure 1) has

been used for the neuron model used here. Consequently, the genetic string of the spiking

circuit consists of only 17 bytes: 1 byte for the sign of the neurons (SIGN), 8 bytes for

its neural connections (NCONN), and 8 bytes for its sensory connections (ICONN). An

additional byte is used to store the fitness of the individual.

The memory constraints of microcontrollers puts a severe limit on the number of genetic

strings (individuals) maintained in the population. Therefore, a form of steady-state

genetic algorithm, which experimentally showed to be suitable for small populations [26],

[24], has been chosen. The algorithm used here, designed to maximize exploration while

preserving the best solution obtained so far, works as follows:

1. Randomly generate a population of genetic strings and initialize their fitness values to

zero.

2. Pick an individual at random from the population, mutate it, and measure its fitness.

3. If its fitness is equal or larger to the fitness of the worst individual in the population,

write its genetic string and fitness value at the memory location of the worst individual,

otherwise throw it away.

4. Go to step 2.

Mutated individuals are put back in the population even if they have the same fitness of the

worst individual in order to allow for “neutral walks” [17] on the genetic landscape. This

may be a useful property for evolution of small converged populations [11]. Implementation

details of this evolutionary algorithm in the microcontroller are given in Appendix B.
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Fig. 8. The sugar-cube robot Alice. Four active infrared sensors are used to detect distance from obstacles

within a 3 cm range. Three sensors are located in front of the robot (front, front left, and front right) and

one on the back.

V. Embedded evolution of Micro-robot control

The method described above has been tested on a simple evolutionary task for an

autonomous micro-robot equipped with a PIC microcontroller. Alice (figure 8) is one of

the smallest autonomous mobile robots in the world [1] with an energetic autonomy of 10

hours. Alice is a programmable and modular robot. It measures approx. 2 cm on each

side and has a weight of 10 g. In its basic configuration it has 2 bi-directional Swatch

motors that allow a maximum speed of 40 mm/s, 4 active infrared sensors for detection of

distance from obstacles, a PIC16F628 microcontroller at 4MHz, and a NiMH rechargeable

battery. The infrared sensors have a limited range of 2 to 3 cm, which is similar to the

size of the robot itself. Since the sensor output is noisy, the less significant bit of the

A/D converter is used to re-initialize every 50 ms the pseudo-random number generator

required to initialise the genetic strings, add noise to the neuron thresholds, and perform

genetic mutations.

The robot is asked to navigate in a 25 by 18 cm white arena with a wall in the middle.

The fitness is computed and accumulated at each sensory-motor cycle using a truncated

version of a three-component function to evolve straight navigation and obstacle avoidance

[5]

Φ = (V )(1−∆V )(1− i)

where V is the sum of the speeds of the two wheels (this component is maximized by

high wheel rotation), ∆V is the absolute difference between the two wheel-speeds (this

component is maximized by straight navigation) and i is the activity of the most active

sensor (this component is maximized by distance from obstacles). Since the Alice robot
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sensor value bits set

0-1 000

2-3 001

4 011

5-7 111

TABLE I

Coding of the sensory inputs.

does not have wheel encoders to measure wheel rotation, the speed values used in the

fitness function are taken from the motor output of the neural circuit. Motor output is a

good approximation of wheel speed except for the situation when the robot is against an

obstacle (in that case the actual wheel velocity is zero or significantly lower than the motor

output). However, in that condition the fitness returns a zero value because at least one

of the infrared sensors has maximum activation. The function is truncated by setting its

value to zero whenever one of the wheel speeds is in backward rotation. Each of the three

terms is scaled so that the maximal fitness value of each sensory-motor cycle multiplied

by the total number of cycles in a navigation trial could fit in a single byte.

The network architecture is composed of 8 neurons and 8 sensory units. Since the fitness

function returns non-zero values only for forward navigation, the infrared sensor on the

back of the robot is not used. The activations of the three frontal sensors are scaled in

the range [0, 7] and coded on three bits by setting active bits proportionally to the sensor

activation, as shown in table V. Since the sensors tend to saturate when the robot is

close to an obstacle, this bit encoding gives less precision for high sensor activation. Three

sensory neurons are allocated for the front left and for the front right sensor each and two

sensory neurons for the front sensor. The spiking state of each sensory neuron is given by

the value of the corresponding bit using the lookup table V. Only the first two bits in the

lookup table are used for the two neurons corresponding to the front sensor.

Sensors and motors are updated every 20 ms, but the spiking network is updated every

1.2 ms with the embedded R/C clock at 4 MHz. The rotation speed and direction of the
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Fig. 9. Left : Minimum, average, and maximum fitness of best individuals in 6 evolutionary runs. Data

points are sampled every 3 minutes. Right : Trajectory (over 11 s) of the best evolved individual. The

path covered by the robot is taken from a video clip downloadable from http://asl.epfl.ch.

wheels is computed using the spike count of four motor neurons in push/pull mode, as for

the experiments with the Khepera robot described above.

For each experiment, a population of 6 individuals was randomly initialized and evolved

for 3 hours using on-board batteries. Each individual is tested for 14 seconds. Every three

minutes the best fitness obtained so far was logged in a block of 60 bytes in the RAM

and then downloaded to a computer at the end of the experiment. The graph on the left

side of figure 9 shows the fitness values of the best individuals for five experiments with

different random initialization of the population. A fitness value of 60 corresponds to a

collision-free navigation for 14 seconds. Higher values are obtained by straight and faster

trajectories. The best individual shown on the right side of figure 9 covers the entire arena

in 11 s.

All best evolved individuals perform wall following around the obstacle in the middle of the

arena while maintaining a distance that generates the lowest sensor activation. Figure 10

shows the architecture of the controller corresponding to the trajectory depicted on the

right side of figure 9. This pattern of diagonal connectivity is found in almost all best

evolved networks (with some individual variations). Neurons tend to have connections

from a small set (3 on average) of neighboring sensors and from a small set (4 on average)

of neighboring neurons. This pattern of connectivity loosely reminds topological sensory
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Fig. 10. Network architecture of an evolved individual. The same graphic conventions explained in

figure 1 are used here. Sensory neurons are connected to front (2), right (3), and left (3) distance sensors

on the robot, as explained in table V. Four neurons are used to set the speeds of the right and left wheels

in push-pull mode, as explained in section III.

maps of biological brains where neighboring neurons receive activation from neighbouring

sensors [15]. This layout ensures that smooth change in sensor space translates into smooth

change in neural space and that small variations in sensory stimulation (for example, due to

the movement of the agent) do not cause completely different patterns of neural activation.

VI. Discussion

In this article we have shown that artificial evolution is a suitable method to generate

functional architectures of spiking neurons by searching only through the space of neuron

sign and connectivity. The Spike Response Model used in the first set of experiments

contains several parameters whose values have been taken from previous literature [9] and

were not optimized for this specific implementation. Therefore, we cannot exclude that

different parameter values would make the circuits harder or easier to evolve.

The only critical modification that we made to the Spike Response Model was the inser-

tion of noise in the refractory period. In preliminary experiments without noise, evolution

stagnated very quickly into poor systems because most of the neural circuits fell into

locked oscillations that were not sensitive to sensory input and fitness values did not in-

crease over generations. Noise in the refractory period anticipates or delays the firing time

of neurons, thus decreasing the probability of locked oscillations generated by feedback

loops. A similar effect can be obtained by adding some noise centered around zero to the
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membrane thresholds. This latter option was used in the micro-controller implementation

of the simple spiking neuron because it required comparatively fewer resources.

The micro-controller implementation maintains the main features of the evolutionary

spiking system, such as the genetic encoding and network architecture, but it introduces

major simplifications in the evolutionary and neural algorithms. Although the experi-

mental results described here are promising, we cannot exclude that the micro-controller

system may have less computational abilities than the more complex model. The major

difference between the Spike Response Model and the simpler digital model is that the

former includes non-linear functions for synaptic signal transmission and refractory period.

However, it is hard to tell what environmental and/or behavioral situations require those

non-linearity.

We can finally compare the low-level spiking network implementation presented here,

with analog VLSI implementations of comparable functionalities. It is clear that our mi-

crocontroller implementation must pay the price of programmability [2], that is, we can

expect to achieve higher power consumption, lower speed and less computational paral-

lelism than with an analog implementation that uses the same silicon resources. These

drawbacks, however, have a counterbalance in the greater flexibility of a programmable

implementation in the definition and adaptation of the circuit topology and parameters.

In this respect, our low-level implementation, by exploiting the microcontroller parallelism

and adopting an atomic representation of spikes as bits, goes in the direction of an opti-

mal exploitation of the resources available in a programmable device. Furthermore adding

learning rules into such a spiking network would require time-varying memory units. The

most obvious implementation of such units in analog devices is by mean of capacitors,

which are known to be space consuming and to suffer from leakage, whereas in micro-

controllers it is straightforward to allocate more memory and processing resources to a

run-time adaptive mechanism.

VII. Conclusion

We have described a simple method to evolve functional networks of spiking neurons, a

low-level efficient implementation in microcontrollers, and experimental tests on two robot

navigation problems.
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These results could pave the way to two types of future developments. On the one hand,

the method could be extended to study issues of information coding in networks of spiking

neurons coupled to real environments. For example, one could investigate under what

environmental, behavioral, and/or architectural conditions evolved spiking controllers rely

on precise firing time rather than on firing rate. On the other hand, the micro-controller

implementation could make its way in a number of embedded application that require

adaptive signal processing. More than 3.5 billion microcontroller units are sold each year

for embedded systems (washing machines, credit cards, car electronics, etc.), exceeding by

more than an order of magnitude the number of microprocessor units sold for computers

[16].

Appendix A: Micro-controller Implementation of the Spiking Network

The steps of the neuron model described above are implemented as follows:

1. Refractory period. Check state of corresponding bit in OUTPS; if set to 1, go to step 3.

2. Compute contribution of incoming spikes and membrane update. Start with spikes from

sensory neurons: Increment MEMB variable by counting (left shift with carry) the number

of active bits that result from the AND function of byte INPS and byte ICONN. Continue

with spikes from positive neurons: Increment MEMB variable by counting the number of

active bits that result from the AND function of bytes OUTPS, SIGN, and NCONN. Finish

with spikes from negative neurons: Decrement MEMB variable by counting the number

of active bits that result from the AND function of OUTPS and the complement (NOT

function) of byte SIGN and byte NCONN. The decrement is stopped before MEMB goes

below zero (which is signalled by a bit flag in a housekeeping byte of the microcontroller;

this same byte also signals overflow, which does not occur here because there are few

neurons in the network).

3. Spike generation. Compute random value for ri and check whether MEMB is equal or

larger to THRES incremented/decreased by ri. If so (spike), set the corresponding bit

in OUTPS to 1 and reset MEMB to zero. Otherwise (no spike), set corresponding bit in

OUTPS to 0.

4. Leakage. If MEMB is greater or equal than the leaking constant ki = 1, decrement it

by the leaking constant ki = 1.
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The network is update synchronously, so that each neuron changes its state according to

the state of all neurons computed at the previous cycle. Therefore, step 3 above updates

only a temporary copy of OUTPS which is then moved into OUTPS once all neurons have

been updated. Alternatively, one could update the network asynchronously by picking a

neuron at random and changing directly OUTPS at step 3. Once the entire network has

been updated, the array of sensory spikes INPS is updated too.

When run on a PIC16F628 using the embedded R/C oscillator running at 4MHz, the

entire network is updated in approximately 1.2 ms. In some case, such as for the robotics

experiment described here, the entire network can be updated faster than the time interval

required to update sensors and motors (20 ms). Between new sensory values, INPS is set

to all 0’s while the neurons continue to be updated using only internally generated spikes.

Appendix B: Micro-controller implementation of the steady-state

evolutionary algorithm

In these experiments, each individual is mutated at three locations by toggling the value

of a randomly selected bit. The first mutation takes place in the SIGN byte that defines

the signs of the neurons. The second mutation occurs at a random location of the NCONN

block that defines the connectivity among neurons. The third mutation occurs at a random

location of the ICONN block that defines the connectivity from sensors. Mutations are

performed by making an XOR operation between the byte to be mutated and a byte with

a single 1 at a random location.

The population (genetic strings and fitness values) is stored in the EEPROM because

this type of memory can be read and written by the program just like the RAM memory,

but in addition it holds its contents also when the microcontroller is not powered (at least

40 years for the microcontrollers used here). Each individual occupies a continuous block

of bytes where the first byte is its fitness and the remaining 17 bytes represent the genetic

string. The very first byte of the EEPROM memory records the number of replacements

made so far. Whenever the microcontroller is powered up, the main program reads the first

byte of the EEPROM. If it is 0, the population is initialized, otherwise it is incrementally

evolved (step 2).

EEPROM memories can be written only a limited number of times (for example, the
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EEPROM of the microcontroller used here can be written/read approximately 10,000,000

times) and usage and temperature generate errors during reading/writing (bit values are

toggled) that require error-checking routines. Therefore, in the experiments described

here, we keep a copy of the entire population in the free space of the RAM memory and

copy it to the EEPROM only at predefined intervals.
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