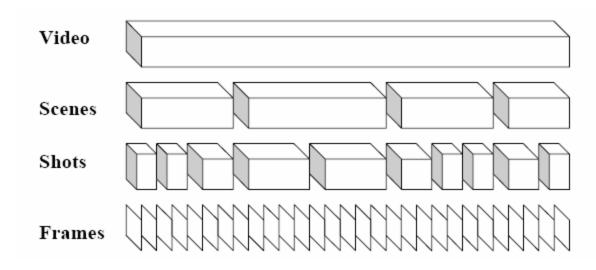
Video Summarization

Ben Wing CS 395T, Spring 2008 April 11, 2008


Overview

- "Video summarization methods attempt to abstract the main occurrences, scenes, or objects in a clip in order to provide an easily interpreted synopsis"
 - Video is time-consuming to watch
 - Much low-quality video
 - Huge increase in video generation in recent years

Overview

- □ Specific situations:
 - Previews of movies, TV episodes, etc.
 - Summaries of documentaries, home videos, etc.
 - Highlights of football games, etc.
 - Interesting events in surveillance videos (major commercial application)

Anatomy of a Video

- frame: a single still image from a video
 - 24 to 30 frames/second
- shot: sequence of frames recorded in a single camera operation
- scene: collection of shots forming a semantic unity
 - conceptually, a single time and place

Outline

□ Series of still images (key frames)

- Shot boundary based
- Perceptual feature based
 - □ color-based (Zhang 1997)
 - □ motion-based (Wolf 1996; Zhang 1997)
 - □ object-based (Kim and Huang 2001)
- Feature vector space based (DeMenthon et al. 1998; Zhao et al. 2000)
- Scene-change detection (Ngo et al. 2001)
- □ Montage of still images
 - Synopsis mosaics (Aner and Kender 2002; Irani et al. 1996)
 - Dynamic stills (Caspi et al. 2006)
- □ Collection of short clips (*video skimming*)
 - □ Highlight sequence
 - Movie previews: VAbstract (Pfeiffer et al. 1996)
 - Model-based summarization (Li and Sezan 2002)
 - □ Summary sequence: full content of video
 - Time-compression based ("fast forward")
 - Adaptive fast forward (Petrovic, Jojic and Huang 2005)
 - Text- and speech-recognition based
- □ Montage of moving images
 - Webcam synopsis (Pritch et al. 2007)

Shot Boundary-Based Key Frame Selection

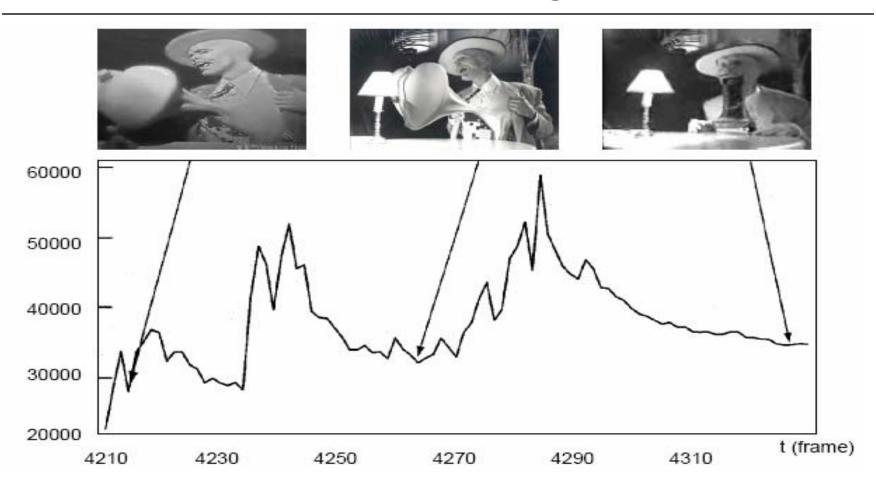
- segment video into shots
 - typically, difference of one or more features greater than threshold
 - pixels (Ardizzone and Cascia, 1997; ...)
 - color/grayscale histograms (Abdel-Modttaleb and Dimitrova, 1996; ...)
 - □ edge changes (Zabih, Miller and Mai, 1995)
- □ select key frame(s) for each shot
 - first, middle, last frame (Hammoud and Mohr, 2000)
 - look for significant change within shot (Dufaux, 2000)

Color-Based Selection (Zhang 1997)

- quantize color space into N cells (e.g. 64)
- compute histogram: number of pixels in each cell
- compute distance between histograms

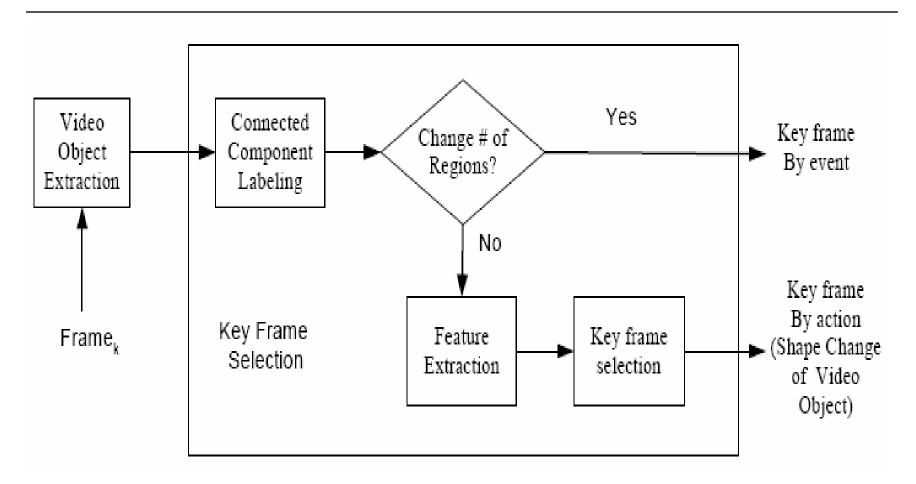
$$D_{his}(I,Q) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} a_{ij} (I_i - Q_i) (I_j - Q_j)$$

 \blacksquare a_{ij} is perceptual similarity between color bins

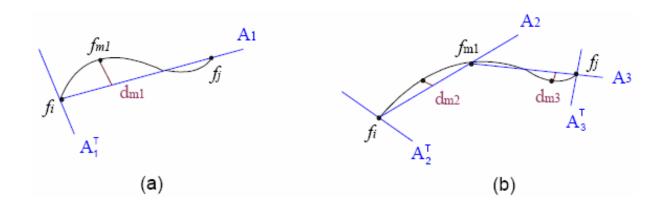

Motion-Based Selection (Wolf 1996; Zhang 1997)

- color-based selection may not be enough given significant motion
- motion metric based on optical flow

$$M(t) = \sum_{i=1}^{r} \sum_{j=1}^{c} |o_{x}(i,j,t)| + |o_{y}(i,j,t)|$$


- $o_x(i,j,t)$, $o_y(i,j,t)$ are x/y components of optical flow of pixel (i,j), frame t
- identify two local maxima m_1 and m_2 where difference exceeds threshold
- select minimum point between m_1 and m_2 as key frame
- repeat for maxima m_2 and m_3 , etc.

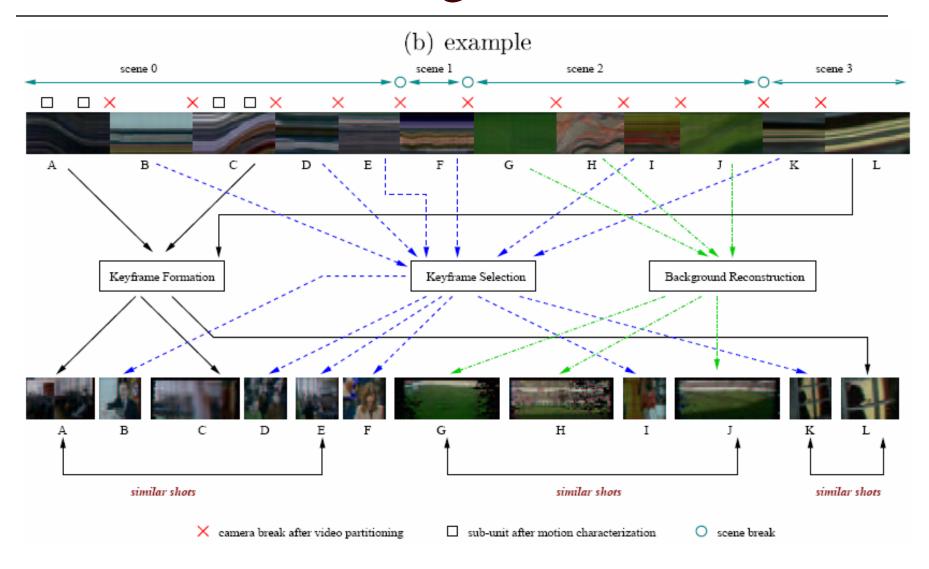
Motion-Based Selection (Wolf 1996; Zhang 1997)


Values of M(t) and sample key frames from *The Mask*

Object-based Selection (Kim and Huang, 2001)

Feature Vector Space-Based Key Frame Detection

- □ DeMenthon, Kobla and Doermann (1998)
- □ Zhao, Qi, Li, Yang and Zhang (2000)
 - Represent frame as point in multi-dimensional feature space
 - Entire clip is curve in same space
 - Select key frames based on curve properties (sharp corners, direction change, etc.)
 - Curve-splitting algorithm can successively add new frames



Scene-Change Detection

•Ngo, Zhang and Pong (2001)

Scene-Change Detection

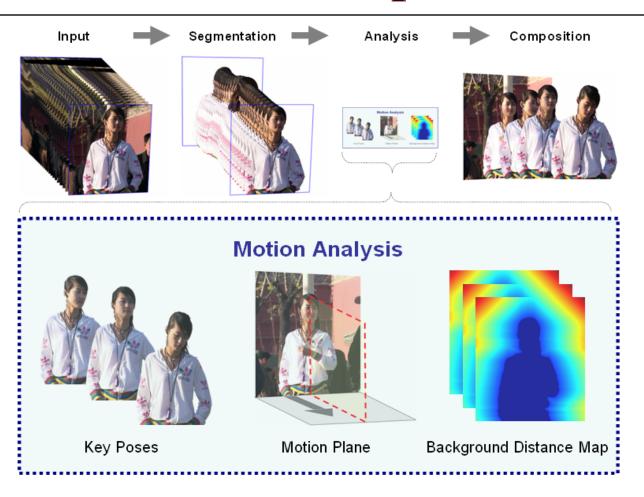
Outline

- □ Series of still images (*key frames*)
 - Shot boundary based
 - Perceptual feature based
 - □ color-based (Zhang 1997)
 - motion-based (Wolf 1996; Zhang 1997)
 - object-based (Kim and Huang 2001)
 - Feature vector space based (DeMenthon et al. 1998; Zhao et al. 2000)
 - Scene-change detection (Ngo et al. 2001)
- **☐** Montage of still images
 - Synopsis mosaics (Aner and Kender 2002; Irani et al. 1996)
 - Dynamic stills (Caspi et al. 2006)
- □ Collection of short clips (*video skimming*)
 - □ Highlight sequence
 - Movie previews: VAbstract (Pfeiffer et al. 1996)
 - Model-based summarization (Li and Sezan 2002)
 - □ Summary sequence: full content of video
 - Time-compression based ("fast forward")
 - Adaptive fast forward (Petrovic, Jojic and Huang 2005)
 - Text- and speech-recognition based
- □ Montage of moving images
 - Webcam synopsis (Pritch et al. 2007)

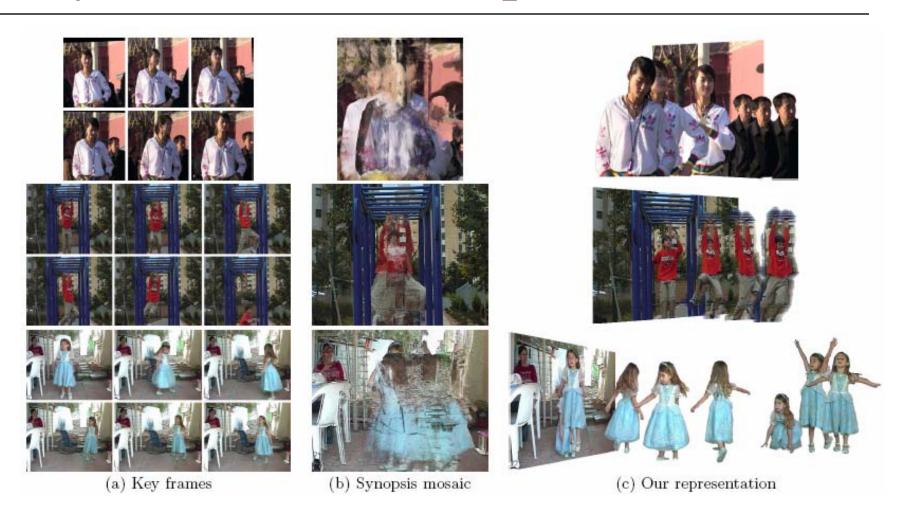
Synopsis Mosaics

- •Aner and Kender (2002)
- •Irani et al. (1996)

Fig. 1. (a) Hand-chosen key-frames. (Automatic key-frames generation often does not give complete spatial information). (b) Mosaic representation. Note that the whole background is visible, no occlusion by the foreground objects.


Synopsis Mosaics

- □ Select or sample key frames
- □ Compute affine transformations between successive frames
- □ Choose one frame as reference frame
- □ Project other frames into plane of reference coordinate system
- □ Use median of all pixels mapped to same location
- Optionally, use outlier detection to remove moving objects


Synopsis Mosaics

- □ Advantages
 - Combine key frames into single shot
 - Can recreate full background when occluded by moving objects
- Disadvantages
 - May require manual key-frame selection to get complete background
 - Moving objects may not display well need to segment out and recombine through other means

Dynamic Stills (Caspi et al. 2006)

Dynamic Stills (Caspi et al. 2006)

Dynamic Stills (Caspi et al. 2006)

- Advantages
 - Better sense of motion than key frames
 - Better screen usage
 - Can handle self-occluding sequences (vs. synopsis mosaics)
- Disadvantages
 - Single image is limited in complexity (max number of poses representable is about 12)
 - Rotation of multiple objects may lead to occlusion
 - Exact spatial information is lost (cf. running in place)

Outline

- Series of still images (key frames)
 - Shot boundary based
 - Perceptual feature based
 - color-based (Zhang 1997)
 - motion-based (Wolf 1996; Zhang 1997)
 - object-based (Kim and Huang 2001)
 - Feature vector space based (DeMenthon et al. 1998; Zhao et al. 2000)
 - Scene-change detection (Ngo et al. 2001)
- Montage of still images
 - Synopsis mosaics (Aner and Kender 2002; Irani et al. 1996)
 - Dynamic stills (Caspi et al. 2006)
- **Collection of short clips (video skimming)**

 - Highlight sequence
 - Movie previews: VAbstract (Pfeiffer et al. 1996)
 - Model-based summarization (Li and Sezan 2002)
 - Summary sequence: full content of video
 - Time-compression based ("fast forward")
 - Adaptive fast forward (Petrovic, Jojic and Huang 2005)
 - Text- and speech-recognition based
- Montage of moving images
 - Webcam synopsis (Pritch et al. 2007)

VAbstract (Pfeiffer et al 1996)

- 1. Important objects/people
 - Scene-boundary detection (Kang 2001; Sundaram and Chang 2002; etc.)
 - Find high-contrast scenes
- 2. Action
 - Find high-motion scenes
- 3. Mood
 - Find scenes of average color composition
- 4. Dialog
 - Find scenes with dialog
- 5. Disguised ending
 - Delete final scenes

Model-Based Summarization: Li and Sezan (2002)

- □ Summarization of football broadcasts
- Model video as sequence of plays
 - Remove non-play footage
 - Select most important/exciting plays
 - □ Use waveform of audio
- □ Start-of-play detection:
 - Field color, field lines
 - Camera motions
 - Team jersey colors
 - Player line-ups
- □ End-of-play detection:
 - Camera breaks after start of play
- □ Also applied to baseball and sumo wrestling

Summary Sequence

- □ Time-compression based ("fast forward")
 - Drop some fixed proportion of frames
 - Extreme case: time-lapse photography
- □ Adaptive fast forward
 - Petrovic, Jojic and Huang (2005)
 - Create graphical model of video scenes (occlusion, appearance change, motion)
 - Maximize likelihood of similarity to target video
- □ Text- and speech-recognition based
 - Use dialog (from speech recognition, closed captions, subtitles) to guide scene selection

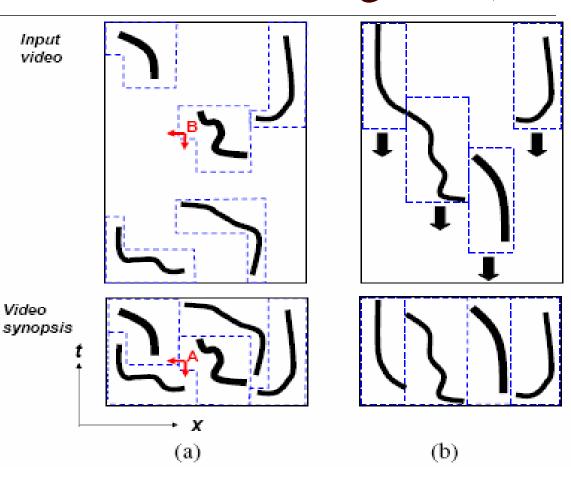
Outline

- □ Series of still images (*key frames*)
 - Shot boundary based
 - Perceptual feature based
 - □ color-based (Zhang 1997)
 - □ motion-based (Wolf 1996; Zhang 1997)
 - □ object-based (Kim and Huang 2001)
 - Feature vector space based (DeMenthon et al. 1998; Zhao et al. 2000)
 - Scene-change detection (Ngo et al. 2001)
- □ Montage of still images
 - Synopsis mosaics (Aner and Kender 2002; Irani et al. 1996)
 - Dynamic stills (Caspi et al. 2006)
- □ Collection of short clips (*video skimming*)
 - □ Highlight sequence
 - Movie previews: VAbstract (Pfeiffer et al. 1996)
 - Model-based summarization (Li and Sezan 2002)
 - □ Summary sequence: full content of video
 - Time-compression based ("fast forward")
 - Adaptive fast forward (Petrovic, Jojic and Huang 2005)
 - Text- and speech-recognition based
- **□** Montage of moving images
 - Webcam synopsis (Pritch et al. 2007)

Webcam Synopsis (Pritch, Rav-Acha, Gutman, Peleg 2007)

- Webcams and security cameras collect endless footage, most of which is thrown away without being viewed
- □ > 1,000,000 security cameras in London alone!
- □ Idea: "Show me in one minute the synopsis of this camera broadcast during the past day"
 - Issue: Security companies want to select by importance of event rather than by a fixed time

Webcam Synopsis (Pritch, Rav-Acha, Gutman, Peleg 2007)


Example synopsis (from website):

• Note stroboscopic effect (duplicated instances of same person)

Webcam Synopsis (Pritch, Rav-Acha, Gutman, Peleg 2007)

- Identify *tubes* of activity
- Find a lowest-cost synopsis:
 - 1. Maximize activity (pack as close as possible)
 - 2. Minimize overlap ("collision")
 - 3. Maximize temporal consistency
- Pack tubes according to identified synopsis
- Place over a time-lapse background

Webcam Synopsis: Object Detection and Segmentation

- □ For each frame, compute median background image over surrounding four-minute stretch
- □ Find moving objects using background subtraction + min-cut (for smoothness)
- □ Find connected components to get the object tubes
- More sophisticated object-detection algorithms are possible

Webcam Synopsis: Object Detection and Segmentation

Examples of four computed tubes from an airport surveillance camera

Webcam Synopsis: Finding Best Synopsis

- •We seek to find the best synopsis, optimizing the *activity*, *background consistency*, *collision*, and *temporal consistency* costs.
- •A synopsis is a mapping, for each tube b, from its original time extent $[t_s, t_e]$ to a shifted extent $[\hat{t}_s, \hat{t}_e]$. The tube in its shifted extent is notated as \hat{b} .
- •The energy cost of a synopsis is defined as

$$E(M) = \sum_{b \in B} (E_a(\hat{b}) + \gamma E_s(\hat{b})) + \sum_{b,b' \in B} (\alpha E_t(\hat{b}, \hat{b'}) + \beta E_c(\hat{b}, \hat{b'}))$$

- •Where
 - E_a is the activity cost of a tube
 - E_s is the background consistency of a tube
 - E_c is the collision cost between two tubes
 - E_t is the temporal consistency cost between two tubes.

Webcam Synopsis: Finding Best Synopsis (1)

The activity cost is 0 for tubes in the synopsis. For tubes not included, it is the sum over the "activity" of each pixel (difference from background).

$$E_a(\hat{b}) = \sum_{x,y,t} \chi_{\hat{b}}(x,y,t)$$

$$\chi_b(x, y, t) = \begin{cases} ||I(x, y, t) - B(x, y, t)|| & t \in t_b \\ 0 & otherwise \end{cases}$$

The background consistency cost is defined as the sum over the per-pixel difference between mapped tube and time-lapsed background.

$$E_s(\hat{b}) = \sum_{x,y \in \sigma(\hat{b}), t \in \hat{t_b} \cap t_{out}} ||I_{\hat{b}}(x,y,t) - B_{out}(x,y,t)||$$

Webcam Synopsis: Finding Best Synopsis (2): Collision Cost

- •The collision cost is defined over pairs of tubes.
- •It sums over each pixel in each frame where the tubes overlap.
- •For such pixels, the cost is the product of their "activities" (differences from background).

$$E_c(\hat{b}, \hat{b'}) = \sum_{x, y, t \in \hat{t_b} \cap \hat{t_{b'}}} \chi_{\hat{b}}(x, y, t) \chi_{\hat{b'}}(x, y, t)$$

$$\chi_b(x, y, t) = \begin{cases} ||I(x, y, t) - B(x, y, t)|| & t \in t_b \\ 0 & otherwise \end{cases}$$

Webcam Synopsis:

Finding Best Synopsis (3): Temporal Consistency Cost

- □ The temporal consistency cost tries to ensure that each pair of tubes is temporally consistent in their mapped time stretches.
- □ We'd like to weight the cost per pair of tubes by the *interaction strength* between tubes. But it's too hard (impossible?) to compute, so approximate as how close the tubes ever got:

if
$$\hat{t_b} \cap \hat{t_{b'}} \neq \emptyset$$
 then
$$d(b, b') = \exp(-\min_{t \in \hat{t_b} \cap \hat{t_{b'}}} \{d(b, b', t)\} / \sigma_{space})$$

- where d(b,b',t) = Euclidean distance between closest pixels in b and b' in mapped frame t.
- If, however, b and b' have no frames in common (one is *mapped* completely before the other, assume b), then weight is how close the tubes ever got in time space:

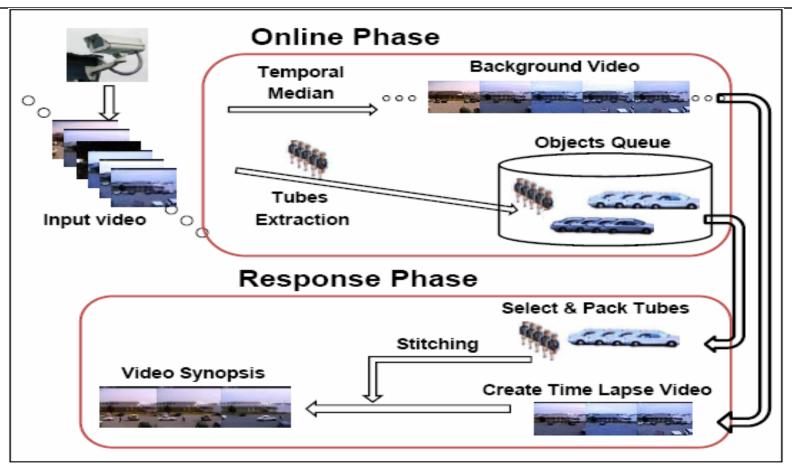
$$d(b, b') = \exp(-(t_{b'}^{\hat{s}} - t_b^{\hat{e}})/\sigma_{time})$$

Webcam Synopsis:

Finding Best Synopsis (3): Temporal Consistency Cost

- •Remember, d(b,b'):
 - •Measures closeness between tubes at their closest point in time or space
 - •Value drops off exponentially, so *only very "bad" tubes matter* (nearly touching when time overlaps, nearly time-overlapping otherwise)
- •Finally, define temporal consistency cost: 0 if exact same relative timing applies between original and mapped pair of tubes; otherwise, constant-scaled version of d(b,b')
- •Intuition: Keep tubes from getting too close in time or space

$$E_t(\hat{b}, \hat{b'}) = d(b, b') \cdot \begin{cases} 0 & t_{b'}^s - t_b^s = t_{b'}^{\hat{s}} - t_b^{\hat{s}} \\ C & \text{otherwise} \end{cases}$$


Webcam Synopsis: Finding Best Synopsis (4)

□ How do you optimize?

$$E(M) = \sum_{b \in B} (E_a(\hat{b}) + \gamma E_s(\hat{b})) + \sum_{b,b' \in B} (\alpha E_t(\hat{b}, \hat{b'}) + \beta E_c(\hat{b}, \hat{b'}))$$

- □ The form of E(M) makes it amenable to MRF's (Markov Random Fields), a generalization of HMM's (Hidden Markov Models).
- But the authors just used a simple greedy optimization (with simulated annealing?) and got good results.

Webcam Synopsis: Handling Endless Video

Online phase: computed in parallel with original streaming Response phase: computed afterwards, in response to a user request

Webcam Synopsis: Issues

Advantages

- Efficient compression of very lengthy surveillance videos
- User-controllable compression threshold
- Scheme for handling endless video
- User can select for specific types of objects (cars vs. people) or motion (motion through frame or background/foreground transition)

Disadvantages

- Non-optimal user controls for compression
 - □ Security companies want an event importance threshold, not a time threshold
- Limited applicability: Cannot handle videos with unpredictable background shift
- May be compute-intensive

Webcam Synopsis: Other Thoughts

- □ Combining speech/audio/dialog/voice
 - Use various techniques (cf. "Buffy", Everingham, Sivic and Zisserman; 2006) to link audio/dialog with video
 - □ create combined audio/video tubes
 - □ Augment energy function with audio overlap term: audio information at same frequencies, and dialog in general, should not overlap
 - ☐ Generate mixed audio channel along with video
- □ Privacy concerns! **Huge** can of worms.

References

- Abdel-Mottaleb, M., & Dimitrova, N. (1996). CONIVAS: CONtent-based image and video access system. *Proceedings of ACM International Conference on Multimedia*, Boston, MA, 427-428.
- Aner, A. and J. Kender (2002). Video Summaries through Mosaic-Based Shot and Scene Clustering. *Proceedings of the European Conference on Computer Vision (ECCV)*, 2002.
- Ardizzone, E., & Cascia, M. (1997). Automatic video database indexing and retrieval. *Multimedia Tools and Applications*, 4, 29-56.
- Everingham, M., J. Sivic and A. Zisserman (2006). "Hello! My name is... Buffy" Automatic Naming of Characters in TV Video. *British Machine Vision Conference* (BMVC), 2006.
- DeMenthon, D., Kobla, V., & Doermann, D. (1998). Video summarization by curve simplification. *Proceedings of ACM Multimedia 1998*, 211-218.
- Dufaux, F. (2000). Key frame selection to represent a video. *Proceedings of IEEE 2000 International Conference on Image Processing*, Vancouver, BC, Canada, 275-278.
- Hammoud, R., & Mohr, R. (2000, Aug.). A probabilistic framework of selecting effective key frames from video browsing and indexing. *Proceedings of International Workshop on Real-Time Image Sequence Analysis*, Oulu, Finland, 79-88.
- Irani, M., P. Anandan, J. Bergenand R. Kumar, and S. Hsu (1996). Efficient representation of video sequences and their applications. In *Signal processing: Image Communication*, volume 8, 1996.
- □ Kang, H. (2001). A hierarchical approach to scene segmentation. *IEEE Workshop on Content-Based Access of Image and Video Libraries* (CBAIVL 2001), 65-71.
- Kim, C., & Hwang, J. (2001). An integrated scheme for object-based video abstraction. *Proceedings of ACM Multimedia* 2001, Los Angeles, CA, 303-309.
- Li, B., & Sezan, I. (2002). Event detection and summarization in American football broadcast video. *Proceedings of SPIE, Storage ad Retrieval for Media Databases*, 202-213.

References

- Nagasaka, A., & Tanaka, Y. (1991). Automatic video indexing and full-video search for object appearance. *Proceedings of the IFIP TC2/WG2.6, Second Working Conference on Visual Database Systems*, North-Holland, 113-127.
- Ngo, C., H. Zhang, and T. Pong (2001). Recent Advances in Content-based Video Analysis. *International Journal of Image and Graphics*, 2001.
- Oh, J., Q. Wen, J. lee, and S. Hwang (2004). Video Abstraction. In S. Deb, editor, *Video Data Management and Information Retrieval*, Idea Group Inc. and IRM Press, 2004.
- Petrovic, N., N. Jojic, and T. Huang (2005). Adaptive video fast forward. *Multimedia Tools and Applications*, 26(3):327–344, August 2005.
- Pfeiffer, S., Lienhart, R., Fischer, S., & Effelsberg, W. (1996). Abstracting digital movies automatically. *Journal of Visual Communication and Image Representation*, 7(4), 345-353.
- Pritch, Y., A. Rav-Acha, A. Gutman, and S. Peleg (2007). Webcam Synopsis: Peeking Around the World. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2007.
- Pritch, Y., A. Rav-Acha, and S. Peleg (2008). Non-Chronological Video Synopsis and Indexing. *IEEE Trans. PAMI*, to appear Nov. 2008. 15p.
- □ Sundaram, H., & Chang, S. (2000). Video scene segmentation using video and audio Features. *ICME2000*, 1145-1148.
- Wolf, W. (1996). Key frame selection by motion analysis. *Proceedings of IEEE International Conference on Acoustics*, *Speech, and Signal Processing*, Atlanta, GA,1228-1231.
- Zabih, R., Miller, J., & Mai, K. (1995). A feature-based algorithm for detecting and classifying scene breaks. *Proceedings of the Third ACM International Conference on Multimedia*, San Francisco, CA, 189-200.
- Zhang, H.J. (1997). An integrated system for content-based video retrieval and browsing. *Pattern Recognition*, 30(4), 643-658.
- Zhao, L., Qi, W., Li, S., Yang, S., & Zhang, H. (2000). Key-frame extraction and shot retrieval using nearest feature line (NFL). *Proceedings of ACM Multimedia Workshop* 2000, Los Angeles, CA, 217-220.