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Abstract:

We implement the new transform method for solving boundary value problems developed by Fokas for
periodic boundary conditions. The approach presented here is not a replacement for classical methods nor
is it necessarily an improvement. However, in addition to establishing that periodic problems can indeed be
solve by the new transform method (which enhances further its scope and applicability), our implementation
also has the advantage that it yields a new simpler approach to computing the limit from the periodic Cauchy
problem to the Cauchy problem on the line.

1 Introduction

Recently, A. S. Fokas [3] has made great progress on the problem of solving boundary-value problems for
nonlinear integrable equations. A surprising outcome of this work has been the discovery of new methods to
explicitly solve boundary value problems for linear partial differential equations, specifically linear equations
with constant coefficients [2, 3, 4, 5]. These new methods contain the classical methods as special cases, but
they have also allowed for the solution of problems that cannot be solved using these classical methods. In
this paper, we discuss the solution of initial-value problems for constant-coefficient linear partial differential
equations with periodic boundary conditions. Such initial-value problems are easily solved using Fourier
series. Nevertheless, we wish to investigate how the new methods can be applied to these problems. The
first reason to investigate this is that the initial-value problem with periodic boundary conditions is not
in actuality a boundary-value problem. Rather it is an initial-value problem posed on the circle. Thus it
is not obvious that the methods of Fokas can be extended to this scenario. Establishing this extends the
applicability of the method. The second reason is that in order to understand how the method might be
applied to nonlinear problems with periodic boundary conditions, it is important to examine how it is applied
to linear problems. We are not claiming that the new methods provide a more efficient solution for periodic
problems. We shall see this is not the case. But we are demonstrating that the new methods incorporate
yet another classical solution method, which is important from a unification point of view.
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We begin by briefly discussing the boundary-value problem for equations on the finite interval using the
new formalism. We use information from this to solve the periodic problem by eliminating the boundary
conditions. At first we do this using two illustrative examples, one dissipative and one dispersive. We proceed
to demonstrate the generality of the new approach, after which we use the new solution formalism to obtain
the infinite-line solution formula (the Fourier transform) by considering increasingly larger periods.

2 The Cauchy Problem on the Finite Interval

We are considering the problem

qt + w(−i∂x)q = 0, (x, t) ∈ [0, L]× [0, T ],
q(x, 0) = q0(x) ∈ C∞[0, L],

∂kxq(0, t) = gk(t), k ∈ {j0
1 , . . . , j

0
N} ⊂ {0, . . . , n− 1},

∂kxq(L, t) = hk(t), k ∈ {jL1 , . . . , jLn−N} ⊂ {0, . . . , n− 1},

(2.1)

where w(k) is a polynomial of degree n ≥ 1 with the condition that for k ∈ R, Re(w(k)) ≥ 0 for k large.
This condition is necessary for well-posedness of the problem for general initial data. Define

N =

 n/2, if n is even,
(n+ 1)/2, if n is odd and Im(αn) > 0,
(n− 1)/2, if n is odd and Im(αn) < 0.

Then [8],

Theorem 1. Consider the boundary value problem (2.1). Assume that gj(t), hj(t) ∈ C∞[0, T ] for all j and
that they are compatible with the initial condition, that is, ∂jxq0(0) = gj(0) and ∂jxq0(L) = hj(0). Then
(2.1) has a unique solution q(x, t) such that t→ q(·, t) is a C∞ map from [0, T ] into C∞[0, L] if N boundary
conditions are specified at x = 0 and n−N at x = L.

Thus (2.1) has a unique solution. The problem has an equivalent one-parameter divergence formulation:

(
e−ikx+w(k)tq

)
t
−

e−ikx+w(k)t

n−1∑
j=0

cj(k)∂jxq


x

= 0, (x, t) ∈ [0, L]× [0, T ], k ∈ C,

where the functions cj(k) are defined by the operator identity

n−1∑
j=0

cj(k)∂jx = i
w(k)− w(l)

k − l

∣∣∣∣∣∣
l=−i∂x

. (2.2)

The use of Green’s Theorem in [0, L]× [0, t] for 0 < t ≤ T is justified, resulting in

q̂0(k)− g̃(k, t) + e−ikLh̃(k, t) = ew(k)t

∫ L

0

e−ikxq(x, t)dx = ew(k)tq̂(k, t), k ∈ C, (2.3)

where

h̃(k, t) =
n−1∑
j=0

cj(k)
∫ t

0

ew(k)shj(s)ds, g̃(k, t) =
n−1∑
j=0

cj(k)
∫ t

0

ew(k)sgj(s)ds.

With t = T , we refer to (2.3) as the Global Relation. The inverse Fourier transform is used to invert this
relationship, thus

q(x, t) =
1

2π

∫ ∞
−∞

eikxq̂(k, t)dk

=
1

2π

∫ ∞
−∞

eikx−w(k)tq̂0(k)dk +
1

2π

∫ ∞
−∞

eikx−w(k)tg̃(k, t)dk − 1
2π

∫ ∞
−∞

e−ik(L−x)−w(k)th̃(k, t)dk.
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Define D = {k ∈ C : Re(w(k)) < 0} and D+ = C+ ∩D, D− = C− ∩D. It is shown in [3, 4] that these
integrals can be deformed off the real line to the boundaries of D+ and D−, resulting in

q(x, t) =
1

2π

∫ ∞
−∞

eikx−w(k)tq̂0(k)dk +
1

2π

∫
∂D+

eikx−w(k)tg̃(k, t)dk

− 1
2π

∫
∂D−

e−ik(L−x)−w(k)th̃(k, t)dk.
(2.4)

Heuristically, this can be explained by the fact we can deform the contours in the region where Re(w(k)) > 0
(C\D) as we have strong exponential decay and g̃, h̃ and q̂0 are entire. Thus, we deform through this region
until the boundary of D is reached.

Theorem 2. [8] Assume that q(x, t) is a sufficiently smooth solution of (2.1). Then q(x, t) is given by (2.4).

Remarks

• Using Jordan’s Lemma in D we can replace g̃(k, t) with g̃(k, T ) to simplify the dependence on t.

• All the above can be done without the apriori assumption of the Fourier transform and its inverse by
using a Riemann-Hilbert problem constructed from a Lax pair. See [3] for this approach.

• Were we looking to solve (2.1) we would use the invariance properties of w(k) in combination with (2.3)
to eliminate the unknown boundary values. This is worked out in detail in [3]. Here we are interested
in the periodic problem where these details are not needed.

3 The Periodic Problem

Consider the periodic problem

qt + w(−i∂x)q = 0 (x, t) ∈ [0, L]× [0, T ],
q(x, 0) = q0(x),

q0(x+ L) = q0(x) ∈ C∞([0, L]).
(3.1)

Remark. The method developed by Fokas applies to boundary value problems. In [2] the domain was the
half-line and then extended to the a finite interval in [4]. The periodic problem is an initial value problem
on S1 so it is not immediately clear that the method will extend.

The regularity of q0(x) can be relaxed based on each problem. The assumptions imposed are for conve-
nience. Analogous to Theorem 1, we have an existence theorem [7].

Theorem 3. The initial value problem (3.1) has a unique solution q(x, t) such that t→ q(·, t) is a C∞ map
from [0, T ] into C∞[0, L].

Given q0(x) there exists a solution q(x, t). Furthermore there exist boundary values bj(t) so that
∂jxq(0, t) = ∂jxq(L, t) = bj(t). Thus necessarily, we have ∂jxq(0, 0) = ∂jxq(L, 0) = bj(0) and these bound-
ary values are compatible in the sense of Theorem 1. Thus q(x, t) can be given by (2.4) with a subset of
this set of boundary values. The interesting aspect to note is that h̃ = g̃ since the solution is periodic. The
resulting global relation is easily solved for the unknowns:

q̂0(k)− g̃(k, T ) + e−ikLh̃(k, T ) = ew(k)tq̂(k, t), k ∈ C. (3.2)

Thus

g̃(k, T ) = h̃(k, T ) =
1

∆(k)

(
q̂0(k)− ew(k)T q̂T (k)

)
, (3.3)
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where ∆(k) = 1 − e−ikL. We discuss a few examples to illustrate the successes and complications of this
approach. First we solve the heat equation to show the success of this method on dissipative problems. Then
we complicate matters using a dispersive problem, the Linear Schrödinger equation. Ideas from both these
problems are used to solve any problem tractable with Fokas’ method, posed on S1.

3.1 The Heat Equation

For the heat equation qt = qxx, we have w(k) = k2.

Remark. The solution using Fourier series is given by

q(x, t) =
∑
n∈Z

q̂ne
i 2πnL x− 4π2n2

L2 t,

where

q̂n =
1
L

∫ L

0

e−i
2πn
L xq0(x)dx.

The integral representation we present below has the advantage over this representation of allowing one to
use all the techniques of the asymptotic evaluation of integrals [1].

In this case the regions D+ and D− are as in Figure 1(a). Notice that ∆(0) = 0 and k = 0 is on the
contour in Figure 1(a). From its definition, g̃ is analytic in the finite complex plane and we can replace D
with D1, see Figure 1(b). The expression for the solution (2.4) becomes

q(x, t) =
1

2π

∫ ∞
−∞

eikx−w(k)tq̂0(k)dk − 1
2π

∫
∂D+

1

eikx−w(k)t q̂0(k)
∆(k)

dk − 1
2π

∫
∂D−1

e−ik(L−x)−w(k)t q̂0(k)
∆(k)

dk

+
1

2π

∫
∂D+

1

eikx+w(k)(T−t) q̂T (k)
∆(k)

dk +
1

2π

∫
∂D−1

e−ik(L−x)+w(k)(T−t) q̂T (k)
∆(k)

dk.

(3.4)

In order to have an effective solution, we must eliminate the two terms involving the transform of the
solution at a future time. Let us examine these integrands more closely. In the fourth integral, the integrand
is

eikx+w(k)(T−t) q̂T (k)
∆(k)

.

We wish to apply Jordan’s Lemma. Since Re(w(k)) < 0 in D1 we have that |ew(k)(T−t)| is bounded on ∂D+
1 .

The factor

q̂T (k)
∆(k)

=
∫ L

0

e−ikxq(x, T )
1− e−ikL

dx,

is bounded on compact subsets of D+
1 , but if we examine the large k behavior for Im(k) > 0 we see that,

e−ikxq(x, T )
1− e−ikL

= eik(L−x) q(x, T )
eikL − 1

→ 0 as k →∞.

Using integration by parts, we conclude that q̂T (k)/∆(k) decays uniformly in D+
1 . Applying Jordan’s Lemma

gives

1
2π

∫
∂D+

1

eikx+w(k)(T−t) q̂T (k)
∆(k)

dk = 0.
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(a) (b)

(c)

Figure 1. Deformations for the heat equation. (a) The regionsD+ andD− for heat equation. (b) Deformation
of D+ and D− to avoid the removable singularity at k = 0. (c) The regions D+

ε and D−ε which both have
oriented boundaries on the real line with deformations into C+ or C− respectively, to avoid the zeros of
∆(k). Each of these deformations has an arc of radius ε.
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The final term in (3.4) is shown to be zero in a similar but even more straightforward way, as both 1/∆(k)
and q̂T (k) are bounded in D−1 . Thus

q(x, t) =
1

2π

∫ ∞
−∞

eikx−w(k)tq̂0(k)dk − 1
2π

∫
∂D+

1

eikx−w(k)t q̂0(k)
∆(k)

dk − 1
2π

∫
∂D−1

e−ik(L−x)−w(k)t q̂0(k)
∆(k)

dk, (3.5)

which gives an integral representation of the solution.
Using Jordan’s Lemma in C+ \D+

1 we deform the contour ∂D+
1 to ∂D+

ε , see Figure 1(c). This contour is
deformed, using arcs of radius ε, around the zeros of 1/∆(k) which are at k = kn = 2πn/L for n ∈ Z. This
is justified since the integrand e−w(k)t q̂0(k)

∆(k) is exponentially decaying in this region. The same idea applies
in C− \D−1 to deform ∂D−1 to ∂D−ε . In the limit as ε→ 0

1
2π

∫
∂D+

ε

eikx−w(k)t q̂0(k)
∆(k)

dk =
1

2π
−
∫ ∞
−∞

eikx−w(k)t q̂0(k)
∆(k)

dk − 1
2

∞∑
n=−∞

2πi
2π

Res
{
eikx−w(k)t q̂0(k)

∆(k)
, kn

}
.

Since 1/∆(k) has only simple poles the residues are easy to compute:

Res
{
eikx−w(k)t q̂0(k)

∆(k)
, kn

}
= eikx−w(k)t q̂0(k)

∆′(k)

∣∣∣∣
k=kn

=
1
iL
eiknx−w(kn)tq̂0(kn).

Similarly, on ∂D−ε ,

1
2π

∫
∂D−1

e−ik(L−x)−w(k)t q̂0(k)
∆(k)

dk =
1

2π
−
∫ −∞
∞

e−ikLeikx−w(k)t q̂0(k)
∆(k)

dk

− 1
2

∞∑
n=−∞

2πi
2π

Res
{
e−ik(L−x)−w(k)t q̂0(k)

∆(k)
, kn

}
.

Since eiknL = 1,

Res
{
e−ik(L−x)−w(k)t q̂0(k)

∆(k)
, kn

}
= e−ik(L−x)−w(k)t q̂0(k)

∆′(k)

∣∣∣∣
k=kn

=
1
iL
eiknx−w(kn)tq̂0(kn).

Summing the three components, we obtain

q(x, t) =
1

2π

∫ ∞
−∞

eikx−w(k)tq̂0(k)dk − 1
2π
−
∫ ∞
−∞

eikx−w(k)t q̂0(k)
∆(k)

dk +
1

2L

∞∑
n=−∞

eiknx−w(kn)tq̂0(kn)

+
1

2π
−
∫ ∞
−∞

e−ik(L−x)−w(k)t q̂0(k)
∆(k)

dk +
1

2L

∞∑
n=−∞

eiknx−w(kn)tq̂0(kn)

=
1

2π

∫ ∞
−∞

eikx−w(k)tq0(k)dk − 1
2π
−
∫ ∞
−∞

(1− e−ikL)eikx−w(k)t q̂0(k)
∆(k)

dk +
1
L

∞∑
n=−∞

eiknx−w(kn)tq̂0(kn)

=
∞∑

n=−∞
eiknx−w(kn)t q̂0(kn)

L
,

which is the solution of (3.1) given in terms of Fourier series.

3.2 The Linear Schrödinger Equation

Consider the Linear Schrödinger equation without a potential

iqt = −qxx,
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so that, w(k) = ik2. This example is significantly more complicated owing to the geometry of D, see Fig-
ure 2. In the case of the heat equation one zero of ∆(k) is on the initial contour, whereas now an infinite
number of zeros are on the contour. The same difficulty encountered in this case will arise when for every
compact set K ⊂ R, D cannot be bounded away from R\K. In general, we abandon trying to get an integral
representation and go directly to the Fourier series solution.

Remark. If we assume that q0(x) ∈ C∞(R) and its support, supp(q0(x)) ⊂ [0, L], we can obtain an integral
representation of the solution. Restricting to these initial conditions implies that q̂0(k) decays to all orders.
This space is not convenient in applications, but does turn out be beneficial when investigating the large
period limit, as we will see below.

Figure 2. The regions D+ and D− for the Linear Schrödinger equation.

We start with the expression

q(x, t) =
1

2π

∫ ∞
−∞

eikx−w(k)tq̂0(k)dx− 1
2π

∫
∂D+

eikx−w(k)t 1
∆(k)

(
q̂0(k)− ew(k)T q̂T (k)

)
dk

− 1
2π

∫
∂D−

e−ik(L−x)−w(k)t 1
∆(k)

(
q̂0(k)− ew(k)T q̂T (k)

)
dk,
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and examine terms individually. First consider the integral

I1 =
1

2π

∫
∂D+

eikx−w(k)t 1
∆(k)

(
q̂0(k)− ew(k)T q̂T (k)

)
dk

=
1

2π
−
∫
∂D+

eikx−w(k)t 1
∆(k)

(
q̂0(k)− ew(k)T q̂T (k)

)
dk

− i

2

∑
n≥0

′
Res

{
eikx−w(k)t 1

∆(k)

(
q̂0(k)− ew(k)T q̂T (k)

)
, k =

2πn
L

}
,

where
∑′ denotes that the term with n = 0 is halved. This may appear a trivial statement as the integrand

is analytic, but it allows us to proceed as below.

I1 =
1

2π
−
∫
∂D+

eikx−w(k)t

∆(k)
q̂0(k)dk − 1

2π
−
∫
∂D+

eikx+w(k)(T−t)

∆(k)
q̂T (k)dk

−
∑
n≥0

′ i

2
Res

{
eikx−w(k)t

∆(k)
q̂0(k), k =

2πn
L

}
+
∑
n≥0

′ i

2
Res

{
eikx+w(k)(T−t)

∆(k)
q̂T (k), k =

2πn
L

}
,

since each one of the integrals converges and the sums converge absolutely. We collect the terms involving
q̂T and claim ∫

C+
ε

eikx+w(k)(T−t)

∆(k)
q̂T (k)dk =

1
2π
−
∫
∂D+

eikx+w(k)(T−t)

∆(k)
q̂T (k)dk

−
∑
n≥1

′ i

2
Res

{
eikx+w(k)(T−t)

∆(k)
q̂T (k), k =

2πn
L

}
,

where C±ε are the contours shown in Figure 3.
Consider the factors in the integrand. Re(w(k)) < 0 in D so ew(k)(T−t) is bounded on C±ε . Next, through

a change of variables

q̂T (k)
∆(k)

=
∫ L

0

eiks
q(L− s, T )
eikL − 1

ds,

which is integrable, thus the integral on C+
ε converges. Deforming down to the real line, the claim follows.

Figure 3. C±ε for the Linear Schrödinger equation

Now close this contour with the arc An =
{
k ∈ C : k = 2πn

L + πn
L , arg k ∈ [0, π/2]

}
, see Figure 3. Letting

n → ∞ the integral on An vanishes by Jordan’s Lemma, and thus the integral on C+
ε also vanishes. We
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deform the integral involving q̂0 to the real line,

I1 =
1

2π
−
∫
∂D+

eikx−w(k)t

∆(k)
q̂0(k)dk −

∑
n≥0

′ i

2
Res

{
eikx−w(k)t

∆(k)
q̂0(k), k =

2πn
L

}

=
1

2π
−
∫ ∞
−∞

eikx−w(k)t

∆(k)
q̂0(k)dk −

∞∑
n=−∞

i

2
Res

{
eikx−w(k)t

∆(k)
q̂0(k), k =

2πn
L

}
,

by using Jordan’s Lemma in the second quadrant and collecting the appropriate residues. Repeating the
same computation for the integral on ∂D−, using C−ε we obtain

1
2π

∫
∂D−

e−ik(L−x)−w(k)t

∆(k)
(q̂0(k)− ew(k)T q̂T (k))dk

=
1

2π
−
∫ ∞
−∞

e−ik(L−x)−w(k)t

∆(k)
dk −

∞∑
n=−∞

i

2
Res

{
e−ik(L−x)−w(k)t

∆(k)
q̂0(k), k =

2πn
L

}
.

Summing all five components

q(x, t) =
1

2π

∫ ∞
−∞

eikx−w(k)tq̂0(k)dk

1
2π
−
∫ ∞
−∞

eikx−w(k)t

∆(k)
q̂0(k)dk −

∞∑
n=−∞

i

2
Res

{
eikx−w(k)t

∆(k)
q̂0(k), k =

2πn
L

}

− 1
2π
−
∫ ∞
−∞

e−ik(L−x)−w(k)t

∆(k)
dk +

∞∑
n=−∞

i

2
Res

{
e−ik(L−x)−w(k)t

∆(k)
q̂0(k), k =

2πn
L

}

=
∞∑

n=−∞
iRes

{
e−ik(L−x)−w(k)t

∆(k)
q̂0(k), k =

2πn
L

}
,

which is exactly the solution of (3.1) with w(k) = ik2 in terms of a Fourier series since the two sums of
residues coincide.

3.3 Generalization

We show that these ideas apply to all PDEs of the type described above. Assume

w(k) =
n∑
j=1

αjk
j .

1) Dissipative Problems: Im
(
αn−1
αn

)
6= 0 or Re(αn) > 0 and n even.

We use the fact that D can be replaced with its asymptotic form DR, see [3]. Namely, if w(k) =
∑n
j=1 αjk

n

then the asymptotic form DR of D for large k is defined by

Re
(
αn

(
k +

αn−1

nαn

)n)
= 0,

which is a collection of 2n rays emanating from k = −αn−1
nαn

. We impose conditions on w(k) so that Re(w(k)) ≥
0 for k ∈ R as k → ±∞. These combined conditions ensure the boundary of D does not approach the real
line for large k. This implies that we have only a finite number of zeros of ∆(k) in the closure of DR. As in
the case of the heat equation, we can deform to avoid all poles, obtaining an integral representation.

As an example consider Figure 4(a), which is deformed as in Figure 4(b), so that the contour is now
bounded away from the real line. The dependence of the RHS on q̂T is removed by invoking Jordan’s Lemma
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(a) (b)

(c)

Figure 4. An example with its deformations. (a) The regions D+
R and D−R . (b) Deformation of D+

R and D−R
to avoid poles and bound it away from the real line. (c) The final contours P+ and P− for a dissipative
problem.
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in each component of Dc
R. The integrals around the boundaries of C+

1 , C+
2 , C−1 and C+

2 involving q̂0(k) can
be eliminated by using Jordan’s Lemma in these regions . Thus the final solution is given in terms of the
integrals along P+ and P−, see Figure 4(c).

2) Dispersive Problems: Im
(
αn−1
αn

)
= 0 and Re(αn) = 0, or Im

(
αn−1
αn

)
= 0 and n odd.

This condition ensures that either ∂D+
R∩R or ∂D−R ∩R are unbounded. Assume that ∂D+

R∩R is unbounded.
If not, all deformations are justified using the argument in the previous section. In addition, assume that
(−∞,∞) ⊂ ∂D+

R , see Figure 5(a). We follow the same approach as for the Linear Schrödinger Equation.
First, we replace all integrals with principal values and sums. Then, we deform the integrals involving q̂T (k)
along with the sums to contours C+

ε with small arcs over each pole kn. Closing contours inside D+
R allows

the use of Jordan’s Lemma, so that∫
C+
ε

eikx+w(k)(T−t) q̂T (k)
∆(k)

dk = 0.

This leaves only dependence on q0(k). At this point the problem is solved. We can simplify the solution
representation by repeating the process above by using Jordan’s Lemma in C+

1 , C+
2 , C−1 and C−2 .

Thus the final form of the solutions is, see Figure 5(b),

q(x, t) =
1

2π

∫ ∞
−∞

eikx−w(k)tq̂0(k)dk − 1
2π
−
∫ ∞
−∞

eikx−w(k)t q̂0(k)
∆(k)

dk +
∞∑

n=−∞

i

2
Res

{
eikx−w(k)t

∆(k)
q̂0(k), k =

2πn
L

}
+

1
2π

∫
P−

e−ik(L−x)−w(k)t q̂0(k)
∆(k)

dk.

The contour P− in Figure 5(b) can be deformed to the real line in order to extract the Fourier series as in
the case of the heat equation.

4 The Infinite-Line Limit

An integral representation is necessary to obtain the infinite-line case from the L→∞ limit. This bypasses
having to interpret a sum in the limit as a Riemann sum, as in the classical approach [6]. We shift the domain
[0, L] to [−L/2, L/2]. Let S(R) denote the Schwartz class on R. For this section we assume q0(x) ∈ S(R).
Define the bump function bL(x) ∈ S(R), with support supp(bL(x)), with the following properties, valid for
all x:

• bL(x) ≤ 1,

• limL→∞ bL(x) = 1,

• supp(bL(x)) = [−L/2, L/2],

• ∂jxbL (±L/2) = 0, j ∈ N,

• supx∈R |∂jxbL(x)| ≤Mj , j ∈ N, Mj ∈ R.

Remark. The function e
1

x−L/2 e
−1

x+L/2χ[−L/2,L/2] where χ is the characteristic function is an example of such
a function.

Fully stated, the problem is

qt + w(−i∂x)q = 0, (x, t) ∈ [−L/2, L/2]× [0, T ],
q(x, 0) = q0(x)bL(x),
q0(x) = q0(x+ L).

11



(a) (b)

(c)

Figure 5. A dispersive example with its deformations. (a) The regions D+
R and D−R for a typical dispersive

problem. (b) Deformation of D+
R and D−R to avoid poles on D−R but with a principal value integral still on

some of D+
R . (c) The contour C+

ε for a dispersive problem.
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Denote the solution of this problem by qL(x, t), given by

qL(x, t) =
1

2π

∫ ∞
−∞

eikx−w(k)tq̂0L(k)dk − 1
2π

∫
∂D+

R

eik(L/2+x)−w(k)tg̃L(k)dk

− 1
2π

∫
∂D−R

e−ik(L/2−x)−w(k)th̃L(k)dk.

In this case

g̃L(k) = h̃L(k) =
1

∆L(k)

(
q̂L0 (k)− ew(k)T q̂LT (k)

)
,

where

∆L(k) = 2i sin
(
kl

2

)
, q̂La (k) =

∫ L/2

−L/2
e−ikxq(0, a)dx.

We require a few lemmas.

Lemma 1. Let Sj = {s+ is−j : s ∈ [1,∞)}, then

1
|∆L(k)|

v O(kj), k ∈ Sj , |k| → ∞.

Proof. With ∆L(k) = eikL/2 − e−ikL/2, we have

|∆L(k)| = |eiLs/2e−Ls
−j/2 − e−iLs/2eLs

−j/2| = |e−Ls
−j/2 − e−iLseLs

−j/2|
≥ 1− e−Ls

−j
,

and lims→∞
s−j

1−e−Ls−j/2
= 2

L .

Lemma 2. Let f(x) ∈ S(R) and let bL(x) be the bump function as defined above. There exists a function
g ∈ L1(Sj), independent of L, so that∣∣∣∣∣eik(x+L/2) f̂L(k)

∆L(x)

∣∣∣∣∣ ≤ g, for all k ∈ Sj ,

where fL(x) = f(x)bL(x).

Proof. Consider ∣∣∣∣ eik(x+L/2)

eikL/2 − e−ikL/2

∣∣∣∣ ≤ 1
|1− e−Ls−j/2|

≤ 2
1− e−s−j/2

,

for L ≥ 1. For the numerator, using integration by parts

|f̂L(k)| =

∣∣∣∣∣∣(ik)−m
∫ L/2

−L/2

m∑
j=0

cj∂
j
xf(x) · ∂m−jx bj(x)dx

∣∣∣∣∣∣ ≤ |k|−m
∫ ∞
−∞

m∑
j=0

|cj |Mj |∂jxf(x)|dx

where cj are real constants. Since we chose f to be Schwartz class,
∫∞
−∞

∑m
j=0 cjMj |∂jxf(x)|dx = Pm < ∞.

Let

g =
Pm|k|−m

1− ekj/2
, where m > j + 1.

13



Figure 6. Deforming the principal value integral up into D+
R .

By Lemma 1, g ∈ L1(Sj).

Theorem 4. Let A be a contour in the upper half plane that is bounded away from the real line or A = Sj
for some j. Then

lim
L→∞

∫
A

eik(x+L/2) q̂0L(k)
∆L(k)

dk = 0.

Proof.

(a) The contour A is bounded away from the real line. So 1/|eikL − 1| ≤ B ∈ R on A for L ≥ 1. Next∣∣∣∣ q̂0L(k)
∆L(k)

∣∣∣∣ =
1

|eikL − 1|

∣∣∣∣∣
∫ L/2

−L/2
eik(L/2−x)q0(x)dx

∣∣∣∣∣ ≤ B
∣∣∣∣∣
∫ L/2

−L/2
eik(L/2−x)q0(x)dx

∣∣∣∣∣ ≤ BPm|k|−m,
using a simplified version of Lemma 2. Consider∫ L/2

−L/2
eik(L/2−x)q0(x)dx.

We have eik(L/2−x)q0L(x) ≤ q0(x) ∈ L1(R) and for fixed x, eik(L/2−x) → 0 as L→∞. From dominated
convergence, limL→∞

∫ L/2
−L/2 e

ik(L/2−x)q0(x)dx = 0. It follows that dominated convergence can be used
again, and

lim
L→∞

∫
A

eik(x+L/2) q̂0L(k)
∆L(k)

dk =
∫
A

eik(x+L/2) limL→∞ q̂0L(k)
∆L(k)

dk = 0.

(b) Assume A = Sj for some j. Lemma 2 gives a function g to dominate the first integral. Part (a) provides
what we need to dominate the inner integral. So

lim
L→∞

∫
A

eik(x+L/2) q̂0L(k)
∆L(k)

dk = 0.

14



Remark. The same proof extends to integrals of the form
∫
A
e−ik(L/2−x)−w(k)t q̂0L (k)

∆L(k) dk in the lower half
plane.

Fix x and t and consider

IL =
1

2π

∫
∂D+

R

eik(L/2+x)−w(k)tg̃L(k)dk.

We assume that [0,∞) ⊂ ∂D+
R but (−∞, 0)∩∂D+

R = ∅. When this is not the case, the same calculations
carry through for (−∞, 0]. We follow the same process as above to remove dependence on q̂T (k), leaving

IL = −
∫
∂D+

R

eik(L/2+x)−w(k)t q̂0(k)
∆L(k)

dk −
∑
n≥0

′ i

2
Res

{
eikx−w(k)t

∆(k)
q̂0(k), k =

2πn
L

}
.

Let Cε be a contour with arcs over every zero of ∆L(k) such that each arc is tangent to Sj , see Figure 6.
On Cε, 1/∆L(k) v c(ε)kj , this is shown in the same way as Lemma 1. Using Lemma 2 we can deform this
integral up to Sj using Cε as an intermediate step (Figure 6). We obtain

IL =
∫
A

eik(L/2+x)−w(k)t q̂0(k)
∆L(k)

dk +
∫
Sj

eik(L/2+x)−w(k)t q̂0(k)
∆L(k)

dk,

where A is bounded away from the real line and j ≥ n where n is the order of w(k). This is done so that
e−w(k)t is bounded on Sj . From Theorem 4, limL→∞ IL = 0. The same arguments apply to integrals on D−R .
Therefore

lim
L→∞

qL(x, t) =
1

2π
lim
L→∞

∫ ∞
−∞

eikx−w(k)tq̂0L(k)dk

=
1

2π

∫ ∞
−∞

eikx−w(k)t lim
n→∞

q̂0L(k)dk

=
1

2π

∫ ∞
−∞

eikx−w(k)tq̂0(k)dk,

where the limit interchange was done in the same way as above. Thus the infinite-line limit directly gives
rise to the Fourier transform solution.
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