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Abstract

This work derives bounds on the jamming capacity of a slotted ALOHA system. A systemwith
legitimate users, each with a Bernoulli arrival process is considered. Packets are temporarily stored at
the corresponding user queues, and a slotted ALOHA strategy is used for packet transmissions over the
shared channel. The scenario considered is that of a padvefrtusers that jam legitimate transmissions
in order to communicate over the slotted ALOHA channel. Jamming leads to binary signaling between
the covert users, with packet collisions due to legitimate users treated as (multiplicative) noise in this
channel. Further, the queueing dynamics at the legitimate users stochastically couples the jamming
strategy used by the covert users and the channel evolution.

By considering various i.i.d. jamming strategies, achievable jamming rates over the slotted ALOHA
channel are derived. Further, an upper bound on the jamming capacity over the chb®rgbdic
jamming policiess derived. These bounds are shown to be tight in the limit where the offered system

load approaches unity.
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. INTRODUCTION

A typical slotted ALOHA system [1], [3], [13] comprises of a collection of legitimate users
following a pre-arranged strategy to gain access to resources and communicate with each other.
Our work focuses on using jamming as an unconventional communication mechanism to achieve
a non-zero throughput in a slotted ALOHA system. In this mechanism, an illegitimate jamming
transmitter that has gained entry into a slotted ALOHA system jams legitimate transmissions,
and the resulting “collisions” in the system are then detected by an illegitimate jamming receiver.
Such a jamming-based communication strategy is parasitic in nature and can remain undetected
without proactive effort by the legitimate entities in the slotted ALOHA system. In this work,
we employ and information theoretic approach to determine upper and lower bounds on the
capacity of this jamming-based communication system, under the constraint that jacioesg
not result in instability of the legitimate user queues. It is intuitively clear that the with such a
constraint, the capacity of the jamming channel will converge to zero as the offered load (due
to legitimate users) approaches unity. Our bounds verify this intuition, and we show that both
the upper and lower bounds converge to zero as the offered load approaches unity.

A vast body of literature exists that studies the effect of illegitimate communication strategies
that exploit inherent weaknesses in conventional systems. Covert communication is one such
area of research where the goal of the illegitimate communication system is to exploit these
weaknesses while remaining undetected by the legitimate system. A covert channel is loosely
defined as an unintended or unauthorized communication path through a medium that violates the
security policy of that medium. Along the lines of our jamming-based communication system,
such channels are parasitic in nature, and reduce the capacity of the legitimate host channel
by interfering with its communication. More formally, in a top-level characterization of covert
channels, Kemmerer [11] states that necessary conditions for the existence of a covert channel
are: the presence of a global resource to which both the sender and the receiver have access, a
means of modifying that resource, and a method of synchronization between the receiver and the
sender. Interestingly, we find that our jamming-based communication system has characteristics
that resemble a covert communication system. Thus, we refer to communication between these
illegitimate users are covert communication.

The topic of covert channels has received considerable attention among researchers in secure



system design and secure source code design [6], [7], [14]. Existing results on covert channels
can be divided into two major categoriesorage channelgL8] andtiming channelsMoskowitz

and Kang [14] define a storage channel as a covert channel where the covert symbol alphabet
consists of asynchronous responses of a global resource (ACK/NACK responses from a processor,
success/failure of a packet transmission). Shieh [17] models covert channels as finite state graphs
to estimate the bandwidth (bit/s) of a covert storage channel. A covert timing channel encodes
by modulating the time intervals between successive responses [7], [10], [14]. The capacity of
timing channels was investigated by Anantharam and vef#l]. Subsequently, the capacity of
covert timing channels was investigated by Giles and Hajek [7], where the authors consider the
time interval information between successive transmissions of packets from a queue as a timing
channel. They model this channel as an information-theoretic game between a covert user who
attempts to modulate these inter-arrival times and a ‘jammer’ that introduces random delays
in the transmitted packets to arrive at boundsmmx — min and min — max rates of mutual
information in covert timing channels.

In the context of an ALOHA channel, the authors in [6] consider jamming based commu-
nication over a slotted ALOHA channel, where an FCFS based splitting algorithm is used for
contention resolution [19]. They consider a scenario with a large number of users (with the
aggregate arrival rate being Poisson with ratpackets per slot), and develop two protocols for
jamming based covert communication. In the procedures developed in [6], the covert transmitter
communicates by means of influencing the number of collisions that occur within the contention
resolution period, and the covert receiver uses a maximum likelihood decoder to determine
the number of collisions caused by the covert transmitter. They demonstrate through numerical
methods that the ALOHA system can support persistent interference by the covert user (using
the procedures developed in [6]) without causing user packet backlogs to drift to infinity, only

if the multi-access channel is lightly loaded £ 0.1).

A. Main Contributions

In this paper, our focus is on the fundamental capacity limits of the covert ALOHA channel
over the class of all ergodic jamming strategies. We study the information-theoretic capacity of
the covert system where legitimate users (where is any finite number) communicate over a

slotted ALOHA channel, and for any fixed offered load: (0, 1), subject to a stability constraint
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on the legitimate user queues. We first derive achievable jamming rates over the slotted ALOHA
channel by considering various i.i.d. jamming strategies, and where the covert user has varying
degrees of side-information on the channel state.

We next derive an upper bound on the jamming capacity of this channel over the class of
all ergodic covert strategies, subject to stability constraint on the legitimate user queues. The
dynamics of this system are complex because the jamming strategy of the covert user influences
the queueing dynamics of all the legitimate users, thus coupling the source (covert user) and the
channel state (the queue lengths of all the users). To obtain an upper bound, we first decouple the
state of the covert channel from the jamming strategy by consideringual parallel channel
(which is stochastically coupled with the true channel) along with a pawrafal covert users.
However, our construction is such that the dynamics of the virtual covert users do not modify
the dynamics of the virtual channel. Using our construction, we prove that the capacity of this
virtual covert channel is always greater than that of the true covert channel and then bound it
as a weighted sum of the capacities of a codeword-weight constrained Z-channel and a rate 1
error free channel. Further, we show that this upper bound is tight as the offered load approaches
unity.

Further details on our communication system model are given in the next section. In Section
lll, we present the achievable rates for jamming-based communication for a two-user system.
In Section IV, we develop an upper bound on capacity in the context of a two-user system, and

provide numerical results. We generalize the results tontluser case in Section V.

Il. SYSTEM MODEL

In our model, we first consider the case where two legitimate users and two covert users Alice
and Bob share the common medium using slotted ALOHA&ice wishes to transmit to Bob
without being detected by the system. Each legitimate user in this slotted ALOHA system is
associated with a queue, with independent and identically distributed (i.i.d.) Bernoulli packet
arrivals to each queue at rake

A slotted ALOHA system with two legitimate use€®, and(), is shown in Figure 1. With a

slight abuse of notation, we will usg;,: = 1, 2 to denote both the users and the corresponding

1We consider the generalization to theuser case in Section V.
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length of their queues. When the quelleis non-empty, Uset); attempts to grab a time-slot
with probability p. A time-slot; is said to beactiveif at-least one of the users transmits a packet
on the channel.

Collisions naturally occur in this system when both usgirsand @, attempt transmission. In
a regular slotted ALOHA system, such a collision is detected, and the colliding packet is then
retransmitted.

Alice exploits this aspect of the system to communicate covertly, choosing signals from a
binary alphabef'0’,'1’ }. For every ‘1’ that Alice wishes to transmit, she causes a collision by
jamming a transmission in the corresponding time-slot. Throughout this paper, we will distinguish
between the termsollision andjammingaccording to the following convention - lmpllision, we
will mean that an attempted packet transmission by either@s@r user(Q), is not successfully
received; whereas, a time-slot thataistiveis said to bgammedif Alice transmits a ‘1’ in that
time-slot.

The covert receiver (Bob) interprets each unsuccessful packet transmission as a ‘1’ transmitted
by Alice, and each successful transmission by the legitimate users in the system as a ‘0.
Neither Bob, nor the system can distinguish between collisions amongst the legitimate users
and transmissions that are jammed by Alice. This indistinguishability is essential for Alice’s
communication to remain covert. If Bob were granted the ability to learn to distinguish between
jamming and collision, so could the legitimate system, thus exposing the covert user.

Additionally, to remain covert, Alice must not transmit during idle states of the system. Also,



Alice’s jamming strategy must not make the overall system unsi2ble other words, Alice’s
jamming strategy should be such that the queue lengths of the legitimate users should not go to
infinity (a more formal description is provided in (3)). Alice’s jamming policy is illustrated in
Figure 2. The shaded time-slots in Figure 2 correspond to idle states when there is no activity
by the legitimate users of the channel, while the solid black time-slots represent collisions in
the system.

Let

M, = I{channel is active in time-sloti (1)

i.e. M; = 1 if at-least one of); or (), transmits a packet over the common channel. For each

T € 7+, we define theactive set

to be the random set of active time-slots; then the definition indicates that this is a random
set that depends upon the queue states and the attempt probabilities at each of the legitimate
user queues. However, for ease of notation, we shall drop timesubsequent references to this
random set.

The active time-slots are indexed by the functt¢f) = inf{k > 1 : |A;| = i} which denotes
the time-slot when the channel is active for thth time. Thecovert channels defined as the
jamming channel between Alice and Bob. Note however, that the codewords used by Alice over
this jamming channel are only transmitted (and received by Bob) over conset{iilige

For the purpose of rigor, assume that whenever the channel is idle, Alice transmifhas,
Alice’s codewords are strings from the alphaket1, ¢}. Next, we will defineS,, as the set of
codeword strings of infinite length that Alice can use to jam over the covert channel so that the
queues,, ), are stable and ergodic. Formally™ € S, are such that for eactk, ) € Z2,

and each sample path the limit

Jim 2 ST H(@1,@) = (D)) 3)

converges to a well-defined probability measure d&ér
We then define the projection (truncation) operat@roperating over all stringg™ of length

n > m such thatP,,(x") is a string of lengthn satisfying

(P (x"));, V1I<i<m.



where(a); is defined as theé-th element in vectoa.

Formally, let Sy be a set ofl” length strings derived frons,, under the projection operator
Py so that for allx” € Sy, 3x>® € S, such thatk? = Py (x>).

We can now define the (ergodic) information-theoretivert capacityover the active time-

slots as follows,

1
C(S) = liminf sup —I(x";y") 4
T—o0 xTESy
where the codeword vector’ = (z1,z,...,27), eachx; € {0,1,¢} transmitted by Alice is

received by Bob across the covert channelas The notion of the constraint sets is crucial to
our definition of covert capacity since Alice and Bob need to ensure that they remain covert by
coding such that the legitimate users are not infinitely backlogged.

Recall that we considered tlyealphabet to denote that Alice does not transmit anything over
the timeslot corresponding to since the channel is idle at those timeslots. Bob realizes that the
channel is idle and does not expect transmission by Alice. Hence the capacity in Equation (4) is

C(8) = it sup. STl ) (5)
wherex!7l = (zy1), Ty2), . . ., Te(ag)) T € {0, 1} is the effective codeword vector transmitted
by Alice and received by Bob agl“7l. We shall use this definition of capacity in the rest of
this paper.

This paper derives analytic expressions that upper and lower bound the capacity of this covert
system. This capacity is less than one bit per transmission because the channel between Alice
and Bob is not ideal. An error in Bob’s interpretation occurs when there is a collision amongst
the legitimate users in the system. A collision amongst legitimate users can only occur when
more than one of them has a packet to transmit. Thus, conditioned on the event that multiple
users have packets to transmit and that there is activity in the channel, the covert channel between
Alice and Bob behaves as a Z-channel [4], [9] (see Figure 4).

When only one of the two legitimate users has packets, there are no collisions in the legitimate
channel, and the covert channel reduces to an ideal error-free channel. When none of the

legitimate users have packets, no transmission is possible.



[1l. A CHIEVABLE RATES FOR THECOVERT CHANNEL: THE TwO USER CASE
A. Capacity

The covert channel is source dependent because the jamming strategy modifies the queues
Q;,1=1,2. It also has memory, and is constrained to ensure that the legitimate system remains
stable. Conventional single letter characterizations for capacity (used for discrete memoryless
channels) cannot be used in this context and hence a closed form expression in terms of channel
parameters is difficult to obtain. The next sections investigate achievable rates for this channel
under i.i.d. jamming strategies, and an upper bound is then used to motivate this i.i.d. jamming

strategy.

B. Li.d. Jamming Strategies

We define the following setSy, = {(Q1 =0,Q2 = 0)}, S11 = {(Q1,Q2) : Q1 =0, Q2 >
0} U{(@1,Q2) : Q1 >0, Q2 =0} and Sz = {(Q1,Q2) : Q1 > 0, Q2 > 0}. In other words
whenk of the 2 queues are backlogged, the prodégs).) is said to be in staté . .. When
the queue length proce$®);, Q);) € S2 and the channel is active, the covert channel reduces
to an equivalent Z-channel (see Figure 4), while for stéafgs Q2) € S11 when the channel is
active, the covert channel reduces to a zero-error channel.

We consider three cases of increasing degrees of side information, regarding the legitimate
users, being available at the covert transmitter and receiver:

Case 1:Covert users know offered load = piﬁ, wherep = 1 — p, and the Z-channel crossover
probability p. but have no information about the statistics of the queuing pro@@ssy-).

Case 2:Covert users know that the user quedgshave Bernoulli inputs with raté and i.i.d.
attempt probabilityp.

Case 3:Covert users know the queue state prodggs ()») completely.

Let us denote the channel state in a time-slby S*. We consider coding/jamming policies
described by a map : C — [0, 1] where(C is the set of channel states. Alice, then jams (i.e.
transmits a ‘1’) a transmission in an active time-gigt) when the channel is in stat&®) ¢ C
with probability ;1(S**)) independent of all other events. In other-words, given the channel state,

Alice uses a codebook that has been generated in an i.i.d. manner. Consequently, the expression



for capacity achievable over such i.i.d. strategies follows from Equation (5) as

1 |Ar]

C(S) =liminf sup = Z I(z!®); 4t ), (6)
T—o0 X‘AT‘GST T =

Observe that since the arrival rates at the queues are Bernoulli, the transmission attempt probabil-
ities of both users are i.i.d., and Alice’s coding strategy depends only on the current queue state
independent of all other events, the queue length pro@ess).) is a Discrete Time Markov

Chain (DTMC). Consequently, the covert channel can be defined as a time varying channel
where the channel statdss;»,_;},7 € {0, 1,2} follow a hidden Markov process. The complete
transition matrix of this DTMC can be derived to show that the DTMC is aperiodic and positive
recurrent for\ < pp, wherep =1 — p.

Mutual information rates of finite state Markov channels have been studied in [8], [15] for
the i.i.d. coding case. A formula for mutual information for any regenerative stochastic process
(including, in particular, for hidden Markov inputs over a countable-state space Markov channel)
is provided in [16]. However, the formula in [16] can only be numerically computed. In the
following subsections, we derive closed-form expressions for each of the cases discussed above.

1) Achievable rate under Case Here we consider the case where the covert users have the
minimal possible information about the legitimate users so as to be able to transmit at positive
rate. We assume that the covert users only know that the covert channel is a arbitrarily varying
time-varying channel which is composed of a Z-channel (with known crossover probabjlity
and an error-free channel. Also, note that to retain the stability of the legitimate user queues and
hence ensure covertness, Alice cannot jam packets indiscriminately, but has to ensure that no
more than a certain fractiofl of the packet transmissions are jammed. Since Alice does not have
channel state information, she employs the poli¢g**)) = ¢, for all active time-slotg (k). In
other words, Alice uses a state-independent i.i.d. jamming policy with jamming probapility

Since the queue length procg$3,;, 22) is a Discrete Time Markov Chain (DTMC), we can
solve the global balance equations and sum over the probabilities of the relevant states to arrive

at the following steady state invariant probabilities for the covert channel,

_ _ pg—A DG—A
P(Sp2) =mo2 = (Z,—q> Y

_ _ A \p
P(Si))=my = 2 (1 - z%) PBIATY (1)
P(Sz,o) =T20 = 11— 70,2 — 71,1,



where § = 1 — ¢. Further, with this i.i.d. jamming strategy, the stability constraint leads to
the inequalityq < g (recall g is an upper bound on the fraction of transmissions that can be
jammed). We can now calculate from the global balance equations in terms of the offered

load a = \/pp of the queues as follows,
6=1-a.

to ensure that thé < m;,_; <1 for i € 0,1, 2 in Equation (7).

Hence the state-independent i.i.d. coding strategy for Case 1 is to find the optimal value of
g. To obtain an expression for the capacity of this arbitrarily varying channel, we will first
decompose the channel into two statgs and .S, and calculate the channel capacities for a
channel fixed at each of these states. Note that we exclude thesgtasence there are no active
time-slots in when the channel is in this state.

We define the channel-state dependent active time-3Igfs ' = I(at least one of the users
transmits in time-slotk|S¥ = S;,_;). Analogously, we definel!"”>™" = {1 : M*™ = 1} to be
the active time-slots when the channel is at state ;.

Accordingly, define

[Ar|
Cig—i(S) =liminf sup Z I(%ﬁ(k); yt(k)‘St(k) = Sio-i)
T—oo x‘AT‘EST T 1

to be the i.i.d. coding capacity of the channel fixed at stéte ;. Here the constraint set
Sy = {xArl m(xlArl) < BAr}, wherem(x!471) is the number of ‘1’ symbofsin the vector

The covert channel, given channel activity, is a zero-error channel atstatébserve that

MY =1) =p.

1

Hence, from the strong law of large numbers,

| Ap|™Y)
I

Thus 0171 =1.p=np.
In order to determine’,,, we first derive the expression for the capaadity(s,p.) for a

Z-channel with binary codeworélgonstrained such that the number of ‘1’ symbols be less than

2We henceforth denote the number of ‘1’ symbols in a codeword as the Hamming weight of the codeword.

3Note that we consider the Z-channel only over the active time-slots, thus we restrict the alphabet to{h&} set
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or equal toN 3, and crossover probability.. From [9], the rateR, (u, p.) of the Z-channel with

cross-over probability,. for i.i.d. codes of Hamming weighW is given by,

Rz(u7pc> = H(upAc; 1 - upAc) - UH(pAmpc) (8)
which is maximized at R
pc/pc
__ be
Umaz = A—/ﬁ
1 + pcpcc (&

wherep,. = 1 —p.. Also, R, (u, p.) is monotonically increasing far < w,,,, and monotonically
decreasing for, > wu,,... Thus the i.i.d. achievable capacity under the constrained Hamming

weight condition for Alice is

Cz(ﬁapc) = H('YpAc; 1- 'YPAC) - ’yH(pAc,pc) (9)

where~y = min(umq, 3). The optimality of i.i.d. coding for the weight constrained Z-channel
follows by using similar steps as in Equations (23)—(26).

When the covert channel is in statg, and the legitimate channel is active (with probability
P(Mi(z’o)) = 1 — p?), the corresponding channel has the capacity of the Z-channel under the
weight3 codeword constraint — thuS, o = C. (3, p.)(1 — p?).

Then following the method outlined to derive the capacity for Arbitrarily Varying Channels

from [5], the covert channel capacity can be lower-bounded as,

C > C.(B,p)((1 = p*)ma0 + m11D). (10)

We omit the details of the proof here for brevity but the intuition is as follows: since the Z-
channel has lower capacity than the zero-error channel the optimal codebook for the Z-channel
can be used over a channel switching between the Z-channel and zero-error channel to achieve
rateC. (5, p.). Note that this codebook is transmitted only over the active time-slots which exists
((1 — p*)ma0 + m1,1p) fraction of the time. Hence the total rate is thinned by this fraction.

2) Achievable rate under Case 4f in addition to knowing that the time-varying covert
channel is composed of a Z-channel and a zero-error channel, the covert users also know that
the user queue®; have Bernoulli arrivals with raté and the transmission attempt probability
is p, then one can achieve higher rates than that in (10) as shown below.

Since the covert users now knowand p, they cancomputer, o = P(Q1 > 0, Q3 > 0)

from the expression in Equation (7). Further, the covert users can also comthie crossover

11



probability) to be
p2

:—1_132

Assume that Alice has a large interleaver present at the transmitter output and the Bob has the

Pe (11)

corresponding de-interleaver before the receiver input. Now the composite channel consisting of
the interleaver, the covert channel and the de-interleaver will be in Statevith probability
9,0 and will have a crossover probability pf given that the channel is in statg ,. Therefore
this composite channel may be considered to be a uniform Z-channel with crossover probability
pL = maop. With rate R.(q,pl) where ¢ is Alice’s jamming probability. Note that,, and
thereforep! depends ony and that we must have < 3 as before to ensure stability of the
legitimate user queues.

Hence, when the statistical information of the legitimate user queues is available with the

covert users, the covert capacity can be lower bounded by,

C > max R,(q,mp:)(1 — p°). (12)

T 0<q<p

3) Achievable rate under Case 3n the previous subsections, Alice was constrained to
communicate with only partial information about the state of the covert channel.

In the case where complete channel state knowledge is available to Alice, an alternate lower
bound can be derived. Consider a coding scheme where Alice uses separate codebooks for each
channel state. Let the probability of Alice transmitting a ‘1’ in statge be g as before, while
the probability of Alice transmitting a ‘1’ in stat8, ; bew. Finally, Alice does not transmit in

the inactive queue state 6f ,. In other words, for each active time-slgt),

if St =3
u(s®) = ¢ ° (13)
w if St(k) = 8171
Using the same arguments as in Section lll, steady state probabilities of the queues can be

calculated as,

op(l—w) — A _
o2 = Toi—w) P(Q1=0) (14)
= 2 (1 - ﬁ) (1- P(@Qi =) (15)
ppq
Moo = 1—moo— i1 (16)
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where

o (1-w) (-=p+p* (L —q)+pg+(1-p)pa)
P(Ql - O) - .2
pPl-qg(l-w+-pplg-wat+tp(l-q (-1+w+(1-p) pa)
Then the covert rate can be simply seen to be the sum of the rates of the Z-channel and the

zero-error channel weighted by the probabilities that the covert channel is in these states. The
rate can then be maximized over possible valueg ahd w so as to retain the stability of the
steady-state queue lengths at the legitimate users as follows.

Theorem 1:The achievable rate of the covert channel as described in Section II, over all i.i.d.
jamming policies over a legitimate channel with attempt probabilignd offered loady, with

complete channel state; ._,;) information at the sender and receiver is given by:

Cy(p, ) > max mo0(1 = p*)R.(q, pe) + m1pH (w). (17)

T 0<g<l—a, O<w<l—a+pa

IV. UPPER BOUND ONCOVERT CAPACITY: THE TwO USERCASE

Upper bounds on capacity allow us to gauge the usefulness of the achievable strategies (namely
i.i.d. coding) presented before. As detailed before, the channel between Alice and Bob is source
dependent and has infinite memory. Thus, obtaining a good upper bound is difficult. In this
section, we derive an outer bound on the covert capacity of this system over the set of all
ergodic jamming policies that Alice may employ. This ergodicity constraint on Alice’s policy
renders the problem tractable, and allows us to use relatively simple mathematical tools to arrive
at upper bounds. To obtain an upper bound, we first decouple the state of the covert channel from
the coding strategy by consideringzatual parallel channel We then prove that the capacity of
this virtual covert channel is always greater than that of the true covert channel and then bound
it as a weighted sum of the capacities of a Z-channel and a rate 1 error free channel.

Theorem 2:The covert capacityC* for a slotted ALOHA system described in Section Il

achievable using ergodic jamming can be upper bounded as,

c*sozmm—ﬁmp(l‘pf:jﬁf”‘) (18)

whereC.(3) is the capacity of the Z-channel with crossover probabijity= p*/(1 — p*) using
codewords constrained to have no more ti¥afmaction of 1's, with

Bol-a4t l—pa  (1-p)?
(1 —p)a? 1—pa
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Proof: Consider avirtual channel(Q3, @3%), defined as a stationary and ergodic process, so
that (Q7, Q3) = (Q1,Q@2). In other words, for every legitimate packet transmitted over the true
channel, there is a virtual packet transmitted over the virtual channel [see Figure 3]. Let us
assume that Cindy wishes to communicate with Doug covertly by jamming over this channel
(Q1,Q3), but that Cindy’s transmit policy(jamming/not jamming any active time-sio@s not
affect the dynamics of this channel. Further, by construction, we couple the dynandigsaoid

Q3 to those of@); and(@- which are governed by mutual collisions, transmissions and jamming
over thereal channel, (over which Alice and Bob communicate).

Let Alice’s optimal ergodic strategy hd*, which leads to a covert capacity 6f'. From the
ergodicity of A* this results in steady state probabilities, ;i € {0,1,2} corresponding to
statesS; i, € {0, 1,2} for (Q1,Q2), and by our coupling construction f¢f)7, Q5) as well.

Not only can Cindy replicate Alice’s strategies, but since she can choose from a wider set of
coding strategies (since that does not affect the dynamics of the virtual channel), the capacity
that Cindy can achieve” > C*.

Although the codewords id* might span across different states in general, the ergodicity

constraint on the optimal policy implies that the fraction of time-slots jammed by Alice in each

stateS;,; converges to a constany, ; defined as

7

R
Biy_; = lim — E I{Sk = S,.2-; }I{channel is active at time-sidt} I {Alice transmits a ‘1}
’ n—oo N
k=1
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where I{} is the indicator function and as befor& denotes the channel state at time-glot
Consequently we will apply the same codeword weight constrgint, to the state-dependent
code that Cindy uses to communicate over the virtual channel at eachSstate

Further, note that given queue state information, the Cindy-Doug covert channdissrete
memorylesgime-varying channel with state side information at transmitter and receiver.

Consider a(2"% n) code X" = {z;(w)}" over the ternary alphabsf, 1, ¢} transmitted
over this channel with source alphaliét corresponding to a state sequence (trajectBfy)=
{81, St € {Spar, k € {0,1,2}} and received sequend&” = {y;(w)}7. Then following [20],
we can define’.. to be the capacity of the Cindy-Doug channel and_;(5;,_,) to be the of

©,2—1

the Cindy-Doug channel fixed at a stafg, ; under codeword constraint’, ; as

1
C. = liminf sup —I(W;Y" S") (29)
n—oo Xnesn n
and -
1 |A7L |

Cio—i(Bf5_;) = liminf sup

2,2—1
=00 Xnm(X™)<ng

n D (@i yuw|S™ = Siai) (20)

"
i,2—i k=1

respectively. We will now express the capacity of the Cindy-Doug cha@peh terms of the

individual C; »—;(57,_,;) values.

2,2—1
Note that

nR < I(W;Y"S") (21)
= I(W;Y"|S") + I(W;S") (22)
< I(X®;Y"|S™) (23)
= H(Y"[S") — H(Y"|X",8") (24)

< Y H@WlS) =Y H(yila:, 5°) (25)
i=1 i=1

< Y I(asylSY. (26)

=1
The inequality in (23) follows from the assumption that the source and the state sequence
are mutually independent, sp(I¥;S") = 0, and the data processing inequality. We have
inequality (24) as a consequence of the discrete memoryless nature of the channel and the
inequality H(Y™[S™) < Y0, H(y|S™) < >0, H(y;|S"). Also observe thaf (¢; ¢|S*) = 0.
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Dividing both sides of (26) by: and using the ergodic strong law of large numbers and the
definitions in Equation (20), we arrive the following bound for the capacity of the overall system
with Cindy communicating to Doug:
C. < Z Ci,Q*i(ﬁi*in)W:in' (27)
i,2—1i

We note that a similar expression as (23) is given as part of the converse proof of capacity
for asymptotically block memoryless time varying channels bdsrd and Goldsmith [12]. We
note in passing that the sum rate in Equation (27) can be achieved by Cindy switching between
codebooks corresponding to the capacity achieving code for eachSstatewithout affecting
the channel proceds),, @2) and hence the inequality in Equation (27) can be replaced by the
equality.

Next, we obtain outer bounds fdt, o(3;,) andm;,. Recall that for each’, A" (w) = {i :
1<i<T, Mi@’o) = 1}. From the strong law of large numbers, we have that
| Ap| 20

li 1 —p2
T TP

Observe that our system model implies that for any j < T, a transmitter Cindy, transmitting
to receiver Doug over the covert channel conditioned on the event that the legitimate channel
exists in states, o, can choose to jam a packet (i.e. transmit symbol ‘1’) if and onWeFfAEFQ’O).
Further, given that we are already in stdig,, the jamming semg?’o) is independent of the
jamming policy (codebook) employed by Cindy.

Now, for anyj € A;Q’O), observe that the covert channel (between Cindy and Doug) is a
Z-channel with crossover probabiligy., wherep,. = % Thus by concatenating the time-slots
in A&?’O) (and ignoring{1 < j < T}\Ag’o)) and employing a Z-channel coding strategy over
Ag’o), it follows that for anye > 0, 37" large enough such that,

AF”]
02,0(5;,0) < (Cz(@,o) - E)TT - Cz(ﬁék,o)(l _132)

where C.(3; ) is the channel capacity of a Z-channel with weight constrgint For the Z-
channel, it is well known that i.i.d. coding maximizes capacity [4], and hence the rate irbstate
is upper bounded byl — p*)C.(0;,). In stateS; 1, given that there is activity in the legitimate

channel, the channel behaves like an ideal channel (thus a trivial upper bodnd @} ) is 1),
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and the maximal rate ¥, » is zero. Thus, using (27) the upper bound@hcan be rewritten
as
Cr<C.<(1- ﬁQ)Cz(ﬁ;,o)W;,o +p7ril. (28)
Further (see (41) in Appendix), we haw§, > 7,9, Wherem, is the steady-state proba-
bility that both user queues have packetsen no jamming is appliedsrom straightforward

computations, we have

* — (1 - p) a2
T = 2,0 = T-pa (29)
Hence,
Thus, we have that
1— 2
mo<1- 4P (31)
’ 1—pa

The value of3; , depends on the strategy” that Alice chooses, however we will upper bound
it by 35, < 3 as follows. From our assumptions of ergodicity and stability of the legitimate

user queues we have that
NXA < Npprsyo(1 = B50) + Npmy
< Nppmyo(l = B50) + Np(1 — Ta0).
Thus, using the value af,, from Equation (29), we can upper boung, by
Brg<B=1- A JFL—7_T2,0 (32)
The result now follows by observing that , < 1, Equations (30), and (28).

PP To0
O

We present numerical results for the achievable bound and compare it against the upper bound
in Figures 5-10. The upper bound is loose everywhere except at valuevery close to 1.
Observe that the bound is asymptotically tight in the sense that as the offered lead, both
the upper bound and the achievable rate tend to O

The bound also improves with smaller values of the transmission attempt probabilihese
observations can be explained by noting that we have boungigdy 1 in the C.(j3) term of
the upper bound. For smaller attempt probabilities, is closer tol, even when the normalized
load o to the queues is small. As increases, the queues @i and (), are cleared promptly

and hence the value of; , is much lesser than 1.
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V. COVERT CHANNELS WITH n LEGITIMATE USERS

Considern legitimate user queues over a common collision channel, each with homogeneous
(Bernoulli) packet input rate\. In this section we present an asymptotically (in offered load)
tight upper bound to the channel capacity of the covert users as a generalization of the results

in Sections Il and IV.
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A. Achievable Rates: The User Case

As reasoned in Section lll, while the covert channel depends on the state of the queue, the
capacity is affected by the number of queues among:tbsers that have packets to transmit in
their buffers. For a state whefkeof then users have packets in to transmit (non-empty buffers),

we define the crossover probability of the corresponding Z-channel as

W _ 1= (kpp"* +p")
pc - 1 AL .
-p

It follows thatp* " < pP'vk € {1,2,...n}. Correspondingly, we define, ,,_, to be the steady

(33)

state probability of the channel being in any staig,_, wherek users out ofn have packets
to transmit. Note that for each of the three cases of increasing covert user side-information in
Section IlI-B, the achievable rate calculation follows the same techniques as for the two user
case. Due to constraints of space, we merely present the expressions fouslee case with
comments where necessary.

1) Achievable rate under Case Recall from Section IlI-B that in this case the covert users
only know the offered loady, = ]# at each legitimate user and assume that the channel is
a time varying Z-channel with given crossover probability The covert channel capacity can

then be bounded as

n

C> OZ(ﬁmpc) Z(l - ﬁk>7rk,n—k

k=1
whereg, =1 — a,,.

2) Achievable rate under Case  this case, the covert user views the channel as a composite

Z-channel with effective crossover probability

ﬁc = Z 7Tk,n—kp((;k)
k=1

resulting in an achievable rate of

> 5.)(1 — p).
C > max R.(q,pc)(1 —p")

3) Achievable rate under Case 3Me define the covert user jamming probability vector
q = (¢1,9,---q,) Whereg, is the probability that Alice jams a transmission when the system

is in stateSy ,,—x. Then, the achievable covert rate under i.i.d. strategy for Case 3 is,

n

Co(p,a) =  max > T x(1 = P*) Ragr, o).
q:Vk, Wk,nike[oyl]a
>k Thn—k=1 k=1
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B. Upper Bound: The: User Case

Analogous to the proof in Section IV, we define a weight constrgt_, that applies on
codewords that Alice (and therefore Cindy) can use for/theser case. The values of , ,
depends upon the optimal strategy that Alice uses. However, we shall upper bound them as in
the previous section to obtain an upper bound for the capacity.

The corresponding Z-channel capacities are denoted?ﬁil(ﬁ,jmfk). We trivially bound
Brn—r < 1 for all & < n. For sake of uniformity of notation fic!” =0 andC) = H(1l)=1.

Also, following Equation (27), the capacity of the overall channel with Cindy communicating

to Doug is bounded by
Cr < Y Mk O (Bl k) (1= 5Y)
k=0

For the general case of legitimate users, the Markov chain of the states of the queues of
all the legitimate users ia-dimensional and therefore difficult to analyze. Hence we bound
the values ofr; , , for any transmission strategy by Alice. Consider the probabilitigs. .
denoting the steady state distribution of the quewdbout the presence of any covert user.

Using the same reasoning as (41) we have that

v

7T[_n,() (34)

Wn,O

T < ﬁ-’i,nfi Vi<n (35)

,n—1

Solving the global balance equations for,, we have

An—1 —1
_ pp
o> 1 ) 36
o2 | S (30)

Also, since

n

* _ * —
2 :Wj,n*j =l-m=< L= Tn0,
7=0

we have that,
n—1
> Tk CH(1). < (1= 7p0)C.
k=0

We now boundg;, , in a technique similar to that used in Section IV. Observe that for stability

we must have that .
A< Z W:z—mpﬁnfifl(l - ﬁ:—zz)

1=0
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Trivially bounding3;,_;.'s for i > 0 by 1, and using the inequalities in Equations (34), we bound
A D ict Tnii(n — )P~
pp" ! Tn,0

Thus Alice’s covert capacity is bounded by,

(37)

C

IN

Ce

> Tk O (B ) (1 — )
k=1

IN

IN

n—1
Z Wz,n—kcik) + W:z,oc,gn) (Bno)(1—p")
k=0

IN

(1= 7o) + O (Ba) (1 — p")

Theorem 3 follows from the inequality above and (36).
Theorem 3:The covert capacity’™, for a slotted ALOHA system described in Section I

with n legitimate users, achievable using ergodic jamming can be upper bounded as,
O < (1 = Tn0) + O (B)(1 = ") (38)

where C¥ (B,) is the capacity of the Z-channel for codes constrained to have lessgthan
fraction of ‘1's in each codeword corresponding to a crossover probabilit;ékbf

Observe that as the offered loads approaches unity (i.&.-aspp" '), eachr,,_; — 0 for
i < n in Equation (37) whiler,, — 1. Thus3, — 0 and henceCé")(Bn) — 0. HenceC*
converges to 0 as the load approaches 1, and is thus asymptotically tight to the i.i.d. coding rate

for the n user case.

VI. CONCLUSION

The setting studied in this paper is of two covert users - a transmitter and a receiver, communi-
cating with each other by exploiting the resources of a slotted ALOHA system. The illegitimate
pair communicate by jamming legitimate transmissions while striving to remain undetected by the
legitimate slotted ALOHA system. In this paper, we find that a closed-form characterization of
the information-theoretic capacity of the illegitimate communication system is extremely difficult,
and hence find lower and upper bounds on capacity. We employ i.i.d. coding strategies under

varying side-information assumptions to determine lower bounds. Next, we employ constrained
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decoupling arguments to determine upper bounds, and finally, we compare the upper and lower
bounds. We find that, in the limit when the offered load tends to unity (and the capacity to zero),

our upper and lower bounds coincide.

APPENDIX

Consider two sets of queue length proces&gs, QY) and (Q7, Qy), with identical arrival
processesAY (n) = Al(n),k = {1,2}, to each queue over any fixed interval of time-slots
n = 1,2,...,N, and with identical initial state (i.eQ{(1) = QY(1) and QJ(1) = QY(1)).
The processQY, QY) corresponds to the scenario where two users compete to access a shared
(slotted) channel ando covert jammingoccurs over this channel. In other words, collisions
occur over this channel only due to simultaneous attempts due to the two legitimate users. On
the other-hand(QY, QY) corresponds to the scenario where two users compete to access a
shared (slotted) channel amdvert jammingoccurs over this channel. Thus, collisions could
occur over this channel either due to collisions by these legitimate users, or due to a jammer
(Alice) who could employ an arbitrary jamming strategy. At each time-slot, for either scenario
(with or without jamming), we assume that each of the user attempts to transmit independently
with probability p, irrespective of whether the queue has packets or not. Note that when the queue
is empty, a decision to attempt does not affect the system dynamics. However, this enables us
to sample-path-wise couple the two queueing systems.

Consider any system sample path corresponding to a sequence of arrivals and transmission
attempts (which are identical to bof®¥, QY) and (Q7, Q7)). We first show that for alh, we
have

Qf(n) < Qf(n)
Qi(n) < Qin).

We see this by contradiction. Lét+ 1 € N, 1 < [ < N be the first time slot where (39)
fails. In other wordsQV (1) < Q{(1) QY(I) < Q{(l) and QY (I) < QJ(1), but (without loss of
generality, sayR¥{ (1 + 1) > Q{ (I + 1).

Since arrival and transmission attempts are identical in both the jammed and the unjammed

(39)

queues, if queu€)/ transmits a packet successfully (i.e. no collision occurs) the same should be
true for queue)?. Thus,QY (1+1) = QY (1) +AY(I+1)—I{QY (1) > 0} andQ{ (I+1) = Q7 (1) +
A7(1+1) — I{Q7(I) > 0}. However, sincelV (1) < Q{ (1), I{QY(I) > 0} < I{Q{(l) > 0}, we
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have@Q¥ (1 + 1) < Q{(l+ 1) which leads to a contradiction of our hypothesis. Thus (39) is true

for all n.
The relation
N N
> QI >0,Q5(n) > 0} = 3 = H{QT(n) > 0,Q5 (n) > 0} (40)
n=1 n=1

follows immediately from (39).

Considering the ergodic jamming policy* used by the covert transmitter in Section 1V, we

can use the ergodic theorem to conclude thatvas> oo, (40) converges to,
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