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ABSTRACT 
 
In most environments, task collaboration requires 
efficient, flexible communication between collaborators. 
In the case of tasks involving human-robot collaboration, 
the robot must effectively convey and interpret 
communicative actions about the current and intended 
state of the task environment and coordinate its behavior 
with those of its collaborators, human and otherwise. A 
framework for collaborative communication should not 
only allow the robot to reason about its actions in relation 
to those of others but should also support reasoning about 
the robot’s own intentions and those ascribed to it by the 
collaborators. We present such a framework, inspired by 
Theory of Mind and making use of perspective taking, and 
show how it could be used to support several 
collaborative functions, including detection of 
opportunities to assist.  
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1. INTRODUCTION 
 
In collaborative task settings, people use a combination of 
explicit social signaling and implicit situational awareness 
to communicate with each other in order to achieve 
coordinated, goal-driven action. Robots are becoming 
increasingly capable of conducting high-level tasks in 
real-world environments, including manipulating 
everyday objects and navigating cluttered spaces. Human-
robot collaboration necessitates principled methods of 
integrating human perception and modeling and task 
control to allow a robot to collaborate effectively on a 
task, through learning or direct control specification. In 
collaborative contexts, it is assumed that the interacting 
agents share a joint goal; this provides the robot with an 
opportunity for the use of perspective-taking to evaluate 

others through the use of its own control structure. With 
human collaborators, the robot should also be capable of 
formulating and responding to natural social 
communication, including gestures, proxemics, and 
simple speech commands, to achieve coordination and 
clarify intent. Although people tend to use similar forms 
of communication across different tasks, the dynamics are 
dependent on the environment, user tendencies, and the 
task itself. To enable a robot to communicate naturally, 
we propose combining task actions and communicative 
actions into a unified, flexible framework that also 
enables the identification of assistive opportunities. 
 
2. BACKGROUND 
 
In order to develop robots capable of natural, social 
coordination behavior with humans, we first consider 
human collaboration and the insights it offers. 
 
2.1. Human Collaboration 
 
It has been documented that people have a tendency to 
adapt both their speech and actions in response to the 
person they are interacting with, so as to be salient and 
sensible to a collaborating partner, especially in 
circumstances involving work objects in the environment 
and frames of reference [1]. Collaborators align their 
linguistic representations of the environment, allowing for 
more effective communicative behavior with their 
partner(s). This alignment is achieved via a process in 
which local environmental representations, i.e., specific 
speech and gesture, are implicitly adopted and propagated 
to global representations via a priming mechanism [2]. 
The same priming mechanism is similarly used to achieve 
lexical and syntactic alignment, resulting in a consistent 
vocabulary and shared environmental representation at the 
task level, for corresponding communication. Researchers 
disagree over how deeply people model their interaction 
partners and the role those models play in language and 
gesture production. Some argue that a speaker’s model of 



addressees plays a central role in production [3]; others 
suggest it functions as a late stage corrective mechanism 
for tailoring speech [4]; and some suggest a hybrid 
approach is used, depending on context [5]. Additionally, 
people rely heavily on speech for coordination, but it has 
been shown that shared visual information can result in 
more efficient, less verbose utterances [6]. This suggests 
that collaboration can be accomplished without relying 
exclusively on natural language processing, particularly in 
collocated scenarios. 
 
2.2. Human-Robot Collaboration 
 
Prior work on human-machine collaboration includes 
approaches from human-computer (HCI) and human-
robot interaction (HRI), as well as from cognitive science 
and linguistics. An extensive body of work from Grosz et 
al. on top-down deliberative approaches for modeling is 
aimed at establishing and maintaining alignment, to 
assure coherent discourse, and constructing shared plans 
for collaboration [7,8]. This approach has been applied in 
HCI to intelligently alter the user interface and reduce the 
total amount of communication required to complete 
certain tasks [9]. There has also been extensive work on 
intent recognition relying on perspective taking or Theory 
of Mind-inspired models to allow a robot to recognize a 
person’s intentional behavior through observation. This 
approach has been employed to learn the rules of a series 
of games by clustering estimated intents into roles that a 
robot can assume [10], as well as to recognize and 
generate intentional face-to-face meeting initiation 
behavior [11], and to recognize helping and hindering 
social behavior via an MDP formalization utilizing 
inverse planning [12]. Work by Breazeal [13] and 
Hoffman [14] demonstrated the ability of a robot to learn 
simple tasks through human tutelage and collaborate 
effectively via turn-taking or biased pre-emptive action. 
Related work in multi-robot systems generally separates 
collaborative communication from task function through a 
repeated process of team partitioning and reformation for 
achievement goals [15] or through conditional behavior 
switching for maintenance goals [16]. 
 
3. APPROACH 
 
Our work is aimed at integrating social communication 
with task control, learned or otherwise, to support 
coordination in collaborative environments across 
different tasks that the robot already knows how to 
perform independently. The specific context of 
collaboration allows for the simplifying assumption that 
participants are working together to accomplish a shared 
set of goals. This enables the robot to make use of its own 
task controller or planner to evaluate the actions of others. 
To accomplish this, it must first actively model its 
collaborators, possess a manipulable representation of the 

task, and be able to evaluate the environment from other 
perspectives. These capabilities enable the robot to predict 
and coordinate with others, to identify assistive 
opportunities, and to detect whether its plans are aligned 
with others. Assistive conditions in the context of 
collaborative activity can be classified across two 
dimensions: 1) according to their motivating stimuli, i.e., 
whether they are aimed at error recovery or preemptive 
aid, and 2) whether the robot takes a communicative or a 
task action in response. For example, a robot may detect 
the occurrence of an error and it might offer a collaborator 
encouragement through social interaction (communicative 
recovery) or it might attempt to fix the error itself (task-
based recovery).  Similarly, some assistive actions such as 
reinforcement, clarification, or preemptive task 
completion, do not depend on the prior occurrence of an 
error. 
 
3.1. Theory of Mind 
 
In order to effectively coordinate a robot’s actions with 
those of its human collaborator, the robot must be able to 
accurately estimate the human’s planned actions from 
context or from explicit communication. Analogously, the 
robot must be able to effectively convey its planned 
actions clearly to a human. This ability to attribute mental 
state to others and use it to plan and predict behavior is 
called Theory of Mind (ToM) and has been extensively 
used for various capabilities with autonomous robots. We 
propose a ToM-inspired model in which the robot 
contains estimates of its own state, the state of 
collaborators, and those collaborators’ estimates of the 
robot’s state. These states contain information relevant to 
the task including a world model and a partial task 
allocation i.e. assignments of various agents to sub-tasks. 
Previous work has demonstrated the viability of similar 
frameworks to model and learn from human activity at 
various levels of perceptual abstraction. At the task-level, 
it is generally assumed that the environmental dynamics 
are accurately detectable by the robot and the modeling 
relies on some notion of symbolic state [12,13], while 
other work focuses on bottom-up learning from raw or 
annotated sensor input [11,14,17,18]. Our work is focused 
on enabling natural collaborative communication in 
realistic collaborative task settings devoid of a strict 
dialog structure, such as turn taking. Thus, the task-level 
symbolic states will be augmented to allow the robot to 
formulate collaborative communication and infer 
intention from human social signals from perceptual 
features, such as head direction and deictic gesturing, 
extracted from on-board sensing. 
 
3.2. Task Representation 
 
Since our primary focus lies in modeling collaborative 
communication and detecting assistive opportunities, we 



assume a symbolic, STRIPs-like representation of the task 
in terms of pre- and post-conditions, and robust, though 
not perfect, sensing of environmental dynamics. Other 
work has demonstrated that task structure can be learned 
via a variety of mechanisms including through 
demonstration [19,20] and human tutelage [21,22] and 
thus our focus will not be on learning the specific task 
structure but rather on using an existing task controller to 
plan the robot’s actions and evaluate those of its 
collaborators, while adding a social communication 
planning layer. A symbolic task representation is required 
to allow the robot to predict others’ actions, formulate 
partial plans for each interacting partner, and coordinate 
its actions to achieve progress toward the goal. It also 
allows for integration of social communication via a 
separate controller, by evaluating the relative value of 
conducting a task action or performing communication 
actions, such as deictic references or other gestures.  
 
3.3. Perspective-Taking 
 
In order for the robot to make use of this state and task 
representation, it must be able to evaluate the 
environment from multiple points of view. Existing 
approaches to perspective taking generally rely on 
transforming sensor data to a local reference frame and 
planning under the estimated visibility constraints for 
another agent [13,23]. We will make use of a similar 
approach wherein the robot will assume a limited visual 
field of view for each participant and a distance-based 
efficiency metric. The estimated field of view of each 
participant will be inferred from tracked pose information, 
consisting of global position and body and head 
orientation. This allows filtering of salient environmental 
targets that are not in the given agent’s field of view.  The 
task controller, which maps a given state to a subtask, will 
then be used to obtain a prediction of possible next states 
given the position and visibility constraints for each other 
agent. Each agent’s model of the robot’s next state will be 
constructed similarly, using a filtered environment map. 
 
In most real-world environments there are manageable 
subsets of objects that will play a role during performance 
of the task. Thus, constructing an environmental map 
involves tracking a subset of key objects throughout the 
collaboration. This could be accomplished with a tailored 
detection system for a specific task domain or could be 
learned via activity discovery, wherein the system 
observes someone performing the task while tracking 
salient features and infers what is important for each 
segment of the activity [24]. In cluttered or partially 
observable environments, additional robots could be used 
to provide better monitoring of the task space and human 
collaborators. The performance of the perspective-taking 
approach will be evaluated separately from the rest of the 
system to ensure that it is reasonably accurate at 

predicting the actions of others. For tasks in which action 
is heavily tied to proximity, such as herding, foraging, or 
constrained object manipulation, we anticipate this 
approach to work well. For complex tasks with many 
action choices or where action is decoupled from global 
position, this approach may need to be augmented to learn 
the task preferences of a given individual, in order to 
account for personal differences such as performing 
similar tasks consecutively despite distance constraints. 
 
3.4. Uncertainty 
 
Our goal is to develop systems that will operate in real-
world environments with people and thus must handle 
imperfect sensing, partial observability, and uncertainty. 
The framework above will be used as the basis for a 
probabilistic reasoning approach in order to deal with 
sensor noise and uncertainty in state estimations and 
action outcomes. All the state maintained by the robot, 
including its own, those of others, and the perceived 
environmental dynamics, will be represented as 
distributions. This structure will scale with the number of 
collaborators and the number of states in the task, but will 
be tractable for everyday manipulation or maintenance 
tasks where the number of states is manageable. 
 
3.5. Collaborative Reasoning 
 
Given this framework, the robot can consider the 
consequences of its actions, both in terms of manipulating 
the environment and conveying information to the 
collaborative partners. Modeling sub-goal dynamics 
allows the robot to convey information implicitly by using 
its task selection or spatial positioning to project the 
information. In addition, the robot can explicitly 
communicate information by selecting actions such as 
gesturing and vocalization. Finally, this framework allows 
the robot to compare the estimates of itself with those of 
others so as to detect and handle discrepancies, identify 
assistive situations, and recognize agents using a different 
plan than itself, potentially allowing it to adapt to or 
instruct others. Next, we describe how the above 
framework could be used for simple action coordination 
and detection of these and other special circumstances 
during the course of a collaborative activity with a human.  
 
3.5.1. Coordinating Task Action  
The simplest function of a collaborative system is to 
coordinate actions and minimize conflict with other 
agents while exploiting opportunities for parallel activity. 
This can be accomplished using the above framework by 
identifying parallelizable subtasks, tasks with met 
preconditions that have not been completed, and 
inhibiting the task controller from doing tasks that are 
likely to be performed by other agents.  
 



Similarly, we can integrate communication actions such 
as pointing, gestures, or narration, by augmenting the set 
of subtasks or task actions with communicative actions 
that could be performed at any time. The collaboration 
monitor can then compare the estimated intentions of the 
robot from the various participants point of view with its 
actual planned intention. In ambiguous or uncertain cases 
the robot can then take an explicit communicative action 
to attempt to reinforce its intentions and increase fluency 
with its teammates. Deciding the type, timing, and 
frequency of such feedback depends to some extent on the 
task, although certain gestures such as deictic pointing are 
used extensively in collocated contexts. Gestural patterns 
could be learned from human-human interactions; initially, 
we will be employing a heuristic approach by selecting 
from a small set of well-understood gestures or narrations. 
 
3.5.2. Detecting Assistive Opportunities  
In most tasks, multiple situations are likely to arise 
wherein the robot could potentially offer assistance to a 
collaborator. These circumstances include struggling or 
failing to accomplish an intended subtask, not knowing 
what to do next, or employing an incorrect strategy or one 
different from that used by the robot. All of these cases 
require the robot to monitor the other participants’ 
intentions and outcomes over time. In the above 
framework, this process consists of saving the estimated 
intentions of each participant at each step in the task and 
using learned or heuristics-based models of failure to 
recognize when things go wrong. The amount of past state 
required depends on the failure detection time-scale. 
Detecting success and failure of an atomic task could be 
accomplished using only a single recorded state while 
detecting successful but incorrect actions could require a 
complete model of every possible task state. Related work 
has shown nontrivial gameplay trajectory modeling to be 
tractable [25]. It is also possible that systemic differences 
in overall task strategy could occur for tasks with multiple 
viable strategies. In those cases, the robot’s perspective-
taking capability would fail, resulting in it failing to 
predict intentions and potentially undoing progress made 
by other agents. Since the robot can no longer perform the 
task, it must resort to learning the collaborator’s strategy, 
teaching the collaborator its own or teleoperation.  
 
3.5.3. Command Hierarchies  
It is likely that different people will have different 
preferences for the role of the robot and its level of 
autonomy during collaboration. In some cases, it may be 
necessary for the robot to assess its place in the command 
hierarchy and adjust its level of autonomy. Extending the 
framework described above to model desires in addition 
to intentions and providing an on-line feedback 
mechanism for collaborators would allow the robot to 
adjust its action selection accordingly and thus improve 
performance.  

4. VALIDATION AND OUTCOMES 
 
The described approach will be validated on a challenging 
cooperative task in a dynamic environment involving 
humans and robot(s), in which effective communication, 
rather than a one-time partitioning of responsibility, is 
required to achieve a collaborative goal. Such tasks could 
include kitting or object retrieval and construction tasks 
where the actions of one agent are tightly-coupled to the 
possible actions of others. Full details of the validation 
task and system will be provided in a later paper.  We will 
demonstrate the ability of the framework to capture the 
explicit communication required to predict human 
intentions, identify a variety of assistive opportunities and 
complete the task. The generalization of the framework 
across tasks and users will be demonstrated on a 
secondary task, through a series of human subjects 
experiments aimed at comparing the system with a non-
speaking human confederate and a robot that does not 
perform user modeling. Since the proposed approach will 
be targeted at human-robot interaction and may rely on 
detailed sensory information about the human such as 
head direction estimates, it is unlikely to scale for 
scenarios with many people or where the number of 
humans is much greater than the number of robots. In 
addition, since the robot(s) will be using the same on-
board sensing for tracking people, monitoring 
environmental dynamics, and performing task actions, a 
view prioritization algorithm may be necessary. 
 
5. FUTURE WORK 
 
We have described a method for modeling collaborative 
task-achieving behavior that we are in the process of 
developing and validating. The specific form and timing 
of the individual feedback gestures and the robot 
responses for the various assistive opportunities, for 
instance, merits additional study to verify that the robot 
clearly conveys its intentions. Further research into the 
best methods of perceiving humans is also warranted, to 
verify that the extracted social features extracted, such as 
location and head orientation, are suitable for monitoring 
typical human feedback. Finally, some tasks, such as 
those that employ exclusively reactive control, are not 
amenable to collaboration with this particular modeling 
method, since they do not provide symbolic output upon 
which planning can be performed. Our future work 
includes a rigorous investigation of the representational 
limits of the system for these various classes of tasks. 
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