Geological Society of America Special Paper 398

# Stable isotopic evidence for a pre-late Miocene elevation gradient in the Great Plains-Rocky Mountain region, USA

Derek J. Sjostrom<sup>†</sup>

Geology Department and The Environmental and Natural Resources Institute, University of Alaska Anchorage, Anchorage, Alaska 99508, USA

> Michael T. Hren Travis W. Horton Jacob R. Waldbauer C. Page Chamberlain

Department of Earth and Environmental Sciences, Stanford University, Stanford, California 94305, USA

#### ABSTRACT

In order to investigate if high elevations existed in the Rocky Mountains before the late Miocene, we examined oxygen isotope ratios of 63 Tertiary smectite samples as a proxy for the isotopic composition of precipitation. Of these samples, 51 were also analyzed for hydrogen isotope ratios. These smectites were formed as a result of the weathering of volcanic air-fall deposits that blanketed much of western North America during the Tertiary. Smectite-bearing ashfall samples were collected from Eocene, Oligocene, and Miocene deposits along a transect that extends from the western Great Plains to Yellowstone National Park at modern elevations from ~900 to ~2800 m. In general, oxygen and hydrogen δ values of smectite lie along a line parallel to the meteoric water line, which suggests that the isotopic composition of these ash-derived smectites records the meteoric water composition during its formation. There is little evidence for postdepositional exchange with basinal brine fluids, evaporative effects, or diagenesis of these smectites. The δ<sup>18</sup>O values of Oligocene and Miocene samples increase ~6\% linearly from sample sites located at the crest of the Rocky Mountains to sites in western Nebraska and South Dakota. These results mimic the distribution and values of calculated oxygen isotope ratios of theoretical modern smectite over this same geographic traverse of decreasing elevation. This result suggests modern atmospheric circulation patterns and that the resulting distribution of  $\delta^{18}O_{\text{precipitation}}$ has persisted since the Oligocene. The δ<sup>18</sup>O values of Eocene samples increase ~8‰ between the Yellowstone region and central Wyoming, a result that does not correlate with modern  $\delta^{18}O_{_{nrecinitation}}$  trends. Our Eocene results may be explained by climate conditions extant at that time, but tectonic modification in the region between 50 Ma and 37 Ma cannot be excluded as the cause of our results. Because the modern climate system requires interaction with and modification by high-elevation areas, our results suggest that the Rocky Mountains have been at high elevation since at least 50 Ma.

Keywords: stable isotopes, smectite, Rocky Mountains, paleoclimate, paleotopography.

<sup>&</sup>lt;sup>†</sup>E-mail: sjostrom@alum.dartmouth.org

Sjostrom, D.J., Hren, M.T., Horton, T.W., Waldbauer, J.R., and Chamberlain, C.P., 2006, Stable isotopic evidence for a pre-late Miocene elevation gradient in the Great Plains-Rocky Mountain region, USA, *in* Willett, S.D., Hovius, N., Brandon, M.T., and Fisher, D.M., eds., Tectonics, Climate, and Landscape Evolution: Geological Society of America Special Paper 398, Penrose Conference Series, p. 309–319, doi: 10.1130/2006.2398(19). For permission to copy, contact editing@geosociety.org. ©2006 Geological Society of America.

#### INTRODUCTION

There is considerable debate as to when the Rocky Mountains formed as a significant topographic feature. The traditional view holds that the modern relief that exists throughout the area is a recent feature that formed as a result of late- and post-Miocene uplift. According to this interpretation, the low-relief topography and shallow-dipping Tertiary sedimentary deposits that are a common feature at high elevations throughout the Rocky Mountain region are interpreted as evidence for Early and Middle Tertiary deposition on a broad, flat, low-elevation plain (Bradley, 1987; Burchfiel et al., 1992). The present topography resulted from Late Tertiary tectonic activity, uplift, and incision (Epis and Chapin, 1975; Steven et al., 1997; McMillan et al., 2002). In contrast, recent paleofloral and stable isotopic studies suggest that elevations as high or higher than present may have existed in the Rocky Mountains since, at the latest, the end of the Laramide orogeny, and much of the present relief is the result of increased erosion and exhumation due to Late Tertiary climate change (Molnar and England, 1990; Gregory and Chase, 1992; Drummond et al., 1993; Gregory and McIntosh, 1996; Norris et al., 1996; Chase et al., 1998; Wolfe et al., 1998; Dettman and Lohmann, 2000; Peizhen et al., 2001).

To address this debate, we conducted an oxygen and hydrogen isotopic study of authigenic smectites from Eocene (50–49 Ma), Oligocene (37–32 Ma), and Miocene (20–12 Ma) volcanic ashes that are exposed along a transect from the Continental Divide to the Great Plains (Fig. 1). Our study focuses on smectite because its oxygen and hydrogen isotopic values can be used to reconstruct past climate and topographic histories of mountain belts (Lawrence and Taylor, 1971; Stern et al., 1997; Chamberlain and Poage, 2000; Poage and Chamberlain, 2002). In addition, Tertiary volcanic ashes containing abundant smectite are exposed along the eastern flanks of the Rocky Mountains and extend into the western Great Plains. Because these ash layers were initially



Figure 1. Locations of Tertiary smectite sample sites in the western Great Plains and eastern Rocky Mountain region. All samples were collected from air-fall ashes of Miocene, Oligocene, and Eocene age.

deposited as volcanic air-fall, time-equivalent deposits blanket a large geographic area. Thus, it is possible to determine isotopic gradients in paleoprecipitation over a broad area, which can be diagnostic of topography.

# MODERN CLIMATE OF THE WESTERN GREAT PLAINS AND EASTERN ROCKY MOUNTAINS

In contrast to the relatively simple climate systems used in previous isotopic paleoelevation studies, such as Poage and Chamberlain (2001) and Rowley et al. (2001), the modern distribution of the isotopic composition of precipitation in the eastern Rocky Mountains and western Great Plains is fairly complex. The annual average isotopic values of precipitation depends on the annual timing of precipitation, average annual temperature, and the interaction among three isotopically discrete air masses that originate from three different areas (Bryson and Hare, 1974; Nativ and Riggio, 1990; Thordsen et al., 1992; Harvey and Welker, 2000). The modern climate dynamics of the region as described in the following tend to make the change in isotopic composition with elevation difference appear much greater in the western Great Plains and eastern Rocky Mountains than those predicted by the models of Poage and Chamberlain (2001) and Rowley et al. (2001).

The modern climate of the Rocky Mountain region and the western Great Plains is influenced by the direct competition of three distinct air masses that originate over the Arctic, the Gulf of Mexico, and the Pacific Ocean, and by the mountains that create rain shadows for these air masses (Bryson and Hare, 1974). The interplay of these three air masses causes strong seasonal variations in the amount of precipitation and temperature. In the high elevations of the northern Rocky Mountains, dry summer, wet winter conditions dominate as a result of the influence of the eastern Pacific subtropical high-pressure system. During the summer, the westerlies are relatively weak and displaced to the north, causing the summer months to be relatively dry at high elevations. Heating of the continental interior creates a thermal low-pressure system that draws moisture north from the Gulfs of Mexico and California (Bryson and Hare, 1974). This summer monsoon system dominates the low-elevation areas of the northern Rocky Mountains, which are characterized by relatively wet summers and dry winters compared to high-elevation areas (Despain, 1987; Whitlock and Bartlein, 1993). Areas of high elevation in the Rocky Mountains interact with Pacific-sourced air masses, which causes these areas to receive relatively abundant precipitation in the winter (Despain, 1987). These air masses pass over low-elevation areas unaffected, and the lack of orographic precipitation results in lower precipitation amounts in the winter (Despain, 1987). These local climate trends influence the pattern of seasonal precipitation over relatively small geographic areas, in some cases on the scale of only a few kilometers (Despain, 1987; Whitlock and Bartlein, 1993).

East of the Rocky Mountains, the effects of local topography are much reduced. The climate is dominated by interaction of

warm, moist air masses that originate over the Gulfs of Mexico and California, cold, dry arctic air masses that originate over the Arctic Ocean, and mild, dry westerlies from the Pacific (Bryson and Hare, 1974). The seasonal dominance of the southern air masses in the summer results in relatively wet, humid summers, with increasing amounts of moisture to the east. In the winter, the Arctic and Pacific air masses dominate, which results in cold, dry winters, especially in the rain shadow of the Rocky Mountains.

The climate variability of the Yellowstone–Rocky Mountain region is reflected in the stable isotope composition of precipitation from the area;  $\delta^{18}O_{\text{precipitation}}$  ranges from -17% to -22% $\{\delta^{18}O = 1000[(^{18}O/^{16}O)_{\text{sample}}/(^{18}O/^{16}O)_{\text{standard}}] - 1\}$ ; we report all δ<sup>18</sup>O and δD values relative to Vienna standard mean ocean water (V-SMOW) (Thordsen et al., 1992; Horton et al., 1999). The dominant control on isotopic composition of precipitation in the Yellowstone area is elevation; lighter isotopic values occur in areas of high elevation (Thordsen et al., 1992). To the east of the Rocky Mountains, oxygen isotopic values of precipitation are more enriched in <sup>18</sup>O. In the Wind River Basin of central Wyoming, oxygen isotope values of soil water in equilibrium with modern carbonates range from ~18‰ to ~12‰ (Amundson et al., 1996). In the western Great Plains of western Nebraska and South Dakota, oxygen isotope values of precipitation average ~9.8‰ (Harvey and Welker, 2000). East of the Rocky Mountains, the average oxygen isotope value of precipitation is highly dependent on the annual timing of precipitation. Areas in the eastern part of the study area (western Great Plains) receive more summer precipitation than western areas, and therefore have higher average  $\delta^{18}O_{\text{precipitation}}$  values (Amundson et al., 1996; Harvey and Welker, 2000). This results in a present-day average δ<sup>18</sup>O<sub>precipitation</sub> difference of ~10‰ between Yellowstone National Park (elevation ~2500 m) and North Platte, Nebraska (elevation, ~900 m) or  $\Delta \delta^{18}O_{\text{precipitation}} = -6.25\%/\text{km}$  elevation difference. This is a much more dramatic  $\delta^{18}O_{\text{precipitation}}$  gradient than the global average (~2.8%/km elevation difference) reported by Poage and Chamberlain (2001). Similarly high isotopic gradients (-4.2%/km) have also been observed in nearby areas of the eastern Rocky Mountains (Drummond et al., 1993). These greater than average isotopic gradients are the result of elevation increase to the west in our study area, which results in relatively light  $\delta^{18}O_{\text{precipitation}}.$  This is coupled with a much greater average annual amount of isotopically light winter precipitation in the western part of the study area than to the east.

### METHODS

Approximately 160 samples were collected from previously described and age-dated Eocene, Oligocene, and Miocene ash layers on an east-west transect from western Nebraska and South Dakota to western Wyoming (Fig. 1; Table 1). Samples were ground with an iron mortar and pestle and dispersed in distilled water using a commercial blender. The samples were centrifuged to a particle size of <0.5 µm to remove nonsmectite clay and other

minerals with a larger grain size. X-ray analysis was conducted on a Siemens D-500 diffractometer.

Of the 160 samples that were collected, 63 consisted of pure smectite; these pure smectite samples were selected for isotopic analysis. None of the 160 diffractograms showed the presence of significant mixed layering with other clay minerals by inspection and/or by using the  $\Delta 2\theta$  (002/003) –  $\Delta 2\theta$  (001/002) method of Moore and Reynolds (1997). This includes mixed layering of illite and smectite that would be indicative of diagenetic alteration. The diffractogram of the glycolated sample shown in Figure 2 is typical of the smectite samples selected for isotopic analysis.

Oxygen extraction procedures followed those outlined in Poage and Chamberlain (2002). An internal quartz standard (BX-88) was analyzed with each loading of the extraction line, and an internal smectite standard (01DS069) was analyzed in several of the batch runs. Extraction line runs for which ratios of the standards were outside of the range of  $\pm 0.2\%$  for quartz or  $\pm 0.4\%$  for smectite were discarded, and the samples were reanalyzed.

We also collected hydrogen isotopic values of 51 of the smectite samples using a continuous flow online combustion method similar to that described in Sharp et al. (2001). Our analysis of hydrogen isotope standards gave a precision and accuracy of the following: (1) on NBS 22 (oil) the accepted  $\delta D$  value is -118.5%; our value was  $-118.6 \pm 1.7\%$ ; (2) Clay Mineralogy Source clays were: kga-1 (kaolinite)  $-64.1 \pm 1.5\%$ ; kga-2 (kaolinite)  $-65.9 \pm 0.8\%$ ; STx-1 (smectite)  $-99.2 \pm 1.0\%$ ; and SAz-1 (smectite)  $-109.2 \pm 2.2\%$ . The  $\delta D$  values of these clays have not been previously reported.

#### RESULTS

Five results follow from our analyses:

- 1. With the exception of a few samples, the combined oxygen and hydrogen isotope values of smectite cluster along a line parallel to and displaced from the meteoric water line (Fig. 3; Table 1). Only a small number of the samples (notably samples: 01DS39, 01DS16, 01DS129, and 01DS124) are significantly displaced from this line. This result is similar to results originally described by Lawrence and Taylor (1971), who found that the isotopic composition of kaolinite, montmorillonite, and gibbsite from Quaternary soils throughout North America correlate with the present-day meteoric waters. In fact, the oxygen and hydrogen isotopic values of smectite presented in this paper are similar to the isotopic values of montmorillonite in modern soils from Montana and Idaho (Lawrence and Taylor, 1971).
- 2. There is a wide range of both hydrogen and oxygen isotope ratios of smectite, and the isotopic values increase toward the east. The δD values of smectite range from -126‰ to -88‰, and δ<sup>18</sup>O values of smectites range from 8.7‰ to 20.2‰. In general, both δD and δ<sup>18</sup>O values of smectite from eastern sections are ~40‰ and ~6‰

TABLE 1. LOCATION, GEOLOGIC GROUP OR FORMATION, AGE, ISOTOPE VALUE, MODERN ELEVATION, FIELD LOCATION, AND AGE REFERENCE FOR SMECTITE SAMPLES

| Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          | I ILLU LOGA | THON, AND AGE HE | FERENCE FOR SM | LUTTIL G          | MINIL LLO |           |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|-------------|------------------|----------------|-------------------|-----------|-----------|-----------|
| CN   CW   CW   CM   CM   CM   CM   CM   CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample      | Latitude | Longitude   | Formation        | Age            | δ <sup>18</sup> O | δD        | Elevation | Reference |
| 01DS27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -           | (°N)     | (°W)        |                  |                |                   |           | (m)       |           |
| 01DS27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Miocene san | nples    |             |                  |                |                   |           |           |           |
| OIDSS8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          | 103.4184    | Arikaree         | 21.9           | 19.7              | -127      | 1340      | 2         |
| 01DS64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          |             |                  |                |                   |           |           |           |
| OIDS44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          |             |                  |                |                   |           |           |           |
| 01DSS5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          |             |                  |                |                   |           |           | 2         |
| 01DSS3         42.7425         103.8113         Anikaree         22         16.7         -93.0         1100         2           01DS104         42.446         107.5588         Split Rock         Middle Milocene         12.7         -107         1770         6           01DS103         42.4456         107.5588         Split Rock         Middle Milocene         12.7         -110         1770         6           01DS116         42.7288         107.5826         Split Rock         Middle Milocene         12.8         -118         1770         6           01DS116         42.7389         107.5826         Split Rock         Middle Milocene         12.8         -118         1770         6           01DS116         42.7398         107.5826         Split Rock         Middle Milocene         11.9         -113         2250         6           01DS17         43.8633         102.8836         Chadron         37-34         18.6         -103         850         5           01DS7         43.8614         102.8631         Chadron         37-34         18.4         -101         850         5           01DS74         43.8698         103.131         White River         318-30.6         18.9                                                                                                                                                  |             |          |             |                  |                |                   |           |           |           |
| 01DSS44         42.7154         103.8828         Eagle Crag Ash         19.2         16.8         -95.0         1100         2           01DS102         42.4446         107.5588         Split Rock         Middle Miocene         12.7         -110         1770         6           01DS103         42.435         107.5828         Split Rock         Middle Miocene         12.8         -118         1770         6           01DS116         42.7308         107.5826         Split Rock         Middle Miocene         12.8         -112         2250         6           01DS115         42.7838         107.5826         Split Rock         Middle Miocene         11.9         -113         2250         6           01DS15         43.8838         101.6981         Peanut Peak         35         17.7         -116         1800         6           01DS70         43.8614         102.8631         Chadron         37-34         20.2         -         850         5           01DS72         43.8614         102.8631         Chadron         37-34         20.2         -         850         5           01DS74         43.8614         102.8636         Chadron         37-34         20.0         -101                                                                                                                                                        |             |          |             |                  |                |                   |           |           |           |
| 01DS104         42.4446         107.5588         Split Rock         Middle Miocene         12.7         -107         1770         6           01DS103         42.4345         107.5588         Split Rock         Middle Miocene         12.8         -118         1770         6           01DS116         42.7288         107.5826         Split Rock         Middle Miocene         12.8         -118         1770         6           01DS115         42.7388         107.5845         Split Rock         Middle Miocene         11.9         -113         2250         6           01DS121         42.6817         101         101         11.9         -113         2250         6           01DS50         43.8633         102.8605         Chadron         37-34         18.6         -103         850         5           01DS74         43.8614         102.8631         Chadron         37-34         18.4         -101         850         5           01DS75         43.8608         102.8636         Chadron         37-34         18.4         -101         850         5           01DS12         41.5968         103.1131         White River         31.9-30.6         18.3         940         1170                                                                                                                                                             |             |          |             |                  |                |                   |           |           |           |
| 01D5102         42.4445         107.5528         Split Rock         Middle Miocene         12.7         -110         1770         6           01D5116         42.288         107.5525         Split Rock         Middle Miocene         12.8         -112         2250         6           01D5115         42.7308         107.5525         Split Rock         Middle Miocene         11.9         -113         2250         6           01D5121         42.817         108.1239         Split Rock         Middle Miocene         11.9         -118         10.0         6           01D512         42.817         108.1239         Split Rock         Middle Miocene         11.9         -118         20.0         6         6           01D572         43.8613         102.8631         Chadron         37-34         18.6         -103         850         5           01D574         43.8614         102.8631         Chadron         37-34         20.0         -101         850         5           01D574         43.8614         102.8636         Chadron         37-34         20.0         -101         850         5           01D574         43.8614         102.8636         Chadron         37-34         20.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td>                                                          |             |          |             |                  |                |                   |           |           | 6         |
| 01D5103         42.455         107.5628         Split Rock         Middle Miocene         12.8         -118         1770         6           01D5115         42.7308         107.5626         Split Rock         Middle Miocene         11.9         -113         2250         6           01D5121         42.87308         107.5645         Split Rock         Middle Miocene         11.9         -113         2250         6           01D554         42.817         108.289         Split Rock         Middle Miocene         11.9         -113         2250         6           01D559         43.8633         102.8693         Chadron         37-34         18.6         -103         850         5           01D574         43.8614         102.8631         Chadron         37-34         18.4         -101         850         5           01D572         43.8608         102.8636         Chadron         37-34         18.4         -101         850         5           01D574         43.8608         102.8636         Chadron         37         19.6         -99         850         5           01D574         41.5968         103.1131         White River         31.9-90.6         18.0         -89.0                                                                                                                                                          |             |          |             | •                |                |                   |           |           |           |
| OIDS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |          |             | •                |                |                   |           |           |           |
| OIDS115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |          |             |                  |                |                   |           |           |           |
| OIDS12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          |             |                  |                |                   |           |           |           |
| Olipscene samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |          |             | ,                |                |                   |           |           |           |
| 01DSS5         43 8288         101 6981         Peanut Peak         35         17.7         -107         760         4           01DS70         43 8614         102 8631         Chadron         37-34         18.6         -103         850         5           01DS72         43 8614         102 8631         Chadron         37-34         18.4         -101         850         5           01DS74         43 8614         102 8631         Chadron         37-34         18.4         -101         850         5           01DS75         43 8614         102 8631         Chadron         37-34         18.4         -101         850         5           01DS12         41.5968         103 1131         White River         31.9-30.6         18.0         -80.0         1170         1           01DS14         41.5968         103 1131         White River         31.9-30.6         18.0         -80.0         1170         1           01DS16         41.5968         103 1131         White River         31.9-30.6         18.0         -80.0         1170         1           01DS19         41.6991         103.3415         White River         31.9-30.6         17.6         -102         1170                                                                                                                                                                |             |          | 108.1239    | Split Hock       | Middle Miocene | 14.5              | -116      | 1800      | 6         |
| 01DS89         43.883         102.8605         Chadron         37-34         20.2         —         850         5           01DS72         43.8614         102.8631         Chadron         37-34         20.2         —         850         5           01DS74         43.8614         102.8631         Chadron         37-34         20.0         -101         850         5           01DS75         43.8608         102.8636         Chadron         37         19.6         —99         850         5           01DS12         41.5688         103.1131         White River         31.9-30.6         18.0         —90         1170         1           01DS14         41.5688         103.1131         White River         31.9-30.6         18.0         —80.0         1170         1           01DS16         41.5688         103.1131         White River         31.9-30.6         17.6         —102         1170         1           01DS17         41.5988         103.1131         White River         31.9-30.6         17.6         —102         1170         1           01DS17         41.5988         103.1131         White River         31.9-30.6         17.2         —102         1170                                                                                                                                                                      |             |          |             |                  |                |                   |           |           |           |
| 01DS70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          |             |                  |                |                   |           |           |           |
| 01DS72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          | 102.8605    | Chadron          | 37–34          | 18.6              | -103      | 850       | 5         |
| 01DS74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01DS70      | 43.8614  | 102.8631    | Chadron          | 37-34          | 20.2              | _         | 850       | 5         |
| 01DS74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01DS72      | 43.8614  | 102.8631    | Chadron          | 37-34          | 18.4              | -101      | 850       | 5         |
| 01DS75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01DS74      | 43.8614  | 102.8631    | Chadron          | 37-34          | 20.0              | -101      | 850       | 5         |
| 01DS12         41,5968         103,1131         White River         31,9-30.6         18,3         -94.0         1170         1           01DS15         41,5968         103,1131         White River         31,9-30.6         18,0         -98.0         1170         1           01DS16         41,5968         103,1131         White River         31,9-30.6         12,0         -92.0         1170         1           01DS17         41,5968         103,1131         White River         31,9-30.6         17.6         -102         1170         1           01DS19         41,5998         103,1131         White River         31,9-30.6         17.3         -123         1170         1           01DS19         41,5991         103,3415         White River         31,9-30.6         18.6         -90.0         1290         1           01DS30         42,7619         103,3415         White River         31,9-30.6         18.6         -90.0         1290         1           01DS31         42,7791         103,5621         Brule         30,8-30         17.2         -93.0         1170         3           01DS31         42,7125         105,371         White River         31,9-35.4         16.6                                                                                                                                                    | 01DS75      | 43.8608  | 102.8636    | Chadron          | 37             | 19.6              | -99       | 850       | 5         |
| 01DS14         41,5968         103,1131         White River         31,9-30,6         18,0         -98,0         1170         1           01DS16         41,5968         103,1131         White River         31,9-30,6         20,2         -110         1170         1           01DS16         41,5968         103,1131         White River         31,9-30,6         17,6         -102         1170         1           01DS18         41,5968         103,1131         White River         31,9-30,6         17,6         -102         1170         1           01DS19         41,6991         103,3415         White River         31,9-30,6         19,2         -100         1290         1           01DS20         41,6991         103,3415         White River         31,9-30,6         19,2         -100         1290         1           01DS31         42,7621         103,3415         White River         31,9-30,6         19,2         -100         1290         1           01DS31         42,7725         103,3415         White River         31,9-30,6         19,2         -90,0         1         0         0         1         0         1         0         1         0         0         0                                                                                                                                                             | 01DS12      | 41.5968  | 103.1131    | White River      | 31.9-30.6      | 18.3              | -94.0     |           |           |
| 01DS15         41,5968         103,1131         White River         31,9-30,6         120,2         -110         1170         1           01DS16         41,5968         103,1131         White River         31,9-30,6         17,6         -102         1170         1           01DS17         41,5968         103,1131         White River         31,9-30,6         17,6         -102         1170         1           01DS19         41,5968         103,1131         White River         31,9-30,6         17,3         -123         1170         1           01DS20         41,5991         103,3415         White River         31,9-30,6         18,6         -90,0         1290         1           01DS30         42,9194         103,491         Peanut Peak         34,5         16,9         -123         1160         4           01DS31         42,7791         103,5621         Brule         30,6-30         17,2         -93,0         1170         3           01DS81         42,7625         105,0128         Chadron         37-34         16,6         -101         100         1           01DS84         42,7625         105,0131         White River         31,9-30,6         14,7         -112                                                                                                                                                        |             |          |             |                  |                |                   |           |           |           |
| 01DS16         41 5968         103.1131         White River         31.9-30.6         20.2         -110         1170         1           01DS17         41 5968         103.1131         White River         31.9-30.6         17.3         -123         1170         1           01DS19         41.6991         103.3415         White River         31.9-30.6         19.2         -100         1290         1           01DS20         41.6991         103.3415         White River         31.9-30.6         19.2         -100         1290         1           01DS31         42.9194         103.4913         Peanut Peak         34.5         16.9         -123         1160         4           01DS31         42.7768         103.5835         Brule         30.6-30         16.8         -107         1170         3           01DS81         42.7625         105.0128         Chadron         37-34         16.6         -101         1600         1           01DS84         42.7125         105.371         White River         31.9-35.4         13.9         -107         1830         1           01DS94         42.6386         106.7545         White River         35.9-35.4         13.9         -107                                                                                                                                                          |             |          |             |                  |                |                   |           |           |           |
| 01DS17         41,5968         103,1131         White River         31,9-30,6         17,3         -123         1170         1           01DS18         41,5991         103,3415         White River         31,9-30,6         17,3         -123         1170         1           01DS19         41,6991         103,3415         White River         31,9-30,6         18,2         -100         1290         1           01DS30         42,9194         103,4913         Peanut Peak         31,9-30,6         18,6         -90,0         1290         1           01DS31         42,7791         103,5621         Brule         30,6-30         17,2         -93,0         1170         3           01DS31         42,7625         105,0128         Chadron         37-34         16,6         -107         1170         3           01DS84         42,7125         105,371         White River         31,9-30,6         14,7         -112         1520         1           01DS94         42,6386         106,7545         White River         35,9-35,4         15,5         -122         1830         1           01DS94         42,6386         106,7545         White River         35,9-35,4         14,1         -129<                                                                                                                                                  |             |          |             |                  |                |                   |           |           |           |
| OIDS18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          |             |                  |                |                   |           |           |           |
| 01DS19         41 6991         103,3415         White River         31,9-30.6         19.2         -100         1290         1           01DS29         42,9194         103,3415         White River         31,9-30.6         18.6         -90.0         1290         1           01DS39         42,9194         103,4913         Peanut Peak         34.5         16.9         -123         1160         4           01DS30         42,7791         103,5621         Brule         30.6-30         16.8         -107         1170         3           01DS81         42,7625         105,0128         Chadron         37-34         16.6         -101         1600         1           01DS89         42,6386         106,7545         White River         35,9-35.4         13.9         -107         1830         1           01DS91         42,6386         106,7545         White River         35,9-35.4         15.5         -122         1830         1           01DS91         42,6386         106,7545         White River         35,9-35.4         14.4         -118         1830         1           01DS93         42,6386         106,7545         White River         35,9-35.4         14.1         -122                                                                                                                                                        |             |          |             |                  |                |                   |           |           |           |
| OIDS20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          |             |                  |                |                   |           |           |           |
| 01DS39         42,9194         103,4913         Peanut Peak         34,5         16,9         -123         1160         4           01DS31         42,7791         103,5621         Brule         30,6-30         117.2         -93,0         1170         3           01DS81         42,7625         105,0128         Chadron         37-34         16,6         -101         1600         1           01DS89         42,6386         106,7545         White River         31,9-30,6         14,7         -112         1520         1           01DS90         42,6386         106,7545         White River         35,9-35,4         13,9         -107         1830         1           01DS91         42,6386         106,7545         White River         35,9-35,4         15,5         -122         1830         1           01DS91         42,6386         106,7545         White River         35,9-35,4         14,4         -118         1830         1           01DS93         42,6386         106,7545         White River         35,9-35,4         14,1         -122         1830         1           01DS94         42,6386         106,7545         White River         35,9-35,4         13,3         -121                                                                                                                                                       |             |          |             |                  |                |                   |           |           |           |
| 01DS31         42,7791         103,5825         Brule         30,6-30         17,2         -93,0         1170         3           01DS30         42,7688         103,5835         Brule         30,6-30         16,8         -107         1170         3           01DS81         42,7625         105,0128         Chadron         37-34         16,6         -101         1600         1           01DS84         42,2125         105,371         White River         31,9-30,6         14,7         -112         1520         1           01DS90         42,6386         106,7545         White River         35,9-35.4         15,5         -122         1830         1           01DS91         42,6386         106,7545         White River         35,9-35.4         14,4         -118         1830         1           01DS93         42,6386         106,7545         White River         35,9-35.4         14,2         -109         1830         1           01DS93         42,6386         106,7545         White River         35,9-35.4         14,1         -122         1830         1           01DS94         42,6386         106,7594         White River         35,9-35.4         13,7         -124                                                                                                                                                            |             |          |             |                  |                |                   |           |           |           |
| 01DS30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          |             |                  |                |                   |           |           |           |
| 01DS81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          |             |                  |                |                   |           |           |           |
| 01DS84         42.7125         105.371         White River         31.9-30.6         14.7         -112         1520         1           01DS89         42.6386         106.7545         White River         35.9-35.4         13.9         -107         1830         1           01DS90a         42.6386         106.7545         White River         35.9-35.4         14.4         -118         1830         1           01DS91         42.6386         106.7545         White River         35.9-35.4         14.4         -118         1830         1           01DS92         42.6386         106.7545         White River         35.9-35.4         14.2         -109         1830         1           01DS93         42.6386         106.7594         White River         35.9-35.4         13.9         -121         1830         1           01DS95         42.6386         106.7594         White River         35.9-35.4         13.7         -121         1830         1           01DS96         42.6386         106.7594         White River         35.9-35.4         13.7         -124         1830         1           01DS99         42.639         106.765         White River         35.9-35.4         13.4                                                                                                                                                   |             |          |             |                  |                |                   | -107      | 1170      |           |
| 01DS89         42.6386         106.7545         White River         35.9-35.4         13.9         -107         1830         1           01DS90a         42.6386         106.7545         White River         35.9-35.4         15.5         -122         1830         1           01DS91         42.6386         106.7545         White River         35.9-35.4         14.2         -109         1830         1           01DS93         42.6386         106.7545         White River         35.9-35.4         14.1         -122         1830         1           01DS93         42.6386         106.7594         White River         35.9-35.4         14.1         -122         1830         1           01DS94         42.6386         106.7594         White River         35.9-35.4         13.7         -124         1830         1           01DS97         42.6386         106.7594         White River         35.9-35.4         13.7         -124         1830         1           01DS99         42.6399         106.765         White River         35.9-35.4         14.3         -117         1830         1           01DS101         42.639         106.765         White River         35.9-35.4         14.3                                                                                                                                                  |             | 42.7625  | 105.0128    | Chadron          | 37–34          | 16.6              | -101      | 1600      | 1         |
| 01DS90a         42.6386         106.7545         White River         35.9-35.4         15.5         -122         1830         1           01DS91         42.6386         106.7545         White River         35.9-35.4         14.4         -118         1830         1           01DS92         42.6386         106.7545         White River         35.9-35.4         14.1         -122         1830         1           01DS94         42.6386         106.7545         White River         35.9-35.4         13.9         -121         1830         1           01DS94         42.6386         106.7594         White River         35.9-35.4         13.9         -121         1830         1           01DS97         42.6386         106.7594         White River         35.9-35.4         13.3         -124         1830         1           01DS98         42.6396         106.765         White River         35.9-35.4         13.4         -126         1830         1           01DS99         42.639         106.765         White River         35.9-35.4         13.4         -124         1830         1           01DS100         42.639         106.765         White River         35.9-35.4         14.0                                                                                                                                                    | 01DS84      | 42.7125  | 105.371     | White River      | 31.9-30.6      | 14.7              | -112      | 1520      | 1         |
| 01DS91         42.6386         106.7545         White River         35.9-35.4         14.4         -118         1830         1           01DS92         42.6386         106.7545         White River         35.9-35.4         14.2         -109         1830         1           01DS93         42.6386         106.7594         White River         35.9-35.4         13.9         -121         1830         1           01DS94         42.6386         106.7594         White River         35.9-35.4         13.7         -124         1830         1           01DS97         42.6386         106.7594         White River         35.9-35.4         13.7         -124         1830         1           01DS97         42.6386         106.765         White River         35.9-35.4         13.7         -124         1830         1           01DS98         42.639         106.765         White River         35.9-35.4         13.4         -126         1830         1           01DS100         42.639         106.765         White River         35.9-35.4         14.3         -120         1830         1           01DS110         42.639         106.765         White River         32.9-35.4         14.3                                                                                                                                                      | 01DS89      | 42.6386  | 106.7545    | White River      | 35.9-35.4      | 13.9              | -107      | 1830      | 1         |
| 01DS92         42.6386         106.7545         White River         35.9-35.4         14.2         -109         1830         1           01DS93         42.6386         106.7545         White River         35.9-35.4         14.1         -122         1830         1           01DS94         42.6386         106.7594         White River         35.9-35.4         13.7         -124         1830         1           01DS95         42.6386         106.7594         White River         35.9-35.4         13.7         -124         1830         1           01DS99         42.639         106.765         White River         35.9-35.4         14.3         -117         1830         1           01DS99         42.639         106.765         White River         35.9-35.4         14.3         -124         1830         1           01DS100         42.639         106.765         White River         35.9-35.4         14.3         -124         1830         1           01DS101         42.639         106.765         White River         35.9-35.4         13.6         -124         1830         1           01DS113         42.7574         107.5635         White River         ca. 32         10.9 <t< td=""><td>01DS90a</td><td>42.6386</td><td>106.7545</td><td>White River</td><td>35.9-35.4</td><td>15.5</td><td>-122</td><td>1830</td><td>1</td></t<> | 01DS90a     | 42.6386  | 106.7545    | White River      | 35.9-35.4      | 15.5              | -122      | 1830      | 1         |
| 01DS92         42.6386         106.7545         White River         35.9-35.4         14.2         -109         1830         1           01DS93         42.6386         106.7545         White River         35.9-35.4         14.1         -122         1830         1           01DS94         42.6386         106.7594         White River         35.9-35.4         13.7         -124         1830         1           01DS97         42.6386         106.7594         White River         35.9-35.4         14.3         -117         1830         1           01DS99         42.6386         106.765         White River         35.9-35.4         14.3         -117         1830         1           01DS99         42.639         106.765         White River         35.9-35.4         14.3         -124         1830         1           01DS100         42.639         106.765         White River         35.9-35.4         14.3         -124         1830         1           01DS101         42.639         106.765         White River         35.9-35.4         13.6         -124         1830         1           01DS113         42.7574         107.5635         White River         ca.32         10.6 <t< td=""><td>01DS91</td><td>42.6386</td><td>106.7545</td><td>White River</td><td>35.9-35.4</td><td>14.4</td><td>-118</td><td>1830</td><td>1</td></t<>  | 01DS91      | 42.6386  | 106.7545    | White River      | 35.9-35.4      | 14.4              | -118      | 1830      | 1         |
| 01DS93         42,6386         106.7545         White River         35,9-35,4         14,1         -122         1830         1           01DS94         42,6386         106.7594         White River         35,9-35,4         13,9         -121         1830         1           01DS95         42,6386         106.7594         White River         35,9-35,4         14,3         -117         1830         1           01DS97         42,639         106.765         White River         35,9-35,4         14,3         -117         1830         1           01DS99         42,639         106.765         White River         35,9-35,4         13,4         -126         1830         1           01DS100         42,639         106.765         White River         35,9-35,4         14,3         -124         1830         1           01DS101         42,639         106.765         White River         35,9-35,4         14,0         -113         1830         1           01DS113         42,7574         107,5635         White River         03,2         10,0         -126         2200         6           01DS113         42,7548         108,287         White River         02,3         10,6         -104<                                                                                                                                                  | 01DS92      | 42.6386  | 106.7545    | White River      | 35.9-35.4      | 14.2              | -109      |           | 1         |
| 01DS94         42.6386         106.7594         White River         35.9-35.4         13.9         -121         1830         1           01DS95         42.6386         106.7594         White River         35.9-35.4         13.7         -124         1830         1           01DS97         42.6386         106.765         White River         35.9-35.4         14.3         -117         1830         1           01DS99         42.639         106.765         White River         35.9-35.4         13.4         -126         1830         1           01DS100         42.639         106.765         White River         35.9-35.4         13.6         -120         1830         1           01DS101         42.639         106.765         White River         35.9-35.4         13.6         -120         1830         1           01DS101         42.639         106.765         White River         35.9-35.4         13.6         -120         1830         1           01DS113         42.7574         107.5635         White River         ca. 32         10.9         -126         2200         6           01DS129         42.5848         108.287         White River         ca. 32         10.6         -                                                                                                                                                  | 01DS93      | 42.6386  | 106.7545    | White River      |                |                   |           |           | 1         |
| 01DS95         42.6386         106.7594         White River         35.9-35.4         13.7         -124         1830         1           01DS97         42.6386         106.7594         White River         35.9-35.4         14.3         -117         1830         1           01DS98         42.639         106.765         White River         35.9-35.4         13.4         -126         1830         1           01DS100         42.639         106.765         White River         35.9-35.4         14.3         -124         1830         1           01DS101         42.639         106.765         White River         35.9-35.4         13.6         -120         1830         1           01DS101         42.639         106.765         White River         35.9-35.4         14.0         -113         1830         1           01DS113         42.7574         107.5635         White River         ca. 32         10.9         -126         2200         6           01DS129         42.5848         108.287         White River         ca. 32         10.6         -104         2500         6           01DS129         42.5848         108.287         Wagon Bed         ca. 49         13.6         -122<                                                                                                                                                  |             |          |             |                  |                |                   |           |           |           |
| 01DS97         42.6386         106.7594         White River         35.9-35.4         14.3         -117         1830         1           01DS98         42.639         106.765         White River         35.9-35.4         13.4         -126         1830         1           01DS99         42.639         106.765         White River         35.9-35.4         14.3         -124         1830         1           01DS100         42.639         106.765         White River         35.9-35.4         14.0         -113         1830         1           01DS101         42.639         106.765         White River         35.9-35.4         14.0         -113         1830         1           01DS113         42.7574         107.5635         White River         ca. 32         10.9         -126         2200         6           01DS129         42.5848         108.287         White River         ca. 32         10.6         -104         2500         6           01DS110         42.7575         107.5874         Wagon Bed         ca. 49         13.6         -122         2150         6           01DS110         42.7575         107.5874         Wagon Bed         ca. 49         14.7         -122                                                                                                                                                       |             |          |             |                  |                |                   |           |           |           |
| 01DS98         42.639         106.765         White River         35.9-35.4         13.4         -126         1830         1           01DS99         42.639         106.765         White River         35.9-35.4         14.3         -124         1830         1           01DS100         42.639         106.765         White River         35.9-35.4         13.6         -120         1830         1           01DS101         42.639         106.765         White River         35.9-35.4         14.0         -113         1830         1           01DS113         42.7574         107.5635         White River         ca. 32         10.9         -126         2200         6           01DS129         42.5848         108.287         White River         ca. 32         10.6         -104         2500         6           01DS129         42.5848         108.287         White River         ca. 32         10.6         -104         2500         6           01DS129         42.5848         108.287         Wagon Bed         ca. 49         13.6         -122         2150         6           01DS110         42.7575         107.5874         Wagon Bed         ca. 49         14.7         -122                                                                                                                                                           |             |          |             |                  |                |                   |           |           |           |
| 01DS99         42 639         106.765         White River         35.9–35.4         14.3         -124         1830         1           01DS100         42.639         106.765         White River         35.9–35.4         13.6         -120         1830         1           01DS101         42.639         106.765         White River         35.9–35.4         14.0         -113         1830         1           01DS113         42.7574         107.5635         White River         ca. 32         10.9         -126         2200         6           01DS129         42.5848         108.287         White River         ca. 32         10.6         -104         2500         6           01DS129         42.5848         108.287         White River         ca. 32         10.6         -104         2500         6           01DS129         42.5848         108.287         White River         ca. 32         10.6         -104         2500         6           01DS110         42.7575         107.5874         Wagon Bed         ca. 49         13.6         -122         2150         6           01DS111         42.7608         107.59         Wagon Bed         ca. 49         16.1         -107                                                                                                                                                             |             |          |             |                  |                |                   |           |           |           |
| 01DS100         42.639         106.765         White River         35.9–35.4         13.6         -120         1830         1           01DS101         42.639         106.765         White River         35.9–35.4         14.0         -113         1830         1           01DS113         42.7574         107.5635         White River         ca. 32         10.9         -126         2200         6           01DS129         42.5848         108.287         White River         ca. 32         10.6         -104         2500         6           01DS129         42.5848         108.287         White River         ca. 32         10.6         -104         2500         6           Eccene samples         O1DS129         42.5848         108.287         White River         ca. 32         10.6         -104         2500         6           Eccene samples         01DS120         42.7575         107.5874         Wagon Bed         ca. 49         13.6         -122         2150         6           01DS121         42.7091         108.1809         Wagon Bed         ca. 49         16.1         -107         1900         6           01DS128         42.5964         108.2933         Wagon Bed         <                                                                                                                                              |             |          |             |                  |                |                   |           |           |           |
| 01DS101         42.639         106.765         White River         35.9-35.4         14.0         -113         1830         1           01DS113         42.7574         107.5635         White River         ca. 32         10.9         -126         2200         6           01DS129         42.5848         108.287         White River         ca. 32         10.6         -104         2500         6           01DS129         42.5848         108.287         White River         ca. 32         10.6         -104         2500         6           Eccene samples         ***********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |          |             |                  |                |                   |           |           |           |
| 01DS113         42.7574         107.5635         White River         ca. 32         10.9         -126         2200         6           01DS129         42.5848         108.287         White River         ca. 32         10.6         -104         2500         6           01DS129         42.5848         108.287         White River         ca. 32         10.6         -104         2500         6           Eocene samples           01DS110         42.7575         107.5874         Wagon Bed         ca. 49         13.6         -122         2150         6           01DS111         42.7608         107.59         Wagon Bed         ca. 49         14.7         -122         2150         6           01DS123         42.7091         108.1809         Wagon Bed         ca. 49         16.1         -107         1900         6           01DS124         42.7091         108.1809         Wagon Bed         ca. 49         15.7         -101         1900         6           01DS128         42.5964         108.2933         Wagon Bed         ca. 49         15.7         -113         2500         6           6C-1         43.83         108.55         Lower Aycross         ca. 50 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                |             |          |             |                  |                |                   |           |           |           |
| 01DS129         42.5848         108.287         White River         ca. 32         10.6         -104         2500         6           01DS129         42.5848         108.287         White River         ca. 32         10.6         -104         2500         6           Eocene samples           01DS110         42.7575         107.5874         Wagon Bed         ca. 49         13.6         -122         2150         6           01DS111         42.7608         107.59         Wagon Bed         ca. 49         14.7         -122         2150         6           01DS123         42.7091         108.1809         Wagon Bed         ca. 49         16.1         -107         1900         6           01DS124         42.7091         108.1809         Wagon Bed         ca. 49         12.7         -101         1900         6           01DS128         42.5964         108.2933         Wagon Bed         ca. 49         15.7         -113         2500         6           6C-1         43.83         108.55         Lower Aycross         ca. 50         15.8         -         2150         7           6A-1         43.501         108.58         Upper Aycross         47.9 ± 0.5                                                                                                                                                                             |             |          |             |                  |                |                   |           |           |           |
| 01DS129         42.5848         108.287         White River         ca. 32         10.6         -104         2500         6           Eccene samples           01DS110         42.7575         107.5874         Wagon Bed         ca. 49         13.6         -122         2150         6           01DS111         42.7608         107.59         Wagon Bed         ca. 49         14.7         -122         2150         6           01DS123         42.7091         108.1809         Wagon Bed         ca. 49         16.1         -107         1900         6           01DS124         42.7091         108.1809         Wagon Bed         ca. 49         15.7         -101         1900         6           01DS128         42.5964         108.2933         Wagon Bed         ca. 49         15.7         -113         2500         6           6C-1         43.83         108.55         Lower Aycross         ca. 50         15.8         -         2150         7           6C-3         43.83         108.55         Lower Aycross         ca. 50         15.8         -         2152         7           6A-1         43.501         108.58         Upper Aycross         47.9 ± 0.5         14.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                             |             |          |             |                  |                |                   |           |           |           |
| Eocene samples           01DS110         42.7575         107.5874         Wagon Bed         ca. 49         13.6         -122         2150         6           01DS111         42.7608         107.59         Wagon Bed         ca. 49         14.7         -122         2150         6           01DS123         42.7091         108.1809         Wagon Bed         ca. 49         16.1         -107         1900         6           01DS124         42.7091         108.1809         Wagon Bed         ca. 49         12.7         -101         1900         6           01DS128         42.5964         108.2933         Wagon Bed         ca. 49         15.7         -113         2500         6           6C-1         43.83         108.55         Lower Aycross         ca. 50         15.8         -         2150         7           6C-3         43.83         108.55         Lower Aycross         ca. 50         15.8         -         2152         7           6A-1         43.501         108.58         Upper Aycross         47.9 ± 0.5         14.5         -         2193         7           6A-2         43.501         108.58         Upper Aycross         47.9 ± 0.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                     |             |          |             |                  |                |                   |           |           |           |
| 01DS110         42.7575         107.5874         Wagon Bed         ca. 49         13.6         -122         2150         6           01DS111         42.7608         107.59         Wagon Bed         ca. 49         14.7         -122         2150         6           01DS123         42.7091         108.1809         Wagon Bed         ca. 49         16.1         -107         1900         6           01DS124         42.7091         108.1809         Wagon Bed         ca. 49         12.7         -101         1900         6           01DS128         42.5964         108.2933         Wagon Bed         ca. 49         15.7         -113         2500         6           6C-1         43.83         108.55         Lower Aycross         ca. 50         15.8         -         2150         7           6C-3         43.83         108.55         Lower Aycross         ca. 50         15.8         -         2152         7           6A-1         43.501         108.58         Upper Aycross         47.9 ± 0.5         14.5         -         2193         7           6A-2         43.501         108.58         Upper Aycross         47.9 ± 0.5         14.8         -         2197 <t< td=""><td></td><td></td><td>108.287</td><td>vvnite Hiver</td><td>ca. 32</td><td>10.6</td><td>-104</td><td>2500</td><td>б</td></t<>                                    |             |          | 108.287     | vvnite Hiver     | ca. 32         | 10.6              | -104      | 2500      | б         |
| 01DS111         42.7608         107.59         Wagon Bed         ca. 49         14.7         -122         2150         6           01DS123         42.7091         108.1809         Wagon Bed         ca. 49         16.1         -107         1900         6           01DS124         42.7091         108.1809         Wagon Bed         ca. 49         12.7         -101         1900         6           01DS128         42.5964         108.2933         Wagon Bed         ca. 49         15.7         -113         2500         6           6C-1         43.83         108.55         Lower Aycross         ca. 50         15.8         -         2150         7           6C-3         43.83         108.55         Lower Aycross         ca. 50         15.8         -         2152         7           6A-1         43.501         108.58         Upper Aycross         47.9 ± 0.5         14.5         -         2193         7           6A-2         43.501         108.58         Upper Aycross         47.9 ± 0.5         15.4         -         2195         7           6A-3         43.501         108.58         Upper Aycross         47.9 ± 0.5         14.8         -         2197 <td< td=""><td></td><td></td><td>107</td><td></td><td></td><td></td><td>,</td><td></td><td></td></td<>                                                                     |             |          | 107         |                  |                |                   | ,         |           |           |
| 01DS123         42.7091         108.1809         Wagon Bed         ca. 49         16.1         -107         1900         6           01DS124         42.7091         108.1809         Wagon Bed         ca. 49         12.7         -101         1900         6           01DS128         42.5964         108.2933         Wagon Bed         ca. 49         15.7         -113         2500         6           6C-1         43.83         108.55         Lower Aycross         ca. 50         15.8         -         2150         7           6C-3         43.83         108.55         Lower Aycross         ca. 50         15.8         -         2152         7           6A-1         43.501         108.58         Upper Aycross         47.9 ± 0.5         14.5         -         2193         7           6A-2         43.501         108.58         Upper Aycross         47.9 ± 0.5         15.4         -         2195         7           6A-3         43.501         108.58         Upper Aycross         47.9 ± 0.5         14.8         -         2197         7           Mnau         44.8542         110.1567         Lamar River         49         9.4         -         2160         8                                                                                                                                                                         |             |          |             | •                |                |                   |           |           |           |
| 01DS124         42.7091         108.1809         Wagon Bed         ca. 49         12.7         -101         1900         6           01DS128         42.5964         108.2933         Wagon Bed         ca. 49         15.7         -113         2500         6           6C-1         43.83         108.55         Lower Aycross         ca. 50         15.8         -         2150         7           6C-3         43.83         108.55         Lower Aycross         ca. 50         15.8         -         2152         7           6A-1         43.501         108.58         Upper Aycross         47.9 ± 0.5         14.5         -         2193         7           6A-2         43.501         108.58         Upper Aycross         47.9 ± 0.5         15.4         -         2195         7           6A-3         43.501         108.58         Upper Aycross         47.9 ± 0.5         14.8         -         2197         7           Mnau         44.8542         110.1567         Lamar River         49         9.4         -         2160         8           MNI         44.8655         111.0488         Lamar River         49         10.2         -         2651         8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                        |             |          |             |                  |                |                   |           |           |           |
| 01DS128         42.5964         108.2933         Wagon Bed         ca. 49         15.7         -113         2500         6           6C-1         43.83         108.55         Lower Aycross         ca. 50         15.8         -         2150         7           6C-3         43.83         108.55         Lower Aycross         ca. 50         15.8         -         2152         7           6A-1         43.501         108.58         Upper Aycross         47.9 ± 0.5         14.5         -         2193         7           6A-2         43.501         108.58         Upper Aycross         47.9 ± 0.5         15.4         -         2195         7           6A-3         43.501         108.58         Upper Aycross         47.9 ± 0.5         14.8         -         2197         7           Mnau         44.8542         110.1567         Lamar River         49         9.4         -         2160         8           MNI         44.8542         110.1567         Lamar River         49         8.7         -         2160         8           CC2         44.8655         111.0488         Lamar River         49         10.2         -         2651         8                                                                                                                                                                                            |             |          | 108.1809    | Wagon Bed        | ca. 49         | 16.1              | -107      | 1900      | 6         |
| 01DS128         42.5964         108.2933         Wagon Bed         ca. 49         15.7         -113         2500         6           6C-1         43.83         108.55         Lower Aycross         ca. 50         15.8         -         2150         7           6C-3         43.83         108.55         Lower Aycross         ca. 50         15.8         -         2152         7           6A-1         43.501         108.58         Upper Aycross         47.9 ± 0.5         14.5         -         2193         7           6A-2         43.501         108.58         Upper Aycross         47.9 ± 0.5         15.4         -         2195         7           6A-3         43.501         108.58         Upper Aycross         47.9 ± 0.5         14.8         -         2197         7           Mnau         44.8542         110.1567         Lamar River         49         9.4         -         2160         8           MNI         44.8652         111.0488         Lamar River         49         10.2         -         2651         8           CC2         44.8655         111.0488         Lamar River         49         10.1         -         2651         8 <tr< td=""><td>01DS124</td><td>42.7091</td><td>108.1809</td><td>Wagon Bed</td><td>ca. 49</td><td>12.7</td><td>-101</td><td>1900</td><td>6</td></tr<>                                      | 01DS124     | 42.7091  | 108.1809    | Wagon Bed        | ca. 49         | 12.7              | -101      | 1900      | 6         |
| 6C-1 43.83 108.55 Lower Aycross ca. 50 15.8 - 2150 7 6C-3 43.83 108.55 Lower Aycross ca. 50 15.8 - 2152 7 6A-1 43.501 108.58 Upper Aycross 47.9 ± 0.5 14.5 - 2193 7 6A-2 43.501 108.58 Upper Aycross 47.9 ± 0.5 15.4 - 2195 7 6A-3 43.501 108.58 Upper Aycross 47.9 ± 0.5 14.8 - 2197 7 Mnau 44.8542 110.1567 Lamar River 49 9.4 - 2160 8 MNI 44.8542 110.1567 Lamar River 49 8.7 - 2160 8 CC2 44.8655 111.0488 Lamar River 49 10.2 - 2651 8 CC3 44.8655 111.0488 Lamar River 49 10.1 - 2651 8 SR1 44.8946 111.3345 Lamar River 49 9.2 - 2329 8 SR2 44.8946 111.3345 Lamar River 49 9.7 - 2329 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01DS128     | 42.5964  | 108.2933    | Wagon Bed        | ca. 49         | 15.7              | -113      | 2500      | 6         |
| 6C-3 43.83 108.55 Lower Aycross ca. 50 15.8 - 2152 7 6A-1 43.501 108.58 Upper Aycross 47.9 ± 0.5 14.5 - 2193 7 6A-2 43.501 108.58 Upper Aycross 47.9 ± 0.5 15.4 - 2195 7 6A-3 43.501 108.58 Upper Aycross 47.9 ± 0.5 14.8 - 2197 7 Mnau 44.8542 110.1567 Lamar River 49 9.4 - 2160 8 MNI 44.8542 110.1567 Lamar River 49 8.7 - 2160 8 CC2 44.8655 111.0488 Lamar River 49 10.2 - 2651 8 CC3 44.8655 111.0488 Lamar River 49 10.1 - 2651 8 SR1 44.8946 111.3345 Lamar River 49 9.2 - 2329 8 SR2 44.8946 111.3345 Lamar River 49 9.7 - 2329 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6C-1        | 43,83    | 108.55      | Lower Aycross    | ca. 50         | 15.8              | _         | 2150      | 7         |
| 6A-1 43.501 108.58 Upper Aycross 47.9 ± 0.5 14.5 - 2193 7 6A-2 43.501 108.58 Upper Aycross 47.9 ± 0.5 15.4 - 2195 7 6A-3 43.501 108.58 Upper Aycross 47.9 ± 0.5 14.8 - 2197 7 Mnau 44.8542 110.1567 Lamar River 49 9.4 - 2160 8 MNI 44.8542 110.1567 Lamar River 49 8.7 - 2160 8 CC2 44.8655 111.0488 Lamar River 49 10.2 - 2651 8 CC3 44.8655 111.0488 Lamar River 49 10.1 - 2651 8 SR1 44.8946 111.3345 Lamar River 49 9.2 - 2329 8 SR2 44.8946 111.3345 Lamar River 49 9.7 - 2329 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6C-3        | 43.83    | 108.55      | Lower Aycross    | ca. 50         |                   |           |           | 7         |
| 6A-2 43.501 108.58 Upper Aycross 47.9 ± 0.5 15.4 - 2195 7 6A-3 43.501 108.58 Upper Aycross 47.9 ± 0.5 14.8 - 2197 7 Mnau 44.8542 110.1567 Lamar River 49 9.4 - 2160 8 MNI 44.8542 110.1567 Lamar River 49 8.7 - 2160 8 CC2 44.8655 111.0488 Lamar River 49 10.2 - 2651 8 CC3 44.8655 111.0488 Lamar River 49 10.1 - 2651 8 SR1 44.8946 111.3345 Lamar River 49 9.2 - 2329 8 SR2 44.8946 111.3345 Lamar River 49 9.7 - 2329 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6A-1        | 43.501   |             |                  |                |                   |           |           | 7         |
| 6A-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6A-2        |          |             |                  |                |                   |           |           | 7         |
| Mnau     44.8542     110.1567     Lamar River     49     9.4     -     2160     8       MNI     44.8542     110.1567     Lamar River     49     8.7     -     2160     8       CC2     44.8655     111.0488     Lamar River     49     10.2     -     2651     8       CC3     44.8655     111.0488     Lamar River     49     10.1     -     2651     8       SR1     44.8946     111.3345     Lamar River     49     9.2     -     2329     8       SR2     44.8946     111.3345     Lamar River     49     9.7     -     2329     8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          |             |                  |                |                   |           |           | 7         |
| MNI     44.8542     110.1567     Lamar River     49     8.7     -     2160     8       CC2     44.8655     111.0488     Lamar River     49     10.2     -     2651     8       CC3     44.8655     111.0488     Lamar River     49     10.1     -     2651     8       SR1     44.8946     111.3345     Lamar River     49     9.2     -     2329     8       SR2     44.8946     111.3345     Lamar River     49     9.7     -     2329     8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |          |             |                  |                |                   |           |           |           |
| CC2     44.8655     111.0488     Lamar River     49     10.2     -     2651     8       CC3     44.8655     111.0488     Lamar River     49     10.1     -     2651     8       SR1     44.8946     111.3345     Lamar River     49     9.2     -     2329     8       SR2     44.8946     111.3345     Lamar River     49     9.7     -     2329     8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |          |             |                  |                |                   |           |           |           |
| CC3     44.8655     111.0488     Lamar River     49     10.1     -     2651     8       SR1     44.8946     111.3345     Lamar River     49     9.2     -     2329     8       SR2     44.8946     111.3345     Lamar River     49     9.7     -     2329     8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |          |             |                  |                |                   |           |           |           |
| SR1     44.8946     111.3345     Lamar River     49     9.2     -     2329     8       SR2     44.8946     111.3345     Lamar River     49     9.7     -     2329     8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |          |             |                  |                |                   |           |           |           |
| SR2 44.8946 111.3345 Lamar River 49 9.7 – 2329 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |          |             |                  |                |                   |           |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |          |             |                  |                |                   |           |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |          |             |                  |                |                   |           |           |           |

Note: 1—MacFadden and Hunt (1998); 2—Love (1970); 3—Larson and Evanoff (1998); 4—Terry (1998); 5—Evans and Welzenbach (1998); 6—LaGarry (1998); 7—Sundell et al. (1984); 8—Fritz (1980).



Figure 2. Representative X-ray pattern of glycolated smectite.



Figure 3. Combined hydrogen and oxygen isotope analyses of smectites examined in this study. Error bars represent analytical uncertainty of oxygen isotope analysis; analytical uncertainty for hydrogen isotopes falls within the range covered by each symbol. Trend of isotopic data is approximately parallel to the meteoric water line, which suggests these smectites formed in equilibrium with meteoric water and have not been modified isotopically by postformation events.

higher, respectively, than  $\delta D$  and  $\delta^{18}O$  values of smectite from western sections, irrespective of geologic age.

3. The δ<sup>18</sup>O values of smectites from Oligocene and Miocene samples show a strong correlation with modern altitude, with lower values at higher altitudes (Figs. 4 and 5). However, there is essentially no correlation between δ<sup>18</sup>O smectite and modern elevation for the Eocene samples (Fig. 6). The δD data from smectite of Oligocene and Miocene samples

show a similar correlation with altitude, however, the correlation is not as good as the correlation of oxygen isotope ratios and altitude. Presumably the lower correlation results from the increased scatter in hydrogen isotopes of smectite; scatter which may reflect some degree of post-depositional exchange, evaporative effects, and exchange with basinal fluids, all of which affect hydrogen isotopes to a greater degree than oxygen isotopes. For this reason, we largely restrict our analysis to oxygen isotopes, and simply use the hydrogen isotopes of smectite to assess the role of evaporation and exchange with basinal brines.

The  $\delta^{18}O_{\text{smectite}}$  values for Oligocene and Miocene samples are similar to  $\delta^{18}O$  for modern hypothetical smectites calculated to be in isotopic equilibrium with modern precipitation. The dashed lines in Figures 4, 5, and 6 represent the theoretical oxygen isotope value of smectite formed in equilibrium with modern precipitation and was calculated with a smectite-water fractionation factor (Savin and Lee, 1988), modern meteoric precipitation isotope values from North Platte, Nebraska (Harvey and Welker, 2000), central and eastern Wyoming (Coplen and Kendall, 2000), and Yellowstone National Park (Thordsen et al., 1992), and modern annual average temperature at these three sites.

5. No temporal trends in isotopic values were evident where multiple samples were collected throughout a stratigraphic section. The variation in  $\delta^{18}O_{\text{smectite}}$  was typically much less than 3% at these locations. Considering our analytical error of  $\pm 0.4\%$ , there is essentially no difference in oxygen isotope ratios temporally between Miocene and Oligocene samples. Eocene samples have slightly lower oxygen isotope values than Miocene and Oligocene samples overall (Fig. 7).

# DISCUSSION

There are several possible explanations for the geographic variation of δ<sup>18</sup>O from Tertiary volcanic airfall deposits of the eastern Rocky Mountains and western Great Plains, which include: (1) the modern elevation gradient and climate system on the east side of the Rocky Mountains has been in place since the Oligocene; (2) the smectites do not record paleoprecipitation, but instead have equilibrated with modern waters; (3) the smectites formed relatively recently in these volcanic air-fall ashes; and/ or (4) the oxygen isotope values of smectites have been altered by later diagenesis or exchange with basinal fluids. For the following reasons, we believe that the possible effects of points 2 through 4 did not significantly influence the results presented in this paper. Instead, we suggest that the oxygen isotope values of smectites record the paleoprecipitation and elevation gradient on the east side of the Rocky Mountains that has existed since at least Oligocene times.

First, it could be argued that the similarity between the spatial distribution of  $\delta^{18}O_{smectite}$  from Early Tertiary air-fall deposits and the  $\delta^{18}O$  values of modern precipitation is the result of



Figure 4. Results of oxygen isotope analysis of Miocene smectite versus modern elevation and longitude. Error bars represent analytical uncertainty of  $\pm 0.4\%$ . The dashed line represents the theoretical oxygen isotope value of smectite formed in equilibrium with modern precipitation (see text). Heavy solid line represents the linear regression best fit to the measured smectite isotopic data. Miocene isotopic results correlate well with modeled, modern smectites.



Figure 5. Results of oxygen isotope analysis of Oligocene smectite versus modern elevation and longitude. Error bars represent analytical uncertainty of  $\pm 0.4\%$ . The dashed line represents the theoretical oxygen isotope value of smectite formed in equilibrium with modern precipitation (see text). Heavy solid line represents the linear regression best fit to the measured smectite isotopic data. Oligocene isotopic results correlate well with modeled, modern smectites. Together with the Miocene results from Figure 4, these data suggest that the oxygen isotope gradient in the Rocky Mountain region has remained relatively unchanged since at least 37 Ma.



Figure 6. Results of oxygen isotope analysis of Eocene smectite versus modern elevation and longitude. Error bars represent analytical uncertainty of  $\pm 0.4\%$ . The dashed line represents the theoretical oxygen isotope value of smectite formed in equilibrium with modern precipitation (see text). Heavy solid line represents the linear regression best fit to the measured smectite isotopic data. Eastern, low-elevation samples are heavier than our modeled modern smectites, which is likely due to a warmer climate in the Eocene. The western, high-elevation samples, which correlate well with modeled, modern smectites, cannot be explained by global climate change alone.



Figure 7. Oxygen isotope results versus age of sample. No correlation exists between age and isotope ratio (the  $R^2$  for this relationship is <0.01). Error bars represent analytical uncertainty of  $\pm 0.4\%$ . Error for the ages is reported within the cited reference listed in Table 1 and falls within the range covered by the symbol where absent. Eocene-aged samples are slightly lighter than younger samples; these smectites formed in locations of relatively high modern elevation and low average modern  $\delta^{18}{\rm O}_{\rm precipitatiop}$ . It appears that geographic location rather than age is a much more important factor for  $\delta^{18}{\rm O}_{\rm smectite}$ , which suggests long-term stability of atmospheric circulation patterns in the sample area.

isotopic equilibrium with modern precipitation, and may not be representative of Early Tertiary isotopic composition. It has been shown, however, that pedogenic clay minerals retain their original structural oxygen isotopic composition and do not reequilibrate isotopically after formation (Lawrence and Taylor, 1971; Yeh and Savin, 1977; Stern et al., 1997; Savin and Hsieh, 1998). This work is corroborated by studies showing that smectite and calcite (which is extremely resistant to postdepositional isotopic exchange; Cerling and Quade, 1993) record similar isotopic trends in rocks where both minerals have been examined (Stern et al., 1997; Poage and Chamberlain, 2002).

Second, it is possible that the smectite we analyzed may be much younger than the age of the sedimentary deposits, and the isotope values preserved in these minerals therefore record relatively recent formation. We consider this possibility unlikely, because there is abundant evidence that smectite, as an alteration product, forms relatively rapidly in the shallow subsurface. Strontium isotopic studies and petrographic analysis of calcite, smectite, and silica cements of sandstones from the White River Group, Arikaree Group, and Miocene-Pliocene Ogallala Group suggest that these authigenic minerals formed in the Tertiary soon after deposition of the sediments (Stanley and Benson, 1979; Stanley and Faure, 1979). Additionally, studies of glacial moraines as young as 10<sup>4</sup> yr old in the Rocky Mountains contain smectite as a weathering product (Blum and Erel, 1997), Quaternary soils in this region contain authigenic smectite (Lawrence

and Taylor, 1971), and ash from the 1980 Mt. St. Helens eruption has already converted to clay minerals in many locations (G. Thompson, 2003, personal commun.).

Third, it is possible that the oxygen isotopes of the smectites we measured record some later period of diagenesis or exchange with basinal brines. However, during burial diagenesis, smectite converts to mixed-layer illite/smectite to pure illite with increasing burial depth. The conversion of smectite to illite begins to take place at temperatures above 35 °C, and most of the conversion takes place between 55 °C and 95 °C (Perry and Hower, 1970). X-ray diffraction analysis conducted on the air-fall ashes examined in this study showed only a small percentage of mixed layering of illite/smectite (<5% illite) in a small number of samples. Thus, it is unlikely that the ashes reached burial temperatures of ~50 °C, whereas temperatures greater than 100 °C are necessary to cause isotopic exchange between smectite and water (O'Neil and Kharaka, 1976; Yeh and Savin, 1977). Assuming the modern geothermal gradient of the western Great Plains, which is ~28 °C/ km, and an average annual surface temperature of ~10 °C, temperatures of 35 °C would be achieved at a burial depth of ~900 m. However, estimations of the original thickness or preserved thickness of the Tertiary and Quaternary deposits do not exceed 800 m (Love, 1970; Hunt, 1990; Larson and Evanoff, 1998) Moreover, there is little isotopic evidence for later exchange with basinal brines, as the combined  $\delta D$  and  $\delta^{18}O$  values of smectite cluster along a line parallel to the meteoric water line (Fig. 3) rather than forming a field with a significantly shallower slope due to water-rock interaction (see Longstaffe, 1987).

We, therefore, suggest the observed geographic trends in smectite oxygen isotope values record the long-term precipitation history of the eastern Rocky Mountains. Our data suggest that the Oligocene and Miocene paleoprecipitation patterns were similar to that of today; and there was likely a significant difference in the climate of this region in the Eocene. As mentioned already, the isotopic gradient on the east side of the Rocky Mountains is primarily controlled by the interaction of three distinct air masses, each with a different isotopic signature. Climate models show that this unique climate regime is related to the topography of the region (Kutzbach et al., 1989; Huber and Sloan, 1999; Sewall et al., 2000). The fact that the Miocene and Oligocene isotopic gradients are similar to modern isotopic gradients, therefore, suggests that the Rocky Mountains as a significant topographic feature have existed since at least that time.

However, since the Oligocene, there has been a continuous  $\sim$ 2–4 °C decrease in global temperature (Wolfe, 1978; Prothero and Heaton, 1996; Terry, 2001) and an increase in the oxygen isotope composition of ocean waters due to development of significant ice sheets since ca. 25 Ma (Zachos et al., 2001). Both of these effects could also influence the isotopic composition of precipitation. To assess these effects, we calculated the isotopic composition of smectite, assuming that the isotopic changes in ocean water (Zachos et al., 2001) cause a direct effect on  $\delta^{18}O_{\text{precipitation}}$ , and the temperature changes affect both the  $\delta^{18}O_{\text{precipitation}}$  (Savin and Hsieh, 1998) and the isotopic

fractionation between smectite and water (Savin and Lee, 1988). The results of these calculations show that the smectite in the Oligocene and Miocene samples would have essentially the same  $\delta^{18}$ O values as modern samples (our results for these calculations were less than our analytical error of  $\pm 4$  for our oxygen isotope analysis), and they plot essentially on top of the calculated modern smectite values represented in Figures 4-6 by the dashed lines. Therefore, we suggest that magnitude of change in annual temperature and oxygen isotope composition of ocean water as reported in the literature does not significantly influence the isotopic gradient observed in our Oligocene and Miocene samples when compared to present values, and the stability of atmospheric circulation patterns is a much more important consideration. This hypothesis is in agreement with the conclusions of Amundson et al. (1996), who suggested that atmospheric circulation, not average temperature, determined the  $\delta^{18}$ O of precipitation in the eastern Rocky Mountains of Wyoming during the Pleistocene.

Unlike the Oligocene and Miocene samples, Eocene smectites from central Wyoming have  $\delta^{18}$ O values that are higher than would be expected for their current elevation. There are several possible explanations for the trends observed in the Eocene data from central Wyoming: (1) these smectites formed at lower elevations and have been uplifted prior to Oligocene time; (2) the central Wyoming smectites formed from evaporative waters during the Eocene; (3) these smectites formed at warmer temperatures; and/or (4) the precipitation in central Wyoming during the Eocene had higher  $\delta^{18}$ O values than modern precipitation. Our hydrogen and oxygen isotopic data show no evidence for increased evaporation in the basins of central Wyoming during the Eocene, and there is no compelling evidence for uplift of the basins during the Oligocene. We prefer the interpretation that the relatively high  $\delta^{18}O_{\text{emergine}}$  values are directly linked to the climatic history, because there were significant climatic changes during the Eocene that would influence the isotopic composition of precipitation in this region. We cannot, however, exclude tectonic modification between the time of deposition of our Eocene and Oligocene samples as a possible explanation of our results.

Previous paleoclimate studies suggest the average temperatures in the Eocene in North America were 10-20 °C warmer than present before a rapid, global cooling event in the early Oligocene (33.2 Ma), when average temperatures in North America fell to 2-4 °C warmer than present (e.g., Wolfe, 1978; Prothero and Heaton, 1996; Terry, 2001). In addition to temperature changes and the lack of significant ice sheets, differences in past oceanic circulation patterns could potentially have affected the stable isotopic composition of precipitation. During the Eocene, oceanic basins were not as restricted in the equatorial regions as they are presently. Because no land mass was extant between North and South America prior to the late Miocene-early Pliocene, seawater exchange took place between the Pacific and Atlantic basins. Additionally, prior to the Oligocene closing of the Tethys Seaway, the northern proto-Indian and northern Atlantic Oceans were open to circulation through the Mediterranean basin. In spite our 50–49 Ma and 37 Ma samples.

of these circulation differences, modeling of oceanic circulation for the early Eocene Pacific Ocean suggests circulation patterns that closely resembled present-day circulation (Bice et al., 2000). Mean annual temperatures for surface waters in the early Eocene North Pacific ( $30^{\circ}$ – $60^{\circ}$ N latitude) are thought to have been ~1–2 °C warmer than present, and the global averaged mean annual atmosphere-ocean moisture flux has been calculated to be 10% greater than present, with most of the increase in tropical latitudes (Bice et al., 2000). Based on modeled early Eocene salinity, Bice et al. (2000) predicted the  $\delta^{18}$ O value of early Eocene surface water in the North Pacific to be -1.0% to -1.2%, or ~0.5% to 1.5% lighter than present-day values. Using this difference in  $\delta^{18}$ O values for surface waters in the North Pacific for the early Eocene, annual average temperatures for the interior of North America 10-20 °C warmer in the Eocene, and the relationship between average annual temperature and  $\delta^{18}O_{\text{precipitation}}$  (Gat, 1980), we predict the Eocene  $\delta^{18}O_{\text{precipitation}}$  in western Nebraska to be approximately -5‰ to 0‰, or 5‰ to 10‰ heavier than present  $\delta^{18}O_{\text{precipitation}}$  values. Assuming this value for  $\delta^{18}O_{\text{precipitation}}$ and the fractionation factor for smectite of Savin and Lee (1988)  $(1000 \ln \alpha_{\text{smectite-water}} = 2.58 \times 10^6 T^{-2} - 4.19)$ , we would expect that smectite formed in the Eocene throughout our study area would be 4%-6% higher than modern smectites. In addition, general circulation models for the Late Tertiary suggest that as a result of a relatively warm climate, the monsoonal effects were intensified along the east side of the Rocky Mountains (Huber and Sloan, 1999; Sewall et al., 2000). This would add to the increase in the  $\delta^{18}$ O values of precipitation in central Wyoming relative to today, but the magnitude of this effect is difficult to quantify. Since these effects can cause the isotopic shift observed in our Eocene samples relative to modern from the eastern, low-elevation part of our study area, it is not necessary to invoke tectonics as the cause of the relatively high  $\delta^{18}$ O values of these samples, although we do not rule out Eocene uplift as a possible explanation for our results. The preceding discussion does not explain our results for samples from western Wyoming, because these Eocene smectites are not isotopically heavier than our modeled modern smectites. We propose these relatively light isotopic values in western Wyoming may be the result of cooler than global average temperatures in this area (rather unlikely without high elevations), a relatively large amount of isotopically light winter precipitation in the early Cenozoic Rocky Mountain region, which has been suggested by Norris et al. (1996) and Dettman and Lohmann (2000), uplift or topographically high elevations in western Wyoming in the Eocene, or isotopic rainout effects due to a topographic barrier to the west of western Wyoming. All of these possibilities suggest high elevations or topography in the Early Tertiary Rocky Mountains, which is consistent with other isotopic studies from the region (Norris et al., 1996; Dettman and Lohmann, 2000; Fricke, 2003). We cannot, however, determine from the isotopic data from our Eocene samples if tectonic or climate modification caused the shift in isotopic gradient between

#### CONCLUSIONS

We conclude that an isotopic gradient, which suggests areas of high elevation, has existed in the Rocky Mountain-Great Plains region since at least 37 Ma. This conclusion is similar to those of previous isotopic studies of older rocks in the area (e.g., Dettman and Lohmann, 2000; Fricke, 2003). Because this isotopic gradient reflects the unique climatic regime that results from the interaction of three air masses with the high topography of the Rocky Mountains, we suggest it is very unlikely that high elevations in the Rocky Mountains could have formed in the late Miocene without significant modification of the atmospheric circulation patterns of western North America and the resulting distribution of pre–late Miocene  $\delta^{18}O_{precipitation}$  values compared to the modern distribution of  $\delta^{18}O_{\text{precipitation}}$ . If there were not a topographic barrier before the late Miocene, we predict unobstructed precipitation originating over the Pacific Ocean would have extended deep into the continental interior of North America. Additionally, with no orographic rainout effects due to interaction with a topographic barrier, the oxygen isotope composition of precipitation in the western part of our study area would have been relatively enriched in <sup>18</sup>O. Therefore, we would expect the west-to-east gradient of  $\delta^{18} O_{\mbox{\tiny smectite}}$  to be shallower and  $\delta^{18}O_{\text{precipitation}}$  to decrease from west to east in western Wyoming if there were no pre-late Miocene Rocky Mountains. Our  $\delta^{18}O_{\text{maxim}}$  results, however, increase from west to east, which suggests that pre-late Miocene high-elevation areas existed in the Rocky Mountain region, and for the Oligocene and Miocene samples, the values mimic the modern distribution and values of  $\delta^{18}O_{\text{precipitation}}$ . We propose that this indicates Oligocene and later high elevation in the Rocky Mountains (in other words, an elevation gradient between the Rocky Mountains and the western Great Plains) approximately equal to modern elevations.

Results from our Eocene samples can be explained by climate and/or tectonic modification since the time of deposition for these samples, but both of these explanations suggest high elevations in the Rocky Mountain region ca. 50 Ma. Our results do not agree with the traditional view that the surface uplift of the Rocky Mountains occurred in the late Miocene and early Pliocene. There is additional evidence that the Basin and Range and Sierra Nevada Mountains were at high elevations during much of the Tertiary as well (Wolfe et al., 1997; Wolfe et al., 1998; Poage and Chamberlain, 2001). The idea of late Cenozoic surface uplift in many areas of the American west should be reconsidered, because evidence used to support this view may be the result of changes in global temperature rather than changes in topography, a concept originally proposed by Molnar

and England (1990).

# ACKNOWLEDGMENTS

We thank R. Reynolds for the use of his X-ray diffraction laboratory and for assistance with the interpretation of our dif-

fraction patterns. We are indebted to M. LeBeau, the rangers and staff at Yellowstone National Park, and the National Park Service for allowing us to collect samples within Yellowstone. We thank P. Ryan, J. Aronson, M. Zhao, J. Spencer, and P. Koch for very helpful reviews of early versions of this manuscript. National Science Foundation (NSF) grants EAR-0001208 and EAR-0309011 provided funding to Chamberlain in support of this project.

# REFERENCES CITED

Amundson, R., Chadwick, O., Kendall, C., Wang, Y., and DeNiro, M., 1996, Isotopic evidence for shifts in atmospheric circulation patterns during the late Quaternary in mid-North America: Geology, v. 24, p. 23-26, doi: 10.1130/0091-7613(1996)024 <0023:IEFSIA>2.3.CO;2.

Bice, K.L., Sloan, L.C., and Barron, E.J., 2000, Comparison of early Eocene isotopic paleotemperatures and the three-dimensional OGCM temperature field: The potential for use of model-derived surface water  $\delta^{18}$ O, in Huber, B.T., MacLeod, K.G., and Wing, S.L., eds., Warm climates in earth history: Cambridge, Cambridge University Press, p. 79-131.

Blum, J.D., and Erel, Y., 1997, Rb-Sr isotope systematics of a granitic soil chronosequence: The importance of biotite weathering: Geochimica et Cosmochimica Acta, v. 61, p. 3193–3204, doi: 10.1016/S0016-7037(97)00148-8.

Bradley, W.C., 1987, Erosion surfaces of the Colorado Front Range: A review, in Graf, W.L., ed., Geomorphic systems of North America: Boulder, Colorado, Geological Society of America, Geology of North America, Centennial Special Volume 2, p. 215-220.

Bryson, R.A., and Hare, F.K., 1974, The climates of North America, in Bryson, R.A., and Hare, F.K., eds., Climates of North America (world survey of climatology, volume 11): New York, Elsevier, p. 1-47.

Burchfiel, B.C., Cowan, D.S., and Davis, G.A., 1992, Tectonic overview of the Cordilleran orogen in the western United States, in Burchfiel, B.C., et al., eds., The Cordilleran orogen: Conterminous United States: Boulder, Colorado, Geological Society of America, Geology of North America, v. G-3, p. 407-479.

Cerling, T.E., and Quade, J., 1993, Stable carbon and oxygen isotopes in soil carbonates, in Swart, P.K., Lohmann, K.C., McKenzie, J., and Savin, S., eds., Climate change in continental isotopic records: American Geophysical Union Geophysical Monograph 78, p. 217-232.

Chamberlain, C.P., and Poage, M.A., 2000, Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals: Geology, v. 28, p. 115-118, doi: 10.1130/0091-7613(2000)028 <115: RTPOMB>2.3.CO;2

Chase, C.G., Gregory-Wodzicki, K.M., Parrish, J.T., and DeCelles, P.G., 1998, Topographic history of the western Cordillera of North America and controls on climate, in Crowley, T.J., and Burke, K.C., eds., Tectonic boundary conditions for climate reconstructions: Oxford, Oxford University Press, p. 73-99.

Coplen, T.B., and Kendall, C., 2000, Stable hydrogen and oxygen isotope ratios for selected sites of the U.S. Geological Survey's NASOAN and Benchmark Surface-Water Networks: U.S. Geological Survey Open-File Report

Despain, D.G., 1987, The two climates of Yellowstone National Park: Proceedings of the Montana Academy of Science, v. 47, p. 11-19.

Dettman, D.L., and Lohmann, K.C., 2000, Oxygen isotope evidence for highaltitude snow in the Laramide Rocky Mountains of North America during the Late Cretaceous and Paleogene: Geology, v. 28, p. 243-246, doi: 10.1130/0091-7613(2000)028 <243:OIEFHS>2.3.CO;2.

Drummond, C.N., Wilkinson, B.H., Lohmann, K.C., and Smith, G.R., 1993, Effect of regional topography and hydrology on the lacustrine isotopic record of Miocene paleoclimate in the Rocky Mountains: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 101, p. 67-79, doi: 10.1016/0031-0182(93)90152-9.

Epis, R.C., and Chapin, C.E., 1975, Geomorphic and tectonic implications of the post-Laramide, late Eocene erosion surface in the southern Rocky Mountains, in Curtis, B.F., ed., Cenozoic history of the southern Rocky Mountains: Geological Society of America Memoir 144, p. 45-74.

- Evans, J.E., and Welzenbach, L.C., 1998, Episodes of carbonate deposition in a siliciclastic-dominated fluvial sequence, Eocene-Oligocene White River Group, South Dakota and Nebraska, *in* Terry, D.O., et al., eds., Depositional environments, lithostratigraphy, and biostratigraphy of the White River and Arikaree Groups (late Eocene to early Miocene, North America): Geological Society of America Special Paper 325, p. 93–116.
- Fricke, H.C., 2003, Investigation of early Eocene water-vapor transport and paleoelevation using oxygen isotope data from geographically widespread mammal remains: Geological Society of America Bulletin, v. 115, p. 1088–1096, doi: 10.1130/B25249.1.
- Fritz, W.J., 1980, Reinterpretation of the depositional environment of the Yellowstone "fossil forest": Geology, v. 8, p. 309–313, doi: 10.1130/0091-7613(1980)8 <309:ROTDEO>2.0.CO;2.
- Gat, J.R., 1980, The isotopes of hydrogen and oxygen in precipitation, *in* Fritz, P., and Fontes, J., eds., Handbook of environmental isotope geochemistry: New York, Elsevier, p. 21–24.
- Gregory, K.M., and Chase, C.G., 1992, Tectonic significance of paleobotanically estimated climate and altitude of the late Eocene erosion surface, Colorado: Geology, v. 20, p. 581–585, doi: 10.1130/0091-7613(1992)020 <0581:TSOPEC>2.3.CO:2.
- Gregory, K.M., and McIntosh, W.C., 1996, Paleoclimate and paleoelevation of the Oligocene Pitch-Pinnacle flora, Sawatch Range, Colorado: Geological Society of America Bulletin, v. 108, p. 545–561, doi: 10 1130/0016-7606(1996)108<0545:PAPOTO>2.3.CO;2.
- Harvey, F.E., and Welker, J.M., 2000, Stable isotopic composition of precipitation in the semi-arid north-central portion of the U.S. Great Plains: Journal of Hydrology, v. 238, p. 90–109, doi: 10.1016/S0022-1694(00)00316-4.
- Horton, T.W., Chamberlain, C.P., Fantle, M., and Blum, J.D., 1999, Chemical weathering and lithologic controls of water chemistry in a high-elevation river system: Clark's Fork of the Yellowstone River: Wyoming and Montana: Water Resources Research, v. 35, p. 1643–1655, doi: 10.1029/1998WR900103.
- Huber, M., and Sloan, C., 1999, Warm climate transitions: A general circulation modeling study of the late Paleocene thermal maximum: Journal of Geophysical Research, v. 104, p. 16,633–16,655, doi: 10.1029/1999ID900272
- Hunt, R.M., Jr., 1990, Taphonomy and sedimentology of Arikaree (lower Miocene) fluvial, eolian, and lacustrine paleoenvironments, Nebraska and Wyoming: A paleobiota entombed in fine-grained volcaniclastic rocks, in Lockley, M.G., and Rice, A., eds., Volcanism and fossil biotas: Geological Society of America Special Paper 244, p. 69–111.
- Kutzbach, J.E., Guetter, P.J., Ruddiman, W.F., and Prell, W.L., 1989, Sensitivity of climate to late Cenozoic uplift in southern Asia and the American West: Numerical experiments: Journal of Geophysical Research, v. 94, p. 18,393–18,407.
- LaGarry, H.E., 1998, Lithostratigraphic revision and redescription of the Brule Formation (White River Group) of northwestern Nebraska, *in* Terry, D.O., et al., eds., Depositional environments, lithostratigraphy, and biostratigraphy of the White River and Arikaree Groups (late Eocene to early Miocene, North America): Geological Society of America Special Paper 325, p. 63–91.
- Larson, E.E., and Evanoff, E., 1998, Tephrostratigraphy and source of the tuffs of the White River sequence, *in* Terry, D.O., et al., eds., Depositional environments, lithostratigraphy, and biostratigraphy of the White River and Arikaree Groups (late Eocene to early Miocene, North America): Geological Society of America Special Paper 325, p. 1–14.
- Lawrence, J.R., and Taylor, H.P., 1971, Deuterium and oxygen-18 correlation: Clay minerals and hydroxides in Quaternary soils compared to meteoric waters: Geochimica et Cosmochimica Acta, v. 35, p. 993–1003, doi: 10.1016/0016-7037(71)90017-2.
- Longstaffe, F.J., 1987, Stable isotopic studies of diagenetic processes, *in* Kyser, T.K., ed., Stable isotope geochemistry of low temperature fluids: Mineralogical Association of Canada, v. 13, p. 187–257.
- Love, J.D., 1970, Cenozoic geology of the Granite Mountains area, central Wyoming: U.S. Geological Survey Professional Paper 495-C, p. 1–154.
- MacFadden, B.J., and Hunt, R.M., Jr., 1998, Magnetic polarity stratigraphy and correlation of the Arikaree Group, Arikareean (late Oligocene–early Miocene) of northwestern Nebraska, in Terry, D.O., et al., eds., Depositional environments, lithostratigraphy, and biostratigraphy of the White River and Arikaree Groups (late Eocene to early Miocene, North America): Geological Society of America Special Paper 325, p. 143–165.
- McMillan, M.E., Angevine, C.L., and Heller, P.L., 2002, Postdepositional tilt of the Miocene-Pliocene Ogallala Group on the western Great Plains: Evi-

- dence of late Cenozoic uplift of the Rocky Mountains: Geology, v. 30, p. 63-66, doi: 10.1130/0091-7613(2002)030 <0063:PTOTMP>2.0.CO;2.
- Molnar, P., and England, P., 1990, Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg?: Nature, v. 346, p. 29–34, doi: 10.1038/346029a0.
- Moore, D.M., and Reynolds, R.C., 1997, X-ray diffraction and the identification and analysis of clay minerals: New York, Oxford University Press, 378 p.
- Nativ, R., and Riggio, R., 1990, Precipitation in the southern High Plains: Meteorological and isotopic features: Journal of Geophysical Research, v. 95D, p. 22,559–22,564.
- Norris, R.D., Jones, L.S., Corfield, R.M., and Cartlidge, J.E., 1996, Skiing in the Eocene Uinta Mountains? Isotopic evidence in the Green River Formation for snowmelt and large mountains: Geology, v. 24, p. 403–406, doi: 10.1130/0091-7613(1996)024 <0403:SITEUM>2.3.CO;2.
- O'Neil, J.J.R., and Kharaka, Y.K., 1976, Hydrogen and oxygen isotope exchange reactions between clay minerals and water: Geochimica et Cosmochimica Acta, v. 40, p. 241–246, doi: 10.1016/0016-7037(76)90181-2.
- Peizhen, Z., Molnar, P., and Downs, W.R., 2001, Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change in erosion rates: Nature, v. 410, p. 891–897, doi: 10.1038/35073504.
- Perry, E., and Hower, J., 1970, Burial diagenesis in Gulf Coast pelitic sediments: Clays and Clay Minerals, v. 18, p. 165–177.
- Poage, M.A., and Chamberlain, C.P., 2001, Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of paleoelevation change: American Journal of Science, v. 301, p. 1–15.
- Poage, M.A., and Chamberlain, C.P., 2002, Stable isotope evidence for a pre-Middle Miocene rainshadow in the western Basin and Range: Implications for the paleotopography of the Sierra Nevada: Tectonics, v. 21, p. 1-10, doi: 10.1029/2001TC001303.
- Prothero, D.R., and Heaton, T.H., 1996, Faunal stability during the early Oligocene climate crash: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 127, p. 257–283, doi: 10.1016/S0031-0182(96)00099-5.
- Rowley, D.B., Pierrehumbert, R.T., and Currie, B.S., 2001, A new approach to stable isotope paleoaltimetry: Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the late Miocene: Earth and Planetary Science Letters, v. 188, p. 253–268, doi: 10.1016/S0012-821X(01)00324-7
- Savin, S.M., and Hsieh, J.C.C., 1998, The hydrogen and oxygen isotope geochemistry of pedogenic clay minerals: Principles and theoretical background: Geoderma, v. 82, p. 227–253, doi: 10.1016/S0016-7061(07)00103.1
- Savin, S.M., and Lee, M., 1988, Isotopic studies of phyllosilicates, in Bailey,
   S.W., ed., Hydrous phyllosilicates: Reviews in Mineralogy 19, p. 189–223
- Sewall, J.O., Sloan, L.C., Huber, M., and Wing, S., 2000, Climate sensitivity to changes in land surface characteristics: Global and Planetary Changes, v. 26, p. 445–465, doi: 10.1016/S0921-8181(00)00056-4.
- Sharp, Z D., Atudorei, V., and Durakiewicz, T., 2001, A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals: Chemical Geology, v. 178, p. 197–210, doi: 10.1016/S0009-2541(01)00262-5.
- Stanley, K.O., and Benson, L.V., 1979, Early diagenesis of High Plains Tertiary vitric and arkosic sandstone, Wyoming and Nebraska, in Scholle, P.A., and Schluger, P.R., eds., Aspects of diagenesis: Society of Economic Paleontologists and Mineralogists Special Publication 26, p. 401–423.
- Stanley, K.O., and Faure, G., 1979, Isotopic composition and sources of strontium in sandstone cements: The High Plains sequence of Wyoming and Nebraska: Journal of Sedimentary Petrology, v. 49, p. 45–54.
- Stern, L.A., Chamberlain, C.P., Reynolds, R.C., and Johnson, G.D., 1997, Oxygen isotope evidence of climate change from pedogenic clay minerals in the Himalayan molasse: Geochimica et Cosmochimica Acta, v. 61, p. 731–744, doi: 10.1016/S0016-7037(96)00367-5.
- Steven, T.A., Evanoff, E., and Yuhas, R.H., 1997, Middle and late Cenozoic tectonic and geomorphic development of the Front Range of Colorado, in Bolyard, D.W., and Sonnenberg, S.A., eds., Geologic history of the Colorado Front Range: Denver, Colorado, Rocky Mountain Association of Geologists, Colorado Front Range Guidebook, p. 115–124.
- Sundell, K.A., Shive, P.N., and Eaton, J.G., 1984, Measured sections, magnetic polarity, and biostratigraphy of the Eocene Wiggins, Tepee Trail, and Aycross Formations within the southeastern Absaroka Range, Wyoming: Earth Science Bulletin, v. 17, p. 1–48.

- Terry, D.O., 1998, Lithostratigraphic revision and correlation of the lower part of the White River Group: South Dakota to Nebraska, *in* Terry, D.O., et al., eds., Depositional environments, lithostratigraphy, and biostratigraphy of the White River and Arikaree Groups (late Eocene to early Miocene, North America): Geological Society of America Special Paper 325, p. 15–37.
- Terry, D.O., 2001, Paleopedology of the Chadron Formation of northwest Nebraska: Implications for paleoclimatic change in the North American Midcontinent across the Eocene-Oligocene boundary: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 168, p. 1–38, doi: 10.1016/S0031-0182(00)00248-0.
- Thordsen, J.J., Kharaka, Y.K., Mariner, R., and White, L.D., 1992, Controls on the distribution of stable isotopes of meteoric water and snow in the greater Yellowstone National Park, USA, in Kharaka, Y.K., and Maest, D., eds., Water-rock interaction: Rotterdam, Balkema, p. 591–595.
- Whitlock, C., and Bartlein, P.J., 1993, Spatial variations of Holocene climatic change in the Yellowstone region: Quaternary Research, v. 39, p. 231– 238, doi: 10.1006/gres.1993.1026.
- Wolfe, J.A., 1978, A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere: American Scientist, v. 66, p. 694–703.

- Wolfe, J.A., Schorn, H.E., Forest, C.H., and Molnar, P., 1997, Paleobotanical evidence for high altitudes in Nevada during the Miocene: Science, v. 276, p. 1672–1675, doi: 10.1126/science.276.5319.1672.
- Wolfe, J.A., Forest, C.E., and Molnar, P., 1998, Paleobotanical evidence of Eocene and Oligocene paleoaltitudes in midlatitude western North America: Geological Society of America Bulletin, v. 110, p. 664–678, doi: 10.1130/0016-7606(1998)110<0664;PEOEAO>2.3.CO;2.
- Yeh, H.W., and Savin, S.M., 1977, Mechanism of burial metamorphism of argillaceous sediments: O-isotope evidence: Geological Society of America Bulletin, v. 88, p. 1321–1330, doi: 10.1130/0016-7606(1977)88<1321: MOBMOA>2.0.CO;2.
- Zachos, J.C., Pagani, M., Sloan, L., Thomas, E., and Bilups, K., 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present: Science, v. 292, p. 686–693, doi: 10.1126/science.1059412.

Manuscript Accepted by the Society 23 June 2005