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Abstract

Daainteroperability between computer systemsis critical for busnesses. One design
proposed for future Air Force systems, the C2STA data architecture, attempts to provide
standardized object- oriented interfaces to data, independence from underlying data
gorage technologies, and implementation trangparency. If successful, such aninitiative
would greatly smplify datainteroperability issues. Thisthess examinesthe details of

the C2STA data architecture and presents the results of one prototype implementation.
Further, research on other data architectures that complement this investigation is
described. This thesis concludes with suggested modifications to the C2STA data
architecture.
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Chapter 1

I ntroduction

Virtualy everyone who has used a computer system is familiar with
interoperability problems. The specific problem may come in the form of a computer
user with one word processor trying to open afile created in a second word processor. In
adifferent Stuation, a computer user on a private network might want to exchange
messages with users on the Internet. Or perhaps the problem arises because a Web user
wants to obtain contact information for a company but that company’s Web steiswritten
in French and the user only understands Russian. Each of these problems can be
categorized as some kind of interoperability issue. Thefirst two issues can be solved
using computer systems specificaly designed to provide interoperability between
otherwise incompatible technologies. The third problem is more difficult to solve using
automated systems as language trandation agorithms are far from perfect. Insuch a
gtuation an interoperability solution might include a human trandator creating pardld
web gtesin multiple languages. The interoperability Stuations described above qudify
as problems when users cannot achieve their goa's because there is no solution in place.
Interoperability problems can arise even when specific provisions have been made to
facilitate interoperability. For example, an interoperability solution might rely on the
exigence of ardiable communications channd between systems, if such achannd fails

interoperability is no longer possible.



The preceding examples provide a glimpse of the interoperability problems faced
by computer system designers. Further, they demondirate that interoperability problems
can occur on many levels. The example of the web stein French highlights the case
where dl of the technology-related interoperability issues have been solved (eg. a
common network protocol such as TCP/IP, acommon data exchange format such as
HTML, and full communication rdiability) yet interoperability is sill not achieved.

Thus, interoperability must be addressed & many levelsin asysem. The following
research is focused on the data interoperability between systems. An introduction to data
interoperability and some of the gpproaches used to achieve datainteroperability between

systems provides a useful context for researching this problem.

1.1  TheDataInteroperability Problem

One of the gods of the Common Data Environment (CDE) office of the Air Force
Electronic Systems Center (ESC) isto investigate data interoperability issues that affect
Air Force systems. It isimportant to define data interoperability so that such issuescan
be digtinguished from other kinds of interoperability issues (e.g. communication
interoperability). Datainteroperability isthe ability to correctly interpret data that
Crosses system or organizational boundaries [Renner, 1999]. Thus, moving data between
systems (communication interoperability) is not enough to qualify as data
interoperability. On the other hand, because data interoperability specifically addresses
data that “cr osses system or organizational boundaries’ it cannot occur without some
kind of communication interoperability. The consequence of this dependency isthat the

definition of data interoperability does not eiminate the need to consder other



interoperability issues. Although CDE research focuses on the data interoperability
problem, it must address other kinds of interoperability aswell. It is preferable to adopt
exiging solutions to lower-leve interoperability issues (e.g. usng the aready
standardized TCP/IP protocol for network communications). However, thisis not dways
possible. For example, communications between two different relationd database
management systems (RDBM Ss) probably requires some solution to gpplication
programming interface (APY) leve incompatibilities. Although thisis not technicdly a
data interoperability problem, any proposed solution must a a minimum explain what
exigting technology could be incorporated to solve this difficulty. At amaximum, adata
interoperability architecture might need to completely solve the underlying problem if no
exiging technology can be utilized.

Finaly, some classes of interoperability problems occur at ahigher level than the
dataproblem. For example, if two systems interoperate but some information needed by
one system is not available through the other full interoperation isimpossble. Thisisa
process interoperability issue and cannot be solved through any data interoperability
gpproach [Renner, 1999]. As such, problems of this nature can beignored. One must
assume that process interoperability has already been addressed between the systems

under congderation.

1.2  VariousData I nteroperability Approaches
Based on the stated definition, no data interoperability issues can arise within a
sngle organization usng asingle sysem. However, it is extremdy likdly that the

introduction of even one additiond system to such an environment will introduce data



interoperability needs. In an environment as large as the Air Force, the existence of
many organizations each usng many sysems resultsin alarge number of interoperability
requirements. The Department of Defense (DOD) as awholeis an even more
complicated example. Although severd examples of data interoperability needs have
been cited and more fundamenta requirements such as communication interoperability
discussed, the specifics of such systems have not been addressed.

Pain old telephone service (POTS) can often enable individudsin an
organization to solve data interoperability issues. Suppose thereis a need to combine
information from two systems for some decisiort making process. One solution might
involve an individua with access to one system calling another individua who has access
to the second system and asking the second individua to provide the appropriate
information. Thefirg individual can then asociate the additiond information with the
information dready available in the fira system and supply the result to the decison
making process.

In this example, data interoperability has been achieved. However, it is quite
likdy that thisis atime-consuming process and much more expensive than a solution
where some automated mechanism exigs to facilitate the data interoperability. 1t is il
important to keegp such posshilities in mind because such mechanisms do solve many
data interoperability issues. If a datainteroperability need is very infrequent or unique it
might be more cogt effective to use human intervention than to build an automated
interoperability mechanism. Nonetheless, the following research focuses on automated
data interoperability solutions. Even within this context interoperability solution can

work a widdy varying levels of granularity. On one extreme, a solution might try to
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gandardize dl of the low-level detalls of severd sysemsto dlow interoperation. In
essence, the multiple systems are combined into one super-system. At another extreme, a
smdl number of very specific datainteroperability needs might be defined and avery
specific solution implemented that only supports interoperability of the defined data. The
following examples of data interoperability initiatives illustrate various levels of

interoperation granularity.

121 DataModd Standardization

Many current Air Force systems rely on RDBMSsfor storage and retrieval of
persgtent information. RDBM Ss store information according to relationad models.
These models provide an abstraction of the real world and akey for interpreting the data
inaRDBMS [Renner, 1999]. The abstraction provided by a data model exists because
the mode specifies precisaly what information a system will store and provides methods
for accessing that data. Redl-world details which are not present in the data model are
assumed unimportant for the purposes of the given system. Data modds alow
interpretation of data because they define how data are structured, they describe how
various structures relate to one another, and they usudly provide a description of the redl-
world object being modeled.

Data modd standardization offers one possibility for addressing data
interoperability issues. Because adata model defines how an application “sees the
world”, systems with common data models can achieve data interoperability rdatively

eadsly. Asadready explained, a datamode describes how to interpret the datain a

11



system. Systems with a shared modd share a common interpretation mechanism. This
alows them to easily guarantee the required correct interpretation of data across systems.

A very ample (dthough admittedly contrived) example makes theissue of data
interoperability more concrete. Imagine two systems that share a common data model,
have some data element named “ sky color”, and both report the value as“blue’. They
can quickly conclude that they agree on the color of the sky. However, it isvery likey
that two systems will not have a common data modd. That one will have an dement
cdled “sky color” and the other will have an eement caled “color_sky”. Thefirst will
report that value of “sky color” is“blug’. The second will report that the vaue of
“color_sky” i1s“0,0,255”. Add athird system to the scenario with an element
“sky_color” with avalue of “14”. Thefirst system has stored “sky color” using the
human understood (dthough not necessarily very precise) concept of the color name
“blue’. The second system has stored “color_sky” in a 24-hit red-green-blue (RGB)
form. Thisis probably the same asthe vaue of “blue’ in the first systlem athough an
interpreter would have to be careful about the precise definition of “blue’. Findly, the
third system could be referring to dl sorts of system+specific identifiers for color. An
index into an internd color-paetteisredigic posshility. Thefact that al three systems
use different names for the same concept further complicates the Stuation. Whilea
human could easily guess that the three names refer to the same redl-world characteridtic,
acomputer could not make this determination with certainty (in fact even a human might
only be guessng).

A datamode standardization effort would take the three systems in the second

scenario and force them to agree on a common name éttribute storing the color of the sky.
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Further, they would have to agree on a common format for storing the value as well.
Thisisanonttrivid effort in red systemsthat might have existing modes describing
thousands of attributes. Further, the example only dedt with a sSingle data attribute.
Redationa modds actudly define much more complicated entities and relationships
between entities. While it might not require substantid effort to rename the attribute
gtoring the color of the sky, redefining entities and the relationships between them can be
very complicated. (On the other hand, if a system’s gpplications are tightly coupled to its
data modd it might even require afair amount of effort to rename the color of the sky.)
Subtle differences in seemingly smilar data modds can greetly increase the effort
required to achieve datamode standardization. Further, a sandard data model requires
systems to modd the world in the sameway. This means that sysems must agree on
what aspects of the world they are interested in and to what level of detail. Althoughitis
possible that no single application adopts dl parts of a standard data modd, data
interoperability is only achieved for those parts that two interoperating systems have in
common.

Data modd standardization offers avery high leve of datainteroperation at a
high implementation cost. Beyond the actud effort required to sandardize data models
across systems, such efforts are bound to encounter control issues particularly as they
cross organizationa boundaries. Both the DOD and the Air Force have attempted
various data modd standardization efforts. This gpproach will most likely succeed in
tightly coupled systems crossing aminima number of organizational boundaries.

Because many systems that do not fit this profile require data interoperability, data model

gtandardization cannot be viewed as a complete solution to the problem.
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A find note on datamode standardization isin order. The earlier discussion of
data interoperability noted that it depended on other mechanisms such as those supporting
communication interoperability. Data modd standardization by itself does not provide a
complete solution. Two systems might share a datamode but not have a communication
mechanism. However, it isrdatively essy to build communication interoperability
between two systemns using existing network technologies. If the systems dready share a
data modd, data interoperability is achieved. Thisis quite adifferent Stuation from the
common case where two systems have communication interoperability but do not have a

high degree of data interoperability.

1.2.2 Message Passing

Any datainteroperability solution tackling the “color of the sky” problem will
have to include some agreement on identification of the attribute of interest aswel asthe
universe of possible valuesfor the attribute. The high cogts of data modd standardization
arise because this agreement is being implemented at the data storage layer in systems.
This means that the agreement fundamentally affects the internal operations of the
systems as well as the data interoperability between systems. Message passing
architectures represent a very different solution space. Message passing focuses only on
agreement for data interoperability between systems. The interna data representations
are uncongtrained by the architecture.

Message passing architectures support data interoperability when two systems

agree on common messages.  The messages two systems define in common represent
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their shared view of theworld. By trandating internd system data representations into
messages the systems provide a means for both transferring data and guaranteeing a
common interpretation of that data. Assuming that communication interoperability
mechanisms are in place, the requirements for data interoperability are satisfied. A
typica syslem might require an auxiliary message cregtion and parsing module to support
thissolution. Idedly no other changesto the origina system would be required. Such an
gpproach alows much more autonomy between interoperating systems. This can reduce
implementation costs and system control issues.

Given that message passing provides an opportunity to address data
interoperability with areduced impact on exigting syslems, one might question the utility
of datamodd standardization. One important factor to remember isthat the two
solutions provide dramaticaly different levels of interoperability. Data model
gandardization offers the potentia for systemsto share alarge portion of their interna
date. Message passing is better suited to Stuations where the data interoperability needs
represent asmaler part of asysem’'sdate. If alarge amount of interoperability is
required, the cost of defining messages and building message- parsing systems could
easly approach the cost of standardizing datamodels. Further, data model
standardization dlows for other system optimization such as shared data servers.
Additionaly, common data models dlow for re-use of system modules whereas a pure
message passing solution requires each system to build its own independent message
handling module. Finally, message passing may not be appropriate for Stuations where

datatimelinessiscritica. In this case shared data models and the potentid for shared

1 Of courseinternal data representations must actually represent the information needed for data
interoperability, thus the only requirement is that some translation from the internal state to the message
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database systems offer a better platform for guaranteeing one consistent view of globd
state.

Asin the case of datamodel standardization, message passing is not aone-Sze-
fits-dl solution to data interoperability. However, it isapowerful tool in adata
interoperability repertoire. Many current Air Force systems use message passing in a
format called the United States Message Text Format (USMTF)? for datainteroperability.
Ongoing research initiatives are investigating the potential benefits of adopting
Extensible Markup Language (XML)? and the commercid tools that support it. Such
effortswill probably achieve the most success between relatively independent systems

with modest interoperability requirements.

1.2.3 Object Oriented Data Wrappers

The two data interoperability approaches discussed thus far represent extreme
positions on the solution spectrum. The firgt placed sgnificant requirements on a
gystem’sinternal data representations. The second placed almost no restrictions on the
interna operation of asystem. Thethird gpproach presented fals somewhere between
these two positions. Data wrapping technologies attempt to standardize the interfaces to
asysem’'sinternd state. Thisdlows the system the freedom to adopt database leve data
models and even database technol ogies based on factors such as performance.
Interoperability is achieved at the interface level. While such an approach is not

congtrained to object oriented interfaces (a functiona interface could achieve the same

dataformat be possible.
2 For information on USMTF see: http://www.forscom.army.mil/interop/USMTF/DEFAULT.htm

3 For information on XML see: http:/Aww.w3.org/XML/
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gods), objects are anatura choice for today’ s programming languages, tools, and
environments.

Object oriented data wrappers require alot of the same agreements as data model
standardization. However, because such wrappers are implemented above the database
level they can sometimes be introduced into existing systems without modification to the
exiging database or applications. Instead the wrappers provide a common access
mechanism for new gpplications. This has the added benfit of alowing the underlying
database to evolve without affecting the data interface used by gpplications.

Datainteroperability in such a system is achieved when system modules are
designed to communicate with the wrapper objects. When two interoperating systems
support the same objects, they can access each other’ s objects in a seamless manner.
Communication interoperability can be achieved through distributed object technologies
that support network communications.

Unfortunately it is unlikely that a system’s physical data modd can achieve
complete independence from its object interface. The semantics of the data objects will
be somewhat congtrained by the underlying data representations. The success of the
object wrapper approach depends on the benefits of having an abstract object model
outweighing the cost of any dependence between the object mode and the underlying
datamodel. Because of this congtraint, object wrapper solutions will probably achieve
the mogt successin systems that support smilar data models. This condition improves

the chance that common objects can be ingtantiated from the independent systems.
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Current research projects both within the Air Force and in the computer industry
as awhole examine various object wrapper architectures* The following chapters
describe a CDE experiment involving one such architecture. This architectureisthen

compared to other object wrapper approaches.

1.3  Literature Survey on the Data | nter oper ability Problem

The preceding explanation of datainteroperability and the examples of data
interoperability solutions provided an informa introduction to the subject. However, itis
important to redize thet this problem has been the focus of asgnificant amount of
research. While the informal explanation is sufficient to grasp the generd nature of the
problem, a brief synthesis of formal research related to data interoperability will provide
an academic context for examining the issue. Further, it will facilitate later comparisons
between the data architecture studied in this thesis and existing research.

The data interoperability problem aready cited is often caled the need for
semantic interoperability among autonomous and heter ogeneous systems [ Scheuermann
et a., 1990, Sheth and Larson, 1990, Hurson et d., 1994]. The terms autonomous and
heterogeneous refer to the fact that the systems under consideration are neither centrdly
managed nor based on the same technologies.  For example, severd Solaris servers
running Oracle 8i to support different systems for independent branches of the DOD
would be autonomous but not heterogeneous. While not al datainteroperability
problems within the Air Force meet both criteria, some do. Because solving the more
generd problem will aso solve less-difficult problems, any approach to data

interoperability should address both autonomy and heterogeneity of systems. Semantic

* For examples of object wrapper architectures see Chapter 4.
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interoperability means the meaningful exchange of information [Goh, 1997]. Thus, it is
clear that the definition of dataiinteroperability used in thisthess closdy pardlelsthe
concept of semantic interoperability among autonomous and heterogeneous systems cited
in the literature.

Having established that the datainteroperability issue examined in thisthesisisin
fact closdly rated to the problems addressed in existing research, it is useful to further
consider how the problem has been classified. Both the concept of autonomy and that of
heterogeneity have been broken into categories [Goh, 1997].

Autonomy is prefixed by one of the following: design, communication, or
execution [Scheuermann et d., 1990]. Communication and execution autonomy refer to
systemns choosing who they communicate with and when, respectively. However, these
distinctions are not of direct concern to the datainteroperability problem as addressed in
thisthesis. On the other hand, desgn autonomy, or asystem’ s ability to choose its own
information, data mode, and implementation, is afundamenta concern.

Two mgjor classes of heterogeneity emerge. These are data heterogeneity and
systemn heterogeneity [Goh, 1997]. The first issue addresses the organization and
interpretation of data while the second addresses data models, data manipulation
languages, concurrency controls, etc. Asawhole, data heterogeneity leadsto data
conflicts. In his PhD dissertation, Goh identifies three categories of data conflicts from
the relevant literature and further bresks these into nine individual cases. These cases
will be very briefly described to illuminate the specific kinds of problems that must be

solved by a datainteroperability solution.
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Schematic conflicts as documented in the literature account for four cases of data
conflicts [Kim and Seo, 1991, Krishnamurthy et a., 1991]. These conflicts generaly
relate to differencesin structure, or logica organization, of data[Goh, 1997]. The four
casesare: datatype conflicts, labding conflicts, aggregation conflicts, and generdization
conflicts. Data type conflicts arise when two systems use a different fundamental data
type for the same piece of information. Perhgps a phone number is a number in one
system and a gtring in another. Labeling conflicts refer to the naming of schema
elements. The problem includes name collisons as well as name discrepancies. The
earlier interoperability problem involving the color of the sky exhibited this problem.
Aggregation conflicts involve differences in the choices for entities and attributes [Smith
and Smith, 1977]. Attribute A of entity E in one system might correspond to attribute E
of entity A in asecond system. Findly, generdization conflicts concern differencesin
the relationships between entities.

Semantic conflicts have aso been widely documented [ Sheth and Kashvap, 1992,
Naiman and Ouskel, 1995, Garcia-Solaco et d., 1996]. These kinds of conflicts can be
categorized as naming conflicts, scaing conflicts, and confounding conflicts [Goh, 1997].
Semantic naming conflicts arise when different systems use different attribute vaues for
the same concept or the same vaues for different concepts. For example one system
might identify the United States by the abbreviation “US’ while another might use
“USA”. Scding conflictsinvolve the use of different units for the same concept. This
was the problem in the NASA mission failure dready cited. Confounding conflicts
involve equating concepts that are actudly different. For example, athough two arlines

might report the prices of their tickets as an attribute price, the two concepts of price
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cannot be equated if one airline includes taxes in the attribute vaue and the other does
not.

Goh identifiesthe find category of data conflicts asintentiond conflicts [Goh,
1997]. Such conflicts relate to differences in information content present in data sources.
These conflicts fdl into two categories: domain conflicts and integrity constraint
conflicts. Domain conflicts arise when different data sources have different (possibly
implicit) domains. For example an Air Force database might claim to include tall
numbers for all combat arplanes. However, comparison with asmilar DOD database
might reved that the Air Force database excludes Navy planes. Someonetrying to
account for al combat aircraft owned by the United States could not use the Air Force
database exclusvely. Integrity congtraint conflicts arise when different systems have
different integrity condraints. For example, if two systems use different primary keys
then one unique identifier for some red-world entity might not uniquely identify dl of
the information stored about it across severd systems.

The preceding taxonomy of data conflicts provides a useful modd for consdering
specific data interoperability problems. Some problems such as labding conflicts can
often be resolved through existing mechanisms such as RDBMS views. Other problems
such as aggregation conflicts are more difficult to solve. The following investigetion of a
proposed data architecture for Air Force systems will not specificaly address dl of the
types of data conflicts. However, any datainteroperability must either address these
conflicts or require that underlying systems eliminate certain classes of conflicts.

Having explained the academic background of the data interoperability problem it

would be natural to now present the academic background of data interoperability
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solutions. However, this discussion will be deferred until Chapter 4. Because the data
architecture under consderation was not specificaly presented as a solution to the data
interoperability problem, nor wasiit justified in the context of existing literature on data
interoperability, it is useful to firg present the architecture and then try and dlassify it

according to other literaturein the field.

1.4  CDE Data Interoperability I nvestigation

The introduction thus far has provided the appropriate background for the
following explanation of the CDE investigation of the potential impact of the Command
and Control (C2) System Target Architecture (C2STA) data architecture on Air Force
systems. Chapter 2 introduces the context of the data architecture as well as its specific
detalls. The explanation is designed to outline the genera godss of the architecture while
providing important details for subsequent analyss. Thethird chapter describes in detall
the CDE experiments designed to test the feasibility of using the C2STA data architecture
to solve data interoperability problemsinvolving existing sysems. The chapter includes
adescription of the specific experiment scenario, details of the experiments, and a
presentation of results. Chapter 4 examines other data architectures smilar to that of the
C2STA. The discussion draws on observations from the CDE experiments to highlight
how other architectures might contribute to an improved C2STA data architecture. The
fifth chapter summarizes recommended changes to the C2STA data architecture to
improve its ability to support data interoperability between existing sysems. Findly, the

appendix ligts the acronyms used in this thess.
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Chapter 2

C2STA Data Access Architecture

The previous chapter defined data interoperability and summarized various
gpproaches to solving data interoperability problems. CDE research has focused on
attempting to implement one particular data access architecture and anayzing that
architecture' s potentia for solving datainteroperability issues. The data access
architecture examined was devel oped as part of abroader design initiative. The
following is an introduction to thet initiative followed by its data architecture. This

provides a context for the CDE experiments and andysis.

21  TheCommand and Control System Target Architecture

The C2STA advocates an object oriented component-based design for future Air
Force C2 systems. Thisdesignisamed a achieving Air Force gods of an Integrated C2
System (1C2S) [C2STA, 1998]. Some of the potentia benefits of such adesign include
reusability of systems and plug-and-play integration of systems.

The C2STA defines amulti-tiered architecture based on “ capabilities’. The
C2STA uses the term component to define the lowest level structural eement of
software. Individua components do not have to comply with C2STA requirements. A

capability is a software module designed to accomplish some C2 task. Capabilities are
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composed of components and must comply with C2STA requirements. Figure 2.1°

illustrates the C2STA mullti-tiered capability architecture.

%Presentation —;) CDE, Win95, or JVM
//

N
m Data Access Interface

N
N
AN

\\\
Q SQL, ODBC, ...

Figure2.1 C2STA Capability Layering

The C2STA is presented asfive digtinct views. the capability view, the data view,
the digtribution view, the security view, and the production view. The following
investigation of the C2STA data architecture focuses largely on the data view.

Having introduced the C2STA as awhoale, the discussion now shifts to the details
itsData View. Thisbackground isimportant because it provides the origina definition
of the C2STA data architecture sudied by the CDE. Further, it providesingght into the

design gods of the architecture. Thisalows for both a discussion of what exactly

® Appearsin the C2STA as Figure 3-1.
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condtitutes the C2STA data architecture and evauation of how successfully real
implementations can achieve the origina goas that mativated this design.

The C2STA specifiesthat its data view encompasses al data needed by C2
functions and capabilities. However, it goes on to identify five specific categories of data
[C2STA, 1998]. These categories are: data already being shared, data from migrating C2
databases, data from existing commercid- off-the-shelf (COTS) desktop applications with
internal databases, DOD and service reference data, and draft data. Each of these
categories presents different congtraints when building systems to support the C2STA
data architecture. The experiments and resulting conclusions described in later chapters
focus entirely on data from legacy systems. Although these systems offer alimited view
for critiquing the C2STA data architecture, they represent the single most critica data
category, as large parts of the envisioned 1IC2S will certainly evolve from legacy systems.
Nonethdess, it is useful to keep dl five of the categoriesin mind, as some detalls of the
C2STA data architecture seem tailored to specific categories.

Before introducing the specifics of the C2STA data architecture, it is useful to
review the design gods of the data view. While the generd C2STA capability gods
apply to the data architecture, many data- specific goas are stated as well. The C2STA
explicitly lists key properties of C2 data solutions[C2STA, 1998]. These properties
include:

Providing access to C2 data anytime from anywhere.

Accommodating data from migrating sysems.

Properly handling data with varying security congraints.

Making data available to arbitrary C2 capabilities and applications.
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Allowing for the sharing of data with externd systems.

Providing data consstently over arange of communications conditions.

Exhibiting robustness in the face of changing applications and C2 capabilities.

The sacond godl ligted above will receive the primary focusin the following
evauation of the C2STA data architecture. However, information interoperability is
much more complicated than merdly facilitating data communication. Exiding
technol ogies such as the open database connectivity (ODBC)° standard for relational
database programming interface access and the structured query language (SQL)’
gandard for formulating relationa database queries provide some compatibility for
moving data between systems. The C2STA data architecture attempts to provide
integrated C2 data access with amuch higher level of interoperability. Thus, itis
important to remember that accommodating data from migrating systems requires amore
sophisticated design than one needed only to “ship” data from such sysemsto C2
capabilities.

Thisintroduction to the C2STA data architecture makes the provisons for
separding data access by C2 capabilities from the underlying data storage mechanisms
clear. Thisseparaion was designed to provide a high leve of information
interoperability while achieving the design god's previoudy listed.

The C2STA Data View includes both generd descriptions of the intended data
architecture and specific requirements for systems adopting the architecture. This
information is mixed together in the data view and extended (with some duplication) in

the C2STA gppendices. The following summary of the information is presented in a

® For information on ODBC see: http://www.microsoft.com/data/odbc/
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different format. First, the genera architecture is introduced and then specific C2STA
requirements arelisted. Further, the specific requirements are organized into groups that
summearize their purposes. While the C2STA does this to some extent, many related
requirements are addressed in separate sections of the data view discussion. For
example, this summary addresses change notification requirements in one unified section
whereas the C2STA data view mentions change natification requirements in two different
sections as well asin an gopendix. Grouping related requirements helps clarify the

specific details of the C2STA data architecture and diminate redundant requirements.

2.2  DataAccess|Interface + Modules+ Implementations

The C2STA data architecture is defined in terms of three separated specifications.
The highest-level concept is the Data Access Interface (DAI). The DAI abgtractly
represents the complete set of data available across dl C2 systems. The DA view of C2
datais object-oriented and ideally independent from the underlying data store
technologies. Further, the DAI isintended to shield C2 capabilities from data location
issues. However, the abstract nature of the DAI means that capabilities cannot actualy
rely on the DAI to handle the details of ataining C2 data. Clearly some rendezvous
mechanism is needed to dlow C2 capabilities to locate C2 data without depending on a
particular location. Although the C2STA does not address this requirement, some of the
technologies it suggests (e.g. CORBA) do include support for such service discovery.

Because the C2STA requiresthat dl C2 data be accessed via interface definitions

that are a part of the DAI, the DAI isavirtud super-database of all C2 data. However, it

isimportant to understand that the DAI is completely abstract. The C2STA does not

" For information on the SQL standard see: http://www.jcc.com/SQL Pages/jccs_sql.htm
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require any physicd indantiation of the DAI. While it would certainly seem useful to

have some centrd repogitory of the interface definitions that make up the DAI thisis not
arequirement of the C2STA. Because system builders never have to explicitly

implement the DAL it is easy to overlook this unifying feature of the C2STA data
architecture. The most important point to remember is“to C2 capahilities, the DAI is the
database.” [C2STA, 1998] (Emphasis added.)

The second eement in the C2 data architecture is basicaly a mechanism for
partitioning the DAI. Although this partitioning is designed to occur in alogica sensg, it
dso facilitates physical partitioning of the data stores to some degree. Data Access
Interface Modules (DAIMS) represent subsets of the C2 data. Like the DAI, aDAIM is
not aphysca sysem. Ingead it is an interface definition that precisely modd's some
particular C2 data. DAIMs are supposed to be defined to either manage a particular class
of C2 data or to provide access to data from amigrating system. Because the DAIM
architecture does not require one-to-one mappings between DAIMs and underlying data
dores or visaversa, DAIMs can group data with limited concern for the underlying data
locations. However, thereis alimit to this independence, particularly in the case of
legacy systems, as object relationships within a DAIM will often correspond to foreign-
key mappingsin an underlying RDBMS. Because these mappings often do not correlate
across different RDBMSs a single DAIM might not be able to link data from completely
different sources. In such acase it would be more natural to have different DAIMs
define the data contained in the different sources.

While the concept of a single comprehensive database unburdened by the details

of persgstent data store technologies and locationsis very appedling, it is obvious that C2
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data must at some point pass through red systems. The finad eement in the C2STA data
architecture is the DAIM Implementation (DAIMI). Asthe name suggests, DAIMIs are
red sysems. A DAIMI supportsaparticular DAIM interface. It facilitates the actua
transfer of C2 datain response to arequest conforming to the DAIM interface
gpecification. A DAIMI supports only one DAIM, however many different DAIMIs can
support the same DAIM according to the C2STA.

The relationship between the three eements of the C2STA data architectureis
eadly summarized. A DAIMI concretely supports the abstract interfaces of aDAIM that
comprises some subset of the C2 data defined by the DAI. Figure 2.2° makes this

relationship explicit while highlighting some possible configurations for defining DAIMs

Data Access Interface (DAI) |-Provides

Part _Of Part_Of Part_Of
DAI M 1 DAI M 2 DAI M 3
| npl emrent s
| mpl ement s | mpl enent s
DAI M 1 DAI M 2 DAI M 2 DAI M 3
| mpl emrent ati on I npl ementation A| |Inplementation B|||nplenentation
Provi des_Access_To l l Provi des_Access_To
Common & O her C2 Data Mgrating
Ref erence System

Figure2.2 An Example C2STA data system highlighting therelationship between the DAI, DAIMs, and

DAIMIs.

8 Appearsin the C2STA as Figure 4-3.
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and building DAIMIs.

Having completed a genera description of the C2STA data architecture, the
following sections present the specific C2STA requirements for the various dements.
These requirements will further detail the C2STA vison of adatasolution. They will
aso further redtrict the C2STA data architecture providing an opportunity for angyss of
the architecture s feasibility (particularly for accessing detaiin legacy systems). Findly,
by omission they provide an opportunity to compare the C2STA data architecture with

other access models and suggest problems the C2STA overlooks.

2.3  C2STA DAI Requirements

The C2STA provides the following requirements regarding the DAI. Many of
these requirements have been rephrased so their meaning remains clear absent their
origind context. It isaso important to note that many of these requirements gpply
equaly to DAIMs since the DAL isjust the collection of al DAIMs. Often replacing “the
DAI” with “aDAIM” will result in arequirement on DAIMs that preserves the origina
intent.

C2 Systemswill use the DAI for data access.

The DAI will provide trangparency of data location.

The DAI view of C2 data shdl be platform+independent and capability-

independent.

The DAI will dlow integrated access to local and remote data.

The DAL will isolate clients from the underlying storage details of databeing

accessed (e.g. schema).
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The DAI will be defined by the set of DAIMs defined for the Integrated C2

System (1C29).

The DAI will provide access to metadata about C2 data objects and their

attributes.

The DAI will be extensble.

The DAI will maintain backward compatibility by defining new access methods

and object rather than changing exigting interfaces.

Both the reading and writing of C2 datawill occur through the DAL.

Thethree mgor goals of the DAI architecture are clear from the preceding
requirements. (i) the DAL is the database (for both reading and writing) for C2
cgpabilities, (ii) the DAI is designed to shidd clients from as many of the implementation
details of actual data stores as possible (location, technology, etc.), and (iii) the DAI is
extensible while maintaining backward compatibility. The second and fourth
requirements listed above seem to overlap. Location transparency would seem to imply
that local and remote data could be accessed in an integrated fashion. However, by
ligting both properties the C2STA makesiit clear that DAI location independence is not
amply amatter of masking some single location of data but rather a mechanism for

alowing complex data replication and storage while hiding dl such details from C2

capabilities

24  C2STA DAIM Requirements

The mgority of the C2STA data architecture' s requirements gpply directly to

DAIMs. Thisisnaturd asthe C2STA deliberately avoids detailing DAIMIs as much as
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possible. The DAIM requirements cover arange of issues from basic DAIM design to
gpecific functiondities such as change notification and findly formd interface
requirements. Generd DAIM issues are addressed first and then separate sections focus
on mgor desgn sub-categories.

A DAIM shdl present abstract data types (ADTS) to other components.

The abstract data objects provided by a DAIM have well defined semantics

agreed upon across C2 domains.

A DAIM should provide “acomplete modd of the C2 data” This should include

both persastent attributes as well as other “inherent attributes’ of an object that

can be caculated from persastent values.

Structured data elements within an ADT shd| be available via abdiract references

to the embedded ADT viathe appropriate DAIMI, etc.

All data access operations shall be atomic.

DAIMs shdl operate in either implicitly persstent mode or explicitly persstent

mode.

A DAIM shall be congtructed such that capabilities can be completely ignorant

regarding the details of the DAIMI they access.

DAIMs should embody knowledge of data store replication used for data

requiring high timeliness or Satic data.

Migrating systems may require a“wrapper” DAIM.

A DAIM may use the services of another DAIM or access data from multiple

underlying data stores as necessary.
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Multiple DAIMs may access the same data store if the data stores hold various

classes of data

The second requirement that AD TS have semantics agreed upon across C2
domains helps maintain the interoperability of C2 capabilities. However, this same
requirement means that congtructing “wrapper” DAIMIs might require alot more effort
than smply layering an object modd on top of an exidting relationd datamodd. It is
likely that legacy sysemswill dready include their own reationd models of data. These
legacy moddls could easily have overlgpping data without any generd agreement on
semantics, structure, etc. DAIMSs defined to access such systems would have to trandate
from the legacy model to the ADTs. The CDE experiments highlight some of the
chdlengesin redizing such gods.

The requirement that DAIMs include access to both stored data and “inherent”
caculated attributes based on persistent data is designed to provide flexible data access to
C2 capabilities. However, it will later become clear that the C2STA does not reconcile
some consequences of this requirement with its data access interfaces.

The statement that migrating systems might require wrapper DAIMs directly
motivates the CDE experiments. However, observations from these experiments
highlight incompatibilities between C2STA requirements and congtraints of building
wrapper DAIMIs.

The requirement that DAIMs support one of two modes of persistence requires
some explanation. Inimplicitly persstent mode dl ingtance creation operaions and
atribute modifications are immediately made perastent. In explicitly persastent mode

cregtion operations and attribute modifications are temporary until the temporary instance
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isexplicitly made persstent a which time dl temporary changes are Smultaneoudy
made persstent.

Severd categories of additiond requirements follow the previous examination of
some of the generd DAIM requirements. Some of these categories address high-leve
requirements such as what kind of information a DAIM should supply. Other categories

are much more specific and require DAIMs to support specific interfaces.

241 DAIMs& BusinessRules

The fallowing rules help darify the multi-tiered architecture envisioned by the
C2STA. Because traditiond RDBM Ss often provide support for stored- procedures,
triggers, and other programmable functions they act as more than passive persstent
storage mechanisms. It is possible to include business rules and other application level
functiondity indde the database. However, thisis not the design advocated by the
C2STA. Ingteed, the C2STA separates business rules and application logic from the data
doretechnology. The following specific requirements clarify this intent.

A DAIM should not include operations that embody business rules that are not a

fundamenta part of the data object.

DAIM operations can embody mission-independent business rules inherent to a

dataobject. Theserules may beingantiated in aDAIMI or in the underlying data

sore. (e.g. range congtraints, etc.)

DAIMs are respongble for maintaining the integrity of their persstent deta.

Together these three requirements make it clear that DAIMs should not embody

business rules but they are not passive storage locations. They are required to validate



data. The C2STA identifies agenera guideline that detaintegrity rules should be
ingantiated as close to the perggient store as possible. Thisimplies defining integrity
rules at the data store level rather than the DAIMI level. However, thisisonly a
guideline and not arule. While separating business rules from DAIMsis a commonly
accepted practice for building component systems with good encapsulation properties,
legacy systems might have to violate these requirements. Their business rules are often
indantiated insde the underlying DBMS (e.g. in the form of triggers, stored procedures,
etc.) and any DAIMI wrapper would have to expose operations subject to the underlying

busnessrules. The C2STA does not address this issue.

242 DAIMs& Metadata

The C2STA identifies metadata as an important aspect of its data architecture.
Metadatais literdly data about data. For example, adata eement representing velocity
might have metadata describing the units and precison. Metadatais a more important
issue when supporting data interoperability between systems than it is when congdering
the operation of asingle system. Thisis not because a Single system does not care about
metadata but because metadata within a sysem might beimplicit. For example, asingle
system might dways assume that velocity is measured in miles per hour. Data
interoperability between systems is very dependent on metadata because explicit
metadata helps guarantee the correct interpretation of data. A recent failure of aNASA
Mars mission was attributed to a data interoperability failure. Two interoperating
systems failed to account for differencesin units of measurement causing the complete

falure of a one hundred and twenty-five million dollar misson [Isbdl et d., 1999].
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Explicit metadata could have made the need for a data conversion apparent. The
following requirements clarify the C2STA metadata requirements.
DAIMs shdl include attributes that describe other attributes (metadata) “when
feesible.”
DAIMs shdl dlow metadata to be either ADT-wide or instance specific as
appropriate.

DAIMs shdl handle metadata as additiona attributes of an ADT.

24.3 DAIM Containers

Given the C2STA'’s object-oriented nature it is natura for sets of objectsto be
managed by some generic container object. The C2STA explicitly providesfor this by
requiring a Container ADT. The following requirements detaill mandatory container
behavior.

DAIMs shall define a generic Container ADT designed to hold references to other

ADTs.

The Container shdl operate in non-persistent mode and shal support acal to

make itsdf persastent.

A Container can be processed by the standard iterator mechanisms first, next, and

lest.

A Container may be empty.

A Container may be enhanced in arbitrary ways to support retrieva of ADT

instances based on type- specific selection criteria
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The second and fifth requirements from above deserve specid atention. The
requirement that containers support persistence is somewhat vague. Does this mean that
the container perastently stores dl of its references as wel? Or is the requirement amed
at storing any selection criteria associated with the container? These two points are not
critica from ahigh-level design perspective, but a DAIMI would have to make explicit
assumptions regarding container semantics. The alowance for arbitrary enhancementsto
support selection criteriafor ADTsis more interesting. The C2STA makes no other
reference to data seerch mechanismsin its data architecture. Thisisamagor oversight.
The C2STA advocate usng DAIMs to hide underlying data store technologies, however
alarge part of the functiondity of current data stores such as RDBM Ssisto provide
powerful search capabilities such as ad hoc querying viathe SQL standard. If DAIMs
hide this power without providing a reasonable search mechanism of their own they
might force higher-level components to perform excessive datafiltering. Thisaso
increases the amount of data being transported between systems and thus increases
communication costs. The C2STA probably included the alowance for ADT sdlection
criteriafor precisaly thisreason. However, itsfalure to suggest even basic architectura
support for such sdection criteria (e.g. How would one specify the criteria? Hopefully
notina“SELECT * FROM ...” format!) could result in different DAIMs introducing
radicdly different selection mechaniams. Such differences could increase agiven
capability’ s dependence on specific DAIMs and reduce the potentia for future

interoperability with different DAIMs.

37



244 DAIM Exceptions

The C2STA requires the DAIMs define exceptions for dedling with error
conditions. The following requirements often refer to DAIMIs rather than DAIMs
because DAIMs define things whereas DAIMIs do things. Nonethel ess the following
datements essentidly condirain the definition of DAIMs.

DAIMIs shdl raise an exception if acadler supplies ingppropriate selection

criteria

DAIMIs shdl raise an exception if arequested attribute is ingppropriate for a

soecified ADT.

DAIMIs shdl raise an exception if the requested data are not available.

DAIMIs shdl not provided detailed exception explanations that violate security

pUrpOSES.

DAIMIswill supply a*“no dataavailable’ exception when communication links

are unavallable.

DAIMIs shdl raise an exception if the DAIMI is unable to complete an operation

due to any error condition other than those aready listed.

DAIMs may define additiona exceptions.

Mogt of these points are fairly straightforward. However, the purpose of the
second requirement is somewhat unclear. Typically an object oriented programming
environment tracks the types of object references and only alows cdls rdating to
methods and attributes defined for that type. Thisis known as strong typing. However,
some mechanisms such as cagting can result in incorrect type classfication. Perhagpsthe

C2STA was trying to address this possihility.
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245 Required Interfaces

Because the C2STA does not mandate a specific technology for DAIMsit cannot
define interface requirements in terms of programming language specific specifications
(e.g. C++ header files or Java class definitions). Ingtead it gives avery high-leve
interface definition. The following two statements require two different interfaces
addressed in the next two subsections.

A DAIM isaspecific type of C2 capability and as such must include agenera

capability interface (GCl).

Every DAIM will define afunctiond interface conforming to C2STA

requirements.

2.4.5.1 General Capability Interface

The Generd Capabiility Interface (GCl) is arequired feature of every C2STA-
compliant capability [C2STA, 1998]. Theinterfaceis required to alow automatic run-
time discovery of the |C2S capabilities available in a computing environment.

The GCI shdl be defined in IDL.

The GCI shdl beimplemented via either COM® or CORBA ' technologies.

The GCI must be accessible to software programmed in various languages. (Ada

and Java are given as specific examples)

® For information on COM see: http://www.microsoft.com/com/

10 For information on CORBA see: http://www.corba.org/
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The GCI must be usable by newly developed, migrating, and off-the-shelf

software. This means it must support avariety of access methods including

wrappers, proxies, and adapters.

The GCI must include the following capability attributes. resources, interfaces,

distribution mechanism, and execution environment.

The GCI isimportant for the overdl C2STA to ensure that a generic mechanism
exigs for examining an unknown cgpability. It isimportant to DAIM designers because
they must support it but it does not have a significant impact on the C2STA data

architecture.

2.4.5.2 Abstract Data Type Access I nterface

The C2STA defines three categories of data access interface requirements. The
first category appliesto al ADTs and specifies method for getting containers with ADT
references and specific attribute values. The second and third categories define separate
interfaces requirements for creating and modifying ADTs depending on the persistence
mode of the DAIM.™! A listing of dl three categories will be followed by comments on
the implications of these requirements.

All DAIMs shdl include the following operations for each ADT <Typename>
and ADT attribute <Attributename>:

Get<Typename>

0 Purposs: Retrieve ingtances of aparticular ADT.

o Arguments None.
0 Returns Container'? referencing dl instances of that ADT.

11 See Section 2.4.

12 See Section 2.4.3.
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<Attributename>Of
0 Purpose Retrieve aspecific attribute of a specific ADT instance.
0 Arguments ADT ingance being examined.
0 Reurns Thevdue (ether areferenceto another ADT or aprimitive
value) associated with this attribute for the specified ADT instance.

Ddete<Typename>
0 Purpose Removeaspecific ADT instance from persstent storage.
0 Arguments ADT ingtanceto delete,
0 Returns: Unspecified, probably a status flag representing the success or
failure of the operation.

All DAIMS providing explicit perastence shdl include the following operations
for each ADT <Typename> and ADT attribute <Attributename>:

New<Typename>
0 Purpose: Create new ADT instances.
0 Arguments. None.
0 Returns Reference to anew non-persstent instance of the ADT with all
attributes set to their default vaues.

Define<Attributename>
0 Purpose Set thevaue of an ADT ingtance' s attribute.
0 Arguments Theingtance being modified and the new vadue (either a
reference to another ADT or a primitive value).
0 Returns. Unspecified, probably a status flag representing the success or
falure of the operation.

Set<Typename>

0 Purpose: Makes non-persstent New and Define cdls persstent. Either
updates the persstent ate of the given instance if one exists or creates a
perssent state for theingtance. Either way, after the cal the persstent
state will completely match the state of the nonpersistent instance
referenced in the call.

0 Arguments. The non-persstent instance to make persistent.

0 Returns. Unspecified, probably a status flag representing the success or
falure of the operation.

All DAIMS providing implicit persstence shdl include the following operations
for eech ADT <Typename> and ADT attribute <Attributename>:

New<Typename>
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0 Purpose: Create new ADT instances.

0 Arguments: None.

0 Reurns. Referenceto anew persstent instance of the ADT with dl
attributes set to their default vaues.

Define<Attributename>

0 Purpose Set thevadue of an ADT ingtance' s attribute.

0 Arguments Theingtance being modified and the new vaue (either a
reference to another ADT or a primitive value).

0 Reurns Unspecified, probably a status flag representing the success or
falure of the operation.

Despite the object oriented nature of the C2STA design, itsrequired interfaces are
described in afunctional manner. For example, image an Aircrait ADT with a
TalNumber attribute. The C2STA requiresthat a DAIM support a GetAircraft operation
to return a Container with references to dl of the Aircraft managed by the DAIM.

Further the DAIM must support a TailNumberOf operation and a DeleteAircraft
operation both of which take a single Aircraft reference as an argument. A typical object
oriented interface would make TailNumber an attribute of an Aircraft and Delete a
method of an Aircraft. This diminates the need for passng an Aircraft’ s reference as an
explicit argument. Of course the underlying system till has to manage object references.
However, it is surprisng that the C2STA did not specify its requirements in such terms
given that it specificaly requires IDL definitions backed by COM or CORBA
implementations.

Setting aside the specific format of C2STA required operations the genera access
paradigm isfairly restricted aswell. The C2STA defines a single congtructor for objects
that takes no arguments and initidizes the new object with some default values. 1t then

dictates that dl data reads and writes go through a basic get/set interface (the actua cdls

are AttributeOf and Define, however get and set capture the semantics of the operations
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insmpler terms). The C2STA seemsto imply that every attribute should support get and
set methods. This seems naturd given the requirement that objects have default values at
creation-time. Without a set operation an attribute could never change from its default
vaue. Unfortunately this does not account for some important cases. First, the C2STA
requires that DAIMs expose both persstent data of an ADT aswell as*“inherent”
atributes. An example from the C2STA hdps darify this requirement and the problem it
introduces. Assume aMisson ADT persstently stores a StartTime and an EndTime
attribute. The C2STA mentions that the Misson ADT should aso provide a Durétion
attribute caculated from the StartTime and EndTime. However, the interface
requirements presented here seem to require that Duration have both aget and aset. Itis
unclear that al calculated attributes should have a set operation. While providing a get
operation in such cases might be convenient for some capabiilities accessng aDAIM, a
Set does not have clear semantics. Should the StartTime or the EndTime be dtered when
a capabilities sats the duration? Clearly the DAIM must enforce the congtraint that
Duration = EndTime— StartTime. Requiring symmetric get and st operationsin this
caseisamistake.

The constructor, get, and set operations introduce problems with regard to legacy
systems. A congructor will often require multiple arguments that are used to create a
new object. Thisalows the congtructor to perform dataintegrity operations considering
severd factors Smultaneously. The object then need not provide set operations for al of
its attributes. Thisisaredity of many object oriented designs. This redlity extendsto
other desgnsaswell. Consider relationa database systems based on the SQL standard.

According to the standard, new rows can be inserted into atable using an INSERT
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INTO... statement. Subsequently any field in that row can be modified using an
UPDATE ...WHERE statement (the row must have a unique identifier to guarantee a
sngle update to the correct data element). SELECT statements can be used to read any
fiddintherow. Inthiscase INSERT corresponds to the object constructor, UPDATE to
the set operation, and SELECT to the get operation. In theory using these statements on
individud datadementsis sufficient for performing al persstent storage tasks.

However, aredity of many systems based on relationa databasesis that applications
using the system never execute INSERT statements on base tables. Instead, a stored
procedure (acting very much like an object congtructor) performs some operations and
insartsthe row. With thiskind of an interface gpplications do not dways need UPDATE
accessto every fidd in atable. The C2STA provides no provisions for wrapping such
sysemswithDAIMs. A DAIMI could not provide the data access semantics required by
the C2STA without bypassng the existing data store restrictions and thus fundamentally

impacting the exiding system.



2.4.6 Change Notification Service

The basic C2STA data access paradigm is request and response. However, other
exiding initiativesin the Air Force have recognized the vaue of aternative data transport
paradigms such as publish/subscribe or push. Such paradigms can subgtantialy improve
data interoperability as they can diminate the need for specific pair wise configuration
support. The C2STA recognizes the vaue of such data trangport mechanisms. Assuch it
requires DAIMs to define a basic change notification service. Such a service provides a

basis for building more sophisticated systems such as those supporting publish/subscribe.

2.4.6.1 General Functional Requirements
The following requirements detail the functiondity required of a DAIM change
notification service. Detailed interface descriptions appear in the next section.
A DAIM will provide a change notification services.
The natification service shdl dert “interested” cgpabilities that an dement of
data has changed.
A DAIM ghdl include aregigtration service dlowing capability to express their
interest in notifications about a particular data € ement.
A DAIM’sregidration service shall support interest to be specified in the
following categories.
0 Any changeto any ingance
0 Any change to a specific ingtance
0 Any change to a pecific attribute of a gpecific ingance

0 Any change to a specific atribute of any instance
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A DAIM’ sregigration service shdl require a client to supply a cdlback interface

when regigering an interest.

The natification service shal notify the callback of the type of change (creete,

update, delete), the attribute(s) that changed, and the old and new vaue(s).

The DAIM shdl define aNoatification ADT that represents aclient’s notification

registration.

The DAIM shdl define an Interest ADT that represents a dient’ sinterest in data

changes as described before (e.g. interest in the change of a specific attribute of a

specific instance).

The C2STA change natification requirements introduce a congtraint on data
access interfaces in the C2STA. Although DAIMI requirements specifically alow for
multiple interfaces to C2 data*®, the change natification requirement dictates that all
interfaces must use some common mechanism for change natification purposes. While
thisis not explicitly mentioned, it is necessary to guarantee thet clients of one interface
are notified of changes made through a different interface. The only dterndiveis
frequent polling of data values to check for changes. Thisisimpractical dueto the
enormous overhead it would place on the data store.

Requiring that al data access interfaces using a single data store share some
change notification mechanism dictates that either the data store provide the notification
service or that dl data access interfaces are themsdlves clients of some layer between the
DAIMI and the data store. These redtrictions are particularly severe for migrating

systems. Because existing gpplications use an existing data access interface, the C2STA

13 See Section 2.5.
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cannot require that they go through a DAIMI. Therefore consistent change natification is

only possibleif the change natification service is beow both the DAIMI and the existing

dataaccess interface. This essentiadly means that the data store must support change

notification. If thisis not the case it isimpossible to support the required C2STA change

notification services using wrapper DAIMs and DAIMIs without changing the existing

sysem.

2.4.6.2 Required Change Notification I nterface

The C2STA requires the following change notification operations:

Registerinterest

(0]

Purpose: To associate a Natification instance, an Interest instance, and a
client callback interface in the notification service sinternd date.
Implicitly calls TurnOnNatification for the supplied Natification instance
aswell.

Arguments. A reference to anew Natification ADT, A reference to the
Interest instance being registered, and areference to the client’s callback
interface.

Returns: Unspecified, probably a status flag representing the success or
failure of the operation.

Unregigternterest

o

0
(0]

Purpose. Undoes a Regigterinterest call. The association is deleted from
the notification service' s date.

Arguments. A reference to a Naotification instance.

Returns. Unspecified, probably a satus flag representing the success or
fallure of the operation.

TurnOffNatification

o

(@)

Purpose: Temporarily dissblesaNoatification. The regidrationis
maintained but the client calback is not invoked even if achange
matching the Notification’s Interest occurs.

Arguments: A reference to a Noatification instance.

Returns: Unspecified, probably a status flag representing the success or
failure of the operation.

TurnOnNotification

(0]

Purpose: Re-enable aNatification after acdl to TurnOffNotification.
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o0 Arguments A reference to a Natification ingtance.
0 Returns: Unspecified, probably a status flag representing the success or
failure of the operation.
SetCallback
0 Purpose Allow aclient to change the callback interface associated with an
already-registered Natification.
0 Arguments: A reference to a Notification interest and areference to the
new client callback interface.
0 Returns. Unspecified, probably a status flag representing the success or
falure of the operation.
Further, the C2STA requires the following behavior with regard to notification:
A DAIM ghdl invoke a client’s callback interface by calling that interface with a
reference to the particular Notification instance that resulted in this callback and a
indication of the type of change as previoudy specified.

None of the requirements introduced in this section warrant additional comments.

They merdy make concrete the generic service adready discussed.

25 C2STA DAIMI Requirements

The following requirements specificaly address DAIMIs. There are very few
requirementsin this category precisay because the C2STA was not intended to dedl with
implementation issues.

The C2STA places no redtrictions on the technologies used for building DAIMIs.

The GCI and functional interfaces of a DAIM will be accessible viaa CORBA or

COM implementation.

A DAIMI may provide dternative access implementations as well.

Thethird point deserves discusson. The C2STA specificdly alows DAIMIsto

support interfaces other than COM/CORBA. It suggests that such a decison might be
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based on performance considerations. However, Figure 2.3'* makesit very clear that

such access interfaces are il required to implement the DAIM data access operations.

As such thisflexibility does not account for the case of migrating sysems where a DAIM

is defined and a DAIMI implemented by legacy parts of the system dlill use an dternative

access method completely independent of the DAIM. As dready mentioned, this

Situation causes problems for change natification services aswell as complicating the

issue of how to expose the business rules of the origina system.

( Capability B j

( Capability A )

|
|
\

DAIM 1

DAIM 2

CORBA|COM

CORBA|COM

Data Store 1

14 Appearsin the C2STA as Figure 4-1.
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Figure2.3 DAIMI Multiple Interface Support
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Chapter 3

CDE Scheduler Experiments

The previous two chapters introduced the data interoperability problem and the
C2STA data architecture. This discussion repegtedly referred to the data interoperability
issues surrounding legacy systems and the possible application of the C2STA data
architecture to those problems. This chapter provides a detailed explanation of CDE
exploration of some of those issues.

The CDE Office of the Air Force Electronic Systems Center istesting the use of
commercid middleware products to improve data interoperability among Air Force C2
Systems. In particular the CDE Office wants to understand how commercia products
can improve inter-system data flow among systems usng DAIMS, as described in
Chapter 2. Basc DAIM functiondity is summarized below. This description is
consstent with the full DAIM architecture. However, it isimportant to note that the
scheduler experiments never atempted to implement afully C2STA-compliant DAIMI.
In fact, many of the previous observations regarding the implications of C2STA
requirements were motivated by are-examination of the C2STA data architecture after
the completion of these experiments. Therefore the following explanation of DAIMs and
DAIMIs serves more as a clear description of the data architecture underlying the CDE

experiments rather than a clear description of the full C2STA data architecture.
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A DAIM defines an object interface to data in the form of abstract data types
(ADTys). This provides a specific interface for an gpplication to access the data it needs.
ADTSs are designed with application needs in mind rather than physical data storage
condraints. Thus, a DAIM with its abstract object mode stands architecturally between
an gpplication and one or more databases, which may be of different types and have
different sructures. The DAIM decouples the gpplication from changesin the underlying
datainfrastructure. The C2STA dictates that DAIMs expose their ADTs viaether
CORBA or COM interfaces. A CORBA-based DAIM definesits ADTs using the
CORBA Interface Definition Language (IDL). These definitions completely specify the
DAIM. However, they do not indicate how datawill actualy be retrieved, processed, etc.

The task of retrieving data from a stable data store, manipulating them as
necessary, and making them accessible through the ADT interfaces described by a DAIM
fdlsonaDAIMI. A DAIMI isthe actud system that a client gpplication uses to make
cdlsto aparticular DAIM specification. The separation between aDAIM’s
specifications and a DAIMI’s method of fulfilling those specifications dlows client
gpplications and underlying data sources to evolve independently. Changesto underlying
data sources should not affect the DAIM definitions at dl. Instead, changes would need
to be made to the DAIMI layered above the data source so that it could continue to
retrieve and process data properly in response to clients ng ADTs.

The DAIM concept offers potential benefits to those solving interoperability
problems between legacy systems as well as those implementing new data stores and
client gpplications. Implementing DAIM technology to solve legacy detainteroperability

problems alows interoperability to be achieved by agreeing on some common set of

52



ADTs needed for communication between systems. Once these ADTs are defined,
DAIMIs must be built to map the actud data stores of each sysemto the ADTs. While
this does require that each system’s data model be mapped to the ADTS, it dleviates the
need for mapping a system’s data modd directly to that of another syssem. Thisis
particularly beneficid when thereis the possibility of more than two systems
interoperating. If N systems need to interoperate, direct mapping between their various
data models could requires O(N?) different mapping definitions. By agresing on
common ADTsfor the interoperation, the number of mappings needed is reduced to
O(N). Further, achange in one data model requires redefining only one mapping in this
gtuation rather than redefining O(N) mappings in the previous Stuation.

The use of the DAIM architecture can aso benefit interoperability in new
systems. By writing new client programs to access their data through a DAIM, system
designers can implement the underlying data store using whatever model and technology
offers the greatest benefits aslong as it can be mapped to the DAIM’s ADTSs.
Additiondly, asingle client program can potentialy access data from avariety of data
sources with no dependence on their specific implementations. Finadly, a DAIM layered
above anew data store can potentialy support other high level applications developed
completely independently from that data store (e.g. a generic data browsing and indexing
program).

Although the DAIM architecture offers many potentia interoperability benefits, it
must compete with other potentia solutions such as those described in Chapter 1. In light
of this competition, the DAIM architecture must prove some competitive advantage at

least for some subset of interoperability problem if it is to achieve widespread use. One
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critical measure of DAIM viahility isthe cost of development. While DAIMIs can
obvioudy be custom programmed for specific data sources (and this might be required
for some Stuations), this gpproach will likely prove expendve in both initid development
and long-term maintenance costs. However, if commercidly available middleware could
be used for DAIMI devel opment, the cost might be substantially reduced.

The CDE scheduler experiment was an initid investigetion into the suitability of
commercial middieware to DAIMI development. In particular, the project was interested
in demongrating the feasbility of providing read/write access to multiple legacy C2
databases usng a commercia middleware based DAIMI. Such a capability could grestly
advance the ability to provide linkage to a broad set of data sources to support future
integrated Air Force systems.

This experiment provided ingght into goplying acommercid middleware
product, Virtua DB from Enterworks', in a scenario involving the scheduling of air
missons. Thisingght helps answer questions about building DAIMIs and mativates

question regarding the C2STA data architecture as awhole.

31 Test Scenario

The test scenario for this evaluation was a continuation of earlier DAIM
experiments performed by MITRE. The goa wasto dlow a generic scheduling
application developed at MITRE to schedule air missonsin two independent C2

databases. The following C2 databases were sdected for thetrid:

151t appearsthat Virtual DB has been renamed to Enterworks Content Integrator. The CDE experiments
dealt exclusively with Virtual DB 3.0. All discussion regarding Virtual DB applies only to thisversion.
For more information on the Enterworks Content I ntegrator see:
http://www.enterworks.com/products/index.html



Command and Control Information Processng System (C2IPS), which manages
the flights of transportation aircraft worldwide.
Thesater Battle Management Control System (TBMCS), which controls air

operations in acombat theater.

The C2IPS and TBMCS systems have many common functions, such as receiving
flight requests, assigning aircraft and crews to missons; scheduling takeoffs and
landings, tracking missions, and arranging for in-air refueling. Becausethereisdready a
need for flight information exchange between these systlems, demondrating that asingle
gpplication can access flight data from both systems without knowing anything about
ther individua data models provides an excdllent opportunity to evauate the potentid
for solving data interoperability problems using the DAIM architecture.

A demongration of thiskind of interoperability isfar from trivia. While the
databases supporting these two systems contain some smilar data, they have different
table structures, incongstent naming conventions, and incongruent datatypes. Thisisa
chdlenging test of the ability of aDAIM to provide an abstract object model that can be

mapped to both physica datamodelsin a meaningful manner.

3.2 Prdiminary MITRE Experiment

The previous iteration of this experiment aso used the MITRE scheduler
application to access C2IPS and TBMCSflight data. The scheduler application was
written to access mission data through C++ classes that defined the ADTs for the DAIM.

The DAIMI consisted of Windows dynamic-link libraries (DLLSs) thet actudly retrieved
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datafrom TBMCS and C2IPS databases and exposed it viathe C++ ADTs. These DLLs
were created by code-generators developed a MITRE. The generators took asinput files
specifying the mapping of database table and column namesto ADT attributes. They
output C++ code cagpable of performing most of the data trandation and mapping

required by the DAIMI. Specific trandations not handled by the code generators had to
be manudly coded. Findly, the code was compiled to provide the DLL DAIMI.

The code generators demonstrated that it was possible to apply the DAIM
architecture to the test scenario. However, the generators had to be developed in-house
by MITRE and thus could not achieve the cost effectiveness of commercid-off-the- shelf
(COTYS) tools. Further, the DLLs were highly dependent on the underlying database
technologies. For example, the preiminary tests used C2IPS and TBMCS data tored in
Microsoft Access databases. Changing the scenario to include the databases on Oracle
RDBMS sarvers (asthey would likely be in actua operation environments) required
changes to the code generators and recompiling the DLL DAIMIs. On the other hand,
the custom code generated for each DAIMI alowed agreet dedl of flexibility in manualy
adding additiond code for specidized data mapping problems.

The CDE experiment was designed to duplicate the benefits of the code-generated
DAIMIswhile demongtrating the suitability of commercia middieware to the DAIM
architecture. Further, this experiment implemented the CORBA server based DAIM
interface specified by the C2STA. Thiswould dlow the DAIMI to operate asan ADT

server independent from individua client applications®

18 This contrasts with the DLL DAIMIswhich essentially operate as apart of an individual client
application.
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3.3  Virtual DB DAIMI Architecture

The C2STA DAIM architecture specifies the operations a DAIM interface should
provide. However, the particular design used for building DAIMIs s |eft unconstrained.
The scheduling scenario for the Virtua DB experiment dictated that the DAIMI had to
access C2IPS and TBMCS data stored on Oracle servers and had to provide clients with
accessto CORBA objects as specified by the ADTs defined in the earlier scheduler
experiment and coded into the scheduler application.

TheVirtud DB server is cgpable of accessing data from awide-range of
underlying sources. 1t can then perform data trandations and renaming as well as
combining data from multiple sources. Thisalows for the creation of an abgiract data
model that clients can access for both reading and writing.*’

Because Virtual DB provides access to an abgiract relationa data modd, it cannot
gtand as acomplete DAIMI onitsown. The C2STA DAIM architecture requiresthat a
DAIM provide CORBA or COM objectsfor its ADTs. However, this does not
undermine Virtua DB’ s utility as part of a DAIMI architecture. Building aDAIMI using
Virtua DB requires an additiona layer that trandates Virtuad DB’ s abgtract data model
into CORBA objects representing the DAIM ADTs. The DAIMI architecture designed
for this experiment included a“VDBtoADT” sarver to provide this functiondlity.

Idedlly, a COTS based DAIMI would use commercia middleware for this layer aswell.

17 1t isimportant to note that writes can only be performed on views that map to asingle data server.

While this constrains some types of write access, it does not affect the scheduling scenario where the client
must to read data from two sources but always writes changes back to the data’ s original source. Although
writesto views that provide data from multiple servers are theoretically possible, they require a

complicated two-phase commit protocol that Virtual DB does not support.
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However, no commercid products that fulfilled these needs were identified so a
prototype VDBtOADT server wasimplemented in Java.

The Virtua DB + VDBtoADT architecture described is capable of supporting the
C2STA DAIM architecture. Although a completely COTS based architecture would
have been preferred, this solution offered significant reductions in development costs
when compared to a completely custom programmed DAIMI. Further, examination of
this architecture provided an opportunity to assess the gpplicability of COTS middleware
to DAIMIs. Because Virtuad DB stands as one type of interoperability solution on its
own, it provided an opportunity to critique the C2STA DAIM architecture as well.

The remainder of this chapter describes details of the Virtuad DB DAIMI
implementation completed for this experiment, the CDE Datdab configuration,
observations regarding the applicability of Virtua DB to DAIMIs, and observations

regarding the C2STA DAIM architecture as awhole.

58



MITRE
Scheduler

Application

VDBtoADT
Server

}

Virtual DB

Sybase OMNI Connect
Sybase Direct Connect

Oracle SQL Net

Figure3.1 Virtual DB DAIMI Architecture
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34  TheTest Environment

The Virtud DB based DAIMI hasfour digtinct software layers. These are the
VDB to ADT trandator, the Virtua DB server itsdlf, the Sybase Adaptive Server
(OMNI), and findly the Sybase Direct Connect for Oracle server. The complete test
environment requires the Scheduler client program and two Oracle databases as well.
The maximaly distributed client server setup could actudly include as many as eight
separate machines. However, this degree of distribution did not seem redlitic or
particularly useful to test. Instead, the target test environment consisted of an Oracle
server hosting both the C2IPS and TBMCS databases, a DAIM server hosting dl of the
VDB DAIMI sarvices, and a client machine running the Scheduler gpplication.
However, experiments to date have not used this precise configuration. The next section
describes the actud configurations tested as well as the configurations planned for further
andyss.

The C2IPS and TBMCS databases were initidly installed on two separate Sun
SparcStations (maddog.mitre.org and krishnamitre.org) physicaly located a the MITRE
A building. Both of SparcStations ran Oracle 7.x database servers. This configuration
provided an excellent modd of the distributed data stores likely to be encountered when
ingdling DAIMIsin red operating environments. However, this configuration
complicated VDB DAIMI testing because the CDE Dataab resides at Hanscom Air
Force Basein Building 1600. Network connections from Hanscom to the MITRE
complex require specid TCP/IP tunneling software that proved unreliable on the test

machines. Further, the Oracle databases running on maddog.mitre.org and
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krishna.mitre.org support other critical applications and were therefore less than ided for
experimentation purposes.

Theinitid Virtud DB server for DAIMI testing was configured on a Sun Sparc
10 (guinness.mitre.org) in Building 1624 at Hanscom Air Force Base. Unlike the current
CDE Datalab, this location had a direct connection to the MITRE complex network. This
avoided potentid problems with the VTCP tunnding software. Guinness.mitre.org was
configured with verson 3.0 of the Virtud DB software aswell as the Sybase OMNI
server and the Sybase DirectConnect for Oracle server required by Virtua DB. These
products were configured to access the C2IPS and TBMCS databases running on
krishnamitre.org and maddog.mitre.org. However, performance of the Virtual DB server
running on guinness.mitre.org was unacceptably dow. Response times were so bad that
basi ¢ data modding tasks completed by the Virtua DB dlient software often failed due to
server timeouts. For example, defining asingle view attribute took over thirty secondsto
complete. Worse yet, because of the delay, the Virtua DB GUI timeout and refused to
display the new attribute even after the update occurred. This required areloading of the
GUI and re-logging on to the Virtua DB server (a severad minute task in itsdlf).
Consultation with Enterworks contacts (who initidly configured guinnessmitre.org as a
Virtud DB server) suggested that guinnessmitre.org was underpowered for the services
it was running and possibility configured incorrectly aswell. Due to the dow response
time of guinnessmitre.org aswell asits physca separation from the Datalab, Virtud DB
was ingtdled on a Pentium I11 based Windows NT workgtetion in the Datadab configured
with 128 MB of RAM. For the short-term another Datalab Windows NT workstation

hosted Oracle8i instances of C2IPS and TBMCS to support development work in place of
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krishnamitre.org and maddog.mitreorg.*®  This configuration was more than adequate

for the smal datasets used in this experiment.

3.5 Building TheVirtual DB DAIMI
Condtructing the Virtua DB DAIMI involved severd discrete tasks. The

following subsections explain each task, the challenges encountered, and lessons learned.

3.5.1 Configuring Sybase

Virtual DB relies on the Sybase Adaptive Server Enterprise (o referred to as
OMNI) product to access underlying data sources. Thus, Sybase Adaptive Server
Enterprise in conjunction with Sybase DirectConnect for Oracle had to be configured to
access the Oracle instances hosting C2I1PS and TBMCS.

While the Sybase products provide the ability to access over twenty kinds of data
dores, their ingdlation and configuration isfar from trivid. Experience inddling and
testing the Sybase products required by Virtual DB indicates a need for TCP/IP expertise,
Oracle SQLNet experience, and idedly experience with Sybase Adaptive Server

Enterprise.

3.5.2 ConfiguringVVDB
Once the Sybase server products were configured to provide accessto the Oracle

ingtances, the next requirement was to configure Virtual DB to access the data through

18 A Sun UltraSPARC hosting Oracle8i has been configured for future Datalab tests. Both the C21PS and
TBMCS databases will be hosted on this server, although they will use separate Oracle instances. Thiswill
provide asimple simulation of two separate databases without the excessive hardware and software
requirements of actually hosting them independently.
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Sybase. Fortunatdly, this step in the configuration was straightforward and closaly
followed the Virtua DB documentation. Again, TCP/IP experience is beneficid.

Findly, because Virtua DB depends on the Visibroker CORBA ORB, care must be taken
when using Visibroker for other services on the same machine. This Situation arose
because the VDBtoADT layer adso needed to use the Visbroker ORB. Experience
indicates that Visibroker should be ingtalled after Virtua DB into the Virtuad DB

Visbroker directory.

3.5.3 Defining ADTs

Oncethe Virtud DB and Sybase middleware has been configured, the DAIM
ADTs had to be defined before they could be modded using Virtud DB. For the CDE
experiment, the ADT modeling consisted of trandating the C++ classes used in the code-
generated DAIMI experiment into CORBA IDL. Defining ADTswould be one of the
magor tasksin creating anew DAIM. However, because the experiment involved an
gpplication designed with predefined ADTs they only had to be trandated to a CORBA
based architecture. While the Scheduler gpplication can utilize avariety of ADTS, the
initial experiments focused on Mission and Sortie objects. The DAIM IDL definition for

the Mission ADT is listed next.*®

19 Notice that the following interface is similar to that required by the C2STA but not compliant with the
C2STA. The CDE experiment focused on the feasibility of the major C2STA goals rather than the
specifics of its requirements.
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// Daimidl
nodul e Dai m {

interface
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
| ong
| ong
| ong
| ong
i ffsif_packed);
| ong
| ong
| ong
| ong
| ong
| ong
| ong

b

Dai MM ssi on {

ng
ng
ng
ng
ng
ng
ng
ng
ng
ng

GetM ssionl D();

Get M ssionState();

Get M ssi onSubt ypeCode() ;

Get | FFSI F_Packed();

Get | FFSI F_Model();

Get | FFSI F_Mode2();

Get | FFSI F_Mode3();

Get Start Time();

Cet EndTi nme() ;

Get Uni onVi ewSour ces() ;

SetM ssionlD(in string id);

Set M ssionState(in string state);
Set M ssi onSubt ypeCode(in string code);
Set | FFSI F_Packed(in string

Set | FFSI F_Model(in string iffsif_nodel);
Set | FFSI F_Mode2(in string iffsif_node2);
Set| FFSI F_Mode3(in string iffsif_node3);
SetStartTime(in string start);

Set EndTi nme(in string end);

Updat e();

Del ete();

t ypedef sequence<Dai nM ssi on> Dai mM ssi ons;

i nterface Server {
Dai mM ssi ons Get Dai nM ssi ons();
Dai mM ssi on NewDai mM ssi on() ;

}s
}s

354 Modding ADTsin Virtual DB

Once the ADTs were defined, the core DAIMI data mapping task had to be

completed. For the Virtud DB based DAIMI, this meant building arelaiond modd in

Virtual DB representing the ADTs. A Virtual DB server maintains an object caled the

Metacata og for storing data mapping and trandation information. The Metacatalog

doresavariety of data modding objects including the base layer, foreign key mappings,

processing blocks, and terms. The base layer stores the actual data models present on the

data sources bleto Virtud DB. This provides a starting point for mapping the



physica data models to the abstract data model. Foreign key mappings dlow Virtud DB
to automaticaly perform joins between abstract views in the abstract data model. These
joins can link data from a single data source or even data from multiple data sources.
Processing blocks alow the introduction of custom code into the Virtual DB data
Mapping services to operate on query parameters before passing them to the underlying
data sources. Findly, the terms represent the actua mapping from the underlying data
source models to the absiract datamodel. Termsalow for the definition of “virtual
views’ and “union views’ that meke up the abstract data model accessible through
Virtua DB. Virtud views map abstract columns and their associated data types to actua
columns and tables in the underlying data source. A single columnin avirtud view can
map to only one underlying data source. Union views dlow data from multiple virtua
views to be combined 0 it gppears as one large dataset. Thisdlowsasngle columnina
union view to contain data from multiple data sources. The Metacatdog dlows views to

be stored in a hierarchica system very smilar to folders on ahard disk.

[ Dosring LaptonvDB With an eye towards building a seif-

57 Wetacatalog
-y Base Layer configuring VDBtOADT sarver, the view
Eﬂﬁb Foreign Key Mappings
-4 Processing Blocks

B folders were structured as follows. A top-
E-gat DAIM
2t ADTs level folder called “DAIM” was created with
[t!ﬁ Wission
_ BRF Sorte two suib-folders called “ADTS’ and

Eli.';: Baseviews
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Ee- G Sortie_tomes to hold asingle union view for each ADT in

F-ger c2ips_laptop
F-ger thrnes_laptop

the DAIM. The BaseViews folder holds the

Figure 3.2 Metacatalog View Hierar chy virtua views mapping specific data sources to
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gpecific ADTs.  Thus, the ADTsfolder contained avirtud view cdled “Misson” and
one called “ Sortie” while the BaseViews folder contained virtud views called
“Misson_c2ips’, “Misson_tbmcs’, “Sortie c2ips’, and “ Sortie tbmcs’. The naming
convention dictated that the union virtud viewsin the ADTsfolder had the name of the
ADT being mapped while the virtud views in the BaseViews folder shared the name of
the ADT being mapped followed by an underscore and the Virtud DB name of the
underlying datasource. Attributes of each view had the name of ADT’ s attributes
Virtud DB’sview system alows for the renaming of dataas well asthe
combining of datafrom multiple sources.  The actud mapping of virtud viewsto the
underlying data sources alows for basic SQL data manipulation. Datatypes can be
changed, ssimple data manipulation performed, and SQL grouping operations used. For
example, acolumn in avirtua view might be the concatenation of underlying data source
columns, an dgebraic manipulation of underlying columns, or some other basic SQL
manipulaion. It isimportant to redlize that some manipulaions will exclude write-back
operationsto the view. Virtuad DB provides a second method for performing data
manipulations. Processing blocks can be designed to operate on the parametersto a
query or the values returned by aresult set. A processing block is apiece of code that
takes asinput the parameter to aquery or the vaue of acolumn in aresult set and outputs
anew vaue which is either passed on to the underlying data sources in the case of a
query parameter or is subgtituted into the result set. Processing blocks can perform more
complicated data manipulations than smple SQL operations. Further, processing blocks

might hep maintain write cgpabilities in some Stuations because they are asymmetric in

20 Note that IDL previously listed had methods such as GetMissionl D and SetMissionl D. The virtual view
attribute name for these methods would simply be MissionID.
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that they can be independently defined for the input versus the output of aview.
However, one important limitation of processing blocks is that they are only functions of
their angle input [Enterworks, 1999d]. For example, a processing block designed to
operate on vaues for updating aview cannot depend on the current vaue of acolumn in
the view. Processing blocks were not necessary for data modeling in the CDE
experiment athough they would have been useful had they been capable of functioning
on both the input to an update query and aview's current data val ues.

Figure 3.3 provides some example mappings used for the Misson and Sortie
views. The Misson ADT has three attributes cdled IFFSIF_Packed, IFFSIF_Model,
IFFSIF_Mode2, and IFFSIF_Mode3. IFFSIF_Packed is athirteen character string while
IFFSIF_Model isthefirst three characters of the string, IFFSIF_Mode2 the next five,
and IFFSIF_Mode3 the final five. The IFFSIF was broken apart this way because C2IPS
stores the packed verson while TBMCS stores the three modes. Idedly, the ADT would
have chosen a single representation and mapped both data sources to this representation.
However, the Misson ADT for the origina scheduler experiment instead included both

representations and mapped each data source to both. Thisincreased flexibility at the

cost of complexity.
Virtual View Attribute [ C2IPS Mapping TBMCS Mapping
IFFSIF_Packed C2ips. ATMSS_IDENT.IFF_SIF_CD | tbmcs.AIR_MSN_ACFT.
AIR_MSN_ACFT_IFFSIF_MODE_1 CD ||
tbmecs. AIR_MSN_ACFT.
AIR_MSN_ACFT_IFFSIF_MODE_2 CD ||
tbmes. AIR_MSN_ACFT.
AIR_MSN_ACFT_IFFSIF MODE_3 CD
IFFSIF_Model SUBSTRING( tbmcs. AIR_MSN_ACFT.
c2ips. ATMSS_IDENT.IFF_SIF_CD AIR_MSN_ACFT_IFFSIF_MODE_1
FROM 1 FOR 3)
IFFSIF_Mode2 SUBSTRING( tbmcs. AIR_MSN_ACFT.
c2ips. ATMSS_IDENT.IFF_SIF_CD AIR_MSN_ACFT_IFFSIF_MODE_2
FROM 4 FOR 5)
IFFSIF_Mode3 SUBSTRING( tbmcs. AIR_MSN_ACFT.
c2ips. ATMSS IDENT.IFF_SIF_CD AIR_MSN_ACFT_IFFSIF_ MODE_3
FROM 9 FOR 5)

Figure 3.3 Example Data Modd to Virtual View Mappings

67




3.5.5 Buildingthe VDBtoADT Server

Oncethe ADTswere mapped in Virtud DB, one important component was sill
required for the Virtuad DB DAIMI. The Virtuad DB abstract data model had to be
presented as CORBA objects as defined by the IDL definitionsfor the ADTs. Idedly
commercid middleware would provide this functiondity. Unfortunately, no such
solution was discovered. This Stuation mandated the development of the VDBtoADT
server.

Two mgor options were considered for the VDBtOADT server. Thefirst desgn
was to write specific code for exposing the scheduler ADTs. The second design was to
build ageneric VDBtoADT server cagpable of exposing arbitrary ADTs based on the
abgtract data model exposed by a Virtual DB server. The first design was pursued for the
initid experiment. It wasasmpler solution to program and offered increased potentia
for custom mappings (the VDBtoADT server could handle mappings beyond those
supported in Virtual DB). However, ageneric VDBtoADT server would be preferable
for larger DAIMIs because it could be written once and then used universadly. The
investigation of such asolution will be apart of future DAIMI experiments.

The VDBtoADT server was implemented in Java due to the language' s cross-
plaform potentid as well asits high compatibility with the Visbroker ORB product used
to expose the CORBA ADTs. The server connect to Virtual DB using the Virtua DB
CORBA objects and exposed CORBA ADTs based on the IDL defined for the scheduler
DAIM. The server then converted client “get” and “set” requeststo Virtual DB queries

as appropriate.
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3.5.6 Linkingthe CORBA ADTsintothe Scheduler
After completing the various steps in building the Virtua DB DAIMI, thefind

step was to modify the
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Figure 3.4 Scheduling Application User Interface Incluces tools for
automatically generating

C++ wrapper classes for accessng CORBA objects. Thus, the ADT IDL was converted
directly into C++ source and header files for use by client gpplications. Simple test
programs verified that a C++ program compiled for Win32 platforms could access the
ADTs However, Sgnificant difficulties arose when the ADT support was linked into the
scheduler gpplication.

The scheduler application was developed under the Microsoft Visua C++ 5.0
environment using Microsoft Foundation Classes (MFCs). The application conssts of
severd separate pieces that expose their capabilities through Windows DLLs. A

graphicd interface then integrates these components to provide a scheduling application.

69



The scheduling application is show in Figure 3.4. Thelinking of Visbroker headers and
ADT support into the scheduling application data access DLL s alowed the scheduler
gpplication to access data through the Virtua DB DAIMI. Thislinking process was
much more complicated than expected as the Visbroker headers introduced conflicts
with the MFC header dready present in the scheduler gpplication. Thisincompetibility
sgnificantly increased the difficulty of the experiment. Future experiments might

consder dternative CORBA implementations to reduce this cost.

3.6  LessonsLearned

Having described experiences from trying to build a DAIMI based on one
commercid middleware product, this chapter’ s conclusion will now address some of the
ingghts the experiment provided and tie the results into the broader analyss of the
C2STA data architecture. A few disclamersarein order. It should be clear that the
DAIMI design presented in this chapter falsfar short of the C2STA requirements
described in Chapter 3. Change notification was completely ignored and the CORBA
interfaces did not conform to the interface requirements of the C2STA. Further, metadata
was not addressed. It might seem ingppropriate to comment on the C2STA data
architecture given that so much of it wasignored. However, these areas are details of the
data architecture rather than its core. The C2STA data architecture provides three core
benefits. (i) data are accessed through a common object oriented interface convenient for
typica development tools, (ii) data are presented through abstract interfaces that hide the
underlying storage representation, an findly (iii) data are presented as location

independent. The DAIMI designed for the CDE experiment addressed al three of these
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areas.  Although it did not implement change natification and other details of the data
architecture, experience working with its fundamental character providesingght into
these details as well.

The Virtud DB DAIMI architecture providesimportant insght into the
components needed for any DAIMI accessing legecy sysems. A legacy DAIMI must
perform three mgjor functions:

Solve communication and AP interoperability issues.

Map underlying data representations to an abstract modd.

Expose the abstract model viaan object oriented interface.
Thefirg function relates to actualy accessing the legacy data. The data must be
retrieved using some communication mechanism. Inthe VDB DAIMI design the Sybase
server products provided this functiondity. They handled network communications with
database servers and trandated various SQL dialects to one common SQL language.

The second function of aDAIMI isthe particularly chdlenging one. Many
commercia products dedl with providing unified access to heterogeneous databases
systems?! Likewise, many technologies layer object interfaces on top of traditiondl
relational models?®> However, none of these systems provides a mechanism for mapping
aphysicad model to an abstract model. Virtud DB was particularly attractive becauseis
offered this capability. However, it isimportant to understand that within asingle

RDBMS SQL defined views can dso provide some basic trandation from aphysica data

21 For example, both Sybase’'s OMNI middleware and Information Builders EDA middleware address this
problem. See http://www.sybase.com/products/middleware/ and
http://www.ibi.com/products/eda/overview.html respectively.

22 Examplesinclude Microsoft' s ADO technology aswell as Sun’s JDBC. See
http://www.microsoft.com/data/ado/default.htm and http://java.sun.com/products/jdbc/ respectively.
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model to abdtract data modds. Virtuad DB provides this functiondlity across multiple
databases and adds the concept of processing blocks. Despite this functiondity
sgnificant restrictions are dill placed on the possble mappings. Basic SQL commands
can perform complicated data manipulation. However, this manipulation often precludes
writing to agiven view. Even Virtua DB’s processing blocks cannot overcome some
mapping problems. As noted before, the blocks can only operate on their input rather
than on their input plus the current state of the database. While workarounds can
probably be developed, these kinds of limitations Sgnificantly reduce the benefits of
designing an abstract model of data.

The find task of a DAIMI, to provide an object-oriented interface, also deserves
some discussion. While object oriented interfaces are convenient for building
component-based software, the C2STA data architecture might hold more appedal for
legacy sysemsif this requirement were modified. Datainteroperability benefits greatly
from standard technologies. The C2STA chose COM and CORBA as requirementsto try
and address thisneed. However, it now seems that other technologies such as XML hold
more promise (and therefore receive more vendor support) for future inter-system
communication. Does the rise of XML force the Air Force to scrap the C2STA data
architecture? Of course not. The architecture could be redefined to preserve its core
benefits while adopting XML technologies. Thisleads to the conclusion that the core
contribution of the C2STA data architecture (one unified view of C2 data independent of
the individud data servers) should be promoted without a strict connection to COM or

CORBA technologies.
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The next chapter will explore additiona ingghts regarding the C2STA data
architecture while considering exiting literature and research projects related to data
access. This background provides a comparison of competing data interoperability
solutions, examples of solutions Smilar to the C2STA data architecture, and a peek & the

technologies that might support an improved C2STA data architecture,
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Chapter 4

Relevant Research

Asmentioned in Chapter 1, datainteroperability problems arise frequently in both
intra- business and inter-business contexts. Because of the importance of this topic many
papers address the issue. Further, many commercia middlieware products and research
projects address data interoperability issues. This chapter introduces the range of data
interoperability solutions found in the literature in an atempt to characterize the state of
the art technology in data architectures. Thiswill provide additiond ingght into

recommended improvements to the C2STA data architecture.

4.1  Literature Survey of Data I nteroperability Solutions

Asexplained in Section 1.3 the review of literature regarding data interoperability
solutions was deferred to alow for the C2STA data architecture' s introduction without
the burden of pogtioning it relative to existing research. Because the C2STA does not
refer to any related research, it is naturd to first explain the architecture and then position
it in relation to other data interoperability solutions. Goh categorizes interoperability
gpproaches according to two different axes: the choice of underlying data model used for
conflict resolution and the use of either aloose-coupling or tight-coupling strategy [Goh,
1997]. While the data modd chosen for conflict resolution is criticd to the

implementation of particular interoperability solutions, it can be largely ignored for basic
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comparison purposes here. It is sufficient to mention that different solutions can be
categorized as using a deductive data model, an object oriented data model, a functiond
datamode, or arelaiona datamodel. The Virtud DB DAIMI used arelationd data
mode for data conflict resolution.

Theinteresting distinction for data interoperability solutionsis that between
loosdly-coupled strategies and tightly-coupled strategies. The critica differences
between loosaly-coupled and tightly-coupled systems involve who resolves conflicts and
when [Goh, 1997]. Tightly-coupled strategies are characterized by the apriori
development of shared schemas to globally represent the data available in heterogeneous
systems. This requires the identification and resolution of data conflictsin advance.
Once thistask has been accomplished, systems can interoperate by issuing queries
againg the shared schema. Of course some mechanisms must exist to dlow clientsto
query the multiple data sources. Numerous research projects have employed this
gpproach. Some commonly cited in the literature include Multibase [Landers and
Rosenberg, 1982], ADDS [Breitbart and Tieman, 1985], Mermaid [Templeton et .,
1987], Carnot [Collet et d., 1991], Pegasus [Ahmed et al., 1991], and SIMS [Arens and
Knoblock, 1992]. The C2STA data architecture also qualifies as atightly-coupled
approach. The C2STA mandates the definition of agloba schema (the DAI). This
requires that underlying data sources map their schemas to their associated DAIM in
advance. Daya and Hwang propose a generd strategy for solving data conflicts by
creating supertypes and mapping the data from various sources to these supertypes
[Dayd and Hwang, 1984]. Most of the projects listed above use this genera strategy, as

did the Virtua DB DAIMI.
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Having categorized the C2STA data architecture as an instance of tight-coupling,
it is useful to understand the mgjor dternative. Loose-coupling approaches assume that
maintaining a shared schemais too large a burden and does not scale wdl. Instead they
attempt to detect and resolve data conflicts a request time by working between the data
source and receiver. Loose-coupling research hastypically focused on data manipulation
languages designed to query multiple sources and transform the results [Goh, 1997]. The
MRDSM [Litwin and Abddlatif, 1987] system is awel-known example of aloose-
coupling gpproach. While tight-coupling carries the burden of developing a shared
schema, loose-coupling carries the burden of conveying new conflict resolution
proceduresto al clients and receivers.

Goh argues that the COntext INterchange (COIN) strategy described in histhesis
isanew kind of solution to the data interoperability problem [Goh, 1997]. The COIN
drategy relies on both information sources and receivers having explicit context. Axioms
that describe facts about the systems are defined.  Given two contexts (the recelver’s and
the source' s) and the previously mentioned axioms, the system can figure out how to
properly satisfy a query from the receiver’s context with informetion from the sender’s
context. This drategy is designed to eiminate the need for explicitly solving dl data
conflicts, as required by tight-coupling strategies. Further, it uses a Context Mediator to
perform the context trandations. This reduces the burden receivers face in loose-
coupling approaches.

The Context Mediator used in COIN introduces another important concept from
data interoperability literature. Dr. Gio Wiederhold of Stanford University has written

extengvely on the use of mediators to solve heterogeneous information system problems
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[Wiederhold, 1991, Wiederhold, 1997, and Wiederhold, 1999]. While Goh claims that
COIN uses a new approach within amediator, the idea of mediatorsis not new.
Wiederhold advocates a three-tiered agpproach to accessing heterogeneous data. The first
and third tiers are the client application and the existing data source, respectively. The
middle tier is composed of mediators. Mediators are tasked with providing useful access
to information. This means that mediators must accept client queries, identify the
appropriate data sources to satisfy a query, and return results processed for maximum
information dendity. The processed results should summarize data or identify exceptiona
data to return the information a client really wants rather than just returning large
quantities of data. Notice that the concept of mediatorsis largely architecturd leaving

the opportunity for awide-range of implementations. The COIN system is one such
implementation asisthe TSIMMIS project introduced in Section 4.3.

How does the C2STA data architecture relate to mediators? The C2STA does use
amiddletier (DAIMIS) to provide access to data sources. However, thisis not a mediator
asthe middle tier is designed only to support alogical schema. Although the C2STA
data architecture does not adopt the mediator design, the C2STA as awhole does alow
for amilar services. The raw capability layer in Figure 2.1 is designed to facilitate the
kind of value-added services that characterize mediatorsin Wiederhold' s architecture.
The C2STA has decided that intelligent processing of data and the abstract representation
of it should be separate tasks while the mediator gpproach assumes that the same agent
that intelligently processes data should ded with its representetion aswell. Therdative
merits of these two gpproaches depend largely on assumptions regarding mediation

technologies available. If highly automated mediation approaches such as COIN truly
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provide mediation without manua intervention and without congraining the underlying
data sources, it seems unnecessary to build the C2STA’s DAL, Simply building raw
capabilities as clients of COIN would alow the capabilities to access the data needed for
their intdligent processing without worrying about the underlying data structures. In this
case the C2STA data architecture and raw capability layers could be combined into one
mediation layer using a COIN-like approach as well as mediators for post-processing of
data. On the other hand, if one assumes that manud intervention will be required for
building mediation systems (as assumed by the TSIMMI S project), the current C2STA
data architecture is useful for shidding intelligent processing from the changes

introduced by new resolutions to data conflicts. Because the C2STA generdly avoids
implementation issues, it can actudly support awide-variety of proposed data
interoperability solutions. However, its mandate of a globa abstract schemalargely
condrainsit to the tightly-coupled Strategies.

Having explained the spectrum of data interoperability solutionsin the literature,
the C2STA’' s data architecture can now benefit from the results of previous research.
Proponents of |oosdly-coupled architectures will no doubt condemn the C2STA data
architecture as destined to fail due to the difficultly in defining agloba schema On the
other hand, many papers attempt to address building such a schema, so tightly-coupled
strategies have proponents aswell. Pitoura, et a. [1995] survey avariety of such
approaches. Infact, Dogac, et a. [1995a, 1995b] undertook a CORBA based
heterogeneous data project very smilar to the CDE invedtigation. These efforts have not
collapsed in complete failure. Instead they have identified arange of implementation

technologies that might support future DAIMIS. The clear concluson of research on data
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interoperability isthat the biggest chdlenge facing tight- coupling strategiesisthe design
and maintenance of agloba schema The success or failure of the C2STA data
architecture will likely hinge on whether or not the scope of C2 datais “too” largeto be
supported by agloba schema. Of courseit is difficult to measure “too” without actud
implementation experience.

Having discussed the literature on the categories of data interoperability solutions,
we will now focus on afew projects amed at achieving data interoperability. These
projects do not introduce new theory on data interoperability, but rather provide some
practical examples of the important characterigtics of datainteroperability solutions. This

provides an opportunity to examine eements missing from the C2STA data architecture.

4.2  Enterprise Business Objects

The jBusiness product of Novera Software, Inc. includes afeature cdled
Enterprise Business Objects (EBO) [Orstein, 1999]. EBO technology provides a means
to expose relaiond data as Java objects. Although the scheduler experiment dealt with
CORBA objects, this mapping is very smilar to that required for aDAIMI. Severd
features of EBOs are relevant to the discussion of the C2STA data architecture.

Like the Virtud DB DAIMI, EBOs provide basic schema transformation.
However, they trandate ardationd schemadirectly into an object mode instead of into
an additiona modd. Thisalows EBOsto provide object oriented “get” and “set”
methods for their attributes. Further, EBOs address issues such as the updating of
aggregate properties. EBOs aso provide convenient object collections for accessing

related data (as a subgtitute for joinsin the relaiond mode). All of these features
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suggest that EBOs might provide an excellent foundetion for a DAIMI. Two other
features of EBOs highlight areas in which the C2STA data architecture is lacking. EBOs
provide an object oriented query interface and caching of data retrieved from a database.
The C2STA’slack of arequired query interface has aready been highlighted as a mgor
weskness. Support for caching is clearly the kind of implementation detail that the
C2STA specificaly avoided. However, it isimportant to note that much like change
natification, caching services might be sgnificantly complicated by the multiple data
access interfaces allowed by the C2STA.%® While EBOs closgly mirror the problems
encountered in the CDE experiments, they are fundamentally tied to relationa source
modes and probably mode objects in amanner rdaively smilar to the underlying
relaiond model. Researchers are working on other data architectures that dlow more

flexibility in thisarea

43 TSIMMISDataWrappers

The Stanford-1BM Manager of Multiple Information Sources (TSIMMI1S)?*
project provides abstract object access to underlying data. However, unlike the Virtua
DB DAIMI or EBOs, TSIMMIS wrappers are custom written for each underlying data
source. The developers of TSIMMI'S note that writing wrappers is a significant effort
[Hammer et d., 1997]. The TSIMMIS system provides a toolkit for wrapper develop to
reduce this burden. It isaso important to redlize that custom written wrappers provide

the ultimate in datamode trandation flexibility. A custom wrapper can perform

23 See Section 2.5.

24 For moreinformation on TSIMMIS see: http://www-db.stanford.edu/tsimmis/tsimmis.html

81



arbitrarily complex manipulationsin responseto a“get” or “set” cdl. Thisissmilar to

the custom coding donein the origind MITRE DAIMI experiment with one noteworthy
exception. The origind DAIMI experiment included code for the accessing, mapping,

and final presentation of data. On the other hand, a TSIMMIS wrapper only has to access
and map data. The TSIMMIS system provides a framework for presenting and querying
the data.

The support for querying in the TSIMMIS system is very important. The
TSIMMIS system is cgpable of matching an application query to an underlying data
source' s exposed data, retrieving the underlying data from the data source, and returning
the results to the gpplication [Papakonstantinou et d., 1995]. Even moreimpressiveis
the fact that the TSIMMI S system supports post-retrievad querying thet alows
gpplications to pose more complicated queries than those supported by the underlying
datasource. In this case, the TSIMMIS system performs filtering on the results returned
by the data source. This kind of support isvery useful when designing data wrappers for
data sources with limited query interfaces. Although this does not gpply to most
RDBMSs, the C2STA data architecture was designed to provide accessto al data
sources. A unified query architecture layered above existing data sources could provide
both the desired stlandardization of query interfaces and provide the actud filtering
implementation for those data sources that do not include their own. The potentia
benefits of adding such alayer to the C2STA data architecture is consdered in the next

chapter.
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44  GarlicMiddleware

Garlic middleware was developed to support integrated access to multimedia data
dored in legacy systems. Like other middieware solutions, the Garlic project uses
wrappers to access existing data sources and provides object-oriented interfaces to client
goplications. Garlic middieware then alows heterogeneous querying of the underlying
data through a unified interface. So far this sounds very smilar to the TSIMMIS system
dready described. Again thereis an emphasis on query interfaces when dedling with
heterogeneous data. Garlic also supports querying data sources thet lack their own query
interface [Roth and Schwarz, 1997].

However, Garlic's designers were particularly focused on integrating both
schemas and data. They note that integrating legacy schemeas often involves dedling with
overlgpping schemas [Haas et d., 1999]. This requires both composition and
decomposition of underlying data structures to provide a unified object interface. The
garlic system provides this functiondity by supporting transformations applied to its
object interface. This support addresses the functionality needed to provide the abstract
data access advocated by the C2STA datamodel. The Garlic project includes an
additional component that addresses the practica issues of building abstract data
representations.

Building the Virtuad DB DAIMI highlighted the difficulties involved in mapping
an exigting data model to some abstract representation. While the effort involved severd
development steps, some of these were required because the middleware employed did
not support a of the functiondity needed. Even with idedl middleware the task would

involve two mgor steps. One step is defining abstract data representations. As
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mentioned earlier, this step includes developing the agreements essentid to data
interoperability. Once the data representations are defined, actua data models must be
mapped to the abstract model. The Garlic project includes work on atool called Clio
designed to facilitate the mapping task. Clio is designed to facilitate the mapping of data
and schemas from sources to some target representation [Haas et ., 1999]. Thetool
reads in source schemas and trandates them to an interna format using Schema Reeders.
It then uses a Correspondence Engine to identify matches between the source and target
schemas. Findly, aMapping Generator creates views that transform data from a source
schemato datain the target schema. The Correspondence Engine is designed to support
both a graphicd interface for humantaided matching and a data- mining engineto
automate the process. The Clio tool wasin the early stages of development as of March

1999 [Hazs et d., 1999).

45  YAT Modd Trandations

Thefind presentation of research related to the CDE data interoperability
investigation focuses on the Y AT/Tran Scn?> system. YAT isadatamode for
describing object using alabeled tree design. Thismodd includes alanguage, YATL, for
gpecifying rule-based trandations from a source mode to atarget model. The Tran-SCM
part of the system is amechanism for automaticaly generating some trandations
[Abiteboul et d., 1999]. Because source and target schemas often have alot in common,
arule-based dgorithm is used to automatically generate trandations where possble. A
system designer then specifies the remaining trandationsusing YATL. Thisdesign

atempts to maximize trandation flexibility while minimizing the cost of developing



trandations. Experience with the Virtuad DB DAIMI indicates thet this flexibility is
essentia. Virtud DB provided ardatively smple (adthough not automated) method of
generating Smple trandations. However, its ability to support custom-coded complex
trandationswas too limited. Anided DAIMI platform would support automatically
generated smple trandaions as wdl as arbitrarily complex custom trandations. Having
discussed various research projects related to DAIMI needs, enough background isin
place to propose changes to the C2STA data architecture based on the pervious

discussions about the architecture and experiences from the CDE experiments.

%5 For more information on Y at/Tran-Scm see: http://www-rocg.inriafr/~simeon/Y AT/
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Chapter 5

Conclusions

Chapters 1 through 4 introduced data interoperability, the C2STA data
architecture as an interoperability solution, the CDE experiments with this architecture,
and findly additiond architectures that address data interoperability. All of this
background supports recommendations on the C2STA data architecture and a discussion
possible implementation issues surrounding the architecture.

The C2STA data architecture should be separated into two parts. Thefirst layer
should be responsible for communicating with underlying data sources, mapping source
schemas to atarget schema (in some interna format), providing change notification
sarvices, and providing acommon query mechanism. The second layer should be
responsible for presenting the abstract data to client applications.  However, the second
layer should not be required to implement a COM or CORBA interface. Insteed, this
new architecture could support any of avariety of interfaces including COM, CORBA,
XML, Enterprise Java Beans (EJBS), etic. Many systems within the Air Force are already
consdering adding XML and other interfaces to their data systems. However, it is not
clear that many systems intend to support COM or CORBA. By separating the C2STA
data architecture from the particular interface, the architecture can succeed regardless of
which interface becomes widdy adopted. Further, by dlowing multiple interfaces above

the common trandation layer, the problems regarding separate change notification
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sarvicesare solved. Thiswill not solve change natification issues involving legecy
access methods to data servers. Such problems are difficult and the C2STA data
architecture should be modified to better address legacy systems.

Legacy systems present awide range of problems for the C2STA data
architecture. Many such problems were discussed in Chapter 2. The C2STA should
provide separate requirements for legacy systems and new systems. This might be
accomplished by defining two different standards with different criteriafor compliance,
For example, it was dready noted that legacy systems might be unable to separate their
data interfaces from their business rules. While such a separation is useful, it is better to
have access to the data through and interface that encompasses the business rules than to
have no access a al. Other exceptions for legacy systems should dedl with change
natification requirements that might be very difficult to implement below legacy
interfaces. Findly, the C2STA data architecture should include suggestions for a
migration path from the less redtrictive requirements for legacy systems to the more
gringent requirements for new systems.

A common feature of the research projects from Chapter 4 motivates another
recommendation for the C2STA data architecture. The architecture must mandate a
flexible query interface. Such an interface is very useful to dient gpplications and
essentia to promoting the C2STA as a primary datainterface for systems. System
designers are unlikely to embrace a data architecture that replaces traditiond RDBM Ss
with anew interface that lacks flexible query festures. RDBM Ss provide extensive
support for ad hoc querying. System designers are accustomed to this support so any

replacement data architecture must provide similar features.
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A fina recommendation for changes to the C2STA data architecture involvesiits
assumption of symmetric “get” and “set” operdions. Reading datais often much smpler
than writing data when accessing data stores. This Situation arises due to security
measures as well asread-only view issues. Therefore, it is generdly easier to create read
mappings from a source schema to atarget schemathan to create the equivaent write
mappings. While supporting both read and write accessis critical if the C2STA data
architectureisto provide the only interface to data sources. However, in the case of
legacy systems other interfaces are likely to exist. Inthiscase, it isuseful to have aread
only representation of data for interoperability even when write access is unachievable,
The C2STA data architecture should recognize this asymmetry and provide guidance on
providing read-only access while preferring read/write access.

Having discussed possible changesto the C2STA data architecture, afew
comments regarding technologies that might support such an architecture will conclude
thisdiscusson. The review of other data architectures in Chapter 4 aswell as
experiences implementing the Virtua DB DAIMI suggest thet flexibility of schema
trandationsis critica to any DAIMI platform. Theided solution would provide
automatic mappings for smple trandations while dlowing arbitrarily complex custom
components for sophigticated mappings. Further, the platform would support the
separation of mapping functionality and interface presentation aready recommended.
The system would alow a single set of mappings to be represented through severd
interfaces smultaneoudy. The research projects examined suggest that such atool might

be available in the not too distance future. While automatic mapping functiondity will
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probably take quite awhile to refine, the other goals could be redized with current
technology.

The C2STA data architecture addresses important techniques for achieving data
interoperability. It represents amiddie ground in the solution space for data
interoperability as defined in Chapter 1. The architectureis particularly appeding
because a message passing system could be implemented above a system’ s abstract data
interface while a schema standardi zation effort could take place below the abstract data
interface. Therefore this solution is completely compatible with other data
interoperability solutions. A new revison of the C2STA data architecture incorporating
the suggestions outlined in this chapter could support Sgnificant detainteroperability

solutions both insde and outside the Air Force.
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Appendix

Acronyms Appearing in thisThess

Both the military world and the computer science world are littered with
acronyms. Some are broadly used and recognized (e.g. HTML) while others are very
gpecific and obscure (e.g. GCI). Infact, it is not uncommon for acronym collisonsto
occur. Therefore, the following table lists in aphabetica order dl of the acronymsin this
thesisfor the reader’ s convenience.

Acronym Expansion

ADT Abstract Data Type

AF Air Force

API Application Programming Interface

C2 Command and Control

C2IPS Command and Control Information Processing System
C2STA C2 System Target Architecture

CDE Common Data Environment

COIN Context INterchange

COM Component Object Model

CORBA Common Object Request Broker Architecture
COTS Commercial Off-the-shelf

DAI Data Access Interface

DAIM Data Access Interface Module

DAIMI Data Access Interface Module Implementation
DBMS Database Management System

DLL Dynamic Link Library

DOD Department of Defense

EBO Enterprise Business Objects

EJB Enterprise Java Bean

ESC Electronic Systems Center

GClI General Capability Interface

HTML HyperText Markup Language

IC2S Integrated C2 System

IDL Interface Definition Language

MFC Microsoft Foundation Class

ODBC Open Database Connectivity

POTS Plain Old Telephone Service

PROFIT Productivity From Information Technology
RDBMS Relational Database Management System
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RGB Red-Green-Blue

SQL Structured Query Language

TBMCS Theater Battle Management Control System
TCP/IP Transmission Control Protocol / Internet Protocol
USMTF United States Message Text Format

XML Extensible Markup Language

YAT (Unknown to author)

YATL YAT Language
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