
Chapter 7

Laplace Transform

The Laplace transform can be used to solve differential equations. Be-
sides being a different and efficient alternative to variation of parame-
ters and undetermined coefficients, the Laplace method is particularly
advantageous for input terms that are piecewise-defined, periodic or im-
pulsive.

The direct Laplace transform or the Laplace integral of a function
f(t) defined for 0 ≤ t < ∞ is the ordinary calculus integration problem

∫ ∞

0
f(t)e−stdt,

succinctly denoted L(f(t)) in science and engineering literature. The
L–notation recognizes that integration always proceeds over t = 0 to
t = ∞ and that the integral involves an integrator e−stdt instead of the
usual dt. These minor differences distinguish Laplace integrals from
the ordinary integrals found on the inside covers of calculus texts.

7.1 Introduction to the Laplace Method

The foundation of Laplace theory is Lerch’s cancellation law
∫∞

0 y(t)e−stdt =
∫∞

0 f(t)e−stdt implies y(t) = f(t),
or

L(y(t) = L(f(t)) implies y(t) = f(t).
(1)

In differential equation applications, y(t) is the sought-after unknown
while f(t) is an explicit expression taken from integral tables.

Below, we illustrate Laplace’s method by solving the initial value prob-
lem

y′ = −1, y(0) = 0.

The method obtains a relation L(y(t)) = L(−t), whence Lerch’s cancel-
lation law implies the solution is y(t) = −t.

The Laplace method is advertised as a table lookup method, in which
the solution y(t) to a differential equation is found by looking up the
answer in a special integral table.
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Laplace Integral. The integral
∫∞

0 g(t)e−stdt is called the Laplace

integral of the function g(t). It is defined by limN→∞

∫N
0 g(t)e−stdt and

depends on variable s. The ideas will be illustrated for g(t) = 1, g(t) = t
and g(t) = t2, producing the integral formulas in Table 1.

∫∞

0 (1)e−stdt = −(1/s)e−st
∣

∣

t=∞

t=0 Laplace integral of g(t) = 1.

= 1/s Assumed s > 0.
∫∞

0 (t)e−stdt =
∫∞

0 − d
ds

(e−st)dt Laplace integral of g(t) = t.

= − d
ds

∫∞

0 (1)e−stdt Use
∫

d
ds

F (t, s)dt = d
ds

∫

F (t, s)dt.

= − d
ds

(1/s) Use L(1) = 1/s.

= 1/s2 Differentiate.
∫∞

0 (t2)e−stdt =
∫∞

0 − d
ds

(te−st)dt Laplace integral of g(t) = t2.

= − d
ds

∫∞

0 (t)e−stdt

= − d
ds

(1/s2) Use L(t) = 1/s2.

= 2/s3

Table 1. The Laplace integral
∫∞

0
g(t)e−stdt for g(t) = 1, t and t2.

∫∞

0 (1)e−st dt =
1

s

∫∞

0 (t)e−st dt =
1

s2

∫∞

0 (t2)e−st dt =
2

s3

In summary, L(tn) =
n!

s1+n

An Illustration. The ideas of the Laplace method will be illus-
trated for the solution y(t) = −t of the problem y′ = −1, y(0) = 0. The
method, entirely different from variation of parameters or undetermined
coefficients, uses basic calculus and college algebra; see Table 2.

Table 2. Laplace method details for the illustration y′ = −1, y(0) = 0.

y′(t)e−st = −e−st Multiply y′ = −1 by e−st.
∫∞

0 y′(t)e−stdt =
∫∞

0 −e−stdt Integrate t = 0 to t = ∞.
∫∞

0 y′(t)e−stdt = −1/s Use Table 1.

s
∫∞

0 y(t)e−stdt − y(0) = −1/s Integrate by parts on the left.
∫∞

0 y(t)e−stdt = −1/s2 Use y(0) = 0 and divide.
∫∞

0 y(t)e−stdt =
∫∞

0 (−t)e−stdt Use Table 1.

y(t) = −t Apply Lerch’s cancellation law.
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In Lerch’s law, the formal rule of erasing the integral signs is valid pro-

vided the integrals are equal for large s and certain conditions hold on y
and f – see Theorem 2. The illustration in Table 2 shows that Laplace
theory requires an in-depth study of a special integral table, a table
which is a true extension of the usual table found on the inside covers
of calculus books. Some entries for the special integral table appear in
Table 1 and also in section 7.2, Table 4.

The L-notation for the direct Laplace transform produces briefer details,
as witnessed by the translation of Table 2 into Table 3 below. The reader
is advised to move from Laplace integral notation to the L–notation as
soon as possible, in order to clarify the ideas of the transform method.

Table 3. Laplace method L-notation details for y′ = −1, y(0) = 0

translated from Table 2.

L(y′(t)) = L(−1) Apply L across y′ = −1, or multiply y′ =
−1 by e−st, integrate t = 0 to t = ∞.

L(y′(t)) = −1/s Use Table 1.

sL(y(t)) − y(0) = −1/s Integrate by parts on the left.

L(y(t)) = −1/s2 Use y(0) = 0 and divide.

L(y(t)) = L(−t) Apply Table 1.

y(t) = −t Invoke Lerch’s cancellation law.

Some Transform Rules. The formal properties of calculus integrals
plus the integration by parts formula used in Tables 2 and 3 leads to these
rules for the Laplace transform:

L(f(t) + g(t)) = L(f(t)) + L(g(t)) The integral of a sum is the
sum of the integrals.

L(cf(t)) = cL(f(t)) Constants c pass through the
integral sign.

L(y′(t)) = sL(y(t)) − y(0) The t-derivative rule, or inte-
gration by parts. See Theo-
rem 3.

L(y(t)) = L(f(t)) implies y(t) = f(t) Lerch’s cancellation law. See
Theorem 2.

1 Example (Laplace method) Solve by Laplace’s method the initial value
problem y′ = 5 − 2t, y(0) = 1.

Solution: Laplace’s method is outlined in Tables 2 and 3. The L-notation of
Table 3 will be used to find the solution y(t) = 1 + 5t − t2.



7.1 Introduction to the Laplace Method 249

L(y′(t)) = L(5 − 2t) Apply L across y′ = 5 − 2t.

L(y′(t)) =
5

s
− 2

s2
Use Table 1.

sL(y(t)) − y(0) =
5

s
− 2

s2
Apply the t-derivative rule, page 248.

L(y(t)) =
1

s
+

5

s2
− 2

s3
Use y(0) = 1 and divide.

L(y(t)) = L(1) + 5L(t) − L(t2) Apply Table 1, backwards.

= L(1 + 5t− t2) Linearity, page 248.

y(t) = 1 + 5t − t2 Invoke Lerch’s cancellation law.

2 Example (Laplace method) Solve by Laplace’s method the initial value
problem y′′ = 10, y(0) = y′(0) = 0.

Solution: The L-notation of Table 3 will be used to find the solution y(t) = 5t2.

L(y′′(t)) = L(10) Apply L across y′′ = 10.

sL(y′(t)) − y′(0) = L(10) Apply the t-derivative rule to y′, that is,
replace y by y′ on page 248.

s[sL(y(t)) − y(0)] − y′(0) = L(10) Repeat the t-derivative rule, on y.

s2L(y(t)) = L(10) Use y(0) = y′(0) = 0.

L(y(t)) =
10

s3
Use Table 1. Then divide.

L(y(t)) = L(5t2) Apply Table 1, backwards.

y(t) = 5t2 Invoke Lerch’s cancellation law.

Existence of the Transform. The Laplace integral
∫∞

0 e−stf(t) dt
is known to exist in the sense of the improper integral definition1

∫ ∞

0
g(t)dt = lim

N→∞

∫ N

0
g(t)dt

provided f(t) belongs to a class of functions known in the literature as
functions of exponential order. For this class of functions the relation

lim
t→∞

f(t)

eat
= 0(2)

is required to hold for some real number a, or equivalently, for some
constants M and α,

|f(t)| ≤ Meαt.(3)

In addition, f(t) is required to be piecewise continuous on each finite
subinterval of 0 ≤ t < ∞, a term defined as follows.

1An advanced calculus background is assumed for the Laplace transform existence
proof. Applications of Laplace theory require only a calculus background.
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Definition 1 (piecewise continuous)
A function f(t) is piecewise continuous on a finite interval [a, b] pro-
vided there exists a partition a = t0 < · · · < tn = b of the interval [a, b]
and functions f1, f2, . . . , fn continuous on (−∞,∞) such that for t not
a partition point

f(t) =











f1(t) t0 < t < t1,
...

...
fn(t) tn−1 < t < tn.

(4)

The values of f at partition points are undecided by equation (4). In
particular, equation (4) implies that f(t) has one-sided limits at each
point of a < t < b and appropriate one-sided limits at the endpoints.
Therefore, f has at worst a jump discontinuity at each partition point.

3 Example (Exponential order) Show that f(t) = et cos t + t is of expo-
nential order, that is, show that f(t) is piecewise continuous and find α > 0
such that limt→∞ f(t)/eαt = 0.

Solution: Already, f(t) is continuous, hence piecewise continuous. From
L’Hospital’s rule in calculus, limt→∞ p(t)/eαt = 0 for any polynomial p and
any α > 0. Choose α = 2, then

lim
t→∞

f(t)

e2t
= lim

t→∞

cos t

et
+ lim

t→∞

t

e2t
= 0.

Theorem 1 (Existence of L(f))
Let f(t) be piecewise continuous on every finite interval in t ≥ 0 and satisfy
|f(t)| ≤ Meαt for some constants M and α. Then L(f(t)) exists for s > α
and lims→∞L(f(t)) = 0.

Proof: It has to be shown that the Laplace integral of f is finite for s > α.
Advanced calculus implies that it is sufficient to show that the integrand is ab-
solutely bounded above by an integrable function g(t). Take g(t) = Me−(s−α)t.
Then g(t) ≥ 0. Furthermore, g is integrable, because

∫ ∞

0

g(t)dt =
M

s − α
.

Inequality |f(t)| ≤ Meαt implies the absolute value of the Laplace transform
integrand f(t)e−st is estimated by

∣

∣f(t)e−st
∣

∣ ≤ Meαte−st = g(t).

The limit statement follows from |L(f(t))| ≤
∫∞

0 g(t)dt =
M

s − α
, because the

right side of this inequality has limit zero at s = ∞. The proof is complete.
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Theorem 2 (Lerch)
If f1(t) and f2(t) are continuous, of exponential order and

∫∞

0 f1(t)e
−stdt =

∫∞

0 f2(t)e
−stdt for all s > s0, then f1(t) = f2(t) for t ≥ 0.

Proof: See Widder [?].

Theorem 3 (t-Derivative Rule)
If f(t) is continuous, lim

t→∞
f(t)e−st = 0 for all large values of s and f ′(t)

is piecewise continuous, then L(f ′(t)) exists for all large s and L(f ′(t)) =
sL(f(t)) − f(0).

Proof: See page 276.

Exercises 7.1

Laplace method. Solve the given
initial value problem using Laplace’s
method.

1. y′ = −2, y(0) = 0.

2. y′ = 1, y(0) = 0.

3. y′ = −t, y(0) = 0.

4. y′ = t, y(0) = 0.

5. y′ = 1 − t, y(0) = 0.

6. y′ = 1 + t, y(0) = 0.

7. y′ = 3 − 2t, y(0) = 0.

8. y′ = 3 + 2t, y(0) = 0.

9. y′′ = −2, y(0) = y′(0) = 0.

10. y′′ = 1, y(0) = y′(0) = 0.

11. y′′ = 1 − t, y(0) = y′(0) = 0.

12. y′′ = 1 + t, y(0) = y′(0) = 0.

13. y′′ = 3 − 2t, y(0) = y′(0) = 0.

14. y′′ = 3 + 2t, y(0) = y′(0) = 0.

Exponential order. Show that f(t)
is of exponential order, by finding a
constant α ≥ 0 in each case such that

lim
t→∞

f(t)

eαt
= 0.

15. f(t) = 1 + t

16. f(t) = et sin(t)

17. f(t) =
∑N

n=0 cnxn, for any choice
of the constants c0, . . . , cN .

18. f(t) =
∑N

n=1 cn sin(nt), for any
choice of the constants c1, . . . , cN .

Existence of transforms. Let f(t) =

tet2 sin(et2). Establish these results.

19. The function f(t) is not of expo-
nential order.

20. The Laplace integral of f(t),
∫∞

0
f(t)e−stdt, converges for all

s > 0.

Jump Magnitude. For f piecewise
continuous, define the jump at t by

J(t) = lim
h→0+

f(t + h) − lim
h→0+

f(t − h).

Compute J(t) for the following f .

21. f(t) = 1 for t ≥ 0, else f(t) = 0

22. f(t) = 1 for t ≥ 1/2, else f(t) = 0

23. f(t) = t/|t| for t 6= 0, f(0) = 0

24. f(t) = sin t/| sin t| for t 6= nπ,
f(nπ) = (−1)n

Taylor series. The series relation
L(
∑∞

n=0 cntn) =
∑∞

n=0 cnL(tn) often
holds, in which case the result L(tn) =
n!s−1−n can be employed to find a
series representation of the Laplace
transform. Use this idea on the fol-
lowing to find a series formula for
L(f(t)).

25. f(t) = e2t =
∑∞

n=0(2t)n/n!

26. f(t) = e−t =
∑∞

n=0(−t)n/n!
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7.2 Laplace Integral Table

The objective in developing a table of Laplace integrals, e.g., Tables 4
and 5, is to keep the table size small. Table manipulation rules appear-
ing in Table 6, page 257, effectively increase the table size manyfold,
making it possible to solve typical differential equations from electrical
and mechanical problems. The combination of Laplace tables plus the
table manipulation rules is called the Laplace transform calculus.

Table 4 is considered to be a table of minimum size to be memorized.
Table 5 adds a number of special-use entries. For instance, the Heaviside
entry in Table 5 is memorized, but usually not the others.

Derivations are postponed to page 270. The theory of the gamma func-
tion Γ(x) appears below on page 255.

Table 4. A minimal Laplace integral table with L-notation

∫∞

0
(tn)e−st dt =

n!

s1+n
L(tn) =

n!

s1+n

∫∞

0 (eat)e−st dt =
1

s − a
L(eat) =

1

s − a
∫∞

0
(cos bt)e−st dt =

s

s2 + b2
L(cos bt) =

s

s2 + b2

∫∞

0 (sin bt)e−st dt =
b

s2 + b2
L(sin bt) =

b

s2 + b2

Table 5. Laplace integral table extension

L(H(t − a)) =
e−as

s
(a ≥ 0) Heaviside unit step, defined by

H(t) =

{

1 for t ≥ 0,
0 otherwise.

L(δ(t − a)) = e−as Dirac delta, δ(t) = dH(t).
Special usage rules apply.

L(floor(t/a)) =
e−as

s(1 − e−as)
Staircase function,
floor(x) = greatest integer ≤ x.

L(sqw(t/a)) =
1

s
tanh(as/2) Square wave,

sqw(x) = (−1)floor(x).

L(a trw(t/a)) =
1

s2
tanh(as/2) Triangular wave,

trw(x) =
∫ x

0
sqw(r)dr.

L(tα) =
Γ(1 + α)

s1+α
Generalized power function,
Γ(1 + α) =

∫∞

0
e−xxαdx.

L(t−1/2) =

√

π

s
Because Γ(1/2) =

√
π.
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4 Example (Laplace transform) Let f(t) = t(t−1)−sin 2t+e3t. Compute
L(f(t)) using the basic Laplace table and transform linearity properties.

Solution:

L(f(t)) = L(t2 − 5t − sin 2t + e3t) Expand t(t − 5).

= L(t2) − 5L(t) − L(sin 2t) + L(e3t) Linearity applied.

=
2

s3
− 5

s2
− 2

s2 + 4
+

1

s − 3
Table lookup.

5 Example (Inverse Laplace transform) Use the basic Laplace table back-
wards plus transform linearity properties to solve for f(t) in the equation

L(f(t)) =
s

s2 + 16
+

2

s − 3
+

s + 1

s3
.

Solution:

L(f(t)) =
s

s2 + 16
+ 2

1

s − 3
+

1

s2
+

1

2

2

s3
Convert to table entries.

= L(cos 4t) + 2L(e3t) + L(t) + 1
2L(t2) Laplace table (backwards).

= L(cos 4t + 2e3t + t + 1
2 t2) Linearity applied.

f(t) = cos 4t + 2e3t + t + 1
2 t2 Lerch’s cancellation law.

6 Example (Heaviside) Find the Laplace transform of f(t) in Figure 1.

1

31 5

5

Figure 1. A piecewise defined
function f(t) on 0 ≤ t < ∞: f(t) = 0
except for 1 ≤ t < 2 and 3 ≤ t < 4.

Solution: The details require the use of the Heaviside function formula

H(t − a) − H(t − b) =

{

1 a ≤ t < b,
0 otherwise.

The formula for f(t):

f(t) =







1 1 ≤ t < 2,
5 3 ≤ t < 4,
0 otherwise

=

{

1 1 ≤ t < 2,
0 otherwise

+ 5

{

1 3 ≤ t < 4,
0 otherwise

Then f(t) = f1(t) + 5f2(t) where f1(t) = H(t − 1) − H(t − 2) and f2(t) =
H(t − 3) − H(t − 4). The extended table gives

L(f(t)) = L(f1(t)) + 5L(f2(t)) Linearity.

= L(H(t − 1)) − L(H(t − 2)) + 5L(f2(t)) Substitute for f1.
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=
e−s − e−2s

s
+ 5L(f2(t)) Extended table used.

=
e−s − e−2s + 5e−3s − 5e−4s

s
Similarly for f2.

7 Example (Dirac delta) A machine shop tool that repeatedly hammers a
die is modeled by the Dirac impulse model f(t) =

∑N
n=1 δ(t − n). Show

that L(f(t)) =
∑N

n=1 e−ns.

Solution:

L(f(t)) = L
(

∑N
n=1 δ(t − n)

)

=
∑N

n=1 L(δ(t − n)) Linearity.

=
∑N

n=1 e−ns Extended Laplace table.

8 Example (Square wave) A periodic camshaft force f(t) applied to a me-
chanical system has the idealized graph shown in Figure 2. Show that
f(t) = 1 + sqw(t) and L(f(t)) = 1

s
(1 + tanh(s/2)).

0

2

1 3

Figure 2. A periodic force f(t) applied
to a mechanical system.

Solution:

1 + sqw(t) =

{

1 + 1 2n ≤ t < 2n + 1, n = 0, 1, . . .,
1 − 1 2n + 1 ≤ t < 2n + 2, n = 0, 1, . . .,

=

{

2 2n ≤ t < 2n + 1, n = 0, 1, . . .,
0 otherwise,

= f(t).

By the extended Laplace table, L(f(t)) = L(1) + L(sqw(t)) =
1

s
+

tanh(s/2)

s
.

9 Example (Sawtooth wave) Express the P -periodic sawtooth wave repre-
sented in Figure 3 as f(t) = ct/P − cfloor(t/P ) and obtain the formula

L(f(t)) =
c

Ps2
−

ce−Ps

s − se−Ps
.

0

c

P 4P

Figure 3. A P -periodic sawtooth
wave f(t) of height c > 0.
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Solution: The representation originates from geometry, because the periodic
function f can be viewed as derived from ct/P by subtracting the correct con-
stant from each of intervals [P, 2P ], [2P, 3P ], etc.

The technique used to verify the identity is to define g(t) = ct/P − cfloor(t/P )
and then show that g is P -periodic and f(t) = g(t) on 0 ≤ t < P . Two P -
periodic functions equal on the base interval 0 ≤ t < P have to be identical,
hence the representation follows.

The fine details: for 0 ≤ t < P , floor(t/P ) = 0 and floor(t/P + k) = k. Hence
g(t + kP ) = ct/P + ck − cfloor(k) = ct/P = g(t), which implies that g is
P -periodic and g(t) = f(t) for 0 ≤ t < P .

L(f(t)) =
c

P
L(t) − cL(floor(t/P )) Linearity.

=
c

Ps2
− ce−Ps

s − se−Ps
Basic and extended table applied.

10 Example (Triangular wave) Express the triangular wave f of Figure 4 in

terms of the square wave sqw and obtain L(f(t)) =
5

πs2
tanh(πs/2).

0

5

2π
Figure 4. A 2π-periodic triangular
wave f(t) of height 5.

Solution: The representation of f in terms of sqw is f(t) = 5
∫ t/π

0 sqw(x)dx.

Details: A 2-periodic triangular wave of height 1 is obtained by integrating
the square wave of period 2. A wave of height c and period 2 is given by

c trw(t) = c
∫ t

0 sqw(x)dx. Then f(t) = c trw(2t/P ) = c
∫ 2t/P

0 sqw(x)dx where
c = 5 and P = 2π.

Laplace transform details: Use the extended Laplace table as follows.

L(f(t)) =
5

π
L(π trw(t/π)) =

5

πs2
tanh(πs/2).

Gamma Function. In mathematical physics, the Gamma func-
tion or the generalized factorial function is given by the identity

Γ(x) =

∫ ∞

0
e−ttx−1 dt, x > 0.(1)

This function is tabulated and available in computer languages like For-
tran, C and C++. It is also available in computer algebra systems and
numerical laboratories. Some useful properties of Γ(x):

Γ(1 + x) = xΓ(x)(2)

Γ(1 + n) = n! for integers n ≥ 1.(3)
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Details for relations (2) and (3): Start with
∫∞

0
e−tdt = 1, which gives

Γ(1) = 1. Use this identity and successively relation (2) to obtain relation (3).
To prove identity (2), integration by parts is applied, as follows:

Γ(1 + x) =
∫∞

0 e−ttxdt Definition.

= −txe−t|t=∞

t=0 +
∫∞

0
e−txtx−1dt Use u = tx, dv = e−tdt.

= x
∫∞

0
e−ttx−1dt Boundary terms are zero

for x > 0.
= xΓ(x).

Exercises 7.2

Laplace transform. Compute
L(f(t)) using the basic Laplace table
and the linearity properties of the
transform. Do not use the direct
Laplace transform!

1. L(2t)

2. L(4t)

3. L(1 + 2t + t2)

4. L(t2 − 3t + 10)

5. L(sin 2t)

6. L(cos 2t)

7. L(e2t)

8. L(e−2t)

9. L(t + sin 2t)

10. L(t − cos 2t)

11. L(t + e2t)

12. L(t − 3e−2t)

13. L((t + 1)2)

14. L((t + 2)2)

15. L(t(t + 1))

16. L((t + 1)(t + 2))

17. L(
∑10

n=0 tn/n!)

18. L(
∑10

n=0 tn+1/n!)

19. L(
∑10

n=1 sin nt)

20. L(
∑10

n=0 cosnt)

Inverse Laplace transform. Solve
the given equation for the function
f(t). Use the basic table and linearity
properties of the Laplace transform.

21. L(f(t)) = s−2

22. L(f(t)) = 4s−2

23. L(f(t)) = 1/s + 2/s2 + 3/s3

24. L(f(t)) = 1/s3 + 1/s

25. L(f(t)) = 2/(s2 + 4)

26. L(f(t)) = s/(s2 + 4)

27. L(f(t)) = 1/(s − 3)

28. L(f(t)) = 1/(s + 3)

29. L(f(t)) = 1/s + s/(s2 + 4)

30. L(f(t)) = 2/s − 2/(s2 + 4)

31. L(f(t)) = 1/s + 1/(s− 3)

32. L(f(t)) = 1/s − 3/(s− 2)

33. L(f(t)) = (2 + s)2/s3

34. L(f(t)) = (s + 1)/s2

35. L(f(t)) = s(1/s2 + 2/s3)

36. L(f(t)) = (s + 1)(s − 1)/s3

37. L(f(t)) =
∑10

n=0 n!/s1+n

38. L(f(t)) =
∑10

n=0 n!/s2+n

39. L(f(t)) =
∑10

n=1

n

s2 + n2

40. L(f(t)) =
∑10

n=0

s

s2 + n2
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7.3 Laplace Transform Rules

In Table 6, the basic table manipulation rules are summarized. Full
statements and proofs of the rules appear in section 7.7, page 275.

The rules are applied here to several key examples. Partial fraction
expansions do not appear here, but in section 7.4, in connection with
Heaviside’s coverup method.

Table 6. Laplace transform rules

L(f(t) + g(t)) = L(f(t)) + L(g(t)) Linearity.
The Laplace of a sum is the sum of the Laplaces.

L(cf(t)) = cL(f(t)) Linearity.
Constants move through the L-symbol.

L(y′(t)) = sL(y(t)) − y(0) The t-derivative rule.
Derivatives L(y′) are replaced in transformed equations.

L
(

∫ t

0 g(x)dx
)

=
1

s
L(g(t)) The t-integral rule.

L(tf(t)) = − d

ds
L(f(t)) The s-differentiation rule.

Multiplying f by t applies −d/ds to the transform of f .

L(eatf(t)) = L(f(t))|s→(s−a) First shifting rule.
Multiplying f by eat replaces s by s − a.

L(f(t − a)H(t − a)) = e−asL(f(t)),
L(g(t)H(t − a)) = e−asL(g(t + a))

Second shifting rule.
First and second forms.

L(f(t)) =

∫ P

0 f(t)e−stdt

1 − e−Ps
Rule for P -periodic functions.
Assumed here is f(t + P ) = f(t).

L(f(t))L(g(t)) = L((f ∗ g)(t)) Convolution rule.
Define (f ∗ g)(t) =

∫

t

0

f(x)g(t − x)dx.

11 Example (Harmonic oscillator) Solve by Laplace’s method the initial value
problem x′′ + x = 0, x(0) = 0, x′(0) = 1.

Solution: The solution is x(t) = sin t. The details:

L(x′′) + L(x) = L(0) Apply L across the equation.

sL(x′) − x′(0) + L(x) = 0 Use the t-derivative rule.

s[sL(x) − x(0)] − x′(0) + L(x) = 0 Use again the t-derivative rule.

(s2 + 1)L(x) = 1 Use x(0) = 0, x′(0) = 1.

L(x) =
1

s2 + 1
Divide.

= L(sin t) Basic Laplace table.

x(t) = sin t Invoke Lerch’s cancellation law.
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12 Example (s-differentiation rule) Show the steps for L(t2 e5t) =
2

(s − 5)3
.

Solution:

L(t2e5t) =

(

− d

ds

)(

− d

ds

)

L(e5t) Apply s-differentiation.

= (−1)2
d

ds

d

ds

(

1

s − 5

)

Basic Laplace table.

=
d

ds

( −1

(s − 5)2

)

Calculus power rule.

=
2

(s − 5)3
Identity verified.

13 Example (First shifting rule) Show the steps for L(t2 e−3t) =
2

(s + 3)3
.

Solution:

L(t2e−3t) = L(t2)
∣

∣

s→s−(−3)
First shifting rule.

=

(

2

s2+1

)
∣

∣

∣

∣

s→s−(−3)

Basic Laplace table.

=
2

(s + 3)3
Identity verified.

14 Example (Second shifting rule) Show the steps for

L(sin t H(t − π)) =
e−πs

s2 + 1
.

Solution: The second shifting rule is applied as follows.

L(sin t H(t − π)) = L(g(t)H(t − a) Choose g(t) = sin t, a = π.

= e−asL(g(t + a) Second form, second shifting theorem.

= e−πsL(sin(t + π)) Substitute a = π.

= e−πsL(− sin t) Sum rule sin(a + b) = sin a cos b +
sin b cos a plus sin π = 0, cosπ = −1.

= e−πs −1

s2 + 1
Basic Laplace table. Identity verified.

15 Example (Trigonometric formulas) Show the steps used to obtain these
Laplace identities:

(a) L(t cos at) =
s2 − a2

(s2 + a2)2
(c) L(t2 cos at) =

2(s3 − 3sa2)

(s2 + a2)3

(b) L(t sin at) =
2sa

(s2 + a2)2
(d) L(t2 sin at) =

6s2a − a3

(s2 + a2)3
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Solution: The details for (a):

L(t cos at) = −(d/ds)L(cos at) Use s-differentiation.

= − d

ds

(

s

s2 + a2

)

Basic Laplace table.

=
s2 − a2

(s2 + a2)2
Calculus quotient rule.

The details for (c):

L(t2 cos at) = −(d/ds)L((−t) cos at) Use s-differentiation.

=
d

ds

(

− s2 − a2

(s2 + a2)2

)

Result of (a).

=
2s3 − 6sa2)

(s2 + a2)3
Calculus quotient rule.

The similar details for (b) and (d) are left as exercises.

16 Example (Exponentials) Show the steps used to obtain these Laplace
identities:

(a) L(eat cos bt) =
s − a

(s − a)2 + b2
(c) L(teat cos bt) =

(s − a)2 − b2

((s − a)2 + b2)2

(b) L(eat sin bt) =
b

(s − a)2 + b2
(d) L(teat sin bt) =

2b(s − a)

((s − a)2 + b2)2

Solution: Details for (a):

L(eat cos bt) = L(cos bt)|s→s−a First shifting rule.

=

(

s

s2 + b2

)
∣

∣

∣

∣

s→s−a

Basic Laplace table.

=
s − a

(s − a)2 + b2
Verified (a).

Details for (c):

L(teat cos bt) = L(t cos bt)|s→s−a First shifting rule.

=

(

− d

ds
L(cos bt)

)∣

∣

∣

∣

s→s−a

Apply s-differentiation.

=

(

− d

ds

(

s

s2 + b2

))∣

∣

∣

∣

s→s−a

Basic Laplace table.

=

(

s2 − b2

(s2 + b2)2

)
∣

∣

∣

∣

s→s−a

Calculus quotient rule.

=
(s − a)2 − b2

((s − a)2 + b2)2
Verified (c).

Left as exercises are (b) and (d).
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17 Example (Hyperbolic functions) Establish these Laplace transform facts
about cosh u = (eu + e−u)/2 and sinhu = (eu − e−u)/2.

(a) L(cosh at) =
s

s2 − a2
(c) L(t cosh at) =

s2 + a2

(s2 − a2)2

(b) L(sinh at) =
a

s2 − a2
(d) L(t sinh at) =

2as

(s2 − a2)2

Solution: The details for (a):

L(coshat) = 1
2 (L(eat) + L(e−at)) Definition plus linearity of L.

=
1

2

(

1

s − a
+

1

s + a

)

Basic Laplace table.

=
s

s2 − a2
Identity (a) verified.

The details for (d):

L(t sinh at) = − d

ds

(

a

s2 − a2

)

Apply the s-differentiation rule.

=
a(2s)

(s2 − a2)2
Calculus power rule; (d) verified.

Left as exercises are (b) and (c).

18 Example (s-differentiation) Solve L(f(t)) =
2s

(s2 + 1)2
for f(t).

Solution: The solution is f(t) = t sin t. The details:

L(f(t)) =
2s

(s2 + 1)2

= − d

ds

(

1

s2 + 1

)

Calculus power rule (un)′ = nun−1u′.

= − d

ds
(L(sin t)) Basic Laplace table.

= L(t sin t) Apply the s-differentiation rule.

f(t) = t sin t Lerch’s cancellation law.

19 Example (First shift rule) Solve L(f(t)) =
s + 2

22 + 2s + 2
for f(t).

Solution: The answer is f(t) = e−t cos t + e−t sin t. The details:

L(f(t)) =
s + 2

s2 + 2s + 2
Signal for this method: the denom-
inator has complex roots.

=
s + 2

(s + 1)2 + 1
Complete the square, denominator.
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=
S + 1

S2 + 1
Substitute S for s + 1.

=
S

S2 + 1
+

1

S2 + 1
Split into Laplace table entries.

= L(cos t) + L(sin t)|s→S=s+1 Basic Laplace table.

= L(e−t cos t) + L(e−t sin t) First shift rule.

f(t) = e−t cos t + e−t sin t Invoke Lerch’s cancellation law.

20 Example (Damped oscillator) Solve by Laplace’s method the initial value
problem x′′ + 2x′ + 2x = 0, x(0) = 1, x′(0) = −1.

Solution: The solution is x(t) = e−t cos t. The details:

L(x′′) + 2L(x′) + 2L(x) = L(0) Apply L across the equation.

sL(x′) − x′(0) + 2L(x′) + 2L(x) = 0 The t-derivative rule on x′.

s[sL(x) − x(0)] − x′(0)
+2[L(x) − x(0)] + 2L(x) = 0

The t-derivative rule on x.

(s2 + 2s + 2)L(x) = 1 + s Use x(0) = 1, x′(0) = −1.

L(x) =
s + 1

s2 + 2s + 2
Divide.

=
s + 1

(s + 1)2 + 1
Complete the square in the de-
nominator.

= L(cos t)|s→s+1 Basic Laplace table.

= L(e−t cos t) First shifting rule.

x(t) = e−t cos t Invoke Lerch’s cancellation law.

21 Example (Rectified sine wave) Compute the Laplace transform of the
rectified sine wave f(t) = | sin ωt| and show it can be expressed in the
form

L(| sin ωt|) =
ω coth

(

πs
2ω

)

s2 + ω2
.

Solution: The periodic function formula will be applied with period P =

2π/ω. The calculation reduces to the evaluation of J =
∫ P

0 f(t)e−stdt. Because
sin ωt ≤ 0 on π/ω ≤ t ≤ 2π/ω, integral J can be written as J = J1 + J2, where

J1 =

∫ π/ω

0

sin ωt e−stdt, J2 =

∫ 2π/ω

π/ω

− sin ωt e−stdt.

Integral tables give the result

∫

sinωt e−st dt = −ωe−st cos(ωt)

s2 + ω2
− se−st sin(ωt)

s2 + ω2
.

Then

J1 =
ω(e−π∗s/ω + 1)

s2 + ω2
, J2 =

ω(e−2πs/ω + e−πs/ω)

s2 + ω2
,
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J =
ω(e−πs/ω + 1)2

s2 + ω2
.

The remaining challenge is to write the answer for L(f(t)) in terms of coth.
The details:

L(f(t)) =
J

1 − e−Ps
Periodic function formula.

=
J

(1 − e−Ps/2)(1 + e−Ps/2)
Apply 1 − x2 = (1 − x)(1 + x),
x = e−Ps/2.

=
ω(1 + e−Ps/2)

(1 − e−Ps/2)(s2 + ω2)
Cancel factor 1 + e−Ps/2.

=
ePs/4 + e−Ps/4

ePs/4 − e−Ps/4

ω

s2 + ω2
Factor out e−Ps/4, then cancel.

=
2 cosh(Ps/4)

2 sinh(Ps/4)

ω

s2 + ω2
Apply cosh, sinh identities.

=
ω coth(Ps/4)

s2 + ω2
Use cothu = coshu/ sinhu.

=
ω coth

(

πs
2ω

)

s2 + ω2
Identity verified.

22 Example (Half–wave rectification) Compute the Laplace transform of the
half–wave rectification of sinωt, denoted g(t), in which the negative cycles
of sinωt have been canceled to create g(t). Show in particular that

L(g(t)) =
1

2

ω

s2 + ω2

(

1 + coth

(

πs

2ω

))

Solution: The half–wave rectification of sin ωt is g(t) = (sin ωt + | sin ωt|)/2.
Therefore, the basic Laplace table plus the result of Example 21 give

L(2g(t)) = L(sin ωt) + L(| sin ωt|)
=

ω

s2 + ω2
+

ω cosh(πs/(2ω))

s2 + ω2

=
ω

s2 + ω2
(1 + cosh(πs/(2ω))

Dividing by 2 produces the identity.

23 Example (Shifting rules) Solve L(f(t)) = e−3s s + 1

s2 + 2s + 2
for f(t).

Solution: The answer is f(t) = e3−t cos(t − 3)H(t − 3). The details:

L(f(t)) = e−3s s + 1

(s + 1)2 + 1
Complete the square.

= e−3s S

S2 + 1
Replace s + 1 by S.

= e−3S+3 (L(cos t))|s→S=s+1 Basic Laplace table.
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= e3
(

e−3sL(cos t)
)∣

∣

s→S=s+1
Regroup factor e−3S .

= e3 (L(cos(t − 3)H(t − 3)))|s→S=s+1 Second shifting rule.

= e3L(e−t cos(t − 3)H(t − 3)) First shifting rule.

f(t) = e3−t cos(t − 3)H(t − 3) Lerch’s cancellation law.

24 Example () Solve L(f(t) =
s + 7

s2 + 4s + 8
for f(t).

Solution: The answer is f(t) = e−2t(cos 2t + 5
2 sin 2t). The details:

L(f(t)) =
s + 7

(s + 2)2 + 4
Complete the square.

=
S + 5

S2 + 4
Replace s + 2 by S.

=
S

S2 + 4
+

5

2

2

S2 + 4
Split into table entries.

=
s

s2 + 4
+

5

2

2

s2 + 4

∣

∣

∣

∣

s→S=s+2

Prepare for shifting rule.

= L(cos 2t) + 5
2L(sin 2t)

∣

∣

s→S=s+2
Basic Laplace table.

= L(e−2t(cos 2t + 5
2 sin 2t)) First shifting rule.

f(t) = e−2t(cos 2t + 5
2 sin 2t) Lerch’s cancellation law.
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7.4 Heaviside’s Method

This practical method was popularized by the English electrical engineer
Oliver Heaviside (1850–1925). A typical application of the method is to
solve

2s

(s + 1)(s2 + 1)
= L(f(t))

for the t-expression f(t) = −e−t +cos t+sin t. The details in Heaviside’s
method involve a sequence of easy-to-learn college algebra steps.

More precisely, Heaviside’s method systematically converts a polyno-
mial quotient

a0 + a1s + · · · + ansn

b0 + b1s + · · · + bmsm
(1)

into the form L(f(t)) for some expression f(t). It is assumed that
a0, .., an, b0, . . . , bm are constants and the polynomial quotient (1) has
limit zero at s = ∞.

Partial Fraction Theory

In college algebra, it is shown that a rational function (1) can be ex-
pressed as the sum of terms of the form

A

(s − s0)k
(2)

where A is a real or complex constant and (s− s0)
k divides the denomi-

nator in (1). In particular, s0 is a root of the denominator in (1).

Assume fraction (1) has real coefficients. If s0 in (2) is real, then A is
real. If s0 = α + iβ in (2) is complex, then (s− s0)

k also appears, where
s0 = α − iβ is the complex conjugate of s0. The corresponding terms
in (2) turn out to be complex conjugates of one another, which can be
combined in terms of real numbers B and C as

A

(s − s0)k
+

A

(s − s0)k
=

B + C s

((s − α)2 + β2)k
.(3)

Simple Roots. Assume that (1) has real coefficients and the denomi-
nator of the fraction (1) has distinct real roots s1, . . . , sN and distinct
complex roots α1 + iβ1, . . . , αM + iβM . The partial fraction expansion
of (1) is a sum given in terms of real constants Ap, Bq, Cq by

a0 + a1s + · · · + ansn

b0 + b1s + · · · + bmsm
=

N
∑

p=1

Ap

s − sp

+
M
∑

q=1

Bq + Cq(s − αq)

(s − αq)2 + β2
q

.(4)
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Multiple Roots. Assume (1) has real coefficients and the denomi-
nator of the fraction (1) has possibly multiple roots. Let Np be the
multiplicity of real root sp and let Mq be the multiplicity of complex root
αq + iβq, 1 ≤ p ≤ N , 1 ≤ q ≤ M . The partial fraction expansion of (1)
is given in terms of real constants Ap,k, Bq,k, Cq,k by

N
∑

p=1

∑

1≤k≤Np

Ap,k

(s − sp)k
+

M
∑

q=1

∑

1≤k≤Mq

Bq,k + Cq,k(s − αq)

((s − αq)2 + β2
q )k

.(5)

Heaviside’s Coverup Method

The method applies only to the case of distinct roots of the denominator
in (1). Extensions to multiple-root cases can be made; see page 266.

To illustrate Oliver Heaviside’s ideas, consider the problem details

2s + 1

s(s − 1)(s + 1)
=

A

s
+

B

s − 1
+

C

s + 1
(6)

= L(A) + L(Bet) + L(Ce−t)

= L(A + Bet + Ce−t)

The first line (6) uses college algebra partial fractions. The second and
third lines use the Laplace integral table and properties of L.

Heaviside’s mysterious method. Oliver Heaviside proposed to
find in (6) the constant C = 1

2 by a cover–up method:

2s + 1

s(s − 1)

∣

∣

∣

∣

∣

s+1 =0

=
C

.

The instructions are to cover–up the matching factors (s + 1) on the left
and right with box , then evaluate on the left at the root s which
makes the contents of the box zero. The other terms on the right are
replaced by zero.

To justify Heaviside’s cover–up method, multiply (6) by the denominator
s + 1 of partial fraction C/(s + 1):

(2s + 1) (s + 1)

s(s − 1) (s + 1)
=

A (s + 1)

s
+

B (s + 1)

s − 1
+

C (s + 1)

(s + 1)
.

Set (s + 1) = 0 in the display. Cancellations left and right plus annihi-

lation of two terms on the right gives Heaviside’s prescription

2s + 1

s(s − 1)

∣

∣

∣

∣

s+1=0

= C.
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The factor (s + 1) in (6) is by no means special: the same procedure
applies to find A and B. The method works for denominators with
simple roots, that is, no repeated roots are allowed.

Extension to Multiple Roots. An extension of Heaviside’s method
is possible for the case of repeated roots. The basic idea is to factor–out

the repeats. To illustrate, consider the partial fraction expansion details

R =
1

(s + 1)2(s + 2)
A sample rational function having
repeated roots.

=
1

s + 1

(

1

(s + 1)(s + 2)

)

Factor–out the repeats.

=
1

s + 1

(

1

s + 1
+

−1

s + 2

)

Apply the cover–up method to the
simple root fraction.

=
1

(s + 1)2
+

−1

(s + 1)(s + 2)
Multiply.

=
1

(s + 1)2
+

−1

s + 1
+

1

s + 2
Apply the cover–up method to the
last fraction on the right.

Terms with only one root in the denominator are already partial frac-
tions. Thus the work centers on expansion of quotients in which the
denominator has two or more roots.

Special Methods. Heaviside’s method has a useful extension for the
case of roots of multiplicity two. To illustrate, consider these details:

R =
1

(s + 1)2(s + 2)
A fraction with multiple roots.

=
A

s + 1
+

B

(s + 1)2
+

C

s + 2
See equation (5).

=
A

s + 1
+

1

(s + 1)2
+

1

s + 2
Find B and C by Heaviside’s cover–
up method.

=
−1

s + 1
+

1

(s + 1)2
+

1

s + 2
Multiply by s+1. Set s = ∞. Then
0 = A + 1.

The illustration works for one root of multiplicity two, because s = ∞
will resolve the coefficient not found by the cover–up method.

In general, if the denominator in (1) has a root s0 of multiplicity k, then
the partial fraction expansion contains terms

A1

s − s0
+

A2

(s − s0)2
+ · · · +

Ak

(s − s0)k
.

Heaviside’s cover–up method directly finds Ak, but not A1 to Ak−1.
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7.5 Heaviside Step and Dirac Delta

Heaviside Function. The unit step function or Heaviside func-
tion is defined by

H(x) =

{

1 for x ≥ 0,
0 for x < 0.

The most often–used formula involving the Heaviside function is the
characteristic function of the interval a ≤ t < b, given by

H(t − a) − H(t − b) =

{

1 a ≤ t < b,
0 t < a, t ≥ b.

(1)

To illustrate, a square wave sqw(t) = (−1)floor(t) can be written in the
series form

∞
∑

n=0

(−1)n(H(t − n) − H(t − n − 1)).

Dirac Delta. A precise mathematical definition of the Dirac delta,
denoted δ, is not possible to give here. Following its inventor P. Dirac,
the definition should be

δ(t) = dH(t).

The latter is nonsensical, because the unit step does not have a cal-
culus derivative at t = 0. However, dH(t) could have the meaning of
a Riemann-Stieltjes integrator, which restrains dH(t) to have meaning
only under an integral sign. It is in this sense that the Dirac delta δ is
defined.

What do we mean by the differential equation

x′′ + 16x = 5δ(t − t0)?

The equation x′′ + 16x = f(t) represents a spring-mass system without
damping having Hooke’s constant 16, subject to external force f(t). In
a mechanical context, the Dirac delta term 5δ(t − t0) is an idealization

of a hammer-hit at time t = t0 > 0 with impulse 5.

More precisely, the forcing term f(t) can be formally written as a Riemann-
Stieltjes integrator 5dH(t−t0) where H is Heaviside’s unit step function.
The Dirac delta or “derivative of the Heaviside unit step,” nonsensical
as it may appear, is realized in applications via the two-sided or central
difference quotient

H(t + h) − H(t − h)

2h
≈ dH(t).
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Therefore, the force f(t) in the idealization 5δ(t − t0) is given for h > 0
very small by the approximation

f(t) ≈ 5
H(t − t0 + h) − H(t − t0 − h)

2h
.

The impulse2 of the approximated force over a large interval [a, b] is
computed from

∫ b

a
f(t)dt ≈ 5

∫ h

−h

H(t − t0 + h) − H(t − t0 − h)

2h
dt = 5,

due to the integrand being 1/(2h) on |t − t0| < h and otherwise 0.

Modeling Impulses. One argument for the Dirac delta idealization
is that an infinity of choices exist for modeling an impulse. There are in
addition to the central difference quotient two other popular difference
quotients, the forward quotient (H(t + h) − H(t))/h and the backward
quotient (H(t)−H(t− h))/h (h > 0 assumed). In reality, h is unknown
in any application, and the impulsive force of a hammer hit is hardly
constant, as is supposed by this naive modeling.

The modeling logic often applied for the Dirac delta is that the external
force f(t) is used in the model in a limited manner, in which only the
momentum p = mv is important. More precisely, only the change in
momentum or impulse is important,

∫ b
a f(t)dt = ∆p = mv(b) − mv(a).

The precise force f(t) is replaced during the modeling by a simplistic
piecewise-defined force that has exactly the same impulse ∆p. The re-
placement is justified by arguing that if only the impulse is important,
and not the actual details of the force, then both models should give
similar results.

Function or Operator? The work of physics Nobel prize winner P.
Dirac (1902–1984) proceeded for about 20 years before the mathematical
community developed a sound mathematical theory for his impulsive
force representations. A systematic theory was developed in 1936 by
the soviet mathematician S. Sobolev. The French mathematician L.
Schwartz further developed the theory in 1945. He observed that the
idealization is not a function but an operator or linear functional, in
particular, δ maps or associates to each function φ(t) its value at t = 0, in
short, δ(φ) = φ(0). This fact was observed early on by Dirac and others,
during the replacement of simplistic forces by δ. In Laplace theory, there
is a natural encounter with the ideas, because L(f(t)) routinely appears
on the right of the equation after transformation. This term, in the case

2Momentum is defined to be mass times velocity. If the force f is given by Newton’s

law as f(t) = d
dt

(mv(t)) and v(t) is velocity, then
∫ b

a
f(t)dt = mv(b) − mv(a) is the

net momentum or impulse.
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of an impulsive force f(t) = c(H(t−t0−h)−H(t−t0+h))/(2h), evaluates
for t0 > 0 and t0 − h > 0 as follows:

L(f(t)) =

∫ ∞

0

c

2h
(H(t − t0 − h) − H(t − t0 + h))e−stdt

=

∫ t0+h

t0−h

c

2h
e−stdt

= ce−st0

(

esh − e−sh

2sh

)

The factor
esh − e−sh

2sh
is approximately 1 for h > 0 small, because of

L’Hospital’s rule. The immediate conclusion is that we should replace
the impulsive force f by an equivalent one f∗ such that

L(f∗(t)) = ce−st0 .

Well, there is no such function f∗!

The apparent mathematical flaw in this idea was resolved by the work
of L. Schwartz on distributions. In short, there is a solid foundation
for introducing f∗, but unfortunately the mathematics involved is not
elementary nor especially accessible to those readers whose background
is just calculus.

Practising engineers and scientists might be able to ignore the vast lit-
erature on distributions, citing the example of physicist P. Dirac, who
succeeded in applying impulsive force ideas without the distribution the-
ory developed by S. Sobolev and L. Schwartz. This will not be the case
for those who wish to read current literature on partial differential equa-
tions, because the work on distributions has forever changed the required
background for that topic.
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7.6 Laplace Table Derivations

Verified here are two Laplace tables, the minimal Laplace Table 7.2-4
and its extension Table 7.2-5. Largely, this section is for reading, as it is
designed to enrich lectures and to aid readers who study alone.

Derivation of Laplace integral formulas in Table 7.2-4, page 252.

• Proof of L(tn) = n!/s1+n:

The first step is to evaluate L(tn) for n = 0.

L(1) =
∫∞

0
(1)e−stdt Laplace integral of f(t) = 1.

= −(1/s)e−st|t=∞

t=0 Evaluate the integral.

= 1/s Assumed s > 0 to evaluate limt→∞ e−st.

The value of L(tn) for n = 1 can be obtained by s-differentiation of the relation
L(1) = 1/s, as follows.

d
dsL(1) = d

ds

∫∞

0
(1)e−stdt Laplace integral for f(t) = 1.

=
∫∞

0
d
ds (e−st) dt Used d

ds

∫ b

a Fdt =
∫ b

a
dF
ds dt.

=
∫∞

0
(−t)e−stdt Calculus rule (eu)′ = u′eu.

= −L(t) Definition of L(t).

Then

L(t) = − d
dsL(1) Rewrite last display.

= − d
ds (1/s) Use L(1) = 1/s.

= 1/s2 Differentiate.

This idea can be repeated to give L(t2) = − d
dsL(t) and hence L(t2) = 2/s3.

The pattern is L(tn) = − d
dsL(tn−1) which gives L(tn) = n!/s1+n.

• Proof of L(eat) = 1/(s− a):

The result follows from L(1) = 1/s, as follows.

L(eat) =
∫∞

0 eate−stdt Direct Laplace transform.

=
∫∞

0
e−(s−a)tdt Use eAeB = eA+B .

=
∫∞

0 e−Stdt Substitute S = s − a.

= 1/S Apply L(1) = 1/s.

= 1/(s − a) Back-substitute S = s − a.

• Proof of L(cos bt) = s/(ss + b2) and L(sin bt) = b/(ss + b2):

Use will be made of Euler’s formula eiθ = cos θ+ i sin θ, usually first introduced
in trigonometry. In this formula, θ is a real number (in radians) and i =

√
−1

is the complex unit.
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eibte−st = (cos bt)e−st + i(sin bt)e−st Substitute θ = bt into Euler’s
formula and multiply by e−st.

∫∞

0
e−ibte−stdt =

∫∞

0
(cos bt)e−stdt

+ i
∫∞

0 (sin bt)e−stdt

Integrate t = 0 to t = ∞. Use
properties of integrals.

1

s − ib
=
∫∞

0
(cos bt)e−stdt

+ i
∫∞

0 (sin bt)e−stdt

Evaluate the left side using
L(eat) = 1/(s− a), a = ib.

1

s − ib
= L(cos bt) + iL(sin bt) Direct Laplace transform defini-

tion.
s + ib

s2 + b2
= L(cos bt) + iL(sin bt) Use complex rule 1/z = z/|z|2,

z = A + iB, z = A − iB, |z| =√
A2 + B2.

s

s2 + b2
= L(cos bt) Extract the real part.

b

s2 + b2
= L(sin bt) Extract the imaginary part.

Derivation of Laplace integral formulas in Table 7.2-5, page 252.

• Proof of the Heaviside formula L(H(t − a)) = e−as/s.

L(H(t − a)) =
∫∞

0
H(t − a)e−stdt Direct Laplace transform. Assume a ≥ 0.

=
∫∞

a
(1)e−stdt Because H(t − a) = 0 for 0 ≤ t < a.

=
∫∞

0 (1)e−s(x+a)dx Change variables t = x + a.

= e−as
∫∞

0
(1)e−sxdx Constant e−as moves outside integral.

= e−as(1/s) Apply L(1) = 1/s.

• Proof of the Dirac delta formula L(δ(t − a)) = e−as.

The definition of the delta function is a formal one, in which every occurrence of
δ(t− a)dt under an integrand is replaced by dH(t− a). The differential symbol
dH(t − a) is taken in the sense of the Riemann-Stieltjes integral. This integral
is defined in [?] for monotonic integrators α(x) as the limit

∫ b

a

f(x)dα(x) = lim
N→∞

N
∑

n=1

f(xn)(α(xn) − α(xn−1))

where x0 = a, xN = b and x0 < x1 < · · · < xN forms a partition of [a, b] whose
mesh approaches zero as N → ∞.

The steps in computing the Laplace integral of the delta function appear below.
Admittedly, the proof requires advanced calculus skills and a certain level of
mathematical maturity. The reward is a fuller understanding of the Dirac
symbol δ(x).

L(δ(t − a)) =
∫∞

0
e−stδ(t − a)dt Laplace integral, a > 0 assumed.

=
∫∞

0
e−stdH(t − a) Replace δ(t − a)dt by dH(t − a).

= limM→∞

∫M

0 e−stdH(t − a) Definition of improper integral.
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= e−sa Explained below.

To explain the last step, apply the definition of the Riemann-Stieltjes integral:

∫ M

0

e−stdH(t − a) = lim
N→∞

N−1
∑

n=0

e−stn(H(tn − a) − H(tn−1 − a))

where 0 = t0 < t1 < · · · < tN = M is a partition of [0, M ] whose mesh
max1≤n≤N (tn − tn−1) approaches zero as N → ∞. Given a partition, if tn−1 <
a ≤ tn, then H(tn−a)−H(tn−1−a) = 1, otherwise this factor is zero. Therefore,
the sum reduces to a single term e−stn . This term approaches e−sa as N → ∞,
because tn must approach a.

• Proof of L(floor(t/a)) =
e−as

s(1 − e−as)
:

The library function floor present in computer languages C and Fortran is
defined by floor(x) = greatest whole integer ≤ x, e.g., floor(5.2) = 5 and
floor(−1.9) = −2. The computation of the Laplace integral of floor(t) requires
ideas from infinite series, as follows.

F (s) =
∫∞

0
floor(t)e−stdt Laplace integral definition.

=
∑∞

n=0

∫ n+1

n (n)e−stdt On n ≤ t < n + 1, floor(t) = n.

=
∑∞

n=0

n

s
(e−ns − e−ns−s) Evaluate each integral.

=
1 − e−s

s

∑∞

n=0 ne−sn Common factor removed.

=
x(1 − x)

s

∑∞

n=0 nxn−1 Define x = e−s.

=
x(1 − x)

s

d

dx

∑∞

n=0 xn Term-by-term differentiation.

=
x(1 − x)

s

d

dx

1

1 − x
Geometric series sum.

=
x

s(1 − x)
Compute the derivative, simplify.

=
e−s

s(1 − e−s)
Substitute x = e−s.

To evaluate the Laplace integral of floor(t/a), a change of variables is made.

L(floor(t/a)) =
∫∞

0 floor(t/a)e−stdt Laplace integral definition.

= a
∫∞

0 floor(r)e−asrdr Change variables t = ar.

= aF (as) Apply the formula for F (s).

=
e−as

s(1 − e−as)
Simplify.

• Proof of L(sqw(t/a)) =
1

s
tanh(as/2):

The square wave defined by sqw(x) = (−1)floor(x) is periodic of period 2 and

piecewise-defined. Let P =
∫ 2

0 sqw(t)e−stdt.
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P =
∫ 1

0
sqw(t)e−stdt +

∫ 2

1
sqw(t)e−stdt Apply

∫ b

a
=
∫ c

a
+
∫ b

c
.

=
∫ 1

0
e−stdt −

∫ 2

1
e−stdt Use sqw(x) = 1 on 0 ≤ x < 1 and

sqw(x) = −1 on 1 ≤ x < 2.

=
1

s
(1 − e−s) +

1

s
(e−2s − e−s) Evaluate each integral.

=
1

s
(1 − e−s)2 Collect terms.

An intermediate step is to compute the Laplace integral of sqw(t):

L(sqw(t)) =

∫ 2

0 sqw(t)e−stdt

1 − e−2s
Periodic function formula, page 275.

=
1

s
(1 − e−s)2

1

1 − e−2s
. Use the computation of P above.

=
1

s

1 − e−s

1 + e−s
. Factor 1 − e−2s = (1 − e−s)(1 + e−s).

=
1

s

es/2 − e−s/2

es/2 + e−s/2
. Multiply the fraction by es/2/es/2.

=
1

s

sinh(s/2)

cosh(s/2)
. Use sinh u = (eu − e−u)/2,

coshu = (eu + e−u)/2.

=
1

s
tanh(s/2). Use tanh u = sinh u/ coshu.

To complete the computation of L(sqw(t/a)), a change of variables is made:

L(sqw(t/a)) =
∫∞

0
sqw(t/a)e−stdt Direct transform.

=
∫∞

0
sqw(r)e−asr(a)dr Change variables r = t/a.

=
a

as
tanh(as/2) See L(sqw(t)) above.

=
1

s
tanh(as/2)

• Proof of L(a trw(t/a)) =
1

s2
tanh(as/2):

The triangular wave is defined by trw(t) =
∫ t

0
sqw(x)dx.

L(a trw(t/a)) =
1

s
(f(0) + L(f ′(t)) Let f(t) = a trw(t/a). Use L(f ′(t)) =

sL(f(t)) − f(0), page 251.

=
1

s
L(sqw(t/a)) Use f(0) = 0, (a

∫ t/a

0
sqw(x)dx)′ =

sqw(t/a).

=
1

s2
tanh(as/2) Table entry for sqw.

• Proof of L(tα) =
Γ(1 + α)

s1+α
:

L(tα) =
∫∞

0
tαe−stdt Direct Laplace transform.

=
∫∞

0 (u/s)αe−udu/s Change variables u = st, du = sdt.
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=
1

s1+α

∫∞

0
uαe−udu

=
1

s1+α
Γ(1 + α). Where Γ(x) =

∫∞

0 ux−1e−udu, by
definition.

The generalized factorial function Γ(x) is defined for x > 0 and it agrees with
the classical factorial n! = (1)(2) · · · (n) in case x = n + 1 is an integer. In
literature, α! means Γ(1+α). For more details about the Gamma function, see
Abramowitz and Stegun [?], or maple documentation.

• Proof of L(t−1/2) =

√

π

s
:

L(t−1/2) =
Γ(1 + (−1/2))

s1−1/2
Apply the previous formula.

=

√
π√
s

Use Γ(1/2) =
√

π.
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7.7 Transform Properties

Collected here are the major theorems and their proofs for the manipu-
lation of Laplace transform tables.

Theorem 4 (Linearity)
The Laplace transform has these inherited integral properties:

(a) L(f(t) + g(t)) = L(f(t)) + L(g(t)),
(b) L(cf(t)) = cL(f(t)).

Theorem 5 (The t-Derivative Rule)
Let y(t) be continuous, of exponential order and let f ′(t) be piecewise
continuous on t ≥ 0. Then L(y′(t)) exists and

L(y′(t)) = sL(y(t)) − y(0).

Theorem 6 (The t-Integral Rule)
Let g(t) be of exponential order and continuous for t ≥ 0. Then

L
(

∫ t
0 g(x) dx

)

=
1

s
L(g(t)).

Theorem 7 (The s-Differentiation Rule)
Let f(t) be of exponential order. Then

L(tf(t)) = −
d

ds
L(f(t)).

Theorem 8 (First Shifting Rule)
Let f(t) be of exponential order and −∞ < a < ∞. Then

L(eatf(t)) = L(f(t))|s→(s−a) .

Theorem 9 (Second Shifting Rule)
Let f(t) and g(t) be of exponential order and assume a ≥ 0. Then

(a) L(f(t − a)H(t − a)) = e−asL(f(t)),
(b) L(g(t)H(t − a)) = e−asL(g(t + a)).

Theorem 10 (Periodic Function Rule)
Let f(t) be of exponential order and satisfy f(t + P ) = f(t). Then

L(f(t)) =

∫ P
0 f(t)e−stdt

1 − e−Ps
.

Theorem 11 (Convolution Rule)
Let f(t) and g(t) be of exponential order. Then

L(f(t))L(g(t)) = L

(
∫ t

0
f(x)g(t − x)dx

)

.
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Proof of Theorem 4 (linearity):

LHS = L(f(t) + g(t)) Left side of the identity in (a).

=
∫∞

0
(f(t) + g(t))e−stdt Direct transform.

=
∫∞

0
f(t)e−stdt +

∫∞

0
g(t)e−stdt Calculus integral rule.

= L(f(t)) + L(g(t)) Equals RHS; identity (a) verified.

LHS = L(cf(t)) Left side of the identity in (b).

=
∫∞

0
cf(t)e−stdt Direct transform.

= c
∫∞

0 f(t)e−stdt Calculus integral rule.

= cL(f(t)) Equals RHS; identity (b) verified.

Proof of Theorem 5 (t-derivative rule): Already L(f(t)) exists, because
f is of exponential order and continuous. On an interval [a, b] where f ′ is
continuous, integration by parts using u = e−st, dv = f ′(t)dt gives

∫ b

a f ′(t)e−stdt = f(t)e−st|t=b
t=a −

∫ b

a f(t)(−s)e−stdt

= −f(a)e−sa + f(b)e−sb + s
∫ b

a f(t)e−stdt.

On any interval [0, N ], there are finitely many intervals [a, b] on each of which
f ′ is continuous. Add the above equality across these finitely many intervals
[a, b]. The boundary values on adjacent intervals match and the integrals add
to give

∫ N

0

f ′(t)e−stdt = −f(0)e0 + f(N)e−sN + s

∫ N

0

f(t)e−stdt.

Take the limit across this equality as N → ∞. Then the right side has limit
−f(0) + sL(f(t)), because of the existence of L(f(t)) and limt→∞ f(t)e−st = 0
for large s. Therefore, the left side has a limit, and by definition L(f ′(t)) exists
and L(f ′(t)) = −f(0) + sL(f(t)).

Proof of Theorem 6 (t-Integral rule): Let f(t) =
∫ t

0 g(x)dx. Then f is of
exponential order and continuous. The details:

L(
∫ t

0
g(x)dx) = L(f(t)) By definition.

=
1

s
L(f ′(t)) Because f(0) = 0 implies L(f ′(t)) = sL(f(t)).

=
1

s
L(g(t)) Because f ′ = g by the Fundamental theorem of

calculus.

Proof of Theorem 7 (s-differentiation): We prove the equivalent relation
L((−t)f(t)) = (d/ds)L(f(t)). If f is of exponential order, then so is (−t)f(t),
therefore L((−t)f(t)) exists. It remains to show the s-derivative exists and
satisfies the given equality.

The proof below is based in part upon the calculus inequality

∣

∣e−x + x − 1
∣

∣ ≤ x2, x ≥ 0.(1)
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The inequality is obtained from two applications of the mean value theorem

g(b)−g(a) = g′(x)(b−a), which gives e−x+x−1 = xxe−x1 with 0 ≤ x1 ≤ x ≤ x.

In addition, the existence of L(t2|f(t)|) is used to define s0 > 0 such that
L(t2|f(t)|) ≤ 1 for s > s0. This follows from the transform existence theorem
for functions of exponential order, where it is shown that the transform has
limit zero at s = ∞.

Consider h 6= 0 and the Newton quotient Q(s, h) = (F (s + h)−F (s))/h for the
s-derivative of the Laplace integral. We have to show that

lim
h→0

|Q(s, h) − L((−t)f(t))| = 0.

This will be accomplished by proving for s > s0 and s + h > s0 the inequality

|Q(s, h) − L((−t)f(t))| ≤ |h|.

For h 6= 0,

Q(s, h) − L((−t)f(t)) =

∫ ∞

0

f(t)
e−st−ht − e−st + the−st

h
dt.

Assume h > 0. Due to the exponential rule eA+B = eAeB, the quotient in the
integrand simplifies to give

Q(s, h) − L((−t)f(t)) =

∫ ∞

0

f(t)e−st

(

e−ht + th − 1

h

)

dt.

Inequality (1) applies with x = ht ≥ 0, giving

|Q(s, h) − L((−t)f(t))| ≤ |h|
∫ ∞

0

t2|f(t)|e−stdt.

The right side is |h|L(t2|f(t)|), which for s > s0 is bounded by |h|, completing
the proof for h > 0. If h < 0, then a similar calculation is made to obtain

|Q(s, h) − L((−t)f(t))| ≤ |h|
∫ ∞

0

t2|f(t)e−st−htdt.

The right side is |h|L(t2|f(t)|) evaluated at s + h instead of s. If s + h > s0,
then the right side is bounded by |h|, completing the proof for h < 0.

Proof of Theorem 8 (first shifting rule): The left side LHS of the equality
can be written because of the exponential rule eAeB = eA+B as

LHS =

∫ ∞

0

f(t)e−(s−a)tdt.

This integral is L(f(t)) with s replaced by s−a, which is precisely the meaning
of the right side RHS of the equality. Therefore, LHS = RHS.

Proof of Theorem 9 (second shifting rule): The details for (a) are

LHS = L(H(t − a)f(t − a))

=
∫∞

0 H(t − a)f(t − a)e−stdt Direct transform.
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=
∫∞

a
H(t − a)f(t − a)e−stdt Because a ≥ 0 and H(x) = 0 for x < 0.

=
∫∞

0 H(x)f(x)e−s(x+a)dx Change variables x = t − a, dx = dt.

= e−sa
∫∞

0 f(x)e−sxdx Use H(x) = 1 for x ≥ 0.

= e−saL(f(t)) Direct transform.

= RHS Identity (a) verified.

In the details for (b), let f(t) = g(t + a), then

LHS = L(H(t − a)g(t))

= L(H(t − a)f(t − a)) Use f(t − a) = g(t − a + a) = g(t).

= e−saL(f(t)) Apply (a).

= e−saL(g(t + a)) Because f(t) = g(t + a).

= RHS Identity (b) verified.

Proof of Theorem 10 (periodic function rule):

LHS = L(f(t))

=
∫∞

0
f(t)e−stdt Direct transform.

=
∑∞

n=0

∫ nP+P

nP
f(t)e−stdt Additivity of the integral.

=
∑∞

n=0

∫ P

0 f(x + nP )e−sx−nPsdx Change variables t = x + nP .

=
∑∞

n=0 e−nPs
∫ P

0 f(x)e−sxdx Because f is P -periodic and
eAeB = eA+B .

=
∫ P

0
f(x)e−sxdx

∑∞

n=0 rn Common factor in summation.
Define r = e−Ps.

=
∫ P

0
f(x)e−sxdx

1

1 − r
Sum the geometric series.

=

∫ P

0
f(x)e−sxdx

1 − e−Ps
Substitute r = e−Ps.

= RHS Periodic function identity verified.

Left unmentioned here is the convergence of the infinite series on line 3 of the
proof, which follows from f of exponential order.

Proof of Theorem 11 (convolution rule): The details use Fubini’s in-
tegration interchange theorem for a planar unbounded region, and therefore
this proof involves advanced calculus methods that may be outside the back-
ground of the reader. Modern calculus texts contain a less general version of
Fubini’s theorem for finite regions, usually referenced as iterated integrals. The
unbounded planar region is written in two ways:

D = {(r, t) : t ≤ r < ∞, 0 ≤ t < ∞},
D = {(r, t) : 0 ≤ r < ∞, 0 ≤ r ≤ t}.

Readers should pause here and verify that D = D.
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The change of variable r = x + t, dr = dx is applied for fixed t ≥ 0 to obtain
the identity

e−st
∫∞

0 g(x)e−sxdx =
∫∞

0 g(x)e−sx−stdx

=
∫∞

t g(r − t)e−rsdr.
(2)

The left side of the convolution identity is expanded as follows:

LHS = L(f(t))L(g(t))

=
∫∞

0 f(t)e−stdt
∫∞

0 g(x)e−sxdx Direct transform.

=
∫∞

0 f(t)
∫∞

t g(r − t)e−rsdrdt Apply identity (2).

=
∫

D f(t)g(r − t)e−rsdrdt Fubini’s theorem applied.

=
∫

D
f(t)g(r − t)e−rsdrdt Descriptions D and D are the same.

=
∫∞

0

∫ r

0
f(t)g(r − t)dte−rsdr Fubini’s theorem applied.

Then

RHS = L
(

∫ t

0
f(u)g(t − u)du

)

=
∫∞

0

∫ t

0 f(u)g(t − u)due−stdt Direct transform.

=
∫∞

0

∫ r

0 f(u)g(r − u)due−srdr Change variable names r ↔ t.

=
∫∞

0

∫ r

0
f(t)g(r − t)dt e−srdr Change variable names u ↔ t.

= LHS Convolution identity verified.
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7.8 More on the Laplace Transform

Model conversion and engineering. A differential equation model

for a physical system can be subjected to the Laplace transform in order
to produce an algebraic model in the transform variable s. Lerch’s the-
orem says that both models are equivalent, that is, the solution of one
model gives the solution to the other model.

In electrical and computer engineering it is commonplace to deal only

with the Laplace algebraic model. Engineers are in fact capable of hav-
ing hour-long modeling conversations, during which differential equations
are never referenced! Terminology for such modeling is necessarily spe-
cialized, which gives rise to new contextual meanings to the terms input

and output. For example, an RLC-circuit would be discussed with input

F (s) =
ω

s2 + ω2
,

and the listener must know that this expression is the Laplace transform
of the t-expression sin ωt. Hence the RLC-circuit is driven by a sinu-
soindal input of natural frequency ω. During the modeling discourse, it
could be that the output is

X(s) =
1

s + 1
+

10ω

s2 + ω2
.

Lerch’s equivalence says that X(s) is the Laplace transform of e−t +
10 sin ωt, but that is extra work, if all that is needed from the model is a
statement about the transient and steady-state responses to the input.


