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Abstract. We introduce a notion of asymptotic stability for bijections between
sets of partitions and a class of geometric bijections. We then show that a number of
classical partition bijections are geometric and that geometric bijections under certain
conditions are asymptotically stable.

Introduction

Partition theory has a long and glorious history spanning over the last two and a
half centuries, as it originated in the works of Euler and is still under intense devel-
opment. An important turning point was the invention of the so called “constructive
partition theory” by Sylvester and his school, which was based on the idea that par-
tition identities can be proved by direct combinatorial arguments. Since then, there
has been an explosion in the use of bijections and involutions, within partition theory
and elsewhere, to the extend that there is now a whole subject of “bijective combina-
torics”. The purpose of this paper is to connect partition bijections with asymptotic
arguments, describe the asymptotic behavior of various partition bijections, and obtain
the limiting shape of certain sets of partitions.

The full history of partition bijections is yet to be written, so we will use our exten-
sive recent survey [14] as a reference point. We discovered that there are several classes
of partition bijections which have an entirely different nature. This paper is almost
completely dedicated to geometric bijections, which are, basically, various rearrange-
ments of squares of Young diagrams (or Ferrers diagrams) geometrically representing
the partitions. We elaborate on the remaining classes of partition bijections in sec-
tion 14.

Despite a variety among classes of bijections, geometric bijections constitute the
majority of all partition bijections [14]. The examples include several ‘Durfee square
type’ bijections, classical Sylvester’s bijections, as well as some beautiful Andrews’s,
Bressoud’s and Alladi-Gordon’s bijective proofs [14]. These bijections are the main
object of our studies, as we look into their constructions and asymptotic properties.

Before mentioning the main ideas, let us elaborate on the reasoning behind this
work. For people in the area it has been a long standing dream to distinguish “good”
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bijections from “not so good” ones, especially in the context of Rogers-Ramanujan
bijections, where the celebrated Garsia-Milne bijection [9] long deemed unsatisfactory.
In the words of Viennot, “It remains an open problem to know if there exist a “direct”
or “simple” bijection, without using the so-called “involution principle” [26]. Joichi and
Stanton, in the same context, phrase the problem a little differently: “The emphasis
now should be placed on combinatorially important proofs rather than just a proof” [11].
Most recently, Zeilberger reiterates this sentiment once again: “finding a really nice
bijective proof is still an open problem” [28]. Note that all three papers ask exactly the
same question but neither one is able to formulate it precisely; even the adjectives are
all different.

Unfortunately, until this work, little progress has been made towards resolving the
problem, except for various informal observations and aesthetic arguments. An inter-
esting test case appears when a partition identity has several different bijective proofs,
where choosing which one is “really nice” becomes a point of contention. Perhaps,
the most celebrated example of this is Euler’s “the number of partitions of n into odd
parts equals to the number of partitions of n into distinct parts” theorem. The bijec-
tive proofs include Glaisher’s arithmetic bijection, Sylvester’s geometric bijection and
a recent recursive argument [14, 15]. It was Sylvester himself [22] who noticed the
distinct nature of different bijections:

It is a striking fact that the pairs arithmetically and graphically associated
will be entirely different, thus evidencing that correspondence is rather a
creation of the mind than a property inherent in the things associated.

In this paper we introduce the notion of asymptotic stability to formalize the idea
of “good” bijections. We then formally define a class of geometric bijections (and a
more general class of AG-bijections) and prove that all bijections in that class are
asymptotically stable. We spend much of this paper on justifying our definitions by
showing that all those famous partition bijections mentioned earlier belong to the class
of AG-bijections. We also briefly mention few examples of (non-geometric) partition
bijections which are not asymptotically stable. Incidently, of the three bijective proofs
of Euler’s theorem only Sylvester’s bijection is asymptotically stable.

The basic tool in our study is the limit shape for sets of partitions. This idea
originated in the study of random Young tableaux [24], and has recently appeared in
the context of random partitions [23]. Roughly, it says that the diagram of a random
partition scaled by a factor 1/

√
n (so that it has unit area) has shape approximating

the curve

(♠) e−c x + e−c y = 1, where c =
π√
6

.

For other classes of partitions similar limit shape formulas have been found in [20, 25].
The main idea in this paper is to study the effect the geometric bijections have on

the limit shape. We show that in certain cases the limit shape is well defined and
geometric bijections are well defined in the limit. The existence of such limit after
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scaling we call the asymptotic stability. Roughly speaking, geometric bijections in the
limit become piecewise-linear geometric transformations (of the plane) which map one
limit shape into the other.

Beside philosophical implications (“good” vs. “not so good” of bijections), there
is a number of formal applications of our approach. These include computing the
limit shape for various classes of partitions, proving asymptotic stability of various
geometric statistics, etc. Finally, in the forthcoming paper [18] we prove nonexistence
of a geometric Rogers-Ramanujan bijection, giving the very first negative answer to
this classical problem.

The content. We start with basic definitions of partitions, Young and Ferrers dia-
grams, and their enumeration in section 1. Definitions of geometric and AG-bijections
are given in section 2, and the the asymptotic stability of bijections is introduced in
section 3. Main results are formulated in section 4. The geometric bijections are stud-
ied one by one in sections 5–12. Finally, we prove technical results in section 13, and
close with final remarks in section 14.

On Language. Throughout the paper by a correspondence we refer to one-to-one
maps between sets of partitions which preserve the size of the partitions. By a par-
tition bijection we mean not just a one-to-one map, but an algorithm mapping one
set of partitions into another. Of course, two different algorithms can define the same
correspondence. In view of a geometric nature of the partition bijections in the pa-
per, we will always think of a bijection as an algorithm for rearranging squares of
Young diagram of a partition. We also use the word transformation when we speak of
rearrangements of integral lattice points.

Notation. Various sets of partitions are denoted by script capital letters An, Bn, etc.,
where the index n will indicate that these are partition of the same size n. All partitions
and bijections are denoted by Greek minuscules. Finally, we use N = {1, 2, . . .} and
the English presentation of Young diagrams.

1. Basic definitions

1.1. Young and Ferrers diagrams. We define a partition λ to be an integer sequence
(λ1, λ2, . . . , λ`) such that λ1 ≥ λ2 ≥ · · · ≥ λl > 0. We say that λ is a partition
of n, denoted λ ` n and |λ| = n, if

∑
i λi = n. We refer to the integers λi as the

parts of the partition. The number of parts of λ we denote by `(λ) = `, and the
largest part by a(λ) = λ1. The conjugate partition λ′ = (λ′1, λ

′
2, . . . ) of λ is defined by

λ′i = |{j : λj ≥ i}|. Clearly, `(λ′) = a(λ).
A Young diagram [λ] of a partition λ ` n is a collection of n unit squares (i, j)

on a square grid Z2, with 1 ≤ i ≤ `(λ), 1 ≤ j ≤ λi. Pictorially, we think of the first
coordinate i increasing downward, while the second coordinate j increases from left to
right. The conjugate Young diagram [λ′] is then obtained by reflection of [λ] through
the line i = j (see Figure 1).
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[λ] [λ]' {λ}

Figure 1. Young diagrams of partitions λ = (6, 5, 5, 3), λ′ = (43321),
and Ferrers diagram of a partition λ.

An equivalent presentation of a partition is by means of a Ferrers diagram {λ},
which is basically Young diagram with unit squares replaced by dots (see Figure 1).
Whenever possible, we graphically present partitions by their Young diagrams. On
the other hand, in mathematical context it is more convenient to operate with Ferrers
diagrams, so we will use both notation.

Define multi-partitions to be finite sequences κ = (λ, µ, ν, . . .) of partitions, and let
|κ| = |λ|+ |µ|+ |ν|+ . . . Similarly, define (Ferrers) multi-diagram {κ}, to be a finite
sequence of Ferrers diagram. We think of Ferrers diagrams {λ}, {µ}, {ν}, etc. from
the multi-diagram as being in different lattice grids N2, but draw them next to each
for convenience (in fact, we will draw only the corresponding Young diagrams). We
use notation tr(Z2) = Z2 t Z2 t . . . t Z2 (r times) to denote the set of lattice points
in the disjoint union of planes which contain multi-diagrams.

For partitions λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ) define the sum λ + µ to be a
partition (λ1 +µ1, λ2 +µ2, . . . ). Similarly, define the union λ∪µ to be a partition with
parts {λi, µj} (arranged in nonincreasing order). Observe that (λ ∪ µ)′ = λ′ + µ′ (see
Figure 2).

λ
µ λ+µ

λ µU

Figure 2. Young diagrams of partitions λ = (4, 4, 3, 1), µ = (5, 3, 2),
λ + µ = (9, 7, 5, 1), and λ ∪ µ = (5, 4, 4, 3, 3, 2, 1).

The Durfee square is defined to be the largest square which fits Young diagram [λ].
Similarly, for every −∞ < c < ∞, define Durfee c-rectangle to be the largest z× (c+z)
rectangle which fits [λ]. Denote by δc the size of a side z of the Durfee c-rectangle as
above. Statistic δ◦ := δ◦ is called the Durfee rank.
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It is easy to see that the upper left corner of the Durfee rectangle is always in (0, 0),
while the lower right corner is an intersection of y − x = c line with the boundary
of [λ] (see Figure 3).

Figure 3. Durfee square and Durfee c-rectangle in [λ], where c = 4 and
λ = (7, 7, 6, 6, 3, 1). Here δ◦ = 3 and δ4 = 2.

1.2. Enumeration of partitions. Denote by Pn the set of all partitions λ ` n, and
let P = ∪nPn. Two subsets A,B ⊂ P are called equinumerous if |An| = |Bn| for all
n ∈ N, where An = A ∩ Pn and Bn = B ∩ Pn. For example, Euler’s theorem (see the
introduction) says that the set D of partitions into distinct parts is equinumerous to
the set O of partitions into odd parts: |Dn| = |On|.

Denote by Pr the set of all multi-partitions κ ∈ P×. . .×P (r times). Two subsets of
multi-partitions A ⊂ Pr and B ⊂ Ps are called equinumerous if the number of κ ∈ A
such that |κ| = n is equal to the number of σ ∈ B such that |σ| = n, for all n ∈ N.

A statistic on A is a function α : A → R. For example, the number of parts `(λ) or
the length of the first part a(λ) := λ1 are both statistics on the set of all partitions P .

Suppose α is a statistic on P and A,B ⊂ P . We say that a map ϕ : A → B preserves
statistic α if α(ϕ(λ)) = α(λ) for all λ ∈ A. For example, the conjugation map preserves
size of the partition |λ| and its Durfee rank δ◦(λ).

Similarly, we say that ϕ : A → B maps statistic α into β, where α : A → R,
β : B → R, if β(ϕ(λ)) = α(λ) for all λ ∈ A. For example, the conjugation maps
statistic δc into δ−c.

1.3. Shape of a partition. The shape of a partition λ is a function ρλ : (0,∞) → R+

defined by

ρλ(x) =

{
λdxe, if 0 < x ≤ `(λ),

0 , if x > `(λ).

One can think of the shape function ρλ as of a boundary of the Young diagram. Denote
by ρ̃λ the scaled shape of λ defined by

ρ̃λ(x) =
1√
n

ρλ(
√

n x), where n = |λ|.

Clearly, the area under the graph
∫∞

0
ρ̃λ(x) dx = 1.



6 IGOR PAK

For every partition λ denote by {λ̃} the set of points
(
i/
√

n, j/
√

n), where (i, j) ∈ {λ}
and n = |λ|. We call {λ̃} the scaled Durfee diagram.

2. Geometric and AG-bijections

2.1. Basic transformations. Let us first defined basic geometric transformations
which are the building blocks of general geometric transformations.

First, define shift transformation ג : Z2 → Z2 to be a linear map ג : (i, j) → (i, j)M ,
where M ∈ SL(2,Z). By definition, such ϕ preserve the lattice Z2.

Second, define move transformation ג : Z2 → Z2 to be a parallel translation ג :
(i, j) → (i + a, j + b), where a, b ∈ Z.

Third, define cut transformation ג : Z2 → Z2 t Z2 to be a projection of points (i, j)
onto the first component if ai + bj ≥ c, and onto the second component if ai + bj < c,
where (a, b, c) ∈ Z3.

Similarly, define paste transformation ג : Z2 tZ2 → Z2 to be a projection of lattices
in two components onto the one component. Of course, this transformation will be
used only when there in no overlap in the resulting set of integral points.

For an integral lattice Γ ⊂ Z2, define the volume r(Γ) to be the number of cosets
in Z2/Γ. For a sublattice Γ = Z〈v, w〉 ⊂ Z2, where v, w ∈ Z2 and r = r(Γ) < ∞,
define shred transformation ג : Z2 → tr(Z2) to be a projection of points (i, j) ∈ Z2

onto component Z2 corresponding to the coset (i, j) Γ.
Finally, for every k, ` ∈ Z define stretch transformation ג : Z2 → Z2 to be a map

ג : (i, j) → (k i, j/`), where (i, j) ∈ Γ`, and Γ` is a lattice of points {(i, `j) | i, j ∈ Z}.
When we need to be more specific, we call this (k, `)-stretch transformation.

To summarize, we consider six basic geometric transformations:

¦ shift ¦ move ¦ cut ¦ paste ¦ shred ¦ stretch

Of course, these transformations can be applied to any component of the multi-diagram.

Definition 2.1. A geometric transformation is a composition of a finite number of
basic geometric transformations.

One has to be careful with using the geometric transformations to ensure that the re-
sulting map is well defined. Also, while shift and move transformations are invertible,
the remaining basic geometric transformations are not invertible in general.

The examples of basic geometric transformation are given in Figures 4 and 5. Here
white dotes are placed at the selected lattice points of the grid. In Figure 4, the cut is
along the line i−j = 0, and moves are along the vectors (1, 0) and (0,−1). In Figure 5,
the shred is according to a lattice Γ = {(i, j) ∈ Z2 | j is even}, and the shift is by a
matrix M =

(
1 0
1 1

) ∈ SL(2,Z).
Finally, the integer values a, b, c, etc. that appear in the definition of basic geometric

transformations are called parameters of a geometric transformation.
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{λ} {µ}

Figure 4. An example of a geometric bijection ג : {λ} → {µ}, where
λ = (6, 5, 5, 3), µ = (5, 4, 4, 3, 3). Here ג is a composition of a cut, two
moves (one in each component), and a paste.

{λ}

Figure 5. An example of a shred transformation and a stretch trans-
formation of the first component (with k = ` = 2).

{λ}

Figure 6. An example of a shift transformation of {λ}, where λ = (6, 5, 5, 3).

2.2. Geometric bijections. Let A and B be equinumerous sets of (multi-) partitions,
and let ϑ : A → B be a one-to-one correspondence such that |ϑ(λ)| = |λ|, for all λ ∈ A.

A geometric bijection ϕ which defines ϑ is said to be given by a geometric transfor-
mations ג of the lattice points, which maps every Ferrers (multi-) diagram {λ}, λ ∈ A,
into a (multi-) diagram {µ}, µ ∈ B, and such that µ = ϑ(λ).

Let us emphasize here that a geometric transformation ג may not be defined on all
(multi-) diagrams, so we say that ג is bijective on {A}.



8 IGOR PAK

Note that in the definition of the geometric transformation we did not specify how
parameters a, b, c, etc. are obtained. We say that a geometric bijection is natural if
these parameters are fixed, i.e. independent of the starting partition. Most, but not
all geometric bijections we consider are natural. Clearly, a composition of two natural
bijections is also natural.

Recall that the number of components Z2 can both increase and decrease, so a
geometric bijection between two sets of partitions can have Ferrers multi-diagrams in
between (an example is given in Figure 4).

If two geometric bijections ϕ and ψ define the same correspondence ϑ, we write
ϕ ∼ ψ. If they also define identical maps from lattice points in {λ} to lattice points
in {µ}, for all µ = ϑ(λ), we write ϕ ' ψ. For example, let id : P → P be a trivial
bijection, let γ : P → P be a conjugation bijection, and γ2 be a conjugation repeated
twice. Then id � γ and id ∼ γ2. Furthermore, in this case we have id ' γ2.

2.3. Basic properties. We say that a geometric bijection ϕ, which defines ϑ : A → B,
is stable if ϕ(i, j) is the same for all (i, j) ∈ λ, and λ ∈ A.

Proposition 2.2. A natural geometric bijection is stable and preserves the size of the
partition.

Proof. Clear by induction. ¤

We say that the set of partitions A is spanning if the Durfee rank δ◦ is unbounded
on A. Now Proposition 2.2 easily implies the following result.

Proposition 2.3. Let A,B ⊂ P be two spanning sets of partitions and let map ϑ :
A → B be defined by a natural geometric bijection ϕ. Then (i, j) → ϕ(i, j) defines a
one-to-one map ϕ : N2 → N2.

Proof. Clear. ¤

Finally, recall that the geometric transformations are not necessarily invertible. The
following result reaffirms the importance of natural geometric bijections.

Theorem 2.4. Let ϕ be a natural geometric bijection. Then its inverse ϕ−1 is also a
natural geometric bijection.

The proof is given in section 13.



THE NATURE OF PARTITION BIJECTIONS II. ASYMPTOTIC STABILITY 9

2.4. AG-bijections. In this section we extend the class of geometric transformations
by introducing two basic transformations of a different type. Let

(
ν(0), ν(1), . . . , ν(r−1)

) ∈
Pk be a multi-partition, such that ν

(i)
j ≡ i mod r, for all i, j. Define union transfor-

mation kr :
{
ν(0), ν(1), . . . , ν(r−1)

} → {λ}, where λ = ∪iν
(i).

Similarly, define sum transformation ir :
{
τ (0), τ (1), . . . , τ (r−1)

} → {λ′}, where

τ (i) =
(
ν(i)

)′
by using a conjugate transformation.

These transformations are defined only for Ferrers multi-diagrams but can be com-
bined with geometric transformations. It is useful for to have both sum and union as
our building blocks even though either of them combined with a conjugation gives the
other. An example of a both transformations is given in Figure 7.

{µ}{τ  }(0) {τ  }(1)

{ν  }(0) {ν  }(1) {λ}

Figure 7. An example of sum and union transformations. Here τ (i) =(
ν(i)

)′
and µ = λ′.

Note that union transformation has an inverse k−1
r , which we call split transforma-

tion modulo r. It maps Ferrers diagram {λ} into multi-diagrams
{
ν(0), . . . , ν(r−1)

}
,

where ν(i) contains all parts equal to i mod m. Similarly, one can define transforma-
tion i−1

r ; we will not use it here.
To summarize, we consider two basic arithmetic transformations:

¦ union ¦ split

Definition 2.5. An arithmetic-geometric (AG) transformations is a composition of a
finite number of basic geometric and basic arithmetic transformations.

These AG-transformations form a class of transformations which will be studied
throughout the paper. Define AG-bijections and natural AG-bijections by analogy.
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Unless stated otherwise, AG-bijections will be bijections between two sets of partitions
rather than multi-partitions.

3. Asymptotic stability

3.1. Statistics. Let A ⊂ P be a set of partitions, and let α : A → R be a statistic.
We say that α is asymptotically stable on A = ∪nAn if there exist a ∈ R such that for
every ε > 0 we have

(♦)

∣∣{λ ∈ An | a− ε < α(λ) < a + ε}
∣∣

|An| −→ 1 as n →∞.

One can think of (♦) as of a weak convergence phenomenon. In probabilistic terms it
can be written as:

P
(|α(λ)− a| < ε | λ ∈ An

) → 1 as n →∞,

where the probability is taken over uniform partitions in Pn.

Note that if statistics α and β are asymptotically stable, then so are α+β and α ·β.

Example 3.1. Consider the set of “square” partitions A = {(kk), k ∈ N}. Then
statistic α := (δ◦(λ))2/|λ| is constant (α(λ) = 1 for all λ ∈ A), and thus asymptotically
stable on A.

Example 3.2. Let A = {λ ∈ P | δ◦(λ) ≤ 2} and B = {λ ∈ P | δ◦(λ) ≤ 1} ⊂ A
Partitions λ ∈ B are called hooks. Note that |An| = θ(n3) and |Bn| = n. Therefore,
the statistic δ◦ is asymptotically stable on A.

Example 3.3. Let B be the set of hook partitions as above, and let β := `(λ)/(|λ|+1).
Observe that E(β(λ) | λ ∈ Bn) = 1/2, but β is not asymptotically stable on B.

3.2. Limiting shape. Let A = ∪nAn be a set of partitions. For every x > 0, think
of the a scaled shape value αx := ρ̃λ(x), αx : λ → R as of a statistic on A. We say
that A is asymptotically stable if αx are asymptotically stable statistics with uniform
convergence: there exist a function a = a(x) : R+ → R+ such that

∫∞
0

a(x) dx = 1,
and for every ε > 0

P
(|αx(λ)− a(x)| < ε for all x > 0 | λ ∈ An

) → 1 as n →∞,

The function a(x) is called the limiting shape of A.

Example 3.4. Let A = {λ | `(λ) ≤ √
n/ log n}. By definition, A is not asymptotically

stable since E
(
αx(λ) | λ ∈ An

) → 0 for all x > 0.

Let B = {(kk1k), k > 0} be the set of partitions which asymptotically look like square
partitions. Then B is asymptotically stable with limiting shape function b(x) = 1,
0 ≤ x ≤ 1, and b(x) = 0 for x > 1.
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Finally, observe that the set of partitions C = {(kk1k2
), k > 0} is not asymptotically

stable. Indeed, the possible limiting shape is c(x) = 1√
2

for 0 ≤ x ≤ 1√
2
, and c(x) = 0

for x > 1, which clearly doesn’t satisfy the integral condition.

Example 3.5. It was shown in [23] that the set of all partitions P is asymptotically
stable with the limiting shape Φ(x) defined as:

Φ(x) = −1

c
log

(
1− e−cx

)
, where c =

π√
6
.

Of course, the curve Φ(x) is invariant under conjugation (see Figure 8). A symmetric
version is given by the formula (♠) in the introduction.

Φ(  )x Ψ(  )x

Figure 8. Limiting shapes Φ(x) and Ψ(x) of the set of all partitions P and D.

Example 3.6. Let D be the set of all partitions into distinct parts. It was shown
in [23] that D is asymptotically stable with the limiting shape Ψ(x) defined as:

Ψ(x) =




−1

d
log

(
e−dx − 1

)
, if 0 < x < (log 2)/d ,

0 , if x ≥ (log 2)/d ,

and where d = π/
√

12 (see Figure 8). Below is a concise way to define y = Ψ(x):

(♣) ed x − e−d y = 1.

Example 3.7. Let m be a fixed integer and let J ⊂ {0, 1, . . . , m− 1}, J 6= ∅. Denote
by AJ the set of partitions λ = (λ1, λ2, . . .), such that (λi mod m) ∈ J. For example,
when m = 2 and J = {0} we have the set of partitions into even parts E and when
J = {1} we have the set of partitions into odd parts O. Similarly, denote by BJ ⊂ D
the set of partitions µ into odd parts, such that (µi mod m) ∈ J.
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Proposition 3.8. For every m and J as above the sets of partitions AJ and BJ are
asymptotically stable with respective limiting shapes a(x) and b(x) given by

(ℵ) a(x) = η Φ(η x) and b(x) = η Ψ(η x), where η =
√

m/|J| .

Note that the limiting shapes depend only on m and the size |J|. The proof follows
verbatim the proof of formulas (♠) and (♣) (see Example 3.5, 3.6) given in [8, 20, 23]
and will be omitted.

3.3. Asymptotic stability of bijections. Let A, B be asymptotically stable sets of
partitions, and let Υ1, Υ2 be their limiting shapes. Denote by V,W ⊂ R2

+ the (open)
sets between these limiting shapes and coordinate axis.

Let ϑ : A → B be a correspondence which preserves size of partitions, and let
ϕ : {λ} → {µ} be a one-to-one map between lattice points in Ferrers diagrams, such

that λ ∈ A and µ = ϑ(λ) ∈ B. Denote by ϕ̃ the corresponding map {λ̃} → {µ̃}.
For every two open measurable sets X ⊂ V and Y ⊂ W define a statistic Θλ(X,Y )

to be the number of elements in {λ̃} ∩X which are mapped into {µ̃} ∩ Y .

Definition 3.9. Let A, B be asymptotically stable sets of partitions. We say that
bijection ϕ : A → B defined as above is asymptotically stable if Θλ(X, Y ) are asymptot-
ically stable statistics with uniform convergence, i.e. there exist a measurable function
F (X, Y ) ≥ 0, such that for every ε > 0

P
(|Θλ(X, Y )− F (X,Y )| < ε for all X ⊂ V, Y ⊂ W | λ ∈ An

) → 1 as n →∞,

where the probability is over uniform λ ∈ Pn.

It is easy to see that for the function F (·, ·) as in the definition above, we have

F (X,W ) = vol(X), F (V, Y ) = vol(Y ), F (V, W ) = 1 ,

where vol(X) denotes the area of X. For example, the conjugation bijection γ : P → P
is asymptotically stable with F (X,Y ) = vol(X ′ ∩ Y ), for all X ⊂ V , Y ⊂ W , and
where X ′ is a set conjugate to X.

Example 3.10. Let A = {(kk)} be the set of square partitions. Both trivial bijection
and conjugation are asymptotically stable. On the other hand, a map ϕ : (i, j) →
(i, j) when k is even, ϕ : (i, j) → (j, i) when k is odd, defines the same (trivial)
correspondence ϑ : A → A. At the same time this bijection ϕ is neither geometric nor
asymptotically stable.
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4. Main results

We start with a general background information on the assorted collection of parti-
tion bijections. Recall from the introduction the class of “good” partition correspon-
dences given by planar arguments.

Meta Theorem. All known “good” partition bijections are asymptotically stable.

Of course, this claim is a philosophical statement, in need of a justification rather
than a proof. In the next eight sections we go over a number of partition bijections for
which we confirm the Meta Theorem. In each case we construct an AG-bijection which
defines the desired partition correspondence, and then use the following technical result
to establish the asymptotic stability.

Theorem 4.1. Let A ⊂ P be an asymptotically stable set of partitions, let B ⊂ P,
and let ϑ : A → B be a size preserving one-to-one correspondence. Suppose a natural
geometric bijection ϕ defines ϑ. Then ϕ is asymptotically stable. Moreover, this holds
if ϕ is an AG-bijection with asymptotically stable parameters.

We prove this theorem in section 13.

5. Even partitions

Let An,k be the set of partitions λ ` n into even parts, such that `(λ) ≤ k. Similarly,
let Bn,k be the set of partitions λ ` n into even parts, such that a(λ) ≤ 2k. It is easy
to see that

1 +
∞∑

n=1

∣∣An,k

∣∣ tn =
k∏

i=1

1

1− t2i
= 1 +

∞∑
n=1

∣∣Bn,k

∣∣ tn,

and therefore
∣∣An,k

∣∣ =
∣∣Bn,k

∣∣ for all n and k.
Define a size preserving one-to-one correspondence ϕ : An,k → Bn,k as follows. Let

λ/2 = (λ1/2, λ2/2, . . .), and let µ = ϕ(λ) := (λ/2∪λ/2)′ = (λ/2)′+(λ/2)′. An example
is given in Figure 9.

Proposition 5.1. Map ϕ defined above is given by a natural geometric bijection.

Proof. Let ν := λ/2 ∪ λ/2. Since ν → µ is a conjugation, all we need to show is
that λ → ν is given by a geometric bijection. Indeed, first shred {λ} along the
lattice Γ2 = {(i, 2j) | i, j ∈ Z}, move and stretch each component as in Figure 10,
and then paste two components together. The details are straightforward. ¤
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[λ]
[ν]

[µ]

Figure 9. An example of a bijection ϕ : λ → µ, where λ ∈ A26,5, µ ∈ B26,5

{ν}
{λ}

Figure 10. Construction of a geometric bijection {λ} → {ν},
where λ = (8, 8, 6, 2, 2), and ν = (10, 6, 6, 4).

It is known that A = ∪An,k is asymptotically stable for k = k(n) = Ω(
√

n) with a
limiting shape a(x). Then, by Theorem 4.1, the set B = ∪Bn,k is also asymptotically
stable k = Ω(

√
n) with a limiting shape b(y) = 2 a−1(2y). For example, when k = n,

we have a(x) = b(x) =
√

2 Φ(
√

2x), which is in agreement with the calculation above.
Before we conclude, let us mention that the results can be easily extended from even

partitions to partitions which are divisible by m, for any m ≥ 2. We leave the (easy)
details to the reader.
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6. Durfee decomposition

Recall the following Euler’s identity:
∞∏
i=1

1

1− ti
= 1 +

∞∑

k=1

tk
2

(1− t)2(1− t2)2 · · · (1− tk)2
.

We present a classical bijective proof (see e.g. [1, 14, 22]). Denote by τk = (kk)
the square partitions as in Example 3.1. Let A = {(µ, ν, τk) | `(µ), a(ν) ≤ k, k ∈ N}
be the set of multi-partitions, and let ϕ : P → A be the size preserving one-to-one
correspondence defined as follows. Let τk be the Durfee square in [λ], where k = δ◦, and
let [µ] and [ν] be the Young diagrams obtained after removal of [τk] from [λ]. Finally,
let (µ, ν, τk) = ϕ(λ) (see Figure 11).

Figure 11. Durfee square decomposition ϕ : λ → (µ, ν, τk), where λ =
(7, 7, 6, 6, 4, 1), µ = (3, 3, 2, 2), ν = (3, 1), and k = 4. Sylvester’s triangle
∆6 ⊂ [11, 9, 8, 7, 5, 1].

Proposition 6.1. Map ϕ defined above is given by a geometric bijection with asymp-
totically stable parameters.

The proof follows immediately from the construction and the fact that Durfee rank δ◦
is asymptotically stable on P . Note that there is no natural geometric bijection defin-
ing ϕ.

A similar argument proves another Euler’s identity:

∞∏
i=1

(1 + ti) = 1 +
∞∑

k=1

t
k(k+1)

2

(1− t)(1− t2) · · · (1− tk)
.

First, define ∆k = (k, k − 1, . . . , 2, 1). Now, for every λ ∈ D, let k := `(λ) and
remove ∆k from [λ] as shown in Figure 11. The result is again a geometric bijection
with asymptotically stable parameters.

Interestingly, the following nearly identical version of the first Euler’s identity has a
proof by a natural geometric bijection:

∞∏
i=1

1

1− ti
= 1 +

∞∑

k=1

(
t

k(k+1)
2

(1− t)(1− t2) · · · (1− tk)

)(
t

k(k−1)
2

(1− t)(1− t2) · · · (1− tk)

)
.
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The proof is given by a construction often called Frobenius coordinates, and is presented
in Figure 12 (see [12, 14]). This one-to-one correspondence is given by a natural
geometric bijection. We leave the details to the reader.

[λ]
[µ] [ν]

Figure 12. Partition λ = (8, 5, 4, 4, 3, 1), and its Frobenius coordinates
(µ, ν), where µ = (8, 4, 2, 1), ν = (5, 3, 2, 0).

Remark 6.2. Let us note that Sylvester found a Durfee style bijective proof of the
following partition identity, generalizing Euler’s Pentagonal Theorem (z = −1 case):

∞∑
n=0

(
znt

n(3n+1)
2 + z(n+1)t

(n+1)(3(n+1)−1)
2

) n∏
i=1

1 + zti

1− ti
=

∞∏
i=1

(1 + zti).

The one-to-one correspondence in this case is given by a geometric bijection with
asymptotically stable parameters. We refer to [17] for an extensive treatment of other
bijections of this type and how one can construct Franklin’s and other classical invo-
lutions from these bijections.

Remark 6.3. The following equivalent version of the Jacobi triple product identity
∞∑

k=−∞
skt

k(k+1)
2

∞∏
i=1

1

1− ti
=

∞∏
i=1

(1 + sti)
∞∏

j=0

(1 + s−1tj).

can be proved by a combinatorial argument based on a generalization of the Frobenius
coordinates [22] (see also [14, 27]). One can view the proof as a bijection between two
sets of multi-partitions with the power of s being an asymptotically stable statistic.
One can extend the definition of geometric bijections to such cases which would apply
to partition identities with several variables. The details are straightforward but take
us outside the main interest of this paper.

7. Self-conjugate partitions

Let A be the set of self-conjugate partitions: λ = λ′, and let B be the set of partitions
into distinct odd parts. Define a size preserving one-to-one correspondence ϕ : A → B
as follows. For λ ∈ A consider the hook lengths µi := 2(λi − i) + 1, for 1 ≤ i ≤ δ◦(λ),
and finally let µ = ϕ(λ) (see Figure 13).
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[λ]
[µ]

Figure 13. An example of a bijection ϕ : λ → µ, where λ =
(7, 7, 6, 5, 5, 3, 2) ∈ A and µ = (13, 11, 7, 3, 1) ∈ B.

Proposition 7.1. Map ϕ defined above is given by a natural geometric bijection.

Proof. The proof is by construction given in Figure 14. First, cut along the line
i − j = 0, shift, move and stretch the Ferrers diagram in each component so that
the the dots in two components lie in different cosets of Γ2 = {(i, 2 j) | i, j ∈ Z}. Now
simply paste two components. The details are straightforward. ¤

Corollary 7.2. The set of self-conjugate partitions A is asymptotically stable with
limiting shape Φ(x).

Proof. First, observe that the set B of partitions into distinct odd parts is asymptoti-
cally stable with the same limiting distribution as the set C of partitions into distinct
even parts. Simply recall that the number of parts `(µ) of a random µ ∈ B is O(

√
n)

w.h.p. as n → ∞, and removing the first column in [µ] makes all parts even and
distinct. Thus the limiting shape b(x) for B and C is b(x) =

√
2 Ψ(

√
2 x).

By Proposition 7.1, map ϕ is given by a geometric bijection, and by Theorem 2.4
so is ϕ−1. This can be also concluded directly from the proof of Proposition 7.1.
Therefore, by Theorem 4.1, the set A is asymptotically stable.

Denote by a(x) the limiting shape of A. By construction of ϕ we have: a(x) =
x + b(x)/2 = x + Ψ(

√
2 x)/

√
2 for 0 < x ≤ s := (log 2)/(

√
2 d), where d = π/

√
12 as

in Example 3.6. We have b(s) = 0 and a(s) = s, so for x ≥ (log 2)/(
√

2 d) use the
symmetry. Now the claim follows by easy calculation. ¤

Remark 7.3. One can also deduce Corollary 7.2 from probabilistic considerations, by
using the asymptotic stability of the sets of partitions {λ ∈ A | δ◦(λ) = c

√
n}, for

all c > 0. Conditioned on the value of δ◦(λ), the Frobenius coordinates are identical
and independent, which implies the result.
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{λ} {µ}

Figure 14. Construction of a geometric bijection {λ} → {µ}, where
λ = (7, 7, 6, 5, 5, 3, 2) ∈ A and µ = (13, 11, 7, 3, 1) ∈ B.

8. Sylvester’s bijection

Let On be the set of partitions λ ` n into odd numbers, and let Dn be the set of
partitions µ ` n into distinct numbers. Euler’s theorem says that |On| = |Dn|, which
follows immediately from the identity:

∞∏
i=1

1

1− t2i−1
=

∞∏
i=1

(1 + ti) .

Sylvester found the following bijective proof of Euler’s theorem by a so called “fish-
hook construction”. We start with a Ferrers diagram {λ} of λ ∈ O and bend the parts
into hooks. Then take the fish-hooks in the resulting shape and extend them to form
rows of {µ} as in Figure 15. Now let ϕ : O → D be defined by ϕ(λ) = µ.

Note that although the one-to-one map ϕ is defined in terms of Ferrers diagrams,
the construction does not define a geometric bijection. Perhaps surprisingly, we have
the following result.
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{λ} {µ}

Figure 15. An example of a bijection ϕ : λ → µ, where λ =
(11, 11, 9, 7, 3, 3, 1) ∈ O and µ = (12, 10, 9, 6, 4, 3, 1) ∈ D.

Proposition 8.1. Map ϕ defined above is given by a natural AG-bijection.

Proof. The proof is outlined in Figure 16 and follows the presentation of ϕ given in [19]
(see also [3, 14]). Below is a brief sketch of the construction.

Start with a Durfee diagram {λ} and cut it along j − 2i = 1 line. Apply shift to
the component corresponding to the i− 2j > 1 points. The resulting Ferrers diagram
corresponds to a partition with even parts; apply geometric transformation defined
in 5 to obtain a diagram {ν}. For the other component, first shred it modulo 2, and
then use stretch, shift, and move to make two Ferrers diagrams. Now stretch these
diagrams, move and paste them into a single diagram {ω}. Finally, add {ν} and {ω}
to obtain the desired Ferrers diagram {µ}. ¤

Remark 8.2. Let us note that one can use Sylvester’s bijection to deduce formula (♠)
from formula (♣). Also, the reader might find it instructive to see how bijection ϕ maps
one limiting shape into the other. This case was the inspiration for [18], although the
logic is somewhat convoluted.

9. Glaisher’s bijection

As in 8, let On be the set of partitions λ ` n into odd numbers, and let Dn be the
set of partitions µ ` n into distinct numbers. Recall Euler’s theorem: |On| = |Dn|, for
all n ∈ N. The following algorithm defines a size preserving one-to-one correspondence:
ψ : D → O.

Start with λ ∈ D. Find the largest even part λi and replace it with two parts of
equal size λi/2. Repeat this until all parts are odd. Let ψ(λ) be the resulting partition.

It is easy to see that ψ is one-to-one [3, 14]. Indeed, simply observe that correspon-
dence ψ maps parts (2rm), where m is odd, into 2r copies of a part (m).

Even though ψ is not an AG-bijection, it is a limit of AG-bijections in the following
sense. Let Or be the set of partitions into odd parts such that no part occurs ≥ 2r

times. Similarly, letDr be the set of partitions into distinct parts which are not divisible
by 2r. By construction, Or = ψ(Dr).
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{λ}

{µ}{ω}{ν}

{ω}

{ν}

Figure 16. An example of a bijection ϕ : λ → µ, where λ =
(11, 11, 9, 7, 3, 3, 1) ∈ O and µ = (12, 10, 9, 6, 4, 3, 1) ∈ D.

Proposition 9.1. Sets of partitions Or, Dr are asymptotically stable with limiting
shapes y = Fr(x), y = Gr(y), given by

e−cηr x + e−c y = 1, e(d ηr) x − e−(d/ηr) y = 1,

respectively, and where c = π/
√

6, d = π/
√

12, and ηr =
√

1− 1/2r.

The reader can check that two parts of Proposition 9.1 are special cases of Propo-
sition 3.8 (see above) and Proposition 9.5 (see below). Later, in Remark 9.3 present
now an informal (yet?) method for deriving the limiting shapes as in the proposition.
Let us start with the following result.

Corollary 9.2. One-to-one correspondence ψ : Dr → Or defined above is given by an
asymptotically stable AG-bijection.
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Proof. First, split partitions λ ∈ Dr modulo 2r. Then (2k, 2k)-stretch the compo-
nents with parts (2km), where m is odd, and k < r. Take a union of the resulting
partitions. ¤

Recall that
√

2 Φ(
√

2 x) and Ψ are the limiting shapes of the sets of partitions O
and D. Now, observe that Fr(x) → √

2 Φ(
√

2 x) as r → ∞, for all x ∈ R+. Similarly,
Gr(x) → Ψ(x) as r → ∞, for all x ∈ R+. In this sense, correspondence ψ is given by
a limit of AG-bijections. This is in contrast with Sylvester’s bijection (see section 8)
which is an AG-bijection.

Remark 9.3. The following calculation uses Glaisher’s bijection to establish a connec-
tion between the limiting shapes of D and O. While this calculation does not establish
any new result, it serves as a prototype for obtaining new more involved results.

Denote f(y) = Ψ−1(y), and let λ(0), λ(1), λ(2), etc. be the partitions of parts in λ ∈ D
which are 1 mod 2, 2 mod 4, 4 mod 8, etc. The limiting shapes of these conjugates to
these partitions are 1

2
f , 1

4
f , 1

8
f , etc. After (2k, 2k)-stretch of λ(k), we obtain shapes

conjugate to 1
2
f(y), 1

2
f(2y), 1

2
f(4y), etc. Therefore, µ = ϕ(λ) has a shape conjugate

to 1
2

(
f(y) + f(2y) + f(4y) + . . .

)
. Substituting f(y) = 1

d
log(1 + e−dy), we obtain:

x = g(y) =
1

2

∞∑

k=0

f(2ky) =
1

2d

∞∑

k=0

log
(
1 + e−d2ky

)
=

1

2d
log

∞∏

k=0

(
1 + e−d2ky

)
.

Using
∞∏

k=0

(
1 + z2k)

= 1 + z + z2 + z3 + . . . =
1

1− z
,

we conclude:

e−2dx = e−2d g(y) =
∞∏

k=0

(1 + e−d2ky)−1 = 1− e−dy.

This coincides with the equation e−2dx + e−dy = 1, for the limiting shape
√

2 Φ(
√

2 x)
of the set of partitions O.

Note that along the way we, in effect, change the order of limits (in the summation
of the limiting shapes and in the definition of the limiting shape, when n → ∞).
It seems one should be able to justify this change since the total sum of parts in
random λ ∈ D which are divisible by 2k decreases exponentially as k → ∞. It would
be very interesting to make this argument rigorous as we it seems applicable in other
cases as well (see the remark below).

Remark 9.4. Fix an integer m ≥ 2. Let Am be the set of partitions into parts not
divisible by m, and let Bm be the set of partitions with no part repeated ≥ m times.
An easy algebraic argument shows |Am

n | = |Bm
n |. Note that A2 = O and B1 = D, so

the above result generalizes Euler’s theorem.
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Let us present the following extended Glaisher’s bijection ψm : Bm → Am. Start with
λ ∈ Bm and find a part (λi) divisible by m. Replace it with m parts (λi/m) and repeat
this until no such change is possible. See [14] for other extensions and references.

As with Glaisher’s correspondence, the above extension is not given by an AG-
bijection. Nevertheless, it still can be used to connect the limiting shapes of two sets
of partitions.

Recall that Proposition 3.8 implies that the sets of partitions Am is asymptotically
stable with the limiting shapes given by the equation:

(A) e−c x
√

m
m−1 + e−c y

√
m−1

m = 1 ,

where c = π/
√

6 as above. Using notation f(y) and g(y) for the inverses of limiting
shape of Bm and Am as in Remark 9.3, the bijection ψm gives:

g(y) =
m− 1

m

(
f(y) + f(my) + f(m2y) + . . .

)
,

and therefore

f(y) =
m− 1

m

(
g(y) − g(my)

)
.

Use the explicit formula (A) to compute g(y) and f(y). The value f(0) now gives the
number of parts of a “typical” partition µ ∈ Bm. This suggests (but not proves!) the
following result:

Proposition 9.5. The set of partitions Bm is asymptotically stable with limiting shapes
given by the equation

(B) es x =
1− e−m s y

1− e−s y
,

where s = c
√

1− 1/m and c = π/
√

6. Furthermore, the number of parts `(·) is an
asymptotically stable statistic on Bm with a limit 1

s
log m.

Note that the limiting shape of B2 is indeed the limiting shape (♣) of the set D of
distinct partitions. Similarly, as m → ∞ the limiting shapes of Am and Bm tends to
the limiting shape (♠) of the set of all partition P . On the other hand the number of
parts `(·) of partitions is not asymptotically stable on P , as follows by letting m →∞
in the proposition.

We do not present here the proof of Proposition 9.5 as it follows verbatim the analysis
given in [8, 20, 23]. Alternatively, one can formalize the argument given above, as in
Remark 9.3. The details are left to the reader.
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10. Bressoud’s bijection

LetA be the set of partitions into parts ≡ 0, 1, 2 mod 4. Let B be the set of partitions
into parts which differ by at least 2, and such that odd parts differ by at least 4. The
classical Göllnitz partition theorem implies that these sets are equinumerous: |An| =
|Bn|. Using generating functions this result can be written as:

(z) 1 +
∞∑

k=1

tk(k+1) (1 + t)(1 + t3) · · · (1 + t2k+1)

(1− t2)(1− t4) · · · (1− t2k)
=

∞∏
i=1

(
1 + t4i

) ∞∏
j=1

(
1 + t2j−1

)
.

Bressoud’s bijection ϕ : A → B is illustrated in Figure 17 and can be outlined as
follows. We graphically present partitions by means of MacMahon diagrams where
each square corresponds to 2 except for blue (marked) squares which correspond to 1.
Summing integers corresponding to squares in a MacMahon diagram gives the sizes of
parts.

Start with a MacMahon diagram 〈λ〉 and split it into three diagrams: 〈α〉, 〈β〉
and 〈γ〉, such that γ contains odd parts of λ (they are lightly shaded), partition β

contains even parts of λ which are ≤ 2`(γ), and partition α contains even parts of λ

which are > 2`(γ). Let 〈υ〉 = 〈β〉′ + 〈γ〉, and place 〈υ〉 right below 〈α〉. Removing
triangle 〈ρs〉 with s = `(α)+ `(γ)−1, reordering the parts and adding the triangle 〈ρs〉
back, we obtain the desired MacMahon’s diagram of a partition µ. For the proof and
references we refer to [14].

Proposition 10.1. The map ϕ is given by asymptotically stable AG-bijection.

Proof. First, by Proposition 3.8 the set A is asymptotically stable and has limiting

shape a(x) =
√

4
3
Ψ

(√
4
3
x
)
. Then, components 〈γ〉 and 〈α∪β〉 are also asymptotically

stable with the limiting shapes a(3x) and a(3x/2), respectively. Now, since the lengths
`(α) and `(γ) are asymptotically stable statistic, we conclude that so is the size s of
the removed triangle.

Now, by construction, Bressoud’s bijection ϕ is an AG-bijection. From above, all
parameters are asymptotically stable. This completes the proof. ¤

Corollary 10.2. The set of partitions B is asymptotically stable.

From the proof above, one compute an explicit formula for the limiting shape of B.
We leave this as an exercise to the curious reader.

Remark 10.3. The identity (z) is a special case of Lebesgue identity:

(L)
∞∑

r=1

t(
r+1
2 ) (1 + zt)(1 + zt2) · · · (1 + ztr)

(1− t)(1− t2) · · · (1− tr)
=

∞∏
i=1

(1 + zt2i)(1 + ti) ,
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Figure 17. An example of a bijection ϕ : λ → µ for λ ∈ An, µ ∈ Bn,
where n = 142, λ = (28, 22, 17, 16, 14, 13, 10, 8, 6, 5, 2, 1) ∈ A142 and
µ = (33, 27, 24, 18, 15, 10, 8, 5, 2).

where the substitution is given by t ← t2, z ← t.
One can extend definitions of geometric and AG-bijections to MacMahon diagrams

and show the asymptotic stability in this case. One can view the power of z as an
asymptotically stable statistic on the corresponding set of partitions, and consider the
asymptotic stability of multi-statistics and the limiting shapes (cf. Remark 6.3).

11. Ramanujan’s identity

Consider the following simple Ramanujan’s identity:

(R)
∞∑

m=0

t2m+1

(1− tm+1) · · · (1− t2m+1)
=

∞∑
r=1

tr

(1− tr+1) · · · (1− t2r)
.

Below we present a direct bijective proof of this identity given by Andrews [2]. First,
denote by s(λ) = λ`(λ) the smallest part of the partition. Now let A = {λ ∈ P | a(λ) <
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2s(λ), a(λ) − odd}, and B = {λ ∈ P | a(λ) ≤ 2s(λ), λi > s(λ) for i < `(λ)}. Consider
a size preserving one-to-one correspondence ϕ : A → B illustrated in Figure 18.

m+1

m+1 m

[λ] [µ]

r r

r

r

r

r

Figure 18. Construction of Andrews’s correspondence ϕ : λ → µ,
where λ ∈ A, µ ∈ B, a(λ) = 2m + 1, and s(µ) = r.

Proposition 11.1. Map ϕ defined above is given by a geometric bijection.

The proof is immediate by construction of ϕ. Note that by definition, this geometric
bijection is not natural as a(λ) and `(λ) are the parameters in the shift. We conjecture
that these parameters are asymptotically stable.

Conjecture 11.2. Sets of partitions A and B are asymptotically stable and have an
identical limiting shape.

Remark 11.3. Assume that Conjecture 11.2 holds and both sets of partitions have
the same limiting shape f(x). By Proposition 11.1 and Theorem 4.1 this implies that
the bijection defined above is asymptotically stable. Therefore, there exist a constant
c > 0 such that statistics δ◦(λ)/

√
n, s(λ)/

√
n and a(λ)/

√
n are asymptotically stable.

Moreover, since f(x) is invariant under ϕ, the corresponding limits are c, c and 2c,
respectively. In other words, limx→0+ f(x) = 2 limx→c− f(x) = 2 c and f(x) = 0 for
x > c. In fact, the graph of f(x) − c defined (0, c) is symmetric with respect to
conjugation (see Figure 19).

c

c

c

c

f(x)

Figure 19. Conjectured limiting shape f(x) of the sets of partitions A and B.
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12. Convex partitions

Let A ⊂ D be the set of partitions λ = (λ1, λ2, . . . , λ`) such that λ1−λ2 ≥ λ2−λ3 ≥
. . . ≥ λ`−1 − λ` ≥ λ`. We call such λ ∈ A convex partitions. Let B be the set of
partitions into triangular parts

(
k
2

)
, where k ≥ 2. Consider a one-to-one correspondence

ϕ : B → A defined as follows:

ϕ :
(
2
2

)a1
(
3
2

)a2 · · · (k+1
2

)ak → a1(1, 0, . . . , 0)+a2(2, 1, 0, . . . , 0)+ . . .+ak(k, k−1, . . . , 2, 1).

This correspondence was recently introduced in [10] (see also [14, 16]). The following
result is a rather unusual application of the correspondence ϕ.

Proposition 12.1. Of the two equinumerous sets of partitions A and B, at least one
is not asymptotically stable.

Proof. By construction, the bijection ϕ defined above satisfies a(µ) =
(

`(λ)
2

)
, for all

µ = ϕ(λ) ∈ B, and λ ∈ A.
Now, assume that both A and B are asymptotically stable. Then `(λ)/

√
n is an

asymptotically stable statistic on A, with the limit c > 0. This implies that µ1 =

a(µ)/
(√

n
2

) ∼ 2 a(µ)/n is an asymptotically stable statistic on B, with the same limit c >

0. Removing the first part and using the same argument for µ2, µ3, etc. implies that
for every integer k the statistic µk/n is asymptotically stable on B with a limit c/2 (1−
c/2)k−1. Thus, for any α > 0 there exist large enough integer k, such that (µ1 + . . . +
µk)/n is asymptotically stable with a limit > (1 − α). Therefore, for all x > 0, if αx

is asymptotically stable on B with limit α, then α = 0. This implies that B is not
asymptotically stable, a contradiction. ¤

Remark 12.2. We conjecture that the set B is not asymptotically stable, while for
the set A we are not ready to conjecture either way. It would be useful to resolve this
problem, or at least obtain some experimental evidence in that direction.

13. Proof of results

Proof of Theorem 2.4. Recall that shift and move are invertible. Clearly, the
inverse of cut is paste and the inverse of shred is a composition of r copies of paste
transformations. Similarly, the (k, `)-stretch is the inverse of the conjugation and
(`, k)-stretch. Thus, the inverse of paste is the only obstacle. We need a structural
result to show that it is invertible.

An intersection of a cone C = { (i, j) | ai+bj ≥ c, a′i+b′j ≥ c′} and a lattice Γ ⊂ Z2

is called lattice cone. We say that (possibly infinite) sets X,Y ⊂ N2 are largely equal if
there exist N such that X and Y coincide outside of the N -square { (i, j) ∈ Z2 | 1 ≤
|i|, |j| ≤ N}.
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Let us prove by induction that at every step, the components in the natural geometric
bijection are largely equal to a disjoint union of lattice cones. Indeed, shift, stretch
and move preserve the lattice cones, cut and shred can create only lattice cones out of
lattice cones (outside a large enough N -square), while paste produces a disjoint union
of such cones.

Now suppose paste transformation is applied at the next step. This is equivalent
(') to first shredding into different lattice cones, and then sequentially pasting them:
first those with the same coset of the same lattice, and then together. Observe that
outside some N -square, the paste map of a lattice cone can be inverted either by a
shred, or, if they lie in the same coset of a lattice Γ, by a cut. The latter claim follows
from convexity of the lattice cones (restricted to Γ).

Therefore, one can sequentially invert the natural geometric bijection outside of a
large enough N -square. Within that square one can use a number of cuts to obtain
unit squares which can be moved to obtain a desired permutation of unit squares in
the N -square, which are then pasted together. This completes the construction and
proves the result. ¤

Proof of Theorem 4.1. First, observe that A is a spanning set of partitions. Indeed,
by asymptotic stability we have vol(V ) = 1. On the other hand, if the Durfee rank δ◦
is bounded, then δ◦/

√
n → 0 as n → ∞. This implies that the area of V is zero, a

contradiction.
Now suppose ϕ is a natural geometric bijection. By Propositions 1 and 2, bijection ϕ

defines a one-to-one correspondence ϕ : N2 → N2. From the proof of Proposition 3
above, there is a large enough N -square such that ϕ is a paste of a finite number
of lattice cones. To simplify the notation, let us extend the definition of cones to
include 1-dimensional cones (halflines) and 0-dimensional cones (points) Now present
the geometric bijection ϕ as follows:

• Cut and shred N2 → tk
i=1(Ci ∩ Γi),

• Shift, stretch and move (Ci ∩ Γi) → (Di ∩ Γ′i), for all i ∈ {1, .., k},
• Paste tk

i=1(Di ∩ Γ′i) → N2,

where each item is in fact a sequence of basic geometric transformations. For a lattice
cone C ⊂ Γ, let r(C) = r(Γ). Note that in Γ = Z〈v1, v2〉, then the volume r(Γ) =
det(v1, v2). Recall that the shift and move transformations preserve the number of
cosets: r(Γ′) = r(Γ), while (k, `)-stretch changes it according to the volume: r(Γ′) =
(k/`) r(Γ).

Scaling both coordinates by
√

n, restricting ϕ to the scaled Durfee diagram, and

letting n →∞, sends a cone C = { (i, j) | ai + bj ≥ c, a′i + b′j ≥ c′} into a cone C̃ of
the same kind, with c = c′ = 0. Similarly, the N -square disappears in the limit. One

can think of the ϕ̃ in the limit as mapping cones C̃i → D̃i weighted by 1/r(Γ).

Formally, let Vi = V ∩ C̃i, so that V = ∪iVi. Denote by υi : Ci → Di the affine

rational map between cones, and υ̃i : C̃i → D̃i be linear map in the limit. Finally,
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let Wi = υ̃i(Vi) ⊂ D̃i be the image of Vi, and let W = ∪iWi. From the properties of
volumes of the lattices Γ and Γ′, we have

vol(W ) =
∑

i

vol(Wi)

r(Γ̃i)
=

∑
i

vol(Vi)

r(Γi)
= vol(V ) = 1

We will prove that B are asymptotically stable and then prove that ϕ is an asymptot-
ically stable bijection.

Let a(x) and b(y) be the limiting shapes of A and the boundary of W . We will prove
that b(y) is the limiting shape of B. By asymptotic stability of the set A, for every ε > 0
proportion of partitions λ ∈ An such that |ρ̃λ(x) − a(x)| < ε for all x > 0 tends to 1
as n →∞. Therefore, the proportion of partitions λ ∈ An with vol(ρ̃λ∩X) ≥ vol(X)−ε

also tends to 1 as n →∞.
We need to show that for all ε > 0, the proportion of partitions µ ∈ Bn such that

|ρ̃µ(y) − b(y)| < ε, for all y > 0, tends to 1 as n → ∞. This is a restatement of the
asymptotic stability claim in the Theorem. Denote by τi the norm of of the largest
eigenvalue of the matrix Mi ∈ GL(2,Q) corresponding to the combination of shift
and stretch transformations (skipping all moves). Then |ρ̃λ(y) − a(y)| < ε implies
|ρ̃µ(y)− b(y)| < τε, where τ = maxi τi. Taking ε = ε/τ proves the claim.

From asymptotic stability, we conclude that the proportion of partitions µ ∈ Bn with
vol(ρ̃µ ∩ Y ) ≥ vol(Y )− ε also tends to 1 as n →∞, for all Y ⊂ W . Consider

F (X,Y ) :=
k∑

i=1

vol(Y ∩ υ̃i(X) ∩ D̃i)

r(Γ′i)
=

k∑
i=1

vol(X ∩ υ̃−1
i (Y ) ∩ C̃i)

r(Γi)
,

as in the definition of asymptotic stability of bijections.
Now, for any ε > 0, there is n large enough so that the intersections vol(Y ∩Di)−

vol(Y ∩ D̃i) < ε. Finally, take ε = ε/(2 k) and check that

|Θλ(X,Y )− F (X, Y )|

≤
k∑

i=1

vol
(
υi(ρλ ∩

√
nX) ∩ √

nY ∩ Di

)
/
√

n − vol
(
υ̃i(X) ∩ Y ∩ D̃i

)

r(Γ′i)

≤
k∑

i=1

(ε + ε) < 2 k ε = ε,

and this holds uniformly for all X,Y as above with probability → 1 as n → ∞. This
completes the proof for natural geometric bijections.

Suppose ϕ is an AG-bijection with asymptotically stable parameters. The proof
follows along the same lines, except that now we need to keep records of the probabilities
of error acquired during each of the basic transformations. There is a finite number of
them, and by asymptotic stability of each parameter one can make this error as small
as desired. We omit the details. ¤
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14. Final remarks

1. As the reader may notice going through [14], there are several visibly distinct
classes of combinatorial arguments proving partition identities:

• double counting arguments
• involutions
• geometric bijections
• arithmetic bijections
• involution principle bijections
• integer points in cones bijections
• recursive arguments

We already presented a number of geometric bijections, so let us overview the remaining
classes of partition bijections.

The examples of double counting arguments include q-binomial theorem and Heine
identity [14]. Essentially, they correspond to tautological bijections with the compli-
cated part being a translation of the identities into combinatorial language of partitions.
We ignore these “bijections” as being “trivial” from a combinatorial point of view.

The involutions form a nice classical set of combinatorial arguments including the
most classical Franklin’s involution [1, 14] and more recent Bressoud-Zeilberger’s in-
volution [14], both proving Euler’s Pentagonal Theorem. In a recent paper [17] we
show that most such involutions are in fact the “shadows” of geometry arguments, or
recursive arguments [15] (see also [4]). Similarly, it was noticed earlier that certain
arithmetic bijections (such as Glaisher’s correspondence in section 9) coincide with
the correspondences in special cases of the involution principle bijections (see [14] for
references).

The “integer points in cones” bijections include the bijection in section 12 even if the
cones are hidden in our presentation (see [16] for explanation and references). These
bijections are essentially trivial and to a large extend their construction can completely
automatized [16]. Coming from a another part of Combinatorics, one can argue that
these are results of a different nature, simply reformulated in a language of partitions.

Finally, the recursive arguments as well as involution principle bijections are con-
structed from the respective analytic proofs and not known to give any additional
information over these proofs. We refer to [14] for references and to [16] for an exten-
sive discussion.

2. Let us recall some history and background information on the asymptotic ap-
proach. The asymptotic combinatorics is a well established subject, which is still
under intense development in large part due to its application to the analysis of algo-
rithms [13, 21]. The reader may recall the celebrated Hardy-Ramanujan’s asymptotic
formula for the number of partitions of n, a simplified version of which can be written
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as following:

p(n) ∼ 1

4
√

3 n
eπ
√

2
3

n .

One can use the asymptotic behavior for the number of partitions to prove that given
two sets or partitions are not equinumerous [5], but in particular cases of interest this
can usually be checked directly.

An important development was made by de Bruijn in [7] (see Chapter 4), where
the author recalls simple multiplicative formulas for the case s = 1, 2, and 3 of the
summation

R(n, s) =
n∑

k=0

(−1)k

(
2n

k

)s

,

and then asks whether such closed formulas exist in general case. The author for-
malizes the notion of a “closed formula” as a ratio of a bounded number of factori-
als n!, (2n)!, (3n)!, etc. Then, de Bruijn computes the asymptotic formula

R(n, s) ∼ (−1)n

√
s

{
2 cos

( π

2s

)}2ns+s−1

22−s(πn)(1−s)/2 .

Since cos(π/2s) /∈ Q for all s > 3, he then deduces from here that R(n, s) cannot be
presented by ratios of factorials as above [7] (see also [13, Example 13.1]).

3. Throughout the theoretical computer science, it is quite standard to restrict
attention from all possible operations to operations within a certain well defined class
(see [6]). Similarly, in mathematics these type of results appear in ruler and compass
constructions (Gauss), Galois theory, Liouville’s theory of integration in elementary
functions (differential Galois theory), etc. All this motivated our definition of classes
of geometric and AG-bijections with the goal on proving that Rogers-Ramanujan bi-
jections cannot belong to either of these classes [18].

The study of limiting shapes, while recent, is deeply rooted in the classical works of
Erdős and Rényi. We refer to [23] for the history of this subject and related references.
Finally, the presentation of partition bijections we use here are non-standard at times,
and closely follow the survey article [14].
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