
RockSalt: Better, Faster, Stronger SFI for the x86

Greg Morrisett ∗

greg@eecs.harvard.edu

Gang Tan

gtan@cse.lehigh.edu

Joseph Tassarotti

tassarotti@college.harvard.edu

Jean-Baptiste Tristan

tristan@seas.harvard.edu

Edward Gan

egan@college.harvard.edu

Abstract
Software-based fault isolation (SFI), as used in Google’s Native
Client (NaCl), relies upon a conceptually simple machine-code
analysis to enforce a security policy. But for complicated archi-
tectures such as the x86, it is all too easy to get the details of the
analysis wrong. We have built a new checker that is smaller, faster,
and has a much reduced trusted computing base when compared
to Google’s original analysis. The key to our approach is automat-
ically generating the bulk of the analysis from a declarative de-
scription which we relate to a formal model of a subset of the x86
instruction set architecture. The x86 model, developed in Coq, is
of independent interest and should be usable for a wide range of
machine-level verification tasks.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms security, verification

Keywords software fault isolation, domain-specific languages

1. Introduction
Native Client (NaCl) is a new service provided by Google’s
Chrome browser that allows native executable code to be run di-
rectly in the context of the browser [37]. To prevent buggy or ma-
licious code from corrupting the browser’s state, leaking informa-
tion, or directly accessing system resources, the NaCl loader checks
that the binary code respects a sandbox security policy. The sand-
box policy is meant to ensure that, when loaded and executed, the
untrusted code (a) will only read or write data in specified segments
of memory, (b) will only execute code from a specified segment of
memory, disjoint from the data segments, (c) will not execute a
specific class of instructions (e.g., system calls), and (d) will only
communicate with the browser through a well-defined set of entry
points.
Ensuring the correctness of the NaCl checker is crucial for pre-

venting vulnerabilities, yet early versions had bugs that attackers
could exploit, as demonstrated by a contest that Google ran [25]. A
high-level goal of this work is to produce a high-assurance checker
for the NaCl sandbox policy. Thus far, we have managed to con-
struct a new NaCl checker for the 32-bit x86 (IA-32) processor (mi-
nus floating-point) which we call RockSalt. The RockSalt checker
is smaller, marginally faster, and easier to modify than Google’s

∗ This research was sponsored in part by NSF grants CCF-0915030, CCF-
0915157, CNS-0910660, CCF-1149211, AFOSR MURI grant FA9550-09-
1-0539, and a gift from Google.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’12, June 11–16, 2012, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1205-9/12/06. . . $10.00

original code. Furthermore, the core of RockSalt is automatically
generated from a higher-level specification, and this generator has
been proven correct with respect to a model of the x86 using the
Coq proof assistant [9].
We are not the first to address assurance for SFI using formal

methods. In particular, Zhao et al. [38] built a provably correct ver-
ifier for a sandbox policy similar to NaCl’s. Specifically, building
upon a model of the ARM processor in HOL [13], they constructed
a program logic and a provably correct verification condition gener-
ator, which when coupled with an abstract interpretation, generates
proofs that assembly code respects the policy.
Our work has two key differences: First, there is no formal

model for the subset of x86 that NaCl supports. Consequently, we
have constructed a new model for the x86 in Coq. We believe that
this model is an important contribution of our work, as it can be
used to validate reasoning about the behavior of x86 machine code
in other contexts (e.g., for verified compilers).
Second, Zhao et al.’s approach takes about 2.5 hours to check a

300 instruction program, whereas RockSalt checks roughly 1M in-
structions per second. Instead of a general-purpose theorem prover,
RockSalt only relies upon a set of tables that encode a determinis-
tic finite-state automaton (DFA) and a few tens of lines of (trusted)
C code. Consequently, the checker is extremely fast, has a much
smaller run-time trusted computing base, and can be easily inte-
grated into the NaCl runtime.

1.1 Overview

This paper has two major parts: the first part describes our model of
the x86 in Coq and the second describes the RockSalt NaCl checker
and its proof of correctness with respect to the model.
The x86 architecture is notoriously complicated, and our frag-

ment includes a parser for over 130 different instructions with se-
mantic definitions for over 70 instructions1. This includes support
for operands that include byte and word immediates, registers, and
complicated addressing modes (e.g., scaled index plus offset). Fur-
thermore, the x86 allows prefix bytes, such as operand size over-
ride, locking, and string repeat, that can be combined in many dif-
ferent ways to change the behavior of an instruction. Finally, the
instruction set architecture is so complex, that it is unlikely that we
can produce a faithful model from documentation, so we must be
able to validate our model against implementations.
To address these issues, we have constructed a pair of domain-

specific languages (DSLs), inspired by the work on SLED [30] and
λ-RTL [29] (as well as more recent work [11, 19]), for specifying

1 Some instructions have numerous encodings. For example, there are four-
teen different opcode forms for the ADC instruction, but we count this as a
single instruction.



Register reg ::= EAX | ECX | EDX | · · ·
Segment Reg. sreg ::= ES | CS | SS | · · ·
Scale scale ::= 1 | 2 | 4 | 8
Operand
op ::= int32 | reg

int32 × option reg × option(scale× reg)
Instruction
i ::= AAA | AAD | AAM | AAS | ADC(bool× op1 × op2)
| ADD(bool× op1 × op2)
| AND(bool× op1 × op2) | · · ·

Figure 1. Some Definitions for the x86 Abstract Syntax

the semantics of machine architectures, and have embedded those
languages within Coq. Our DSLs are declarative and reasonably
high-level, yet we can use them to generate OCaml code that
can be run as a simulator. Furthermore, the tools are architecture
independent and can thus be re-used to specify the semantics of
other machine architectures. For example, one of the undergraduate
co-authors constructed a model of the MIPS architecture using our
DSLs in just a few days.
The Decoder DSL provides support for specifying the transla-

tion from bits to abstract syntax in a declarative fashion. We were
able to take the tables from Intel’s manual [14] and use them to
directly construct patterns for our decoder. Our embedding of the
Decoder DSL includes both a denotational and operational seman-
tics, and a proof of adequacy for the two interpretations. We use
the denotational semantics for proving important properties about
the decode stage of execution, and the operational semantics for
execution validation.
The RTL (register transfer list) DSL is a small RISC-like core

language parameterized by a notion of machine state. The RTL
library includes an executable, small-step operational semantics.
Each step in the semantics is specified as a (pure) function from
machine states to machine states. We give meaning to x86 instruc-
tions by translating their abstract syntax to appropriate sequences
of RTL instructions, similar to the way that a modern processor
works. Reasoning about RTL is much easier than x86 code, as the
number of instructions is smaller and orthogonal.
In what follows, we describe our DSLs and how they were used

to construct the x86 model. We also describe our framework for
validating the model against existing x86 implementations. We then
describe the NaCl sandbox policy in detail, and the new RockSalt
checker we have built to enforce it. Next, we describe the actual
verification code and the proof of correctness. Finally, we close
with a discussion of related work, future directions, and lessons
learned.

2. A Coq Model of the x86
Our Coq model of the x86 instruction set architecture has three
major stages: (1) a decoder that translates bytes into abstract syn-
tax for instructions, (2) a compiler that translates abstract syntax
into sequences of RTL instructions, (3) an interpreter for RTL in-
structions. The interface between the first two components is the
definition of the abstract syntax, which is specified using a set of
inductive datatype definitions that are informally sketched in Fig-
ure 1.

2.1 The Decoder Specification

The job of the x86 model’s decoder is to translate bytes into ab-
stract syntax. We specify the translation using generic grammars
constructed in a domain-specific language, which is embedded into
Coq. The language lets users specify a pattern and associated se-

Definition CALL_p : grammar instr :=
"1110" $$ "1000" $$ word @
(fun w => CALL true false (Imm_op w) None)

|| "1111" $$ "1111" $$ ext_op_modrm2 "010" @
(fun op => CALL true true op None)

|| "1001" $$ "1010" $$ halfword $ word @
(fun p => CALL false false (Imm_op (snd p))

(Some (fst p)))
|| "1111" $$ "1111" $$ ext_op_modrm2 "011" @

(fun op => CALL false true op None).

Figure 2. Parsing Specification for the CALL instruction

mantic actions for transforming input strings to outputs such as
abstract syntax. Our pattern language is limited to regular expres-
sions, but the semantic actions are arbitrary Coq functions.
Figure 2 gives an example parsing specification we use for the

CALL instruction. At a high-level, this grammar specifies four alter-
natives that can build a CALL instruction. Each case includes a pat-
tern specifying literal sequences of bits (e.g., “1110”), followed by
other components like word or modrm2 that are themselves gram-
mars that compute values of an appropriate type. The “@” separates
the pattern from a Coq function that can be used to transform the
values returned from the pattern match. For example, in the first
case, we take the word value and use it to build the abstract syntax
for a version of the CALL instruction with an immediate operand.
We chose to specify patterns at the bit-level, instead of the byte-

level, because this avoids the need to introduce or reason about
shifts and masks in the semantic actions. Furthermore, we were
able to take the tables from the Intel IA-32 instruction manual and
translate them directly into appropriate patterns.
Our decoding specifications take advantage of Coq’s notation

mechanism, as well as some derived forms to make the grammar
readable, but these are defined in terms of a small set of construc-
tors given by the following type-indexed datatype:

Inductive grammar : Type → Type
| Char: char → grammar char
| Any: grammar char
| Eps: grammar unit
| Cat:∀T1 T2,grammar T1 → grammar T2 → grammar (T1*T2)
| Void: ∀T, grammar T
| Alt: ∀T, grammar T → grammar T → grammar T
| Star: ∀T, grammar T → grammar (list T)
| Map: ∀T1 T2, (T1 → T2) → grammar T1 → grammar T2

A value of type grammar T represents a relation between lists of
chars2 and semantic values of type T. Alternatively, we can think
of the grammar as matching an input string and returning a set of
associated semantic values. Formally, the denotation of a grammar
is the least relation over strings and values satisfying the following
equations:

[[Char c]] = {(c :: nil, c)}
[[Any]] =

⋃
c
{(c :: nil, c)}

[[Eps]] = {(nil, tt)}
[[Void]] = ∅

[[Alt g1 g2]] = [[g1]] ∪ [[g2]]
[[Cat g1 g2]] = {((s1s2), (v1, v2)) | (si, vi) ∈ [[gi]]}
[[Map f g]] = {(s, f(v)) | (s, v) ∈ [[g]]}
[[Star g]] = [[Map (λ . nil) Eps]] ∪

[[Map (::) (Cat g (Star g))]]

Thus, Char c matches strings containing only the character c,
and returns that character as the semantic value. Similarly, Any
matches a string containing any single character c, and returns c.
Eps matches only the empty string and returns tt (Coq’s unit).

2 Grammars are parameterized by the type char.



The grammar Void matches no strings and thus returns no values.
When g1 and g2 are grammars that each return values of type T ,
then the grammar Alt g1 g2 matches a string s if either g1 matches
s or g2 matches s. It returns the union of the values that g1 and
g2 associate with the string. Cat g1 g2 matches a string if it can be
broken into two pieces that match the sub-grammars. It returns a
pair of the values computed by the grammars. Star matches zero
or more occurrences of a pattern, returning the results as a list.
The last constructor, Map, is our constructor for semantic ac-

tions. When g is a grammar that returns T1 values, and f is a func-
tion of type T1 → T2, then Map f g is the grammar that matches the
same set of strings as g, but transforms the outputs from T1 values
to T2 values using f . If a grammar forgoes the use of Map, then
the semantic values represent a parse tree for the input. Map makes
it possible to incrementally transform the parse tree into alternate
semantic values, such as abstract syntax.
As noted above, we use Coq’s notation mechanism to make the

grammars more readable. In particular, the following table gives
some definitions for the notation used here:

g1 || g2 := Alt g1 g2 g1 $ g2 := Cat g1 g2

g @ f := Map f g g1 $$ g2 := (g1 $ g2) @ snd

We encode the denotational semantics in Coq using an induc-
tively defined predicate, which makes it easy to symbolically rea-
son about grammars. For example, one of our key theorems shows
that our top-level grammar, which includes all possible prefixes and
all possible integer instructions, is deterministic:

(s, v1) ∈ [[x86grammar]] ∧ (s, v2) ∈ [[x86grammar]] =⇒v1 = v2

This helps provide some assurance that in transcribing the grammar
from Intel’s manual, we have not made a mistake. In fact, when we
first tried to prove determinism, we failed because we had flipped a
bit in an infrequently used encoding of the MOV instruction, causing
it to overlap with another instruction.

2.2 The Decoder Implementation

While the denotational specification makes it easy to reason about
grammars, it cannot be directly executed. Consequently, we define
a parsing function which, when given a record representing a ma-
chine state, fetches bytes from the address specified by the program
counter and attempts to match them against the grammar and build
the appropriate instruction abstract syntax.
Our parsing function is defined by taking the derivative of the

x86grammar with respect to the sequence of bits in each byte,
and then checking to see if the resulting grammar accepts the
empty string. The notion of derivatives is based on the ideas of
Brzozowski [5] and more recently, Owens et al. [26] and Might
et al. [24]. Reasoning about derivatives is much easier in Coq
than attempting to transform grammars into the usual graph-based
formalisms, as we need not worry about issues such as naming
nodes, equivalence on graphs, or induction principles for graphs.
Rather, all of our computation and reasoning can be done directly
on the algebraic datatype of grammars.
Semantically, the derivative of a grammar g with respect to a

character c is the relation:

derivc g = {(s, v) | (c :: s, v) ∈ [[g]]}

That is, derivc g matches the tail of any string that starts with c
and matches g.
Fortunately, calculating the derivative, including the appropriate

transformation on the semantic actions, can be written as a straight-

forward function:

derivc Any = Map (λ . c) Eps
derivc (Char c) = Map (λ . c) Eps

derivc (Alt g1 g2) = Alt (derivc g1) (derivc g2)
derivc (Star g) = Map (::) (Cat(derivc g) (Star g))

derivc (Cat g1 g2) = Alt(Cat (derivc g1) g2)
(Cat (null g1) (derivc g2))

derivc (Map f g) = Map f (derivc g)
derivc g = Void otherwise

where null g is defined as:

null Eps = Eps
null (Alt g1 g2) = Alt (null g1) (null g2)
null (Cat g1 g2) = Cat (null g1) (null g2)
null (Star g) = Map (λ . nil) Eps
null (Map f g) = Map f (null g)

null g = Void otherwise

Effectively, deriv strips off a leading pattern that matches c, and
adjusts the grammar with a Map so that it continues to calculate the
same set of values. If the grammar cannot match a string that starts
with c, then the resulting grammar is Void. The null function
returns a grammar equivalent to Eps when its argument accepts
the empty string, and Void otherwise. It is used to calculate the
derivative of a Cat, which is simply the chain-rule for derivatives.
Once we calculate the iterated derivative of the grammar with

respect to a string of bits, we can extract the set of related seman-
tic values by running the extract function, which returns those
semantic values associated with the empty string:

extract Eps = {tt}
extract (Star g) = {nil}

extract (Alt g1 g2) = (extract g1) ∪ (extract g2)
extract (Cat g1 g2) = {(v1, v2) | vi ∈ extract gi}
extract (Map f g) = {f(v) | v ∈ extract g}

extract g = ∅ otherwise

To be reasonably efficient, it is important that we optimize the
grammar as we calculate derivatives. In particular, when we build
a grammar, we always use a set of “smart” constructors, which are
functions that perform local reductions, including:

Cat g Eps → g Cat Eps g → g
Cat g Void → Void Cat Void g → Void
Alt g Void → g Alt Void g → g

Star (Star g) → Star g Alt g g → g

Of course, the optimizations must add appropriate Maps to adjust
the semantic actions. Proving the optimizations correct is an easy
exercise using the denotational semantics. Unfortunately, the last of
these optimizations (Alt g g → g) cannot be directly implemented
as it demands a decidable notion of equality for grammars, yet our
grammars include arbitrary Coq functions (and types). To work
around these problems, we first translate grammars to an internal
form, where all types and functions are replaced with a name
that we can easily compare. An environment is used to track the
mapping from names back to their definitions, and is consulted in
the extract function to build appropriate semantic values.
In the end, we get a reasonably efficient parser that we can

extract to executable OCaml code. Furthermore, we prove that the
parser, when given a grammar g and string s, produces a (finite)
set of values {v1, · · · , vn} such that (s, vi) ∈ [[g]]. Since we have
proven that our instruction grammar is deterministic, we know that
in fact, we will get out at most one instruction for each sequence of
bytes that we feed to the parser.
Finally, we note that calculating derivatives in this fashion cor-

responds to a lazy, on-line construction of a deterministic finite-
state transducer. Our efficient NaCl checker, described in Section 3



Machine locations
loc ::= PC | EAX | · · · | CF | · · · | SS | · · ·

Local variables
x, y, z ∈ identifier

Arithmetic operators
op ::= add | xor | shl | · · ·

Comparison operators
cmp ::= lt | eq | gt

RTL instructions
rt ::= x := y op z | x := y cmp z

| x := imm | x := load loc
| store loc x | x := Mem[y]
| Mem[x] := y | x := choose | · · ·

Figure 3. The RTL Language

is built from a deterministic finite-state automaton (DFA) generated
off-line, re-using the definitions for the grammars, derivatives, etc.
in the parsing library.

2.3 Translation To RTL

After parsing bytes into abstract syntax, we translate the corre-
sponding instruction into a sequence of RTL (register transfer list)
operations. RTL is a small RISC-like language for computing with
bit-vectors. The language abstracts over an architecture’s definition
of machine state, which in the case of the x86 includes the various
kinds of registers shown in Figure 1 as well as a memory, repre-
sented as a finite map from addresses to bytes. Internally, the lan-
guage supports a countably infinite supply of local variables that
can be used to hold intermediate bit-vector values.
The RTL instruction set is sketched in Figure 3 and includes

standard arithmetic, logic, and comparison operations for bit vec-
tors; operations to sign/zero-extend and truncate bit vectors; an op-
eration to load an immediate value into a local variable; operations
to load/store values in local variables from/to registers; operations
to load and store bytes into memory; and a special operation for
non-deterministically choosing a bit-vector value of a particular
size. We use dependent types to embed the language into Coq and
ensure that only bit-vectors of the appropriate size are used in in-
structions.
For each x86 constructor, we define a function that translates the

abstract syntax into a sequence of RTL instructions. The translation
is encapsulated in a monad that takes care of allocating fresh local
variables, and that allows us to build higher-level operations out of
sequences of RTL commands.
Figure 4 presents an excerpt of the translation of the ADD in-

struction. The ADD constructor is parameterized by a prefix record,
a boolean mode, and two operands. The prefix record records mod-
ifiers including any segment, operand, or address override. The
boolean mode is set when the default operand size is to be used
(i.e., 32-bits) and cleared when the operand size is set to a byte.
The operands can be registers, immediate values, or effective ad-
dresses.
The first two local definitions specialize the load and store

RTL to the given prefix and mode. The third definition selects the
appropriate segment. Next, we load constant expressions 0 and 1
(of bit-size 1) into local variables zero and up. Then we fetch
the bit-vector values from the operands and store them in local
variables p0 and p1. At this point, we actually add the two bit-
vectors and place the result in local variable p2. Then we update
the machine state at the location specified by the first operand.
Afterwards, we set the various flag registers to hold the appropriate

Definition conv ADD prefix mode op1 op2 :=

let load := load op prefix mode in
let set := set op prefix mode in
let seg := get segment op2 prefix DS op1 op2 in

zero ← load Z size1 0;
up ← load Z size1 1;

p0 ← load seg op1;
p1 ← load seg op2;
p2 ← arith add p0 p1;
set seg p2 op1;;

b0 ← test lt zero p0;
b1 ← test lt zero p1;
b2 ← test lt zero p2;
b3 ← arith xor b0 b1;
b3 ← arith xor up b3;
b4 ← arith xor b0 b2;
b4 ← arith and b3 b4;
set flag OF b4;;
...

Figure 4. Translation Specification for the ADD instruction

1-bit value based on the outcome of the operation. Here, we have
only shown the code needed to set the overflow (OF) flag.
Occasionally, the effect of an operation, particularly on flags,

is under-specified or unclear. To over-approximate the set of
possible behaviors, we use the choose operation, which non-
deterministically selects a bit-vector value and stores this value in
the appropriate location.

2.4 The RTL Interpreter

Once we have defined our decoder and translation to RTL, we need
only give a semantics to the RTL instructions to complete the x86
model. One option would be to use a small-step operational seman-
tics for modeling RTL execution, encoded as an inductive predi-
cate. However, this would prevent us from extracting an executable
interpreter which we need for validation.
Instead, we encode a step in the semantics as a function from

RTL machine states to RTL machine states. RTL machine states
record the values of the various x86 locations, the memory, and the
values of the local variables. To support the non-determinism in
the choose operation, the RTL machine state includes a stream of
bits that serves as an oracle. Whenever we need to choose a new
value, we simply pull bits from the oracle stream. Of course, when
reasoning about the behavior of instructions, we must consider all
possible oracle streams. This is a standard trick for turning a non-
deterministic step relation into a function.
Most of the operations are simple bit-vector computations for

which we use the CompCert integer bit-vector library [18]. Con-
sequently, the definition of the interpreter is fairly straightforward
and extracts to reasonable OCaml code that we can use for testing.

2.5 Model Validation

Any model of the x86 is complicated enough that it undoubtably
has bugs. The only way we can gain any confidence is to test it
against real x86 processors (and even they have bugs!). As de-
scribed above, we have carefully engineered our model so that we
can extract an executable OCaml simulator from our Coq defini-
tions. We use this simulator to compare against an actual x86 pro-
cessor.
One challenge in validating the simulator is extracting the ma-

chine state from the real processor. We use Intel’s Pin tool [20] to
insert dynamic instrumentation into a binary. The instrumentation



dumps the values of the registers to a file after each instruction,
and the values in memory after each system call. We then take the
original binary and run it through our OCaml simulator, comparing
the values of the registers after the RTL sequence for an instruction
has been generated and interpreted. Unfortunately, this procedure
sometimes generates false positives because of our occasional use
of the oracle to handle undefined or under specified behaviors.
We use two different techniques to generate test cases to ex-

ercise the simulator. First, we generate small, random C programs
using Csmith [36] and compile them using GCC. This technique
proved useful early in the development stage, especially to test stan-
dard instructions. In this way, we simulated and verified over 10
million instruction instances in about 60 hours on an 8 core intel
Xeon running at 2.6Ghz.
However, this technique does not exercise instructions that are

avoided by compilers, and even some common instructions have
encodings that are rarely emitted by assemblers. For example, our
previously discussed bug in the encoding of the MOV instruction was
not uncovered by such testing because it falls in this category.
A more thorough technique is to fuzz test our simulator by gen-

erating random sequences of bytes, which has previously proved
effective in debugging CPU emulators [21]. Using our generative
grammar, we randomly produce byte sequences that correspond to
instructions we have specified. This lets us exercise unusual forms
of all the instructions we define. For instance, an instruction like
add with carry comes in fourteen different flavors, depending on
the width and types of the operands, whether immediates are sign-
extended, etc. Fuzzing such an instruction guarantees with some
probability that all of these forms will be exercised.

3. The RockSalt NaCl Checker
Recall that our high level goal is to produce a checker for Native
Client, which when given an x86 binary image, returns true only
when the image respects the sandbox policy: when executed, the
code will only read/write data from specified contiguous segments
in memory, will not directly execute a particular set of instructions
(e.g., system calls), and will only transfer control within its own
image or to a specified set of entry points in the NaCl run-time.
The 32-bit x86 version of NaCl takes advantage of the segment

registers to enforce most aspects of this policy. In particular, by
setting the CS (code), DS (data), SS (stack), and GS (thread-local)
segment registers appropriately, the machine itself will ensure that
data reads and writes are contained in the data segments, and that
jumps are contained within the code segment. However, we must
make sure that the untrusted instructions do not change the values
of the segment registers, nor override the segments inappropriately.
At first glance, it appears sufficient to simply parse the binary

into a sequence of instructions, and check that each instruction in
the sequence preserves the values of the segment registers and does
not override the segment registers with a prefix. Unfortunately, this
simple strategy does not suffice. The problem is that, since the
x86 has variable length instructions, we must not only consider the
parse starting at the first byte, but all possible parses of the image.
While most programs will respect the initial parse, a malicious or
buggy program may not. For example, in a program that has a
buffer overrun, a return address may be overwritten by a value that
points into the middle of an instruction from the original parse.
To avoid this problem, NaCl provides a modified compiler that

rewrites code to respect a stronger alignment policy, following
the ideas of McCamant and Morrisett [22]. The alignment policy
requires that all computed jumps (i.e., jumps through a register) are
aligned on a 32-byte boundary. This is ensured by inserting code
to mask the target address with an appropriate constant, and by
inserting no-ops so that potential jump targets are suitably aligned.
In more detail, the aligned, sandbox policy requires that:

1. Starting with the first byte, the image parses into a legal se-
quence of instructions that preserve the segment registers;

2. Every 32nd byte is the beginning of an instruction in our parse;

3. Every indirect jump through a register r is immediately pre-
ceded by an instruction that masks r so that it is 32-byte aligned;

4. The masking operation and jump are both contained within a
32-byte-aligned block of instructions;

5. Each direct jump targets the beginning of an instruction and that
instruction is not an indirect jump.

Requirements 4 and 5 are needed to ensure that the code cannot
jump over the masking operation that protects an indirect jump.

3.1 Constructing a NaCl Checker

Google’s NaCl checker is a hand-written C program that is intended
to enforce the aligned, sandbox policy. Their checker partially
decodes the binary, looking at fields such as the op-codes and
mod/rm bits to determine whether the instruction is legal, and how
long it is. Two auxiliary data structures are used: One is a bit-map
that records which addresses are the starts of instructions. Each
time an instruction is parsed, the corresponding bit for the address
of the first byte is set. The other is an array of addresses for forward,
direct jumps. After checking that the instructions are legal, the bit-
map is checked to ensure that every 32nd byte is the start of an
instruction. Then, the array of direct jump targets is checked to
make sure they are valid according to the policy above.
There are two disadvantages with Google’s checker: it is diffi-

cult to reason about because it is somewhat large (about 600 state-
ments of code)3 and the process of partial decoding is intertwined
with policy enforcement. In particular, it is difficult to tell what
instructions are supported and with what prefixes, and even more
difficult to gain assurance that the resulting code enforces the ap-
propriate sandbox policy. Furthermore, it is difficult to modify the
code to e.g., add new kinds of safe instructions or combinations of
prefixes.
In contrast, the RockSalt checker we constructed and verified

is relatively small, consisting of only about 80 lines of Coq code.
This is because the checker uses table-driven DFA matching to
handle the aspects of decoding, following an idea first proposed
by Seaborn [33]. The basic idea is to break all instructions into
four categories: (1) those that perform no control-flow, and are
easily seen as okay; (2) those that perform a direct jump—we must
check that the target is a valid instruction; (3) those that perform an
indirect jump—we must check that the destination is appropriately
masked; and (4) those instructions that should be rejected. Each of
these classes, except the third one, can be described using a simple
regular expression. The third class can be captured by a regular
expression if we make the restriction that the masking operation
must occur directly before the jump, which in practice is what the
NaCl compiler does.

It is possible to extract OCaml code from our Coq definitions
and use that as the core of the checker, but we elected to manually
translate the code into C so that it would more easily integrate into
the NaCl run-time. This avoids adding the OCaml compiler and
run-time system to the trusted computing base, at the risk that our
translation to C may have introduced an error. However, at under
100 lines of C code, we felt that this was a reasonable risk, since
the vast majority of the information is contained in the DFA tables
which are automatically generated and proven correct. Of course,
one could try to use a verification tool, such as Frama-C/WP [10]

3 To be fair, this includes CPU identification and support for floating-point
and other instructions that we do not yet handle.



1. Bool verifier(DFA *NoControlFlow,
2. DFA *DirectJump, DFA *MaskedJump,
3. uint8_t *code, uint size)
4. {
5. uint pos = 0, i, saved_pos;
6. Bool b = TRUE;
7. valid = (uint8_t *)calloc(size,sizeof(uint8_t));
8. target = (uint8_t *)calloc(size,sizeof(uint8_t));
9.
10. while (pos < size) {
11. valid[pos] = TRUE;
12. saved_pos = pos;
13. if (match(MaskedJump,code,&pos,size)) continue;
14. if (match(NoControlFlow,code,&pos,size)) continue;
15. if (match(DirectJump,code,&pos,size) &&
16. extract(code,saved_pos,pos,target)) continue;
17. free(target); free(valid);
18. return FALSE;
19. }
20.
21. for (i = 0; i < size; ++i)
22. b = b && ( !(target[i]) || valid[i] ) &&
23. ( i & 0x1F || valid[i] );
24.
25. free(target); free(valid);
26. return b;
27. }

Figure 5. Main Routine of our NaCl Checker

or VCC [8], to prove the correctness of this version, in which case
the functional code in Coq could serve as a specification.
Figure 5 shows the C code for the high-level verifier routine.

This function relies upon two sub-routines, match and extract
that we will explain later, but intuitively handle the aspects of
decoding. Like Google’s checker, the routine uses two auxiliary
arrays: the valid array records those addresses in the code that are
valid jump destinations, whereas the target array records those
addresses that are jumped to by some direct control-flow operation.
We used byte arrays instead of bit arrays to avoid having to reason
about shifts and masks to read/write bits.
The main loop (line 10) iterates through the bytes in the code

starting at position 0. This position is marked as valid and then we
attempt to match the bytes at the current position against three pat-
terns. The first pattern, MaskedJump, matches only when the bytes
specify a mask of register r followed immediately by an indirect
jump or call through r. Note that a successful match increments
the position by size which records the length of the instruction(s),
whereas a failure to match leaves the position unmodified. The sec-
ond pattern, NoControlFlow, matches only when the bytes spec-
ify a legal NaCl instruction that does not affect control flow (e.g.,
an arithmetic instruction). The third pattern, DirectJump matches
only when the bytes specify a direct JMP, Jcc or CALL instruction.
The routine extract then extracts the destination address of the
jump, and marks that address in the target array. If none of these
cases match, then the checker returns FALSE indicating that an ille-
gal sequence of bytes was found in the code.
After the main loop terminates, we must check that (a) if an

address is the target of a direct jump, then that address is the
beginning of an instruction in our parse (line 22), and (b) if an
address is aligned on a 32-byte boundary, then that address is the
beginning of an instruction in our parse (line 23).
The process of matching a sequence of bytes against a pattern

is handled by the routine match which is shown in Figure 6. The
function simply executes the transitions of a DFA using the bytes
at the current position in the code. The DFA has four fields: a
starting state, a boolean array of accepting states, a boolean array

1. Bool match(DFA *A, uint8_t *code,
2. uint *pos, uint size)
3. {
4. uint8_t state = A->start;
5. uint off = 0;
6.
7. while (*pos + off < size) {
8. state = A->table[state][code[*pos + off]];
9. off++;
10. if (A->rejects[state]) break;
11. if (A->accepts[state]) {
12. *pos += off;
13. return TRUE;
14. }
15. }
16. return FALSE;
17. }

Figure 6. The DFA match routine

of rejecting states, and a transition table that maps a state and byte
to a new state.

3.2 DFA Generation

What we have yet to show are the definitions of the DFAs for the
MaskedJump, NoControlFlow, and DirectJump patterns, and the
correctness of our checker hinges crucially upon these definitions.
These are generated from within Coq using higher-level specifica-
tions. In particular, for each of the patterns, we specify a gram-
mar re-using the parsing DSL described in Section 2.1, and then
compile that grammar to appropriate DFA tables. For example, the
grammar for a MaskedJump is given below:

Definition nacl_MASK_p (r: register) :=
"1000" $$ "0011" $$ "11" $$ "100"
$$ bitslist (register_to_bools r)
$ bitslist (int_to_bools safeMask).

Definition nacl_JMP_p (r: register) :=
"1111" $$ "1111" $$ "11" $$ "100"
$$ bitslist (register_to_bools r).

Definition nacl_CALL_p (r: register) :=
"1111" $$ "1111" $$ "11" $$ "010"
$$ bitslist (register_to_bools r).

Definition nacljmp_p (r: register) :=
nacl_MASK_p r $ (nacl_JMP_p r || nacl_CALL_p r).

Definition nacljmp_mask :=
nacljmp_p EAX || nacljmp_p ECX || nacljmp_p EDX ||
nacljmp_p EBX || nacljmp_p EBP || nacljmp_p ESI ||
nacljmp_p EDI.

The nacl MASK p function takes a register name and generates a
pattern for an “AND r, safeMask” instruction. The nacl JMP p and
nacl CALL p functions take a register and generate patterns for a
jump or call instruction (respectively) through that register. Thus,
nacljmp mask and the top-level grammar match any combination
of a mask and jump through the same register (excluding ESP).
We compile grammars to DFAs from within Coq as follows:

First, we strip off the semantic actions from the grammars so that
we are left with a regular expression r0. This regular expression
corresponds to the starting state of the DFA. We use the null rou-
tine to check if this is an accepting state and a similar routine to
check for rejection, and record this in a table. We then calculate
the derivative of r0 with respect to all 256 possible input bytes.
This yields a set of regular expressions {r1, r2, · · · , rn}. Each ri
corresponds to a state in the DFA that is reachable from r0. We as-
sign each regular expression a state, and record whether that state



is an accepting or rejecting state. We continue calculating deriva-
tives of each of the ri with respect to all possible inputs until we
no longer create a new regular expression. The fact that there are a
finite number of unique derivatives (up to the reductions performed
by our smart constructors) was proven by Brzozowski [5] so we are
ensured that the procedure terminates.
In practice, calculating a DFA in this fashion is almost as good

as the usual construction [26], but avoids the need to formalize
and reason about graphs. The degree to which we simplify regular
expressions as we calculate derivatives determines how few states
are left in the resulting DFA. In our case, the number of states is
small enough (61 for the largest DFA) that we do not need to worry
about further minimization.

3.3 Testing the C Checker

In the following section, we discuss the formal proof of correctness
for the Coq version of the RockSalt checker. But as noted above, in
practice we expect to use the C version, partially shown in figures
5 and 6. Although this code is a rather direct translation from
the Coq code, to gain further assurance, we did extensive testing,
comparing both positive and negative examples against Google’s
original checker.
For testing purposes, the ncval (Native Client Validator) com-

mand line tool was modified so that our verification routine can be
used instead of Google’s. We ensured that both verifiers reject a
set of hand-crafted unsafe programs, and we also ensured that they
both accept a set of benchmark programs once processed by the
NaCl version of GCC which inserts appropriate no-ops and mask
instructions. To work around the lack of floating-point support in
our checker, we use the “-msoft-float” flag so that GCC avoids gen-
erating floating-point instructions. The benchmark programs were
drawn from the same set as used in CompCert [18] and include an
implementation of AES, SHA1, a virtual machine, fractal compu-
tation, a Perl interpreter, and 16 other programs representing more
than 4,000 lines of code. We also used Csmith [36] to automatically
generate C programs, and compiled them with NaCl’s version of
GCC. We then verified that our driver and Google’s always agreed
on a program’s safety. Using this method we have verified over two
thousand small C programs.
Finally, we measured the time it takes to check binaries using

both our C checker and Google’s original code. For the small
benchmarks mentioned above, there was no measurable difference
in checking times. However, on an artificially generated C program
of about 200,000 lines of code, running on a 2.6 GHz Intel Xeon
core, Google’s checker took 0.90 seconds and our checker took
0.24 seconds (averaging over one hundred runs). Consequently, we
believe that RockSalt is competitive with Google’s approach.

4. Proof of Correctness for the Checker
After building and testing the checker, we wanted to prove its
correctness with respect to the sandbox policy. That is, we wanted a
proof that if the checker returns TRUE for a given input binary, and
if that binary is loaded and executed in an appropriate environment
(in particular, where the code and data segments are disjoint), then
executing the binary would ensure that only the prescribed data
segments are read and written, and control only transfers within
the prescribed code segment.
At a high-level, our proof shows that at every step of the pro-

gram execution, the values of the segment registers are the same as
those in the initial state, and furthermore, that the bytes that make
up the code-segment are the same bytes that were analyzed by the
checker. These invariants are sufficient to show NaCl’s sandbox
policy is not violated. Furthermore, the checker should have ruled
out system calls and other instructions that are not allowed. But
of course, formalizing this argument requires a much more detailed

set of invariants that connect the matching work done in the checker
to the semantics, along with the issues of alignment, masking, and
jump-destination checks.
We begin by defining the notion of an appropriate machine

state:

DEFINITION 1. A machine state is appropriate when:

1. the original data and code segments are disjoint,
2. the DS, SS, and GS segment registers point to their respective
original segments,

3. the CS segment registers point to the original code segment,
4. the program counter points within the code segment, and
5. the original bytes of the program are stored in the code segment.

Appropriateness captures the key data invariants that we need to
maintain throughout execution of the program. We augment these
data invariants with a predicate on the program counter to reach the
definition of a locally-safe machine state:

DEFINITION 2. A machine state is locally-safe when it is appro-
priate and the program counter holds an address corresponding to
the start of an instruction that was matched by the verify process
using one of the three generated DFAs.

In other words, for a locally safe state, the pc is marked as valid.
We would like to argue that, starting from a locally-safe state,

we can always execute an instruction and end up in a locally-
safe state. This would imply that the segment registers have not
changed, that the code has not changed, that any read or write done
by the instruction would be limited to the original data segments,
and that control remains within the original code segment.
Alas, we do not immediately reach a locally-safe state after ex-

ecuting one instruction. The problem is that our MaskedJump DFA
operates over two instructions (the mask of the register, followed
by the indirect jump). Thus, we introduce the notion of a k-safe
state:

DEFINITION 3. An appropriate state s is k-safe when k > 0 and,
for any s′ such that s −→ s′, either s′ is locally-safe or s′ is
(k − 1)-safe.

With the definitions given above, it suffices to show that if a state
is locally-safe, then it is also k-safe for some k (and in fact, k is
either 1 or 2). Indeed, each locally-safe state s should be k-safe for
some k: if s −→ s′ then either s′ is locally-safe or we executed the
mask of a MaskedJump and we should be in an appropriate state,
ready to execute a branch instruction that will target a masked (and
therefore valid) address. Then, assuming the computation starts in a
locally-safe state (e.g., with the pc at any valid address), it is easy to
see that the code cannot step to a state where the segment registers
have changed, or the bytes in the code segment have changed.

THEOREM 1. If s is locally-safe, then it is also k-safe for some k.

Since a locally-safe instruction has a program counter drawn
from the set of valid instructions, and since the verifier did not
return FALSE, we can conclude that a prefix of the bytes starting
at this address matches one of the three DFAs. We must then
argue that for each class of instructions that match the DFAs, after
executing the instruction, we either end up in a locally-safe state
or else after executing one more instruction, end up in a locally
safe-state.
In the Section 4.1, we sketch the connection we formalized be-

tween the DFAs and a set of inversion principles that characterize the
possible instructions that they can match. These principles allow us
to do a case analysis on a subset of the possible instructions. For
example, in the case that the MaskedJump DFA matches, we know
that the bytes referenced by the program counter must decode into



a masking operation on some register r, followed by bytes that de-
code into a jump or call to register r. The proof proceeds by case
analysis for each of the three DFAs utilizing these inversion princi-
ples.
The easiest (though largest) case is when the NoControlFlow

DFA has the successful match. We prove three properties for each
non-control-flow instruction I that the inversion principle gives us:

(1) executing I does not modify segment registers;

(2) executing I modifies only the data segments’ memory;

(3) after executing I , the new program counter is equal to the old
program counter plus the length of I .

For the most part, arguing these cases is simple: For the first
property, we simply iterate over the generated list of RTLs for I
and ensure there are no writes to the segment registers. The second
property follows from the inversion principles which forbid the use
of a segment override prefix, and the third property follows from the
semantics of non-control-flow instructions. From these three facts,
it follows that after executing the instruction, we are immediately
in a locally-safe state. That is, the original state was 1-safe.
In the case where I was matched by DirectJump, we must

argue that the final loop in verify ensures that the target of the
jump is valid. Of course, we must also show that the segment
registers are preserved, the code is preserved, etc. But then we can
again argue that the original state was 1-safe.
For the MaskedJump case, we must argue that the state is 2-safe.

The inversion principle for the DFA restricts the first instruction
to an AND of a particular register r with a constant that ensures
after the step, the value of r is aligned on a 32-byte boundary, the
segments are preserved, and the pc points to bytes within the code
segment that decode into either a jump or call through r. We then
argue that this state is 1-safe. Since the destination of the jump or
call is 32-byte aligned, the final loop of the verifier has checked that
this address is valid. Consequently, it is easy to show that we end
up in a locally-safe state.

4.1 Inverting the DFAs

A critical piece in our proof of correctness is the relation-
ship between the DFAs generated from the NoControlFlow,
DirectJump, and MaskedJump regular expressions and our seman-
tics for machine instructions. We sketch the key results that we have
proven here.
One theorem specifies the connection between a regular expres-

sion, the DFA it generates, and the match procedure:

THEOREM 2. If r is a regular expression, andD is the DFA gener-
ated from that regular expression, then executing match onD with
a sequence of bytes b1, . . . , bn will return true if there is some
j ≤ n such that the string b1, . . . , bj is in the denotation of r.

The theorem requires proving that our DFA construction pro-
cess, where we iteratively calculate all derivatives, produces a well-
formed DFA with respect to r. Here, a well-formed DFA basically
provides a mapping from states to derivatives of r that respect
certain closure properties. Fortunately, the algebraic construction
of the DFA makes proving this result relatively straightforward.
The theorem also requires showing that running match on D with
b1, . . . , bn is correct which entails, among other things, showing
that the array accesses are in bounds, and that when we return TRUE,
we are in a state that corresponds to the derivative of the regular ex-
pression with respect to the string b1, . . . , bj .
Another key set of lemmas show that the languages accepted

by the regular expressions are subsets of the languages accepted by
our x86grammar. Additionally, we must prove an inversion princi-
ple for each regular expression that characterizes the possible ab-
stract syntax we get when we run the semantics on the bytes. For

example, we must show that DirectJump only matches bytes that
when parsed, produce either (near) JMP, Jcc, or CALL instructions
with an immediate operand. Fortunately, proving the language con-
tainment property and inversion principles is simple to do using the
denotational semantics for grammars.
One of the most difficult properties to prove about the decoder

was the uniqueness of parsing. In particular, we needed to show
that each bit pattern corresponded to at most one instruction, and
no instruction’s bit pattern was a prefix of another instruction’s
bit pattern—i.e., that our x86grammar was unambiguous. A naive
approach, where we simply explore all possible bit patterns is
obviously intractable, when there are instructions up to 15 bytes
long. Another approach is to construct a DFA for the grammar and
then show that each accepting state has at most one semantic value
associated with it. While this is possible, the challenge is getting
Coq to symbolically evaluate the DFA construction and reduce the
semantic actions in a reasonable amount of time4.
Consequently, we constructed a simple procedure that checks

whether the intersection of two grammars is empty. The procedure,
which only succeeds on star-free grammars (stripped of their se-
mantic actions) works by generalizing the notion of a derivative
from characters to star-free regular expressions:

Deriv g Eps = g
Deriv g (Char c) = derivc g

Deriv g Any = DrvAny g
Deriv g Void = Void

Deriv g (Alt g1 g2) = Alt (Deriv g g1) (Deriv g g2)
Deriv g (Cat g1 g2) = Deriv (Deriv g g1) g2

where

DrvAny Any = Eps
DrvAny (Char c) = Eps

DrvAny Eps = Void
DrvAny Void = Void

DrvAny (Alt g1 g2) = Alt (DrvAny g1) (DrvAny g2)
DrvAny (Cat g1 g2) = Alt (Cat (DrvAny g1) g2)

(Cat (null g1) (DrvAny g2))

When it is defined, it is easy to show that:

Deriv g1 g2 = {s2 | ∃s1.s1 ∈ g2 ∧ s1s2 ∈ g1}
and thus, when Deriv g1 g2 → Void, we can conclude that
there is no string in the intersection of the domains of g1 and g2,
and furthermore, g2’s strings are not a prefix of those in g1. This
allowed us to easily prove (through Coq’s symbolic evaluation) that
the x86grammar is unambiguous: We simply recursively descend
into the grammar, and each time we encounter an Alt, check that
the intersection of the two sub-grammars is empty.

5. Related Work
With the growing interest in verification of software tools, formal
models of processors that support machine-checked proofs have be-
come a hot topic. Often, these models have limitations, not because
of any inherent design flaw, but rather because they are meant only
to prove specific properties. For example, work on formal verifica-
tion of compilers [6, 18] only needs to consider the subset of the
instructions that compilers use. Moreover, these compilers emit as-
sembly instructions and do not prove semantics preservation all the
way down to machine code, so their model leaves out the tricky
problem of decoding. The same kinds of limitations exist for the
processor models used in the formal verification of operating sys-
tems [7]. Some projects focus on one specific part of the model, for

4 Recall that that the DFAs generated for the NaCl checker strip the semantic
actions, so they do not need to worry about reducing semantic actions.



instance the media instructions [16], and some others [22] model
just a few instructions mostly as a proof of concept. Even though
we are focused here on NaCl verification, our long term goal is to
develop a general model of the x86 so we have tried hard to achieve
a more open and scalable design.
There are several projects focused on the development of gen-

eral formal models of processors. Some projects have considered
the formalizations of RISC processors [2, 13, 23]. As noted, de-
veloping a formal model for the x86 poses many new problems,
partly because decoding is significantly more complex, but also for
the definition and validation of such a vast number of instructions
(over 1,000) with so many variations, from addressing modes to
prefixes.
One model close in spirit to our own is the Y86 formalization in

ACL2 by Ray [31]. Like our model, Ray’s provides an executable
simulator. However, the Y86 is a much smaller fragment (about 30
instructions), and has a much simpler instruction encoding (e.g., no
prefixes).
Perhaps the closest related research project, and the one from

which we took much inspiration in our design, is the work on
modeling x86 multi-processor memory models [27, 32, 34]. This
work comes with a formal model of about 20 instructions, and
we borrowed many of the ideas, such as the use of high-level
grammars for specifying the decoder. However, their focus was
on issues of non-determinism where it is seemingly more natural
to use predicates to describe the possible behaviors of programs.
The price paid is that validation requires symbolic evaluation and
theorem proving to compare abstract machine states to concrete
ones. Although this was largely automated, we believe that our
functional approach provides a more scalable way to test the model.
Indeed, we have been able to run three orders of magnitude more
tests. On the other hand, it remains to be seen how effective our
approach will be when we add support for concurrency.
Our decoder, formalized in Coq, uses parsers generated from

regular expressions using the idea of derivatives. Others have for-
malized derivative-based regular expression matching [3] but not
parsing. However, more general parser generators for algorithms
such as SLR and LR have recently been formalized [4, 15].
The original idea for Software-based fault isolation (SFI) was

introduced by Wahbe et. al. [35] in the context of a RISC ma-
chine. This work used an invariant on dedicated registers to ensure
that all reads, writes, and jumps were appropriately isolated. Of
course, parsing was not a problem because instructions had a uni-
form length. As noted earlier, McCamant and Morrisett [22] intro-
duced the idea of the alignment constraint to handle variable-length
instruction sets. In that paper, they formalized a small subset of the
x86 (7 instructions) using ACL2 and proved that their high-level in-
variants were respected by those instructions, but did not prove the
correctness of their checker. In fact, even with the small number
of instructions, Kroll and Dean found a number of bugs in the de-
coder [17], which reinforces our argument that one should be wary
of a trusted decoder or disassembler.
Pilkiewicz [28] developed a formally verified SFI checker in

Coq for a simple assembly language.
There has been much subsequent work on stronger policies than

SFI, including CFI [1] and XFI [12]. Some of this work has been
formalized, but typically for RISCmachines and in a context where
decoding is ignored.

6. Future work & Conclusions
We have presented a formal model for a significant subset of the
x86, and a new formally verified checker for Native Client called
RockSalt. The primary challenge in this work was building a model
for an architecture as complicated as the x86. Although we only
managed to model a small subset, we believe that the design is

relatively robust thanks to our ability to extract and test executable
code. The experience in using the model to reason about a simple
but real policy such as NaCl’s sandbox, provides some assurance
that the model will be useful for reasoning in other contexts.

6.1 Future Work

As explained before, our x86 model is far from complete. We do
not yet handle floating-point instructions, system programming in-
structions, nor any of the MMX, SSEn, 3dNow! or IA-64 instruc-
tions. On the other hand, we have managed to cover enough instruc-
tions that we can compile real applications and run them through
the simulator. Moving forward, we would like to extend the model
to cover at least those instructions that are used by compilers.
Our model of machine states is also overly simple. For example,

we do not yet model concurrency, interrupts, or page tables. How-
ever, we believe that the use of RTL as a staging language makes
it easier to add support for those features. For example, to model
multiple processors and the total-store order (TSO) memory con-
sistency model [34], we believe that it is sufficient to add a store
buffer to the machine state for each processor. Of course, validat-
ing a concurrent model will present new challenges.
We believe that the use of domain-specific languages will fur-

ther facilitate re-use and help to find and eliminate bugs. For exam-
ple, one could imagine embedding these languages in other proof
assistants (HOL, ACL2, etc.) to support portability of the specifi-
cation across formal systems.
We would also like to close the gap on RockSalt so that the

C code, derived from our verified Coq code, is itself verified and
compiled with a proven-correct compiler such as CompCert. In
fact, one fun idea is to simply bypass the compiler and write the
checker directly in x86 assembly to see how easy it is to turn the
process in on itself. Finally, there are richer classes of policies,
such as XFI, for which we would like to write checkers and prove
correctness.

6.2 Lessons Learned

The basic idea of using domain-specific languages to build a scal-
able semantics worked well for us. In our first iteration of the
model, we tried to directly interpret x86 instructions, but soon real-
ized that any reasoning work would be proportional to the number
of distinct instructions. Compiling instructions to a small RISC-like
core simplified our reasoning, and at the same time, made it easier
to factor the model into smaller, more re-usable components.
One surprising aspect of the work was that the pressure to pro-

vide reasoning principles for parsers forced us to treat the prob-
lem more algebraically than is typically done. In particular, the
use of derivatives, which operate directly on the abstract syntax of
grammars, made our reasoning much simpler than it would be with
graphs.
It goes without saying that constructing machine-checked

proofs is still very hard. The definitions for our x86 model and NaCl
checker are about 5,000 lines of heavily commented Coq code, but
the RockSalt proofs are another 10,000 lines. Of course, many of
these proofs will be useful in other settings (e.g., that the decoder
is unambiguous) but the ratio is still quite large. One reason for
this is that reasoning about certain theories (e.g., bit vectors) is still
rather tedious in Coq, especially when compared to modern SAT
or SMT solvers. Yet, the dependent types and higher-order features
of the language were crucial for constructing the model, much less
proving deep properties about it.
For us, another surprising aspect of the work was the difference

that comes with scale. We have a fair amount of experience mod-
eling simple abstract machines with proof assistants. Doing a case
split on five or even ten instructions and manually discharging the
cases is reasonable. But once you have hundreds of cases, any of



which may change as you validate the model, such an approach is
no longer tenable. Consequently, many of our proofs were actually
done through some form of reflection. For example, to prove that
the x86grammar is unambiguous, we constructed a computable
function that tests for ambiguity and proved its correctness. In turn,
this made it easier to add new instructions to the grammar. Frankly,
we couldn’t stomach the idea of proving the correctness of a hand-
written x86 decoder, and so we were forced into finding a better
solution. In short, when a mechanized development reaches a cer-
tain size, we are forced to develop more automated and robust proof
techniques.

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow

integrity. In Proc. of the 12th ACM Conf. on Computer and Commun.
Security, CCS ’05, pages 340–353. ACM, 2005.

[2] J. Alglave, A. C. J. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell,
and F. Z. Nardelli. The semantics of Power and ARM multiprocessor
machine code. In Proc. of the Workshop on Declarative Aspects of
Multicore Programming, pages 13–24. ACM, 2009.

[3] J. B. Almeida, N. Moreira, D. Pereira, and S. M. de Sousa. Partial
derivative automata formalized in Coq. In Proc. of the 15th Intl.
Conf. on Implementation and Application of Automata, number 6482
in CIAA ’10, pages 59–68. Springer-Verlag, Aug. 2010.

[4] A. Barthwal and M. Norrish. Verified, executable parsing. In European
Symp. on Programming, ESOP ’09, pages 160–174. LNCS, 2009.

[5] J. A. Brzozowski. Derivatives of regular expressions. Journal of the
ACM, 11:481–494, 1964.

[6] A. Chlipala. A verified compiler for an impure functional language.
In Proc. of the 37th ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, pages 93–106. ACM, 2010.

[7] D. Cock. Lyrebird: assigning meanings to machines. In Proc. of the
5th Intl. Conf. on Systems Software Verification, SSV’10, pages 6–15.
USENIX Association, 2010.

[8] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies. VCC: A practical system for
verifying concurrent C. In Proc. of the 22nd Intl. Conf. on Theorem
Proving in Higher Order Logics, TPHOLs ’09, pages 23–42. Springer-
Verlag, 2009.

[9] Coq development team. The Coq proof assistant. http://coq.
inria.fr/, 1989–2012.

[10] L. Correnson, Z. Dargaye, and A. Pacalet. WP plug-in manual. CEA
LIST.

[11] J. Dias and N. Ramsey. Automatically generating instruction selectors
using declarative machine descriptions. In Proc. of the 37th ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages,
POPL ’10, pages 403–416. ACM, 2010.

[12] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula.
XFI: software guards for system address spaces. In Proc. of the 7th
Symp. on Operating Systems Design and Implementation, OSDI ’06,
pages 75–88. USENIX Association, 2006.

[13] A. C. J. Fox and M. O. Myreen. A trustworthy monadic formalization
of the ARMv7 instruction set architecture. In Interactive Theorem
Proving, volume 6172 of LNCS, pages 243–258. Springer, 2010.

[14] Intel Corporation. Pentium Processor Family Developers Manual,
volume 3. Intel Corporation, 1996.

[15] J.-H. Jourdan, F. Pottier, and X. Leroy. Validating LR(1) parsers. In
European Symp. on Programming, ESOP ’12. Springer, 2012. To
appear.

[16] W. A. H. Jr. and S. Swords. Centaur technology media unit verifica-
tion. In Computer Aided Verification, 21st Intl. Conf., volume 5643 of
LNCS, pages 353–367. Springer, 2009.

[17] J. Kroll and D. Dean. BakerSFIeld: Bringing software fault isola-
tion to x64. http://www.cs.princeton.edu/~kroll/papers/
bakersfield-sfi.pdf.

[18] X. Leroy. Formal verification of a realistic compiler. Commun. of the
ACM, 52(7):107–115, 2009.

[19] J. Lim. Transformer Specification Language: A System for Generating
Analyzers and its Applications. PhD thesis, University of Wisconsin-
Madison, May 2011.

[20] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumentation. In Proc. of the
ACM SIGPLAN Conf. on Programming Language Design and Imple-
mentation, PLDI ’05, pages 190–200. ACM, 2005.

[21] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi. Testing CPU
emulators. In Proc. of the 18th Intl. Symp. on Software Testing and
Analysis, pages 261–272. ACM, 2009.

[22] S. McCamant and G. Morrisett. Evaluating SFI for a CISC architec-
ture. In Proc. of the 15th Conf. on USENIX Security Symp., pages
209–224. USENIX Association, 2006.

[23] N. G. Michael and A. W. Appel. Machine instruction syntax and
semantics in higher order logic. In Automated Deduction - CADE-
17, 17th Intl. Conf. on Automated Deduction, volume 1831 of LNCS,
pages 7–24. Springer, 2000.

[24] M. Might, D. Darais, and D. Spiewak. Parsing with derivatives: a
functional pearl. In Proc. of the 16th ACM SIGPLAN Intl. Conf. on
Functional Programming, ICFP ’11, pages 189–195. ACM, 2011.

[25] Native Client team. Native client security contest. http:
//code.google.com/contests/nativeclient-security/
index.html, 2009.

[26] S. Owens, J. Reppy, and A. Turon. Regular-expression derivatives re-
examined. J. Funct. Program., 19:173–190, March 2009.

[27] S. Owens, P. Böhm, F. Z. Nardelli, and P. Sewell. Lem: A lightweight
tool for heavyweight semantics. In Interactive Theorem Proving,
volume 6898 of LNCS, pages 363–369. Springer, 2011.

[28] A. Pilkiewicz. A proved version of the inner sandbox. In native-client-
discuss mailing list, April 2011.

[29] N. Ramsey and J. W. Davidson. Machine descriptions to build tools for
embedded systems. In Languages, Compilers, and Tools for Embed-
ded Systems, volume 1474 of LNCS, pages 176–192. Springer, 1998.

[30] N. Ramsey and M. F. Fernandez. Specifying representations of ma-
chine instructions. ACM Trans. Program. Lang. Syst., 19(3):492–524,
1997.

[31] S. Ray. Towards a formalization of the X86 instruction set architec-
ture. Technical Report TR-08-15, Department of Computer Science,
University of Texas at Austin, March 2008.

[32] S. Sarkar, P. Sewell, F. Z. Nardelli, S. Owens, T. Ridge, T. Braibant,
M. O. Myreen, and J. Alglave. The semantics of x86-CC multiproces-
sor machine code. In Proc. of the 36th ACM SIGPLAN-SIGACT Symp.
on Principles of Programming Languages, pages 379–391. ACM,
2009.

[33] M. Seaborn. A DFA-based x86-32 validator for Native Client. In
native-client-discuss mailing list, June 2011.

[34] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen.
x86-TSO: a rigorous and usable programmer’s model for x86 multi-
processors. Commun. ACM, 53(7):89–97, 2010.

[35] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. In Proc. of the 14th ACM Symp. on
Operating Systems Principles, SOSP ’93, pages 203–216. ACM, 1993.

[36] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding
bugs in C compilers. In Proc. of the 32nd ACM SIGPLAN Conf. on
Programming Language Design and Implementation, PLDI ’11, pages
283–294. ACM, 2011.

[37] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native Client: a sandbox
for portable, untrusted x86 native code. Commun. of the ACM, 53(1):
91–99, 2010.

[38] L. Zhao, G. Li, B. D. Sutter, and J. Regehr. Armor: Fully verified
software fault isolation. In 11th Intl. Conf. on Embedded Software.
ACM, 2011.


