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Abstract 
 
Data interoperability between computer systems is critical for businesses.  One design 
proposed for future Air Force systems, the C2STA data architecture, attempts to provide 
standardized object-oriented interfaces to data, independence from underlying data 
storage technologies, and implementation transparency.  If successful, such an initiative 
would greatly simplify data interoperability issues.  This thesis examines the details of 
the C2STA data architecture and presents the results of one prototype implementation.  
Further, research on other data architectures that complement this investigation is 
described.  This thesis concludes with suggested modifications to the C2STA data 
architecture. 
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Chapter 1 

Introduction 

 

Virtually everyone who has used a computer system is familiar with 

interoperability problems.  The specific problem may come in the form of a computer 

user with one word processor trying to open a file created in a second word processor.  In 

a different situation, a computer user on a private network might want to exchange 

messages with users on the Internet.  Or perhaps the problem arises because a Web user 

wants to obtain contact information for a company but that company’s Web site is written 

in French and the user only understands Russian.  Each of these problems can be 

categorized as some kind of interoperability issue.  The first two issues can be solved 

using computer systems specifically designed to provide interoperability between 

otherwise incompatible technologies.  The third problem is more difficult to solve using 

automated systems as language translation algorithms are far from perfect.  In such a 

situation an interoperability solution might include a human translator creating parallel 

web sites in multiple languages.  The interoperability situations described above qualify 

as problems when users cannot achieve their goals because there is no solution in place.  

Interoperability problems can arise even when specific provisions have been made to 

facilitate interoperability.  For example, an interoperability solution might rely on the 

existence of a reliable communications channel between systems; if such a channel fails 

interoperability is no longer possible. 
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The preceding examples provide a glimpse of the interoperability problems faced 

by computer system designers.  Further, they demonstrate that interoperability problems 

can occur on many levels.  The example of the web site in French highlights the case 

where all of the technology-related interoperability issues have been solved (e.g. a 

common network protocol such as TCP/IP, a common data exchange format such as 

HTML, and full communication reliability) yet interoperability is still not achieved.  

Thus, interoperability must be addressed at many levels in a system.  The following 

research is focused on the data interoperability between systems.  An introduction to data 

interoperability and some of the approaches used to achieve data interoperability between 

systems provides a useful context for researching this problem. 

 

1.1 The Data Interoperability Problem 

One of the goals of the Common Data Environment (CDE) office of the Air Force 

Electronic Systems Center (ESC) is to investigate data interoperability issues that affect 

Air Force systems.  It is important to define data interoperability so that such issues can 

be distinguished from other kinds of interoperability issues (e.g. communication 

interoperability).  Data interoperability is the ability to correctly interpret data that 

crosses system or organizational boundaries [Renner, 1999].  Thus, moving data between 

systems (communication interoperability) is not enough to qualify as data 

interoperability.  On the other hand, because data interoperability specifically addresses 

data that “crosses system or organizational boundaries” it cannot occur without some 

kind of communication interoperability.  The consequence of this dependency is that the 

definition of data interoperability does not eliminate the need to consider other 
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interoperability issues.  Although CDE research focuses on the data interoperability 

problem, it must address other kinds of interoperability as well.  It is preferable to adopt 

existing solutions to lower-level interoperability issues (e.g. using the already 

standardized TCP/IP protocol for network communications).  However, this is not always 

possible.  For example, communications between two different relational database 

management systems (RDBMSs) probably requires some solution to application 

programming interface (API) level incompatibilities.  Although this is not technically a 

data interoperability problem, any proposed solution must at a minimum explain what 

existing technology could be incorporated to solve this difficulty.  At a maximum, a data 

interoperability architecture might need to completely solve the underlying problem if no 

existing technology can be utilized. 

Finally, some classes of interoperability problems occur at a higher level than the 

data problem.  For example, if two systems interoperate but some information needed by 

one system is not available through the other full interoperation is impossible.  This is a 

process interoperability issue and cannot be solved through any data interoperability 

approach [Renner, 1999].  As such, problems of this nature can be ignored.  One must 

assume that process interoperability has already been addressed between the systems 

under consideration. 

  

1.2 Various Data Interoperability Approaches 

Based on the stated definition, no data interoperability issues can arise within a 

single organization using a single system.  However, it is extremely likely that the 

introduction of even one additional system to such an environment will introduce data 
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interoperability needs.  In an environment as large as the Air Force, the existence of 

many organizations each using many systems results in a large number of interoperability 

requirements.  The Department of Defense (DOD) as a whole is an even more 

complicated example.  Although several examples of data interoperability needs have 

been cited and more fundamental requirements such as communication interoperability 

discussed, the specifics of such systems have not been addressed. 

Plain old telephone service (POTS) can often enable individuals in an 

organization to solve data interoperability issues.  Suppose there is a need to combine 

information from two systems for some decision-making process.  One solution might 

involve an individual with access to one system calling another individual who has access 

to the second system and asking the second individual to provide the appropriate 

information.  The first individual can then associate the additional information with the 

information already available in the first system and supply the result to the decision-

making process. 

In this example, data interoperability has been achieved.  However, it is quite 

likely that this is a time-consuming process and much more expensive than a solution 

where some automated mechanism exists to facilitate the data interoperability.  It is still 

important to keep such possibilities in mind because such mechanisms do solve many 

data interoperability issues.  If a data interoperability need is very infrequent or unique it 

might be more cost effective to use human intervention than to build an automated 

interoperability mechanism.  Nonetheless, the following research focuses on automated 

data interoperability solutions.  Even within this context interoperability solution can 

work at widely varying levels of granularity.  On one extreme, a solution might try to 
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standardize all of the low-level details of several systems to allow interoperation.  In 

essence, the multiple systems are combined into one super-system.  At another extreme, a 

small number of very specific data interoperability needs might be defined and a very 

specific solution implemented that only supports interoperability of the defined data.  The 

following examples of data interoperability initiatives illustrate various levels of 

interoperation granularity. 

 

1.2.1 Data Model Standardization 

Many current Air Force systems rely on RDBMSs for storage and retrieval of 

persistent information.  RDBMSs store information according to relational models.  

These models provide an abstraction of the real world and a key for interpreting the data 

in a RDBMS [Renner, 1999].  The abstraction provided by a data model exists because 

the model specifies precisely what information a system will store and provides methods 

for accessing that data.  Real-world details which are not present in the data model are 

assumed unimportant for the purposes of the given system.  Data models allow 

interpretation of data because they define how data are structured, they describe how 

various structures relate to one another, and they usually provide a description of the real-

world object being modeled. 

Data model standardization offers one possibility for addressing data 

interoperability issues.  Because a data model defines how an application “sees the 

world”, systems with common data models can achieve data interoperability relatively 

easily.  As already explained, a data model describes how to interpret the data in a 
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system.  Systems with a shared model share a common interpretation mechanism.  This 

allows them to easily guarantee the required correct interpretation of data across systems. 

A very simple (although admittedly contrived) example makes the issue of data 

interoperability more concrete.  Imagine two systems that share a common data model, 

have some data element named “sky color”, and both report the value as “blue”.  They 

can quickly conclude that they agree on the color of the sky.  However, it is very likely 

that two systems will not have a common data model.  That one will have an element 

called “sky color” and the other will have an element called “color_sky”.  The first will 

report that value of “sky color” is “blue”.  The second will report that the value of 

“color_sky” is “0,0,255”.  Add a third system to the scenario with an element 

“sky_color” with a value of “14”.  The first system has stored “sky color” using the 

human understood (although not necessarily very precise) concept of the color name 

“blue”.  The second system has stored “color_sky” in a 24-bit red-green-blue (RGB) 

form.  This is probably the same as the value of “blue” in the first system although an 

interpreter would have to be careful about the precise definition of “blue”.  Finally, the 

third system could be referring to all sorts of system-specific identifiers for color.  An 

index into an internal color-palette is realistic possibility.  The fact that all three systems 

use different names for the same concept further complicates the situation.  While a 

human could easily guess that the three names refer to the same real-world characteristic, 

a computer could not make this determination with certainty (in fact even a human might 

only be guessing). 

A data model standardization effort would take the three systems in the second 

scenario and force them to agree on a common name attribute storing the color of the sky.  
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Further, they would have to agree on a common format for storing the value as well.  

This is a non-trivial effort in real systems that might have existing models describing 

thousands of attributes.  Further, the example only dealt with a single data attribute.  

Relational models actually define much more complicated entities and relationships 

between entities.  While it might not require substantial effort to rename the attribute 

storing the color of the sky, redefining entities and the relationships between them can be 

very complicated.  (On the other hand, if a system’s applications are tightly coupled to its 

data model it might even require a fair amount of effort to rename the color of the sky.)  

Subtle differences in seemingly similar data models can greatly increase the effort 

required to achieve data model standardization.  Further, a standard data model requires 

systems to model the world in the same way.  This means that systems must agree on 

what aspects of the world they are interested in and to what level of detail.  Although it is 

possible that no single application adopts all parts of a standard data model, data 

interoperability is only achieved for those parts that two interoperating systems have in 

common. 

 Data model standardization offers a very high level of data interoperation at a 

high implementation cost.  Beyond the actual effort required to standardize data models 

across systems, such efforts are bound to encounter control issues particularly as they 

cross organizational boundaries.  Both the DOD and the Air Force have attempted 

various data model standardization efforts.  This approach will most likely succeed in 

tightly coupled systems crossing a minimal number of organizational boundaries.  

Because many systems that do not fit this profile require data interoperability, data model 

standardization cannot be viewed as a complete solution to the problem. 
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A final note on data model standardization is in order.  The earlier discussion of 

data interoperability noted that it depended on other mechanisms such as those supporting 

communication interoperability.  Data model standardization by itself does not provide a 

complete solution.  Two systems might share a data model but not have a communication 

mechanism.  However, it is relatively easy to build communication interoperability 

between two systems using existing network technologies.  If the systems already share a 

data model, data interoperability is achieved.  This is quite a different situation from the 

common case where two systems have communication interoperability but do not have a 

high degree of data interoperability. 

  

1.2.2 Message Passing 

Any data interoperability solution tackling the “color of the sky” problem will 

have to include some agreement on identification of the attribute of interest as well as the 

universe of possible values for the attribute.  The high costs of data model standardization 

arise because this agreement is being implemented at the data storage layer in systems.  

This means that the agreement fundamentally affects the internal operations of the 

systems as well as the data interoperability between systems.  Message passing 

architectures represent a very different solution space.  Message passing focuses only on 

agreement for data interoperability between systems.  The internal data representations 

are unconstrained by the architecture.1 

Message passing architectures support data interoperability when two systems 

agree on common messages.  The messages two systems define in common represent 
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their shared view of the world.  By translating internal system data representations into 

messages the systems provide a means for both transferring data and guaranteeing a 

common interpretation of that data.  Assuming that communication interoperability 

mechanisms are in place, the requirements for data interoperability are satisfied.  A 

typical system might require an auxiliary message creation and parsing module to support 

this solution.  Ideally no other changes to the original system would be required.  Such an 

approach allows much more autonomy between interoperating systems.  This can reduce 

implementation costs and system control issues. 

Given that message passing provides an opportunity to address data 

interoperability with a reduced impact on existing systems, one might question the utility 

of data model standardization.  One important factor to remember is that the two 

solutions provide dramatically different levels of interoperability.  Data model 

standardization offers the potential for systems to share a large portion of their internal 

state.  Message passing is better suited to situations where the data interoperability needs 

represent a smaller part of a system’s state.  If a large amount of interoperability is 

required, the cost of defining messages and building message-parsing systems could 

easily approach the cost of standardizing data models.  Further, data model 

standardization allows for other system optimization such as shared data servers.  

Additionally, common data models allow for re-use of system modules whereas a pure 

message passing solution requires each system to build its own independent message 

handling module.  Finally, message passing may not be appropriate for situations where 

data timeliness is critical.  In this case shared data models and the potential for shared 

                                                                                                                                                 
1 Of course internal data representations must actually represent the information needed for data 
interoperability, thus the only requirement is that some translation from the internal state to the message 
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database systems offer a better platform for guaranteeing one consistent view of global 

state. 

As in the case of data model standardization, message passing is not a one-size-

fits-all solution to data interoperability.  However, it is a powerful tool in a data 

interoperability repertoire.  Many current Air Force systems use message passing in a 

format called the United States Message Text Format (USMTF)2 for data interoperability.  

Ongoing research initiatives are investigating the potential benefits of adopting 

Extensible Markup Language (XML)3 and the commercial tools that support it.  Such 

efforts will probably achieve the most success between relatively independent systems 

with modest interoperability requirements. 

  

1.2.3 Object Oriented Data Wrappers 

The two data interoperability approaches discussed thus far represent extreme 

positions on the solution spectrum.  The first placed significant requirements on a 

system’s internal data representations.  The second placed almost no restrictions on the 

internal operation of a system.  The third approach presented falls somewhere between 

these two positions.  Data wrapping technologies attempt to standardize the interfaces to 

a system’s internal state.  This allows the system the freedom to adopt database level data 

models and even database technologies based on factors such as performance.  

Interoperability is achieved at the interface level.  While such an approach is not 

constrained to object oriented interfaces (a functional interface could achieve the same 

                                                                                                                                                 
data format be possible. 
2 For information on USMTF see: http://www.forscom.army.mil/interop/USMTF/DEFAULT.htm 
 
3 For information on XML see: http://www.w3.org/XML/ 
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goals), objects are a natural choice for today’s programming languages, tools, and 

environments. 

Object oriented data wrappers require a lot of the same agreements as data model 

standardization.  However, because such wrappers are implemented above the database 

level they can sometimes be introduced into existing systems without modification to the 

existing database or applications.  Instead the wrappers provide a common access 

mechanism for new applications.  This has the added benefit of allowing the underlying 

database to evolve without affecting the data interface used by applications. 

Data interoperability in such a system is achieved when system modules are 

designed to communicate with the wrapper objects.  When two interoperating systems 

support the same objects, they can access each other’s objects in a seamless manner.  

Communication interoperability can be achieved through distributed object technologies 

that support network communications. 

Unfortunately it is unlikely that a system’s physical data model can achieve 

complete independence from its object interface.  The semantics of the data objects will 

be somewhat constrained by the underlying data representations.  The success of the 

object wrapper approach depends on the benefits of having an abstract object model 

outweighing the cost of any dependence between the object model and the underlying 

data model.  Because of this constraint, object wrapper solutions will probably achieve 

the most success in systems that support similar data models.  This condition improves 

the chance that common objects can be instantiated from the independent systems. 
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Current research projects both within the Air Force and in the computer industry 

as a whole examine various object wrapper architectures.4  The following chapters 

describe a CDE experiment involving one such architecture.  This architecture is then 

compared to other object wrapper approaches. 

 

1.3 Literature Survey on the Data Interoperability Problem 

The preceding explanation of data interoperability and the examples of data 

interoperability solutions provided an informal introduction to the subject.  However, it is 

important to realize that this problem has been the focus of a significant amount of 

research.  While the informal explanation is sufficient to grasp the general nature of the 

problem, a brief synthesis of formal research related to data interoperability will provide 

an academic context for examining the issue.  Further, it will facilitate later comparisons 

between the data architecture studied in this thesis and existing research. 

The data interoperability problem already cited is often called the need for 

semantic interoperability among autonomous and heterogeneous systems [Scheuermann 

et al., 1990, Sheth and Larson, 1990, Hurson et al., 1994].  The terms autonomous and 

heterogeneous refer to the fact that the systems under consideration are neither centrally 

managed nor based on the same technologies.   For example, several Solaris servers 

running Oracle 8i to support different systems for independent branches of the DOD 

would be autonomous but not heterogeneous.  While not all data interoperability 

problems within the Air Force meet both criteria, some do.  Because solving the more 

general problem will also solve less-difficult problems, any approach to data 

interoperability should address both autonomy and heterogeneity of systems.  Semantic 

                                                 
4 For examples of object wrapper architectures see Chapter 4. 
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interoperability means the meaningful exchange of information [Goh, 1997].  Thus, it is 

clear that the definition of data interoperability used in this thesis closely parallels the 

concept of semantic interoperability among autonomous and heterogeneous systems cited 

in the literature. 

Having established that the data interoperability issue examined in this thesis is in 

fact closely related to the problems addressed in existing research, it is useful to further 

consider how the problem has been classified.  Both the concept of autonomy and that of 

heterogeneity have been broken into categories [Goh, 1997]. 

Autonomy is prefixed by one of the following: design, communication, or 

execution [Scheuermann et al., 1990].  Communication and execution autonomy refer to 

systems choosing who they communicate with and when, respectively.  However, these 

distinctions are not of direct concern to the data interoperability problem as addressed in 

this thesis.  On the other hand, design autonomy, or a system’s ability to choose its own 

information, data model, and implementation, is a fundamental concern. 

Two major classes of heterogeneity emerge.  These are data heterogeneity and 

system heterogeneity [Goh, 1997].  The first issue addresses the organization and 

interpretation of data while the second addresses data models, data manipulation 

languages, concurrency controls, etc.  As a whole, data heterogeneity leads to data 

conflicts.  In his PhD dissertation, Goh identifies three categories of data conflicts from 

the relevant literature and further breaks these into nine individual cases.  These cases 

will be very briefly described to illuminate the specific kinds of problems that must be 

solved by a data interoperability solution. 
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Schematic conflicts as documented in the literature account for four cases of data 

conflicts [Kim and Seo, 1991, Krishnamurthy et al., 1991].  These conflicts generally 

relate to differences in structure, or logical organization, of data [Goh, 1997].  The four 

cases are:  data type conflicts, labeling conflicts, aggregation conflicts, and generalization 

conflicts.  Data type conflicts arise when two systems use a different fundamental data 

type for the same piece of information.  Perhaps a phone number is a number in one 

system and a string in another.  Labeling conflicts refer to the naming of schema 

elements.  The problem includes name collisions as well as name discrepancies.  The 

earlier interoperability problem involving the color of the sky exhibited this problem.  

Aggregation conflicts involve differences in the choices for entities and attributes [Smith 

and Smith, 1977].  Attribute A of entity E in one system might correspond to attribute E 

of entity A in a second system.  Finally, generalization conflicts concern differences in 

the relationships between entities. 

Semantic conflicts have also been widely documented [Sheth and Kashvap, 1992, 

Naiman and Ouskel, 1995, Garcia-Solaco et al., 1996].  These kinds of conflicts can be 

categorized as naming conflicts, scaling conflicts, and confounding conflicts [Goh, 1997].  

Semantic naming conflicts arise when different systems use different attribute values for 

the same concept or the same values for different concepts.  For example one system 

might identify the United States by the abbreviation “US” while another might use 

“USA”.  Scaling conflicts involve the use of different units for the same concept.  This 

was the problem in the NASA mission failure already cited.  Confounding conflicts 

involve equating concepts that are actually different.  For example, although two airlines 

might report the prices of their tickets as an attribute price, the two concepts of price 
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cannot be equated if one airline includes taxes in the attribute value and the other does 

not. 

Goh identifies the final category of data conflicts as intentional conflicts [Goh, 

1997].  Such conflicts relate to differences in information content present in data sources.  

These conflicts fall into two categories:  domain conflicts and integrity constraint 

conflicts.  Domain conflicts arise when different data sources have different (possibly 

implicit) domains.  For example an Air Force database might claim to include tail 

numbers for all combat airplanes.  However, comparison with a similar DOD database 

might reveal that the Air Force database excludes Navy planes.  Someone trying to 

account for all combat aircraft owned by the United States could not use the Air Force 

database exclusively.  Integrity constraint conflicts arise when different systems have 

different integrity constraints.  For example, if two systems use different primary keys 

then one unique identifier for some real-world entity might not uniquely identify all of 

the information stored about it across several systems. 

The preceding taxonomy of data conflicts provides a useful model for considering 

specific data interoperability problems.  Some problems such as labeling conflicts can 

often be resolved through existing mechanisms such as RDBMS views.  Other problems 

such as aggregation conflicts are more difficult to solve.  The following investigation of a 

proposed data architecture for Air Force systems will not specifically address all of the 

types of data conflicts.  However, any data interoperability must either address these 

conflicts or require that underlying systems eliminate certain classes of conflicts. 

Having explained the academic background of the data interoperability problem it 

would be natural to now present the academic background of data interoperability 
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solutions.  However, this discussion will be deferred until Chapter 4.  Because the data 

architecture under consideration was not specifically presented as a solution to the data 

interoperability problem, nor was it justified in the context of existing literature on data 

interoperability, it is useful to first present the architecture and then try and classify it 

according to other literature in the field. 

 

1.4 CDE Data Interoperability Investigation 

The introduction thus far has provided the appropriate background for the 

following explanation of the CDE investigation of the potential impact of the Command 

and Control (C2) System Target Architecture (C2STA) data architecture on Air Force 

systems.  Chapter 2 introduces the context of the data architecture as well as its specific 

details.  The explanation is designed to outline the general goals of the architecture while 

providing important details for subsequent analysis.  The third chapter describes in detail 

the CDE experiments designed to test the feasibility of using the C2STA data architecture 

to solve data interoperability problems involving existing systems.  The chapter includes 

a description of the specific experiment scenario, details of the experiments, and a 

presentation of results.  Chapter 4 examines other data architectures similar to that of the 

C2STA.  The discussion draws on observations from the CDE experiments to highlight 

how other architectures might contribute to an improved C2STA data architecture.  The 

fifth chapter summarizes recommended changes to the C2STA data architecture to 

improve its ability to support data interoperability between existing systems.  Finally, the 

appendix lists the acronyms used in this thesis.
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Chapter 2 

C2STA Data Access Architecture 

 

The previous chapter defined data interoperability and summarized various 

approaches to solving data interoperability problems.  CDE research has focused on 

attempting to implement one particular data access architecture and analyzing that 

architecture’s potential for solving data interoperability issues.  The data access 

architecture examined was developed as part of a broader design initiative.  The 

following is an introduction to that initiative followed by its data architecture.  This 

provides a context for the CDE experiments and analysis. 

 

2.1 The Command and Control System Target Architecture 

The C2STA advocates an object oriented component-based design for future Air 

Force C2 systems.  This design is aimed at achieving Air Force goals of an Integrated C2 

System (IC2S) [C2STA, 1998].  Some of the potential benefits of such a design include 

reusability of systems and plug-and-play integration of systems. 

The C2STA defines a multi-tiered architecture based on “capabilities”.  The 

C2STA uses the term component to define the lowest level structural element of 

software.  Individual components do not have to comply with C2STA requirements.  A 

capability is a software module designed to accomplish some C2 task.  Capabilities are 
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composed of components and must comply with C2STA requirements.  Figure 2.15 

illustrates the C2STA multi-tiered capability architecture. 

 

Presentation

Data Access

Raw Capability

Data Store

User Interface

Data Access Interface

CDE, Win95, or JVM

SQL, ODBC, ...

 

Figure 2.1  C2STA Capability Layering 

 

The C2STA is presented as five distinct views:  the capability view, the data view, 

the distribution view, the security view, and the production view.  The following 

investigation of the C2STA data architecture focuses largely on the data view. 

Having introduced the C2STA as a whole, the discussion now shifts to the details 

its Data View.  This background is important because it provides the original definition 

of the C2STA data architecture studied by the CDE.  Further, it provides insight into the 

design goals of the architecture.  This allows for both a discussion of what exactly 

                                                 
5 Appears in the C2STA as Figure 3-1. 
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constitutes the C2STA data architecture and evaluation of how successfully real 

implementations can achieve the original goals that motivated this design. 

The C2STA specifies that its data view encompasses all data needed by C2 

functions and capabilities.  However, it goes on to identify five specific categories of data 

[C2STA, 1998].  These categories are: data already being shared, data from migrating C2 

databases, data from existing commercial-off-the-shelf (COTS) desktop applications with 

internal databases, DOD and service reference data, and draft data.  Each of these 

categories presents different constraints when building systems to support the C2STA 

data architecture.  The experiments and resulting conclusions described in later chapters 

focus entirely on data from legacy systems.  Although these systems offer a limited view 

for critiquing the C2STA data architecture, they represent the single most critical data 

category, as large parts of the envisioned IC2S will certainly evolve from legacy systems.  

Nonetheless, it is useful to keep all five of the categories in mind, as some details of the 

C2STA data architecture seem tailored to specific categories. 

Before introducing the specifics of the C2STA data architecture, it is useful to 

review the design goals of the data view.  While the general C2STA capability goals 

apply to the data architecture, many data-specific goals are stated as well.  The C2STA 

explicitly lists key properties of C2 data solutions [C2STA, 1998].  These properties 

include: 

• Providing access to C2 data anytime from anywhere. 

• Accommodating data from migrating systems. 

• Properly handling data with varying security constraints. 

• Making data available to arbitrary C2 capabilities and applications. 
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• Allowing for the sharing of data with external systems. 

• Providing data consistently over a range of communications conditions. 

• Exhibiting robustness in the face of changing applications and C2 capabilities. 

The second goal listed above will receive the primary focus in the following 

evaluation of the C2STA data architecture.  However, information interoperability is 

much more complicated than merely facilitating data communication.  Existing 

technologies such as the open database connectivity (ODBC)6 standard for relational 

database programming interface access and the structured query language (SQL)7 

standard for formulating relational database queries provide some compatibility for 

moving data between systems.  The C2STA data architecture attempts to provide 

integrated C2 data access with a much higher level of interoperability.  Thus, it is 

important to remember that accommodating data from migrating systems requires a more 

sophisticated design than one needed only to “ship” data from such systems to C2 

capabilities.   

This introduction to the C2STA data architecture makes the provisions for 

separating data access by C2 capabilities from the underlying data storage mechanisms 

clear.  This separation was designed to provide a high level of information 

interoperability while achieving the design goals previously listed. 

The C2STA Data View includes both general descriptions of the intended data 

architecture and specific requirements for systems adopting the architecture.  This 

information is mixed together in the data view and extended (with some duplication) in 

the C2STA appendices.  The following summary of the information is presented in a 

                                                 
6 For information on ODBC see: http://www.microsoft.com/data/odbc/ 
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different format.  First, the general architecture is introduced and then specific C2STA 

requirements are listed.   Further, the specific requirements are organized into groups that 

summarize their purposes.  While the C2STA does this to some extent, many related 

requirements are addressed in separate sections of the data view discussion.  For 

example, this summary addresses change notification requirements in one unified section 

whereas the C2STA data view mentions change notification requirements in two different 

sections as well as in an appendix.  Grouping related requirements helps clarify the 

specific details of the C2STA data architecture and eliminate redundant requirements. 

 

2.2 Data Access Interface + Modules + Implementations  

The C2STA data architecture is defined in terms of three separated specifications. 

The highest-level concept is the Data Access Interface (DAI).  The DAI abstractly 

represents the complete set of data available across all C2 systems.  The DAI view of C2 

data is object-oriented and ideally independent from the underlying data store 

technologies.  Further, the DAI is intended to shield C2 capabilities from data location 

issues.  However, the abstract nature of the DAI means that capabilities cannot actually 

rely on the DAI to handle the details of attaining C2 data.  Clearly some rendezvous 

mechanism is needed to allow C2 capabilities to locate C2 data without depending on a 

particular location.  Although the C2STA does not address this requirement, some of the 

technologies it suggests (e.g. CORBA) do include support for such service discovery. 

 Because the C2STA requires that all C2 data be accessed via interface definitions 

that are a part of the DAI, the DAI is a virtual super-database of all C2 data.  However, it 

is important to understand that the DAI is completely abstract.  The C2STA does not 

                                                                                                                                                 
7 For information on the SQL standard see: http://www.jcc.com/SQLPages/jccs_sql.htm 
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require any physical instantiation of the DAI.  While it would certainly seem useful to 

have some central repository of the interface definitions that make up the DAI this is not 

a requirement of the C2STA.  Because system builders never have to explicitly 

implement the DAI it is easy to overlook this unifying feature of the C2STA data 

architecture.  The most important point to remember is “to C2 capabilities, the DAI is the 

database.” [C2STA, 1998] (Emphasis added.) 

The second element in the C2 data architecture is basically a mechanism for 

partitioning the DAI.  Although this partitioning is designed to occur in a logical sense, it 

also facilitates physical partitioning of the data stores to some degree.  Data Access 

Interface Modules (DAIMs) represent subsets of the C2 data.  Like the DAI, a DAIM is 

not a physical system.  Instead it is an interface definition that precisely models some 

particular C2 data.  DAIMs are supposed to be defined to either manage a particular class 

of C2 data or to provide access to data from a migrating system.  Because the DAIM 

architecture does not require one-to-one mappings between DAIMs and underlying data 

stores or visa versa, DAIMs can group data with limited concern for the underlying data 

locations.  However, there is a limit to this independence, particularly in the case of 

legacy systems, as object relationships within a DAIM will often correspond to foreign-

key mappings in an underlying RDBMS.  Because these mappings often do not correlate 

across different RDBMSs a single DAIM might not be able to link data from completely 

different sources.  In such a case it would be more natural to have different DAIMs 

define the data contained in the different sources. 

While the concept of a single comprehensive database unburdened by the details 

of persistent data store technologies and locations is very appealing, it is obvious that C2 
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data must at some point pass through real systems.  The final element in the C2STA data 

architecture is the DAIM Implementation (DAIMI).  As the name suggests, DAIMIs are 

real systems.  A DAIMI supports a particular DAIM interface.  It facilitates the actual 

transfer of C2 data in response to a request conforming to the DAIM interface 

specification.  A DAIMI supports only one DAIM, however many different DAIMIs can 

support the same DAIM according to the C2STA. 

The relationship between the three elements of the C2STA data architecture is 

easily summarized.  A DAIMI concretely supports the abstract interfaces of a DAIM that 

comprises some subset of the C2 data defined by the DAI.  Figure 2.28 makes this 

relationship explicit while highlighting some possible configurations for defining DAIMs 

                                                 
8 Appears in the C2STA as Figure 4-3. 
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Figure 2.2  An Example C2STA data system highlighting the relationship between the DAI, DAIMs, and 

DAIMIs. 
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and building DAIMIs. 

Having completed a general description of the C2STA data architecture, the 

following sections present the specific C2STA requirements for the various elements.  

These requirements will further detail the C2STA vision of a data solution.  They will 

also further restrict the C2STA data architecture providing an opportunity for analysis of 

the architecture’s feasibility (particularly for accessing data in legacy systems).  Finally, 

by omission they provide an opportunity to compare the C2STA data architecture with 

other access models and suggest problems the C2STA overlooks. 

 

2.3 C2STA DAI Requirements 

The C2STA provides the following requirements regarding the DAI.  Many of 

these requirements have been rephrased so their meaning remains clear absent their 

original context.  It is also important to note that many of these requirements apply 

equally to DAIMs since the DAI is just the collection of all DAIMs.  Often replacing “the 

DAI” with “a DAIM” will result in a requirement on DAIMs that preserves the original 

intent. 

• C2 Systems will use the DAI for data access. 

• The DAI will provide transparency of data location. 

• The DAI view of C2 data shall be platform-independent and capability-

independent. 

• The DAI will allow integrated access to local and remote data. 

• The DAI will isolate clients from the underlying storage details of data being 

accessed (e.g. schema). 
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• The DAI will be defined by the set of DAIMs defined for the Integrated C2 

System (IC2S).  

• The DAI will provide access to metadata about C2 data objects and their 

attributes. 

• The DAI will be extensible. 

• The DAI will maintain backward compatibility by defining new access methods 

and object rather than changing existing interfaces. 

• Both the reading and writing of C2 data will occur through the DAI. 

The three major goals of the DAI architecture are clear from the preceding 

requirements:  (i) the DAI is the database (for both reading and writing) for C2 

capabilities, (ii) the DAI is designed to shield clients from as many of the implementation 

details of actual data stores as possible (location, technology, etc.), and  (iii) the DAI is 

extensible while maintaining backward compatibility.  The second and fourth 

requirements listed above seem to overlap.  Location transparency would seem to imply 

that local and remote data could be accessed in an integrated fashion.  However, by 

listing both properties the C2STA makes it clear that DAI location independence is not 

simply a matter of masking some single location of data but rather a mechanism for 

allowing complex data replication and storage while hiding all such details from C2 

capabilities. 

 

2.4 C2STA DAIM Requirements 

The majority of the C2STA data architecture’s requirements apply directly to 

DAIMs.  This is natural as the C2STA deliberately avoids detailing DAIMIs as much as 
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possible.  The DAIM requirements cover a range of issues from basic DAIM design to 

specific functionalities such as change notification and finally formal interface 

requirements.  General DAIM issues are addressed first and then separate sections focus 

on major design sub-categories. 

• A DAIM shall present abstract data types (ADTs) to other components. 

• The abstract data objects provided by a DAIM have well defined semantics 

agreed upon across C2 domains. 

• A DAIM should provide “a complete model of the C2 data.”  This should include 

both persistent attributes as well as other “inherent attributes” of an object that 

can be calculated from persistent values. 

• Structured data elements within an ADT shall be available via abstract references 

to the embedded ADT via the appropriate DAIMI, etc. 

• All data access operations shall be atomic. 

• DAIMs shall operate in either implicitly persistent mode or explicitly persistent 

mode. 

• A DAIM shall be constructed such that capabilities can be completely ignorant 

regarding the details of the DAIMI they access. 

• DAIMs should embody knowledge of data store replication used for data 

requiring high timeliness or static data. 

• Migrating systems may require a “wrapper” DAIM. 

• A DAIM may use the services of another DAIM or access data from multiple 

underlying data stores as necessary. 
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• Multiple DAIMs may access the same data store if the data stores hold various 

classes of data. 

The second requirement that ADTs have semantics agreed upon across C2 

domains helps maintain the interoperability of C2 capabilities.  However, this same 

requirement means that constructing “wrapper” DAIMIs might require a lot more effort 

than simply layering an object model on top of an existing relational data model.  It is 

likely that legacy systems will already include their own relational models of data.  These 

legacy models could easily have overlapping data without any general agreement on 

semantics, structure, etc.  DAIMs defined to access such systems would have to translate 

from the legacy model to the ADTs.  The CDE experiments highlight some of the 

challenges in realizing such goals. 

The requirement that DAIMs include access to both stored data and “inherent” 

calculated attributes based on persistent data is designed to provide flexible data access to 

C2 capabilities.  However, it will later become clear that the C2STA does not reconcile 

some consequences of this requirement with its data access interfaces. 

The statement that migrating systems might require wrapper DAIMs directly 

motivates the CDE experiments.  However, observations from these experiments 

highlight incompatibilities between C2STA requirements and constraints of building 

wrapper DAIMIs. 

The requirement that DAIMs support one of two modes of persistence requires 

some explanation.  In implicitly persistent mode all instance creation operations and 

attribute modifications are immediately made persistent.  In explicitly persistent mode 

creation operations and attribute modifications are temporary until the temporary instance 
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is explicitly made persistent at which time all temporary changes are simultaneously 

made persistent. 

Several categories of additional requirements follow the previous examination of 

some of the general DAIM requirements.  Some of these categories address high-level 

requirements such as what kind of information a DAIM should supply.  Other categories 

are much more specific and require DAIMs to support specific interfaces. 

 

2.4.1 DAIMs & Business Rules 

The following rules help clarify the multi-tiered architecture envisioned by the 

C2STA.  Because traditional RDBMSs often provide support for stored-procedures, 

triggers, and other programmable functions they act as more than passive persistent 

storage mechanisms.  It is possible to include business rules and other application level 

functionality inside the database.  However, this is not the design advocated by the 

C2STA.  Instead, the C2STA separates business rules and application logic from the data 

store technology.  The following specific requirements clarify this intent. 

• A DAIM should not include operations that embody business rules that are not a 

fundamental part of the data object. 

• DAIM operations can embody mission-independent business rules inherent to a 

data object.  These rules may be instantiated in a DAIMI or in the underlying data 

store.  (e.g. range constraints, etc.) 

• DAIMs are responsible for maintaining the integrity of their persistent data. 

Together these three requirements make it clear that DAIMs should not embody 

business rules but they are not passive storage locations.  They are required to validate 
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data.  The C2STA identifies a general guideline that data integrity rules should be 

instantiated as close to the persistent store as possible.  This implies defining integrity 

rules at the data store level rather than the DAIMI level.  However, this is only a 

guideline and not a rule.  While separating business rules from DAIMs is a commonly 

accepted practice for building component systems with good encapsulation properties, 

legacy systems might have to violate these requirements.  Their business rules are often 

instantiated inside the underlying DBMS (e.g. in the form of triggers, stored procedures, 

etc.) and any DAIMI wrapper would have to expose operations subject to the underlying 

business rules.  The C2STA does not address this issue.  

 

2.4.2 DAIMs & Metadata 

The C2STA identifies metadata as an important aspect of its data architecture.  

Metadata is literally data about data.  For example, a data element representing velocity 

might have metadata describing the units and precision.  Metadata is a more important 

issue when supporting data interoperability between systems than it is when considering 

the operation of a single system.  This is not because a single system does not care about 

metadata but because metadata within a system might be implicit.  For example, a single 

system might always assume that velocity is measured in miles per hour.  Data 

interoperability between systems is very dependent on metadata because explicit 

metadata helps guarantee the correct interpretation of data.  A recent failure of a NASA 

Mars mission was attributed to a data interoperability failure.  Two interoperating 

systems failed to account for differences in units of measurement causing the complete 

failure of a one hundred and twenty-five million dollar mission [Isbell et al., 1999].  
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Explicit metadata could have made the need for a data conversion apparent.  The 

following requirements clarify the C2STA metadata requirements. 

• DAIMs shall include attributes that describe other attributes (metadata) “when 

feasible.” 

• DAIMs shall allow metadata to be either ADT-wide or instance specific as 

appropriate. 

• DAIMs shall handle metadata as additional attributes of an ADT. 

 

2.4.3 DAIM Containers  

Given the C2STA’s object-oriented nature it is natural for sets of objects to be 

managed by some generic container object.  The C2STA explicitly provides for this by 

requiring a Container ADT.  The following requirements detail mandatory container 

behavior. 

• DAIMs shall define a generic Container ADT designed to hold references to other 

ADTs. 

• The Container shall operate in non-persistent mode and shall support a call to 

make itself persistent. 

• A Container can be processed by the standard iterator mechanisms first, next, and 

last. 

• A Container may be empty. 

• A Container may be enhanced in arbitrary ways to support retrieval of ADT 

instances based on type-specific selection criteria. 
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The second and fifth requirements from above deserve special attention.  The 

requirement that containers support persistence is somewhat vague.  Does this mean that 

the container persistently stores all of its references as well?  Or is the requirement aimed 

at storing any selection criteria associated with the container?  These two points are not 

critical from a high-level design perspective, but a DAIMI would have to make explicit 

assumptions regarding container semantics.  The allowance for arbitrary enhancements to 

support selection criteria for ADTs is more interesting.  The C2STA makes no other 

reference to data search mechanisms in its data architecture.  This is a major oversight.  

The C2STA advocate using DAIMs to hide underlying data store technologies, however 

a large part of the functionality of current data stores such as RDBMSs is to provide 

powerful search capabilities such as ad hoc querying via the SQL standard.  If DAIMs 

hide this power without providing a reasonable search mechanism of their own they 

might force higher-level components to perform excessive data filtering.  This also 

increases the amount of data being transported between systems and thus increases 

communication costs.  The C2STA probably included the allowance for ADT selection 

criteria for precisely this reason.  However, its failure to suggest even basic architectural 

support for such selection criteria (e.g. How would one specify the criteria?  Hopefully 

not in a “SELECT * FROM …” format!) could result in different DAIMs introducing 

radically different selection mechanisms.  Such differences could increase a given 

capability’s dependence on specific DAIMs and reduce the potential for future 

interoperability with different DAIMs. 
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2.4.4 DAIM Exceptions  

The C2STA requires the DAIMs define exceptions for dealing with error 

conditions.  The following requirements often refer to DAIMIs rather than DAIMs 

because DAIMs define things whereas DAIMIs do things.  Nonetheless the following 

statements essentially constrain the definition of DAIMs. 

• DAIMIs shall raise an exception if a caller supplies inappropriate selection 

criteria. 

• DAIMIs shall raise an exception if a requested attribute is inappropriate for a 

specified ADT. 

• DAIMIs shall raise an exception if the requested data are not available. 

• DAIMIs shall not provided detailed exception explanations that violate security 

purposes. 

• DAIMIs will supply a “no data available” exception when communication links 

are unavailable. 

• DAIMIs shall raise an exception if the DAIMI is unable to complete an operation 

due to any error condition other than those already listed. 

• DAIMs may define additional exceptions. 

Most of these points are fairly straightforward.  However, the purpose of the 

second requirement is somewhat unclear.  Typically an object oriented programming 

environment tracks the types of object references and only allows calls relating to 

methods and attributes defined for that type.  This is known as strong typing.  However, 

some mechanisms such as casting can result in incorrect type classification.  Perhaps the 

C2STA was trying to address this possibility. 
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2.4.5 Required Interfaces 

Because the C2STA does not mandate a specific technology for DAIMs it cannot 

define interface requirements in terms of programming language specific specifications 

(e.g. C++ header files or Java class definitions).  Instead it gives a very high-level 

interface definition.  The following two statements require two different interfaces 

addressed in the next two subsections. 

• A DAIM is a specific type of C2 capability and as such must include a general 

capability interface (GCI). 

• Every DAIM will define a functional interface conforming to C2STA 

requirements. 

 

2.4.5.1 General Capability Interface 

The General Capability Interface (GCI) is a required feature of every C2STA-

compliant capability [C2STA, 1998].  The interface is required to allow automatic run-

time discovery of the IC2S capabilities available in a computing environment. 

• The GCI shall be defined in IDL. 

• The GCI shall be implemented via either COM9 or CORBA10 technologies. 

• The GCI must be accessible to software programmed in various languages.  (Ada 

and Java are given as specific examples.) 

                                                 
9 For information on COM see: http://www.microsoft.com/com/  
 
10 For information on CORBA see: http://www.corba.org/ 
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• The GCI must be usable by newly developed, migrating, and off-the-shelf 

software.  This means it must support a variety of access methods including 

wrappers, proxies, and adapters. 

• The GCI must include the following capability attributes:  resources, interfaces, 

distribution mechanism, and execution environment. 

The GCI is important for the overall C2STA to ensure that a generic mechanism 

exists for examining an unknown capability.  It is important to DAIM designers because 

they must support it but it does not have a significant impact on the C2STA data 

architecture. 

 

2.4.5.2 Abstract Data Type Access Interface 

The C2STA defines three categories of data access interface requirements.  The 

first category applies to all ADTs and specifies method for getting containers with ADT 

references and specific attribute values.  The second and third categories define separate 

interfaces requirements for creating and modifying ADTs depending on the persistence 

mode of the DAIM.11  A listing of all three categories will be followed by comments on 

the implications of these requirements. 

All DAIMs shall include the following operations for each ADT <Typename> 

and ADT attribute <Attributename>: 

• Get<Typename> 
o Purpose:  Retrieve instances of a particular ADT. 
o Arguments:  None. 
o Returns:  Container12 referencing all instances of that ADT. 
 

                                                 
11 See Section 2.4. 
 
12 See Section 2.4.3. 
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• <Attributename>Of 
o Purpose:  Retrieve a specific attribute of a specific ADT instance. 
o Arguments: ADT instance being examined. 
o Returns:  The value (either a reference to another ADT or a primitive 

value) associated with this attribute for the specified ADT instance. 
 

• Delete<Typename> 
o Purpose:  Remove a specific ADT instance from persistent storage. 
o Arguments: ADT instance to delete. 
o Returns: Unspecified, probably a status flag representing the success or 

failure of the operation. 
 

All DAIMS providing explicit persistence shall include the following operations 

for each ADT <Typename> and ADT attribute <Attributename>: 

• New<Typename> 
o Purpose: Create new ADT instances. 
o Arguments: None. 
o Returns:  Reference to a new non-persistent instance of the ADT with all 

attributes set to their default values. 
 

• Define<Attributename> 
o Purpose: Set the value of an ADT instance’s attribute. 
o Arguments: The instance being modified and the new value (either a 

reference to another ADT or a primitive value). 
o Returns:  Unspecified, probably a status flag representing the success or 

failure of the operation. 
 

• Set<Typename> 
o Purpose: Makes non-persistent New and Define calls persistent.  Either 

updates the persistent state of the given instance if one exists or creates a 
persistent state for the instance.  Either way, after the call the persistent 
state will completely match the state of the non-persistent instance 
referenced in the call. 

o Arguments: The non-persistent instance to make persistent. 
o Returns:  Unspecified, probably a status flag representing the success or 

failure of the operation. 
 

All DAIMS providing implicit persistence shall include the following operations 

for each ADT <Typename> and ADT attribute <Attributename>: 

• New<Typename> 
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o Purpose: Create new ADT instances. 
o Arguments: None. 
o Returns:  Reference to a new persistent instance of the ADT with all 

attributes set to their default values. 
 

• Define<Attributename> 
o Purpose: Set the value of an ADT instance’s attribute. 
o Arguments: The instance being modified and the new value (either a 

reference to another ADT or a primitive value). 
o Returns:  Unspecified, probably a status flag representing the success or 

failure of the operation. 
 

Despite the object oriented nature of the C2STA design, its required interfaces are 

described in a functional manner.  For example, image an Aircraft ADT with a 

TailNumber attribute.  The C2STA requires that a DAIM support a GetAircraft operation 

to return a Container with references to all of the Aircraft managed by the DAIM.  

Further the DAIM must support a TailNumberOf operation and a DeleteAircraft 

operation both of which take a single Aircraft reference as an argument.  A typical object 

oriented interface would make TailNumber an attribute of an Aircraft and Delete a 

method of an Aircraft.  This eliminates the need for passing an Aircraft’s reference as an 

explicit argument.  Of course the underlying system still has to manage object references.  

However, it is surprising that the C2STA did not specify its requirements in such terms 

given that it specifically requires IDL definitions backed by COM or CORBA 

implementations. 

Setting aside the specific format of C2STA required operations the general access 

paradigm is fairly restricted as well.  The C2STA defines a single constructor for objects 

that takes no arguments and initializes the new object with some default values.  It then 

dictates that all data reads and writes go through a basic get/set interface (the actual calls 

are AttributeOf and Define, however get and set capture the semantics of the operations 
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in simpler terms).  The C2STA seems to imply that every attribute should support get and 

set methods.  This seems natural given the requirement that objects have default values at 

creation-time.  Without a set operation an attribute could never change from its default 

value.  Unfortunately this does not account for some important cases.  First, the C2STA 

requires that DAIMs expose both persistent data of an ADT as well as “inherent” 

attributes.  An example from the C2STA helps clarify this requirement and the problem it 

introduces.  Assume a Mission ADT persistently stores a StartTime and an EndTime 

attribute.  The C2STA mentions that the Mission ADT should also provide a Duration 

attribute calculated from the StartTime and EndTime.  However, the interface 

requirements presented here seem to require that Duration have both a get and a set.  It is 

unclear that all calculated attributes should have a set operation.  While providing a get 

operation in such cases might be convenient for some capabilities accessing a DAIM, a 

set does not have clear semantics.  Should the StartTime or the EndTime be altered when 

a capabilities sets the duration?  Clearly the DAIM must enforce the constraint that 

Duration = EndTime – StartTime.  Requiring symmetric get and set operations in this 

case is a mistake. 

The constructor, get, and set operations introduce problems with regard to legacy 

systems.  A constructor will often require multiple arguments that are used to create a 

new object.  This allows the constructor to perform data integrity operations considering 

several factors simultaneously.  The object then need not provide set operations for all of 

its attributes.  This is a reality of many object oriented designs.  This reality extends to 

other designs as well.  Consider relational database systems based on the SQL standard.  

According to the standard, new rows can be inserted into a table using an INSERT 
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INTO… statement.  Subsequently any field in that row can be modified using an 

UPDATE …WHERE statement (the row must have a unique identifier to guarantee a 

single update to the correct data element).  SELECT statements can be used to read any 

field in the row.  In this case INSERT corresponds to the object constructor, UPDATE to 

the set operation, and SELECT to the get operation.  In theory using these statements on 

individual data elements is sufficient for performing all persistent storage tasks.  

However, a reality of many systems based on relational databases is that applications 

using the system never execute INSERT statements on base tables.  Instead, a stored 

procedure (acting very much like an object constructor) performs some operations and 

inserts the row.  With this kind of an interface applications do not always need UPDATE 

access to every field in a table.  The C2STA provides no provisions for wrapping such 

systems with DAIMs.  A DAIMI could not provide the data access semantics required by 

the C2STA without bypassing the existing data store restrictions and thus fundamentally 

impacting the existing system. 
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2.4.6 Change Notification Service 

The basic C2STA data access paradigm is request and response.  However, other 

existing initiatives in the Air Force have recognized the value of alternative data transport 

paradigms such as publish/subscribe or push.  Such paradigms can substantially improve 

data interoperability as they can eliminate the need for specific pair wise configuration 

support.  The C2STA recognizes the value of such data transport mechanisms.  As such it 

requires DAIMs to define a basic change notification service.  Such a service provides a 

basis for building more sophisticated systems such as those supporting publish/subscribe. 

 

2.4.6.1 General Functional Requirements 

The following requirements detail the functionality required of a DAIM change 

notification service.  Detailed interface descriptions appear in the next section. 

• A DAIM will provide a change notification services. 

•  The notification service shall alert “interested” capabilities that an element of 

data has changed. 

• A DAIM shall include a registration service allowing capability to express their 

interest in notifications about a particular data element. 

• A DAIM’s registration service shall support interest to be specified in the 

following categories: 

o Any change to any instance 

o Any change to a specific instance 

o Any change to a specific attribute of a specific instance 

o Any change to a specific attribute of any instance 
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• A DAIM’s registration service shall require a client to supply a callback interface 

when registering an interest. 

• The notification service shall notify the callback of the type of change (create, 

update, delete), the attribute(s) that changed, and the old and new value(s). 

• The DAIM shall define a Notification ADT that represents a client’s notification 

registration. 

• The DAIM shall define an Interest ADT that represents a client’s interest in data 

changes as described before (e.g. interest in the change of a specific attribute of a 

specific instance).  

The C2STA change notification requirements introduce a constraint on data 

access interfaces in the C2STA.  Although DAIMI requirements specifically allow for 

multiple interfaces to C2 data13, the change notification requirement dictates that all 

interfaces must use some common mechanism for change notification purposes.  While 

this is not explicitly mentioned, it is necessary to guarantee that clients of one interface 

are notified of changes made through a different interface.  The only alternative is 

frequent polling of data values to check for changes.  This is impractical due to the 

enormous overhead it would place on the data store. 

Requiring that all data access interfaces using a single data store share some 

change notification mechanism dictates that either the data store provide the notification 

service or that all data access interfaces are themselves clients of some layer between the 

DAIMI and the data store.  These restrictions are particularly severe for migrating 

systems.  Because existing applications use an existing data access interface, the C2STA 

                                                 
13 See Section 2.5. 
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cannot require that they go through a DAIMI.  Therefore consistent change notification is 

only possible if the change notification service is below both the DAIMI and the existing 

data access interface.  This essentially means that the data store must support change 

notification.  If this is not the case it is impossible to support the required C2STA change 

notification services using wrapper DAIMs and DAIMIs without changing the existing 

system. 

 

2.4.6.2 Required Change Notification Interface 

The C2STA requires the following change notification operations: 

• RegisterInterest 
o Purpose: To associate a Notification instance, an Interest instance, and a 

client callback interface in the notification service’s internal state.  
Implicitly calls TurnOnNotification for the supplied Notification instance 
as well. 

o Arguments: A reference to a new Notification ADT, A reference to the 
Interest instance being registered, and a reference to the client’s callback 
interface. 

o Returns: Unspecified, probably a status flag representing the success or 
failure of the operation. 

 
• UnregisterInterest 

o Purpose:  Undoes a RegisterInterest call.  The association is deleted from 
the notification service’s state. 

o Arguments: A reference to a Notification instance. 
o Returns: Unspecified, probably a status flag representing the success or 

failure of the operation. 
 

• TurnOffNotification 
o Purpose: Temporarily disables a Notification.  The registration is 

maintained but the client callback is not invoked even if a change 
matching the Notification’s Interest occurs. 

o Arguments: A reference to a Notification instance. 
o Returns: Unspecified, probably a status flag representing the success or 

failure of the operation. 
 

• TurnOnNotification 
o Purpose: Re-enable a Notification after a call to TurnOffNotification. 
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o Arguments: A reference to a Notification instance. 
o Returns: Unspecified, probably a status flag representing the success or 

failure of the operation. 
 

• SetCallback 
o Purpose: Allow a client to change the callback interface associated with an 

already-registered Notification. 
o Arguments: A reference to a Notification interest and a reference to the 

new client callback interface. 
o Returns: Unspecified, probably a status flag representing the success or 

failure of the operation. 
 

Further, the C2STA requires the following behavior with regard to notification: 

• A DAIM shall invoke a client’s callback interface by calling that interface with a 

reference to the particular Notification instance that resulted in this callback and a 

indication of the type of change as previously specified.  

None of the requirements introduced in this section warrant additional comments.  

They merely make concrete the generic service already discussed. 

 

2.5 C2STA DAIMI Requirements 

The following requirements specifically address DAIMIs.  There are very few 

requirements in this category precisely because the C2STA was not intended to deal with 

implementation issues. 

• The C2STA places no restrictions on the technologies used for building DAIMIs. 

• The GCI and functional interfaces of a DAIM will be accessible via a CORBA or 

COM implementation. 

• A DAIMI may provide alternative access implementations as well. 

The third point deserves discussion.  The C2STA specifically allows DAIMIs to 

support interfaces other than COM/CORBA.  It suggests that such a decision might be 
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based on performance considerations.  However, Figure 2.314 makes it very clear that 

such access interfaces are still required to implement the DAIM data access operations.  

As such this flexibility does not account for the case of migrating systems where a DAIM 

is defined and a DAIMI implemented by legacy parts of the system still use an alternative 

access method completely independent of the DAIM.  As already mentioned, this 

situation causes problems for change notification services as well as complicating the 

issue of how to expose the business rules of the original system. 

 

 

D A I 

Capabi l i ty  A  

DAIM 1  DAIM 2  

Data  Store  1 

Data  Store  2 

C O R B A | C O M  
Impl . 

C O R B A | C O M  
Impl .  

Alternate  
Implementat ion  
(Optional)  

Capabi l i ty  B  

 

                                                 
14 Appears in the C2STA as Figure 4-1. 
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Figure 2.3  DAIMI Multiple Interface Support 
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Chapter 3 

CDE Scheduler Experiments 

 

The previous two chapters introduced the data interoperability problem and the 

C2STA data architecture.  This discussion repeatedly referred to the data interoperability 

issues surrounding legacy systems and the possible application of the C2STA data 

architecture to those problems.  This chapter provides a detailed explanation of CDE 

exploration of some of those issues. 

The CDE Office of the Air Force Electronic Systems Center is testing the use of 

commercial middleware products to improve data interoperability among Air Force C2 

Systems.  In particular the CDE Office wants to understand how commercial products 

can improve inter-system data flow among systems using DAIMs, as described in 

Chapter 2.  Basic DAIM functionality is summarized below.  This description is 

consistent with the full DAIM architecture.  However, it is important to note that the 

scheduler experiments never attempted to implement a fully C2STA-compliant DAIMI.  

In fact, many of the previous observations regarding the implications of C2STA 

requirements were motivated by a re-examination of the C2STA data architecture after 

the completion of these experiments.  Therefore the following explanation of DAIMs and 

DAIMIs serves more as a clear description of the data architecture underlying the CDE 

experiments rather than a clear description of the full C2STA data architecture.  
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A DAIM defines an object interface to data in the form of abstract data types 

(ADTs).  This provides a specific interface for an application to access the data it needs.  

ADTs are designed with application needs in mind rather than physical data storage 

constraints.  Thus, a DAIM with its abstract object model stands architecturally between 

an application and one or more databases, which may be of different types and have 

different structures.  The DAIM decouples the application from changes in the underlying 

data infrastructure.  The C2STA dictates that DAIMs expose their ADTs via either 

CORBA or COM interfaces.  A CORBA-based DAIM defines its ADTs using the 

CORBA Interface Definition Language (IDL).  These definitions completely specify the 

DAIM.  However, they do not indicate how data will actually be retrieved, processed, etc.   

The task of retrieving data from a stable data store, manipulating them as 

necessary, and making them accessible through the ADT interfaces described by a DAIM 

falls on a DAIMI.  A DAIMI is the actual system that a client application uses to make 

calls to a particular DAIM specification.  The separation between a DAIM’s 

specifications and a DAIMI’s method of fulfilling those specifications allows client 

applications and underlying data sources to evolve independently.  Changes to underlying 

data sources should not affect the DAIM definitions at all.  Instead, changes would need 

to be made to the DAIMI layered above the data source so that it could continue to 

retrieve and process data properly in response to clients accessing ADTs. 

The DAIM concept offers potential benefits to those solving interoperability 

problems between legacy systems as well as those implementing new data stores and 

client applications.  Implementing DAIM technology to solve legacy data interoperability 

problems allows interoperability to be achieved by agreeing on some common set of 
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ADTs needed for communication between systems.  Once these ADTs are defined, 

DAIMIs must be built to map the actual data stores of each system to the ADTs.  While 

this does require that each system’s data model be mapped to the ADTs, it alleviates the 

need for mapping a system’s data model directly to that of another system.  This is 

particularly beneficial when there is the possibility of more than two systems 

interoperating.  If N systems need to interoperate, direct mapping between their various 

data models could requires O(N2) different mapping definitions.  By agreeing on 

common ADTs for the interoperation, the number of mappings needed is reduced to 

O(N).  Further, a change in one data model requires redefining only one mapping in this 

situation rather than redefining O(N) mappings in the previous situation. 

The use of the DAIM architecture can also benefit interoperability in new 

systems.  By writing new client programs to access their data through a DAIM, system 

designers can implement the underlying data store using whatever model and technology 

offers the greatest benefits as long as it can be mapped to the DAIM’s ADTs.  

Additionally, a single client program can potentially access data from a variety of data 

sources with no dependence on their specific implementations.  Finally, a DAIM layered 

above a new data store can potentially support other high level applications developed 

completely independently from that data store (e.g. a generic data browsing and indexing 

program). 

Although the DAIM architecture offers many potential interoperability benefits, it 

must compete with other potential solutions such as those described in Chapter 1.  In light 

of this competition, the DAIM architecture must prove some competitive advantage at 

least for some subset of interoperability problem if it is to achieve widespread use.  One 
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critical measure of DAIM viability is the cost of development.  While DAIMIs can 

obviously be custom programmed for specific data sources (and this might be required 

for some situations), this approach will likely prove expensive in both initial development 

and long-term maintenance costs.  However, if commercially available middleware could 

be used for DAIMI development, the cost might be substantially reduced. 

The CDE scheduler experiment was an initial investigation into the suitability of 

commercial middleware to DAIMI development.  In particular, the project was interested 

in demonstrating the feasibility of providing read/write access to multiple legacy C2 

databases using a commercial middleware based DAIMI.  Such a capability could greatly 

advance the ability to provide linkage to a broad set of data sources to support future 

integrated Air Force systems. 

This experiment provided insight into applying a commercial middleware 

product, Virtual DB from Enterworks15, in a scenario involving the scheduling of air 

missions.  This insight helps answer questions about building DAIMIs and motivates 

question regarding the C2STA data architecture as a whole. 

 

3.1 Test Scenario 

The test scenario for this evaluation was a continuation of earlier DAIM 

experiments performed by MITRE.  The goal was to allow a generic scheduling 

application developed at MITRE to schedule air missions in two independent C2 

databases.  The following C2 databases were selected for the trial: 

                                                 
15 It appears that Virtual DB has been renamed to Enterworks Content Integrator.  The CDE experiments 
dealt exclusively with Virtual DB 3.0.  All discussion regarding Virtual DB applies only to this version.  
For more information on the Enterworks Content Integrator see: 
http://www.enterworks.com/products/index.html 
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• Command and Control Information Processing System (C2IPS), which manages 

the flights of transportation aircraft worldwide. 

• Theater Battle Management Control System (TBMCS), which controls air 

operations in a combat theater. 

 

The C2IPS and TBMCS systems have many common functions, such as receiving 

flight requests; assigning aircraft and crews to missions; scheduling takeoffs and 

landings; tracking missions, and arranging for in-air refueling.  Because there is already a 

need for flight information exchange between these systems, demonstrating that a single 

application can access flight data from both systems without knowing anything about 

their individual data models provides an excellent opportunity to evaluate the potential 

for solving data interoperability problems using the DAIM architecture. 

A demonstration of this kind of interoperability is far from trivial.  While the 

databases supporting these two systems contain some similar data, they have different 

table structures, inconsistent naming conventions, and incongruent data types.  This is a 

challenging test of the ability of a DAIM to provide an abstract object model that can be 

mapped to both physical data models in a meaningful manner. 

 

3.2 Preliminary MITRE Experiment 

The previous iteration of this experiment also used the MITRE scheduler 

application to access C2IPS and TBMCS flight data.  The scheduler application was 

written to access mission data through C++ classes that defined the ADTs for the DAIM.  

The DAIMI consisted of Windows dynamic-link libraries (DLLs) that actually retrieved 
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data from TBMCS and C2IPS databases and exposed it via the C++ ADTs.  These DLLs 

were created by code-generators developed at MITRE.  The generators took as input files 

specifying the mapping of database table and column names to ADT attributes.  They 

output C++ code capable of performing most of the data translation and mapping 

required by the DAIMI.  Specific translations not handled by the code generators had to 

be manually coded.  Finally, the code was compiled to provide the DLL DAIMI. 

The code generators demonstrated that it was possible to apply the DAIM 

architecture to the test scenario.  However, the generators had to be developed in-house 

by MITRE and thus could not achieve the cost effectiveness of commercial-off-the-shelf 

(COTS) tools.  Further, the DLLs were highly dependent on the underlying database 

technologies.  For example, the preliminary tests used C2IPS and TBMCS data stored in 

Microsoft Access databases.  Changing the scenario to include the databases on Oracle 

RDBMS servers (as they would likely be in actual operation environments) required 

changes to the code generators and recompiling the DLL DAIMIs.  On the other hand, 

the custom code generated for each DAIMI allowed a great deal of flexibility in manually 

adding additional code for specialized data mapping problems. 

The CDE experiment was designed to duplicate the benefits of the code-generated 

DAIMIs while demonstrating the suitability of commercial middleware to the DAIM 

architecture.  Further, this experiment implemented the CORBA server based DAIM 

interface specified by the C2STA.  This would allow the DAIMI to operate as an ADT 

server independent from individual client applications.16 

 

                                                 
16 This contrasts with the DLL DAIMIs which essentially operate as a part of an individual client 
application. 
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3.3 Virtual DB DAIMI Architecture  

The C2STA DAIM architecture specifies the operations a DAIM interface should 

provide.  However, the particular design used for building DAIMIs is left unconstrained.  

The scheduling scenario for the Virtual DB experiment dictated that the DAIMI had to 

access C2IPS and TBMCS data stored on Oracle servers and had to provide clients with 

access to CORBA objects as specified by the ADTs defined in the earlier scheduler 

experiment and coded into the scheduler application. 

The Virtual DB server is capable of accessing data from a wide-range of 

underlying sources.  It can then perform data translations and renaming as well as 

combining data from multiple sources.  This allows for the creation of an abstract data 

model that clients can access for both reading and writing.17   

Because Virtual DB provides access to an abstract relational data model, it cannot 

stand as a complete DAIMI on its own.  The C2STA DAIM architecture requires that a 

DAIM provide CORBA or COM objects for its ADTs.  However, this does not 

undermine Virtual DB’s utility as part of a DAIMI architecture.  Building a DAIMI using 

Virtual DB requires an additional layer that translates Virtual DB’s abstract data model 

into CORBA objects representing the DAIM ADTs.  The DAIMI architecture designed 

for this experiment included a “VDBtoADT” server to  provide this functionality.  

Ideally, a COTS based DAIMI would use commercial middleware for this layer as well.  

                                                 
17 It is important to note that writes can only be performed on views that map to a single data server.  
While this constrains some types of write access, it does not affect the scheduling scenario where the client 
must to read data from two sources but always writes changes back to the data’s original source.  Although 
writes to views that provide data from multiple servers are theoretically possible, they require a 
complicated two-phase commit protocol that Virtual DB does not support. 
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However, no commercial products that fulfilled these needs were identified so a 

prototype VDBtoADT server was implemented in Java. 

 The Virtual DB + VDBtoADT architecture described is capable of supporting the 

C2STA DAIM architecture.  Although a completely COTS based architecture would 

have been preferred, this solution offered significant reductions in development costs 

when compared to a completely custom programmed DAIMI.  Further, examination of 

this architecture provided an opportunity to assess the applicability of COTS middleware 

to DAIMIs.  Because Virtual DB stands as one type of interoperability solution on its 

own, it provided an opportunity to critique the C2STA DAIM architecture as well. 

The remainder of this chapter describes details of the Virtual DB DAIMI 

implementation completed for this experiment, the CDE Datalab configuration, 

observations regarding the applicability of Virtual DB to DAIMIs, and observations 

regarding the C2STA DAIM architecture as a whole. 
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3.4 The Test Environment 

The Virtual DB based DAIMI has four distinct software layers.  These are the 

VDB to ADT translator, the Virtual DB server itself, the Sybase Adaptive Server 

(OMNI), and finally the Sybase Direct Connect for Oracle server.  The complete test 

environment requires the Scheduler client program and two Oracle databases as well.  

The maximally distributed client server setup could actually include as many as eight 

separate machines.  However, this degree of distribution did not seem realistic or 

particularly useful to test.  Instead, the target test environment consisted of an Oracle 

server hosting both the C2IPS and TBMCS databases, a DAIM server hosting all of the 

VDB DAIMI services, and a client machine running the Scheduler application.  

However, experiments to date have not used this precise configuration.  The next section 

describes the actual configurations tested as well as the configurations planned for further 

analysis. 

The C2IPS and TBMCS databases were initially installed on two separate Sun 

SparcStations (maddog.mitre.org and krishna.mitre.org) physically located at the MITRE 

A building.  Both of SparcStations ran Oracle 7.x database servers.  This configuration 

provided an excellent model of the distributed data stores likely to be encountered when 

installing DAIMIs in real operating environments.  However, this configuration 

complicated VDB DAIMI testing because the CDE Datalab resides at Hanscom Air 

Force Base in Building 1600.  Network connections from Hanscom to the MITRE 

complex require special TCP/IP tunneling software that proved unreliable on the test 

machines.  Further, the Oracle databases running on maddog.mitre.org and 
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krishna.mitre.org support other critical applications and were therefore less than ideal for 

experimentation purposes. 

The initial Virtual DB server for DAIMI testing was configured on a Sun Sparc 

10 (guinness.mitre.org) in Building 1624 at Hanscom Air Force Base.  Unlike the current 

CDE Datalab, this location had a direct connection to the MITRE complex network.  This 

avoided potential problems with the VTCP tunneling software.  Guinness.mitre.org was 

configured with version 3.0 of the Virtual DB software as well as the Sybase OMNI 

server and the Sybase DirectConnect for Oracle server required by Virtual DB.  These 

products were configured to access the C2IPS and TBMCS databases running on 

krishna.mitre.org and maddog.mitre.org.  However, performance of the Virtual DB server 

running on guinness.mitre.org was unacceptably slow.   Response times were so bad that 

basic data modeling tasks completed by the Virtual DB client software often failed due to 

server timeouts.  For example, defining a single view attribute took over thirty seconds to 

complete.  Worse yet, because of the delay, the Virtual DB GUI timeout and refused to 

display the new attribute even after the update occurred.  This required a reloading of the 

GUI and re-logging on to the Virtual DB server (a several minute task in itself).  

Consultation with Enterworks contacts (who initially configured guinness.mitre.org as a 

Virtual DB server) suggested that guinness.mitre.org was underpowered for the services 

it was running and possibility configured incorrectly as well.  Due to the slow response 

time of guinness.mitre.org as well as its physical separation from the Datalab, Virtual DB 

was installed on a Pentium III based Windows NT workstation in the Datalab configured 

with 128 MB of RAM.  For the short-term another Datalab Windows NT workstation 

hosted Oracle8i instances of C2IPS and TBMCS to support development work in place of 
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krishna.mitre.org and maddog.mitre.org.18   This configuration was more than adequate 

for the small datasets used in this experiment. 

 

3.5 Building The Virtual DB DAIMI 

Constructing the Virtual DB DAIMI involved several discrete tasks.  The 

following subsections explain each task, the challenges encountered, and lessons learned. 

 

3.5.1 Configuring Sybase 

Virtual DB relies on the Sybase Adaptive Server Enterprise (also referred to as 

OMNI) product to access underlying data sources.  Thus, Sybase Adaptive Server 

Enterprise in conjunction with Sybase DirectConnect for Oracle had to be configured to 

access the Oracle instances hosting C2IPS and TBMCS. 

While the Sybase products provide the ability to access over twenty kinds of data 

stores, their installation and configuration is far from trivial.  Experience installing and 

testing the Sybase products required by Virtual DB indicates a need for TCP/IP expertise, 

Oracle SQLNet experience, and ideally experience with Sybase Adaptive Server 

Enterprise.  

 

3.5.2 Configuring VDB 

Once the Sybase server products were configured to provide access to the Oracle 

instances, the next requirement was to configure Virtual DB to access the data through 

                                                 
18 A Sun UltraSPARC hosting Oracle8i has been configured for future Datalab tests.  Both the C2IPS and 
TBMCS databases will be hosted on this server, although they will use separate Oracle instances.  This will 
provide a simple simulation of two separate databases without the excessive hardware and software 
requirements of actually hosting them independently. 
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Sybase.  Fortunately, this step in the configuration was straightforward and closely 

followed the Virtual DB documentation.   Again, TCP/IP experience is beneficial.  

Finally, because Virtual DB depends on the Visibroker CORBA ORB, care must be taken 

when using Visibroker for other services on the same machine.  This situation arose 

because the VDBtoADT layer also needed to use the Visibroker ORB.  Experience 

indicates that Visibroker should be installed after Virtual DB into the Virtual DB 

Visibroker directory. 

 

3.5.3 Defining ADTs 

Once the Virtual DB and Sybase middleware has been configured, the DAIM 

ADTs had to be defined before they could be modeled using Virtual DB.  For the CDE 

experiment, the ADT modeling consisted of translating the C++ classes used in the code-

generated DAIMI experiment into CORBA IDL.  Defining ADTs would be one of the 

major tasks in creating a new DAIM.  However, because the experiment involved an 

application designed with predefined ADTs they only had to be translated to a CORBA 

based architecture.  While the Scheduler application can utilize a variety of ADTs, the 

initial experiments focused on Mission and Sortie objects.  The DAIM IDL definition for 

the Mission ADT is listed next.19 

                                                 
19 Notice that the following interface is similar to that required by the C2STA but not compliant with the 
C2STA.  The CDE experiment focused on the feasibility of the major C2STA goals rather than the 
specifics of its requirements.  
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// Daim.idl 
module Daim { 
 
 interface DaimMission { 
  string GetMissionID(); 
  string GetMissionState(); 
  string GetMissionSubtypeCode(); 
  string GetIFFSIF_Packed(); 
  string GetIFFSIF_Mode1(); 
  string GetIFFSIF_Mode2(); 
  string GetIFFSIF_Mode3(); 
  string GetStartTime(); 
  string GetEndTime(); 
  string GetUnionViewSources(); 
  long   SetMissionID(in string id); 
  long   SetMissionState(in string state); 
  long   SetMissionSubtypeCode(in string code); 
  long   SetIFFSIF_Packed(in string 

iffsif_packed); 
  long   SetIFFSIF_Mode1(in string iffsif_mode1); 
  long   SetIFFSIF_Mode2(in string iffsif_mode2); 
  long   SetIFFSIF_Mode3(in string iffsif_mode3); 
  long   SetStartTime(in string start); 
  long   SetEndTime(in string end); 
  long   Update(); 
  long   Delete(); 
 }; 
 
 typedef sequence<DaimMission> DaimMissions; 
 
 interface Server { 
  DaimMissions GetDaimMissions(); 
  DaimMission NewDaimMission(); 
 }; 
}; 

 

3.5.4 Modeling ADTs in Virtual DB 

Once the ADTs were defined, the core DAIMI data mapping task had to be 

completed.  For the Virtual DB based DAIMI, this meant building a relational model in 

Virtual DB representing the ADTs.  A Virtual DB server maintains an object called the 

Metacatalog for storing data mapping and translation information.  The Metacatalog 

stores a variety of data modeling objects including the base layer, foreign key mappings, 

processing blocks, and terms.  The base layer stores the actual data models present on the 

data sources accessible to Virtual DB.  This provides a starting point for mapping the 
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physical data models to the abstract data model.  Foreign key mappings allow Virtual DB 

to automatically perform joins between abstract views in the abstract data model.  These 

joins can link data from a single data source or even data from multiple data sources.  

Processing blocks allow the introduction of custom code into the Virtual DB data 

mapping services to operate on query parameters before passing them to the underlying 

data sources.  Finally, the terms represent the actual mapping from the underlying data 

source models to the abstract data model.  Terms allow for the definition of “virtual 

views” and “union views” that make up the abstract data model accessible through 

Virtual DB.  Virtual views map abstract columns and their associated data types to actual 

columns and tables in the underlying data source.  A single column in a virtual view can 

map to only one underlying data source.  Union views allow data from multiple virtual 

views to be combined so it appears as one large dataset.  This allows a single column in a 

union view to contain data from multiple data sources.  The Metacatalog allows views to 

be stored in a hierarchical system very similar to folders on a hard disk. 

With an eye towards building a self-

configuring VDBtoADT server, the view 

folders were structured as follows.  A top-

level folder called “DAIM” was created with 

two sub-folders called “ADTs” and 

“BaseViews”.  The ADTs folder was created 

to hold a single union view for each ADT in 

the DAIM.  The BaseViews folder holds the 

virtual views mapping specific data sources to 
 

Figure 3.2 Metacatalog View Hierarchy 
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specific ADTs.   Thus, the ADTs folder contained a virtual view called “Mission” and 

one called “Sortie” while the BaseViews folder contained virtual views called 

“Mission_c2ips”, “Mission_tbmcs”, “Sortie_c2ips”, and “Sortie_tbmcs”.  The naming 

convention dictated that the union virtual views in the ADTs folder had the name of the 

ADT being mapped while the virtual views in the BaseViews folder shared the name of 

the ADT being mapped followed by an underscore and the Virtual DB name of the 

underlying data source.  Attributes of each view had the name of ADT’s attributes.20 

Virtual DB’s view system allows for the renaming of data as well as the 

combining of data from multiple sources.   The actual mapping of virtual views to the 

underlying data sources allows for basic SQL data manipulation.  Data types can be 

changed, simple data manipulation performed, and SQL grouping operations used.  For 

example, a column in a virtual view might be the concatenation of underlying data source 

columns, an algebraic manipulation of underlying columns, or some other basic SQL 

manipulation.  It is important to realize that some manipulations will exclude write-back 

operations to the view.  Virtual DB provides a second method for performing data 

manipulations.  Processing blocks can be designed to operate on the parameters to a 

query or the values returned by a result set.  A processing block is a piece of code that 

takes as input the parameter to a query or the value of a column in a result set and outputs 

a new value which is either passed on to the underlying data sources in the case of a 

query parameter or is substituted into the result set.  Processing blocks can perform more 

complicated data manipulations than simple SQL operations.  Further, processing blocks 

might help maintain write capabilities in some situations because they are asymmetric in 

                                                 
20 Note that IDL previously listed had methods such as GetMissionID and SetMissionID. The virtual view 
attribute name for these methods would simply be MissionID. 
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that they can be independently defined for the input versus the output of a view.  

However, one important limitation of processing blocks is that they are only functions of 

their single input [Enterworks, 1999d].  For example, a processing block designed to 

operate on values for updating a view cannot depend on the current value of a column in 

the view.  Processing blocks were not necessary for data modeling in the CDE 

experiment although they would have been useful had they been capable of functioning 

on both the input to an update query and a view’s current data values. 

Figure 3.3 provides some example mappings used for the Mission and Sortie 

views.  The Mission ADT has three attributes called IFFSIF_Packed, IFFSIF_Mode1, 

IFFSIF_Mode2, and IFFSIF_Mode3.  IFFSIF_Packed is a thirteen character string while 

IFFSIF_Mode1 is the first three characters of the string, IFFSIF_Mode2 the next five, 

and IFFSIF_Mode3 the final five.  The IFFSIF was broken apart this way because C2IPS 

stores the packed version while TBMCS stores the three modes.  Ideally, the ADT would 

have chosen a single representation and mapped both data sources to this representation.  

However, the Mission ADT for the original scheduler experiment instead included both 

representations and mapped each data source to both.  This increased flexibility at the 

cost of complexity. 

Virtual View Attribute C2IPS Mapping TBMCS Mapping 
IFFSIF_Packed C2ips.ATMSS_IDENT.IFF_SIF_CD tbmcs.AIR_MSN_ACFT. 

 AIR_MSN_ACFT_IFFSIF_MODE_1_CD || 
tbmcs.AIR_MSN_ACFT. 
 AIR_MSN_ACFT_IFFSIF_MODE_2_CD || 
tbmcs.AIR_MSN_ACFT. 
 AIR_MSN_ACFT_IFFSIF_MODE_3_CD 

IFFSIF_Mode1 SUBSTRING( 
c2ips.ATMSS_IDENT.IFF_SIF_CD 
FROM 1 FOR 3) 

tbmcs.AIR_MSN_ACFT. 
 AIR_MSN_ACFT_IFFSIF_MODE_1 

IFFSIF_Mode2 SUBSTRING( 
c2ips.ATMSS_IDENT.IFF_SIF_CD 
FROM 4 FOR 5) 

tbmcs.AIR_MSN_ACFT. 
 AIR_MSN_ACFT_IFFSIF_MODE_2 

IFFSIF_Mode3 SUBSTRING( 
c2ips.ATMSS_IDENT.IFF_SIF_CD 
FROM 9 FOR 5) 

tbmcs.AIR_MSN_ACFT. 
 AIR_MSN_ACFT_IFFSIF_MODE_3 

 
Figure 3.3  Example Data Model to Virtual View Mappings 



 68

3.5.5 Building the VDBtoADT Server 

Once the ADTs were mapped in Virtual DB, one important component was still 

required for the Virtual DB DAIMI.  The Virtual DB abstract data model had to be 

presented as CORBA objects as defined by the IDL definitions for the ADTs.  Ideally 

commercial middleware would provide this functionality.  Unfortunately, no such 

solution was discovered.  This situation mandated the development of the VDBtoADT 

server. 

Two major options were considered for the VDBtoADT server.  The first design 

was to write specific code for exposing the scheduler ADTs.  The second design was to 

build a generic VDBtoADT server capable of exposing arbitrary ADTs based on the 

abstract data model exposed by a Virtual DB server.  The first design was pursued for the 

initial experiment.  It was a simpler solution to program and offered increased potential 

for custom mappings (the VDBtoADT server could handle mappings beyond those 

supported in Virtual DB).  However, a generic VDBtoADT server would be preferable 

for larger DAIMIs because it could be written once and then used universally.  The 

investigation of such a solution will be a part of future DAIMI experiments. 

The VDBtoADT server was implemented in Java due to the language’s cross-

platform potential as well as its high compatibility with the Visibroker ORB product used 

to expose the CORBA ADTs.  The server connect to Virtual DB using the Virtual DB 

CORBA objects and exposed CORBA ADTs based on the IDL defined for the scheduler 

DAIM.  The server then converted client “get” and “set” requests to Virtual DB queries 

as appropriate. 
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3.5.6 Linking the CORBA ADTs into the Scheduler 

After completing the various steps in building the Virtual DB DAIMI, the final 

step was to modify the 

scheduler application to 

access data through the 

VDBtoADT server.  As 

stated earlier, the 

experiment made use of 

the Visibroker ORB to 

provide distributed access 

to DAIM ADTs.  The 

Visibroker environment 

includes tools for 

automatically generating 

C++ wrapper classes for accessing CORBA objects.  Thus, the ADT IDL was converted 

directly into C++ source and header files for use by client applications.  Simple test 

programs verified that a C++ program compiled for Win32 platforms could access the 

ADTs.  However, significant difficulties arose when the ADT support was linked into the 

scheduler application. 

The scheduler application was developed under the Microsoft Visual C++ 5.0 

environment using Microsoft Foundation Classes (MFCs).  The application consists of 

several separate pieces that expose their capabilities through Windows DLLs.  A 

graphical interface then integrates these components to provide a scheduling application.  

 
Figure 3.4  Scheduling Application User Interface 
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The scheduling application is show in Figure 3.4.  The linking of Visibroker headers and 

ADT support into the scheduling application data access DLLs allowed the scheduler 

application to access data through the Virtual DB DAIMI.  This linking process was 

much more complicated than expected as the Visibroker headers introduced conflicts 

with the MFC header already present in the scheduler application.  This incompatibility 

significantly increased the difficulty of the experiment.  Future experiments might 

consider alternative CORBA implementations to reduce this cost. 

 

3.6 Lessons Learned 

Having described experiences from trying to build a DAIMI based on one 

commercial middleware product, this chapter’s conclusion will now address some of the 

insights the experiment provided and tie the results into the broader analysis of the 

C2STA data architecture.  A few disclaimers are in order.  It should be clear that the 

DAIMI design presented in this chapter falls far short of the C2STA requirements 

described in Chapter 3.  Change notification was completely ignored and the CORBA 

interfaces did not conform to the interface requirements of the C2STA.  Further, metadata 

was not addressed.  It might seem inappropriate to comment on the C2STA data 

architecture given that so much of it was ignored.  However, these areas are details of the 

data architecture rather than its core.  The C2STA data architecture provides three core 

benefits:  (i) data are accessed through a common object oriented interface convenient for 

typical development tools,  (ii) data are presented through abstract interfaces that hide the 

underlying storage representation, an finally (iii) data are presented as location 

independent.  The DAIMI designed for the CDE experiment addressed all three of these 
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areas.   Although it did not implement change notification and other details of the data 

architecture, experience working with its fundamental character provides insight into 

these details as well. 

The Virtual DB DAIMI architecture provides important insight into the 

components needed for any DAIMI accessing legacy systems.   A legacy DAIMI must 

perform three major functions: 

• Solve communication and API interoperability issues. 

• Map underlying data representations to an abstract model. 

• Expose the abstract model via an object oriented interface. 

The first function relates to actually accessing the legacy data.  The data must be 

retrieved using some communication mechanism.  In the VDB DAIMI design the Sybase 

server products provided this functionality.  They handled network communications with 

database servers and translated various SQL dialects to one common SQL language. 

The second function of a DAIMI is the particularly challenging one.  Many 

commercial products deal with providing unified access to heterogeneous databases 

systems.21  Likewise, many technologies layer object interfaces on top of traditional 

relational models.22  However, none of these systems provides a mechanism for mapping 

a physical model to an abstract model.  Virtual DB was particularly attractive because is 

offered this capability.  However, it is important to understand that within a single 

RDBMS SQL defined views can also provide some basic translation from a physical data 

                                                 
21 For example, both Sybase’s OMNI  middleware and Information Builders’ EDA middleware address this 
problem.  See http://www.sybase.com/products/middleware/ and 
http://www.ibi.com/products/eda/overview.html respectively. 
 
22 Examples include Microsoft’s ADO technology as well as Sun’s JDBC.  See 
http://www.microsoft.com/data/ado/default.htm and http://java.sun.com/products/jdbc/ respectively. 
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model to abstract data models.  Virtual DB provides this functionality across multiple 

databases and adds the concept of processing blocks.  Despite this functionality 

significant restrictions are still placed on the possible mappings.  Basic SQL commands 

can perform complicated data manipulation.  However, this manipulation often precludes 

writing to a given view.  Even Virtual DB’s processing blocks cannot overcome some 

mapping problems.  As noted before, the blocks can only operate on their input rather 

than on their input plus the current state of the database.  While workarounds can 

probably be developed, these kinds of limitations significantly reduce the benefits of 

designing an abstract model of data. 

The final task of a DAIMI, to provide an object-oriented interface, also deserves 

some discussion.  While object oriented interfaces are convenient for building 

component-based software, the C2STA data architecture might hold more appeal for 

legacy systems if this requirement were modified.  Data interoperability benefits greatly 

from standard technologies.  The C2STA chose COM and CORBA as requirements to try 

and address this need.  However, it now seems that other technologies such as XML hold 

more promise (and therefore receive more vendor support) for future inter-system 

communication.  Does the rise of XML force the Air Force to scrap the C2STA data 

architecture?  Of course not.  The architecture could be redefined to preserve its core 

benefits while adopting XML technologies.  This leads to the conclusion that the core 

contribution of the C2STA data architecture (one unified view of C2 data independent of 

the individual data servers) should be promoted without a strict connection to COM or 

CORBA technologies. 
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The next chapter will explore additional insights regarding the C2STA data 

architecture while considering existing literature and research projects related to data 

access.  This background provides a comparison of competing data interoperability 

solutions, examples of solutions similar to the C2STA data architecture, and a peek at the 

technologies that might support an improved C2STA data architecture. 
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Chapter 4 

Relevant Research 

 

As mentioned in Chapter 1, data interoperability problems arise frequently in both 

intra-business and inter-business contexts.  Because of the importance of this topic many 

papers address the issue.  Further, many commercial middleware products and research 

projects address data interoperability issues.  This chapter introduces the range of data 

interoperability solutions found in the literature in an attempt to characterize the state of 

the art technology in data architectures.  This will provide additional insight into 

recommended improvements to the C2STA data architecture. 

 

4.1 Literature Survey of Data Interoperability Solutions  

As explained in Section 1.3 the review of literature regarding data interoperability 

solutions was deferred to allow for the C2STA data architecture’s introduction without 

the burden of positioning it relative to existing research.  Because the C2STA does not 

refer to any related research, it is natural to first explain the architecture and then position 

it in relation to other data interoperability solutions.  Goh categorizes interoperability 

approaches according to two different axes: the choice of underlying data model used for 

conflict resolution and the use of either a loose-coupling or tight-coupling strategy [Goh, 

1997].  While the data model chosen for conflict resolution is critical to the 

implementation of particular interoperability solutions, it can be largely ignored for basic 
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comparison purposes here.  It is sufficient to mention that different solutions can be 

categorized as using a deductive data model, an object oriented data model, a functional 

data model, or a relational data model.  The Virtual DB DAIMI used a relational data 

model for data conflict resolution. 

The interesting distinction for data interoperability solutions is that between 

loosely-coupled strategies and tightly-coupled strategies.  The critical differences 

between loosely-coupled and tightly-coupled systems involve who resolves conflicts and 

when [Goh, 1997].  Tightly-coupled strategies are characterized by the a priori 

development of shared schemas to globally represent the data available in heterogeneous 

systems.  This requires the identification and resolution of data conflicts in advance.  

Once this task has been accomplished, systems can interoperate by issuing queries 

against the shared schema.  Of course some mechanisms must exist to allow clients to 

query the multiple data sources.  Numerous research projects have employed this 

approach.  Some commonly cited in the literature include Multibase [Landers and 

Rosenberg, 1982], ADDS [Breitbart and Tieman, 1985], Mermaid [Templeton et al., 

1987], Carnot [Collet et al., 1991], Pegasus [Ahmed et al., 1991], and SIMS [Arens and 

Knoblock, 1992].  The C2STA data architecture also qualifies as a tightly-coupled 

approach.  The C2STA mandates the definition of a global schema (the DAI).  This 

requires that underlying data sources map their schemas to their associated DAIM in 

advance.  Dayal and Hwang propose a general strategy for solving data conflicts by 

creating supertypes and mapping the data from various sources to these supertypes 

[Dayal and Hwang, 1984].  Most of the projects listed above use this general strategy, as 

did the Virtual DB DAIMI. 
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Having categorized the C2STA data architecture as an instance of tight-coupling, 

it is useful to understand the major alternative.  Loose-coupling approaches assume that 

maintaining a shared schema is too large a burden and does not scale well.  Instead they 

attempt to detect and resolve data conflicts at request time by working between the data 

source and receiver.  Loose-coupling research has typically focused on data manipulation 

languages designed to query multiple sources and transform the results [Goh, 1997].  The 

MRDSM [Litwin and Abdellatif, 1987] system is a well-known example of a loose-

coupling approach.  While tight-coupling carries the burden of developing a shared 

schema, loose-coupling carries the burden of conveying new conflict resolution 

procedures to all clients and receivers. 

Goh argues that the COntext INterchange (COIN) strategy described in his thesis 

is a new kind of solution to the data interoperability problem [Goh, 1997].  The COIN 

strategy relies on both information sources and receivers having explicit context.  Axioms 

that describe facts about the systems are defined.  Given two contexts (the receiver’s and 

the source’s) and the previously mentioned axioms, the system can figure out how to 

properly satisfy a query from the receiver’s context with information from the sender’s 

context.  This strategy is designed to eliminate the need for explicitly solving all data 

conflicts, as required by tight-coupling strategies.  Further, it uses a Context Mediator to 

perform the context translations.  This reduces the burden receivers face in loose-

coupling approaches. 

The Context Mediator used in COIN introduces another important concept from 

data interoperability literature.  Dr. Gio Wiederhold of Stanford University has written 

extensively on the use of mediators to solve heterogeneous information system problems 
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[Wiederhold, 1991, Wiederhold, 1997, and Wiederhold, 1999].  While Goh claims that 

COIN uses a new approach within a mediator, the idea of mediators is not new.   

Wiederhold advocates a three-tiered approach to accessing heterogeneous data.  The first 

and third tiers are the client application and the existing data source, respectively.  The 

middle tier is composed of mediators.  Mediators are tasked with providing useful access 

to information.  This means that mediators must accept client queries, identify the 

appropriate data sources to satisfy a query, and return results processed for maximum 

information density.  The processed results should summarize data or identify exceptional 

data to return the information a client really wants rather than just returning large 

quantities of data.  Notice that the concept of mediators is largely architectural leaving 

the opportunity for a wide-range of implementations.  The COIN system is one such 

implementation as is the TSIMMIS project introduced in Section 4.3. 

How does the C2STA data architecture relate to mediators?  The C2STA does use 

a middle tier (DAIMIs) to provide access to data sources.  However, this is not a mediator 

as the middle tier is designed only to support a logical schema.  Although the C2STA 

data architecture does not adopt the mediator design, the C2STA as a whole does allow 

for similar services.  The raw capability layer in Figure 2.1 is designed to facilitate the 

kind of value-added services that characterize mediators in Wiederhold’s architecture.  

The C2STA has decided that intelligent processing of data and the abstract representation 

of it should be separate tasks while the mediator approach assumes that the same agent 

that intelligently processes data should deal with its representation as well.  The relative 

merits of these two approaches depend largely on assumptions regarding mediation 

technologies available.  If highly automated mediation approaches such as COIN truly 
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provide mediation without manual intervention and without constraining the underlying 

data sources, it seems unnecessary to build the C2STA’s DAI.  Simply building raw 

capabilities as clients of COIN would allow the capabilities to access the data needed for 

their intelligent processing without worrying about the underlying data structures.  In this 

case the C2STA data architecture and raw capability layers could be combined into one 

mediation layer using a COIN-like approach as well as mediators for post-processing of 

data.  On the other hand, if one assumes that manual intervention will be required for 

building mediation systems (as assumed by the TSIMMIS project), the current C2STA 

data architecture is useful for shielding intelligent processing from the changes 

introduced by new resolutions to data conflicts.  Because the C2STA generally avoids 

implementation issues, it can actually support a wide-variety of proposed data 

interoperability solutions.  However, its mandate of a global abstract schema largely 

constrains it to the tightly-coupled strategies. 

Having explained the spectrum of data interoperability solutions in the literature, 

the C2STA’s data architecture can now benefit from the results of previous research.  

Proponents of loosely-coupled architectures will no doubt condemn the C2STA data 

architecture as destined to fail due to the difficultly in defining a global schema.  On the 

other hand, many papers attempt to address building such a schema, so tightly-coupled 

strategies have proponents as well.  Pitoura, et al. [1995] survey a variety of such 

approaches.  In fact, Dogac, et al. [1995a, 1995b] undertook a CORBA based 

heterogeneous data project very similar to the CDE investigation.  These efforts have not 

collapsed in complete failure.  Instead they have identified a range of implementation 

technologies that might support future DAIMIs.  The clear conclusion of research on data 
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interoperability is that the biggest challenge facing tight-coupling strategies is the design 

and maintenance of a global schema.  The success or failure of the C2STA data 

architecture will likely hinge on whether or not the scope of C2 data is “too” large to be 

supported by a global schema.  Of course it is difficult to measure “too” without actual 

implementation experience. 

Having discussed the literature on the categories of data interoperability solutions, 

we will now focus on a few projects aimed at achieving data interoperability.  These 

projects do not introduce new theory on data interoperability, but rather provide some 

practical examples of the important characteristics of data interoperability solutions.  This 

provides an opportunity to examine elements missing from the C2STA data architecture. 

 

4.2 Enterprise Business Objects 

The jBusiness product of Novera Software, Inc. includes a feature called 

Enterprise Business Objects (EBO) [Orstein, 1999].  EBO technology provides a means 

to expose relational data as Java objects.  Although the scheduler experiment dealt with 

CORBA objects, this mapping is very similar to that required for a DAIMI.  Several 

features of EBOs are relevant to the discussion of the C2STA data architecture. 

Like the Virtual DB DAIMI, EBOs provide basic schema transformation.  

However, they translate a relational schema directly into an object model instead of into 

an additional model.  This allows EBOs to provide object oriented “get” and “set” 

methods for their attributes.  Further, EBOs address issues such as the updating of 

aggregate properties.  EBOs also provide convenient object collections for accessing 

related data (as a substitute for joins in the relational model).  All of these features 
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suggest that EBOs might provide an excellent foundation for a DAIMI.  Two other 

features of EBOs highlight areas in which the C2STA data architecture is lacking.  EBOs 

provide an object oriented query interface and caching of data retrieved from a database.  

The C2STA’s lack of a required query interface has already been highlighted as a major 

weakness.  Support for caching is clearly the kind of implementation detail that the 

C2STA specifically avoided.  However, it is important to note that much like change 

notification, caching services might be significantly complicated by the multiple data 

access interfaces allowed by the C2STA.23  While EBOs closely mirror the problems 

encountered in the CDE experiments, they are fundamentally tied to relational source 

models and probably model objects in a manner relatively similar to the underlying 

relational model.  Researchers are working on other data architectures that allow more 

flexibility in this area. 

 

4.3 TSIMMIS Data Wrappers  

The Stanford-IBM Manager of Multiple Information Sources (TSIMMIS)24 

project provides abstract object access to underlying data.  However, unlike the Virtual 

DB DAIMI or EBOs, TSIMMIS wrappers are custom written for each underlying data 

source.  The developers of TSIMMIS note that writing wrappers is a significant effort 

[Hammer et al., 1997].  The TSIMMIS system provides a toolkit for wrapper develop to 

reduce this burden.  It is also important to realize that custom written wrappers provide 

the ultimate in data model translation flexibility.  A custom wrapper can perform 

                                                 
23 See Section 2.5. 
 
24 For more information on TSIMMIS see: http://www-db.stanford.edu/tsimmis/tsimmis.html 
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arbitrarily complex manipulations in response to a “get” or “set” call.  This is similar to 

the custom coding done in the original MITRE DAIMI experiment with one noteworthy 

exception.  The original DAIMI experiment included code for the accessing, mapping, 

and final presentation of data.  On the other hand, a TSIMMIS wrapper only has to access 

and map data.  The TSIMMIS system provides a framework for presenting and querying 

the data. 

The support for querying in the TSIMMIS system is very important.  The 

TSIMMIS system is capable of matching an application query to an underlying data 

source’s exposed data, retrieving the underlying data from the data source, and returning 

the results to the application [Papakonstantinou et al., 1995].  Even more impressive is 

the fact that the TSIMMIS system supports post-retrieval querying that allows 

applications to pose more complicated queries than those supported by the underlying 

data source.  In this case, the TSIMMIS system performs filtering on the results returned 

by the data source.  This kind of support is very useful when designing data wrappers for 

data sources with limited query interfaces.  Although this does not apply to most 

RDBMSs, the C2STA data architecture was designed to provide access to all data 

sources.  A unified query architecture layered above existing data sources could provide 

both the desired standardization of query interfaces and provide the actual filtering 

implementation for those data sources that do not include their own.  The potential 

benefits of adding such a layer to the C2STA data architecture is considered in the next 

chapter. 

 



 83

4.4 Garlic Middleware 

Garlic middleware was developed to support integrated access to multimedia data 

stored in legacy systems.  Like other middleware solutions, the Garlic project uses 

wrappers to access existing data sources and provides object-oriented interfaces to client 

applications.  Garlic middleware then allows heterogeneous querying of the underlying 

data through a unified interface.  So far this sounds very similar to the TSIMMIS system 

already described.  Again there is an emphasis on query interfaces when dealing with 

heterogeneous data.  Garlic also supports querying data sources that lack their own query 

interface [Roth and Schwarz, 1997]. 

However, Garlic’s designers were particularly focused on integrating both 

schemas and data.  They note that integrating legacy schemas often involves dealing with 

overlapping schemas [Haas et al., 1999].  This requires both composition and 

decomposition of underlying data structures to provide a unified object interface.  The 

garlic system provides this functionality by supporting transformations applied to its 

object interface.  This support addresses the functionality needed to provide the abstract 

data access advocated by the C2STA data model.  The Garlic project includes an 

additional component that addresses the practical issues of building abstract data 

representations. 

Building the Virtual DB DAIMI highlighted the difficulties involved in mapping 

an existing data model to some abstract representation.  While the effort involved several 

development steps, some of these were required because the middleware employed did 

not support al of the functionality needed.  Even with ideal middleware the task would 

involve two major steps.  One step is defining abstract data representations.  As 
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mentioned earlier, this step includes developing the agreements essential to data 

interoperability.  Once the data representations are defined, actual data models must be 

mapped to the abstract model.  The Garlic project includes work on a tool called Clio 

designed to facilitate the mapping task.  Clio is designed to facilitate the mapping of data 

and schemas from sources to some target representation [Haas et al., 1999].  The tool 

reads in source schemas and translates them to an internal format using Schema Readers.  

It then uses a Correspondence Engine to identify matches between the source and target 

schemas.  Finally, a Mapping Generator creates views that transform data from a source 

schema to data in the target schema.  The Correspondence Engine is designed to support 

both a graphical interface for human-aided matching and a data-mining engine to 

automate the process.  The Clio tool was in the early stages of development as of March 

1999 [Haas et al., 1999]. 

 

4.5 YAT Model Translations 

The final presentation of research related to the CDE data interoperability 

investigation focuses on the YAT/Tran-Scm25 system.  YAT is a data model for 

describing object using a labeled tree design.  This model includes a language, YATL, for 

specifying rule-based translations from a source model to a target model.  The Tran-SCM 

part of the system is a mechanism for automatically generating some translations 

[Abiteboul et al., 1999].  Because source and target schemas often have a lot in common, 

a rule-based algorithm is used to automatically generate translations where possible.  A 

system designer then specifies the remaining translations using YATL.  This design 

attempts to maximize translation flexibility while minimizing the cost of developing 
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translations.  Experience with the Virtual DB DAIMI indicates that this flexibility is 

essential.  Virtual DB provided a relatively simple (although not automated) method of 

generating simple translations.  However, its ability to support custom-coded complex 

translations was too limited.  An ideal DAIMI platform would support automatically 

generated simple translations as well as arbitrarily complex custom translations.  Having 

discussed various research projects related to DAIMI needs, enough background is in 

place to propose changes to the C2STA data architecture based on the pervious 

discussions about the architecture and experiences from the CDE experiments.  

 

 

 

 

 

                                                                                                                                                 
25 For more information on Yat/Tran-Scm see: http://www-rocq.inria.fr/~simeon/YAT/ 
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Chapter 5 

Conclusions 

 

Chapters 1 through 4 introduced data interoperability, the C2STA data 

architecture as an interoperability solution, the CDE experiments with this architecture, 

and finally additional architectures that address data interoperability.  All of this 

background supports recommendations on the C2STA data architecture and a discussion 

possible implementation issues surrounding the architecture. 

The C2STA data architecture should be separated into two parts.  The first layer 

should be responsible for communicating with underlying data sources, mapping source 

schemas to a target schema (in some internal format), providing change notification 

services, and providing a common query mechanism.  The second layer should be 

responsible for presenting the abstract data to client applications.   However, the second 

layer should not be required to implement a COM or CORBA interface.  Instead, this 

new architecture could support any of a variety of interfaces including COM, CORBA, 

XML, Enterprise Java Beans (EJBs), etc.  Many systems within the Air Force are already 

considering adding XML and other interfaces to their data systems.  However, it is not 

clear that many systems intend to support COM or CORBA.  By separating the C2STA 

data architecture from the particular interface, the architecture can succeed regardless of 

which interface becomes widely adopted.  Further, by allowing multiple interfaces above 

the common translation layer, the problems regarding separate change notification 
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services are solved.  This will not solve change notification issues involving legacy 

access methods to data servers.  Such problems are difficult and the C2STA data 

architecture should be modified to better address legacy systems. 

Legacy systems present a wide range of problems for the C2STA data 

architecture.  Many such problems were discussed in Chapter 2.  The C2STA should 

provide separate requirements for legacy systems and new systems.  This might be 

accomplished by defining two different standards with different criteria for compliance.  

For example, it was already noted that legacy systems might be unable to separate their 

data interfaces from their business rules.  While such a separation is useful, it is better to 

have access to the data through and interface that encompasses the business rules than to 

have no access at all.  Other exceptions for legacy systems should deal with change 

notification requirements that might be very difficult to implement below legacy 

interfaces.  Finally, the C2STA data architecture should include suggestions for a 

migration path from the less restrictive requirements for legacy systems to the more 

stringent requirements for new systems. 

A common feature of the research projects from Chapter 4 motivates another 

recommendation for the C2STA data architecture.  The architecture must mandate a 

flexible query interface.  Such an interface is very useful to client applications and 

essential to promoting the C2STA as a primary data interface for systems.  System 

designers are unlikely to embrace a data architecture that replaces traditional RDBMSs 

with a new interface that lacks flexible query features.  RDBMSs provide extensive 

support for ad hoc querying.  System designers are accustomed to this support so any 

replacement data architecture must provide similar features. 
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A final recommendation for changes to the C2STA data architecture involves its 

assumption of symmetric “get” and “set” operations.  Reading data is often much simpler 

than writing data when accessing data stores.  This situation arises due to security 

measures as well as read-only view issues.  Therefore, it is generally easier to create read 

mappings from a source schema to a target schema than to create the equivalent write 

mappings.  While supporting both read and write access is critical if the C2STA data 

architecture is to provide the only interface to data sources.  However, in the case of 

legacy systems other interfaces are likely to exist.  In this case, it is useful to have a read 

only representation of data for interoperability even when write access is unachievable.  

The C2STA data architecture should recognize this asymmetry and provide guidance on 

providing read-only access while preferring read/write access. 

Having discussed possible changes to the C2STA data architecture, a few 

comments regarding technologies that might support such an architecture will conclude 

this discussion.  The review of other data architectures in Chapter 4 as well as 

experiences implementing the Virtual DB DAIMI suggest that flexibility of schema 

translations is critical to any DAIMI platform.  The ideal solution would provide 

automatic mappings for simple translations while allowing arbitrarily complex custom 

components for sophisticated mappings.  Further, the platform would support the 

separation of mapping functionality and interface presentation already recommended.  

The system would allow a single set of mappings to be represented through several 

interfaces simultaneously.  The research projects examined suggest that such a tool might 

be available in the not too distance future.  While automatic mapping functionality will 
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probably take quite awhile to refine, the other goals could be realized with current 

technology. 

The C2STA data architecture addresses important techniques for achieving data 

interoperability.  It represents a middle ground in the solution space for data 

interoperability as defined in Chapter 1.  The architecture is particularly appealing 

because a message passing system could be implemented above a system’s abstract data 

interface while a schema standardization effort could take place below the abstract data 

interface.  Therefore this solution is completely compatible with other data 

interoperability solutions.  A new revision of the C2STA data architecture incorporating 

the suggestions outlined in this chapter could support significant data interoperability 

solutions both inside and outside the Air Force. 
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Appendix 

Acronyms Appearing in this Thesis 

 

Both the military world and the computer science world are littered with 
acronyms.  Some are broadly used and recognized (e.g. HTML) while others are very 
specific and obscure (e.g. GCI).  In fact, it is not uncommon for acronym collisions to 
occur.  Therefore, the following table lists in alphabetical order all of the acronyms in this 
thesis for the reader’s convenience. 
 

Acronym Expansion 
ADT Abstract Data Type 
AF Air Force 
API Application Programming Interface 
C2 Command and Control 
C2IPS Command and Control Information Processing System 
C2STA C2 System Target Architecture 
CDE Common Data Environment 
COIN Context INterchange 
COM Component Object Model 
CORBA Common Object Request Broker Architecture 
COTS Commercial Off-the-shelf 
DAI Data Access Interface 
DAIM Data Access Interface Module 
DAIMI Data Access Interface Module Implementation 
DBMS Database Management System 
DLL Dynamic Link Library 
DOD Department of Defense 
EBO Enterprise Business Objects 
EJB Enterprise Java Bean 
ESC Electronic Systems Center 
GCI General Capability Interface 
HTML HyperText Markup Language 
IC2S Integrated C2 System 
IDL Interface Definition Language 
MFC Microsoft Foundation Class 
ODBC Open Database Connectivity 
POTS Plain Old Telephone Service 
PROFIT Productivity From Information Technology  
RDBMS Relational Database Management System 
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RGB Red-Green-Blue 
SQL Structured Query Language 
TBMCS Theater Battle Management Control System 
TCP/IP Transmission Control Protocol / Internet Protocol 
USMTF United States Message Text Format 
XML Extensible Markup Language 
YAT (Unknown to author) 
YATL YAT Language 
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