
Submission to CoopIS’99 – Paper #A18

Looking at the Web through XML glasses

Arnaud Sahuguet
Department of Computer and Information Science

University of Pennsylvania

sahuguet@saul.cis.upenn.edu

Fabien Azavant
École Nationale Sup´erieure des T´elécommunications

Paris, France

Fabien.Azavant@enst.fr

Abstract

The Web so far has been incredibly successful at deliver-
ing information to human users. So successful actually, that
there is now an urgent need to go beyond abrowsing human
and make information accessible to applications, in order
to offer automation, inter-operation and Web-awareness
among services.

To do so, information from Web sources needs to be ac-
cessible in a structured way. XML and its various exten-
sions (data-models, query languages) are a step in this di-
rection. Unfortunately, the Web is not yet a well organized
repository of nicely structured XML documents but rather a
conglomerate of volatile HTML pages, for which structure
has to be extracted.

To address this problem, we present the World Wide Web
Wrapper Factory (W4F), a Java toolkit for the generation
of wrappers for Web sources. Our main contributions are:
(1) an expressive language to specify the extraction of com-
plex structures from HTML pages; (2) a declarative map-
ping to XML documents, with the automatic generation of
the corresponding DTDs; (3) some visual supports to make
the engineering of wrappers faster and easier.

As an illustration, we show how we can, via W4F in-
termediation, transparently query HTML sources from an
XML query language.

1. Introduction

The Web has become a major conduit to information
repositories of all kinds. Today, more than80% of infor-
mation published on the Web is generated by underlying
databases (however access is granted through a Web gate-
way using forms as a query language and HTML as a dis-
play vehicle) and this proportion keeps increasing. But Web
data sources also consist of stand-alone HTML pages hand-
coded by individuals, that provide very useful information
such as links, reviews, digests, etc.

An unfortunate consequence is that Web information

sources exist independently of one another, like isolated in-
formation islands. For instance, when looking for a movie,
one would like to combine movie details (genre, cast, etc.)
from one site, with reviews from a second one, and show
times from a third one. And today the only way to do it is
by performing the clicking, fetching and reading by hand.

What one really would like is to go beyond abrows-
ing human, in order to achieve automation, Web-awareness
among services (services taking advantage of one another),
interoperability (between Web sources and legacy databases
or among Web sources themselves) and cooperation. All
this requires software applications capable of making the
content of HTML source available to them, via HTML
wrappers.

This work is presented at an interesting time because of
the on-going emergence of XML [17] as a more application-
friendly standard for Web pages. Some people have al-
ready argued that there in no more need for HTML wrap-
pers because data sources will soon serve XML documents.
For data coming from information systems, the underlying
databases can be easily modified to generate XML docu-
ments, but it might require some expensive changes. For
HTML pages that have been hand-coded, the migration has
to be handled using ad-hoc tools, if any. In both cases,
HTML wrappers can smoothly perform data migration from
these legacy information sources.

In fact, there already are countless HTML pages on the
Web and the information that many of them contain will
have to be displayed in XML in a relatively near future.

In this paper we present the World Wide Web Wrapper
Factory (W4F), a toolkit to generate wrappers for HTML
Web sources. Our wrappers are specified in a fully declar-
ative way and handle transparently the retrieval of Web
pages, the extraction of information from the HTML source
and the mapping to a target format for further use. We ar-
gue that our toolkit can offer a simple and elegant solution
to the problems of integration and migration, and we show
how it can be used tolook at the Web through XML glasses,
by translating HTML pages into XML documents.

1

The rest of the paper is organized as follows. Section 2
briefly presents the W4F toolkit and the concrete problem
we want to address. In section 3, we give an overview of the
extraction language. Section 4 describes the internal data
model used to store extracted data. Mappings and in partic-
ular mappings to XML are explained in Section 5. Section 6
presents the visual support offered by the toolkit. Section 7
suggests how we can use the toolkit to generate XML doc-
uments – either virtual or materialized – and directly query
them with an XML query language. Finally we offer our
concluding remarks with some future and related work.

2. W4F in a nutshell

W4F (World-Wide Web Wrapper Factory) is a toolkit to
generate Web wrappers. Our wrappers consist of three inde-
pendent layers. Theretrieval layer is in charge of fetching
the HTML content from a Web data source. Theextrac-
tion layer extracts the information from the document. The
mapping layer’s role is to specify how to export the data.
These layers are working together as illustrated in Figure 1.

5

H

W

U

L

H

Y

D

O

�

5

X

O

H

V

0

D

S

S

L

Q

J

�

5

X

O

H

V

1 6 / 0 R YLH

2

8

7

3

8

7

,

1

3

8

7

+70/�WUHH+70/�GRFXPHQW

P R YLH

3 DUVHU

:HE

(

[

W

U

D

F

W

L

R

Q

�

5

X

O

H

V

� - DYD�2EMHFW�

Figure 1. W4F information flow.

For a given Web source, some extraction rules and some
structural mappings, the toolkit generates a Java class that
can be used as a stand-alone program or directly integrated
into a more complex application. A wrapper is specific to a
class of Web pages. For the movie examples presented later
on, it means that we need one wrapper to handle HTML
pages for movies, one wrapper for actors, etc.

The toolkit per-se consists of an HTML parser that gen-
erates parse trees out of HTML pages (using various heuris-
tics to handle ill-formed pages), a compiler to produce Java
code for each layer and various visual wizards (see Sec-
tion 6) to assist the user in writing the specifications.

Along this paper we will present how the toolkit can
be used to integrate information from theInternet Movie
Database (IMDb). IMDb is the biggest information repos-
itory about movies and is freely available. Its underlying
information system is a big file system1 that serves HTML
pages.

1Seehttp://www.imdb.com/interfaces#plain for more details.

Our concrete goal is to be able to ask queries about the
best movies. IMDb proposes – among many other things
– a page with the list of the best 250 movies (let us call it
Top250) and a page for each movie (let us call itMovie).
These pages are presented in Figure 2.

Figure 2. Top250 and Movie pages.

As we can see, theTop250 source offers limited infor-
mation about movies: title and year only. To gather some
extra information, we need to follow the link to the movie
page where the detailed information is available. We there-
fore need to build two wrappers, one for each type of pages.
In the rest of the paper, these wrappers will be implicitly ref-
erenced asTop250 andMovie . FromTop250 , we will
need to extract the title and the url of each movie in the list.
FromMovie , we will need to extract the title, the year, the
list of directors, the list of genre and the cast.

In the next sections, we will present how to specify the
information to be extracted from each HTML source, how
to define a mapping to XML and how to enrich information
from Top250 with the details of each movie.

3. Extracting information

In this section, we present some features of HEL (HTML
Extraction Language) used for the specification of the ex-
traction layer. The full details can be found in [14]. Fea-
tures presented here after are illustrated by the examples of
Figure 3 and Figure 4.

HEL is a DOM-centric [18] language where an HTML
document is represented as a labeled graph. Each Web

2

EXTRACTION_RULES for Top250
top250 = html.body.table[1].tr[0].td[2].div[0].table[0].tr[i:*].td[1] (.a[0].getAttr(href) # .txt)
WHERE html.body.table[1].tr[0].td[2].div[0].table[*].tr[i].getNumberOf(td) = 2;

EXTRACTION_RULES for Movie
movie = html

(.head.title.txt, match/(.*?) [(]/ // title **
.head.title.txt, match/.*?[(]([0-9]+)[)]/ // year **
.body.table[1].tr[0].td[2].table[0].tr[1].td[1].table[h:0].tr[1-].td[0].a[0].txt // directors
.body->td[i:0].a[*].txt // genres
.body->table[ii:0].tr[jj:*].td[0].txt, match/(\\S+)\\s(.*)/ // cast
)

WHERE html.body.table[1].tr[0].td[2].table[0].tr[1].td[1].table[h].txt =˜ "Directed by"
AND html.body->td[i].b[0].txt = "Genre"
AND html.body->table[ii].tr[0].td[0].txt =˜ "(Cast overview)|(credited cast:)"
AND html.body->table[ii].tr[jj].getNumberOf(td) = 3;

Figure 3. Extraction rules for the IMDb expressed using HEL.

document is parsed and an abstract tree corresponding to
its HTML hierarchy is built out of it. A tree consists of
a root, some internal nodes and some leaves. Each node
corresponds to an HTML tag (text chunks corresponds to
PCDATAnodes). Nodes can have children and these can
be accessed using their label and their index. A leaf can be
either aPCDATAor abachelortag2.

Navigation along the abstract tree is performed using
path-expressions ([5, 1]). A unique feature of HEL is that it
comes with two ways to navigate.

The first navigation is along thedocument hierarchy
using the"." operator. Path’html.head.title’ will
lead to the node corresponding to the<TITLE> tag, inside
the<HEAD>tag, from the root of the document. This type
of navigation offers a unique (i.e. canonical) way to reach
each information token.

The second way to navigate is along thedocument flow,
using the"->" operator. Path’html->pcdata[1]’ will
lead to the second chunk of text found in the depth-first
traversal of the abstract tree starting from the root of the
document. This operator is very useful to create navigation
shortcuts. Moreover, it permits to traverse the entire tree.

Using both complementary navigation styles, most struc-
tures can be easily identified as extraction paths. To the best
of our knowledge, HEL is the only language that captures
bothstructuresof a page.

Path expressions can also useindex rangesto return a
collection3 of nodes, like[1,2,3] , [7-] or the wild-card
[*] . When there is no ambiguity, the index value can be
omitted and is assumed to be zero.

For our extraction purposes, we are not really interested
in nodes themselves but rather in the values they carry.

2A bachelor tag is a tag that does not require a closing tag, like
or
.

3list, since we care about the order of nodes.

From a tree node, we can extract its text value".txt" . The
text content of a leaf is empty for a bachelor tag and corre-
sponds to the chunk of text forPCDATA. For internal nodes,
the text value corresponds to the recursive concatenation of
the sub-nodes, in a depth-first traversal.
In the same way, the underlying HTML source is extracted
using".src" . Some other properties like attribute values
(e.g. "HREF") or the number of children can also be re-
trieved from nodes.

Another key feature of the language is the ability to have
path index variables that can be resolved with respect to
someconditions when the path is evaluated on a given
page. Index variables can return the first index value (like
[i:0] 4) or an index range (like[i:*] , for all of them)
that satisfies the condition. Conditions are introduced us-
ing string variables andWHEREclauses separated byAND.
Conditions cannot involve nodes themselves but only their
properties. Various comparison operators are offered by the
language, including regular expression matching.
Conditions can be marked with the cut operator"!" 5,
meaning that the search for index values will be stopped
the first time the condition is evaluated to false. This oper-
ator turns out to be extremely useful when used with"->"

to limit the exploration of the tree.
Conditions are crucial in table contexts, where row and

column positions are not known in advance for instance. Let
us imagine we want to extract the name of the movie ranked
5th and let us assume that the information is in a table with
header"Best Movies" in which movies are presented
one by row. For each movie, we have – among other infor-
mation – a column"Title" and a column"Rank" , as
presented in Figure 4.

The table indexi is resolved first, then column indices
for "Title" and"Rank" . Finally, we can resolve the row

4This is the default behavior.
5In the spirit of the Prolog cut.

3

Best Movies

... Title ... Rank ...

...

... Casablanca (1942) ... #5 ...

...

info = html->table[i].tr[row].td[title_c].txt
WHERE html->table[i].tr[0].txt = "Best Movies"
AND html->table[i].tr[0].td[title_c].txt = "Title"
AND html->table[i].tr[0].td[rank_c].txt = "Rank"
AND html->table[i].tr[row].td[rank_c].txt = "#5"

Figure 4. Using index variables

that corresponds to rank"#5" . This is really an extreme
case but it illustrates that using index variables, extraction
does not require to know the exact structure ahead of time.
In most real examples (see Figure 3), we already know some
partial information about the table structure.

So far we have been using only the HTML hierarchy to
extract information. However, in many cases, the tag granu-
larity is too rough and we need something thinner to capture
more precise information. For instance, in the table exam-
ple of Figure 4, we might want to extract the title itself and
trim the year.
To capture this level of details, our language comes with
standardregular expressions̀a la Perl [16] that can be ac-
cessed through the two operatorsmatch andsplit . The
match operator takes a string and a pattern, and returns
the result of the matchings (there can be more than one).
Depending on the nature of the pattern6 the result can be a
string or a list of strings.
Thesplit operator takes a string and a separator, and re-
turns a list of substrings. These operators can also be used
in cascade.
In the example of Figure 3,match is used to extract sep-
arately the title and the year from the movie page title
’head.title.txt’ . split would be used when for in-
stance the information is returned as a string with a delim-
iter like "," , "-" or "and" .

As pointed out previously, extraction should not be lim-
ited to isolated pieces of information but should be able to
capturecomplex structures.
The HEL language therefore provides the fork operator"#"

to build complex structures based on extraction rules. The
meaning of the operator is somehow to follow multiple sub-
paths at the same time. Forks can be applied in cascade.
This is particularly useful when information spread across
the page need to be put together like in the movie examples
of Figure 3.

6The number of parenthesized sub-pattern binders indicates the number
of items returned by the match.(?:) is not a binder!

4. Storing information as NSLs

A key motivation of W4F is to be able to capture com-
plex structures expressed inside HTML pages. The extrac-
tion language presented in the previous section offers rich
constructs, but we also need a flexible and expressive way
to represent the extracted information.

Within W4F, information is stored inNested String
Lists (NSL), the data-type defined bynull | string
| list of NSL . It is important to note that items within
a list can have different structures. The data-type has been
chosen on purpose to be simple, anonymous and capable of
expressing any level of nesting.

For a given extraction rule, the structure of the corre-
sponding NSL is fully determined by the rule itself (the
WHEREclause has no influence). Strings are created by
leaves. Lists are created from index ranges, forks and regu-
lar expression operatorssplit andmatch (only when the
number of matches is greater than one).

By looking at the extraction rules of Figure 3, we can
infer that for amovie the corresponding NSL will be a list
of 5 items (4 top level forks). Items0 and1will be strings (1
match with 1 binding). Item3 will be a list of strings (index
rangetr[1-]). Item4 will be a list of strings (index range
a[*]). Item5 will be a list of pairs (index rangetr[jj:*]
and 1 match with 2 bindings).
For top250 , the NSL will be a list (tr[i:*]) of pairs (1
fork) of strings.

NSLs are very low-level structures that can be manipu-
lated via an API (list iterators and coercion operators). For
the example of the best 250 movies, we get the NSL from
a call to the wrapper (nsl = getTop250()) and then
extract the various components as presented in Figure 5.

NestedStringList nsl = getTop250();
String url, title; NSL_List l;
for(int i=0; i<nsl.size(); i++)
{

l = (NSL_List)nsl.elementAt(i);
url = l.elementAt(0).toString();
title = l.elementAt(1).toString();
}

Figure 5. Using the NSL API.

5. Mapping information

As presented above, the only way to transform NSLs is
to use the low-level API. Fortunately, W4F comes with au-
tomatic mappings for various target types that handle the
low-level coding for the user: the user can simply invoke

4

the mapping, the NSL coding being done transparently un-
der the hood.

5.1. Java mappings

First, W4F offers an automatic mapping to Java base
types and their array extensions. Strings, int, float can be
automatically coerced into the corresponding types. Nest-
ing is handled, but only for homogeneous structures (list
items must have the same structure).
For more irregular structures, the user has to define a Java
mapping by providing some Java classes with valid con-
structors that can consume (via the API) the NSL to pro-
duce Java class instances. This is a very powerful construct
that allows the user to do almost everything from the infor-
mation carried by the NSL. We present below a way to map
the NSL from theTop250 wrapper into aMovieRef ob-
ject. W4F will automatically convert the NSL extract from
the page into an array ofMovieRef .

public class MovieRef
{

String url, title;
public MovieRef(NestedStringList nsl)
{

NSL_List pair = (NSL_List) nsl;
url = pair.elementAt(0).toString();
title = pair.elementAt(1).toString();

}
}

Figure 6. Defining a mapping to a Java class.

Using the same strategy, the user could define some Java
classes that offer some XML output for instance. But in this
case the mapping would be defined in terms of code.

5.2. XML mappings with XML templates

An XML mapping expresses how to create XML ele-
ments out of NSLs. It is important to keep in mind that the
shapeof XML elements we can generate is constrained by
the structure of the NSL itself.

An XML mapping is described via declarative rules
calledtemplates. Templates are nested structures composed
of leaves, lists and recordsand are defined using the lan-
guage defined below:

Template := Leaf j Record j List
Leaf := . Tag j . Tag ˆ j . Tag ! Tag
List := . Tag Flatten Template
Record := . Tag (TemplList)
Flatten := * j * Flatten
TemplList := Template j Template # TemplList
Tag := string

We detail next each type of template. The XML elements
and the DTD specification that correspond to each template
are presented in figures 7, 8 and 9.

A leaf templateconsumes an NSL that is a string. Var-
ious target XML elements can be desirable. The string can
be represented asPCDATA, as an attribute of a parent ele-
ment or as attribute of a bachelor element. We show below
how these cases can be specified in the language7 and the
output XML element for an input NSL string (say ”Se7en”):

.Movie
<!ELEMENT Movie #PCDATA>

<Movie>Se7en</Movie>

.Movie(.Titleˆ #)
<!ELEMENT Movie ()>
<!ATTLIST Movie Title CDATA #IMPLIED>

<Movie Title="Se7en" > </Movie>

.Movie!Title
<!ELEMENT Movie EMPTY>
<!ATTLIST Movie Title CDATA #IMPLIED>

<Movie Title="Se7en"/>

Figure 7. Leaf templates.

A list template like .Movies*.templ consumes a list
of NSL items. It first opens a new element<Movies> .
Then it applies the same templatetempl to each list item,
using concatenation. Finally the element is closed with
</Movies> . In the list template, the number of’*’ indi-
cates if any flattening has to be performed on the NSL list,
before applying the template.

.Movies*.templ
<!ELEMENT Movies (templ)*>

<Movies>
<templ> ... </templ>
...
<templ> ... </templ>

</Movies>

Figure 8. List template.

A record template like .Movie(t1 # # tn) con-
sumes a list ofn NSL items. It first creates a new ele-
ment<Movie> and applies each inner template to its corre-
sponding list item, using concatenation. Finally the element
is closed with</Movie> .
For a record, a different template is applied to each NSL
item; for a list, it is the same template.

From an XML mapping, W4F will generate some Java
code that represents a template. The template can later on
be used to consume the NSL and produce XML documents.

7The sequence in the lines below simply means ”anything”.

5

.Movie(T1 # # Tn)
<!ELEMENT Movie (T1, ..., Tn)>

<Movie>
<T1> ... </T1>
...
<Tn> ... </Tn>

</Movie>

Figure 9. Record template.

The construction of the DTD is straightforward from the
specification itself.

Some important remarks about the mapping are worth
mentioning.

The mapping is directed by the extraction
A mapping is a way to consume the NSL and a NSL piece
can only be consumed once. If the user wants to have an
Actor element with two sub-elementsFirstName and
LastName and an attributeName, he must make sure that
the NSL carries these three items. For a given purpose, it
might be necessary to change the extraction rule, to come
up with the desired XML element.
There is no 1-1 mapping between a template and an
NSL. First, the user has some freedom when defin-
ing leaves for instance. Second, record and list tem-
plates both consume NSL lists that may have been cre-
ated by different means: html (.tag[0].txt #
.tag[1].txt) and html .tag[*].txt can both
be consumed by the same record template provided that the
second NSL consists of two elements.
Another issue is that templates do not capture the full ex-
pressivity of XML DTDs. For instance, it is not possible to
define IDREFs.

A template corresponds to more than one DTD
As mentioned above, the creation of a DTD from a template
is straightforward. However, for list and record templates
the generated DTD can be set to be more or less permissive.
As presented in figures 7, 8 and 9, the DTD is permissive
for lists (using a* that means0 or more elements) and strict
for records (sub-elements have to appear). The latter pol-
icy could be weakened by replacing(T1,...,Tn) with
(T1?,...,Tn?) . These choices depend on the use that
will be made of the DTD (optimization, validation) and on
the quality (in terms of regularity of the structures) of the
web source from where the information is extracted. For
the IMDb example, the record policy turns out to be too re-
strictive if we want to guarantee the validity of the XML
documents generated.

Templates do not preventpathological cases
The"ˆ" construct should not be used in a list environment.
Movies*.Titleˆ will try to add attributeTitle to element
Movies for each element of the NSL list being consumed.
The semantics is that the attribute value will be overwritten

by every next element.
XML requires that a tag must be defined only once. In the
movie template, changingTitle andGenre to Namewill
be fine since the new elementNamewill be the same in both
contexts. However, changingDirector and Actor to
Person will create a conflict:Person as a sub-element
of Directed By only containsPCDATAwhile Person
as a sub-element ofActors containsFirstName and
LastName .

movie_t =
.Movie (.Title

.Year
.Directed_By*.Director
.Genres*.Genre
.Cast*.Actor (.FirstName

.LastName));

Figure 10. An XML template for a movie.

As an illustration, we present in Figure 10 a possible
XML mapping for the IMDb Web source. The output of
this mapping will appear in Figure 14 and its DTD in Fig-
ure 15.

6. Support via visual tools

In order to make the specification of our wrappers fast
and easy, W4F provides some visual tools (or wizards) that
assist the user during the various stages of the wrapper con-
struction.

The critical part of the design of the wrapper is the defi-
nition of extraction rules since it requires a good knowledge
of the underlying HTML.

Figure 11. The extraction wizard on Top250 .

The role of the extraction wizard (see Figure 11) is to
help the user write such rules. For a given HTML docu-
ment, the wizard feeds it into the HTML parser and returns
the document to the user with some invisible annotations
(the document appears exactly as the original).

6

On Figure 11, when the user points to ”Casablanca”, the
corresponding text element gets high-lighted (the user can
identify information boundaries enforced by the HTML tag-
ging) and the canonical8 extraction rule pops-up.

The magic behind it takes advantage of our DOM-centric
approach: the page is fed into the parser and each text chunk
(i.e. PCDATA) gets annotated with its corresponding canon-
ical path in the document tree.

As an example, the annotation of a tree node with label
TAG(which is thenth child of root nodeHTML) is given
below:

<TAG> stuff </TAG>
becomes

<TAG>

stuff

</TAG>

This straight-forward annotation strategy carries some
restrictions. First, the path used is the canonical path: it
does not use all the powerful constructs of the HEL lan-
guage like"->" , index ranges, conditions or regular ex-
pressions. Secondly, the annotation is done for each ele-
ment. In the example of Figure 11, it would be convenient
to point to all the items from the list, not just one.

But even if the wizard is not capable of providing the
best extraction rule, it is always a good start. Compare what
is returned by the wizard and what we actually use in our
wrapper forTop250 (Figures 11 and 3).

Another useful interface permits to test and refine the
wrapper interactively before deployment. Figure 12 shows
the wizard which visualizes the 3-layer architecture of the
wrapper.

Figure 12. A visual view of the wrapper.

8By canonical we mean that it uses only hierarchy based navigation.

In the top layer, the user inputs the location of the Web
source and the retrieval method (aGETby default). The
middle layer displays the extraction rule – expressed in the
HEL language – to be applied on the retrieved HTML page.
In this example, the rule will extract the url and the full title
(title and year) of each movie of the list. The bottom layer
represents the structure of the information extracted. In the
case of the figure, the NSL data-structure returned is a list
of pairs of strings.

As of this writing, a mapping wizard is under construc-
tion.

7. Querying HTML sources

Using the wrappers presented above, we can now extract
information from HTML pages and map it into XML docu-
ments.

7.1. Materialized vs. virtual documents

From an engineering perspective, two cases can occur:
(1) the XML document is generated out of one unique
HTML page; (2) the XML document is generated out of
many HTML pages.

In the first case, the translation can be done on-the-fly
and through an XML gateway. The role of the gateway is
simply to offer a Web access (via a parameterized urlu) to
the page: fromu it extracts the location of the source page
and performs the extraction and the mapping. The access
appears completely transparent for the caller.

In the second case, the translation requires HTML pages
to be fetched and processed before being mapped together
to the target XML document. As an illustration, we present
in Figure 13 the piece of Java code that creates the XML
document with the best movies and their detailed informa-
tion.

XmlDoc doc = new XmlDoc();
doc.appendDTD_multiple("List", movie_t);
MovieRef[] refs = get_top250();
for(int i=0; i<refs.length; i++)

doc.appendElement(getMovie(ref[i].url));
doc.print(new PrintWriter(System.out));

Figure 13. Materializing Top250 .

We first prepare our new XML document that will be
built out of multiple sources. Sources will be mapped ac-
cording to themovie t template and glued together un-
der an element with name"List" . Then we extract the
information from theTop250 page and map it into the
MovieRef Java structure defined in Section 6. We then it-
erate over eachMovieRef and fetch the page correspond-

7

ing to its URL. The information is extracted, mapped into an
XML element according to templatemovie t and pushed
to the XML document. The final XML document is pre-
sented in Figure 14 with its DTD in Figure 15.

Figure 14. The translated XML document ...

<!DOCTYPE W4F_DOC [
<!ELEMENT W4F_DOC (List)>
<!ELEMENT List (Movie)*>
<!ELEMENT Movie (Title,Year,

Directed_By,Genres,Cast)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Year (#PCDATA)>
<!ELEMENT Directed_By (Director)*>
<!ELEMENT Director (#PCDATA)>
<!ELEMENT Genres (Genre)*>
<!ELEMENT Genre (#PCDATA)>
<!ELEMENT Cast (Actor)*>
<!ELEMENT Actor (FirstName,LastName)>
<!ELEMENT FirstName (#PCDATA)>
<!ELEMENT LastName (#PCDATA)>

]>
<W4F_DOC>

Figure 15. ... and its DTD.

7.2. Querying the XML documents

Once we have our XML document available (virtual or
materialized), we can query them using our favorite XML

query language. The following examples presented in fig-
ures 16 and 17 are expressed using XML-QL. See [8] for
more details about the query language itself.

Query1 looks for people who played in all the
three Star-Wars movies. The query will use vir-
tual XML documents that are generated on-the-fly from
the movie page of each of the Star-Wars movies.
"...Star+Wars+(1977)" represents the parameter-
ized url that is used to access the virtual document.

Query1::
CONSTRUCT <Actor> <Name> $name </> </>
WHERE

<*.Cast.Actor.LastName> $name </>
IN "...Star+Wars+(1977)",

<*.Cast.Actor.LastName> $name1 </>
IN "...Empire+Strikes+Back,+The+(1980)",

<*.Cast.Actor.LastName> $name2 </>
IN "...Return+of+the+Jedi+(1983)"
text($name) = text($name1),
text($name) = text($name2)

Figure 16. Query1.

Query2 9 looks for movies and pairs of people who
worked together in more than one movie. The query will
compute the cross-product for movies and then for each pair
of movies the cross product of actors. Conditions make sure
the same actor is not counted twice and that a pair of actors
is only counted once ($x < $y). The query will use the
materialized view ofTop250 presented before.

8. Conclusion and future work

In this paper we have presented the W4F toolkit and
showed how it can be used to convert HTML pages into
XML documents, by specifying some extraction rules (what
information to extract) and a mapping to XML (what XML
elements to create). From this perspective, our main con-
tributions are: (1) a fully declarative specification of all the
components of a wrapper; (2) a very expressive extraction
language based on the Document Object Model, with two
types of navigation, variables, conditions, regular expres-
sions and some constructs to build complex structures; (3)
a simple specification to map the extracted information into
XML elements; (4) a robust framework to engineer wrap-
pers for Web sources, that offers the generation of ready-to-
use Java classes and some visual tools to assist the user.

Compared to other approaches [11, 12], we do not use
a grammar-based approach for extraction but rely on the

9The authors are grateful to Alin Deutsch for working out the query
and making sure it actually runs under the XML-QL implementation.

8

Query2::
CONSTRUCT <Joint_Work ID=f($x,$y)>

<TITLE>$title1</> <TITLE>$title2</>
<Actor>$x </> <Actor>$y </> </>

WHERE <*.Movie>
<*.Title>$title1</>
<*.Actor.LastName>$a11</>
<*.Actor.LastName>$a12</>

</> IN "Top250.xml",
<*.Movie>

<*.Title>$title2</>
<*.Actor.LastName>$a21</>
<*.Actor.LastName>$a22</>

</> IN "Top250.xml",
text($title1) != text($title2),
text($a11) = $x, text($a12) = $y,
$x < $y,
text($a21) != text($a22),
text($a21) = $x, text($a22) = $y

Figure 17. Query2.

DOM object-model, which gives us for free some wysiwyg
visual tools like [2].

With rich features like hierarchical and flow-based nav-
igations, conditions and nested constructs, our extraction
language is more expressive and robust than [9, 3]. Un-
like [4], we do not try to query the Web (for instance it
is not possible to follow links at the level of the HEL lan-
guage) but simply extract structure from Web information
sources: querying is the concern of the application as illus-
trated by the XML-QL examples.

Our tackling of XML is different from the one of XML-
QL [8] based on patterns and explicit constructs because we
derive it from our extraction process that handles HTML
pages with no explicit structure. As a consequence we can-
not for instance express object sharing (usingIDREFs).
From this perspective, our approach is more related to
XQL [15].

Similarly in W4F, we do not address problems that are
specific to mediators but we believe that our wrappers can
be easily included into existing integration systems like
TSIMMIS [10], Kleisli [7], Garlic [13], etc. W4F is now
being used as part of the K2 [6] integration system.

Our future work will involve three distinct aspects of
the system. The first one focuses on providing better tools
to assist the user when writing extraction rules. Machine-
learning techniques should be useful to define robust short-
cuts for complicated extraction paths. The second aspect
concerns the mapping of NSL structures: extending the
XML template language to handleIDREFs and providing
other mappings for other data-models. For this last point,
the solution might be to rely on XML and mappings from

XML to other data-models. The third aspect is to enrich the
language with some extraction patterns and some user de-
fined functions. The possibility of following hyperlinks at
the level of the extraction language has to be investigated:
it permits to put two wrappers in the same extraction rule,
but it forces to look at a page as a graph and not as a tree.
We also have to make sure that the internal parser keeps up
with new evolutions of the HTML language and recovers
from new misuses by human authors.

The W4F has been successfully used to build a large
variety of Web wrappers for information sources like the
CIA World Factbook10, the IBM Patent Server11, Hoover’s
company profiles12. The toolkit can be downloaded from
the Penn Database Research Group web site13. On-line
examples of W4F applications (including the wrapper pre-
sented here) can be found at the same location.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom,
and J.L. Wiener. The Lorel Query Language for
Semistructured Data.Journal on Digital Libraries,
1997.

[2] Brad Adelberg. NoDoSE – A Tool for Semi-
Automatically Extracting Semi-Structured Data from
Text. In Proc. of the SIGMOD Conference, Seattle,
June 1998.

[3] Charles Allen. WIDL: Application Integration with
XML. World Wide Web Journal, 2(4), November
1997.

[4] Gustavo Arocena and Alberto Mendelzon. WebOQL:
Restructuring Documents, Databases, and Webs. In
Proc. ICDE’98, Orlando, February 1998.

[5] Vassilis Christophides.Documents structurés et bases
de donńees objet. PhD dissertation, Conservatoire Na-
tional des Arts et Metiers, October 1996.

[6] Johnatan Crabtree, Scott Harker, and Val Tannen. An
OQL interface to the K2 system. Technical report,
University of Pennsylvania, Department of Computer
and Information Science, 1999. To appear.

[7] Susan Davidson, Christian Overton, Val Tannen, and
Limsoon Wong. Biokleisli: A digital library for
biomedical researchers.Journal of Digital Libraries,
1(1):36–53, November 1996.

10http://www.odci.gov/cia/publications/factbook
11http://www.patents.ibm.com
12http://www.hoovers.com
13http://db.cis.upenn.edu/W4F

9

[8] Alin Deutsch, Mary Fernandez, Daniela Florescu,
Alon Levy, and Dan Suciu. XML-QL: A Query Lan-
guage for XML, 1998. http://db.cis.upenn.edu/XML-
QL.

[9] Jean-Robert Gruser, Louiqa Raschid, M. E. Vidal, and
L. Bright. Wrapper Generation for Web Accessible
Data Sources. InCOOPIS, 1998.

[10] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha,
and A. Crespo. Extracting Semistructured Informa-
tion from the Web. InProceedings of the Workshop
on Management of Semistructured Data. Tucson, Ari-
zona, May 1997.

[11] Gerald Huck, Peter Fankhauser, Karl Aberer, and
Erich J. Neuhold. JEDI: Extracting and Synthesizing
Information from the Web. InCOOPIS, New-York,
1998.

[12] G. Mecca, P. Atzeni, P. Merialdo, A. Masci, and
G. Sindoni. From Databases to Web-Bases: The
ARANEUS Experience. Technical Report RT-DIA-
34-1998, Universita Degli Studi Di Roma Tre, May
1998.

[13] Mary Tork Roth and Peter Schwartz. A Wrapper Ar-
chitecture for Legacy Data Sources. Technical Report
RJ10077, IBM Almaden Research Center, 1997.

[14] Arnaud Sahuguet and Fabien Azavant. W4F, 1998.
http://db.cis.upenn.edu/W4F.

[15] David Schach, Joe Lapp, and Jonhatan Robie. XML
Query Language (XQL), 1998. QL’98 - The Query
Languages Workshop.

[16] Larry Wall, Tom Christiansen, and Randal L.
Schwartz.Programming Perl. O’Reilly & Associates,
1996.

[17] World Wide Web Consortium (W3C). Extensible
Markup Language (XML) 1.0, 1998.
http://www.w3.org/TR/1998/REC-xml-19980210.

[18] World Wide Web Consortium (W3C). The Document
Object Model, 1998.
http://www.w3.org/DOM.

10

