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Abstract. Using relative oscillation theory and the reducibility result of Elias-
son, we study perturbations of quasiperiodic Schrödinger operators. In par-
ticular, we derive relative oscillation criteria and eigenvalue asymptotics for
critical potentials.

1. Introduction

We will be interested in generalizing classical perturbation result of eigenvalues
to quasiperiodic operators. We first overview the classical results of interest. Most
(if not all) of our results will be parallel to these. For this introduction let H be a
self-adjoint realization of

(1.1) H = − d2

dx2
+ q(x)

on L2(1,∞) with q(x) → 0 as x → ∞ and q bounded. A classical result of Weyl
now tells us, that the essential spectrum of H, is equal to the one of − d2

dx2 , hence
σess(H) = [0,∞). We give the generalization of this to quasiperiodic operators in
Theorem 3.1.

Kneser answered in [9], the question when 0 is an accumulation point of eigen-
values below 0. One has if

(1.2) lim sup
x→∞

q(x)x2 < −1
4

then 0 is an accumulation point of eigenvalues, and if

(1.3) lim inf
x→∞

q(x)x2 > −1
4

then 0 is not an accumulation point of eigenvalues. The periodic case was answered
by Rofe-Beketov (see here his recent monograph [8]). The generalization to the
quasiperiodic case is given in Theorem 3.2.

Once it is known that 0 is an accumulation point of eigenvalues, it is natural
to ask how fast do the eigenvalues converge to 0. This question was answered by
Kirsch-Simon in [7]. To state their result let N(λ) be the number of eigenvalues of
− d2

dx2 + µ
x2 below λ, then

(1.4) N(λ) =
1
4π

√
µ

µcrit
− 1|ln|λ||(1 + o(1)), λ ↑ 0, µcrit = −1

4
.
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For − d2

dx2 + µ
xγ , 0 < γ < 2, we have

N(λ) =
1
π

∫
{x, q(x)<λ}

(λ− q(x))1/2dx(1 + o(1)), λ ↑ 0(1.5)

=

√
µ/µcrit

π

1
2− γ

∣∣∣µ
λ

∣∣∣(2−γ)/2γ

(1 + o(1)), λ ↑ 0

see Theorem XIII.82 in [14]. 1 This result goes back to results in the sixties, see
the notes in [14]. The periodic case was answered by Schmidt [15] for γ = 2. We
will answer this question in Theorem 3.7.

Periodic operators have a spectrum made out of the union of finitely or infinitely
many bands. That is

(1.6) σess(−
d2

dx2
+ q0(x)) = [E0, E1] ∪ [E2, E3] ∪ . . . , Ej < Ej+1,

for q0(x + p) = q0(x), p > 0. Since, we now have several boundary points of
the spectrum, one can also ask what happens at all, finitely many, . . . boundary
points of σess(H0). Rofe-Beketov gave the following answer to this question: Only
finitely many gaps can contain infinitely many eigenvalues for critical perturbations
(q(x) = µ/x2) (see (6.145) in [8]). We will treat this question in Theorem 3.6.

The organization of this paper is as follows. In Section 2, we will state the
needed results about quasiperiodic Schrödinger operators. In Section 3, we will
state our main results. Most proofs are easy enough to be directly stated. Only the
eigenvalue asymptotics requires more work and is stated in the following section. In
Section 5, we give an outline of Eliasson’s proof and derive some further estimates.
In Appendix A, we will review relative oscillation theory, followed by another short
appendix on needed methods from the theory of differential equations.

2. Quasiperiodic Operators

We will now recall the basic notations about quasiperiodic Schrödinger operators.
Let Td be the d-dimensional torus, where T = R/(2πZ). Let Q : Td → R be a real
analytic function. We will consider the Schrödinger operator on L2(1,∞) given by

(2.1) H0 = − d2

dx2
+ q0(x), q0(x) = Q(ωx)

where ω ∈ Td is fixed. We will assume that ω is a Diophantine number, that is
there is some τ > d− 1, κ > 0, such that

(2.2) DC(κ, τ) : |〈ω, n〉| ≥ κ

|n|τ
, n ∈ Zd\{0},

holds.
Recall the rotation number ρ(E) from [4]. Denote by ϑ(x,E) the Prüfer angle

of a solution u of H0u = Eu. That is a continuous function of x such that

(2.3) u(x) = r(x) sinϑ(x,E), u′(x) = r(x) cosϑ(x,E), 0 ≤ ϑ(1, E) < π,

for some continuous function r. The rotation number ρ(E) is now introduced by

(2.4) ρ(E) = lim
x→∞

ϑ(x,E)
x

.

1We obtain a factor 1
2

different from [7] in the case γ = 2, since we are considering half line

operators. This factor does not arise for 0 < γ < 2, since the domain of integration also shrinks.
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We remark that the integrated density of states k(E) satisfies

(2.5) k(E) =
1
π
ρ(E).

Johnson and Moser showed

Theorem 2.1. [[4]] The spectrum σ(H0) is given by

(2.6) σ(H0) = {E, ρ(E) =
1
2
〈ω, n〉, n ∈ Zd}.

Furthermore ρ is a continuous function, and constant outside the spectrum.

Now we come to Eliasson’s result. Recall that we can rewrite the Schrödinger
equation

−u′′(x) +Q(ωx)u(x) = Eu(x),

as the first order system

(2.7) U ′(x) =
(

0 1
Q(ωx)− E 0

)
U(x)

where U(x) =
(
u(x)
u′(x)

)
.

Theorem 2.2. [[3]] There is an E0, such that for E = 1
2 〈ω,m〉 > E0 a boundary

point of the spectrum of H0, there is a function Y : Td → SL(2,R) and A ∈ sl(2,R)
with A2 = 0 such that

(2.8) X(x) = Y1Y (
ω

2
x)eAx, Y1 =

1
2
√
E

(
1 1

−
√
E

√
E

)
is the fundamental solution of (2.7). Furthermore we have that for |m| ≥ 2

|A| ≤ c|m| 32 τ(2.9)

|Y | ≤ C log |m|, |det(Y )− 1| ≤ 1
2
,(2.10)

for constants c, C independent of m, and the spectrum of H0 is purely absolutely
continuous above E0.

We will give an outline of Eliasson’s proof in Section 5, and derive the additional
estimates there. In fact Eliasson proved that (2.8) holds, when ρ(E) satisfies the
next Diophantine condition

(2.11) |ρ− 〈n, ω〉
2

| ≥ κ̃

|n|σ
, n ∈ Zd\{0}, κ̃ > 0, σ > 0.

Eliasson also showed that the spectrum of H0 will be a Cantor set for generic
functions Q : Td → R in the |.|s topology given by the norm

(2.12) |Q|s = sup
|Im(z)|<s

|Q(z)|.

Furthermore, we could replace Q(ωx) by Q(ωx + θ) for any θ ∈ Td obtaining the
same statement.
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3. Main Results

We are interested in decaying perturbations of the quasiperiodic operator H0.
That is for some function ∆q consider the operator

(3.1) H1 = − d2

dx2
+ q1(x), q1(x) = q0(x) + ∆q(x),

for q0(x) = Q(ωx) as described in Section 2. We then have the next basic stability
result of the essential spectrum.

Theorem 3.1. If ∆q → 0, then

(3.2) σess(H1) = σess(H0) = R\
⋃
n

Gn,

for open sets Gn. If ∆q is integrable, we have that the spectrum of H1 is purely
absolutely continuous above E0.

Proof. The first part follows by Weyl’s Theorem and Theorem 2.1. For the second
part, note that by Theorem 2.2, H0 has purely absolutely continuous spectrum
above E0, and by Theorem 1.6. of [6] it is invariant under L1 perturbations. �

It is conjectured in [6], that there is still absolutely continuous spectrum for
∆q ∈ L2, but it may not be pure. This was shown for the free case in [1] and for
the periodic one in [5]. See also the recent review in [2]. If we write Gn = (E−n , E

+
n )

for the intervals of the last theorem, and call them gaps. We call E−n (resp. E+
n ) a

lower (resp. upper) boundary point of the spectrum. The next relative oscillation
criterion follows.

Theorem 3.2. Assume that ∆q → 0, and let E be a boundary point above E0 of
the essential spectrum of H0. Then there exists a constant K = K(E) such that E
is an accumulation point of eigenvalues of H1 if

(3.3) lim sup
x→∞

K∆q(x)x2 < −1
4

and E is not an accumulation point of eigenvalues if

(3.4) lim inf
x→∞

K∆q(x)x2 > −1
4
.

Furthermore K > 0 (resp. K < 0) if E is a upper (resp. lower) boundary point.

Proof. Everything follows from Theorem A.6, except for the existence of K. We
have from (2.8) that u0(t) = U(ω

2 t) for a function U : Td → R. We will show

K = lim inf
l→∞

lim sup
x→∞

1
`

∫ x+`

x

u0(t)2dt

= lim sup
l→∞

lim inf
x→∞

1
`

∫ x+`

x

u0(t)2dt =
∫

Td

U(z)2dz.

Now note, that (2.2) implies that the system (Td, Tt, µ), where Tt = ω
2 t and µ is the

normalized Lebesgue measure is uniquely ergodic. By Birkhoff’s ergodic theorem,
we have that

lim
l→∞

1
`

∫ x+`

x

U(
ω

2
t)2dt =

∫
Td

U(z)2dz.

By unique ergodicity, we know that the limit is uniform in x. Hence, the result
follows. �



ON PERTURBATIONS OF QUASIPERIODIC SCHRÖDINGER OPERATORS 5

We even have a whole scale of relative oscillation criteria. To state this, we recall
the iterated logarithm logn(x) which is defined recursively via

log0(x) = x, logn(x) = log(logn−1(x)).

Here we use the convention log(x) = log |x| for negative values of x. Then logn(x)
will be continuous for x > en−1 and positive for x > en, where e−1 = −∞ and
en = een−1 . Abbreviate further

Ln(x) =
1

log′n+1(x)
=

n∏
j=0

logj(x), Q̃n(x) = − 1
4K

n−1∑
j=0

1
Lj(x)2

.

From Theorem 2.10. of [12].

Theorem 3.3. Assume the assumptions of the last theorem, and that for some
n ∈ N

(3.5) lim
x→∞

Ln−1(x)−2(∆q(x)− Q̃n−1(x)) = − 1
4K

.

Then E is an accumulation point of eigenvalues of H1 if

(3.6) lim sup
x→∞

KLn(x)2(∆q(x)− Q̃n(x)) < −1
4

and E is not an accumulation point of eigenvalues if

(3.7) lim inf
x→∞

KLn(x)2(∆q(x)− Q̃n(x)) > −1
4
,

with the same K as in the last theorem.

The next lemma gives us an estimate on K.

Lemma 3.4. The constant K of Theorem 3.2, satisfies

(3.8) |K(E)| ≤ C

|m|τ̃
√
E
, 0 < τ̃ <

3
2
τ

where m ∈ Zd is such that E ∈ ρ−1( 1
2 〈ω,m〉).

Proof. From Theorem 2.2, we know the existence. We note that det(Y1) = 1. By
(2.9), we have that |A| ≤ c|m|− 3

2 τ , where them is the one such that ρ(E) = 1
2 〈ω,m〉.

Hence, we obtain that |β| ≤ c|m|− 3
2 τ . Now

|K| ≤ c

∫
T U(z)dz

|m| 32 τ
√
E
.

The claim now follows by (2.10). �

Remark 3.5. One can hope that the estimate (3.10) on K(E) can be improved. It
was shown in [3] that the matrix A and then β would satisfy the bound |β| ≤ C|E+−
E−| for some constant C. Then it was shown in [13], that |E+−E−| ≤ ce−γ|m| for
some constants c and γ. Hence one should expect K(E) to decrease exponentially
in m. Unfortunately, the estimate of [13] depends on further arithmetic properties
of m. Hence, it is not clear if it holds at all band edges.
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For simplicity, we will now restrict our attention to perturbations of the form

(3.9) ∆q(x) =
µ

xγ
, µ 6= 0, γ > 0.

We will denote the operator H0 + µ
xγ by Hγ

µ . Now, we come to the question how
many gaps above E0 can contain infinitely many eigenvalues. This question is a bit
odder than the one for periodic operators, since there are bounded intervals that
contain infinitely many gaps.

Introduce µcrit by

(3.10) µcrit(E) = − 1
4K(E)

.

Then E > E0 is an accumulation point of eigenvalues of H2
µ if and only if µ/µcrit >

1. For Hγ
µ , 0 < γ < 2, this requirement is µ/µcrit > 0. Now, we come to

Theorem 3.6. If γ > 2, then no boundary point of σ(H0) above E0 is an accumu-
lation point of eigenvalues of Hγ

µ = H0 + γ
xα . If γ < 2, then if µ < 0 (resp. µ > 0),

then all upper (resp. lower) boundary points above E0 are accumulation points of
eigenvalues of Hγ

µ .
If γ = 2, we can add infinitely many eigenvalues to each gap by choosing µ large

enough. However, for every value of µ only finitely many gaps contain infinitely
many eigenvalues of Hγ

µ .

Proof. The first claim follows from Theorem 3.2. The second claim follows from
the last lemma and Theorem 3.2. �

Now, we come to the eigenvalue asymptotics. Let E be again a boundary point
of the spectrum of H0. Introduce, if the set (Ẽ, E) ∩ σ(H0) = ∅, by N(λ) the
number

(3.11) N(λ) = tr(P(Ẽ,λ)(H
γ
µ)), Ẽ < λ < E

with the obvious modification for (E, Ẽ) ∩ σ(H0) = ∅.

Theorem 3.7. Let E be a boundary point of the spectrum of H0, which is an
accumulation point of eigenvalues of Hγ

µ . Then if γ = 2

(3.12) N(λ) =
1
4π

√
µ

µcrit
− 1 · |log |E − λ|| · (1 + o(1)),

and if 0 < γ < 2

(3.13) N(λ) =
1
π

1
2− γ

√
µ

µcrit

(
|µ|

|E − λ|

)(2−γ)/2γ

· (1 + o(1)).

where N(λ) is the number of eigenvalues near E.

We will give a proof in Section 4. In difference to the proof of [15], our proof only
uses the decay of the potential and the behavior of the solution at the boundary
point of the spectrum. In fact everything carries over to general elliptic situations.
That is, where one has two solutions u0, u1 such that u0(x) and u1(x)−xu0(x) are
bounded functions.

Remark 3.8. It was already shown in Corollary 6.6 in [8] that µcrit(E) has to
diverge as E → ∞. We also remark that [8] develops a different approach to
relative oscillation criteria than was used in [12].
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4. Proof of Theorem 3.7

We will now give explicit bounds on the spectral projections.

Lemma 4.1. Let ψ be a solution of

(4.1) ψ′(x) = −∆q(x)(u0(x) cosψ(x)− v0(x) cosψ(x))2.

Then we have that

(4.2) ψ(x) =
(

1
2

√
µ

µcrit
− 1 + o(1)

)
log|x|

if ∆q(x) = µ/x2. If ∆q(x) = µ/xγ , 0 < γ < 2,

(4.3) ψ(x) =
(√

µ

µcrit

1
2− γ

+ o(1)
)
x1−γ/2.

Proof. Use in (A.5) α = x, to obtain if γ = 2 the next equation

ϕ′ =
1
x

(sin2 ϕ+ cosϕ sinϕ+ µu2
0 cos2 ϕ) +O(

1
x2

),

whose asymptotics can be evaluated with Lemma B.2 and Lemma B.1.
In the case 0 < γ < 2, we choose α = 1/

√
|∆q|K, then also the sinϕ cosϕ term

becomes of lower order, hence we obtain by averaging

ϕ′(x) =
√
K∆q(x) +O(∆q +

∆q′

∆q
)

which implies the claim for ∆q of the particular form. �

Then, we have that

Lemma 4.2. Let the Wronskian W (u1(E), u0(E)) have n zeros on

{x, ∀y > x, |∆q| ≤ |E − λ|}.
Then we have that

(4.4) N(λ) ≤ n+ 3.

Proof. Observe that by the comparison theorem for Wronskians, we have that
W (u1(λ), u0(λ)) can have at most one zero left of xn.

Hence, we obtain

dim RanP(−∞,λ)(H1) ≤ #(1,xn)(u1(λ), u0(λ)) + 1

Now, by the triangle inequality for Wronskians, we obtain #(1,xn)(u1(λ), u0(λ)) ≤
#(1,xn)(u1(λ), u0(E)) + 1. It, now suffices to note that #(1,xn)(u1(λ), u0(E)) is
bounded by #(1,xn)(u1(E), u0(E)) + 1 by using the comparison theorem for Wron-
skians. �

Note, that the last two lemmas imply the next bound on the eigenvalues if γ = 2

(4.5) N(λ) ≤ 1
4π

√
µ

µcrit
− 1 · |log |E − λ|| · (1 + o(1)),

and if 0 < γ < 2

(4.6) N(λ) ≤ 1
π

1
2− γ

√
µ

µcrit

(
|µ|

|E − λ|

)(2−γ)/2γ

· (1 + o(1)).

The next lemma shows that we have equality. Hence with it Theorem 3.7 is proven.
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Lemma 4.3. Let 0 < δ < 1 and 0 < γ ≤ 2, then if γ = 2,

(4.7) N(λ) ≥ 1
4π

√
µ

µcrit
(1− δ)− 1 · |log |E − λ|| · (1 + o(1)),

and if 0 < γ < 2,

(4.8) N(λ) ≥ 1
π

1
2− γ

√
µ

µcrit
(1− δ)

(
|µ|

|E − λ|

)(2−γ)/2γ

· (1 + o(1)).

Proof. Let xmax be given by

xmax(λ) = δ

(
|µ|

|E − λ|

)1/γ

.

Let ϕλ(x) be a Prüfer angle of W (u0(E), u1(λ)). By the triangle inequality for
Wronskians, it is clear that ϕλ is close to the Prüfer angle of W (u0(λ), u1(λ)).
Now, for x < xmax(λ), we have that

ϕ′λ(x) ≥ µ(1− δ)
xγ

(u0 cosϕλ(x)− v0 sinϕλ(x))2.

This is the same equation for all λ. As x → ∞, the solution has the claimed
asymptotics by using Lemma 4.1. Hence, the claim follows. �

5. Outline of Eliasson’s proof

We now give an outline of Eliasson’s proof of reducibility in [3]. The next lemma
is an easy computation.

Lemma 5.1. The equation

(5.1) X ′(x) =
(

0 1
Q(ωx)− E 0

)
X(x)

can be transformed by

(5.2) X1(x) = Y −1
1 X(x), Y1 =

(
1 1

−
√
E

√
E

)
to

(5.3) X ′
1(x) = (A1 + F1(ωx,

√
E))X1(x),

where

(5.4) A1 =
√
EJ, J =

(
0 1
−1 0

)
, F1(z,

√
E) =

Q(z)
2
√
E

(
−1 −1
1 1

)
.

Furthermore A1, F1 satisfy Hypothesis 5.2.

Hypothesis H.5.2. Let A1 ∈ sl(2,C) and F1 : Td →Mat(2,C) satisfy

tr(F̂1(0)) = 0,(5.5)

|A1 −
√
EJ | < 2(5.6)

|F1|r1 < ε1,(5.7)

for some ε1 > 0, small.
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We have now seen that we can reduce our system to one of the form

(5.8) X ′
1(x) = (A1 + F1(x))X1(x),

where F1 is small. This system although close to a constant coefficient one cannot
be solved explicitly. However, we can reduce it to a system

(5.9) X ′
2(x) = (A2 + F2(x))X2(x)

where F2 is smaller than F1, as follows. We will construct A2, F2, and a solution
Y1 of the system

(5.10) Y ′1(x) = (A1 + F1)Y1 − Y1(A2 + F2).

Then for X2 a solution to (5.9), we have that Y1X2 will solve (5.8). Of course, we
cannot hope that (5.9) will be explicitly solvable, however we will be able to iterate
the above procedure to obtain better and better approximate solutions.

Since, we will require that Fk → 0, and then our final X∞(x) = exA. Here
A = limk→∞Ak. So the final solution will be

(5.11)
∞∏

k=1

Yk(
ω

2
x)eAx

We will not attempt to solve (5.10) in this paper, and refer to [3] for the details.
However, we will draw further conclusions from Eliasson’s method to control our
quantities.

Fix 0 < ε1 < 1 sufficiently small. Fix 0 < σ < 1, and let

(5.12) εj+1 = ε1+σ
j = ε

(1+σ)j

1 .

Furthermore, assume that r1 > r2 > r3 > . . . is a decreasing sequence of positive
numbers, satisfying

(5.13)
r1

2j+1
≤ rj − rj+1.

rj will play the role of the neighborhood, where we suppose to have analyticity.
Introduce Nj by

(5.14) Nj =
2σ

rj − rj+1
log(ε−1

j ) =
2σ(1 + σ)j

rj − rj+1
log(ε−1

1 ) ≤ C(2 + 2σ)j , C > 0.

Furthermore, one also sees that Nj ≥ C̃(1 + σ)j for some other constant C̃. Hence
Nj →∞ as j →∞. Furthermore, we have

(5.15) εσ
j ≤

(
4σ

r1(1 + σ)
log(ε−1

1 )(2 + 2σ)j

)−4τ

≤ N−4τ
j

if ε1 is small enough.

Proposition 5.3. Assume Hypothesis 5.2 with ε1 small enough, then there are
functions Yj : 2Td → GL(2,R), Aj ∈ sl(2,R), and Fj : Td →Mat(2,R), for j ≥ 1.
Furthermore, there are numbers mj that satisfy

(5.16) εσ
j ≤ |2αj − 〈ω,mj〉| ≤ 2εσ

j , 0 < |mj | ≤ Nj ,

or mj = 0 if (5.16) cannot be satisfied. Here αj is the rotation number of Ak.
Furthermore Aj, Fj, and Yj satisfy

〈Y ′j+1(x),
ω

2
〉 = (Aj + Fj(x))Yj+1(x)− Yj+1(x)(Aj+1 + Fj+1(x)),(5.17)
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|
(
Yj+1(.)− exp

(
〈mk, .〉
αj

Aj

))
| ≤ ε

1/2
j ,(5.18)

|
(
Aj+1 −

(
1− 〈ω,mj〉

2αj

)
Aj

)
| ≤ ε

2/3
j ,(5.19)

tr(F̂j+1(0)) = 0, |Fj+1|rj+1 < εj+1,(5.20)

|Aj+1| ≤ 32|αj+1|Nτ
j+1, if |αj+1| ≥

1
4
N−τ

j+1.(5.21)

Proof. This is Lemma 1 and 2 in [3]. �

Remark 5.4. The requirement of ε1 being small enough, will in fact determine our
lower bound on allowed energies E. Since for E > E0

|F1|r1 =
C√
E
<

C√
E0

= ε1

for some constant C. Hence by making E0 large, we can make ε1 arbitrarily small.

Lemma 5.5. Assume that Yj, Aj and Fj satisfy the conditions given in Proposi-
tion 5.3. If for all j ≤ k, mj = 0, then

(5.22) |Ak − λJ | < 3.

We furthermore obtain, if K is the largest integer less than k such that mK 6= 0,
that

(5.23) |Ak| ≤ C
1

N3τ
K

< 3, k ≥ K

where C doesn’t depend on K.

Proof. By mk = 0, we have that from (5.16)

|2αk − 〈ω, n〉| ≥ εσ
k , 0 < |n| ≤ Nj .

For mj = 0, j = 1, . . . , k, we have by (5.19) that

|Ak| ≤ 2 + ε
2/3
1 + · · ·+ ε

3/2
k−1 < 3.

This shows the first part.
For the second claim, let l ≤ k be maximal such that the ml 6= 0. Then, we

obtain a bound on |Aj(λ)| by

|Ak| ≤ ε
2/3
l + · · ·+ ε

3/2
k−1 + |

(
1− 〈ω,ml〉

2αl

)
Al|

≤ 2ε2/3
l + 2εσ

l |
Al

2αl
| ≤ 34Nτ

l ε
σ
l ,

where we used (5.16) in the middle and (5.21) in the last step. (5.23) follows from
(5.15). The last claim is evident. �

Let us now consider ρ̃ = 1
2

∑∞
k=1〈mk, ω〉 + α, where α = limj→∞ αj . Further-

more, ρj+1 = 1
2

∑j
k=1〈mk, ω〉 + αj+1, Furthermore, we know that inside the gap

α = 0 from [3]. We now obtain
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Lemma 5.6. ρj+1 → ρ̃ uniformly. If ρ is rational, mj = 0 for j large. Furthemore,

(5.24)
∑

k,mk 6=0

mk = m,

holds.

Proof. The first two parts are Lemma 3 in [3]. The last part follows, since α→ 0,
and with m̃ =

∑
k,mk 6=0mk, one has

0 = ρ̃− 1
2
〈ω,m〉 =

1
2
〈ω, m̃−m〉.

Hence m̃ = m by the Diophantine condition. �

Proof of (2.9). We will now show how (5.24) can be used to make the bound from
(5.23) only depend on m. By definition |mk| ≤ Nk, we have by (5.14)

|m| ≤
∑

k,mk 6=0

|mk| ≤
K∑

k=1

Nk ≤ C(2σ + 2)K+1.

Hence K ≥ log|m|
log(2+2σ) − C and by (5.14) NK ≥ C

√
|m| and then (5.23) implies the

claim, since it holds for all large k. �

We have that

Lemma 5.7. If mj = 0 for j large, we have that
∏
Yj converges to some Y

uniformly on compact subsets. Furthermore Aj → A and Fj → 0. Furthermore
(2.10) holds.

Proof. Since rj is decreasing and positive, it has a limit r0 ≥ 0. By (5.20), we have
that |Fj |rj → 0. Since mj = 0 for large j, we have that |Aj+1 − Aj | ≤ ε

2/3
j from

(5.19). Hence, Aj → A, since
∑∞

j=N ε
2/3
j <∞.

By (5.18), we have that |Yj − I| ≤ ε
1/2
j , if mj = 0, which implies

∏
Yj → Y by

a similar argument. If mj 6= 0, we have that

|Yj+1(
ω

2
t)− I| ≤ ε

1/2
j + |cos(

〈mj , t〉
2

)I + sin(
〈mj , t〉

2
)
Aj

αj
− I|,

where the last term ≤ 3. Since, we can bound the number of these terms by
logm, we obtain the claim. By (5.18), we have that Yj+1 − I, if mj = 0, resp.
exp(−〈mj , t〉Aj/αj)Yj+1−I are bounded by ε1/2

j . Hence, we can bound |det(Yj+1)−
1| ≤ εj , from which the estimate on the determinant follows. �

Appendix A. Relative Oscillation Theory

As introduced in [10], relative oscillation theory is a tool to compute the differ-
ence of spectra of two different Schrödinger operators. Let q0, q1 ∈ L1

loc and

(A.1) Hj = − d2

dx2
+ qj , j = 0, 1

be self-adjoint Schrödinger operators on L2(1,∞). Introduce ∆q = q1 − q0, which
we will assume to be sign-definite. Denote by #(u0, u1) the number of zeros of
the Wronskian W (u0, u1) = u0u

′
1 − u′0u1 on (1,∞), for solutions τjuj = λjuj .

Let ψj,−(λ) be the solution of τjψj,−(λ) = λψj,−(λ), which obeys the boundary
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condition at 1 (e.g. ψj,−(λ)(1) = 0). Similarly let ψj,+(λ) be the solution satisfying
ψj,+(λ) ∈ L2(1,∞). Then [10] tells us:

Theorem A.1. Assume that [λ0, λ1] ∩ σess(H0) = ∅. Then, we have that

trP[λ0,λ1)(H1)− trP(λ0,λ1](H0)

=

{
(#(ψ1,±(λ1), ψ0,∓(λ1)−#(ψ1,±(λ0), ψ0,∓(λ0)), ∆q < 0
−(#(ψ1,±(λ1), ψ0,∓(λ1)−#(ψ1,±(λ0), ψ0,∓(λ0)), ∆q > 0

(A.2)

Here trP[λ0,λ1)(H1) denotes the number of eigenvalues of H1 in [λ0, λ1).

Since one has the next triangle inequality for Wronskians

(A.3) #(u0, u1) + #(u1, u2)− 1 ≤ #(u0, u2) ≤ #(u0, u1) + #(u1, u2) + 1,

one can replace ψj,±(λ) by any other solution of τju = λu, up to a finite error. We
furthermore remark that the next two comparison theorems hold. The first one is
found in [11].

Theorem A.2 (Sturm’s Comparison theorem). Let q0 − q1 > 0, and Hjuj = 0,
j = 0, 1. Then between any two zeros of u0 or W (u0, u1), there is a zero of u1.

Similarly, between two zeros of u1, which are not at the same time zeros of u0,
there is at least one zero of u0 or W (u0, u1).

The next result is found in [10].

Theorem A.3 (Comparison theorem for Wronskians). Suppose uj satisfies τjuj =
λjuj, j = 0, 1, 2, where λ0r − q0 ≤ λ1r − q1 ≤ λ2r − q2.

If c < d are two zeros of Wx(u0, u1) such that Wx(u0, u1) does not vanish identi-
cally, then there is at least one sign flip of Wx(u0, u2) in (c, d). Similarly, if c < d
are two zeros of Wx(u1, u2) such that Wx(u1, u2) does not vanish identically, then
there is at least one sign flip of Wx(u0, u2) in (c, d).

We call H1 relatively oscillatory with respect to H0 at E if for any solutions of
Hjuj(E) = Euj(E), j = 0, 1, we have that #(u0(E), u1(E)) is infinite. Otherwise
we call it relatively nonoscillatory. Now, we come to relative oscillation criteria.

Lemma A.4. Let limx→∞ ∆q(x) = 0. Then σess(H0) = σess(H1) and H1 is
relatively nonoscillatory with respect to H0 at E ∈ R\σess(H0).

By Theorem A.1, this is equivalent if E is a boundary point of the essential
spectrum of H0, to E being an accumulation point of eigenvalues of H1. In order
to state a relative oscillation criterion at a boundary point of the spectrum, some
preparations are needed.

Definition A.5. A boundary point E of the essential spectrum of H0 will be called
admissible if there is a minimal solution u0 of (τ0−E)u0 = 0 and a second linearly
independent solution v0 with W (u0, v0) = 1 such that(

u0

p0u
′
0

)
= O(α),

(
v0
p0v

′
0

)
− β

(
u0

p0u
′
0

)
= o(αβ)

for some weight functions α > 0, β ≶ 0, where β is absolutely continuous such that
ρ = β′

β > 0 satisfies ρ(x) = o(1) and 1
`

∫ `

0
|ρ(x+ t)− ρ(x)| dt = o(ρ(x)).
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It is shown in Lemmas 4.2 and 4.3 of [12], that there exists a Prüfer angle ψ for
W (u0, u1) such that it obeys

(A.4) ψ′(x) = −∆q(x)(u0(x) cos(ψ(x))− v0(x) sin(ψ(x)))2.

Through the transformation cotψ = α cotϕ + β, this can then be transformed to
(see Lemma 4.6 of [12])

ϕ′ =
α′

α
sinϕ cosϕ+

β′

α
sin2 ϕ−∆q · αu2

0 cos2 ϕ(A.5)

+O(∆q) +O(∆q/α).

Through an application of the methods of Appendix B, one comes to the main
result of [12].

Theorem A.6. Suppose E is an admissible boundary point of the essential spec-
trum of τ0, with u0, v0 and α, β as in Definition A.5. Furthermore, suppose that
we have

(A.6) ∆q = O
( β′

α2β2

)
.

Then τ1 − E is relatively oscillatory with respect to τ0 − E if

(A.7) inf
`>0

lim sup
x→b

1
`

∫ x+`

x

β(t)2

β′(t)
u0(t)2∆q(t)dt < −1

4
and relatively nonoscillatory with respect to τ0 − E if

(A.8) sup
`>0

lim inf
x→b

1
`

∫ x+`

x

β(t)2

β′(t)
u0(t)2∆q(t)dt > −1

4
.

We finish this section with a closing remark.

Remark A.7. The requirement made that ∆q is of definite sign is not necessary.
However, a general theory requires a more difficult definition of #(u0, u1). We refer
the interested reader to [10] for details.

Appendix B. Averaging ordinary differential equations

In this section we collect the required results for these ordinary differential equa-
tions. Proofs and further references can be found in [12].

Lemma B.1. Suppose ρ(x) > 0 (or ρ(x) < 0) is not integrable near b. Then the
equation

(B.1) ϕ′(x) = ρ(x)
(
A sin2 ϕ(x) + cosϕ(x) sinϕ(x) +B cos2 ϕ(x)

)
+ o(ρ(x))

has only unbounded solution if 4AB > 1 and only bounded solution if 4AB < 1. In
the unbounded case we have

(B.2) ϕ(x) =
(

sgn(A)
2

√
4AB − 1 + o(1)

) ∫ x

ρ(t)dt.

In addition, we also need to look at averages: Let ` > 0, and denote by

(B.3) g(x) =
1
`

∫ x+`

x

g(t)dt.

the average of g over an interval of length `.
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Lemma B.2. Let ϕ obey the equation

(B.4) ϕ′(x) = ρ(x)f(x) + o(ρ(x)),

where f(x) is bounded. If

(B.5)
1
`

∫ `

0

|ρ(x+ t)− ρ(x)| dt = o(ρ(x))

then

(B.6) ϕ′(x) = ρ(x)f(x) + o(ρ(x))

Moreover, suppose ρ(x) = o(1). If f(x) = A(x)g(ϕ(x)), where A(x) is bounded
and g(x) is bounded and Lipschitz continuous, then

(B.7) f(x) = A(x)g(ϕ) + o(1).

Condition (B.5) is a strong version of saying that ρ(x) = ρ(x)(1 + o(1)) (it is
equivalent to the latter if ρ is monotone). It will be typically fulfilled if ρ decreases
(or increases) polynomially (but not exponentially). For example, the condition
holds if supt∈[0,1]

ρ′(x+t)
ρ(x) → 0.

Furthermore, note that if A(x) has a limit, A(x) = A0 + o(1), then A(x) can be
replaced by the limit A0 and we have the next result

Corollary B.3. Let ϕ obey the equation

(B.8) ϕ′ = ρ

(
A sin2(ϕ) + sin(ϕ) cos(ϕ) +B cos2(ϕ)

)
+ o(ρ)

with A,B bounded functions and assume that ρ = o(1) satisfies (B.5). Then the
averaged function ϕ obeys the equation

(B.9) ϕ′ = ρ

(
A sin2(ϕ) + sin(ϕ) cos(ϕ) +B cos2(ϕ)

)
+ o(ρ).

Note that in this case ϕ is bounded (above/below) if and only if ϕ is bounded
(above/below).

Acknowledgments. I thank D.Damanik for bringing [3], [2] to my attention, and
many helpful discussions.
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[13] J. Moser, J. Pöschel, An Extension of a result by Dinaburg and Sinai on quasi-peirodic
potentials, Comment. Math. Helvetici 59 (1984), 39-85.

[14] M. Reed, B. Simon, Methods of Modern Mathematical Physics, Analysis of Operators,
Academic Press (1978).

[15] K. M. Schmidt, Critical coupling constants and eigenvalue asymptotics of perturbed periodic
Sturm-Liouville operators, Commun. Math. Phys. 211, 465–485 (2000).

Department of Mathematics, Rice University, Houston, TX 77005, USA
E-mail address: helge.krueger@rice.edu

URL: http://www.mat.univie.ac.at/~helge/

mailto:helge.krueger@rice.edu
http://www.mat.univie.ac.at/~helge/

	1. Introduction
	2. Quasiperiodic Operators
	3. Main Results
	4. Proof of Theorem 3.7
	5. Outline of Eliasson's proof
	Appendix A. Relative Oscillation Theory
	Appendix B. Averaging ordinary differential equations
	Acknowledgments

	References

