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Abstract This paper discusses certain modifications of the ideas concerning the
Gromov–Hausdorff distance which have the goal of modeling and tackling the practi-
cal problems of object matching and comparison. Objects are viewed as metric mea-
sure spaces, and based on ideas from mass transportation, a Gromov–Wasserstein
type of distance between objects is defined. This reformulation yields a distance be-
tween objects which is more amenable to practical computations but retains all the
desirable theoretical underpinnings. The theoretical properties of this new notion of
distance are studied, and it is established that it provides a strict metric on the col-
lection of isomorphism classes of metric measure spaces. Furthermore, the topology
generated by this metric is studied, and sufficient conditions for the pre-compactness
of families of metric measure spaces are identified. A second goal of this paper is
to establish links to several other practical methods proposed in the literature for
comparing/matching shapes in precise terms. This is done by proving explicit lower
bounds for the proposed distance that involve many of the invariants previously re-
ported by researchers. These lower bounds can be computed in polynomial time. The
numerical implementations of the ideas are discussed and computational examples
are presented.
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1 Introduction

Recent years have seen great advances in the fields of data acquisition and shape
modeling, and in consequence, huge amounts of data and large collections of digital
models have been obtained. With the goal of organizing and analyzing these collec-
tions, it is very important to be able to define and compute meaningful notions of
similarity between shapes and datasets that exhibit invariance or insensitivity to dif-
ferent poses of the shapes or deformations of the objects represented by the data.
Problems of this nature arise in areas such as molecular biology, metagenomics, face
recognition, matching of articulated objects, computer graphics, graph matching, and
pattern recognition in general. Many of the techniques used for matching and mea-
suring dissimilarity of shapes and datasets are common, thus in the sequel, we will
use the word objects to denote both datasets and/or shapes.

Advances in the technology that allow the acquisition and storage of massive pro-
tein data [35, 90] suggest that a particularly relevant example nowadays is that of
geometrically matching proteins. It is widely believed that geometrically similar pro-
teins will likely have similar functional properties [67]. Here, ‘geometrically similar’
refers to the existence of a Euclidean isometry that maps one protein to a small neigh-
borhood of the other.

Another area in which the problem of matching objects is relevant is brain warp-
ing, a sub-field of computational anatomy. Computational anatomy [49] arises in
medical imaging, in particular neuro-imaging, and it involves comparison of the
shape of anatomical structures between two individuals [45].

After obtaining the individual representation of the structure under consideration
for each of the subjects, the main component in the analysis is the establishment
of precise correspondence between (anatomically) homologous substructures across
subjects.

In computer vision and computer graphics there are applications which are of a
different nature in that in these one searches large databases of objects for those that
resemble, in some way, a given query object. These applications may tolerate a larger
rate of false positives and they do not usually require that precise correspondences
between sub-parts of the objects be produced.

1.1 The proposed approach

The philosophy that is proposed in this paper can be summarized as follows:

• Firstly, one must choose a flexible representation of objects.
• Secondly, decide on a notion of equality or isomorphism between objects.
• Thirdly, put a (pseudo) metric on the collection of all isomorphism classes of ob-

jects, thus making the space of all objects into a metric space. This metric must be
such that it two objects will be at distance zero if and only if they are equal in the
sense of equality that was chosen.

The representation of objects that is ultimately chosen is that of metric measure
spaces; equality of two objects will be isomorphism of metric measure spaces; and
the metric between objects will be the Gromov–Wasserstein distance. Metric measure
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spaces are metric spaces that have been enriched with a (fully supported) probability
measure which serves the purpose of signaling the relative importance of different
parts of the shapes.

Following Gromov’s ideas, this paper advocates studying the space of all objects
as a metric space in its own right. This type of setting has been proven extremely
useful in the theoretical literature where, starting by Gromov’s compactness theo-
rem, one is able to study families of metric spaces and their metric and topological
properties [52].

One of the theses of this paper is that this formalism allows for a precise descrip-
tion of certain properties that are desirable from data/shape matching procedures.
Furthermore, in this paper we show how expressing the problems of object match-
ing in these metric terms allows bringing many different, apparently disconnected,
previously proposed procedures into a common landscape.

The representation of objects as metric measure spaces is natural and flexible and
permits modeling problems that originate in different disciplines. Indeed, in many
situations, datasets obtained experimentally are readily endowed with a notion of dis-
tance between their points, which turns them into metric spaces. Summaries of the
information contained in such datasets often take the form of metric invariants, which
is important to study and characterize since the analysis of these invariants can pro-
vide insights about the nature of the underlying phenomenological science producing
the data. With this formulation one is able to express in precise terms the notion
that these invariants behave well under deformations or perturbations of the objects,
something of interest not only in object matching, but also in other applications such
as clustering, and in more generality, data analysis.

In problems in shape analysis, one can also frequently come up with notions of
distance between points on an object that are useful for a given application. One
example is matching objects under invariance to rigid transformations, in which the
natural choice is to endow objects with the distance induced from their embedding in
Euclidean space.

In addition to the metric that must be specified in order to be able to regard a given
object as a metric space, the proposal in this paper also requires that users specify a
probability measure. Without this probability measure one could directly try to use
the Gromov–Hausdorff distance [80, 81] for measuring dissimilarity between two
objects. It turns out, unfortunately, that the practical computation of the Gromov–
Hausdorff distance is highly non-trivial [75] and practical procedures for estimating
it have been developed only in the context of objects satisfying certain smoothness
conditions [17, 81].

A first contribution of this paper is that it presents new results, which extend the
original definition of the Gromov–Hausdorff distance in a way such that the associ-
ated discrete problems one needs to solve in practical applications are of an easier
nature than yielded by previous related approaches [17, 81]. Further, the computa-
tional techniques proposed in the present paper are applicable without restriction on
the nature of the objects: objects are not required to be smooth, and the methods of
this paper can be used, for example, for comparing phylogenetic trees or ultrametric
spaces. This extension of the notion of Gromov–Hausdorff distance which operates
on metric measure spaces is called the Gromov–Wasserstein distance, and is based
on concepts from mass transportation [111].
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A second contribution of this paper is that this change of perspective allows one
to recognize that many invariants previously used by applied researchers in signature
based methods for shape matching can be proved to be quantitatively stable under
the new notion of distance between objects that is constructed in this paper. These
statements about stability obviously translate into lower bounds for this notion of
distance. In turn, these lower bounds lead to optimization problems which are less
computationally demanding than the estimation of the full shape distance.

Some of the results in this paper have been announced in [75].

1.2 Related Work

Many approaches have been proposed in the context of (pose invariant) shape classi-
fication and recognition, including the pioneering work on size theory by Frosini and
collaborators [38], where the authors already propose a certain formalization of the
problem of shape matching.

Measuring shape variation is an important problem in biostatistics, and an early
reference for this topic is the work of D’Arcy Thompson [107]. In the statistical liter-
ature there have been many contributions to the understanding of how shape variation
may be modeled and quantified [8–10, 25, 63, 68, 103], giving rise to the concept of
shape spaces. This concept is related to the work of Grenander on deformable tem-
plates [47, 48], which provides another mathematical formalism for certain problems
dealing with shape deformation.

The use of formalisms from differential geometry for the study of shape defor-
mation has made inroads into areas dealing with applied problems such as object
recognition, target detection and tracking, classification of biometric data, and au-
tomated medical diagnostics. Two of the most prominent ideas in this research area
have been the use of fluid flow [28, 29, 108] and elasticity notions [98, 113, 114].
One domain of application of these methods is computational anatomy, where find-
ing precise correspondence between homologous anatomical structures is often the
goal. These developments have led to building Riemannian structures on many shape
spaces [82–84, 115]. We should refer the reader to the recent book by Younes [112].
The present work differs from these approaches in that one builds metric structures on
the collection of all objects, instead of the more specialized Riemannian structures.

There have been many other approaches to the problem of (pose invariant) object
matching and recognition in the computer graphics and computer vision literatures:
see [109, 110] for an overview. In many cases, the underlying idea revolved around
the computation and comparison of certain invariants or signatures of the objects in
order to ascertain whether two objects are in fact the same object (up to a certain
notion of invariance). An overview of such methods (often referred to as feature or
signature based methods) can be found in [23]. A few examples are: the size theory
of Frosini and collaborators [33, 34, 38–40]; the Reeb graph approach of Hilaga et al.
[54]; the spin images of Johnsson [60]; the shape distributions of [86]; the canonical
forms of [37]; the Hamza–Krim approach [53]; the spectral approaches of [94, 100];
the integral invariants of [30, 74, 91]; the shape contexts of [4]. Other examples are
[3, 5, 31, 62, 69, 70, 80, 94, 96].
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Signature based methods are often motivated by the need for fast algorithms for
detecting similarity between objects and do not always provide a correspondence be-
tween objects. The domain of application is usually very different from methods such
as those used in computational anatomy, where one already knows that homologous
substructures between objects exist (i.e., one is matching brain cortices against brain
cortices), as opposed to matching objects in a database of CAD models where one
may have to find all the chairs in a database that also contains objects very different
from chairs, such as planes, fridges, cars, etc. Here one should single out for exam-
ple [37, 53, 54, 94, 100], where the type of deformations that these methods were
originally intended to accommodate are intrinsic isometries: namely, objects in this
case are modeled as surfaces, and one tolerates deformations of the objects that leave
geodesic distances unchanged.

Recognizing that the structure that had been used and exploited in many of the
preceding examples was nothing but the metric structure on the objects, [78, 80, 81]
proposed viewing the practical problem of comparing objects under certain deforma-
tions as that of comparing metric spaces with the Gromov–Hausdorff distance. The
ideas put forward [78, 80, 81] found application in the hands of Kimmel’s group at
the Technion who carried out several experimental studies and developments in the
following years [13–15, 17–19, 92].

On a different vein, the work of Gu and collaborators has emphasized deforma-
tions more general than intrinsic isometries, namely their methods can accommodate
shape analysis under conformal deformations [58, 59, 116, 117]. They have also ex-
plored extremely interesting connections with subjects such as the Ricci flow and
Teichmüller space.

1.3 Organization of the Paper

This paper is organized as follows. Section 1.4 presents the basic background con-
cepts and the notation used in the paper, which is also summarized in the notation key,
Sect. 11. Section 2 introduces the problem of Object Comparison in a general setting
and presents basic elements such as notions of object similarity upon which the rest of
the paper is based. Section 3 discusses the idea of introducing invariances into stan-
dard notions of similarity and explains the motivation for the metric space point of
view emphasized in later sections. Section 4 reviews the notion of Gromov–Hausdorff
distance and its main properties. In that section we also discuss connections with the
Quadratic Assignment Problem. Section 5 delves into the core of the paper where
the construction of the Gromov–Wasserstein distance is carried out. In that section
we first introduce several isomorphism invariants of metric measure spaces, study
their relative strength and illustrate their discriminative power. We do the latter by
providing, for each of the invariants that we treat, explicit constructions of pairs of
non-isomorphic metric measure spaces that have the same value of the invariant. We
also explain how these invariants are related to some of the pre-existing object match-
ing techniques. In Sect. 5.3 we find that two possible constructions of a Gromov–
Wasserstein distance are possible, one of them having been analyzed by Sturm [105].
We then establish the theoretical properties of the previously unreported distance,
study the Hölder equivalence with Sturm’s notion in certain classes of smooth shapes,
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and establish connections with the Gromov–Hausdorff distance and other notions. In
Sects. 5.5 and 5.6 we study in more detail the topology generated by the construc-
tion of the Gromov–Wasserstein distance that we adopt. Some basic lower and upper
bounds for the Gromov–Wasserstein distances are presented in that section. Section 6
presents other more interesting lower and upper bounds for the proposed notion of
distance. The goal is twofold: on one hand establishing these bounds makes apparent
the connection to other approaches found in the literature, and on the other it provides
lower bounds which are easily computable and consequently of practical value.

Section 7 discusses the computational aspect of the ideas, establishing that the
problems one needs to solve in practice are either linear or quadratic optimization
problems (with linear constraints on continuous variables). In this section we also
argue that the construction of a Gromov–Wasserstein distance that we propose in this
paper leads to somewhat easier optimization problems, and is therefore preferable in
practical applications. We present computational illustrations in Sect. 8, and conclu-
sions in Sect. 9.

To enhance readability, the proofs of most results are not given in the main text
and are instead deferred to Sect. 10.

1.4 General Background Concepts and Notation

Throughout the presentation we use some simple concepts from measure theory and
point set topology which can be consulted, for example, in [36]. We touch upon some
mass transportation concepts, which can be consulted in the very friendly and up to
date presentation of [111].

For each n ∈ N, we denote by Πn the set of all permutations of {1,2, . . . , n}.
Given two metric spaces (X,dX) and (Y, dY ), a map ϕ : X → Y is an isometry if

ϕ is surjective and dX(x, x′) = dY (ϕ(x),ϕ(x′)) for all x, x′ ∈ X. If X and Y are such
that there exists an isometry between them, then we say that X and Y are isometric.
A map ϕ is an isometric embedding if it is an isometry onto its image. Given ε > 0,
a ε-net for the metric space (X,dX) is a subset S ⊂ X s.t. for all x ∈ X there exists
s ∈ S with dX(x, s) ≤ ε.

Given a metric space (X,dX) by a measure on X we will mean a measure on
(X, B(X)) where B(X) is the Borel σ -algebra of X.

Given measurable spaces (X, B(X)) and (Y, B(Y )) with measures μX and μY ,
respectively, let B(X×Y) be the σ -algebra on X×Y generated by subsets of the form
A × B where A ∈ B(X) and B ∈ B(Y ). The product measure μX ⊗ μY is defined to
be the unique measure on (X × Y, B(X × Y )) s.t. μX ⊗ μY (A × B) = μX(A)μY (B)

for all A ∈ B(X) and B ∈ B(Y ). For x ∈ X, δX
x denotes the Dirac measure on X.

For a measurable map f : X → Y between two compact metric spaces X and Y ,
and μ a measure on X, the push-forward measure f#μ on Y is given by f#μ(A) :=
μ(f −1(A)) for A ∈ B(Y ).

Given a metric space (X,d), a Borel measure ν on X, a function f : X → R, and
p ∈ [1,∞] we denote by ‖f ‖Lp(ν) the Lp norm of f with respect to the measure ν.

Remark 1.1 When ν is a probability measure, i.e., ν(X) = 1, then ‖f ‖Lp(ν) ≥
‖f ‖Lq(ν) for p,q ∈ [1,∞] and p ≥ q .
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A special class of metric spaces are those that arise from Riemannian manifolds.
We denote by Riem the collection of all compact Riemannian manifolds. Given
(X,g) ∈ Riem, one regards X as a metric space with the intrinsic metric arising
from the metric tensor g, see [101].

A probability measure on the measurable space (X, B) is any measure μ on X s.t.
μ(X) = 1. We now recall some concepts about convergence of probability measures
on metric spaces. An excellent reference is [36, Chap. 11]. A family M of probability
measures on the metric space X is called tight if for any ε > 0 there exists a compact
Kε ⊂ X s.t. μ(Kε) > 1 − ε for all μ ∈ M .

For a metric space (Z,d) let P (Z) denote the set of all Borel probability measures
on Z. By Cb(Z) we denote the set of all continuous and bounded real valued functions
on Z. We say that a sequence {μn}n∈N ∈ P (Z) converges weakly to μ ∈ P (Z), and

write μn
w,n−→ μ, if and only if for all f ∈ Cb(Z),

∫
Z

f dμn −→ ∫
Z

f dμ as n ↑ ∞.

2 Comparing Objects

An object in a compact metric space (Z,d) will be a compact subset of Z. Let C(Z)

denote the collection of all compact subsets of Z (objects). Assume that inside the
metric space (Z,d) one is trying to compare objects A and B . One possibility is to
use the Hausdorff distance:

dZ
H(A,B) := max

(
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
)
. (2.1)

In general, whenever one intends to compare two objects, a correspondence/alignment
is established for this purpose. Definition 2.1 and Proposition 2.1 make this apparent
for the case of the Hausdorff distance.

Definition 2.1 (Correspondence) For non-empty sets A and B , a subset R ⊂ A × B

is a correspondence (between A and B) if and only if

• ∀a ∈ A there exists b ∈ B s.t. (a, b) ∈ R,

• ∀b ∈ B there exists a ∈ A s.t. (a, b) ∈ R.

Let R(A,B) denote the set of all possible correspondences between sets A and B .

Example 2.1 Let X and Y be non-empty sets; then R(X,Y ) is also non-empty, as it
contains X × Y .

Example 2.2 Let X ∈ C(Z) and p ∈ Z. When Y = {p}, R(X,Y ) = {X × {p}}.

Example 2.3 Let X = {a, b} and Y = {A,B,C}. In this case, R1 = {(a,A), (b,B),

(a,C)} is a correspondence but R2 = {(a,A), (b,B)} is not.

Example 2.4 (Correspondences as 0,1 matrices) Let X and Y be finite. Then,
R(X,Y ) can be represented by the set of matrices with 0 or 1 entries that satisfy
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the following constraints: Let X = {x1, . . . , xnX
} and Y = {y1, . . . , ynY

}. Then, con-
sider R̂(X,Y ) to be the set of nX × nY matrices with entries 0 or 1 s.t. for all
((ri,j )) ∈ R̂(X,Y ):

nX∑

i=1

ri,j ≥ 1 for j ∈ {1, . . . , nY } and
nY∑

j=1

ri,j ≥ 1 for i ∈ {1, . . . , nX}. (2.2)

Consider the bijections X ←→ {1, . . . , nX} and Y ←→ {1, . . . , nY } given by xi ↔ i

and yj ↔ j for all i ∈ {1, . . . , nX} and j ∈ {1, . . . , nY }. Let T : R(X,Y ) → R̂(X,Y )

be given R �→ ((ri,j )) where ri,j = 1 if (xi, yj ) ∈ R and ri,j = 0 otherwise. Then,
actually, T provides a bijection. Frequently, by abuse of notation, R will be identified
with R̂.

Example 2.5 Let X and Y be finite s.t. |X| = |Y | = n. In this case, π ∈ R̂(X,Y ) for
all permutation matrices π of size n.

The following non-standard expression for the Hausdorff distance will be useful.

Proposition 2.1 Let (Z,d) be a compact metric space. Then the Hausdorff distance
between any two sets A,B ⊂ Z can be expressed as

dZ
H(A,B) = inf

R
sup

(a,b)∈R

d(a, b) (2.3)

where the infimum is taken over all R ∈ R(A,B).

Proof Let ε > 0 and R ∈ R(A,B) be s.t. d(a, b) < ε for all (a, b) ∈ R. Since R is a
correspondence between A and B it follows that infb∈B d(a, b) < ε for all a ∈ A and
infa∈A d(a, b) < ε for all b ∈ B . Recalling (2.1) it follows that dZ

H(A,B) ≤ ε.
Assume now that dZ

H(A,B) < ε. Then, for each a ∈ A there exist b ∈ B s.t.
d(a, b) < ε. Then, one may define φ : A → B s.t. d(a,φ(a)) < ε for all a ∈ A.
Similarly, define ψ : B → A s.t. d(ψ(b), b) < ε for all b ∈ B . Consider R =
{(a,φ(a), a ∈ A)} ∪ {(ψ(b), b), b ∈ B}. Obviously, R ∈ R(A,B) and by construc-
tion d(a, b) < ε for all (a, b) ∈ R. �

The Hausdorff distance is indeed a metric on the set of compact subsets of the
(compact) metric space (Z,d).

Proposition 2.2 [22, Proposition 7.3.3]

(1) If A,B,C ∈ C(Z) then

dZ
H(A,B) ≤ dZ

H(A,C) + dZ
H(B,C).

(2) If dZ
H(A,B) = 0 for A,B ∈ C(Z) then A = B .
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The quality of the approximation of an object A by a finite set An can obviously be
described by dZ

H(A,An). Indeed, assume An ⊂ A; then dZ
H(A,An) can be interpreted

as the minimal covering radius associated to covering A with balls centered at points
in An. This can be made precise by recalling (2.1) and using the fact that An ⊂ A:

dZ
H(A,An) = inf

{

ε > 0

∣
∣
∣
∣A ⊂

⋃

a∈An

BZ(a, ε)

}

. (2.4)

Remark 2.1 (One argument in favor of a metric structure on objects) In practice,
metric properties are desirable, and one should insist on having (appropriate versions
of) them for whichever notion of similarity between objects one chooses to work
with. In the case of the Hausdorff distance, these properties imply, in particular, that
if one is interested in comparing objects A and B , and if An ⊂ Z and Bm ⊂ Z are
finite (maybe ‘noisy’1) samples of A and B, respectively, then

∣
∣dZ

H(A,B) − dZ
H(An,Bm)

∣
∣≤ dZ

H(A,An) + dZ
H(B,Bm). (2.5)

One can interpret this expression as follows. There are two objects A and B for
which one desires to obtain a measure of their dissimilarity using Hausdorff distance,
but one does not have access to them except via sampling. That is, there is a proce-
dure that allows one to take an increasing number of sample points from the objects,
perhaps at a certain cost. Hence, in practice, one always has to rely on finite samples
An and Bm of the two objects. Inequality (2.5) above says that by computing the
Hausdorff distance between the samples we are able to approximate the Hausdorff
distance between the true objects up to an error given by how well the finite samples
represent the A and B .

Invoking (2.4), one sees that (2.5) expresses the fact that comparing these finite
samples gives an answer as good as the approximation of the underlying objects by
these discrete sets. This can be interpreted as consistency and/or stability.

Finally, one has the following.

Theorem 2.1 (Blaschke, Theorem 7.3.8 [22]) If (Z,d) is compact, then the collec-
tion of all objects (C(Z), dZ

H) is also compact.

The ideas proposed in this paper rely on the idea of relaxing the notion of corre-
spondence as given by Definition 2.1. In order to do this it is necessary to introduce
a new class of objects denoted by Cw(Z) (and defined precisely below). Informally
speaking, an object in this class will be specified by not only the set of points that con-
stitute it, but one is also required to specify a distribution of importance over these
points. This relaxed notion of correspondence between objects is called matching
measure (or coupling) and is made precise in Definition 2.3 below.

There is a very well-known family of distances which makes use of this alterna-
tive way of pairing objects. These are the so called Mass Transportation distances

1By ‘noisy’ it is understood that it is not necessary that An ⊂ A and Bm ⊂ B .
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[111] (also known as Wasserstein–Kantorovich–Rubinstein distances as known in
the Math community or Earth Mover’s distance [85, 96] in the Object Recognition
arena). These concepts are reviewed next.

2.1 Mass Transportation Distances

Assume as before that A,B ∈ C(Z), and, let μA and μB be Borel probability mea-
sures with supports A and B , respectively. Informally, this means that if a set C ⊂ Z

is s.t. C ∩ A = ∅ then μA(C) = 0. A precise definition is given below:

Definition 2.2 (Support of a measure) The support of a measure μ on a metric
space (Z,d), denoted by supp[μ], is the minimal closed subset Z0 ⊂ Z such that
μ(Z\Z0) = 0.

These probability measures can be thought of as acting as weights for each
point in each of the sets. A simple interpretation is that for each a ∈ A, r > 0,
μA(BZ(a, r)) quantifies the (relative) importance of the point a at scale r (in the dis-
crete case this measure can clearly be interpreted as signaling how much one trusts
the sample point). In other words, if a′ is another point in A and if μA(BZ(a, r)) ≤
μA(BZ(a′, r)) one would say that a′ is more important than a at scale r . Note
that since μA (respectively, μB ) is a probability measure, μA(A) = 1 (respectively,
μB(B) = 1).

One naturally requires that A = supp[μA] and B = supp[μB ]. By taking μA and
μB into account one will, therefore, be comparing not only the geometry of the sets,
but also, the distribution of “importance” over the sets. Define the collection of all
weighted objects (in the metric space (Z,d)),

Cw(Z) := {(A,μA), A ∈ C(Z)
}
,

where for each A ∈ C(Z), μA is a Borel probability measure with supp[μA] = A.

Definition 2.3 (Matching measure) Let A,B ∈ Cw(Z). A measure μ on the product
space A × B is a matching measure or coupling of μA and μB iff

μ(A0 × B) = μA(A0) and μ(A × B0) = μB(B0) (2.6)

for all Borel sets A0 ⊂ A, B0 ⊂ B . Denote by M(μA,μB) the set of all couplings of
μA and μB .

Example 2.6 Let X and Y be objects in Cw(Z); then M(μX,μY ) is non-empty, as it
always contains the product measure μX ⊗ μY .

Example 2.7 Pick X ∈ Cw(Z). When Y = {z0} for some z0 ∈ Z, μY = δY
y0

is a Dirac
delta. In this case there is only one measure coupling: M(μX,μY ) = {μX ⊗ δY

y0
}.
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Remark 2.2 (Matching measures between finite spaces) When X,Y ∈ Cw(Z) are fi-
nite, say nX = |X| and nY = |Y |, then M(μX,μY ) is composed of matrices with
non-negative entries of size nX × nZ satisfying nX + nY linear constraints:

∑

x∈X

μ(x, y) = μY (y) for y ∈ Y and
∑

y∈Y

μ(x, y) = μX(x) for x ∈ X.

Example 2.8 Let X = {x1, x2} and μX(x1) = μX(x2) = 1/2. Let Y = {y1, y2, y3}
and μY (y1) = μY (y2) = μY (y3) = 1/3. Let

μI =
(

y1 y2 y3

x1 1/6 1/6 1/6
x2 1/6 1/6 1/6

)

, μII =
(

y1 y2 y3

x1 2/9 1/6 1/9
x2 1/9 1/6 2/9

)

,

μIII =
(

y1 y2 y3

x1 1/9 1/6 2/9
x2 1/9 1/6 2/6

)

.

Then μI,μII ∈ M(μX,μY ) but μIII /∈ M(μX,μY ).

It turns out that for each μ ∈ M(μA,μB), supp[μ] ⊂ A × B is a correspondence
which we denote by R(μ). This is proved below.

For z = (a, b) ∈ A×B let πA(z) = a and πB(z) = b denote the coordinate projec-
tions of z. For K ⊂ A×B let πA(K) = {πA(z)| z ∈ K} and πB(K) = {πB(z)| z ∈ K}.

Lemma 2.1 (König’s Lemma) Let E ⊂ A × B be a closed set. Then the following
condition is necessary and sufficient for the existence of μ ∈ M(μA,μB) such that
E = supp[μ]: for all A0 ∈ B(A) the set (B ⊃)PB(A0) := πB((A0 ×B)∩E) satisfies

μB

(
PB(A0)

)≥ μA(A0).

For this lemma see [52] and also [72, §2.5]. The lemma can be obtained as a
special case of [104, Theorem 11].

Lemma 2.2 Let μA and μB be Borel probability measures on (Z,d), a compact
space. If μ ∈ M(μA,μB), then R(μ) := supp[μ] belongs to R(supp[μA], supp[μB ]).

Remark 2.3 (The finite case) It is particularly easy to argue in the case A and B are fi-
nite and A = supp[μA] and B = supp[μB ]. Indeed, in these case let μ ∈ M(μA,μB)

be given in its matricial representation as in Remark 2.2. Consider the matrix
R(μ) = ((rab)) where rab = 1 is μ(a, b) > 0 and rab = 0 otherwise. Fix a ∈ A. Then,
since by hypothesis 0 < μA(a) =∑b∈B μ(a, b), one must have rab = 1 for at least
one b ∈ B . Similarly, for any b ∈ B , rab = 1 for at least one a ∈ A. This implies via
Example 2.4 that R(μ) is a correspondence between A and B .

Proof of Lemma 2.2 Let us see that R(μ) is indeed a correspondence. We will
prove that for any a ∈ supp[μA] there exists b ∈ supp[μB ] such that (a, b) ∈ R(μ).
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Indeed, pick a ∈ supp[μA] and for ε > 0 let Fε(a) := PB(B(a, ε)) and F0(a) =
{b ∈ B| (a, b) ∈ R(μ)}. Notice that Fε(a) = {b′ ∈ B| (a′, b′) ∈ R(μ), for somea′ ∈
B(a, ε)}. It is enough to prove that F0(a) �= ∅.

Since a ∈ supp[μA], then μA(B(a, ε)) > 0 for all ε > 0. Then, according to
Lemma 2.1, the set Fε(a) has μB(Fε(a)) > 0 and hence Fε(a) �= ∅ for ε > 0. Also,
it is easy to see that if ε′ < ε then Fε′(a) ⊂ Fε(a). Also, all the sets Fε(a) are closed.
Since supp[μA] is a closed set inside the compact space A, then supp[μA] is compact.

Consider a sequence {εk}k∈N ⊂ R
+ s.t. limk εk = 0. By construction, Fε1 is closed

and one has that {Fεk
}k is a nested family of non-empty closed sets. Then, their in-

tersection
⋂

k≥1 Fεk
= limk→∞ Fεk

is non-empty. Hence, there exists b ∈ B such that
(a, b) ∈ R(μ). By proceeding in the same way, for any b ∈ supp[μB ] there exist
a ∈ supp[μA] s.t. (a, b) ∈ R(μ) and hence R(μ) is a correspondence between A

and B . �

Definition 2.4 (Wasserstein distances, Chap. 7 of [111]) For each p ≥ 1 consider the
following family of distances on Cw(Z), where (Z,d) is a compact metric space:

dZ
W ,p(A,B) := inf

μ∈M(μA,μB)

(∫

A×B

dp(a, b) dμ(a, b)

)1/p

(2.7)

for 1 ≤ p < ∞, and

dZ
W ,∞(A,B) := inf

μ∈M(μA,μB)
sup

(a,b)∈R(μ)

d(a, b). (2.8)

These distances are none other than the Wasserstein–Kantorovich–Rubinstein dis-
tances between measures [36, 44, 111].

These distances have been considered for Object Comparison/Matching applica-
tions several times (for some values of p, typically p = 1 or 2); see for example [31,
65, 85, 96] and more recently, from a more theoretical point of view, [41].

As in the definition of dZ
W ,p

, in the sequel, by an abuse of notation an object
(A,μA) ∈ Cw(Z) will also be denoted by either A or μA. The reader should keep in
mind, however, that a measurable set A ⊂ Z could be represented by many probabil-
ity measures; all that is required is that those probability measures have support A.

Example 2.9 (Wasserstein distance between finite objects) Let (Z,d) be a compact
metric space. When A,B ⊂ Z are finite, μA and μB are linear combinations of delta
measures and can be represented as vectors. In particular, (2.7) takes the following
form:

dZ
W ,p(A,B) = inf

μ

(∑

a,b

dp(a, b)μ(a, b)

)1/p

,

where the infimum is taken over all matching measures matrices between μA and
μB , see Remark 2.2. The optimization problem above is a Linear Optimization prob-
lem with linear constraints on continuous variables. There exist standard specialized
algorithms for numerically computing the minimal value above [88], see Sect. 7.
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An initial question, which is now easy to answer, is how Wasserstein distances are
related to dZ

H(, ). Upon noting that (2.1) and (2.8) are essentially the same expression
and that R(μ) ∈ R(A,B) one obtains

Corollary 2.1 (Relationship between dH and dW ,∞) For (A,μA) and (B,μB) in
Cw(Z)

dZ
H(A,B) ≤ dZ

W ,∞
(
(A,μA), (B,μB)

)

for all choices of μA and μB such that A = supp[μA] and B = supp[μB ].

Proof Pick any μ ∈ M(μA,μB). Then, by hypothesis, Lemma 2.2 gives R(μ) ∈
R(A,B). By Proposition 2.1,

dZ
H(A,B) = inf

R∈R(A,B)
‖d‖L∞(R) ≤ ‖d‖L∞(R(μ)).

The conclusion follows since μ is arbitrary. �

This connection between Hausdorff and Mass Transportation distances has already
been pointed out in the robotics literature, see [55].

The main properties of this family of distances are reviewed next.

Proposition 2.3 [44, 111]

(1) For each 1 ≤ p ≤ ∞, d
p

W ,p
defines a metric on Cw(Z).

(2) For any 1 ≤ q ≤ p ≤ ∞ and A,B ∈ Cw(Z)

dZ
W ,q(A,B) ≤ dZ

W ,p(A,B).

Distances dZ
W ,p

, for finite p offer an interesting alternative to the Hausdorff dis-
tance. Note that, in the finite discrete case, computing them involves solving a Linear
Optimization Problem (LOP); see Example 2.9.

Remark 2.4 (Counterpart to Remark 2.1) Assume An and Bm are finite (possibly
noisy, i.e., An � A, etc.) samples from A and B , respectively. Assume further that
each of them is given together with a discrete probability measure μn and νn, respec-
tively. Then Property 1 above implies that (cf. (2.5) and Remark 2.1)

∣
∣dZ

W ,p(A,B) − dZ
W ,p(An,Bm)

∣
∣≤ dZ

W ,p(A,An) + dZ
W ,p(B,Bm). (2.9)

This is a trivial observation: the point one must make is that now the quality of the
approximation of A by its discrete representative An is governed by the Wasserstein–
Kantorovich–Rubinstein distance between μA and μn. In this context, dZ

W ,p
(B,Bn)

replaces dZ
H(B,Bn). For objects (A,μA) and (B,μB) it is sometimes convenient to

abuse the notation by writing dZ
W ,p

(μA,μB) instead of dZ
W ,p

(A,B).

Similarly to Blaschke’s Theorem, one has the following.
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Theorem 2.2 (Prokhorov [111]) If (Z,d) is compact and p ≥ 1, then the collection
of all weighted objects (Cw(Z), dZ

W ,p
) is also compact.

3 Introducing Invariances

This section provides some more background about the ways in which the purely met-
ric ideas arise in practical considerations dealing with object matching. The presen-
tation will be informal, while we delay the technicalities for Sect. 4 and subsequent
sections.

3.1 Extrinsic Similarity

Let TZ be the group of isometries of the compact metric space (Z,d), i.e.,

TZ = {T : Z → Z| ∀z, z′ ∈ Z,d
(
T (z), T

(
z′))= d

(
z, z′)}. (3.1)

T acts on A ∈ C(Z) in the usual way: T (A) = {T (a), a ∈ A}. On (A,μA) ∈
Cw(Z), the action of T ∈ TZ is given by T (A,μA) = (T (A),T#μA). Let O(Z) de-
note the choice for the class of objects: either C(Z) or Cw(Z). For the case of any
well behaved notion of distance D on O(Z) one can decide to study the following
problem: for A,B ∈ O(Z) consider

DTZ (A,B) := inf
T ∈TZ

D
(
A,T (B)

)
. (3.2)

Obviously this leads to notions of distance between objects that is invariant to
ambient space isometries. In other words, if A and B are such that DTZ (A,B) is
sufficiently small, one would say that A and B are extrinsically similar. There is of
course a complementary notion of intrinsic similarity that is described in the rest of
this section.

The most common case for the space Z is (Z,d) = (Rk,‖ · ‖),2 which has been
approached by several authors in the past, with D = dR

k

H (, ) (and O(Z) = C(Z)) in

[57], and D = dR
k

W ,p
(and O(Z) = Cw(Z)) [31, 96] and references therein. In this

case, the underlying concept is that of similarity to rigid isometries.
It is in this context that the so called iterative closest point algorithm operates [99,

118]. Very similar ideas appear in the context of matching protein structures; see [66,
67] and references therein.

Approaches of this nature typically incur a high computational cost. Whenever
possible, one tries to use computationally cheaper alternatives to rule out dissimilar
objects, and rely on finer but more costly techniques only once one has reason to
believe that the objects are similar (according to the cheaper methods).

2Or a compact subset of R
k .
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3.2 Comparing Invariants: Signature Based Methods

A different idea, used to a certain extent in the signature based methods [11, 37,
53, 54, 86], consists of computing and comparing invariants to T ∈ TZ . This leads to
comparing the metric information of A and B more directly. These methods are some-
times referred to as signature based methods. More precisely, if A = {a1, . . . , am} and
B = {b1, . . . , bn} are finite sets of points in Z ⊂ R

k , ideally one would like to mean-
ingfully compare the distance matrices DA = ((‖ai − aj‖)) and DB = ((‖bi − bj‖))
in a fashion compatible with the particular choice of D (and O(Z)) that one has made.
By this it is meant that one would hope to come up with a notion of distance dD be-
tween distance matrices such that dD(DA,DB) provides a lower bound for D(A,B)

in some precise sense.
Researchers have been resorting to comparisons between simple invariants con-

structed from the distance matrices. For example, in [53] the authors use (essentially)
the histograms of row sums of the distance matrices as the invariants they compare.
In [86], on the other hand, the authors compare the histograms of all distance values
present in DA and DB .

In [51] (under the assumption that n = m) the authors propose attaching to each
point a ∈ A, the (sorted) vector VA(a) ∈ R

n of distances from a to all other a′ ∈ A.
They then propose a measure of dissimilarity between A and B which is roughly
based on finding π ∈ Πn s.t. ‖VA − VB ◦ π‖1 is minimized.

In [4, 74, 91], similar invariants were proposed where to each point a ∈ A one
attaches the histogram or distribution of distances ‖a − a′‖ for all a′ ∈ A.3

At any rate, directly comparing the distances matrices associated to two objects
A and B amounts to considering (A,DA) and (B,DB) as metric spaces without any
reference to Z (which in this case is a compact subset of R

k).

3.3 Intrinsic Similarity

The idea of computing metric invariants and comparing them in order to measure dis-
similarity between objects has found applications in situations more general than the
ones dealing with extrinsic similarity that have been discussed so far. It was recog-
nized by Hilaga et al. [54] that deformations that may change the Euclidean distance
are of interest for certain applications. Hilaga and coauthors deal with the problem
of measuring dissimilarity between objects when the geodesic distance between two
points may remain approximately constant. The procedure that they propose attaches
to each given (triangulated) object the Reeb graph [93] arising from a certain function
defined on the object. The function is at each point is defined as a certain average of
the geodesic distance to all other points on the object. The dissimilarity value between
two objects is defined as a certain notion of dissimilarity between their corresponding
Reeb graphs.

3We follow the standard usage of the words distribution and histogram: histogram is an estimate of density
and distribution is a cumulative version of this estimate.
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Fig. 1 (a) An articulated object in two different articulations. (b) Three-dimensional surface representing
a human face in two different expressions

A similar idea was used by Hamza and Krim in [53] where instead of looking at
the Reeb graph, they attach to each object the histogram of the values of the afore-
mentioned function. The measure of dissimilarity between two objects is obtained by
computing a certain notion of distance between probability densities.

3.3.1 The Case of Planar Articulated Objects

In the problem of comparing articulated objects [70] the idea of computing DTZ

does not appear to be useful. Indeed, take for example the scissors in Fig. 1: the
two articulations of the scissors cannot be matched with small Hausdorff distance by
using any rigid transformation. An example in a similar spirit is given by the problem
of comparing faces under different expressions or objects in different poses [37].

In either of these situations, it is more meaningful to compute invariants for metrics
other than ambient space metrics. For instance, in [70] the authors endow articulated
objects such as those in Fig. 1(a) with a metric coming from the path length distance
generated by the restriction of the Euclidean metric to the interior of the object A. In
this manner they obtain a distance matrix DA which is in general different from the
matrix ((‖ai − aj‖)).4 The authors cogently argue that this metric is (approximately)
insensitive to articulations and the procedure that they propose relies on

(1) computing invariants out of the distance matrix DA, and
(2) comparing these invariants in order to obtain a measure of dissimilarity between

two objects.

3.3.2 An Example from 3D Object Recognition

In [16] the authors claimed that one can model the deformations suffered by the
surface representing the face under different expressions as those that may change
the object in such a manner that geodesic distances remain approximately constant.
Some experimental evidence for this claim was presented. Figure 1(b) depicts two
expressions of the same human face. It is easy to believe that the Euclidean distance

4It is actually, point-wise greater than or equal to. There is equality when the object bounds a convex
region of the plane.
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between some pairs of points on the face will change noticeably between two differ-
ent expressions.

The practical procedure of [16] is the same as that of [37]: given a collection
of points A sampled from a surface, they computed the matrix DA of inter-point
geodesic distances. Then, they applied metric MDS (multidimensional scaling) [32]
in order to find points A′ in some Euclidean space whose inter-point (Euclidean) dis-
tances resemble those in DA as closely as possible. By mapping into some (possibly
high-dimensional) Euclidean space, they unlocked the possibility of computing sev-
eral standard Euclidean invariants, such as different moments of inertia. Then, they
described each object A by a vector IA of Euclidean invariants of the point sets A′,
and the comparison of two objects A and B was carried out by computing some norm
of the difference of the corresponding vectors of invariants, IA and IB .

It is not clear, and to the best of our knowledge not explored by the authors of
[37], whether one gains anything in terms of classification error by performing this
approximate embedding into some Euclidean space, with respect to the possibility
of directly computing invariants out of the geodesic distance matrices DA for each
face A. It is clear, however, that from the point of view of deciding which invariants
to compute, one does indeed gain, given that the moments of an object in Euclidean
space offer a complete set of invariants.

In subsequent papers [20, 21], the authors study the possibility of performing a
variant of metric MDS where the target space is a spherical space S

n. In this case,
the vector of invariants IA for a given face surface A that the authors propose comes
from computing coefficients of the expansion in spherical harmonics of a certain
object dependent function fA : S

n → R that they define.

3.4 A Critique to Signature Based Methods

Although direct comparison of invariants is general enough to accommodate ob-
ject discrimination under deformations that are not necessarily produced by ambient
space isometries, a criticism that applies to all the methods mentioned in this sec-
tion is that the comparison of invariants does not necessarily lead to a strict metric
on classes of objects. Constructions such as the ones in [37, 53, 54, 86, 94] pro-
pose measures of dissimilarity between objects that by construction are invariant (or
approximately invariant) to isometries (be it with respect to Euclidean or geodesic
distances) but could yield zero dissimilarity for two non-isometric objects.

What seems to be lacking is a natural language for expressing and reasoning about
questions such as the stability and discriminative power of the signature based meth-
ods. Furthermore, even though at the intuitive level many of the methods discussed
appear to be related, there is no formal, precise understanding of what the relationship
could be.

Moreover, a possibility that remained unexplored by the methods above was that of
attempting to directly compute a certain notion of distance between distance matrices
DA and DB for objects A and B . We should mention, however, that in the context of
protein structure comparison, some ideas regarding the direct comparison of distance
matrices can be found for example in [56].
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Fig. 2 This figure represents the construction of the metrics Dp and Sp on Gw , the collection of all
metric measure spaces. In this figure, G is the collection of all compact metric spaces and dG H the Gro-
mov–Hausdorff distance. For a given compact metric space Z, C(Z) denotes the collection of all objects
in Z (closed subsets of Z). Similarly, Cw(Z) is the collection of all weighted objects on Z (probability
measures on Z). The horizontal lines represent the process of relaxing/softening the notion of correspon-
dence, whereas vertical arrows, carrying the label “gromovization”, represent the process by which one
gets rid of the ambient space

The ideas put forward in [78, 80, 81] bypassed the computation and comparison of
invariants by using the Gromov–Hausdorff distance to directly compare the distance
matrices associated to the objects.

In a nutshell, the idea of the Gromov–Hausdorff distance is that in the absence
of a common metric space where both A and B are embedded, one first looks for a
sufficiently rich, abstract metric space Z that admits isometric copies A′ and B ′ of
A and B , respectively. Then, a notion of dissimilarity D between A′ and B ′ is com-
puted and the arbitrariness is eliminated by optimizing over the choice of Z, where
one informally calls the process by which this arbitrariness is eliminated gromoviza-
tion. This is the basic idea of the so called Gromov–Hausdorff distances (which arises
from the choice D = dZ

H(, ) and O(Z) = C(Z)) and Gromov–Wasserstein distances
(arising from the choice D = dZ

W ,p
and O(Z) = Cw(Z)). As discussed in the upcom-

ing sections of the paper, for each p ∈ [1,∞] there are two possible definitions of a
Gromov–Wasserstein type of distance: Sp and Dp: see Fig. 2.

The formal treatment coming from considering the Gromov–Wasserstein distances
on the collection of objects allows for precise statements about the stability and inter-
relationship between different methods. Those ideas are discussed in the remainder
of the paper.

4 The Gromov–Hausdorff Distance

Following [52], the Gromov–Hausdorff distance between (compact) metric spaces X

and Y is defined as

dG H(X,Y ) := inf
Z,f,g

dZ
H
(
f (X),g(Y )

)
(4.1)
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where f : X → Z and g : Y → Z are isometric embeddings (distance preserving
transformations) into the metric space Z. This expression seems daunting from the
computational point of view since if one chose to compute the Gromov–Hausdorff
distance appealing to (4.1), apparently, one would have to optimize over huge spaces
defining Z, f and g. There are equivalent tamer expressions which are called below.
Nevertheless, as was already pointed out in [81], this expression helps framing the
procedure of [37] inside the Gromov–Hausdorff realm.

Let G denote the collection of all (isometry classes of) compact metric spaces. As
seen below in Proposition 4.1, G can be made into a metric space in its own right by
endowing it with the Gromov–Hausdorff metric.

There is an alternative expression for dG H.

Definition 4.1 (Metric coupling) Given X,Y ∈ G , let D(dX, dY ) denote the set of all
possible metrics on the disjoint union of X and Y, X � Y that extend the metrics dX

and dY . This means that besides satisfying all triangle inequalities, it also holds that
if d ∈ D(dX, dY ) then d(x, x′) = dX(x, x′) and d(y, y′) = dY (y, y′) for all x, x′ ∈ X

and y, y′ ∈ Y .

Example 4.1 Consider the case when X and Y are finite metric spaces. Let nX =
|X| and nY = |Y |. In this case, d ∈ D(X,Y ) can be regarded as a matrix of size
(nX + nY ) × (nX + nY ) with the following block structure:

d =
(

dX t

tT dY

)

,

where t ∈ R
nX×nY+ is s.t. d is a distance matrix. Note that this means that t is de-

fined by 2(nY

(
nX

2

)+ nX

(
nY

2

)
) linear constraints arising from all triangle inequalities

involving either two points in X and one point in Y , or two points in Y and one in X.

Example 4.2 Let X = {x1, . . . , xnX
} be a finite metric space and Y = {p}. In this case,

t ∈ R
nX+ must be s.t. |ti − tj | ≤ dX(xi, xj ) ≤ ti + tj for i, j ∈ {1,2, . . . , nX}.

Example 4.3 Let X,Y be compact metric spaces and e := max(diam(X),diam(Y )).

For x ∈ X and y ∈ Y let d(x, y) = e/2, and let d reduce to dX (respectively, dY ) on
X × X (respectively, Y × Y ). Then, clearly, d ∈ D(dX, dY ). This means that for all
X,Y compact, D(dX, dY ) �= ∅.

Remark 4.1 (Alternative form of dG H) One can equivalently (in the sense of equality)
define the Gromov–Hausdorff distance between metric spaces (X,dX) and (Y, dY ) as
(see [22, Remark 7.3.12])

dG H(X,Y ) = inf
R,d

sup
(x,y)∈R

d(x, y)
(
= inf

R,d
‖d‖L∞(R)

)
(4.2)

where the infimum is taken over R ∈ R(X,Y ) and d ∈ D(dX, dY ). The reader should
compare (4.2) with (2.3): informally, the difference is that in the former one optimizes
not only on the choice of R, but also on the choice of d ∈ D(dX, dY ), as well.
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The following well-known properties of the Gromov–Hausdorff distance dG H will
be essential for the presentation. From now on, for metric spaces (X,dX) and (Y, dY )

let ΓX,Y : X × Y ×X × Y → R
+ be given by

ΓX,Y

(
x, y, x′, y′) := ∣∣dX

(
x, x′)− dY

(
y, y′)∣∣. (4.3)

Proposition 4.1 (Chap. 7, [22])

(1) Let (X,dX), (Y, dY ) and (Z,dZ) be metric spaces then

dG H(X,Y ) ≤ dG H(X,Z) + dG H(Y,Z).

(2) If dG H(X,Y ) = 0 and (X,dX), (Y, dY ) are compact metric spaces, then (X,dX)

and (Y, dY ) are isometric.
(3) Let X be a subset of the compact metric space (X,dX). Then

dG H
(
(X,dX), (X, dX |X×X

)
)≤ dX

H(X,X).

(4) For compact metric spaces (X,dX) and (Y, dY ):

1

2

∣
∣diam(X) − diam(Y )

∣
∣≤ dG H(X,Y ) ≤ 1

2
max

(
diam(X),diam(Y )

)
(4.4)

where diam(X) := maxx,x′∈X dX(x, x′) stands for the Diameter of the metric
space (X,dX).

(5) For compact metric spaces (X,dX) and (Y, dY ),

dG H(X,Y ) = 1

2
inf

R∈R(X,Y )
sup

x1, x2 ∈ X

y1, y2 ∈ Y

s.t. (xi , yi ) ∈ R

ΓX,Y (x1, y1, x2, y2)

(

= 1

2
inf
R

‖ΓX,Y ‖L∞(R×R)

)

. (4.5)

Remark 4.2 Note that (4.5) makes direct use of the metrics (distance matrices in the
finite setting) of X and Y , which is seemingly more computationally appealing than
the standard definition (4.1).

Remark 4.3 (About stability of the Gromov–Hausdorff distance computation) One
can obtain the following nice stability condition similar to Remark 2.1. Assume A

and B are compact metric spaces, and An ⊂ A and Bm ⊂ B are finite samples of A

and B, respectively, then
∣
∣dG H(A,B) − dG H(An,Bm)

∣
∣≤ dA

H(A,An) + dB
H(B,Bm). (4.6)

The interpretation is very simple. One is interested in computing dG H(A,B), but
one only has access to An and Bm, and therefore one can only attempt to compute
dG H(An,Bm). Hence, reassuringly, (4.6) above expresses the fact that the error in the
answer can be controlled at will by increasing the sampling density.
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Remark 4.4 It is possible to use Gromov–Hausdorff ideas to define a certain notion
of partial similarity between two objects; see [81, Remark 9].

Remark 4.5 (Yet another expression for dG H) It was proved in [61] that Property (5)
in Proposition 4.1 above can be recast in a somewhat clearer form: For functions
φ : X → Y and ψ : Y → X consider the numbers A(φ) := supx1,x2∈X |dX(x1, x2) −
dY (φ(x1),φ(x2))|, B(ψ) := supy1,y2∈Y |dX(ψ(y1),ψ(y2)) − dY (y1, y2)| and
C(φ,ψ) := supx∈X,y∈Y |dX(x,ψ(y)) − dY (φ(x), y)|, then

dG H(X,Y ) = inf
φ : X → Y
ψ : Y → X

1

2
max

(
A(φ),B(ψ),C(φ,ψ)

)
. (4.7)

Formula (4.7) is suggestive from the computational point of view and leads to
considering certain algorithmic procedures such as those in [17, 80, 81].

Remark 4.6 (Connection to the Quadratic Assignment Problem) As seen next, the
expression (4.5) is reminiscent of the QAP (Quadratic Assignment Problem). This
will permit inferring something about the inherent complexity of computing the
Gromov–Hausdorff distance. Consider finite metric spaces, X = {x1, . . . , xn} and
Y = {y1, . . . , ym} with metrics dX and dY, respectively. Recall the representation
of correspondences between finite sets as {0,1}-matrices described in Example 2.4.
Then one has

dG H(X,Y ) = 1

2
min
R

max
i,k,j,l

Γijkl rij rkl,

where Γijkl := |dX(xi, xk) − dY (yj , yl)|. Now, one can obtain a family of related
problems by relaxing the max to a sum as follows. Fix p ≥ 1; then one can also
consider the problem

(Pp) min
R

K(R)

where K(R) :=∑ij

∑
kl(Γikj l)

prij rkl .

Problem (Pp) can be regarded as a generalized version of the QAP. In the standard
QAP ([89]) n = m and the inequalities (2.2) defining R̂ in Example 2.4 are actually
equalities, which forces each R = ((ri,j )) ∈ R̂(X,Y) to be a permutation matrix.

Actually, as is argued next, when n = m, (Pp) reduces to a QAP, which is known
to be an NP-hard problem [89]. Indeed, it is clear that for any R ∈ R̂(X,Y) there
exist π ∈ Πn (n × n permutations matrices) such that rij ≥ πij for all 1 ≤ i, j ≤ n.
Then, since (Γijkl)

p is non-negative for all 1 ≤ i, j, k, l ≤ n, it follows that Kp(R) ≥
Kp(π). Therefore, the minimal value of Kp(R) is attained at some R ∈ Πn.

One also has the following two theorems [22, Chap. 7], cf. Blaschke’s and
Prokhorov’s theorems.

Theorem 4.1 (Gromov’s pre-compactness theorem) Let F ⊂ G be a class of compact
metric spaces s.t (1) diam(X) ≤ D for all X ∈ F ; and (2) for every ε > 0 there exists
a natural number N s.t. every X ∈ F admits an ε-net with no more than N points.
Then, F is pre-compact in the topology generated by dG H.
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Table 1 Four expressions for the GH distance

(4.1) dG H(X,Y ) = infZ,f,g dZ
H(f (X),g(Y ))

(4.2) dG H(X,Y ) = infR,d ‖d‖L∞(R)

(4.5) dG H(X,Y ) = 1
2 infR ‖ΓX,Y ‖L∞(R×R)

(4.7) dG H(X,Y ) = 1
2 infφ,ψ max(A(φ),B(ψ),C(φ,ψ))

Theorem 4.2 (Completeness) The space (G, dG H) is complete.

Remark 4.7 (Summing up: different expressions for the Gromov–Hausdorff distance)
Up to this point in the presentation, four expressions for the Gromov–Hausdorff

distance have been discussed, and these are put together in Table 1.
These expressions are all related by equalities (for compact metric spaces):

(4.1) = (4.2) = (4.5) = (4.7).

4.1 The Plan: From Gromov–Hausdorff to Gromov–Wasserstein

In this paper, a modification of the original formulation of [78, 80, 81] is carried
out, namely, the proposal is to substitute the underlying Hausdorff component in the
definition of the Gromov–Hausdorff distance by a relaxed notion of proximity be-
tween objects (more precisely by the Wasserstein–Kantorovich–Rubinstein distance)
and then find what the equivalent version of Property 5 in Proposition 4.1 would
be.

If one refers to the process of substitution of correspondences and max operations
by coupling measures and Lp norms, respectively, as relaxation, then the goal is to
figure out how to complete the diagram below:

dH
relax

dW ,p

dG H
relax

?

(4.8)

In the diagram above, vertical lines refer to the gromovization process; cf. p. 435.
The main idea in this paper idea is to consider three out of the (four) different

expressions that one has available for the Gromov–Hausdorff distance and try to
pick the one that will provide the most computationally tractable framework with-
out sacrificing the theoretical underpinnings. These three expressions are (4.5),(4.2)
and (4.7).

The path starting at (4.7) has been explored first in [78, 80, 81] and later in [17].
This paper concentrates, therefore, on (4.5) and (4.2). As discussed below, these two
options are natural. One of them is singled out, based on computational cost con-
siderations of the associated discrete problem. Interestingly, as will be shown below,



440 Found Comput Math (2011) 11:417–487

the two expressions that one obtains from the relaxation procedure applied to (4.2)
and (4.5), call them (4.5)∗ and (4.2)∗, respectively, are not related by an equality, in
contrast with the fact that (4.5) = (4.2), see Remark 5.14 below. This is represented
diagrammatically in (4.9) below where vertical arrows represent the “relaxation”:

d
(4.2)

G H d
(4.5)

G H

dH

(4.2)∗
? ?

(4.5)∗

dW ,p

(4.9)

The final version of this diagram is given in (5.12).
The line followed in [17, 80, 81] for developing algorithmic procedures that com-

pute the Gromov–Hausdorff distance was justified only for points sampled from
smooth surfaces. In contrast, the formalism of metric measure spaces used in this
paper allows the approach in this paper to work in more (theoretical and practical)
generality.

One important observation is that both expressions (4.5) and (4.2) make use of
the notion of correspondence. As discussed in previous sections, in fact, at the
level of Hausdorff distances, the formal substitution of correspondences for mea-
sure couplings, and of max for Lp norms (p ≥ 1) leads to Wasserstein–Kantorovich–
Rubinstein distances. Now, carrying out the same program on the Gromov–Hausdorff
distance will lead to the so called Gromov–Wasserstein distances.

The foregoing correspondence in favor of measure couplings is computationally
advantageous. This is so because whereas the nature of correspondences is essen-
tially combinatorial, measure couplings take continuous values, even in the case of
discrete spaces. This fact simplifies the optimization problems that one must solve
in real applications. In addition, no modification of the framework will be needed
when solving this practical optimization tasks, in the sense that the implementation
is straightforward, as opposed to [17, 81].

These points are further discussed in Sect. 7.

5 Gromov–Wasserstein Distances

In order to carry out the goal of obtaining a more computationally tractable alternative
to the Gromov–Hausdorff distance, it is necessary to require more structure than just
a set of points with a metric on them: assume that a probability measure is given on
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the (sets of) points, as was the case in Sect. 2.1. Again, this probability measure can
be thought of as signaling the importance of the different points in the dataset, check
the definition in Sect. 2.1.

5.1 Metric Measure Spaces

Definition 5.1 [52] A metric measure space (mm-space for short) will always be a
triple (X,dX,μX) where

• (X,dX) is a compact metric space.
• μX is a Borel probability measure on X i.e., μX(X) = 1, and μX has full support:

supp[μX] = X.

When it is clear from the context, the triple (X,dX,μX) will be denoted by only
X. The reason for imposing μX(X) = 1 is that one thinks of μX as a modelization of
the acquisition process or sampling procedure of an object.5

Two mm-spaces (X,dX,μX) and (Y, dY ,μY ) are called isomorphic iff there exists
an isometry ψ : X → Y such that

(ψ)#μX = μY . Furthermore, we will denote by Gw denote the collection of all
mm-spaces.

Example 5.1 Consider the mm-spaces ({a, b}, ( 0 1
1 0

)
,
{ 1

2 , 1
2

}
) and ({a′, b′}, ( 0 1

1 0

)
,

{ 1
4 , 3

4

}
). These two spaces are isometric but they are not isomorphic; see Fig. 3.

Example 5.2 (The (n − 1)-simplex as a mm-space) For each n ∈ N, consider the
mm-space (Δn, dn, νn) where Δn consists of n points {1, . . . , n}, dn(i, j) := 1 − δi,j

and νn(i) = 1
n
. In words, the mm-space Δn is the (n− 1)-simplex where the distance

between any two distinct points is 1 and the probability measure is uniform, see
Fig. 4.

Example 5.3 (Riemannian manifolds as mm-spaces) Let (M,g) be a compact Rie-
mannian manifold. Consider the metric dM on M induced by the metric tensor g and
the normalized measure μM , that is, for all measurable C ⊂ M , μM(C) = volM(C)

Vol(M)
.

Here, volM(·) is the Riemannian volume measure on M and Vol(M) = volM(M).

Then (M,dM,μM) is a mm-space. Finally, note that since the Riemannian volume
measure is entirely determined by the metric, it follows that within Riem ⊂ Gw , iso-
morphism reduces to isometry.

Fig. 3 Two mm-spaces that are isometric but not isomorphic

5Think for example of acquisition of a 3D object by a range scanner.
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Fig. 4 Family of mm-spaces {Δn} where Δn is the standard (n − 1)-simplex with uniform probability
measure and metric s.t. the distance between any two distinct points is 1

5.2 Some Invariants of mm-Spaces

Next, a number of simple isomorphism invariants of mm-spaces are defined. Many of
these will be used in Sect. 6 to establish lower bounds for the metrics we will impose
on Gw .

Definition 5.2 (p-Diameters) Given a mm-space (X,dX,μX) and p ∈ [1,∞] we
define its p-diameter as

diamp(X) :=
(∫

X

∫

X

(
dX

(
x, x′))p μX(dx)μX

(
dx′)

)1/p(= ‖dX‖Lp(μX⊗μX)

)

for 1 ≤ p < ∞, and diam∞(X) := diam(supp[μX]).

Example 5.4 For each n ∈ N consider the (n − 1)-simplex (Δn, dn, νn) of Exam-
ple 5.2. Then, for p ≥ 1, diamp(Δn) = (

∑n
i,j=1(1 − δij )

1
n2 )1/p = (1 − 1/n)1/p . It

follows that p-diameters are able to discriminate between simplexes of different di-
mension.

Definition 5.3 Given p ∈ [1,∞] and an mm-space (X,dX,μX) define the
p-eccentricity function of X by

sX,p : X → R
+ given by x �→

(∫

X

dX

(
x, x′)pμ

(
dx′)

)1/p(= ∥∥dX(x, ·)∥∥
Lp(μX)

)

for 1 ≤ p < ∞, and by

sX,∞ : X → R
+ given by x �→ sup

x′∈supp[μX]
dX

(
x, x′)

for p = ∞.

Remark 5.1 Hamza and Krim proposed using eccentricity functions (with p = 2) for
describing objects in [53].

Figure 5 shows two three-dimensional shapes of animals colored (in the online
version) by the value of the eccentricity.
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Fig. 5 (Color online) Three-dimensional models of a horse and a camel colored with the values of the
eccentricity function sX,1 where the metric is an estimate of the geodesic metric and the probability mea-
sure was chosen to be uniform. The color code is that blue represents low values, while red represents high
values

Remark 5.2 (From eccentricities to diameters) Note that p-diameters can be com-
puted from eccentricities: indeed, it is easy to check that for any mm-space
(X,dX,μX), diamp(X) = ‖sX,p‖Lp(μX).

Definition 5.4 (Distribution of distances) To an mm-space (X,dX,μX) associate its
distribution of distances:

fX : [0,diam(X)
]→ [0,1] given by t �→ μX ⊗ μX

({(
x, x′)|dX

(
x, x′)≤ t

})
.

Remark 5.3 (Probabilistic interpretation of the distribution of distances) Note that
fX(t) can be interpreted as follows. Assume that one randomly samples two points
x and x′ from X independently, and each distributed according to the law μX; then,
fX(t) equals the probability6 that the distance between these two random samples
is not greater than t , that is, fX(t) = PμX⊗μX

({(x,x′)|dX(x,x′) ≤ t}). Distributions
of distances have been proposed and successfully used in the applied literature [86]
under the name of shape distributions.

Example 5.5 Consider the mm-spaces Δ2 = ({p,q}, ( 0 1
1 0

)
,
{ 1

2 , 1
2

}
) and Δ3 =

({p1,p2,p3},
( 0 1 1

1 0 1
1 1 0

)
,
{ 1

3 , 1
3 , 1

3

}
) from Example 5.2. One easily finds their distri-

butions of distances to be the functions in Fig. 6. In more generality, for n ∈ N,

fΔn(t) =

⎧
⎪⎨

⎪⎩

0 for t < 0
1
n

for t ∈ [0,1)

1 for t ≥ 1.

6For some probability space.
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Fig. 6 Distributions of distances of the mm-spaces Δ2 and Δ3

Remark 5.4 (Distributions of distances and p-diameters) For a given X ∈ Gw ,
all p-diameters can be recovered from fX , since by Cavalieri’s principle (cf. [2,
Lemma 5.2.7]), for all p ≥ 1

diamp(X) =
(∫ ∞

0
tp dfX(dt)

)1/p

.

Conversely, one has

Proposition 5.1 For any X ∈ Gw , the collection {diamp(X), p ∈ N} of all
p-diameters (for natural p) determines fX completely.

Proof Let M = diam(X) < ∞. Then, (diamp(X))p ≤ Mp for p ≥ 1. Hence all mo-
ments mk := ∫∞

0 tk dfX(dt) of dfX exist and are bounded by Mk , k ∈ N. In partic-

ular, the series
∑

k mk
rk

k! has radius of convergence equal to +∞, and by [6, Theo-
rem 30.1] dfX is determined by {mk, k ∈ N}. �

This result justifies the following simple procedure for obtaining a signature of
and comparing objects: let S(X) := (s1, s2, . . . , sp, . . .) be the element of R

∞ where
sp = diamp(X). Then, in order to “compare” two objects X and Y one could merely
compute some distance between S(X) and S(Y ). The proposition above tells us that
S(X) contains the same information as fX . In this sense, the choice of a metric on
R

∞ seems crucial and at best moot. For this reason it appears to be more sound to
use the SLB function (and related lower bounds) described in Sect. 6.

Remark 5.5 (Distributions of distances do not discriminate all mm-spaces) Consider
three different examples:

• Consider the metric spaces from Fig. 7. Both have the same distribution of dis-
tances with associated measure 1

4δR

0 + 1
4δR√

2
+ 1

8δR

2 + 1
4δR√

10
+ 1

8δR

4 . Yet, these
two mm-spaces are clearly not isomorphic, since they are not isometric. Boutin
and Kemper [11] have analyzed the discrimination of finite sets in Euclidean space
using distributions of distances.7

• Another example can be constructed easily. For α,β, γ ≥ 0 with sum equal to

1 consider the space with three points X = ({a, b, c},
( 0 1 1

1 0 1
1 1 0

)
, {α,β, γ }) and let

7They express their results in the language of multisets. Therefore, the implicit assumption is that the sets
are endowed with uniform probability measures.
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Fig. 7 Two non-isomorphic mm-spaces (both have uniform probability measures attached to them) with
the same distributions of distances. Note that these spaces can be realized in R

2 (example taken from [11])

Y = Δ2. Then,

dfX = δR

0

(
α2 + β2 + γ 2)+ δR

1 (2αβ + 2βγ + 2γ α).

and dfY = 1
2δR

0 + 1
2δR

1 . Imposing α2 +β2 +γ 2 = 2αβ +2βγ +2γ α = 1
2 one finds

that, modulo a permutation, all solutions are of the form

(

α,
(1 − α) ± √

α(2 − 3α)

2
,
(1 − α) ∓ √

α(2 − 3α)

2

)

for α ∈ [0,2/3]. For example, for α = 1
4 , one finds (β, γ ) = ( 3±√

5
8 , 3∓√

5
8 ).

• Another, strikingly simple, example is the following one adapted from [7], which
constructs two non-isomorphic finite sets of points on the real line which have
the same distribution of distance: Let X = {0,1,4,10,12,17} ⊂ R and Y =
{0,1,8,11,13,17} ⊂ R both with uniform probability measures. Let

A = {1,2,3,4,5,6,7,8,9,10,11,12,13,16,17},
then

dfX = dfY = δR

0
3

18
+
∑

a∈A

δR

a

1

18
.

The next definition formalizes the idea of considering a point-wise shape descrip-
tor that assigns to each point the (cumulative) “histogram” of distances from all points
to the point of interest.

Definition 5.5 (Local distribution of distances) To a mm-space (X,dX,μX) asso-
ciate its local distribution of distances defined by

hX : X × [0,diam(X)
]→ [0,1] given by

(x, t) �→ μX

({
x′|dX

(
x, x′)≤ t

})= μX

(
BX(x, t)

)
.

For each x ∈ X, denote by dhX(x, ·) the unique probability measure on R
+ de-

fined by dhX(x, [a, b]) = hX(x, b) − hX(x, a), for all a, b ≥ 0 with a ≤ b.
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Remark 5.6 (Probabilistic interpretation of the local distribution of distances) Note
that hX(x, t) can be interpreted as follows. Assume that one randomly samples a point
x′ from X distributed according to the law μX , then hX(x, t) equals the probability
that the distance between x and this random sample does not exceed t : hX(x, t) =
PμX

(dX(x,x′) ≤ t).

This type of invariants have been considered in the applied literature before. The
earliest mention of this known to the author is in the work of German researchers [3,
5, 62].

The so called shape context [4, 23, 97, 102] invariant is closely related to hX .8

More similar to hX is the invariant proposed by Manay et al. in [74] in the context
of planar objects. This type of invariant has also been used for three-dimensional
objects [30, 42]. More recently, in the context of planar curves, similar constructions
have been analyzed in [12].

Remark 5.7 (Local distribution of distances as a proxy for scalar curvature) There is
an interesting observation that in the class Riem ⊂ Gw of closed Riemannian man-
ifolds local distributions of distance are intimately related to curvatures. Let M be
an n-dimensional closed Riemannian manifold which by the construction of Exam-
ple 5.3 one can regard as an mm-space by endowing it with the geodesic metric and
with probability measure given by the normalized volume measure. The Riemannian
volume of a ball of radius t centered at x ∈ M has the following expansion [101]:

volM
(
BM(x, t)

)= ωn(t) ·
(

1 − SM(x)

6(n + 1)
t2 + O

(
t4)
)

,

where SM(x) is the scalar curvature of M at x, ωn(t) is the volume of a ball of radius
t in R

n and O(t4) is a term whose decay to 0 as t ↓ 0 is faster than t4. It then follows
that

hM(x, t) = ωn(t)

Vol(M)

(

1 − SM(x)

6(n + 2)
t2 + O

(
t4)
)

.

One may then argue that local shape distributions play a role of generalized notions
of curvature. In Sect. 6, lower bounds are established for the different metrics on Gw

that make explicit use of this generalized notion of curvatures.

Remark 5.8 (From local distributions of distance to distributions of distances) Notice
that one can express the distribution of distances fX of a mm-space (X,dX,μX) in
terms of its local distribution of distances. Indeed, note that for t ≥ 0,

QX(t) := {(x, x′) s.t.dX

(
x, x′)≤ t

}= {(x, x′) s.t.x′ ∈ BX(x, t), x ∈ X
}
,

and then

fX(t) = μX ⊗μX

(
QX(t)

)=
∫

X

(∫

BX(x,t)

μX

(
dx′)

)

μX(dx) =
∫

X

hX(x, t)μX(dx).

(5.1)

8More precisely, hX corresponds to the cumulative version of the intrinsic shape context.
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More suggestive from the probabilistic point of view is the notation fX(t) =
EμX

(hX(x, t)).

Remark 5.9 (From local distributions of distance to eccentricities) Notice that for
p ≥ 1 one can also express the p-eccentricity sX,p of an mm-space (X,dX,μX) in
terms of its local distribution of distances. Clearly, for x ∈ X,

sX,p(x) =
(∫ ∞

0
tp dhX(x, dt)

)1/p

. (5.2)

In words, the p-eccentricity sX,p(x) at x is just the pth moment of the measure
dhX(x).

The following counterexample proves that, in general, local shape distributions
can confound two non-isomorphic mm-spaces.

Example 5.6 (Local distributions of distances do not discriminate mm-spaces) There
are large families of mm-spaces that are confounded by local distributions of dis-
tances. Below, two non-isomorphic finite mm-spaces X and Y , with the same cardi-
nality, are constructed s.t. there exist a permutation P with dhY (y) = dhX(P (y))

for all y ∈ Y . Consider the mm-spaces X = (Δ3 � Δ3 � Δ3, d,wX) and Y =
(Δ3 � Δ3 � Δ3, d,wY ) given in Fig. 8 where

d =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 2 2 2 2 2 2
1 0 1 2 2 2 2 2 2
1 1 0 2 2 2 2 2 2
2 2 2 0 1 1 2 2 2
2 2 2 1 0 1 2 2 2
2 2 2 1 1 0 2 2 2
2 2 2 2 2 2 0 1 1
2 2 2 2 2 2 1 0 1
2 2 2 2 2 2 1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.3)

and wX,wY ∈ M+
1 (9) are given by

wX =
[

23

140
,

1

105
,

67

420
,

2

15
,

1

15
,

2

15
,

4

21
,

1

28
,

3

28

]T

(5.4)

and

wY =
[

3

28
,

1

15
,

67

420
,

23

140
,

2

15
,

1

28
,

1

105
,

4

21
,

2

15

]T

. (5.5)

That X and Y cannot be isomorphic can be seen from Fig. 8, but an explicit argu-
ment follows. If they were isomorphic, then there would exist an isometry Ψ : Y → X

that would also respect the weights: wY ◦ Ψ = wX . Isometries are necessarily bijec-
tive, i.e., they are permutations. Notice that there exist only two permutations Π1 and
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Fig. 8 (Color online) Two non-isomorphic mm-spaces with the same local shape distributions (up to a
permutation), see text. In green is X and Y is in orange. The numbers represent the mass assigned to each
node. The length of all edges is 1

2 . Note that by construction, the sum of masses of any three nodes in a

branch is 1
3

Π2 s.t. wX = wY ◦ Πi for i ∈ {1,2}. These permutations are given by

(1,2,3,4,5,6,7,8,9)
Π1�−→ (

(4,7,3,5,2,9,8,6,1)
)

and

(1,2,3,4,5,6,7,8,9)
Π2�−→ (

(4,7,3,9,2,5,8,6,1)
)
.

Neither of these permutations gives rise to an isometry. Indeed, direct computation
shows that

max
i,j

∣
∣d(i, j) − d

(
Π(i),Π(j)

)∣
∣= 1 for Π ∈ {Π1,Π2}.

Nonetheless, the local shape distributions of X and Y agree up to a permutation.
Indeed, notice that there are only three distance values that are possible in the metric
d given by (5.3): 0,1 and 2. Take for example x1 the first point in X, which as listed
in (5.4) has weight 23

140 . Then, for ρ ∈ [0,1), hX(x,ρ) = 23
140 . For ρ ∈ [1,2), there

are two points besides x1 s.t. dX(x1, ·) ≤ ρ and these have weights 1
105 and 67

420 (see
Fig. 8) and thus hX(x1, ρ) = 1

3 . Finally, for ρ ≥ 2, hX(x1, ρ) = 1. Hence one can
write that

dhX(x1) = ωX(x1)δ
R

0 +
(

1

105
+ 67

420

)

δR

1 +
(

1 − 1

3

)

δR

2

= ωX(x1)δ
R

0 + 71

420
δR

1 + 2

3
δR

2 .

The same procedure can be applied to computing the values of dhX(x) for all
x ∈ X, and similarly for all dhY (y), y ∈ Y . The results of carrying out these compu-



Found Comput Math (2011) 11:417–487 449

tations for all points in X and for all points in Y are

dhX = δR

0 wX + δR

1 VX + δR

2
2

3
U and dhY = δR

0 wY + δR

1 VY + δR

2
2

3
U,

where

VX =
[

71

420
,

34

105
,

73

420
,

1

5
,

4

15
,

1

5
,

1

7
,

25

84
,

19

84

]T

,

VY =
[

19

84
,

4

15
,

73

420
,

71

420
,

1

5
,

25

84
,

34

105
,

1

7
,

1

5

]T

,

and

U = [1,1,1,1,1,1,1,1,1]T .

Recall that by construction wX = wY ◦ Π for Π ∈ {Π1,Π2}. By direct computa-
tion one sees that VX = VY ◦ Π as well and hence that dhX = δR

0 wY ◦ Π + δR

1 VY ◦
Π + δR

2
2
3U ◦ Π = dhY ◦ Π for Π ∈ {Π1,Π2}. This proves that X and Y have the

same local shape distributions up to a permutation.
It is possible to construct a four-parameter family of counterexamples with a sim-

ilar structure. This counterexample was found using intensive symbolic computation
in Matlab.

Example 5.7 (Spheres) For n ∈ N consider spheres endowed with geodesic metric
and normalized area measure (Sn, d, ν). In this case, the following claims are true:

(1) sSn,1(x) = π/2 for all x ∈ S
n and for all n ∈ N.

(2) diam1(S
n) = π/2 for all n ∈ N.

(3) diam∞(Sn) = π for all n ∈ N.

(4) diam2(S
2) =√π2/2 − 1.

(5) diam2(S
1) = π/

√
3.

(6) hSn(x, t) = fSn(t) = Γ ( n+1
2 )√

π Γ ( n
2 )

∫ t

0 (sin r)n−1 dr for all x ∈ S
n and t ∈ [0,π].

One can easily prove (1), as follows. Let a : S
n → S

n denote the antipodal map. Fix
x ∈ S

n. Note that for all x′ ∈ S
n,

d
(
x, x′)+ d

(
x′, a(x)

)= π

and in particular, integrating out x′ with respect to ν, one obtain sSn,1(x) +
sSn,1(a(x)) = π . But by symmetry of S

n, sSn,1 must be constant, and hence the claim.
Claim (2) follows from (1). Claim (3) is obvious, and (4) and (5) follow from simple
computations. Finally, for (6) first note that by symmetry hSn(x, t) does not depend
on x. That hSn(·, t) = fSn(t) follows from (5.1) and the fact that hSn(x, t) is inde-
pendent of x. Finally, the explicit expression for ν(BSn(·, t)) follows from standard
formulas for the area of spheres [46].
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Remark 5.10 The preceding remarks (Remarks 5.8, 5.9 and 5.2) prove that local
distributions of distances are the strongest amongst the invariants that have been con-
sidered so far. See also Sect. 6.

5.3 Two Distances on Gw

This section introduces two notions of distance on mm-spaces that are central to all
subsequent considerations. As was done for metric spaces in Sect. 2, one needs to
introduce a notion of correspondence/coupling between the mm-spaces involved in
the comparison. The definition below is essentially the same as Definition 2.3.

Definition 5.6 (Measure coupling) Given two metric measure spaces (X,dX,μX)

and (Y, dY ,μY ) one says that a measure μ on the product space X × Y is a coupling
of μX and μY iff

μ(A × Y) = μX(A), and μ
(
X × A′)= μY

(
A′) (5.6)

for all measurable sets A ⊂ X, A′ ⊂ Y . Denote by M(μX,μY ) the set of all cou-
plings of μX and μY .

Starting from (4.5), we now construct a new, tentative notion of distance between
metric spaces. The idea is to use (4.5) as the starting point because the goal is for
the new distance to directly compare the metrics of X and Y (in a meaningful way).
Roughly speaking, the idea is to substitute the L∞ norm in (4.5) by Lp norms, and
correspondences by coupling measures. For p ∈ [1,∞) and μ ∈ M(μX,μY ) let

Jp(μ) := 1

2

(∫

X×Y

∫

X×Y

(
ΓX,Y

(
x, y, x′, y′))p μ(dx × dy)μ

(
dx′ × dy′)

)1/p

(

= 1

2
‖ΓX,Y ‖Lp(μ⊗μ)

)

(5.7)

and also let

J∞(μ) := 1

2
sup

x,x′∈X

y,y′∈Y

s.t. (x, y), (x′, y′) ∈ R(μ)

ΓX,Y

(
x, y, x′, y′)

(

= 1

2
‖ΓX,Y ‖L∞(R(μ)×R(μ))

)

(5.8)

Definition 5.7 For ∞ ≥ p ≥ 1 one defines the distance Dp between two mm-spaces
X and Y by

Dp(X,Y ) := inf
μ∈M(μX,μY )

Jp(μ). (5.9)

One needs to prove that expression (5.9) in fact defines a metric on the set of all
isomorphism classes of mm-spaces, which constitutes an interesting technical step in
itself. These and other properties of Dp , of similar spirit to those reported for dG H(, )

in Proposition 4.1, are treated in Theorem 5.1 below.
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Remark 5.11 (Dp as a “relaxation” of (4.5)) Recall that d
(4.5)

G H (X,Y ) =
1
2 infR ‖ΓX,Y ‖L∞(R×R). Since by definition Dp(X,Y ) = 1

2 infμ ‖ΓX,Y ‖Lp(μ⊗μ), in
view of the informal discussion summarized in (4.9), one sees that (4.5)∗ = (5.9). In-
deed, notice that, formally, the structure of Dp can be obtained from that of (4.5) by
substitution of correspondences by measure couplings and L∞ norms by Lp norms.

Definition 5.8 (Another distance on Gw: Sturm’s construction) In [105] K.T. Sturm
introduced and studied the following distance for mm-spaces (for each p ≥ 1):9

Sp(X,Y ) := inf
μ,d

(∫

X×Y

d(x, y)p μ(dx × dy)

)1/p(
= inf

d,μ
‖d‖Lp(μ)

)
(5.10)

where the infimum is taken over all d ∈ D(dX, dY ) (recall Definition 4.1) and μ ∈
M(μX,μY ).

The corresponding definition for p = ∞ is

S∞(X,Y ) = inf
μ,d

sup
(x,y)∈R(μ)

d(x, y)
(
= inf

d,μ
‖d‖L∞(R(μ))

)
. (5.11)

Remark 5.12 Recall that d
(4.2)

G H (X,Y ) = infd,R ‖d‖L∞(R), hence one sees that Sturm’s
proposal (5.10) corresponds to what was called (4.2)∗ in Sect. 4.1, i.e., (4.2)∗ =
(5.10). Since {R(μ)|μ ∈ M(μX,μY )} ⊂ R(X,Y ) it is clear that
S∞(X,Y ) ≥ dG H(X,Y ). Notice that is bound is dual to the inequality dW ,∞ ≥ dH
contained in Proposition 2.3.

Remark 5.13 (From measure couplings to correspondences) In practical applications
one seeks not only a measure of dissimilarity between objects, but also the knowledge
of the precise matching between them may be important. In the context of Gromov–
Wasserstein distances, the (optimal) matching between objects X and Y is encoded by
a measure coupling μ which seems to provide nothing but a fuzzy type of matching.
However, by Lemma 2.2, given R(μ) = supp[μ] is in fact a correspondence between
X and Y . This correspondence obviously induces two maps φ : X → Y and ψ : Y →
X that can be used to map back an forth between the two objects. There is a sense
in which this is a reasonable setting. As is proved in Theorem 5.1 below, Jp(μ) = 0
implies that R(μ) describes an isometry between X and Y and in this case φ and ψ

are forced to be inverses of each-other.

Remark 5.14 (Sp and Dp are not equal in general) At this point it becomes clear
that in the construction outlined in Sect. 4.1, (4.5)∗ = (5.9) and (4.2)∗ = (5.10), see
(4.9). Note that since (4.5) and (4.2) are equal, one could conjecture (5.9) and (5.10)
to be equal as well. In this respect, Theorem 5.1 below proves that Sp ≥ Dp for
1 ≤ p ≤ ∞ and that S∞ = D∞. However, for p < ∞ the equality does not hold in
general.

9He presented the case that p = 2.
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We now exhibit X,Y ∈ Gw s.t. Dp(X,Y ) < Sp(X,Y ). For each n ≥ 2 let X = Δn

be the (n − 1)-simplex (see Example 5.2) and let Y be a single point {y}. Let
us consider for simplicity the case p = 1. From Example 2.7 it is known that
M(νn, {1}) = {νn}, and from Example 4.1:

D(Δn,Y ) =
{(

dX f

f T 0

)

, f ∈ R
n+|fi − fj ≤ 1 ≤ fi + fj , i �= j

}

.

Hence, S1(Δn,Y ) = inff
∑

i fiνn(i) = inff
∑

i fi

n
where the infimum is taken

among all f satisfying the conditions in the definition of D(Δn,Y ). In the con-
straints for f there are

(
n
2

)
different inequalities of the form 1 ≤ fi + fj (i �= j ).

Adding them and noting that each fi appears in exactly n − 1 of those inequalities
yields

(
n
2

)≤ (n − 1)
∑

i fi . This implies that for all n ≥ 2,

S1(Δn,Y ) ≥ 1

2
.

From Theorem 5.1 below it follows that

D1(Δn,Y ) = 1

2
diam1(Δn) = n − 1

2n

where the last equality follows from Example 5.4. Hence, one sees that S1(Δn,Y ) >

D1(Δn,Y ) for all n ≥ 2. The next interesting question is whether Sp and Dp are
“comparable” in the Lipschitz sense. The arguments in Remark 5.17 prove this to be
in general false. However, as explained in Sect. 5.5, a weaker comparability statement
does hold, namely that they both generate the same topology on Gw . Proposition 5.2
below proves that within Riem a bi-Hölder type of comparability does hold.

The diagram below summarizes the proposed construction, cf. (4.9), vertical ar-
rows signify the process of relaxing (that is, correspondences are substituted by mea-
sure couplings, and L∞ norms by Lp norms).

d
(4.2)

G H = inf
d,R

‖d‖L∞(R) d
(4.5)

G H = 1

2
inf
R

‖ΓX,Y ‖L∞(R×R)

dH

Sp = inf
d,μ

‖d‖Lp(μ) Dp = 1

2
inf
μ

‖ΓX,Y ‖Lp(μ⊗μ)

dW ,p

(5.12)
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As is argued in Sect. 7, Dp is more amenable to numerical computations than Sp .

Remark 5.15 One may wonder what is the relationship between dG H(X,Y ) and
(some of) the Dp(X,Y )’s. In this respect, Theorem 5.1 (b) below asserts that
dG H(X,Y ) ≤ D∞(X,Y ).

5.4 Properties of Dp

The theorem below summarizes the main properties of Dp; its proof is postponed to
Sect. 10.1. See [105] for a treatment of similar properties for Sp .

In Sect. 6 we present lower bounds for Dp based on the invariants discussed in
Sect. 5.2.

Theorem 5.1 (Properties of Dp) Let p ∈ [1,∞], then

(a) Dp defines a metric on the collection of all isomorphism classes of mm-spaces.
(b) (Relationship with dG H) Let X and Y be two mm-spaces,10 then one has

dG H(X,Y ) ≤ D∞(X,Y ),

where it is understood that on the left-hand side X and Y are the canonical
projections of X,Y ∈ Gw onto G .

(c) (What happens under two probability measures on the same space (keeping the
same metric)?) Let (Z,d) be a compact metric space and α and β two different
Borel probability measures on Z. Let X = (Z,d,α) and Y = (Z,d,β) then

Dp(X,Y ) ≤ dZ
W ,p(α,β).

(d) (What happens under two different metrics on the same space (keeping the same
probability measure?) Let (Z,α) be a measure space and d, d ′ : X × X → R

+
be two measurable metrics on Z.

Let X = (Z,d,α) and Y = (Z,d ′, α), then

Dp(X,Y ) ≤ 1

2
‖d − d ′‖Lp(Z×Z,α⊗α).

(e) (What happens for a random sampling of the metric space?) Let p ∈ [1,∞) and
Xm ⊂ X be a set of m random variables xi : Ω → X defined on some probability
space Ω with law μX . Let μm(ω, ·) := 1

m

∑m
i=1 δX

xi (ω) denote the empirical mea-
sure. For each ω ∈ Ω consider the mm-spaces (X,dX,μX) and (Xm,dX,μm),
then, for μX-almost all ω ∈ Ω ,

(Xm,dX,μm)
Dp−→ (X,dX, μX) as m ↑ ∞.

10Note that in the definition of mm-spaces, (X,dX,μX) ∈ Gw , then supp[μX] = X.
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(f) (Distance to a point) Let Z = {z}, then

Dp(X,Z) = diamp(X)

2
.

From this and Property (a) (triangle inequality), it holds that for all X,Y ∈ Gw:

diamp(X) + diamp(Y )

2
≥ Dp(X,Y ) ≥

∣
∣
∣
∣
diamp(X) − diamp(Y )

2

∣
∣
∣
∣. (5.13)

(g) (Relationship to Sp) For any X,Y ∈ Gw , it holds that Sp(X,Y ) ≥ Dp(X,Y ) for
p ≥ 1, and S∞(X,Y ) = D∞(X,Y ).

(h) (Ordering of the different distances). Dp ≥ Dq and Sp ≥ Sq whenever ∞ ≥
p ≥ q ≥ 1.

(i) (Equivalence of the different distances). If p ≥ q ≥ 1, then Dp(X,Y ) ≤ M
1− q

p ·
(Dq(X,Y ))

q
p where M = max(diam(X),diam(Y )).

Remark 5.16 (The parameter p) Writing the framework with p as a parameter is not
superfluous. In fact even the simple bound (5.13) will be useful for discriminating be-
tween certain spaces that the corresponding Gromov–Hausdorff bound (4.4) cannot.
For example, consider the case when X = (S1, d1,μ1) and X = (S2, d2,μ2) where
d1 and d2 are the usual spherical distance metrics and μ1 and μ2 stand for normalized
area on S

1 and S
2, respectively. Since diam(Sn) = π for all n ∈ N , then (4.4) van-

ishes as (5.13)p=∞ also does. However, since by Example 5.7, diam2(S
1) = π/

√
3

and diam2(S
2) =

√
π2

2 − 2, it follows that (5.13)p=2 does permit telling S
1 and S

2

apart. In fact, invoking (5.13), one sees that D2(S
1,S

2) ≥ 0.0503.

Definition 5.9 Let X be a set and d, d ′ : X × X → R
+ two metrics on X. One says

that d and d ′ are bi-Hölder equivalent with exponents α,β > 0, whenever there exist
constants c2 ≥ c1 > 0 s.t.

c1 · (d(x, x′))α ≤ d ′(x, x′)≤ c2 · (d(x, x′))β for all x, x′ ∈ X.

When the inequality holds for α = β = 1, one says that d and d ′ are bi-Lipschitz
equivalent. Note that if d and d ′ are bi-Hölder equivalent, then a sequence {xn}n ⊂ X

is Cauchy w.r.t. d if and only if {xn}n is Cauchy w.r.t. d ′.

Remark 5.17 (Sp and Dp are not bi-Lipschitz equivalent) For all n ∈ N and p ∈
[1,∞),

Sp(Δn,Δ2n) ≥ 1

4
and Dp(Δn,Δ2n) ≤ 1

2

(
3

2n

)1/p

.

Indeed, the following facts are true for p ∈ [1,∞):
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Claim 5.1 For all m,n ∈ N,

Dp(Δn,Δm) = 1

2

(
1

n
+ 1

m
− 2 · max

μ∈M(νn,νm)

∑

x,y

μ2
x,y

)1/p

(5.14)

and in particular, from (5.14) it follows that

Dp(Δn,Δm) ≤ 1

2

(
1

n
+ 1

m

)1/p

. (5.15)

Proof Indeed, note that for all x, x′ ∈ Δn and y, y′ ∈ Δm one has that
ΓΔn,Δm(x, y, x′, y′) = |δx,x′ −δy,y′ |. Note that ΓΔn,Δm is 0 or 1 and hence ΓΔn,Δm(x,

y, x′, y′) = |δx,x′ − δy,y′ |2 = δx,x′ + δy,y′ − 2δx,x′ · δy,y′ ∈ {0,1}. Clearly, for
all p ∈ [1,∞), (ΓΔn,Δm(x, y, x′, y′))p = ΓΔn,Δm(x, y, x′, y′). Then, for any μ ∈
M(νn, νm),

(
2 Jp(μ)

)p =
∑

x,y

μx,y

∑

x′,y′
μx′,y′(δx,x′ + δy,y′ − 2δx,x′δy,y′)

=
∑

x,y

μx,y

(
νn(x) + νm(y) − 2μx,y

)

=
∑

x

ν2
n(x) +

∑

y

ν2
m(y) − 2

∑

x,y

μ2
x,y

= 1

n
+ 1

m
− 2

∑

x,y

μ2
x,y

from which (5.14) follows. �

Claim 5.2 For all n,m ∈ N, one has

max
μ∈M(νn,νm)

∑

x,y

μ2
x,y ≤ 1

2

(
1/n + 1/m − |1/n − 1/m|)= 1

max(n,m)
. (5.16)

Proof For all n ∈ N and p ∈ [1,∞) from Example 5.4 it follows that diamp(Δn) =
(1 − 1/n)1/p. Then, from Theorem 5.1(h) and (f), Dp(Δn,Δm) ≥ D1(Δn,Δm) ≥
1
2 |1/n − 1/m|. Now, from (5.14) for p = 1, one obtains (5.16). �

Claim 5.3 For all n,m ∈ N:

Sp(Δn,Δm) ≥ 1

2

(

1 − min(n,m)

max(n,m)

)

. (5.17)
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Proof Let d ∈ D(dn, dm) and μ ∈ M(νn, νm), then, for all x, x′ ∈ Δn and y ∈ Δm,
d(x, y) + d(x′, y) ≥ dn(x, x′) = 1 − δx,x′ . Then, for all y ∈ Δm,

∑

x,x′
μx,yμx′,y

(
d(x, y) + d

(
x′, y

)) ≥
∑

x,x′
μx,yμx′,y(1 − δx,x′)

⇓
2
∑

x

μx,yd(x, y)νm(y) ≥ (νm(y)
)2 −

∑

x

μ2
x,y .

Now, sum over all y ∈ Δm, and substitute νm(y) = 1/m to obtain:

∑

x,y

d(x, y)μx,y ≥ 1

2

(

1 − n
∑

x,y

μ2
x,y

)

.

By symmetry and the fact that μ ∈ M(νn, νm) was arbitrary, one finds

S1(Δn,Δm) ≥ 1

2

(

1 − min(n,m) · max
μ∈M(νn,νm)

∑

x,y

μ2
x,y

)

.

Combining this expression with (5.16) and recalling Theorem 5.1(h) one obtains the
claim. �

Claim 5.4 Sp and Dp are not bi-Lipschitz equivalent.

Proof Let m = 2n, then by (5.15) and (5.17) one sees that Sp(Δn,Δ2n) ≥ 1/4 and

Dp(Δn,Δ2n) ≤ 1

2

(
3

2n

)1/p

whose the right-hand side vanishes as n ↑ ∞. Then, the condition of Definition 5.9
cannot be satisfied. �

Remark 5.18 It follows from the previous remark that (Gw,Dp) is not complete.
Indeed, a potential limit object for the sequence {Δn}n∈N is a space with infinitely
many points and with the discrete metric. Such a space would not be compact.

Remark 5.19 (Gromov’s box distance) In Chap. 3 1
2 of [52] Gromov proposes at least

two more notions of distance on Gw . In particular, for each λ ≥ 0 he defines the “box
metric” �λ which Sturm [105] proved to be bi-Lipschitz equivalent to Sp within
families of compact mm-spaces with uniform bound on the diameters. Gromov’s box
metric, nonetheless, appears to lead to hard combinatorial problems; this has been
another motivation for the construction of Dp .
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5.5 Equivalence of Dp and Sp

This section establishes the topological equivalence of Sp and Dp for p < ∞. Recall
that one already has that Dp ≤ Sp on Gw × Gw .

It is useful to introduce another invariant of mm-spaces.

Definition 5.10 (Modulus of mass distribution) For δ > 0, define the modulus of
mass distribution of X ∈ Gw as

vδ(X) := inf
{
ε > 0|μX

({
x|μX

(
BX(x, ε)

)≤ δ
})≤ ε

}
. (5.18)

Example 5.8 It is easy to see that

• (Simplices) vδ(Δn) = 1 if δ ≥ n−1 and vδ(Δn) = 0 if δ < n−1,
• (Spheres) vδ(S

n) = min(1, ρ−1
n (δ)), where ρn(ε) = ν(BSn(·, ε)) and ν is the nor-

malized area measure on S
n, see Example 5.7.

Proposition 5.2 (Lemma 6.5, [50]) For any fixed X ∈ Gw , the map that sends
δ ≥ 0 to vδ(X) is non-decreasing, right-continuous and bounded by 1. Moreover,
limδ↓0 vδ(X) = 0.

The proposition below, together with the facts that always Sp ≥ Dp (Theo-

rem 5.1(g)) and vδ(X)
δ↓0→ 0 for all X ∈ Gw , establishes the topological equivalence

between Sp and Dp on Gw for p ≥ 1.

Proposition 5.3 Let X,Y ∈ Gw , p ∈ [1,∞) and δ ∈ (0,1/2). Then,

Sp(X,Y ) ≤ (4 · min
(
vδ(X), vδ(Y )

)+ δ
)1/p · M

whenever Dp(X,Y ) < δ5, where M = 2 · max(diam(X),diam(Y )) + 45.

Remark 5.20 If F ⊂ Gw is a family for which there exists a surjective function ρF :
[0,∞) → [0, δF ] with δF > 0, such that

μX

(
BX(x, ε)

)≥ ρF (ε) for all ε ≥ 0, x ∈ X, all X ∈ F ,

then for all δ ∈ (0, δF ):

sup
X∈F

vδ(X) ≤ inf
{
ε > 0|ρF (ε) > δ

}
.

Indeed, assume that ε > 0 is such that ρF (ε) > δ and fix any X ∈ F . Then, clearly,
Lδ := {x ∈ X|μX(BX(x, ε)) ≤ δ} = ∅, and hence μX(Lδ) = 0 ≤ ε. Thus vδ(X) ≤ ε

and the claim follows since ε (s.t. δ < ρF (ε)) and X were arbitrary.

When X and Y are in suitable classes of mm-spaces, one can refine the result
in Proposition 5.3. In particular, the following theorem asserts that when X and Y

are restricted to certain classes of Riemannian manifolds one essentially obtains bi-
Hölder equivalence.
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Theorem 5.2 Let p ∈ [1,∞) and F = F (n,K,V, I,D) ⊂ Gw denote the collec-
tion of all n-dimensional Riemannian manifolds endowed with normalized volume
measures, with uniform upper bound K > 0 on their sectional curvatures, uniform
upper bound V on their volumes, uniform lower bound I > 0 on their injectivity
radii, and uniform upper bound D on their diameters. Then, there exist constants
δF = δ(n,K,V, I ) > 0 and CF = C(n,K,V, I,D) > 0 with the property that when-
ever X,Y ∈ F (n,K,V, I,D) are such that Dp(X,Y ) < δF , then

Sp(X,Y ) ≤ CF · (Dp(X,Y )
) 1

5np .

5.6 Pre-compact Families in (Gw,Dp)

One has the following sufficient conditions for pre-compactness.

Theorem 5.3 Let F be a family of mm-spaces such that there exist D > 0 and ρF :
[0,∞) → [0, δF ] surjective, δF > 0, with

(1) sup{diam(X), X ∈ F } ≤ D, and
(2) inf{μX(BX(x, ε)), x ∈ X} ≥ ρF (ε) for all X ∈ F and ε ≥ 0.

Then, F is pre-compact for the Dp topology, for each p ≥ 1.

This theorem is analogous to Blaschke’s Theorem (Theorem 2.1), Prokhorov’s
Theorem (Theorem 2.2), and Gromov’s Pre-compactness Theorem (Theorem 4.1).

Example 5.9 Recall the family {Δn, n ∈ N} of Example 5.2. Condition (1) is satisfied
trivially. However, {Δn, n ∈ N} violates condition (2). Indeed, notice that for ε ∈
[0,1) one has μΔn(BX(x, ε)) = 1

n
for all x ∈ Δn. Hence, infn μΔn(BX(x, ε)) = 0

and there can be no surjective non-negative function from [0,∞) to [0, δ), δ > 0, s.t.
condition (2) is satisfied.

Remark 5.21 Condition (2) may be ensured by assuming that in addition to satisfying
(1), all spaces X in F are doubling with the same doubling constant CF :

μX

(
BX(x,2ε)

)≤ CF · μX

(
BX(x, ε)

)
, for all x ∈ X, ε ≥ 0.

Indeed, if this is the case, then X = BX(x,D) for any x ∈ X and hence by [2, Theo-
rem 5.2.2]

μX

(
BX(x, ε)

)≥
(

ε

2D

)N

for N = N(F ) := logCF
log 2 . From this point onwards, the discussion in Remark 5.20

applies. A similar Theorem has been proved by Sturm in [105, Theorem 3.12] for
Sp . In his statement, Sturm assumes the uniform doubling condition for all spaces
in the family in addition to uniform control of diameters. His conclusion is, actually,
compactness, since he also proves that the doubling property is stable with respect to
Sp-convergence.
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6 Lower and Upper Bounds and Connections to Other Approaches

In practice, having lower bounds that are easy to compute (in the sense that they
are not computationally expensive) is very important as they facilitate classification
tasks: If during a query the value of the lower bound is above a certain threshold one
would say that the answer to the query is negative without incurring the potentially
higher computational cost of evaluating the full metric. In addition to this, it is usual
practice to somehow use the “matching” coming from these lower bounds as an initial
condition for the iterative algorithm that will optimize the full underlying notion of
proximity, see Sect. 7.

Also, with the goal of relating the framework proposed in this paper to other pro-
posals that can be found in the literature, it will be established that several notions
of dissimilarity between objects based on comparison of mm-space isomorphism in-
variants (see Sect. 5.2) are lower or upper bounds to Dp (5.9). Some lower and upper
bounds have already been presented in Sect. 5, and in particular the relation to dG H
and Sturm’s proposal (Sp) has been discussed there.

In this section, for each p ∈ [1,∞], we construct functions FLBp , SLBp and
TLBp from Gw × Gw to R for which the following inequalities hold:

Sp ≥ Dp ≥
{

TLBp ≥ FLBp

SLBp

These functions involve computing certain distances between the invariants that
we defined in Sect. 5.2. None of these lower bounds is tight: the mm-spaces X

and Y of Fig. 8 are such that FLBp(X,Y ) = SLBp(X,Y ) = TLBp(X,Y ) = 0, but
Dp(X,Y ) > 0.

Remark 6.1 The lower bounds for Dp (and hence, by Theorem 5.1 (g), also Sp) that
are computed in this section admit in turn lower bounds of a simplified nature when
p = 1—related bounds for such case are also discussed. Note that by Theorem 5.1(h),
these lower bounds for D1 will also be lower bounds to Dp for all p > 1.

The following technical lemma will be used in this section:

Lemma 6.1 Let (X,dX,μX) and (Y, dY ,μY ) be two mm-spaces in Gw . Let f : X →
R and g : Y → R be continuous and φ : R → [0,∞) be convex. Then

inf
μ∈M(μX,μY )

∫

X×Y

φ
(
f (x) − g(y)

)
μ(dx × dy) ≥

∫ 1

0
φ
(
F−1(t) − G−1(t)

)
dt

where F(t) := μX{x ∈ X|f (x) ≤ t} and G(t) := μY {y ∈ Y |g(y) ≤ t} are the distri-
butions of f and g, respectively, and their generalized inverses under μX and μY ,
respectively, are defined as:

F−1(t) = inf
{
u ∈ R|F(u) > t

}
.
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Furthermore, when φ(u) = |u|, u ∈ R, one can dispense with the inverses:

inf
μ∈M(μX,μY )

∫

X×Y

∣
∣f (x) − g(y)

∣
∣μ(dx × dy) ≥

∫

R

∣
∣F(u) − G(u)

∣
∣du.

Proof Fix μ ∈ M(μX,μY ). Let h : R
2 → R

2 given by h = (f, g) and consider the
measure ν = h#μ on R

2. By Theorem 4.1.11 of [36] (applied to T : X ×Y → R×R,
(x, y) �→ (f (x), g(y))) one has

∫

X×Y

φ
(
f (x) − g(y)

)
μ(dx × dy) =

∫

R×R

φ(t − s) ν(dt × ds).

Now, ν(I × R) = μ(f −1(I ) × g−1(R)) = μ(f −1(I ) × Y) = μX(f −1(I )), for
any I ∈ B(R). Similarly, ν(R × J ) = μY (g−1(J )) for any J ∈ B(R). Hence, from
the equality above,
∫

X×Y

φ
(
f (x) − g(y)

)
μ(dx × dy) ≥ inf

ν∈M(f#μX,g#μY )

∫

R×R

φ(t − s) ν(dt × ds).

The conclusion follows from results on the transportation problem on the real line,
see Remark 2.19 in [111], and then from the fact that μ ∈ M(μX,μY ) was arbitrary
and the right-hand side does not depend on it. �

6.1 First Lower Bound

This section establishes a lower bound for Dp using eccentricities.
Recall the definition of eccentricities: for ∞ > p ≥ 1 sX,p : X → R

+ is given by
x �→ ‖dX(x, ·)‖Lp(μX) and sX,∞ : X → R

+ given by x �→ ‖dX(x, ·)‖Lp(R(μ)).

Definition 6.1 (First Lower Bound) For X,Y ∈ Gw define

• for p ∈ [1,∞):

FLBp(X,Y ) := 1

2
inf

μ∈M(μX,μY )

(∫

X×Y

∣
∣sX,p(x) − sY,p(y)

∣
∣p μ(dx × dy)

)1/p

.

• for p = ∞:

FLB∞(X,Y ) := 1

2
inf

μ∈M(μX,μY )
sup

(x,y)∈R(μ)

∣
∣sX,∞(x) − sY,∞(y)

∣
∣.

Then one obtains the following lower bound for Dp:

Proposition 6.1 Let X,Y ∈ Gw and p ∈ [1,∞]. Then,

Dp(X,Y ) ≥ FLBp(X,Y ). (6.1)

Remark 6.2 Note that for 1 ≤ p < ∞, solving for FLBp leads to a Mass Transporta-
tion Problem [111] for the cost c(x, y) := |sX,p(x) − sY,p(y)|p .
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Proof of Proposition 6.1 The case p < ∞ in (6.1) is a simple consequence of
Minkowski’s inequality. Indeed, fix x ∈ X, y ∈ Y and μ ∈ M(μX,μY ). Then, by
Minkowski’s inequality,

∥
∥dY (y, ·)∥∥

Lp(μ)
≤ ∥∥dX(x, ·)∥∥

Lp(μ)
+ ∥∥ΓX,Y (x, y, ·, ·)∥∥

Lp(μ)
.

But since μ is a coupling of μX and μY , ‖dX(x, ·)‖Lp(μ) = sX,p(x) and
‖dY (y, ·)‖Lp(μ) = sY,p(y). From the inequality above, one has sY,p(y) ≤ sX,p(x) +
‖ΓX,Y (x, y, ·, ·)‖Lp(μ). By exchanging the roles of X and Y one obtains

∣
∣sX,p(x) − sY,p(y)

∣
∣≤ ∥∥ΓX,Y (x, y, ·, ·)∥∥

Lp(μ)
. (6.2)

Now, since ‖ΓX,Y ‖Lp(μ⊗μ) ≤ 2 max(diam(X),diam(Y )) < ∞, by Fubini’s theo-
rem, ‖ΓX,Y ‖Lp(μ⊗μ) = (

∫
X×Y

(‖ΓX,Y (x, y, ·, ·)‖Lp(μ))
p μ(dx × dy))1/p . From (6.2)

one finds

‖ΓX,Y ‖Lp(μ⊗μ) ≥
(∫

X×Y

∣
∣sX,p(x) − sY,p(y)

∣
∣p μ(dx × dy)

)1/p

.

The claim follows upon noting that the right-hand side admits 2FLBp(X,Y ) as a
lower bound and that then in the resulting inequality one can use the fact that μ is
arbitrary.

The case p = ∞ is a consequence of this simple fact: for functions f,g : Z → R

it holds that |supf − supg| ≤ sup|f − g|. �

Let SX,p : R → [0,1] be given by t �→ μX({x ∈ X| sX,p(x) ≤ t}), i.e., SX,p is the
distribution function of sX,p under μX . Then, invoking Lemma 6.1 with φ(u) = |u|p
one obtains

Corollary 6.1 (Lower bound based on distribution of eccentricities) For p ∈ [1,∞)

and X,Y ∈ Gw ,

FLBp(X,Y ) ≥ 1

2

(∫ 1

0

∣
∣S−1

X,p(u) − S−1
Y,p(u)

∣
∣p du

)1/p

.

When p = 1, one obtains

FLB1(X,Y ) ≥ 1

2

∫

R

∣
∣SX,1(t) − SY,1(t)

∣
∣dt. (6.3)

The lower bounds given in Corollary 6.1 compute distances between distributions
of eccentricities. The use of such invariants was introduced in the applied literature
by Hamza and Krim in [53].

6.2 Second Lower Bound

This section provides a lower bound for Dp (and hence also for Sp) which relies on a
certain comparison of the distribution of distances of X and Y (recall Definition 5.4).
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Definition 6.2 For X,Y ∈ Gw define

• for p ∈ [1,∞):

SLBp(X,Y ) := 1

2
inf

γ∈M̂

(∫

X×X

∫

Y×Y

∣
∣dX(X ) − dY (Y )

∣
∣p γ (dX × dY)

)1/p

.

• for p = ∞ :

SLB∞(X,Y ) := 1

2
inf

γ∈M̂
sup

((x,x′),(y,y′))∈R(γ )

∣
∣dX

(
x, x′)− dY

(
y, y′)∣∣,

where M̂ = M(μX ⊗μX,μY ⊗μY ) stands for the collection of probability measures
on X × X×Y × Y with marginals μX ⊗ μX and μY ⊗ μY .

Then one obtains the following bound for Dp .

Proposition 6.2 Let X,Y ∈ Gw and p ∈ [1,∞]. Then,

Dp(X,Y ) ≥ SLBp(X,Y ). (6.4)

Proof Fix μ ∈ M(μX,μY ). Let B(X × X) denote the σ -algebra on X×X generated
by sets of the form A × A′ where A,A′ ∈ B(X). Define B(Y × Y ) in the same way.
Then, let B(X × X×Y × Y ) be the σ -algebra generated by sets of the form L × M

where L ∈ B(X × X) and M ∈ B(Y × Y ). Let μ⊗̂μ be the (unique) measure on
(X × X×Y × Y, B(X × X×Y × Y )) s.t. μ⊗̂μ(A × A′ ×B × B ′) = μ(A × B) ·
μ(A′ × B ′) for all A,A′ ∈ B(X) and B,B ′ ∈ B(Y ).

Clearly, μ⊗̂μ ∈ M(μX ⊗ μX,μY ⊗ μY ). Thus, SLBp(X,Y ) provides a lower
bound for Dp(X,Y ). A similar claim is true for p = ∞. �

It is clear now that this bound is nothing but a measure of distance between the
distribution of inter-point distances in X and Y . In fact, one has the following more
explicit result.

Corollary 6.2 (Lower bound based on distribution of distances) For p ∈ [1,∞) and
any X,Y ∈ Gw ,

SLBp(X,Y ) ≥ 1

2

(∫ 1

0

∣
∣f −1

X (u) − f −1
Y (u)

∣
∣p du

)1/p

and for p = 1 the expression simplifies to

SLB1(X,Y ) ≥ 1

2

∫ ∞

0

∣
∣fX(t) − fY (t)

∣
∣dt. (6.5)

Proof The proof follows after a direct application of Lemma 6.1. �
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Remark 6.3 (Connection to Shape distributions) The distribution of distances fX is
related to one of the shape signatures computed by Osada et al. in the influential
shape distribution approach to comparing objects [86]. In [86] the authors propose
to characterize an object X by (an estimate of) the probability density of the distance
between two randomly selected points on the object X. Of course, fX is the cumu-
lative version of the shape distribution. The line started in [86] was pursued in more
theoretical terms, for the case of finite Euclidean metric sets by Boutin and Kemper
in [11]. The second lower bound, SLBp , together with the counterexamples given
in Sect. 5.1 make explicit the fact that the distributions of distances are important
invariants for the discrimination of objects; yet, they are not complete.

Example 6.1 Recall the mm-spaces Δ2 and Δ3 of Example 5.5. Applying the
bound (6.5) given by the Corollary above for p = 1, one finds SLB1(Δ2,Δ3) ≥ 1

12 .

Example 6.2 The following lower bound holds: D1(S
1,S

2) ≥ 1
2 (1 − π/4). Indeed,

notice that according to Example 5.7, fS1(t) = t
π

and fS2(t) = 1−cos t
2 , for t ∈ [0,π].

Let h(t) := fS1(t) − fS2(t) and note that h(π/2 + α) + h(π/2 − α) = 0 for all α ∈
[0,π/2]. Hence

∫ ∞

0

∣
∣fS1(t) − fS2(t)

∣
∣dt = 2

∫ π/2

0

(
t

π
− 1 − cos t

2

)

dt = 1 − π

4
.

Therefore, by Proposition 6.2 and (6.5) one obtains that D1(S
1,S

2) ≥ SLB1(S
1,S

2) ≥
1
2 (1 − π

4 ) � 0.1073. Note that since D2(S
1,S

2) ≥ D1(S
1,S

2) this lower bound is
tighter than the one computed via 2-diameters in Remark 5.16.

6.3 Third Lower Bound

This section established a lower bound for Dp based on local distributions of dis-
tances. For p ∈ [1,∞] and X,Y ∈ Gw let Ωp : X × Y → R be given by

Ωp(x, y) := inf
μ∈M(μX,μY )

∥
∥ΓX,Y (x, y, ·, ·)∥∥

Lp(μ)
for p < ∞ (6.6)

and

Ω∞(x, y) := inf
μ∈M

∥
∥ΓX,Y (x, y, ·, ·)∥∥

L∞(R(μ))
. (6.7)

Definition 6.3 Let X,Y ∈ Gw . Define

• for p ∈ [1,∞):

TLBp(X,Y ) := 1

2
inf

μ∈M(μX,μY )

(∫

X×Y

(
Ωp(x, y)

)p
μ(dx × dy)

)1/p

.

• for p = ∞:

TLB∞(X,Y ) := 1

2
inf

μ∈M(μX,μY )
sup

(x,y)∈R(μ)

Ω∞(x, y).
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Proposition 6.3 Let X,Y ∈ Gw and p ∈ [1,∞]. Then,

Dp(X,Y ) ≥ TLBp(X,Y ). (6.8)

Proof We only show details for p ∈ [1,∞). Clearly, for any μ ∈ M(μX,μY ), by
Fubini’s theorem, the definition of Ωp , and the definition of TLBp:

2 · Jp(μ) = ‖ΓX,Y ‖Lp(μ⊗μ) =
(∫

X×Y

(∥
∥ΓX,Y (x, y, ·, ·)∥∥

Lp(μ)

)p
μ(dx × dy)

)1/p

≥
(∫

X×Y

(
Ωp(x, y)

)p
μ(dx × dy)

)1/p

≥ 2 · TLBp(X,Y ).

The conclusion follows since μ was arbitrary in M(μX,μY ). �

Remark 6.4 (TLBp and Lawler’s lower bound for the QAP) This lower bound is
reminiscent of Lawler’s lower bound in the QAP literature [89]; see Remark 4.6. To
the best of our knowledge this is the first time this bound is used in the context of
Object Matching/Comparison.

Remark 6.5 From (6.2) in the proof of Proposition 6.1, it is easy to see that

TLBp(X,Y ) ≥ FLBp(X,Y )

for all p ≥ 1 and X,Y ∈ Gw .

From the lower bound (6.8) one can go one step further and produce another lower
bound of more practical appeal. In fact, Corollary 6.3 below relates the framework
discussed in this paper to the very attractive idea of estimating the Dp distance from
below by comparing the local shape distributions that were introduced in Defini-
tion 5.5. Recall that one denotes the local shape distribution of an mm-space X at
point x ∈ X by hX(x, ·). For fixed x ∈ X, by h−1

X (x, ·) we denote the generalized
inverse of hX(x, ·) with respect to its (second) argument, see Lemma 6.1.

Corollary 6.3 (Lower bound based on local distributions of distances) Let X,Y ∈ Gw

and p ∈ [1,∞). Then

TLBp(X,Y )

≥ 1

2
min

μ∈M(μX,μY )

∫

X×Y

(∫ 1

0

∣
∣h−1

X (x,u) − h−1
Y (y,u)

∣
∣p du

)1/p

μ(dx × dy). (6.9)

For p = 1 we obtain

TLB1(X,Y ) ≥ 1

2
min

μ∈M(μX,μY )

∫

X×Y

(∫ ∞

0

∣
∣hX(x, t) − hY (y, t)

∣
∣dt

)

μ(dx × dy).

(6.10)
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Proof Recall (6.7) and note that by Lemma 6.1 (for φ(u) = |u|p) for all (x, y) ∈
X × Y ,

(
Ωp(x, y)

)p ≥
∫ 1

0

∣
∣h−1

X (x,u) − h−1
Y (y,u)

∣
∣p du.

For p = 1, by Fubini’s Theorem, the right-hand side above admits, as before, a sim-
pler expression:

Ω1(x, y) ≥
∫ ∞

0

∣
∣hX(x, t) − hY (y, t)

∣
∣dt.

The conclusion follows by recalling Definition 6.3 and by using routine arguments. �

Remark 6.6 It is obvious that the right-hand side of expression (6.10) above com-
putes a certain dissimilarity between the “cumulative histograms of distances” (local
shape distributions), hX and hY . Recall the definition of local shape distributions in
Definition 5.5 and see there the connection with the “shape context” idea.

Ideas of this kind have been used in protein docking [95] and matching of hip-
pocampal surfaces [102], see Remark 5.6 in Sect. 5.2. More recently, an ad hoc pro-
cedure based on the comparison of invariants similar to the local shape distributions
has been investigated in [97]. The lower bound (6.10) thus embodies a method that
is compatible with the metrics Dp and Sp . Furthermore, this idea leads to solving
a transportation problem with the cost c(x, y) := ‖hX(x, ·) − hX(y, ·)‖L1(R+) which
can be solved efficiently in practice. Indeed, transportation problems, also known
as Hitchcock transportation problems are quite common in the optimization litera-
ture and standard references such as [88] describe specialized algorithms for solving
these problems which run in polynomial time.

6.4 Upper Bounds

Assume that one wants to compare compact subsets of Euclidean space R
d under

invariance to the group E(d) of rigid isometries. Then, following Sect. 3, a suitable
notion of similarity between objects (X,μX) and (Y,μY ) in Cw(Rd) is

EW ,p(X,Y ) := inf
T ∈TZ

dR
k

W ,p

(
X,T (Y )

)
.

Consider the mm-spaces X′ = (X,‖ · ‖,μX) and Y ′ = (Y,‖ · ‖,μY ), then by simple
application of Minkowski’s inequality (for the norm ‖ · ‖) one can easily prove that
(recall Theorem 5.1(c))

Dp

(
X′, Y ′)≤ EW ,p

(
X′, Y ′).

This bound relates Dp to ideas in [31, 65] and references therein. A similar claim

holds true when one use dR
d

H instead of dR
d

W ,p
and dG H instead of Dp . Based on work

by Alestalo et al. [1], reverse inequalities have been obtained in [76] for the case dH
and dG H(, ); and dW ,p and Sp . Precise statement for the pairs dR

d

H and dG H, and

dR
d

W ,p
and Sp are
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Theorem 6.1 [76] Let X,Y ⊂ R
d be compact. Then

dG H
((

X,‖ · ‖), (Y,‖ · ‖)) ≤ inf
T ∈E(d)

dR
d

H
(
X,T (Y )

)

≤ cd · M 1
2 · (dG H

((
X,‖ · ‖), (Y,‖ · ‖))) 1

2

where M = max(diam(X),diam(Y )) and cd is a constant that depends only on d .

The 1
2 -exponent is optimal, see [76].

Theorem 6.2 [76] Let X,Y ⊂ R
d be compact weighted objects. Then

Sp

((
X,‖ · ‖), (Y,‖ · ‖)) ≤ inf

T ∈E(d)
dR

d

W ,p

(
X,T (Y )

)

≤ c′
d · M 3

4 · (Sp

((
X,‖ · ‖), (Y,‖ · ‖))) 1

4

where M = max(diam(X),diam(Y )) and c′
d is a constant that depends only on d .

7 Computational Technique

This section deals with the practical computation of Dp . We recast the discrete coun-
terpart of the ideas we propose as (continuous) optimization problems.

Assume that finite mm-spaces X = {x1, . . . , xnX
} and Y = {y1, . . . , ynY

} with met-
rics dX and dY, respectively, and probability measures μX and μY, respectively, are
given. Let

M :=
⎧
⎨

⎩
μ ∈ R

nX×nY+
∣
∣
∣
∣0 ≤ μij ≤ 1, where

⎧
⎨

⎩

∑
j μi,j = μX(xi),

and∑
i μi,j = μY(yj ),

⎫
⎬

⎭

for all 1 ≤ i ≤ nX,1 ≤ j ≤ nY

⎫
⎬

⎭
.

Note that the number of linear constraints in M is (nX + nY). Let p ∈ [1,∞).
Then the problem that one needs to solve is

(Pp)

{
minμ∈M Hp(μ)

Hp(μ) :=∑nX

i,i′=1

∑nY

j,j ′=1 μi,j μi′,j ′ |dX(xi, xj ) − dY(yi′ , yj ′)|p.

Problem (Pp) is a QOP (with linear constraints), albeit not necessarily convex. Nev-
ertheless, there exist many techniques in the literature for handling this kind of prob-
lems. For the computation of examples presented in Sect. 8, we implemented an alter-
nate optimization procedure [73] which relies on solving successive LOPs and which
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was initialized by solving the problem FLBp (see below). We used the Matlab in-
terface [43] for the open source LOP solver glpk and YALMIP as an interpreter
[71].

Let μ∗ be the measure coupling that one obtains upon convergence of the method.
We then estimate Dp(X,Y) � 1

2 (Hp(μ∗))1/p .

Remark 7.1 (About the computational cost of Dp vs. Sp) If one were to try to com-
pute Sp(X,Y), the resulting optimization problem would be significantly harder. In
fact, the problem would read

(Sp)

{
min(μ,d)∈M×D Ip(μ,d)

Ip(μ,d) :=∑nX

i=1

∑nY

j=1 μi,j d
p
i,j

where

D :=
⎧
⎨

⎩
d ∈ R

nX×nY+ s.t.

⎧
⎨

⎩

|dij − di′j | ≤ dX(xi, xi′) ≤ dij + di′j
and

|dij − dij ′ | ≤ dY(yj , yj ′) ≤ dij + dij ′

⎫
⎬

⎭

for all 1 ≤ i, i′ ≤ nX, 1 ≤ j, j ′ ≤ nY

⎫
⎬

⎭
.

Note that the number of linear constraints in D is NS := 2(nY

(
nX

2

)+ nX

(
nY

2

)
) �

(nX + nY). Hence, for solving (Sp) one needs 2(nX × nY) variables and NS con-
straints as opposed to (nX × nY) variables and (nX + nY) constraints for solving
(Pp). Therefore, from the practical point of view, this justifies singling out Dp as a
more convenient choice. Also, it is worth mentioning that problem (Sp) is a Bilinear
Optimization problem, which can obviously be reformulated as a QOP.

Nevertheless, there are situations when (Sp) is more tractable; see the discussion
in [76].

7.1 Computation of the Lower Bounds

It is useful to recast the lower bounds discussed in Sect. 6.1 in this optimization
setting. Consider the optimization problem:

(FLBp)

{
minμ∈M Lp(μ)

Lp(μ) := 1
2

∑nX

i=1

∑nY

j=1 μij |sX,p(i) − sY,p(j)|

where sX,p(i) := (
∑nX

k=1 μX(k) (dX(xi, xk))
p)1/p and sY,p(j) = (

∑nY

k=1 μY(yk) ×
(dY(yj , yk))

p)1/p for 1 ≤ i ≤ nX and 1 ≤ j ≤ nY.
While we do not do it here explicitly, it is clear that the discrete formulations of

SLBp and TLBp also lead to LOPs. In the latter case, however, one needs to solve
nX × nY LOPs over the variable μ ∈ M.
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8 Computational Examples

This section presents some computational examples that exemplify the use of the
mm-space framework based on the Dp distance.

8.1 An Example with Ultrametric Spaces

In many applications one has to deal with very large datasets that cannot be processed
at once. Clustering is one of the standard tools for data analysis and hierarchical
clustering is one of standard ways of performing clustering. Hierarchical methods of
clustering give outputs in the form of dendrograms: nested partitions of the input set
which are parametrized by a scale parameter arising from the metric structure of the
input data. These dendrograms are rooted trees, and as such admit a representation
using ultrametrics [24], which are a special type of metrics that satisfy a stronger
version of the triangle inequality.

In order to deal with the massiveness of the datasets, often, practitioners apply
methods akin to the bootstrap that consist of taking several different samples of the
underlying dataset, and applying the data analysis procedure individually to each of
these smaller, more manageable, datasets. The problem that must be dealt with later
on is that of detecting whether there is some sort of agreement between the different
outputs that correspond to each of the samples. This requires being able to measure
dissimilarity between such outputs, and in the case of hierarchical clustering, one
needs to measure dissimilarity between finite ultrametric spaces. Notice that there
may be no way of using the labels of the points in any reasonable manner. It is the
case, namely, that the measure of dissimilarity that one chooses must be able to rec-
ognize structure in a manner that is insensitive to labels of the points.

This example shows an example of computing distance between ultrametric spaces
that correspond to a collection of 12 dendrograms that exhibit six clearly different be-
haviors. The different dendrograms correspond to different number of points and also
different “shapes”. They were generated by clustering randomly generated Euclidean
point clouds with varying number of clusters. See Fig. 9 for more details. The algo-
rithm applied to each finite metric space was single linkage hierarchical clustering.

Let U be a 12 × 12 matrix where the entry U(i, j) is the result of computing the
distance D1 between dendrograms i and j .

Figure 9 shows all the dendrograms and in the middle it shows a dendrogram cor-
responding to Single Linkage clustering applied to U (this would be a clustering of
clusterings). Here, all ultrametric spaces representing the dendrograms were normal-
ized to have diameter one. This makes the comparison more challenging and also
more meaningful, since then the use of the GW distance will now only distinguish
by “shape” and not by scale. The choice of probability measures used was uniform,
that is, all points in each ultrametric space have weight equal to 1/(cardinality of
space).

Handling ultrametric spaces is possible and justified with the approach that is de-
scribed in this paper. The implementation of the Gromov–Wasserstein distance that
was described does not impose any restriction on the nature of the metric structure
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Fig. 9 (Color online) A clustering of hierarchical clusterings. The colors of the boxes enclosing groups
of dendrograms correspond to the colors in the branches in the dendrogram in the center. Observe that the
brown box contains dendrograms that show two clear clusters, the red box contains dendrograms that show
five clusters, the orange box three clusters, the green box three or four clusters. The small dendrograms,
from left to right correspond to the leaves of the big dendrogram in the center, from left to right. Notice
that there are two dendrograms on the right that, judging from the dendrogram arising from U, do not
seem to cluster with any other dendrogram. Visually, this makes sense given that the shapes of the other
dendrograms are quite different

attached to the objects. This is in sharp contrast with the estimation to the Gromov–
Hausdorff distance provided by the so called GMDS (generalized metric multidimen-
sional scaling) [17, 18] which requires triangulated shapes and a metric smoothly
varying on them, which is not the case for ultrametric spaces.

8.2 Matching of 3D Objects

We used the publicly available (triangulated) objects database [106]. This database
comprises 72 objects from seven different classes: camel, cat, elephant,
faces, heads, horse and lion.

Each class contains several different poses of the same object. These poses are
richer than just rigid isometries, see Fig. 10 for an example of what these objects
look like in the case of the camel models. The number of vertices in the models
ranged from 7 K to 30 K. From each model Xk 4,000 points were selected using
the Euclidean farthest point sampling procedure. Briefly, one first randomly chooses
a point from the dataset. Then one chooses the second point as the one at maximal
distance from the first one. Subsequent points are chosen always to maximize the
minimal distance to the points already chosen. Let X̂k denote this reduced model.
Then an intrinsic distance (or graph distance) was defined using Dijkstra’s algorithm
on the graph G(Xk) with vertex set Xk , where each vertex is connected by an edge
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Fig. 10 Top row: As an example this figure show all the 10 poses of the camel model object. The second
and third row show one pose of each of the objects in the database. Last row, left: This panel shows ((dij )),
see the text for more details. Right: Estimated confusion matrix for the 1-nearest neighbor classification
problem described in the text (these figures are best appreciated in the online version of the paper)

to those vertices with which it shares a triangle. Since X̂k ⊂ Xk , by restriction, one
endows X̂k with this intrinsic distance as well. We further sub-sample X̂k , again
using the farthest point procedure (with the distance computed using G(Xk)), and we
retain only 50 points. Denote the resulting set by Xk . We then endowed Xk with the
normalized distance metric inherited from the Dijkstra procedure described above,
and a probability measure based on Voronoi partitions: the mass (measure) at point
x ∈ Xk equals the proportion of points in X̂k which are closer to x than to any other
point in Xk .

From each model Xk one thus obtains a discrete mm-space (Xk, d
(k), ν(k)). A ma-

trix ((dij )) is then computed, such that dij = D1(Xi ,Xj ) (that is, the value p = 1
was fixed) where 1 ≤ i < j ≤ N and N = 72 (all models had between nine and 11
poses). See Fig. 10 for a graphical representation of ((dij )).

In order to evaluate the discriminative power contained in ((dij )) we considered
a classification task as follows: one randomly selects one object from each class,
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form a training set T and use it for performing 1-nearest neighbor classification
(where nearest is with respect to the metric ((dij ))) of the remaining objects. By
simple comparison between the class predicted by the classifier and the actual class
to which the object belongs, one thus obtains an estimate for the probability of mis-
classification Pe(((dij ))). This procedure is then repeated for 10,000 random choices
of the training set. Using the same randomized procedure one obtains an estimate of
the confusion matrix C for this problem. That is, Cij equals the probability that the
classifier will assign class j to an object when the actual class was i. I also evalu-
ated the performance of FLB1 using this method. The results that were obtained are
Pe(((dij ))) = 0.025 and Pe(FLB1) = 0.141. Refer to Fig. 10 for more details.

9 Discussion

This paper introduced a modification and expansion of the original Gromov–
Hausdorff notion of distance between metric spaces which takes into account proba-
bility measures defined on measurable subsets of these metric spaces. The construc-
tion was explained as a relaxation of the concept of Gromov–Hausdorff distances
and as an alternative to the relaxation proposed by Sturm. This paper also studied
the theoretical properties of the proposed version of the Gromov–Wasserstein dis-
tance, including its topological equivalence to Sturm’s proposal. Also, stronger types
of equivalence were obtained in restricted classes of objects. Also, sufficient condi-
tions were given for the pre-compactness of families of metric measure spaces in the
topology induced by the metric that was defined in this work.

The new definition allows for a discretization which is more natural and more
general than previous approaches, [17, 80, 81] in that the methods can be applied to
datasets that do not enjoy smoothness.

In addition to this, several previous approaches to the problem of Object Match-
ing/Comparison become interrelated when put into the framework presented in this
paper. This interrelation should be understood in the sense that a number of the shape
signatures or invariants used by previously reported methods

(1) can be expressed in the formalism of metric measure spaces, and
(2) they are quantitatively stable under perturbations in the Gromov–Wasserstein dis-

tance.

Computational experiments on

(1) a collection of dendrograms, and
(2) a database of objects, were presented to exemplify the applicability of the ideas.

Related approaches have appeared in [27, 76, 77, 79, 87]. Further developments
such as the extension of the ideas here presented to partial object matching, the sta-
bility of more general invariants, and finer metric properties of (Gw,Dp) will be
reported elsewhere.
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10 Proofs

Please refer to Sect. 1.4 for the notation and background concepts and to the notation
key in Sect. 11 as well.

Lemma 10.1 Let X and Y be compact metric spaces and S ⊂ X × Y be non-empty.
Assume that 1

2‖ΓX,Y ‖L∞(S×S) < η. Define dS : X × Y → R
+ by

(x, y) �→ inf
(x′,y′)∈S

(
dX

(
x, x′)+ dY

(
y′, y

))+ η.

Define dS on Y × X as dS(y, x) = dS(x, y) and on X × X and Y × Y by dS = dX

and dS = dY . Then, dS ∈ D(X,Y ). Furthermore,

• dS(x, y) ≤ η for all (x, y) ∈ S, and
• d

(X�Y,dS)

H (X,Y ) ≤ η + dX
H(π1(S),X) + dY

H(π2(S),Y ).

Proof The proof of this lemma is standard, see [22, p. 258] or [61]. �

10.1 The Proof of Theorem 5.1

Lemma 10.2 For fixed X,Y ∈ Gw and μ ∈ M(μX,μY ),

(1) Jq(μ) ≤ Jp(μ) for all 1 ≤ q ≤ p ≤ ∞.

(2) Jp(μ)
p↑∞−→ J∞(μ).

Proof The proof is standard and we omit it. �

Lemma 10.3 Let (Z,d) be a compact metric space and M be subset of P (Z)

which is sequentially compact for the weak convergence. Let φ : Z × Z → R be
Lipschitz for the L1 metric on Z × Z: d̂((z1, z2), (z

′
1, z

′
2)) = d(z1, z

′
1) + d(z2, z

′
2) for

all (z1, z2), (z
′
1, z

′
2) ∈ Z × Z. Let I (μ) := ∫∫

Z×Z
φ(z, z′)μ(dz)μ(dz′).

(1) Let pμ(z) := ∫
Z

φ(z, z′)μ(dz′). If {μn}n∈N ⊂ P (Z) is such that μn
w,n−→ μ, then

pμn

n→ pμ uniformly.

(2) If {μn}n∈N ⊂ P (Z) is such that μn
w,n−→ μ, then I (μn) → I (μ) as n ↑ ∞.

(3) There exist a minimizer of I (·) in M.

Proof

(1) Let K be the Lipschitz constant of φ. Let z1, z2 ∈ Z, then

∣
∣pμn(z1) − pμn(z2)

∣
∣ ≤
∫

Z

∣
∣φ
(
z1, z

′)− φ
(
z2, z

′)∣∣μn

(
z′)

≤ max
z′
∣
∣φ
(
z1, z

′)− φ
(
z2, z

′)∣∣≤ K d(z1, z2).

Also, pμn

n→ pμ pointwise since μn
n,w→ μ. Fix ε > 0 and let z1, . . . , zN be

an ε/K net of Z. Also, let nε ∈ N be such that |pμn(zi) − pμ(zi)| ≤ ε for all
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i = 1, . . . ,N and n > nε . Then by the triangle inequality, using the inequality
above and taking limit as n ↑ ∞ one finds |pμn(z) − pμ(z)| < 3ε for all z ∈ Z

and n > nε and hence the claim.
(2) Let Cn := I (μ) − I (μn) = ∫

Z
pμ dμ − ∫

Z
pμn dμn where the last equality

holds by Fubini’s theorem. Also, define An := ∫
Z
(pμ − pμn) dμn and Bn =

∫
Z

pμ dμ − ∫
Z

pμ dμn. Note that An
n→ 0. Indeed, |∫

Z
(pμ − pμn) dμn| ≤

maxz |pμ(z) − pμn(z)| and the right-hand side vanishes as n ↑ ∞ by (1). Sim-

ilarly, Bn
n→ 0 simply by weak convergence of μn to μ. Finally, since Cn =

An + Bn, |Cn| ≤ |An| + |Bn| n→ 0.
(3) This follows immediately from the assumptions on M and (2). �

Corollary 10.1 Fix each p ∈ [1,∞]. Given (X,dX,μX) and (Y, dY ,μY ) ∈ Gw , there
always exist a coupling μ ∈ M(μX,μY ) s.t. Dp(X,Y ) = Jp(μ).

Proof

Case 1 ≤ p < ∞ It suffices to establish the sequential compactness of M(μX,μY )

and the continuity of Jp(·) with respect to the weak convergence of measures.
The former is standard, see [111, p. 49]. The latter follows from Lemma 10.3 for
Z = X ×Y and φ((x, y), (x′, y′)) = (ΓX,Y (x, y, x′, y′))p , together with the follow-
ing choice of metric on Z: d((x, y), (x′, y′)) = dX(x, x′) + dY (y, y′). We check
that φ is Lipschitz with respect to the metric d̂ on X × Y ×X × Y . Let M =
2 max(diam(X),diam(Y )). Note first that φ1((x, y), (x′, y′)) := ΓX,Y (x, y, x′, y′)
is Lipschitz with constant 1: indeed pick ((xi, yi), (x

′
i , y

′
i )) ∈ X × Y ×X × Y for

i = 1 and 2. Then,
∣
∣φ1
(
(x1, y1),

(
x′

1, y
′
1

))− φ1
(
(x2, y2),

(
x′

2, y
′
2

))∣
∣

= ∥∥dX

(
x1, x

′
1

)− dY

(
y1, y

′
1

)∣
∣− ∣∣dX

(
x2, x

′
2

)− dY

(
y2, y

′
2

)∥
∥

≤ ∣∣dX

(
x1, x

′
1

)− dX

(
x2, x

′
2

)+ dY

(
y1, y

′
1

)− dY

(
y2, y

′
2

)∣∣

≤ ∣∣dX

(
x1, x

′
1

)− dX

(
x2, x

′
2

)∣
∣+ ∣∣dY

(
y1, y

′
1

)− dY

(
y2, y

′
2

)∣
∣

∗≤ (dX(x1, x2) + dX

(
x′

1, x
′
2

))+ (dY (y1, y2) + dY

(
y′

1, y
′
2

))

= (dX(x1, x2) + dY (y1, y2)
)+ (dX

(
x′

1, x
′
2

)+ dY

(
y′

1, y
′
2

))

= d
(
(x1, y1), (x2, y2)

)+ d
((

x′
1, y

′
1

)
,
(
x′

2, y
′
2

))

= d̂
((

(x1, y1),
(
x′

1, y
′
1

))
,
(
(x2, y2),

(
x′

2, y
′
2

)))
,

where inequality
∗≤ follows from the triangle inequalities for dX and dY , respec-

tively. Notice that by definition of φ1 and the choice of M , 0 ≤ φ1 ≤ M . Let
f : [0,M] → R

+ be given by t �→ tp . Then f is Lipschitz with constant bounded
by pMp−1. Hence, since φ = f ◦ φ1, φ is also Lipschitz with constant pMp−1.

Case p = ∞ Pick r, q ∈ [1,∞) s.t. r ≥ q . Let μr be a minimizer of Jr in
M(μX,μY ) and μ any coupling between μX and μY . Then,

Jq(μr)
(A)≤ Jr (μr)

(B)≤ Jr (μ),
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where (A) holds because by Lemma 10.2, {J�(ν)}� is non-decreasing in � for fixed
ν ∈ M(μX,μY ) and (B) holds because μr minimizes Jr and μ was arbitrary. Then
we have

Jq(μr) ≤ Jr (μ).

Since M(μX,μY ) is compact [111, p. 49], it follows that {μr}r has a (weakly)
converging subsequence that we still denote by {μr}r . Let μ∗ denote the limit
of {μr}r . Letting r ↑ ∞ in the inequality above, we find (via Lemma 10.2) that
Jq(μ∗) ≤ J∞(μ). Now, let q ↑ ∞ and again by Lemma 10.2, we find

J∞(μ∗) ≤ J∞(μ).

Since μ was arbitrary, μ∗ is a minimizer of J∞ and the claim follows. �

We will need the following lemma in the proof of Theorem 5.1.

Lemma 10.4 Let X,Y be two compact metric spaces and R ∈ R(X,Y ) s.t.
‖ΓX,Y ‖L∞(R×R) = 0. Then, there exists an isometry Φ : X → Y s.t. R = {(x,Φ(x)),

x ∈ X}.

Proof Note that by hypothesis dX(x, x′) = dY (y, y′) for all (x, y), (x′, y′) ∈ R.

Fix x ∈ X and let y, y′ ∈ Y be s.t. (x, y), (x, y′) ∈ R. Then, 0 = dX(x, x) =
dY (y, y′), hence y = y′. We then see that for all x ∈ X there exists a unique y ∈ Y

s.t. (x, y) ∈ R. Similarly, we see that for all y ∈ Y there exists a unique x ∈ X s.t.
(x, y) ∈ R. Hence, R is a left-total, right-total, functional, and injective binary re-
lation and therefore, it is a bijection, [64, Ch. 1]. Let Φ : X → Y bijective be s.t.
R = {(x,Φ(x)), x ∈ X}. Then, Φ is distance preserving and surjective, and therefore
an isometry. �

Proof of Theorem 5.1

(a) Symmetry is obvious. We need to prove the triangle inequality plus the fact that
Dp(X,Y ) = 0 happens if and only if X and Y are isomorphic. The “if” part is trivial.
For the other direction we proceed as follows. Note that by virtue of Corollary 10.1,
Dp(X,Y ) = 0 implies that there exist μ ∈ M(μX,μY ) such that

∫

X×Y

∫

X×Y

∣
∣dX

(
x, x′)− dY

(
y, y′)∣∣p μ(dx × dy)μ

(
dx′ × dy′)= 0.

Then, dX(x, x′) = dY (y, y′) for all (x, y), (x′, y′) ∈ R(μ). By Lemma 10.4, this
forces R(μ) to describe an isometry between X = supp[μX] and Y = supp[μY ].
Then, there exists an isometry i : X → Y such that R(μ) = {(x, i(x)), x ∈ X} =
{(i−1(y), y), y ∈ Y }. Hence, for all measurable A ⊂ X, μX(A) = μY (i(A)). In fact,
one has the following two chains of equalities: μX(A) = μ(A × Y) = μ(A × Y ∩
R(μ)) = μ(A × i(A)) and μY (i(A)) = μ(X × i(A)) = μ(X × i(A) ∩ R(μ)) =
μ(A × i(A)). Hence, we conclude that actually X and Y are isomorphic.
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For the triangle inequality fix X,Y,Z ∈ Gw . Notice first that for all x, x′ ∈ X, y, y′ ∈
Y and z, z′ ∈ Z,

ΓX,Y

(
x, y, x′, y′)≤ ΓX,Z

(
x, x′, z, z′)+ ΓY,Z

(
y, y′, z, z′). (10.1)

Let μ1 ∈ M(μX,μZ) and μ2 ∈ M(μZ,μY ) be s.t. Jp(μ1) = Dp(X,Z) and
Jp(μ2) = Dp(Z,Y ). This is possible by Corollary 10.1. By the Glueing Lemma
[111, Lemma 7.6], there exist a probability measure μ ∈ P (X × Y × Z) with
marginals μ1 on X × Z and μ2 on Z × Y . Let μ3 be the marginal of μ on X × Y .
Using the fact that μ has marginal μZ ∈ P (Z) on Z and the triangle inequality for
the Lp norm (i.e., Minkowski’s inequality) and (10.1), one obtains

2Dp(X,Y ) ≤ ‖ΓX,Y ‖Lp(μ3⊗μ3)

= ‖ΓX,Y ‖Lp(μ⊗μ)

≤ ‖ΓX,Z + ΓZ,Y ‖Lp(μ⊗μ)

≤ ‖ΓX,Z‖Lp(μ⊗μ) + ‖ΓZ,Y ‖Lp(μ⊗μ)

= ‖ΓX,Z‖Lp(μ1⊗μ1) + ‖ΓZ,Y ‖Lp(μ2⊗μ2)

= 2Dp(X,Z) + 2Dp(Z,Y )

thus establishing the triangle inequality for Dp for finite p ≥ 1. The proof for the
case p = ∞ follows the same steps as the proof of the triangle inequality for the
Gromov–Hausdorff distance and we omit it (see [22, Proposition 7.3.16]).

(b) Pick μ ∈ M(μX,μY ). Let R(μ) = supp[μ], then by Lemma 2.2, R(μ) ∈
R(X,Y ). Note first that according to (5.8), J∞(μ) = ‖ΓX,Y ‖L∞(R(μ)×R(μ)). Since
{R(μ), μ ∈ M(μX,μY )} ⊂ R(X,Y ), invoking expression (4.5) for the Gromov–
Hausdorff distance, one obtains

dG H(X,Y ) = 1

2
inf

R∈R(X,Y )
‖ΓX,Y ‖L∞(R×R) ≤ J∞(μ).

The conclusion follows upon recalling Definition 5.7 and noting that μ ∈
M(μX,μY ) is arbitrary.

(c) Let ε > 0 and μ ∈ M(α,β) be s.t. ‖d‖Lp(μ) < ε. Then, since ΓX,Y (x, y, x′, y′) =
|d(x, y) − d(x′, y′)| ≤ d(x, y) + d(x′, y′), from the triangle inequality for the norm
‖ · ‖Lp(μ⊗μ) it follows that

‖ΓX,Y ‖Lp(μ⊗μ) ≤ 2‖d‖Lp(μ) < 2ε.

The claim follows since ε > dZ
W ,p

(α,β) was arbitrary.

(d) Consider the coupling μ = (Id × Id)#α. Then,
∫

Z×Z×Z×Z

∣
∣d
(
x, x′)− d ′(y, y′)∣∣pμ(dx × dy)μ

(
dx′ × dy′)

=
∫

Z×Z

∣
∣d(x, y) − d ′(x, y)

∣
∣pα(dx)α(dy)

and hence, ‖ΓX,Y ‖Lp(μ⊗μ) = ‖d − d ′‖Lp(α⊗α) and the claim follows.
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(e) This follows from (g) and a similar statement for Sp [105, Lemma 3.5].
(f) When Y = ({z},0, δZ

z ), ΓX,Y (x, z, x′, z) = dX(x, x′) and according to Exam-
ple 2.7, M(μX,μY ) = {μX}. Hence, ‖ΓX,Y ‖Lp(μX⊗μX) = diamp(X). The conclu-
sion now follows.

(g) Assume first that p ∈ [1,∞). Let ε > 0, d ∈ D(dX, dY ) and μ ∈ M(μX,μY ) be
s.t. ‖d‖Lp(μ) < ε. Then, since |dX(x, x′) − dY (y, y′)| ≤ d(x, y) + d(x′, y′) for all
x, x′ ∈ X, y, y′ ∈ Y , by the same argument used in (c),

‖ΓX,Y ‖Lp(μ⊗μ) ≤ 2‖d‖Lp(μ) < 2ε.

The conclusion follows since ε > Sp(X,Y ) is arbitrary. The same reasoning ap-
plies to the case p = ∞. Indeed, let ε > 0, d ∈ D(dX, dY ) and μ ∈ M(μX,μY )

be s.t. d(x, y) < ε for all (x, y) ∈ R(μ). Then |dX(x, x′) − dY (y, y′)| < 2ε for all
(x, y), (x′, y′) ∈ R(μ) and thus D∞(X,Y ) < ε.
For the reverse inequality, let ε > 0 and μ ∈ M(μX,μY ) be s.t. ‖ΓX,Y ‖L∞(μ⊗μ) < ε.
Then |dX(x, x′)−dY (y, y′)| < 2ε for all (x, y), (x′, y′) ∈ R(μ). Let d ∈ D(dX, dY )

be given by

d(x, y) := inf
(x′,y′)∈R(μ)

(
dX

(
x, x′)+ dY

(
y, y′))+ ε.

This construction is justified by Lemma 10.1. Obviously, ‖d‖L∞(R(μ)) < ε and
hence S∞(X,Y ) < ε.

(h) The claim for Dp follows from Lemma 10.2. The claim for Sp follows from the
observation that for fixed μ ∈ M(μX,μY ) and d ∈ D(dX, dY ), p �→ ‖d‖Lp(μ) is
non-decreasing.

(i) Notice that since for all x, x′ ∈ X and y, y′ ∈ Y , ΓX,Y (x, x′, y, y′) ≤ 2M ; then
(
ΓX,Y

(
x, y, x′, y′))p ≤ (2M)p−q

(
ΓX,Y

(
x, y, x′, y′))q .

Now, pick any μ ∈ M(μX,μY ). Using the definition of Dp and the above we find

Dp(X,Y ) ≤ 1

2
‖ΓX,Y ‖Lp(μ⊗μ) ≤ 1

2
(2M)1−q/p

(‖ΓX,Y ‖Lq(μ⊗μ)

)q/p
.

But the right-hand side above equals M1−q/p( 1
2‖ΓX,Y ‖Lq(μ⊗μ))

q/p , and the proof
is finished since μ is arbitrary.

�

10.2 Other Proofs

Lemma 10.5 [50] Let δ > 0, ε ≥ 0 and (X,dX,μX) ∈ Gw . If vδ(X) ≤ ε, then there
exists N < [1/δ] and points x1, . . . , xN ∈ X such that the following hold:

• μX(BX(xi, ε)) > δ for all i = 1,2, . . . ,N .
• μX(

⋃N
i=1 BX(xi,2ε)) > 1 − ε.

• For all i, j = 1,2, . . . ,N with i �= j , dX(xi, xj ) > ε.

Proof of Proposition 5.3 We adapt an argument of [50]. Let μ ∈ M(μX,μY ) be a
coupling s.t. ‖ΓX,Y ‖Lp(μ⊗μ) < 2δ5. Set ε = 4vδ(X).
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Claim 10.1 There exist points x1, . . . , xN in X with N ≤ [1/δ], mini �=j dX(xi, xj ) ≥
ε/2, mini μX(BX(xi, ε)) > δ and μX(

⋃N
i=1 BX(xi, ε)) ≥ 1 − ε.

Proof Apply Lemma 10.5 with ε′ = ε/2 = 2vδ(X) > vδ(X) and obtain points
x1, . . . , xN with N ≤ [1/δ], mini �=j dX(xi, xj ) > ε′, μX(BX(xi, ε

′)) > δ and
μX(

⋃N
i=1 BX(xi,2ε′)) ≥ 1 − ε′. But then

μX

(
BX(xi, ε)

)= μX

(
BX

(
xi,2ε′))≥ μX

(
BX

(
xi, ε

′))> δ.

Also,

μX

(
N⋃

i=1

BX(xi, ε)

)

= μX

(
N⋃

i=1

BX

(
xi,2ε′)

)

≥ 1 − ε′ = 1 − ε/2 ≥ 1 − ε;

whence the conclusion. �

Claim 10.2 We claim that for every i = 1, . . . ,N there exists yi ∈ Y s.t.

μ
(
BX(xi, ε) × BY

(
yi,2(ε + δ)

))≥ (1 − δ2)μX

(
BX(xi, ε)

)
. (10.2)

Proof Assume the assertion is false for some i and for each y ∈ Y define Qi(y) =
BX(xi, ε) × (Y\BY (y,2(ε + δ))). Then, since μ ∈ M(μX,μY ),

μX

(
BX(xi, ε)

) = μ
(
BX(xi, ε) × Y

)

= μ
(
BX(xi, ε) × BY

(
y,2(ε + δ)

))

+ μ
(
BX(xi, ε) × Y\BY

(
y,2(ε + δ)

))
,

hence μ(Qi(y)) ≥ δ2μX(BX(xi, ε)). Define as well

X × Y ×X × Y ⊃ Qi = {(x, x′, y, y′)|x, x′ ∈ BX(xi, ε) and dY

(
y, y′)≥ 2(ε + δ)

}
.

Notice that for (x, y, x′, y′) ∈ Qi , ΓX,Y (x, y, x′, y′) ≥ 2δ. Furthermore, μ ⊗
μ(Qi ) ≥ δ4. Indeed,

μ ⊗ μ(Qi ) =
∫∫

BX(xi ,ε)×Y

∫∫

Qi(y)

1μ
(
dx′ × dy′)μ(dx × dy)

=
∫∫

BX(xi ,ε)×Y

μ
(
Qi(y)

)
μ(dx × dy)

= μX

(
BX(xi, ε)

)
∫

Y

μ
(
Qi(y)

)
μY (dy)

≥ (μX

(
BX(xi, ε)

))2
δ2

≥ δ4.
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But then

‖ΓX,Y ‖Lp(μ⊗μ) ≥ ‖ΓX,Y ‖L1(μ⊗μ) ≥ ‖ΓX,Y 1Qi
‖L1(μ⊗μ) ≥ 2δ · μ ⊗ μ(Qi ) ≥ 2δ5,

a contradiction. �

If for each k we define

Sk = BX(xk, ε) × BY

(
yk,2(ε + δ)

)
,

then by (10.2) one has

μ(Sk) ≥ δ
(
1 − δ2), for all k = 1, . . . ,N . (10.3)

Claim 10.3 ΓX,Y (xi, yi, xj , yj ) ≤ 6(ε + δ) for all i, j = 1, . . . ,N .

Proof Assume that this condition fails for some (i0, j0); then for (x, y) ∈ Si0 and
(x′, y′) ∈ Sj0 , ΓX,Y (x, y, x′, y′) ≥ 2δ. This follows from the inequality

ΓX,Y

(
x, y, x′, y′) ≥ ΓX,Y (xi0, yi0, xj0 , yj0) − ∣∣dX(xi0, xj0) − dX

(
x, x′)∣∣

− ∣∣dY (yi0, yj0) − dY

(
y, y′)∣∣

≥ 6(ε + δ) − 2ε − 4(ε + δ)

= 2δ.

Now,

‖ΓX,Y ‖Lp(μ⊗μ) ≥ ‖ΓX,Y ‖L1(μ⊗μ) ≥ ‖ΓX,Y 1Si0
1Sj0

‖L1(μ⊗μ) ≥ 2δ · μ(Si0)μ(Sj0)

≥ 2δ
(
δ
(
1 − δ2))2.

But since δ ≤ 1/2, the right-hand side is bounded below by 2δ5, which leads to a
contradiction. �

Finally, consider S ⊂ X × Y given by S = {(xi, yi), i = 1,2, . . . ,N} and let dS

be the metric on X � Y given by Lemma 10.1. Clearly, dS(xi, yi) ≤ 3(ε + δ) for
i = 1, . . . ,N . Furthermore, one has the simple bound

dS(x, y) ≤ diam(X) + diam(Y ) + 3(ε + δ) ≤ diam(X) + diam(Y ) + 15 =: M ′.

Claim 10.4 Fix i ∈ {1, . . . ,N}. Then, for all (x, y) ∈ Si , dS(x, y) ≤ 6(ε + δ).

Proof Assume (x, y) ∈ Si . Then, dX(x, xi) < ε and dY (y, yi) < 2(ε + δ). Then, by
the triangle inequality for dS :

dS(x, y) ≤ dX(x, xi) + dY (y, yi) + dS(xi, yi)

≤ ε + 2(ε + δ) + 3(ε + δ) ≤ 6(ε + δ). �
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Let L :=⋃N
i=1 Si. Then, {(x, y) ∈ X ×Y |dS(x, y) < 6(ε + δ)} ⊆ L. The next step

is to estimate the mass in the complement of L.

Claim 10.5 One has μ(X × Y\L) ≤ ε + δ.

Proof For each i let Ai := BX(xi, ε) × (Y\BY (yi,2(ε + δ))). Then,

Ai = (BX(xi, ε) × Y
)\BX(xi, ε) × BY

(
yi,2(ε + δ)

)= (BX(xi, ε) × Y
)\Si.

Hence,

μ(Ai) = μ
(
BX(xi, ε) × Y

)− μ(Si) = μX

(
BX(xi, ε)

)− μ(Si),

where the last equality follows form the fact that μ ∈ M(μX,μY ). Now, since by
construction μ(Si) ≥ μX(BX(xi, ε))(1 − δ2), one finds

μ(Ai) ≤ μX

(
BX(xi, ε)

) · δ2.

Notice that one can write

X × Y\L ⊆
(

X
∖ N⋃

i=1

BX(xi, ε)

)

× Y ∪
(⋃

i=1

Ai

)

,

and hence, using for the first term that μ ∈ M(μX,μY ) and using the union bound
for the second, one finds

μ(X × Y\L) ≤ μX

(

X
∖ N⋃

i=1

BX(xi, ε)

)

+
N∑

i=1

μ(Ai).

This concludes the proof of the claim since by construction the fist term above is
bounded above by ε whereas the second term, by previous computations, is bounded
by N · δ2 ≤ δ. �

Now write
∫∫

X×Y

d
p
S (x, y)μ(dx × dy) =

∫∫

L

d
p
S (x, y)μ(dx × dy)

+
∫∫

X×Y\L
d

p
S (x, y)μ(dx × dy)

≤ (6(ε + δ)
)p + M ′p · (ε + δ).

Invoking the inequality a1/p + b1/p ≥ (a + b)1/p valid for all p ≥ 1 and a, b ≥ 0 one
finds

Sp(X,Y ) ≤ (ε + δ)1/p
(
6(ε + δ)1−1/p + M ′),

from which the result follows, since ε = 4vδ(X) ≤ 4 and δ ≤ 1. �
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Proof of Proposition 5.2 For α ∈ [0,π/
√

K] let VK,n(α) := cn−1
∫ α

0 ( 1√
K

×
sin(

√
Kt))n−1 dt , where cn−1 = nπn/2Γ (n/2 + 1). Notice that for any X ∈ F (n,K,

V, I,D), by the Bishop–Günther theorem [26, Theorem III-4.2], for x ∈ X

μX

(
BX(x, ε)

)≥ VK,n(ε)

V
=: ρF (ε)

for all 0 ≤ ε ≤ min(I,π/
√

K). Hence, the conditions of Remark 5.20 hold. Also,
note that since VK,n is increasing and continuous,

sup
X∈F

vδ(X) ≤ inf
{
ε > 0|ρF (ε) > δ

}= V −1
K,n(V δ) for δ ≤ VK,n(min(I,π/

√
K))

V
. (10.4)

Notice that for all α ∈ [0,
√

Kπ/2]

VK,n(α) ≥ cn−1

∫ α

0

1

K(n−1)/2

(
2t

π
√

K

)n−1

dt = qn(K)αn,

where qn(K) := cn−1
n

(πK
2 )n−1. Hence,

V −1
K,n(V δ) ≤ (V δ/qn(K)

)1/n as long as δ ≤ 2/V . (10.5)

Define

δF :=
(

1

V
min
(
1/2,VK,n

(
min(I,π/

√
K)
))
)5

and assume X,Y ∈ F are such that Dp(X,Y ) ≤ δ5 < δF . Then by Proposition 5.3,

Sp(X,Y ) ≤
(

4 · sup
Z∈F

vδ(Z) + δ
)1/p

M

≤ (4 · V −1
K,n(V δ) + δ

)1/p
M (by (10.4))

≤
(

4

qn(K)
δ1/n + δ

)1/p

M (by (10.5))

≤ (4/qn(K) + δ
n−1
n
)1/p

M · δ1/np

≤ (4/qn(K) + 1
)1/p

M · δ1/np.

Now M ≤ 2D + 45. Let CF := (4/qn(K) + 1)1/p(2D + 45). One concludes from
the above since δ ≥ (Dp(X,Y ))1/5 was arbitrary. �

Proof of Theorem 5.3 Recall the notion of the Gromov–Prokhorov distance intro-
duced in [50]. For X,Y ∈ Gw define
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dG P (X,Y ) := inf
{
ε > 0| ∃μ ∈ M(μX,μY ), d ∈ D(dX, dY )

s.t. μ
{
(x, y)|d(x, y) ≥ ε

}≤ ε
}
.

Note that dG P (X,Y ) ≤ 1 for all X,Y ∈ Gw .

Claim 10.6 For p ≥ 1,

Dp(X,Y ) ≤ (dG P (X,Y )
)1/p(

Dp + 1
)1/p

for all X,Y ∈ Gw s.t. max(diam(X),diam(Y )) ≤ D.

Proof Pick ε > 0 s.t. dG P (X,Y ) < ε. Let d ∈ D(dX, dY ) and μ ∈ M(μX,μY ) be s.t.

μ
{
(x, y)|d(x, y) ≥ ε

}≤ ε.

Then,

(
Sp(X,Y )

)p ≤
∫∫

X×Y

dp(x, y)μ(dx × dy)

=
∫∫

{(x,y)|d(x,y)≥ε}
dp(x, y)μ(dx × dy)

+
∫∫

{(x,y)|d(x,y)<ε}
dp(x, y)μ(dx × dy)

≤ Dpε + εp.

The conclusion follows since ε > dG P (X,Y ) was arbitrary and by Theorem 5.1,
Dp ≤ Sp . �

Condition (1) of the theorem trivially implies that the collection {dfX, X ∈ F } is
tight. On the other hand, condition (2), via Remark 5.20, implies that

lim
δ↓0

sup
X∈F

vδ(X) = 0.

Then, by Proposition 7.1 of [50] the family F is pre-compact in the Gromov–
Prokhorov topology.

Let {Xn}n ⊂ F be any sequence in the family F . Then, there exist {nk}k ⊂ N

and X ∈ Gw s.t. limk dG P (Xnk
,X) = 0. Finally, since by hypothesis max(diam(X),

supk diam(Xnk
)) ≤ D, by Claim 10.6,

Dp(Xnk
,X) → 0 as k ↑ ∞.

One concludes that F is pre-compact in the Dp-topology as well. �
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11 Notations

Symbol Meaning

L One-dimensional Lebesgue measure
BX(x, r) An open ball in the metric space X, centered at x and with radius r

(X,dX) Metric space X with metric dX

B(X) Borel σ -algebra of the topological space X

P (X) Collection of all Borel probability measures on the metric space X

δZ
z Delta measure on Z concentrated at point z

f#ν Push-forward measure of ν through the map f

dF Probability measure on R associated to the distribution F

(X,dX,μX) Compact metric measure space X with metric dX and Borel proba-
bility measure μX

supp[μ] Support of the probability measure μ, Sect. 2.2
G Collection of all compact metric spaces
Gw Collection of all metric measure spaces
Riem Collection of all Riemannian manifolds without boundary
C(Z) Collection of all compact subsets of the metric space Z

Cw(Z) Collection of all compactly supported probability measures on Z

dZ
H Hausdorff distance between subsets of the metric space Z, Sect. 2.1

dZ
W ,p

p-Wasserstein distance between (Borel) probability measures on the
metric space Z, Sect. 2.7

dG H Gromov–Hausdorff distance between metric spaces, Sect. 4.1
Sp and Dp Gromov–Wasserstein distances between metric measure spaces,

Sect. 5.10
diam(X) Diameter of the metric space X, Sect. 4
diamp(X) p-Diameter of the metric measure space X, Sect. 5.2
Πn All n! permutations of elements of the set {1, . . . , n}
P(E ) Probability of the event E
E(x) Expected value of the random variable x

Eν(·), Pν(·) Expected and probability value according to the law ν

1A : Z → R Indicator function of A ⊂ Z: 1A(z) = 1 if z ∈ A and 1A(z) = 0
otherwise

R(A,B) A correspondence: a subset of A × B, satisfying certain properties,
Sect. 2.1

M(μA,μB) Set of measure couplings: measures on A × B, satisfying certain
properties, Sect. 2.3

D(dX, dY ) Set of metric couplings: metrics on X × Y , satisfying certain prop-
erties, Sect. 4.1

M+
1 (d) Collection of all (v1, . . . , vd) in R

d s.t. vi ≥ 0, i = 1, . . . , d , and∑
i vi = 1

δij Kronecker delta: for i, j ∈ N, δi,j = 1 whenever i = j and δi,j = 0
otherwise

AT Transposed matrix of A
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