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Abstract

This work derives bounds on the jamming capacity of a slotted ALOHA system. A system withn

legitimate users, each with a Bernoulli arrival process is considered. Packets are temporarily stored at

the corresponding user queues, and a slotted ALOHA strategy is used for packet transmissions over the

shared channel. The scenario considered is that of a pair ofcovertusers that jam legitimate transmissions

in order to communicate over the slotted ALOHA channel. Jamming leads to binary signaling between

the covert users, with packet collisions due to legitimate users treated as (multiplicative) noise in this

channel. Further, the queueing dynamics at the legitimate users stochastically couples the jamming

strategy used by the covert users and the channel evolution.

By considering various i.i.d. jamming strategies, achievable jamming rates over the slotted ALOHA

channel are derived. Further, an upper bound on the jamming capacity over the class ofall ergodic

jamming policiesis derived. These bounds are shown to be tight in the limit where the offered system

load approaches unity.
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I. I NTRODUCTION

A typical slotted ALOHA system [1], [3], [13] comprises of a collection of legitimate users

following a pre-arranged strategy to gain access to resources and communicate with each other.

Our work focuses on using jamming as an unconventional communication mechanism to achieve

a non-zero throughput in a slotted ALOHA system. In this mechanism, an illegitimate jamming

transmitter that has gained entry into a slotted ALOHA system jams legitimate transmissions,

and the resulting “collisions” in the system are then detected by an illegitimate jamming receiver.

Such a jamming-based communication strategy is parasitic in nature and can remain undetected

without proactive effort by the legitimate entities in the slotted ALOHA system. In this work,

we employ and information theoretic approach to determine upper and lower bounds on the

capacity of this jamming-based communication system, under the constraint that jammingdoes

not result in instability of the legitimate user queues. It is intuitively clear that the with such a

constraint, the capacity of the jamming channel will converge to zero as the offered load (due

to legitimate users) approaches unity. Our bounds verify this intuition, and we show that both

the upper and lower bounds converge to zero as the offered load approaches unity.

A vast body of literature exists that studies the effect of illegitimate communication strategies

that exploit inherent weaknesses in conventional systems. Covert communication is one such

area of research where the goal of the illegitimate communication system is to exploit these

weaknesses while remaining undetected by the legitimate system. A covert channel is loosely

defined as an unintended or unauthorized communication path through a medium that violates the

security policy of that medium. Along the lines of our jamming-based communication system,

such channels are parasitic in nature, and reduce the capacity of the legitimate host channel

by interfering with its communication. More formally, in a top-level characterization of covert

channels, Kemmerer [11] states that necessary conditions for the existence of a covert channel

are: the presence of a global resource to which both the sender and the receiver have access, a

means of modifying that resource, and a method of synchronization between the receiver and the

sender. Interestingly, we find that our jamming-based communication system has characteristics

that resemble a covert communication system. Thus, we refer to communication between these

illegitimate users are covert communication.

The topic of covert channels has received considerable attention among researchers in secure
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system design and secure source code design [6], [7], [14]. Existing results on covert channels

can be divided into two major categories,storage channels[18] andtiming channels. Moskowitz

and Kang [14] define a storage channel as a covert channel where the covert symbol alphabet

consists of asynchronous responses of a global resource (ACK/NACK responses from a processor,

success/failure of a packet transmission). Shieh [17] models covert channels as finite state graphs

to estimate the bandwidth (bit/s) of a covert storage channel. A covert timing channel encodes

by modulating the time intervals between successive responses [7], [10], [14]. The capacity of

timing channels was investigated by Anantharam and Verdù [2]. Subsequently, the capacity of

covert timing channels was investigated by Giles and Hajek [7], where the authors consider the

time interval information between successive transmissions of packets from a queue as a timing

channel. They model this channel as an information-theoretic game between a covert user who

attempts to modulate these inter-arrival times and a ‘jammer’ that introduces random delays

in the transmitted packets to arrive at bounds onmax−min and min−max rates of mutual

information in covert timing channels.

In the context of an ALOHA channel, the authors in [6] consider jamming based commu-

nication over a slotted ALOHA channel, where an FCFS based splitting algorithm is used for

contention resolution [19]. They consider a scenario with a large number of users (with the

aggregate arrival rate being Poisson with rateµ packets per slot), and develop two protocols for

jamming based covert communication. In the procedures developed in [6], the covert transmitter

communicates by means of influencing the number of collisions that occur within the contention

resolution period, and the covert receiver uses a maximum likelihood decoder to determine

the number of collisions caused by the covert transmitter. They demonstrate through numerical

methods that the ALOHA system can support persistent interference by the covert user (using

the procedures developed in [6]) without causing user packet backlogs to drift to infinity, only

if the multi-access channel is lightly loaded (µ ≈ 0.1).

A. Main Contributions

In this paper, our focus is on the fundamental capacity limits of the covert ALOHA channel

over the class of all ergodic jamming strategies. We study the information-theoretic capacity of

the covert system wheren legitimate users (wheren is any finite number) communicate over a

slotted ALOHA channel, and for any fixed offered loadα ∈ (0, 1), subject to a stability constraint

3



on the legitimate user queues. We first derive achievable jamming rates over the slotted ALOHA

channel by considering various i.i.d. jamming strategies, and where the covert user has varying

degrees of side-information on the channel state.

We next derive an upper bound on the jamming capacity of this channel over the class of

all ergodic covert strategies, subject to stability constraint on the legitimate user queues. The

dynamics of this system are complex because the jamming strategy of the covert user influences

the queueing dynamics of all the legitimate users, thus coupling the source (covert user) and the

channel state (the queue lengths of all the users). To obtain an upper bound, we first decouple the

state of the covert channel from the jamming strategy by considering avirtual parallel channel

(which is stochastically coupled with the true channel) along with a pair ofvirtual covert users.

However, our construction is such that the dynamics of the virtual covert users do not modify

the dynamics of the virtual channel. Using our construction, we prove that the capacity of this

virtual covert channel is always greater than that of the true covert channel and then bound it

as a weighted sum of the capacities of a codeword-weight constrained Z-channel and a rate 1

error free channel. Further, we show that this upper bound is tight as the offered load approaches

unity.

Further details on our communication system model are given in the next section. In Section

III, we present the achievable rates for jamming-based communication for a two-user system.

In Section IV, we develop an upper bound on capacity in the context of a two-user system, and

provide numerical results. We generalize the results to then user case in Section V.

II. SYSTEM MODEL

In our model, we first consider the case where two legitimate users and two covert users Alice

and Bob share the common medium using slotted ALOHA1. Alice wishes to transmit to Bob

without being detected by the system. Each legitimate user in this slotted ALOHA system is

associated with a queue, with independent and identically distributed (i.i.d.) Bernoulli packet

arrivals to each queue at rateλ.

A slotted ALOHA system with two legitimate usersQ1 andQ2 is shown in Figure 1. With a

slight abuse of notation, we will useQi, i = 1, 2 to denote both the users and the corresponding

1We consider the generalization to then user case in Section V.
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Fig. 2. The covert channel

length of their queues. When the queueQi is non-empty, UserQi attempts to grab a time-slot

with probabilityp. A time-slotj is said to beactiveif at-least one of the users transmits a packet

on the channel.

Collisions naturally occur in this system when both usersQ1 andQ2 attempt transmission. In

a regular slotted ALOHA system, such a collision is detected, and the colliding packet is then

retransmitted.

Alice exploits this aspect of the system to communicate covertly, choosing signals from a

binary alphabet{‘0’,‘1’ }. For every ‘1’ that Alice wishes to transmit, she causes a collision by

jamming a transmission in the corresponding time-slot. Throughout this paper, we will distinguish

between the termscollision andjammingaccording to the following convention - bycollision, we

will mean that an attempted packet transmission by either userQ1 or userQ2 is not successfully

received; whereas, a time-slot that isactive is said to bejammedif Alice transmits a ‘1’ in that

time-slot.

The covert receiver (Bob) interprets each unsuccessful packet transmission as a ‘1’ transmitted

by Alice, and each successful transmission by the legitimate users in the system as a ‘0’.

Neither Bob, nor the system can distinguish between collisions amongst the legitimate users

and transmissions that are jammed by Alice. This indistinguishability is essential for Alice’s

communication to remain covert. If Bob were granted the ability to learn to distinguish between

jamming and collision, so could the legitimate system, thus exposing the covert user.

Additionally, to remain covert, Alice must not transmit during idle states of the system. Also,
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Alice’s jamming strategy must not make the overall system unstable[2]. In other words, Alice’s

jamming strategy should be such that the queue lengths of the legitimate users should not go to

infinity (a more formal description is provided in (3)). Alice’s jamming policy is illustrated in

Figure 2. The shaded time-slots in Figure 2 correspond to idle states when there is no activity

by the legitimate users of the channel, while the solid black time-slots represent collisions in

the system.

Let

Mi = I{channel is active in time-slot i}, (1)

i.e. Mi = 1 if at-least one ofQ1 or Q2 transmits a packet over the common channel. For each

T ∈ Z+, we define theactive set

AT (ω) = {i : 1 ≤ i ≤ T,Mi = 1} (2)

to be the random set of active time-slots; theω in the definition indicates that this is a random

set that depends upon the queue states and the attempt probabilities at each of the legitimate

user queues. However, for ease of notation, we shall drop theω in subsequent references to this

random set.

The active time-slots are indexed by the functiont(i) = inf{k ≥ 1 : |Ak| = i} which denotes

the time-slot when the channel is active for thei-th time. Thecovert channelis defined as the

jamming channel between Alice and Bob. Note however, that the codewords used by Alice over

this jamming channel are only transmitted (and received by Bob) over consecutivet(i)’s.

For the purpose of rigor, assume that whenever the channel is idle, Alice transmits aφ. Thus,

Alice’s codewords are strings from the alphabet{0, 1, φ}. Next, we will defineS∞ as the set of

codeword strings of infinite length that Alice can use to jam over the covert channel so that the

queuesQ1, Q2 are stable and ergodic. Formally,x∞ ∈ S∞ are such that for each(k, l) ∈ Z2,

and each sample pathω, the limit

lim
T→∞

1

T

T∑
i=1

I{(Q1, Q2) = (k, l)}(ω) (3)

converges to a well-defined probability measure overZ2.

We then define the projection (truncation) operatorPm operating over all stringsxn of length

n ≥ m such thatPm(xn) is a string of lengthm satisfying

(xm)i
∆
= (Pm(xn))i, ∀1 ≤ i ≤ m.
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where(a)i is defined as thei-th element in vectora.

Formally, letST be a set ofT length strings derived fromS∞ under the projection operator

PT so that for allxT ∈ ST , ∃x∞ ∈ S∞, such thatxT = PT (x∞).

We can now define the (ergodic) information-theoreticcovert capacityover the active time-

slots as follows,

C(S) = lim inf
T→∞

sup
xT∈ST

1

T
I(xT ;yT ) (4)

where the codeword vectorxT = (x1, x2, . . . , xT ), eachxi ∈ {0, 1, φ} transmitted by Alice is

received by Bob across the covert channel asyT . The notion of the constraint sets is crucial to

our definition of covert capacity since Alice and Bob need to ensure that they remain covert by

coding such that the legitimate users are not infinitely backlogged.

Recall that we considered theφ alphabet to denote that Alice does not transmit anything over

the timeslot corresponding toφ since the channel is idle at those timeslots. Bob realizes that the

channel is idle and does not expect transmission by Alice. Hence the capacity in Equation (4) is

C(S) = lim inf
T→∞

sup
xT∈ST

1

T
I(x|AT |;y|AT |) (5)

wherex|AT | = (xt(1), xt(2), . . . , xt(|AT |)) xt(i) ∈ {0, 1} is the effective codeword vector transmitted

by Alice and received by Bob asy|AT |. We shall use this definition of capacity in the rest of

this paper.

This paper derives analytic expressions that upper and lower bound the capacity of this covert

system. This capacity is less than one bit per transmission because the channel between Alice

and Bob is not ideal. An error in Bob’s interpretation occurs when there is a collision amongst

the legitimate users in the system. A collision amongst legitimate users can only occur when

more than one of them has a packet to transmit. Thus, conditioned on the event that multiple

users have packets to transmit and that there is activity in the channel, the covert channel between

Alice and Bob behaves as a Z-channel [4], [9] (see Figure 4).

When only one of the two legitimate users has packets, there are no collisions in the legitimate

channel, and the covert channel reduces to an ideal error-free channel. When none of the

legitimate users have packets, no transmission is possible.
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III. A CHIEVABLE RATES FOR THECOVERT CHANNEL : THE TWO USERCASE

A. Capacity

The covert channel is source dependent because the jamming strategy modifies the queues

Qi, i = 1, 2. It also has memory, and is constrained to ensure that the legitimate system remains

stable. Conventional single letter characterizations for capacity (used for discrete memoryless

channels) cannot be used in this context and hence a closed form expression in terms of channel

parameters is difficult to obtain. The next sections investigate achievable rates for this channel

under i.i.d. jamming strategies, and an upper bound is then used to motivate this i.i.d. jamming

strategy.

B. I.i.d. Jamming Strategies

We define the following setsS0,2 = {(Q1 = 0, Q2 = 0)}, S1,1 = {(Q1, Q2) : Q1 = 0, Q2 >

0} ∪ {(Q1, Q2) : Q1 > 0, Q2 = 0} and S2,0 = {(Q1, Q2) : Q1 > 0, Q2 > 0}. In other words

whenk of the 2 queues are backlogged, the process(Q1Q2) is said to be in stateSk,2−k. When

the queue length process(Q1, Q2) ∈ S2,0 and the channel is active, the covert channel reduces

to an equivalent Z-channel (see Figure 4), while for states(Q1, Q2) ∈ S1,1 when the channel is

active, the covert channel reduces to a zero-error channel.

We consider three cases of increasing degrees of side information, regarding the legitimate

users, being available at the covert transmitter and receiver:

Case 1:Covert users know offered loadα = λ
pp̂

, wherep̂ = 1− p, and the Z-channel crossover

probability pc but have no information about the statistics of the queuing process(Q1, Q2).

Case 2:Covert users know that the user queuesQi have Bernoulli inputs with rateλ and i.i.d.

attempt probabilityp.

Case 3:Covert users know the queue state process(Q1, Q2) completely.

Let us denote the channel state in a time-slott by St. We consider coding/jamming policies

described by a mapµ : C 7→ [0, 1] whereC is the set of channel states. Alice, then jams (i.e.

transmits a ‘1’) a transmission in an active time-slott(k) when the channel is in stateSt(k) ∈ C

with probabilityµ(St(k)) independent of all other events. In other-words, given the channel state,

Alice uses a codebook that has been generated in an i.i.d. manner. Consequently, the expression
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for capacity achievable over such i.i.d. strategies follows from Equation (5) as

C(S) = lim inf
T→∞

sup
x|AT |∈ST

1

T

|AT |∑
k=1

I(xt(k); yt(k)). (6)

Observe that since the arrival rates at the queues are Bernoulli, the transmission attempt probabil-

ities of both users are i.i.d., and Alice’s coding strategy depends only on the current queue state

independent of all other events, the queue length process(Q1, Q2) is a Discrete Time Markov

Chain (DTMC). Consequently, the covert channel can be defined as a time varying channel

where the channel states{Si,2−i}, i ∈ {0, 1, 2} follow a hidden Markov process. The complete

transition matrix of this DTMC can be derived to show that the DTMC is aperiodic and positive

recurrent forλ < pp̂, wherep̂ = 1− p.

Mutual information rates of finite state Markov channels have been studied in [8], [15] for

the i.i.d. coding case. A formula for mutual information for any regenerative stochastic process

(including, in particular, for hidden Markov inputs over a countable-state space Markov channel)

is provided in [16]. However, the formula in [16] can only be numerically computed. In the

following subsections, we derive closed-form expressions for each of the cases discussed above.

1) Achievable rate under Case 1:Here we consider the case where the covert users have the

minimal possible information about the legitimate users so as to be able to transmit at positive

rate. We assume that the covert users only know that the covert channel is a arbitrarily varying

time-varying channel which is composed of a Z-channel (with known crossover probabilitypc)

and an error-free channel. Also, note that to retain the stability of the legitimate user queues and

hence ensure covertness, Alice cannot jam packets indiscriminately, but has to ensure that no

more than a certain fractionβ of the packet transmissions are jammed. Since Alice does not have

channel state information, she employs the policyµ(St(k)) = q, for all active time-slotst(k). In

other words, Alice uses a state-independent i.i.d. jamming policy with jamming probabilityq.

Since the queue length process(Q1, Q2) is a Discrete Time Markov Chain (DTMC), we can

solve the global balance equations and sum over the probabilities of the relevant states to arrive

at the following steady state invariant probabilities for the covert channel,

P (S0,2) = π0,2 =
(

pq̂−λ
pq̂

)
pp̂q̂−λ

pp̂q̂−λ+λp̂

P (S1,1) = π1,1 = 2
(
1− λ

pp̂q̂

)
λp̂

pp̂q̂−λ+λp̂

P (S2,0) = π2,0 = 1− π0,2 − π1,1,

(7)
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where q̂ = 1 − q. Further, with this i.i.d. jamming strategy, the stability constraint leads to

the inequalityq ≤ β (recall β is an upper bound on the fraction of transmissions that can be

jammed). We can now calculateβ from the global balance equations in terms of the offered

load α = λ/pp̂ of the queues as follows,

β = 1− α.

to ensure that the0 < πi,2−i < 1 for i ∈ 0, 1, 2 in Equation (7).

Hence the state-independent i.i.d. coding strategy for Case 1 is to find the optimal value of

q. To obtain an expression for the capacity of this arbitrarily varying channel, we will first

decompose the channel into two statesS1,1 andS2,0 and calculate the channel capacities for a

channel fixed at each of these states. Note that we exclude the stateS0,2 since there are no active

time-slots in when the channel is in this state.

We define the channel-state dependent active time-slotsM
(i,2−i)
k = I(at least one of the users

transmits in time-slotk|Sk = Si,2−i). Analogously, we defineA(i,2−i)
T = {k : M

(i,2−i)
k = 1} to be

the active time-slots when the channel is at stateSi,2−i.

Accordingly, define

Ci,2−i(S) = lim inf
T→∞

sup
x|AT |∈ST

1

T

|AT |∑
k=1

I(xt(k); yt(k)|St(k) = Si,2−i)

to be the i.i.d. coding capacity of the channel fixed at stateSi,2−i. Here the constraint set

ST = {x|AT | : m(x|AT |) ≤ βAT}, wherem(x|AT |) is the number of ‘1’ symbols2 in the vector

x|AT |.

The covert channel, given channel activity, is a zero-error channel at stateS1,1. Observe that

P (M
(1,1)
i = 1) = p.

Hence, from the strong law of large numbers,

lim
T→∞

|AT |(1,1)

T
→ p.

ThusC1,1 = 1.p = p.

In order to determineC2,0, we first derive the expression for the capacityCz(β, pc) for a

Z-channel with binary codewords3 constrained such that the number of ‘1’ symbols be less than

2We henceforth denote the number of ‘1’ symbols in a codeword as the Hamming weight of the codeword.

3Note that we consider the Z-channel only over the active time-slots, thus we restrict the alphabet to the set{0,1}.
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or equal toNβ, and crossover probabilitypc. From [9], the rateRz(u, pc) of the Z-channel with

cross-over probabilitypc for i.i.d. codes of Hamming weightNu is given by,

Rz(u, pc) = H(up̂c; 1− up̂c)− uH(p̂c, pc) (8)

which is maximized at

umax =
p

pc/p̂c
c

1 + p̂cp
pc/p̂c
c

wherep̂c = 1− pc. Also, Rz(u, pc) is monotonically increasing foru ≤ umax and monotonically

decreasing foru > umax. Thus the i.i.d. achievable capacity under the constrained Hamming

weight condition for Alice is

Cz(β, pc) = H(γp̂c; 1− γp̂c)− γH(p̂c, pc) (9)

whereγ = min(umax, β). The optimality of i.i.d. coding for the weight constrained Z-channel

follows by using similar steps as in Equations (23)–(26).

When the covert channel is in stateS2,0 and the legitimate channel is active (with probability

P (M
(2,0)
i ) = 1 − p̂2), the corresponding channel has the capacity of the Z-channel under the

weight-β codeword constraint — thusC2,0 = Cz(β, pc)(1− p̂2).

Then following the method outlined to derive the capacity for Arbitrarily Varying Channels

from [5], the covert channel capacity can be lower-bounded as,

C ≥ Cz(β, pc)((1− p̂2)π2,0 + π1,1p). (10)

We omit the details of the proof here for brevity but the intuition is as follows: since the Z-

channel has lower capacity than the zero-error channel the optimal codebook for the Z-channel

can be used over a channel switching between the Z-channel and zero-error channel to achieve

rateCz(β, pc). Note that this codebook is transmitted only over the active time-slots which exists

((1− p̂2)π2,0 + π1,1p) fraction of the time. Hence the total rate is thinned by this fraction.

2) Achievable rate under Case 2:If in addition to knowing that the time-varying covert

channel is composed of a Z-channel and a zero-error channel, the covert users also know that

the user queuesQi have Bernoulli arrivals with rateλ and the transmission attempt probability

is p, then one can achieve higher rates than that in (10) as shown below.

Since the covert users now knowλ and p, they cancomputeπ2,0 = P (Q1 > 0, Q2 > 0)

from the expression in Equation (7). Further, the covert users can also computepc (the crossover
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probability) to be

pc =
p2

1− p̂2
(11)

Assume that Alice has a large interleaver present at the transmitter output and the Bob has the

corresponding de-interleaver before the receiver input. Now the composite channel consisting of

the interleaver, the covert channel and the de-interleaver will be in stateS2,0 with probability

π2,0 and will have a crossover probability ofpc given that the channel is in stateS2,0. Therefore

this composite channel may be considered to be a uniform Z-channel with crossover probability

p1
c = π2,0pc with rate Rz(q, p

1
c) where q is Alice’s jamming probability. Note thatπ2,0 and

thereforep1
c depends onq and that we must haveq ≤ β as before to ensure stability of the

legitimate user queues.

Hence, when the statistical information of the legitimate user queues is available with the

covert users, the covert capacityC can be lower bounded by,

C ≥ max
0<q<β

Rz(q, π2,0pc)(1− p̂2). (12)

3) Achievable rate under Case 3:In the previous subsections, Alice was constrained to

communicate with only partial information about the state of the covert channel.

In the case where complete channel state knowledge is available to Alice, an alternate lower

bound can be derived. Consider a coding scheme where Alice uses separate codebooks for each

channel state. Let the probability of Alice transmitting a ‘1’ in stateS2,0 be q as before, while

the probability of Alice transmitting a ‘1’ in stateS1,1 be w. Finally, Alice does not transmit in

the inactive queue state ofS0,2. In other words, for each active time-slott(k),

µ(St(k)) =

 q if St(k) = S2,0

w if St(k) = S1,1

(13)

Using the same arguments as in Section III, steady state probabilities of the queues can be

calculated as,

π0,2 =
p(1− w)− λ

p(1− w)
P (Q1 = 0) (14)

π1,1 = 2

(
1− λ

pp̂q̂

)
(1− P (Q1 = 0)) (15)

π2,0 = 1− π0,2 − π1,1 (16)

12



where

P (Q1 = 0) =
(1− w) (−p + p2 (1− q) + pq + (1− p) p α)

p2 (1− q) (1− w) + (1− p) p (q − w) α + p (1− q) (−1 + w + (1− p) p α)

Then the covert rate can be simply seen to be the sum of the rates of the Z-channel and the

zero-error channel weighted by the probabilities that the covert channel is in these states. The

rate can then be maximized over possible values ofq andw so as to retain the stability of the

steady-state queue lengths at the legitimate users as follows.

Theorem 1:The achievable rate of the covert channel as described in Section II, over all i.i.d.

jamming policies over a legitimate channel with attempt probabilityp and offered loadα, with

complete channel state(Si,2−i) information at the sender and receiver is given by:

C2(p, α) ≥ max
0<q<1−α, 0<w<1−α+pα

π2,0(1− p̂2)Rz(q, pc) + π1,1pH(w). (17)

IV. U PPER BOUND ONCOVERT CAPACITY: THE TWO USERCASE

Upper bounds on capacity allow us to gauge the usefulness of the achievable strategies (namely

i.i.d. coding) presented before. As detailed before, the channel between Alice and Bob is source

dependent and has infinite memory. Thus, obtaining a good upper bound is difficult. In this

section, we derive an outer bound on the covert capacity of this system over the set of all

ergodic jamming policies that Alice may employ. This ergodicity constraint on Alice’s policy

renders the problem tractable, and allows us to use relatively simple mathematical tools to arrive

at upper bounds. To obtain an upper bound, we first decouple the state of the covert channel from

the coding strategy by considering avirtual parallel channel. We then prove that the capacity of

this virtual covert channel is always greater than that of the true covert channel and then bound

it as a weighted sum of the capacities of a Z-channel and a rate 1 error free channel.

Theorem 2:The covert capacityC∗ for a slotted ALOHA system described in Section II

achievable using ergodic jamming can be upper bounded as,

C∗ ≤ Cz(β̄)(1− p̂2) + p

(
1− p (1− α) α− α2

1− p α

)
(18)

whereCz(β̄) is the capacity of the Z-channel with crossover probabilitypc = p2/(1− p̂2) using

codewords constrained to have no more thanβ̄ fraction of 1’s, with

β̄ = 1− α +
1− pα

(1− p)α2
− (1− p)α2

1− pα
.

13
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Fig. 3. The Cindy-Doug virtual channel Fig. 4. The traditional Z-channel

Proof: Consider avirtual channel(Q∗
1, Q

∗
2), defined as a stationary and ergodic process, so

that (Q∗
1, Q

∗
2) = (Q1, Q2). In other words, for every legitimate packet transmitted over the true

channel, there is a virtual packet transmitted over the virtual channel [see Figure 3]. Let us

assume that Cindy wishes to communicate with Doug covertly by jamming over this channel

(Q∗
1, Q

∗
2), but that Cindy’s transmit policy(jamming/not jamming any active time-slot)does not

affect the dynamics of this channel. Further, by construction, we couple the dynamics ofQ∗
1 and

Q∗
2 to those ofQ1 andQ2 which are governed by mutual collisions, transmissions and jamming

over thereal channel, (over which Alice and Bob communicate).

Let Alice’s optimal ergodic strategy beA∗, which leads to a covert capacity ofC∗. From the

ergodicity ofA∗ this results in steady state probabilitiesπ∗i,2−i, i ∈ {0, 1, 2} corresponding to

statesSi,2−i, i ∈ {0, 1, 2} for (Q1, Q2), and by our coupling construction for(Q∗
1, Q

∗
2) as well.

Not only can Cindy replicate Alice’s strategies, but since she can choose from a wider set of

coding strategies (since that does not affect the dynamics of the virtual channel), the capacity

that Cindy can achieveC∗
c ≥ C∗.

Although the codewords inA∗ might span across different states in general, the ergodicity

constraint on the optimal policy implies that the fraction of time-slots jammed by Alice in each

stateSi,2−i converges to a constantβ∗i,2−i defined as

β∗i,2−i = lim
n→∞

1

n

n∑
k=1

I{Sk = Si,2−i}I{channel is active at time-slotk}I{Alice transmits a ‘1’}

14



whereI{} is the indicator function and as before,St denotes the channel state at time-slott.

Consequently we will apply the same codeword weight constraintβ∗i,2−i to the state-dependent

code that Cindy uses to communicate over the virtual channel at each stateSi,2−i.

Further, note that given queue state information, the Cindy-Doug covert channel is adiscrete

memorylesstime-varying channel with state side information at transmitter and receiver.

Consider a(2nR, n) code X̂n = {xi(w)}n
1 over the ternary alphabet{0, 1, φ} transmitted

over this channel with source alphabetW corresponding to a state sequence (trajectory)Sn =

{Si}n
1 , S

i ∈ {Sk,2−k, k ∈ {0, 1, 2}} and received sequencêYn = {yi(w)}n
1 . Then following [20],

we can defineCc to be the capacity of the Cindy-Doug channel andCi,2−i(β
∗
i,2−i) to be the of

the Cindy-Doug channel fixed at a stateSi,2−i under codeword constraintβ∗i,2−i as

Cc = lim inf
n→∞

sup
Xn∈Sn

1

n
I(W ;Yn,Sn) (19)

and

Ci,2−i(β
∗
i,2−i) = lim inf

n→∞
sup

Xn:m(Xn)≤nβ∗i,2−i

1

n

|A(i,2−i)
n |∑
k=1

I(xt(k); yt(k)|St(k) = Si,2−i) (20)

respectively. We will now express the capacity of the Cindy-Doug channelCc in terms of the

individual Ci,2−i(β
∗
i,2−i) values.

Note that

nR ≤ I(W ;Yn,Sn) (21)

= I(W ;Yn|Sn) + I(W ;Sn) (22)

≤ I(Xn;Yn|Sn) (23)

= H(Yn|Sn)−H(Yn|Xn,Sn) (24)

≤
n∑

i=1

H(yi|Si)−
n∑

i=1

H(yi|xi, S
i) (25)

≤
n∑

i=1

I(xi; yi|Si). (26)

The inequality in (23) follows from the assumption that the source and the state sequence

are mutually independent, soI(W ;Sn) = 0, and the data processing inequality. We have

inequality (24) as a consequence of the discrete memoryless nature of the channel and the

inequality H(Yn|Sn) ≤
∑n

i=1 H(yi|Sn) ≤
∑n

i=1 H(yi|Si). Also observe thatI(φ; φ|Si) = 0.

15



Dividing both sides of (26) byn and using the ergodic strong law of large numbers and the

definitions in Equation (20), we arrive the following bound for the capacity of the overall system

with Cindy communicating to Doug:

Cc ≤
∑
i,2−i

Ci,2−i(β
∗
i,2−i)π

∗
i,2−i. (27)

We note that a similar expression as (23) is given as part of the converse proof of capacity

for asymptotically block memoryless time varying channels by Médard and Goldsmith [12]. We

note in passing that the sum rate in Equation (27) can be achieved by Cindy switching between

codebooks corresponding to the capacity achieving code for each stateSi,2−i without affecting

the channel process(Q1, Q2) and hence the inequality in Equation (27) can be replaced by the

equality.

Next, we obtain outer bounds forC2,0(β
∗
2,0) andπ∗2,0. Recall that for eachT , A

(2,0)
T (ω) = {i :

1 ≤ i ≤ T, M
(2,0)
i = 1}. From the strong law of large numbers, we have that

lim
T→∞

|AT |(2,0)

T
→ 1− p̂2.

Observe that our system model implies that for any1 ≤ j ≤ T , a transmitter Cindy, transmitting

to receiver Doug over the covert channel conditioned on the event that the legitimate channel

exists in stateS2,0, can choose to jam a packet (i.e. transmit symbol ‘1’) if and only ifj ∈ A
(2,0)
T .

Further, given that we are already in stateS2,0, the jamming setA(2,0)
T is independent of the

jamming policy (codebook) employed by Cindy.

Now, for any j ∈ A
(2,0)
T , observe that the covert channel (between Cindy and Doug) is a

Z-channel with crossover probabilitypc, wherepc = p2

1−p̂2 . Thus by concatenating the time-slots

in A
(2,0)
T (and ignoring{1 ≤ j ≤ T}\A(2,0)

T ) and employing a Z-channel coding strategy over

A
(2,0)
T , it follows that for anyε > 0, ∃T large enough such that,

C2,0(β
∗
2,0) ≤ (Cz(β

∗
2,0)− ε)

|A(2,0)
T |
T

→ Cz(β
∗
2,0)(1− p̂2)

whereCz(β
∗
2,0) is the channel capacity of a Z-channel with weight constraintβ∗2,0. For the Z-

channel, it is well known that i.i.d. coding maximizes capacity [4], and hence the rate in stateS2,0

is upper bounded by(1− p̂2)Cz(β
∗
2,0). In stateS1,1, given that there is activity in the legitimate

channel, the channel behaves like an ideal channel (thus a trivial upper bound onC1,1(β
∗
1,1) is 1),
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and the maximal rate inS0,2 is zero. Thus, using (27) the upper bound onC∗ can be rewritten

as

C∗ ≤ Cc ≤ (1− p̂2)Cz(β
∗
2,0)π

∗
2,0 + pπ∗1,1. (28)

Further (see (41) in Appendix), we haveπ∗2,0 ≥ π̄2,0, where π̄2,0 is the steady-state proba-

bility that both user queues have packetswhen no jamming is applied.From straightforward

computations, we have

π∗2,0 ≥ π̄2,0 =
(1− p) α2

1− p α
. (29)

Hence,

π∗1,1 ≤ π∗1,1 + π∗0,2 ≤ 1− π̄2,0. (30)

Thus, we have that

π∗1,1 ≤ 1− (1− p) α2

1− p α
. (31)

The value ofβ∗2,0 depends on the strategyA∗ that Alice chooses, however we will upper bound

it by β∗2,0 ≤ β̄ as follows. From our assumptions of ergodicity and stability of the legitimate

user queues we have that

Nλ ≤ Npp̂π∗2,0(1− β∗2,0) + Npπ∗1,1

≤ Npp̂π∗2,0(1− β∗2,0) + Np(1− π̄2,0).

Thus, using the value of̄π2,0 from Equation (29), we can upper boundβ∗2,0 by

β∗2,0 ≤ β̄ = 1− λ

pp̂π∗2,0

+
1

π̄2,0

− π̄2,0 (32)

The result now follows by observing thatπ∗2,0 ≤ 1, Equations (30), and (28).
�

We present numerical results for the achievable bound and compare it against the upper bound

in Figures 5–10. The upper bound is loose everywhere except at values ofα very close to 1.

Observe that the bound is asymptotically tight in the sense that as the offered loadα → 0, both

the upper bound and the achievable rate tend to 0.

The bound also improves with smaller values of the transmission attempt probabilityp. These

observations can be explained by noting that we have boundedπ∗2,0 by 1 in the Cz(β̄) term of

the upper bound. For smaller attempt probabilities,π∗2,0 is closer to1, even when the normalized

load α to the queues is small. Asp increases, the queues atQ1 and Q2 are cleared promptly

and hence the value ofπ∗2,0 is much lesser than 1.
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Fig. 5. Upper bound and achievable rate, p = 0.01 Fig. 6. Upper bound and achievable rate, p = 0.2

Fig. 7. Upper bound and achievable rate, p = 0.4 Fig. 8. Upper bound and achievable rate, p = 0.6

Fig. 9. Upper bound and achievable rate, p = 0.8 Fig. 10. Upper bound and achievable rate, p = 0.9

V. COVERT CHANNELS WITH n LEGITIMATE USERS

Considern legitimate user queues over a common collision channel, each with homogeneous

(Bernoulli) packet input rateλ. In this section we present an asymptotically (in offered load)

tight upper bound to the channel capacity of the covert users as a generalization of the results

in Sections III and IV.
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A. Achievable Rates: Then User Case

As reasoned in Section III, while the covert channel depends on the state of the queue, the

capacity is affected by the number of queues among then users that have packets to transmit in

their buffers. For a state wherek of then users have packets in to transmit (non-empty buffers),

we define the crossover probability of the corresponding Z-channel as

p(k)
c =

1− (kpp̂k−1 + p̂k)

1− p̂k
. (33)

It follows thatp(k−1)
c ≤ p

(k)
c ∀k ∈ {1, 2, . . . n}. Correspondingly, we defineπk,n−k to be the steady

state probability of the channel being in any stateSk,n−k wherek users out ofn have packets

to transmit. Note that for each of the three cases of increasing covert user side-information in

Section III-B, the achievable rate calculation follows the same techniques as for the two user

case. Due to constraints of space, we merely present the expressions for then user case with

comments where necessary.

1) Achievable rate under Case 1:Recall from Section III-B that in this case the covert users

only know the offered loadαn = λ
pp̂n−1 at each legitimate user and assume that the channel is

a time varying Z-channel with given crossover probabilitypc. The covert channel capacity can

then be bounded as

C ≥ Cz(βn, pc)
n∑

k=1

(1− p̂k)πk,n−k

whereβn = 1− αn.

2) Achievable rate under Case 2:In this case, the covert user views the channel as a composite

Z-channel with effective crossover probability

p̃c =
n∑

k=1

πk,n−kp
(k)
c

resulting in an achievable rate of

C ≥ max
0≤q≤βn

Rz(q, p̃c)(1− p̂n).

3) Achievable rate under Case 3:We define the covert user jamming probability vector

q = (q1, q2, . . . qn) whereqk is the probability that Alice jams a transmission when the system

is in stateSk,n−k. Then, the achievable covert rate under i.i.d. strategy for Case 3 is,

Cn(p, α) = max
q:∀k, πk,n−k∈[0,1],P

k πk,n−k=1

n∑
k=1

πk,n−k(1− p̂k)Rz(qk, p
(k)
c ).
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B. Upper Bound: Then User Case

Analogous to the proof in Section IV, we define a weight constraintβ∗k,n−k that applies on

codewords that Alice (and therefore Cindy) can use for then user case. The values ofβ∗k,n−k

depends upon the optimal strategy that Alice uses. However, we shall upper bound them as in

the previous section to obtain an upper bound for the capacity.

The corresponding Z-channel capacities are denoted byC
(k)
z (β∗k,n−k). We trivially bound

βk,n−k ≤ 1 for all k < n. For sake of uniformity of notation fixC(0)
z = 0 andC

(1)
z = H(1) = 1.

Also, following Equation (27), the capacity of the overall channel with Cindy communicating

to Doug is bounded by

C∗
c ≤

n∑
k=0

π∗k,n−kC
(k)
z (β∗k,n−k)(1− p̂k)

For the general case ofn legitimate users, the Markov chain of the states of the queues of

all the legitimate users isn-dimensional and therefore difficult to analyze. Hence we bound

the values ofπ∗k,n−k for any transmission strategy by Alice. Consider the probabilitiesπ̄k,n−k

denoting the steady state distribution of the queueswithout the presence of any covert user.

Using the same reasoning as (41) we have that

π∗n,0 ≥ π̄n,0 (34)

π∗i,n−i ≤ π̄i,n−i ∀i < n (35)

Solving the global balance equations forπ̄n,0, we have

π̄∗n,0 ≥
[
1 +

pp̂n−1

λ(1− (n− 1)pp̂n−2)

]−1

. (36)

Also, since
n∑

j=0

π∗j,n−j = 1− π∗n,0 ≤ 1− π̄n,0,

we have that,
n−1∑
k=0

π∗k,n−kC
(k)(1)z ≤ (1− π̄n,0)C

(1)
z .

We now boundβ∗n,0 in a technique similar to that used in Section IV. Observe that for stability

we must have that

λ ≤
n∑

i=0

π∗n−i,ipp̂
n−i−1(1− β∗n−i,i).
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Trivially boundingβ∗n−i,i’s for i > 0 by 1, and using the inequalities in Equations (34), we bound

β∗n,0 ≤ β̄n = 1− λ

pp̂n−1
+

∑n
i=1 π̄n−i,i(n− i)p̂−i

π̄n,0

(37)

Thus Alice’s covert capacity is bounded by,

C ≤ Cc

≤
n∑

k=1

πk,n−kC
(k)
z (β∗k,n−k)(1− p̂k)

≤
n−1∑
k=0

π∗k,n−kC
(k)
z + π∗n,0C

(n)
z (β∗n,0)(1− p̂n)

≤ (1− π̄n,0) + C(n)
z (β̄n)(1− p̂n)

Theorem 3 follows from the inequality above and (36).

Theorem 3:The covert capacityC(n), for a slotted ALOHA system described in Section II

with n legitimate users, achievable using ergodic jamming can be upper bounded as,

C(n) ≤ (1− π̄n,0) + C(n)
z (β̄n)(1− p̂n) (38)

where C
(k)
z (β̄n) is the capacity of the Z-channel for codes constrained to have less thanβ̄n

fraction of ‘1’s in each codeword corresponding to a crossover probability ofp
(k)
c .

Observe that as the offered loads approaches unity (i.e. asλ → pp̂n−1), eachπ̄i,n−i → 0 for

i < n in Equation (37) whileπ̄n,0 → 1. Thus β̄n → 0 and henceC(n)
z (β̄n) → 0. HenceC∗

converges to 0 as the load approaches 1, and is thus asymptotically tight to the i.i.d. coding rate

for the n user case.

VI. CONCLUSION

The setting studied in this paper is of two covert users - a transmitter and a receiver, communi-

cating with each other by exploiting the resources of a slotted ALOHA system. The illegitimate

pair communicate by jamming legitimate transmissions while striving to remain undetected by the

legitimate slotted ALOHA system. In this paper, we find that a closed-form characterization of

the information-theoretic capacity of the illegitimate communication system is extremely difficult,

and hence find lower and upper bounds on capacity. We employ i.i.d. coding strategies under

varying side-information assumptions to determine lower bounds. Next, we employ constrained
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decoupling arguments to determine upper bounds, and finally, we compare the upper and lower

bounds. We find that, in the limit when the offered load tends to unity (and the capacity to zero),

our upper and lower bounds coincide.

APPENDIX

Consider two sets of queue length processes(QU
1 , QU

2 ) and (QJ
1 , QJ

2 ), with identical arrival

processesAU
k (n) = AJ

k (n), k = {1, 2}, to each queue over any fixed interval of time-slots

n = 1, 2, . . . , N, and with identical initial state (i.e.QJ
1 (1) = QU

1 (1) and QJ
2 (1) = QU

2 (1)).

The process(QU
1 , QU

2 ) corresponds to the scenario where two users compete to access a shared

(slotted) channel andno covert jammingoccurs over this channel. In other words, collisions

occur over this channel only due to simultaneous attempts due to the two legitimate users. On

the other-hand,(QU
1 , QU

2 ) corresponds to the scenario where two users compete to access a

shared (slotted) channel andcovert jammingoccurs over this channel. Thus, collisions could

occur over this channel either due to collisions by these legitimate users, or due to a jammer

(Alice) who could employ an arbitrary jamming strategy. At each time-slot, for either scenario

(with or without jamming), we assume that each of the user attempts to transmit independently

with probabilityp, irrespective of whether the queue has packets or not. Note that when the queue

is empty, a decision to attempt does not affect the system dynamics. However, this enables us

to sample-path-wise couple the two queueing systems.

Consider any system sample path corresponding to a sequence of arrivals and transmission

attempts (which are identical to both(QU
1 , QU

2 ) and (QJ
1 , QJ

2 )). We first show that for alln, we

have
QU

1 (n) ≤ QJ
1 (n)

QU
2 (n) ≤ QJ

2 (n).
(39)

We see this by contradiction. Letl + 1 ∈ N, 1 ≤ l ≤ N be the first time slot where (39)

fails. In other words,QU
1 (l) ≤ QJ

1 (l) QU
1 (l) ≤ QJ

1 (l) and QU
2 (l) ≤ QJ

2 (l), but (without loss of

generality, say)QU
1 (l + 1) > QJ

1 (l + 1).

Since arrival and transmission attempts are identical in both the jammed and the unjammed

queues, if queueQJ
1 transmits a packet successfully (i.e. no collision occurs) the same should be

true for queueQU
1 . Thus,QU

1 (l+1) = QU
1 (l)+AU(l+1)−I{QU

1 (l) > 0} andQJ
1 (l+1) = QJ

1 (l)+

AJ(l + 1)− I{QJ
1 (l) > 0}. However, sinceQU

1 (l) ≤ QJ
1 (l), I{QU

1 (l) > 0} ≤ I{QJ
1 (l) > 0}, we
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haveQU
1 (l + 1) ≤ QJ

1 (l + 1) which leads to a contradiction of our hypothesis. Thus (39) is true

for all n.

The relation
N∑

n=1

1

N
I{QJ

1 (n) > 0, QJ
2 (n) > 0} ≥

N∑
n=1

1

N
I{QU

1 (n) > 0, QU
2 (n) > 0}. (40)

follows immediately from (39).

Considering the ergodic jamming policyA∗ used by the covert transmitter in Section IV, we

can use the ergodic theorem to conclude that asN →∞, (40) converges to,

π∗2,0 ≥ π̄2,0. (41)
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