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Abstract 
A new lower bound below the information rate transferred through the Additive White 
Gaussian Noise (AWGN) channel affected by discrete-time multiplicative phase noise is 
proposed in the paper. The proposed lower bound is based on the Kalman approach to 
data-aided carrier phase recovery, and is less computationally demanding than known 
methods based on phase quantization and trellis representation of phase memory or on 
particle filtering. Simulation results show that the lower bound is close to the actual 
channel capacity, especially at low-to-intermediate signal-to-noise ratio.  
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1. Introduction 
 Multiplicative phase noise is a major source of impairment in coherent communication. In 
the context of radio transmission, phase noise is introduced by local oscillators used for up-
conversion and down-conversion. The impact of phase noise on the performance of orthogonal 
frequency division multiplexing (OFDM) systems is studied, for instance, in [1]. Also, single 
carrier systems, especially recent systems based on frequency domain equalization as [2], 
suffer from phase noise and require specific mitigation techniques [3]. With the advent of 
coherent optics, the role of phase noise is becoming well recognized also in the context of 
optical transmission, see e.g. [4]. 
 Much is known about phase noise with first-order memory. The basic model of phase noise 
with first-order memory is that of Wiener phase noise, [4], [5], where the power spectral 
density of the spectral line is a slope of -20 dB/decade. Several methods have been proposed in 
the literature to combat the detrimental effects of Wiener phase noise. Among these methods 
we cite the iterative demodulation and decoding techniques of [6-8], the insertion of pilot 
symbols [9-11], and soft differential demodulation [12]. Computation of the capacity of the 
multiplicative Wiener phase noise plus additive white Gaussian noise (AWGN) channel, which 
is a channel with memory and continuous state, is a challenging problem. A Monte Carlo 
approach based on phase space quantization and trellis representation of phase memory has 
been recently proposed in [13-15] for computing the constrained channel capacity (i.e. the 
capacity with a fixed source). In the recent papers [16], [17], the authors have proposed a lower 
bound below the capacity of Wiener phase noise channel based on demodulation aided by the 
past data, where the transfer function of the causal filter used for phase estimation is worked 
out by the Kalman approach. Compared to methods based on phase quantization and trellis 
representation of phase memory, such as [14], the method proposed here is less 
computationally demanding, since a (Kalman) filter is used in place of a trellis. At low-to-
intermediate signal-to-noise ratio, it can be seen that the proposed lower bound is so close to 
the actual channel capacity that the new lower bound of [16], [17] gives virtually the actual 
channel capacity. 
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 Less is known about phase noise with memory of higher order. Phase noise with second-
order memory can be used to model microwave oscillators characterized by a power spectral 
density that is a slope of -40 dB/decade at low frequency, followed by a slope of -20 dB/decade 
at intermediate frequency, and then a white noise floor at high frequency. In [18] it is shown 
that phase noise with this spectrum can be optimally tracked with a second-order phase lock-
loop (PLL). A general method for working out an approximation to channel capacity is the 
particle method proposed in [19]. 
 In this paper we improve over the results of [16], [17], showing that the capacity of the 
channel affected by multiplicative phase noise with higher-order memory can be closely lower-
bounded by data-aided demodulation based on a higher-order Kalman filter. Compared to [19], 
the method proposed here is much less computationally demanding. 
 The outline of the paper is as follows. In Section II the channel model and the source model 
are introduced. Section III reports the general method behind the bound, while in Section IV 
the specific bound is presented. Section V gives simulation results, while in Section VI the 
conclusion is drawn. 
 
2. Channel and Source Model 
Let k

iu  indicate the column vector  
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where the superscript T  denotes transposition and k
i

k
i Uu ∈ , and let U  indicate a possibly 

non-stationary process, ),,(= 10 LUUU , whose generic realization is the sequence 

).,,( 10 Luu  When k
iU  is a continuous set, )( k

iup  is used to indicate the multivariate 

probability density function, while when k
iU  is a discrete set )( k

iup  indicates the 

multivariate mass probability and || iU  denotes the number of elements in iU . When the 

process is stationary, the time index is skipped and U  is used in place of iU . 

The k -th output of the channel is  
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kk +φ
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where j  is the imaginary unit, Y  is the complex channel output process, X  is the channel 
complex input modulation process made by i.i.d. random variables with zero mean and unit 
variance, W  is the complex AWGN process with zero mean and variance 1−SNR , and Φ  is 
the phase noise process which is assumed to be independent of X  and W . 
Let us introduce the z -transform  
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where )(zV  is the z -transform of an i.i.d. sequence of Gaussian random variables with zero 

mean and variance 2γ , and  
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and write the z -transform of the phase sequence as  
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with  
 0.1,|| ≥≤ ββk  
 
Note that, since Φ  is a phase, it can be reduced modulo π2 , thus allowing for the pole on the 
unit circle in (2). Sequences }{ kω  and }{ kφ  can be obtained as  
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where coefficients }{ ia  and }{ ib  are such that  
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Thanks to equations (2) and (3), the phase noise channel can be cast in the general framework 
of state-space approach for modeling dynamic systems, where the state at time k  is the 

1)( +N  column vector  
 
 ,0,1,=,= LkNk

kk
−ωs  (5) 

 
where )1,(max= βα NNN − . The state evolution is  
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where N0  is a column vector made by N  zeros, and the square matrix F  of size  
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where NI  is the identity matrix of size N , being understood that 0I  and 00  are empty 
matrices. The measurement is (1) with  
 
 ,= k

T
k sb ⋅φ  (8) 
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where TT
NNNbbb ))(,,,,(1,= 21 ββ −0b K . 

 The popular Wiener phase noise is obtained by putting 0=βN , 1=αN , and 1=1a . In 

this case the power spectral density of the continuous-time complex exponential )(tje φ , whose 

samples taken at symbol frequency generate the sequence kje φ
, is the Lorentzian function  
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where T  is the symbol repetition interval and f  is the frequency. The parameter 2γ  can be 
expressed as  
 
 ,2=2 TBFWHMπγ  
 
where FWHMB  is the full-width half-maximum bandwidth of the spectral line. 
The second-order model of [18] is obtained with  
 
 0.9999.=0.7286,=0.9937,= 221 αββ  (9) 
 
 The power spectral density of Wiener phase noise and of the second-order phase noise 
normalized with respect to 2γ  are reported in Fig. 1. Also, the spectrum of white phase noise, 
that is obtained with  
 1,=1,= 11 ab −  
is reported in Fig. 1.  

 
Figure 1. Dashed line: power spectral density of Wiener phase noise. Solid line: power spectral 
density of the second-order phase noise with (9). Dashed-dotted line: power spectral density of 

white phase noise. 
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3. The Auxiliary Probability Method 
 The bound that we are going to present is based on the Kullback-Leibler (KL) divergence. 
The normalized KL divergence between the multivariate mass probability functions )( 1

nup  

and )( 1
nuq  is  
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where }{⋅pE  denotes the expectation over )( 1
nup  and 1)( −n  is the normalization factor. 

From the normalized KL divergence one has the following upper bound on the entropy rate of 
process U :  
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 Let us regard the  auxiliary multivariate mass probability )( 1
nuq  as an approximation to 

)( 1
nup . In this perspective, the KL divergence is a measure of the quality of the fit between 

)( 1
nup  and )( 1

nuq , and the upper bound is equal to the actual entropy rate when the fit is 

ideal, that is when )(=)( 11
nn upuq . 

Assuming that U  is ergodic, one can invoke the Shannon-McMillan-Breiman theorem and the 
chain rule, thus writing for the expectation appearing in (11)  
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where nu1  is generated according to the actual multivariate mass probability )( 1

nup , and the 

initial condition 0u  is given. The bound can be extended to the conditional entropy rate in a 
straightforward manner. 
 
4. Lower Bound 
 Assume discrete input alphabet. The lower bound below the information rate is  
 
 ),;()|()( YXIYXHXH ≤−  
 
where the familiar notation is used for the conditional entropy rate and for the mutual 
information rate. The upper bound  
 
 )|()|( YXHYXH ≥  
is obtained from (12) as  
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 To obtain a tight bound, one has to work out an auxiliary mass probability that closely 
approximates the actual mass probability. Aiming to simple yet effective methods, we observe 
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that the portion of joint sequence ),( 1
1

1
1

−− kk yx  can strongly contribute to a data-aided 

approximation to the wanted probability, while the portion n
ky  gives a weaker contribution of 

non-data-aided type. The stronger part of the non-data-aided contribution comes from sample 

ky , therefore the auxiliary probability that is hereafter considered is based only on ),( 1
1

1
kk yx −

, while n
ky 1+  is ignored. The auxiliary conditional probability proposed here is  
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where in (14) we have exploited the fact that kX  is conditionally independent of 

),( 1
1

1
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−− kk XY  given ),( kkY Φ , and in (15) we used the change of variable ikk πφφ 2~= +  

and the fact that the channel transition probability ),|( kkk xyp φ  is a periodic function of 

period π2  of variable kφ . The only distribution in (15) that cannot be computed directly from 
the channel model is  
 

 )|(),|(),|( 1
1

1
1

1
11 kk

kk
k

kk
k ypxyqxyq φφφ −−− ∝

 ),(),~|(),|(= 1
1

1
1 kkkk

kx

kk
k xpxypxyq φφ ∑

∈

−− ⋅
X

 

 
where the auxiliary probability ),|( 1

1
1

1
−− kk
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where );,( 2 ug ση  is a Gaussian distribution with mean η  and variance 2σ  over the space 

spanned by u , and ),[][ ππ−x  is the modulo reduction of x  in the fundamental interval 

),[ ππ− . Note that this choice allows to easily compute the integral in (15) by discretization 
of the fundamental interval ),[ ππ− . 
 

Recalling (8), estimate kφ̂  can be obtained as  

 .ˆ=ˆ
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T
k sb ⋅φ  (16) 

The estimate of the state kŝ  is worked out by a predictive Kalman filter, that is  
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and the covariance matrix of the estimation error is  
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 Thanks to (16) and (17) the variance of the estimation error for kφ̂  is bPb k
T

k =2σ . The 

mean vector kŝ  and the covariance matrix kP  can be computed in a recursive manner thanks 
to the update equations of the Kalman filter. Since the channel model (1) is a nonlinear 
function of the phase kφ , and hence of the state ks , the Kalman filter has to be linearized 
around the current state estimate [20, Ch. 13.1]. The error that drives the Kalman filter is the 
one produced by the phase detector of classical data-aided carrier recovery, that is  

 },{=}{= ˆˆ
k

Tj
kk

kj
kkk exyexye sb ⋅−− ℑℑ åå φ

 (18) 

where }{⋅ℑ  and the superscript å  denote the imaginary part and the complex conjugation, 

respectively. Assuming that the phase error kk φφ ˆ−  is small, error (18) can be linearized as  
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where kz  is assumed to be white Gaussian noise with zero mean and time-varying variance 
122
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The estimate kŝ  and error's covariance matrix kP  are computed for 0≥k  according to the 
iterative equations  
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matrix F  has been defined in (7), and the unique nonzero entry in position (1,1)  of matrix 

Q  is 2γ . Initial values can be set as 10 =ˆ +N0s  and 0P  as a zero matrix except for the entry 

in position (1,1)  that is set to a large value, e.g., 10. 
 
5. Simulation Results 
 In this section, the new lower bound is compared to the actual channel capacity of Wiener 
phase noise channel and of the second-order phase noise channel of [18]. 
 In the case of Wiener phase noise, the actual channel capacity is worked out by the 
computationally demanding trellis-based method of [14]. Specifically, the actual channel 
capacity has been obtained using a large number of states in the lower bound and in the upper 
bound of [14]. The number of states is so large that the upper bound and the lower bound 
become virtually indistinguishable, leading to the actual channel capacity. Fig. 2 reports the 
results obtained with 4-QAM and with two values of γ . Specifically, 0.125=γ  is the 
largest value obtained in the experimental results of [4] and can be regarded as a case of strong 
phase noise in cases of practical interest. Although less realistic, also the huge 0.5=γ  is 
studied, to show the limits of the proposed method. For 0.125=γ  the lower bound is 
virtually indistinguishable from the actual capacity in a wide range of information rate, say, 
below 1.5  bit/2D. This range is the one spanned by codes with rate lower than 0.75, that are 
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codes of large practical interest. For information rate greater than 1.5  bit/2D the bound looses 
accuracy. This is because we have not exploited the conditioning on n

ky 1+ , which, at high SNR, 
could potentially bring a non-negligible contribution to the accuracy of the fit between the 
auxiliary probability and the actual probability. Although being fairly close to the actual 
capacity, the lower bound is less accurate for 0.5=γ , because, with a so large value of γ , 
frequent cycle slips affect the performance of Kalman carrier recovery. A similar analysis 
holds for the results obtained with 16-QAM and reported in Fig. 3. Also in this case, the lower 
bound virtually gives the actual channel capacity for 0.125=γ  and coding rate below 0.75. 

 
Figure  2. Actual channel capacity (solid line) and lower bound (dashed line) for 4-QAM, 

Wiener phase noise, and two values of γ . 
 

 
Figure  3. Actual channel capacity (solid line) and lower bound (dashed line) for 16-QAM, 

Wiener phase noise, and two values of γ . 
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  Figures 4 and 5 report the results obtained with the second-order phase noise model of (9). 
Now the state space is multidimensional, and quantizing a multidimensional state space 
according to the trellis-based approach of [13, 14] would lead to an exponential increase of the 
number of states of the trellis, making computation unfeasible. Therefore, in order to work out 
an approximation to channel capacity, we adopt the particle filter of [19]. In the simulation 
results, 410  particles are used. Basically, this means that 410  filters are used in parallel. The 
results of Figs. 4 and 5 show that our proposed bound is even closer to the actual channel 
capacity with second-order phase noise than with first-order phase noise, at least with the 
parameters (9).  

 
Figure  4: Channel capacity obtained by the particle method (solid line) and lower bound 

(dashed line) for 4-QAM and second-order phase noise for two values of γ . 

 
Figure  5. Channel capacity obtained by the particle method (solid line) and lower bound 

(dashed line) for 16-QAM and second-order phase noise for two values of γ . 

New Lower Bound below the Information Rate of Phase Noise Channel

605



 
 

6. Conclusion 
 In the paper, a new lower bound below the information rate transferred through the phase 
noise channel with higher-order memory has been presented. The results, compared to the 
actual channel capacity obtained with the computationally demanding methods of [14] and 
[19], show that the bound is accurate in many cases of practical interest. 
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